1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Linux INET6 implementation 4 * Forwarding Information Database 5 * 6 * Authors: 7 * Pedro Roque <roque@di.fc.ul.pt> 8 * 9 * Changes: 10 * Yuji SEKIYA @USAGI: Support default route on router node; 11 * remove ip6_null_entry from the top of 12 * routing table. 13 * Ville Nuorvala: Fixed routing subtrees. 14 */ 15 16 #define pr_fmt(fmt) "IPv6: " fmt 17 18 #include <linux/bpf.h> 19 #include <linux/errno.h> 20 #include <linux/types.h> 21 #include <linux/net.h> 22 #include <linux/route.h> 23 #include <linux/netdevice.h> 24 #include <linux/in6.h> 25 #include <linux/init.h> 26 #include <linux/list.h> 27 #include <linux/slab.h> 28 29 #include <net/ip.h> 30 #include <net/ipv6.h> 31 #include <net/ndisc.h> 32 #include <net/addrconf.h> 33 #include <net/lwtunnel.h> 34 #include <net/fib_notifier.h> 35 36 #include <net/ip_fib.h> 37 #include <net/ip6_fib.h> 38 #include <net/ip6_route.h> 39 40 static struct kmem_cache *fib6_node_kmem __read_mostly; 41 42 struct fib6_cleaner { 43 struct fib6_walker w; 44 struct net *net; 45 int (*func)(struct fib6_info *, void *arg); 46 int sernum; 47 void *arg; 48 bool skip_notify; 49 }; 50 51 #ifdef CONFIG_IPV6_SUBTREES 52 #define FWS_INIT FWS_S 53 #else 54 #define FWS_INIT FWS_L 55 #endif 56 57 static struct fib6_info *fib6_find_prefix(struct net *net, 58 struct fib6_table *table, 59 struct fib6_node *fn); 60 static struct fib6_node *fib6_repair_tree(struct net *net, 61 struct fib6_table *table, 62 struct fib6_node *fn); 63 static int fib6_walk(struct net *net, struct fib6_walker *w); 64 static int fib6_walk_continue(struct fib6_walker *w); 65 66 /* 67 * A routing update causes an increase of the serial number on the 68 * affected subtree. This allows for cached routes to be asynchronously 69 * tested when modifications are made to the destination cache as a 70 * result of redirects, path MTU changes, etc. 71 */ 72 73 static void fib6_gc_timer_cb(struct timer_list *t); 74 75 #define FOR_WALKERS(net, w) \ 76 list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh) 77 78 static void fib6_walker_link(struct net *net, struct fib6_walker *w) 79 { 80 write_lock_bh(&net->ipv6.fib6_walker_lock); 81 list_add(&w->lh, &net->ipv6.fib6_walkers); 82 write_unlock_bh(&net->ipv6.fib6_walker_lock); 83 } 84 85 static void fib6_walker_unlink(struct net *net, struct fib6_walker *w) 86 { 87 write_lock_bh(&net->ipv6.fib6_walker_lock); 88 list_del(&w->lh); 89 write_unlock_bh(&net->ipv6.fib6_walker_lock); 90 } 91 92 static int fib6_new_sernum(struct net *net) 93 { 94 int new, old = atomic_read(&net->ipv6.fib6_sernum); 95 96 do { 97 new = old < INT_MAX ? old + 1 : 1; 98 } while (!atomic_try_cmpxchg(&net->ipv6.fib6_sernum, &old, new)); 99 100 return new; 101 } 102 103 enum { 104 FIB6_NO_SERNUM_CHANGE = 0, 105 }; 106 107 void fib6_update_sernum(struct net *net, struct fib6_info *f6i) 108 { 109 struct fib6_node *fn; 110 111 fn = rcu_dereference_protected(f6i->fib6_node, 112 lockdep_is_held(&f6i->fib6_table->tb6_lock)); 113 if (fn) 114 WRITE_ONCE(fn->fn_sernum, fib6_new_sernum(net)); 115 } 116 117 /* 118 * Auxiliary address test functions for the radix tree. 119 * 120 * These assume a 32bit processor (although it will work on 121 * 64bit processors) 122 */ 123 124 /* 125 * test bit 126 */ 127 #if defined(__LITTLE_ENDIAN) 128 # define BITOP_BE32_SWIZZLE (0x1F & ~7) 129 #else 130 # define BITOP_BE32_SWIZZLE 0 131 #endif 132 133 static __be32 addr_bit_set(const void *token, int fn_bit) 134 { 135 const __be32 *addr = token; 136 /* 137 * Here, 138 * 1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f) 139 * is optimized version of 140 * htonl(1 << ((~fn_bit)&0x1F)) 141 * See include/asm-generic/bitops/le.h. 142 */ 143 return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) & 144 addr[fn_bit >> 5]; 145 } 146 147 struct fib6_info *fib6_info_alloc(gfp_t gfp_flags, bool with_fib6_nh) 148 { 149 struct fib6_info *f6i; 150 size_t sz = sizeof(*f6i); 151 152 if (with_fib6_nh) 153 sz += sizeof(struct fib6_nh); 154 155 f6i = kzalloc(sz, gfp_flags); 156 if (!f6i) 157 return NULL; 158 159 /* fib6_siblings is a union with nh_list, so this initializes both */ 160 INIT_LIST_HEAD(&f6i->fib6_siblings); 161 refcount_set(&f6i->fib6_ref, 1); 162 163 INIT_HLIST_NODE(&f6i->gc_link); 164 165 return f6i; 166 } 167 168 void fib6_info_destroy_rcu(struct rcu_head *head) 169 { 170 struct fib6_info *f6i = container_of(head, struct fib6_info, rcu); 171 172 WARN_ON(f6i->fib6_node); 173 174 if (f6i->nh) 175 nexthop_put(f6i->nh); 176 else 177 fib6_nh_release(f6i->fib6_nh); 178 179 ip_fib_metrics_put(f6i->fib6_metrics); 180 kfree(f6i); 181 } 182 EXPORT_SYMBOL_GPL(fib6_info_destroy_rcu); 183 184 static struct fib6_node *node_alloc(struct net *net) 185 { 186 struct fib6_node *fn; 187 188 fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC); 189 if (fn) 190 net->ipv6.rt6_stats->fib_nodes++; 191 192 return fn; 193 } 194 195 static void node_free_immediate(struct net *net, struct fib6_node *fn) 196 { 197 kmem_cache_free(fib6_node_kmem, fn); 198 net->ipv6.rt6_stats->fib_nodes--; 199 } 200 201 static void node_free(struct net *net, struct fib6_node *fn) 202 { 203 kfree_rcu(fn, rcu); 204 net->ipv6.rt6_stats->fib_nodes--; 205 } 206 207 static void fib6_free_table(struct fib6_table *table) 208 { 209 inetpeer_invalidate_tree(&table->tb6_peers); 210 kfree(table); 211 } 212 213 static void fib6_link_table(struct net *net, struct fib6_table *tb) 214 { 215 unsigned int h; 216 217 /* 218 * Initialize table lock at a single place to give lockdep a key, 219 * tables aren't visible prior to being linked to the list. 220 */ 221 spin_lock_init(&tb->tb6_lock); 222 h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1); 223 224 /* 225 * No protection necessary, this is the only list mutatation 226 * operation, tables never disappear once they exist. 227 */ 228 hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]); 229 } 230 231 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 232 233 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id) 234 { 235 struct fib6_table *table; 236 237 table = kzalloc(sizeof(*table), GFP_ATOMIC); 238 if (table) { 239 table->tb6_id = id; 240 rcu_assign_pointer(table->tb6_root.leaf, 241 net->ipv6.fib6_null_entry); 242 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO; 243 inet_peer_base_init(&table->tb6_peers); 244 INIT_HLIST_HEAD(&table->tb6_gc_hlist); 245 } 246 247 return table; 248 } 249 250 struct fib6_table *fib6_new_table(struct net *net, u32 id) 251 { 252 struct fib6_table *tb, *new_tb; 253 254 if (id == 0) 255 id = RT6_TABLE_MAIN; 256 257 tb = fib6_get_table(net, id); 258 if (tb) 259 return tb; 260 261 new_tb = fib6_alloc_table(net, id); 262 if (!new_tb) 263 return NULL; 264 265 spin_lock_bh(&net->ipv6.fib_table_hash_lock); 266 267 tb = fib6_get_table(net, id); 268 if (unlikely(tb)) { 269 spin_unlock_bh(&net->ipv6.fib_table_hash_lock); 270 kfree(new_tb); 271 return tb; 272 } 273 274 fib6_link_table(net, new_tb); 275 276 spin_unlock_bh(&net->ipv6.fib_table_hash_lock); 277 278 return new_tb; 279 } 280 EXPORT_SYMBOL_GPL(fib6_new_table); 281 282 struct fib6_table *fib6_get_table(struct net *net, u32 id) 283 { 284 struct fib6_table *tb; 285 struct hlist_head *head; 286 unsigned int h; 287 288 if (id == 0) 289 id = RT6_TABLE_MAIN; 290 h = id & (FIB6_TABLE_HASHSZ - 1); 291 rcu_read_lock(); 292 head = &net->ipv6.fib_table_hash[h]; 293 hlist_for_each_entry_rcu(tb, head, tb6_hlist) { 294 if (tb->tb6_id == id) { 295 rcu_read_unlock(); 296 return tb; 297 } 298 } 299 rcu_read_unlock(); 300 301 return NULL; 302 } 303 EXPORT_SYMBOL_GPL(fib6_get_table); 304 305 static void __net_init fib6_tables_init(struct net *net) 306 { 307 fib6_link_table(net, net->ipv6.fib6_main_tbl); 308 fib6_link_table(net, net->ipv6.fib6_local_tbl); 309 } 310 #else 311 312 struct fib6_table *fib6_new_table(struct net *net, u32 id) 313 { 314 return fib6_get_table(net, id); 315 } 316 317 struct fib6_table *fib6_get_table(struct net *net, u32 id) 318 { 319 return net->ipv6.fib6_main_tbl; 320 } 321 322 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6, 323 const struct sk_buff *skb, 324 int flags, pol_lookup_t lookup) 325 { 326 struct rt6_info *rt; 327 328 rt = pol_lookup_func(lookup, 329 net, net->ipv6.fib6_main_tbl, fl6, skb, flags); 330 if (rt->dst.error == -EAGAIN) { 331 ip6_rt_put_flags(rt, flags); 332 rt = net->ipv6.ip6_null_entry; 333 if (!(flags & RT6_LOOKUP_F_DST_NOREF)) 334 dst_hold(&rt->dst); 335 } 336 337 return &rt->dst; 338 } 339 340 /* called with rcu lock held; no reference taken on fib6_info */ 341 int fib6_lookup(struct net *net, int oif, struct flowi6 *fl6, 342 struct fib6_result *res, int flags) 343 { 344 return fib6_table_lookup(net, net->ipv6.fib6_main_tbl, oif, fl6, 345 res, flags); 346 } 347 348 static void __net_init fib6_tables_init(struct net *net) 349 { 350 fib6_link_table(net, net->ipv6.fib6_main_tbl); 351 } 352 353 #endif 354 355 unsigned int fib6_tables_seq_read(const struct net *net) 356 { 357 unsigned int h, fib_seq = 0; 358 359 rcu_read_lock(); 360 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { 361 const struct hlist_head *head = &net->ipv6.fib_table_hash[h]; 362 const struct fib6_table *tb; 363 364 hlist_for_each_entry_rcu(tb, head, tb6_hlist) 365 fib_seq += READ_ONCE(tb->fib_seq); 366 } 367 rcu_read_unlock(); 368 369 return fib_seq; 370 } 371 372 static int call_fib6_entry_notifier(struct notifier_block *nb, 373 enum fib_event_type event_type, 374 struct fib6_info *rt, 375 struct netlink_ext_ack *extack) 376 { 377 struct fib6_entry_notifier_info info = { 378 .info.extack = extack, 379 .rt = rt, 380 }; 381 382 return call_fib6_notifier(nb, event_type, &info.info); 383 } 384 385 static int call_fib6_multipath_entry_notifier(struct notifier_block *nb, 386 enum fib_event_type event_type, 387 struct fib6_info *rt, 388 unsigned int nsiblings, 389 struct netlink_ext_ack *extack) 390 { 391 struct fib6_entry_notifier_info info = { 392 .info.extack = extack, 393 .rt = rt, 394 .nsiblings = nsiblings, 395 }; 396 397 return call_fib6_notifier(nb, event_type, &info.info); 398 } 399 400 int call_fib6_entry_notifiers(struct net *net, 401 enum fib_event_type event_type, 402 struct fib6_info *rt, 403 struct netlink_ext_ack *extack) 404 { 405 struct fib6_entry_notifier_info info = { 406 .info.extack = extack, 407 .rt = rt, 408 }; 409 410 WRITE_ONCE(rt->fib6_table->fib_seq, rt->fib6_table->fib_seq + 1); 411 return call_fib6_notifiers(net, event_type, &info.info); 412 } 413 414 int call_fib6_multipath_entry_notifiers(struct net *net, 415 enum fib_event_type event_type, 416 struct fib6_info *rt, 417 unsigned int nsiblings, 418 struct netlink_ext_ack *extack) 419 { 420 struct fib6_entry_notifier_info info = { 421 .info.extack = extack, 422 .rt = rt, 423 .nsiblings = nsiblings, 424 }; 425 426 WRITE_ONCE(rt->fib6_table->fib_seq, rt->fib6_table->fib_seq + 1); 427 return call_fib6_notifiers(net, event_type, &info.info); 428 } 429 430 int call_fib6_entry_notifiers_replace(struct net *net, struct fib6_info *rt) 431 { 432 struct fib6_entry_notifier_info info = { 433 .rt = rt, 434 .nsiblings = rt->fib6_nsiblings, 435 }; 436 437 WRITE_ONCE(rt->fib6_table->fib_seq, rt->fib6_table->fib_seq + 1); 438 return call_fib6_notifiers(net, FIB_EVENT_ENTRY_REPLACE, &info.info); 439 } 440 441 struct fib6_dump_arg { 442 struct net *net; 443 struct notifier_block *nb; 444 struct netlink_ext_ack *extack; 445 }; 446 447 static int fib6_rt_dump(struct fib6_info *rt, struct fib6_dump_arg *arg) 448 { 449 enum fib_event_type fib_event = FIB_EVENT_ENTRY_REPLACE; 450 int err; 451 452 if (!rt || rt == arg->net->ipv6.fib6_null_entry) 453 return 0; 454 455 if (rt->fib6_nsiblings) 456 err = call_fib6_multipath_entry_notifier(arg->nb, fib_event, 457 rt, 458 rt->fib6_nsiblings, 459 arg->extack); 460 else 461 err = call_fib6_entry_notifier(arg->nb, fib_event, rt, 462 arg->extack); 463 464 return err; 465 } 466 467 static int fib6_node_dump(struct fib6_walker *w) 468 { 469 int err; 470 471 err = fib6_rt_dump(w->leaf, w->args); 472 w->leaf = NULL; 473 return err; 474 } 475 476 static int fib6_table_dump(struct net *net, struct fib6_table *tb, 477 struct fib6_walker *w) 478 { 479 int err; 480 481 w->root = &tb->tb6_root; 482 spin_lock_bh(&tb->tb6_lock); 483 err = fib6_walk(net, w); 484 spin_unlock_bh(&tb->tb6_lock); 485 return err; 486 } 487 488 /* Called with rcu_read_lock() */ 489 int fib6_tables_dump(struct net *net, struct notifier_block *nb, 490 struct netlink_ext_ack *extack) 491 { 492 struct fib6_dump_arg arg; 493 struct fib6_walker *w; 494 unsigned int h; 495 int err = 0; 496 497 w = kzalloc(sizeof(*w), GFP_ATOMIC); 498 if (!w) 499 return -ENOMEM; 500 501 w->func = fib6_node_dump; 502 arg.net = net; 503 arg.nb = nb; 504 arg.extack = extack; 505 w->args = &arg; 506 507 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { 508 struct hlist_head *head = &net->ipv6.fib_table_hash[h]; 509 struct fib6_table *tb; 510 511 hlist_for_each_entry_rcu(tb, head, tb6_hlist) { 512 err = fib6_table_dump(net, tb, w); 513 if (err) 514 goto out; 515 } 516 } 517 518 out: 519 kfree(w); 520 521 /* The tree traversal function should never return a positive value. */ 522 return err > 0 ? -EINVAL : err; 523 } 524 525 static int fib6_dump_node(struct fib6_walker *w) 526 { 527 int res; 528 struct fib6_info *rt; 529 530 for_each_fib6_walker_rt(w) { 531 res = rt6_dump_route(rt, w->args, w->skip_in_node); 532 if (res >= 0) { 533 /* Frame is full, suspend walking */ 534 w->leaf = rt; 535 536 /* We'll restart from this node, so if some routes were 537 * already dumped, skip them next time. 538 */ 539 w->skip_in_node += res; 540 541 return 1; 542 } 543 w->skip_in_node = 0; 544 545 /* Multipath routes are dumped in one route with the 546 * RTA_MULTIPATH attribute. Jump 'rt' to point to the 547 * last sibling of this route (no need to dump the 548 * sibling routes again) 549 */ 550 if (rt->fib6_nsiblings) 551 rt = list_last_entry(&rt->fib6_siblings, 552 struct fib6_info, 553 fib6_siblings); 554 } 555 w->leaf = NULL; 556 return 0; 557 } 558 559 static void fib6_dump_end(struct netlink_callback *cb) 560 { 561 struct net *net = sock_net(cb->skb->sk); 562 struct fib6_walker *w = (void *)cb->args[2]; 563 564 if (w) { 565 if (cb->args[4]) { 566 cb->args[4] = 0; 567 fib6_walker_unlink(net, w); 568 } 569 cb->args[2] = 0; 570 kfree(w); 571 } 572 cb->done = (void *)cb->args[3]; 573 cb->args[1] = 3; 574 } 575 576 static int fib6_dump_done(struct netlink_callback *cb) 577 { 578 fib6_dump_end(cb); 579 return cb->done ? cb->done(cb) : 0; 580 } 581 582 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb, 583 struct netlink_callback *cb) 584 { 585 struct net *net = sock_net(skb->sk); 586 struct fib6_walker *w; 587 int res; 588 589 w = (void *)cb->args[2]; 590 w->root = &table->tb6_root; 591 592 if (cb->args[4] == 0) { 593 w->count = 0; 594 w->skip = 0; 595 w->skip_in_node = 0; 596 597 spin_lock_bh(&table->tb6_lock); 598 res = fib6_walk(net, w); 599 spin_unlock_bh(&table->tb6_lock); 600 if (res > 0) { 601 cb->args[4] = 1; 602 cb->args[5] = READ_ONCE(w->root->fn_sernum); 603 } 604 } else { 605 int sernum = READ_ONCE(w->root->fn_sernum); 606 if (cb->args[5] != sernum) { 607 /* Begin at the root if the tree changed */ 608 cb->args[5] = sernum; 609 w->state = FWS_INIT; 610 w->node = w->root; 611 w->skip = w->count; 612 w->skip_in_node = 0; 613 } else 614 w->skip = 0; 615 616 spin_lock_bh(&table->tb6_lock); 617 res = fib6_walk_continue(w); 618 spin_unlock_bh(&table->tb6_lock); 619 if (res <= 0) { 620 fib6_walker_unlink(net, w); 621 cb->args[4] = 0; 622 } 623 } 624 625 return res; 626 } 627 628 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb) 629 { 630 struct rt6_rtnl_dump_arg arg = { 631 .filter.dump_exceptions = true, 632 .filter.dump_routes = true, 633 .filter.rtnl_held = false, 634 }; 635 const struct nlmsghdr *nlh = cb->nlh; 636 struct net *net = sock_net(skb->sk); 637 unsigned int e = 0, s_e; 638 struct hlist_head *head; 639 struct fib6_walker *w; 640 struct fib6_table *tb; 641 unsigned int h, s_h; 642 int err = 0; 643 644 rcu_read_lock(); 645 if (cb->strict_check) { 646 err = ip_valid_fib_dump_req(net, nlh, &arg.filter, cb); 647 if (err < 0) 648 goto unlock; 649 } else if (nlmsg_len(nlh) >= sizeof(struct rtmsg)) { 650 struct rtmsg *rtm = nlmsg_data(nlh); 651 652 if (rtm->rtm_flags & RTM_F_PREFIX) 653 arg.filter.flags = RTM_F_PREFIX; 654 } 655 656 w = (void *)cb->args[2]; 657 if (!w) { 658 /* New dump: 659 * 660 * 1. allocate and initialize walker. 661 */ 662 w = kzalloc(sizeof(*w), GFP_ATOMIC); 663 if (!w) { 664 err = -ENOMEM; 665 goto unlock; 666 } 667 w->func = fib6_dump_node; 668 cb->args[2] = (long)w; 669 670 /* 2. hook callback destructor. 671 */ 672 cb->args[3] = (long)cb->done; 673 cb->done = fib6_dump_done; 674 675 } 676 677 arg.skb = skb; 678 arg.cb = cb; 679 arg.net = net; 680 w->args = &arg; 681 682 if (arg.filter.table_id) { 683 tb = fib6_get_table(net, arg.filter.table_id); 684 if (!tb) { 685 if (rtnl_msg_family(cb->nlh) != PF_INET6) 686 goto unlock; 687 688 NL_SET_ERR_MSG_MOD(cb->extack, "FIB table does not exist"); 689 err = -ENOENT; 690 goto unlock; 691 } 692 693 if (!cb->args[0]) { 694 err = fib6_dump_table(tb, skb, cb); 695 if (!err) 696 cb->args[0] = 1; 697 } 698 goto unlock; 699 } 700 701 s_h = cb->args[0]; 702 s_e = cb->args[1]; 703 704 for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) { 705 e = 0; 706 head = &net->ipv6.fib_table_hash[h]; 707 hlist_for_each_entry_rcu(tb, head, tb6_hlist) { 708 if (e < s_e) 709 goto next; 710 err = fib6_dump_table(tb, skb, cb); 711 if (err != 0) 712 goto out; 713 next: 714 e++; 715 } 716 } 717 out: 718 cb->args[1] = e; 719 cb->args[0] = h; 720 721 unlock: 722 rcu_read_unlock(); 723 if (err <= 0) 724 fib6_dump_end(cb); 725 return err; 726 } 727 728 void fib6_metric_set(struct fib6_info *f6i, int metric, u32 val) 729 { 730 if (!f6i) 731 return; 732 733 if (f6i->fib6_metrics == &dst_default_metrics) { 734 struct dst_metrics *p = kzalloc(sizeof(*p), GFP_ATOMIC); 735 736 if (!p) 737 return; 738 739 refcount_set(&p->refcnt, 1); 740 f6i->fib6_metrics = p; 741 } 742 743 f6i->fib6_metrics->metrics[metric - 1] = val; 744 } 745 746 /* 747 * Routing Table 748 * 749 * return the appropriate node for a routing tree "add" operation 750 * by either creating and inserting or by returning an existing 751 * node. 752 */ 753 754 static struct fib6_node *fib6_add_1(struct net *net, 755 struct fib6_table *table, 756 struct fib6_node *root, 757 struct in6_addr *addr, int plen, 758 int offset, int allow_create, 759 int replace_required, 760 struct netlink_ext_ack *extack) 761 { 762 struct fib6_node *fn, *in, *ln; 763 struct fib6_node *pn = NULL; 764 struct rt6key *key; 765 int bit; 766 __be32 dir = 0; 767 768 /* insert node in tree */ 769 770 fn = root; 771 772 do { 773 struct fib6_info *leaf = rcu_dereference_protected(fn->leaf, 774 lockdep_is_held(&table->tb6_lock)); 775 key = (struct rt6key *)((u8 *)leaf + offset); 776 777 /* 778 * Prefix match 779 */ 780 if (plen < fn->fn_bit || 781 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) { 782 if (!allow_create) { 783 if (replace_required) { 784 NL_SET_ERR_MSG(extack, 785 "Can not replace route - no match found"); 786 pr_warn("Can't replace route, no match found\n"); 787 return ERR_PTR(-ENOENT); 788 } 789 pr_warn("NLM_F_CREATE should be set when creating new route\n"); 790 } 791 goto insert_above; 792 } 793 794 /* 795 * Exact match ? 796 */ 797 798 if (plen == fn->fn_bit) { 799 /* clean up an intermediate node */ 800 if (!(fn->fn_flags & RTN_RTINFO)) { 801 RCU_INIT_POINTER(fn->leaf, NULL); 802 fib6_info_release(leaf); 803 /* remove null_entry in the root node */ 804 } else if (fn->fn_flags & RTN_TL_ROOT && 805 rcu_access_pointer(fn->leaf) == 806 net->ipv6.fib6_null_entry) { 807 RCU_INIT_POINTER(fn->leaf, NULL); 808 } 809 810 return fn; 811 } 812 813 /* 814 * We have more bits to go 815 */ 816 817 /* Try to walk down on tree. */ 818 dir = addr_bit_set(addr, fn->fn_bit); 819 pn = fn; 820 fn = dir ? 821 rcu_dereference_protected(fn->right, 822 lockdep_is_held(&table->tb6_lock)) : 823 rcu_dereference_protected(fn->left, 824 lockdep_is_held(&table->tb6_lock)); 825 } while (fn); 826 827 if (!allow_create) { 828 /* We should not create new node because 829 * NLM_F_REPLACE was specified without NLM_F_CREATE 830 * I assume it is safe to require NLM_F_CREATE when 831 * REPLACE flag is used! Later we may want to remove the 832 * check for replace_required, because according 833 * to netlink specification, NLM_F_CREATE 834 * MUST be specified if new route is created. 835 * That would keep IPv6 consistent with IPv4 836 */ 837 if (replace_required) { 838 NL_SET_ERR_MSG(extack, 839 "Can not replace route - no match found"); 840 pr_warn("Can't replace route, no match found\n"); 841 return ERR_PTR(-ENOENT); 842 } 843 pr_warn("NLM_F_CREATE should be set when creating new route\n"); 844 } 845 /* 846 * We walked to the bottom of tree. 847 * Create new leaf node without children. 848 */ 849 850 ln = node_alloc(net); 851 852 if (!ln) 853 return ERR_PTR(-ENOMEM); 854 ln->fn_bit = plen; 855 RCU_INIT_POINTER(ln->parent, pn); 856 857 if (dir) 858 rcu_assign_pointer(pn->right, ln); 859 else 860 rcu_assign_pointer(pn->left, ln); 861 862 return ln; 863 864 865 insert_above: 866 /* 867 * split since we don't have a common prefix anymore or 868 * we have a less significant route. 869 * we've to insert an intermediate node on the list 870 * this new node will point to the one we need to create 871 * and the current 872 */ 873 874 pn = rcu_dereference_protected(fn->parent, 875 lockdep_is_held(&table->tb6_lock)); 876 877 /* find 1st bit in difference between the 2 addrs. 878 879 See comment in __ipv6_addr_diff: bit may be an invalid value, 880 but if it is >= plen, the value is ignored in any case. 881 */ 882 883 bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr)); 884 885 /* 886 * (intermediate)[in] 887 * / \ 888 * (new leaf node)[ln] (old node)[fn] 889 */ 890 if (plen > bit) { 891 in = node_alloc(net); 892 ln = node_alloc(net); 893 894 if (!in || !ln) { 895 if (in) 896 node_free_immediate(net, in); 897 if (ln) 898 node_free_immediate(net, ln); 899 return ERR_PTR(-ENOMEM); 900 } 901 902 /* 903 * new intermediate node. 904 * RTN_RTINFO will 905 * be off since that an address that chooses one of 906 * the branches would not match less specific routes 907 * in the other branch 908 */ 909 910 in->fn_bit = bit; 911 912 RCU_INIT_POINTER(in->parent, pn); 913 in->leaf = fn->leaf; 914 fib6_info_hold(rcu_dereference_protected(in->leaf, 915 lockdep_is_held(&table->tb6_lock))); 916 917 /* update parent pointer */ 918 if (dir) 919 rcu_assign_pointer(pn->right, in); 920 else 921 rcu_assign_pointer(pn->left, in); 922 923 ln->fn_bit = plen; 924 925 RCU_INIT_POINTER(ln->parent, in); 926 rcu_assign_pointer(fn->parent, in); 927 928 if (addr_bit_set(addr, bit)) { 929 rcu_assign_pointer(in->right, ln); 930 rcu_assign_pointer(in->left, fn); 931 } else { 932 rcu_assign_pointer(in->left, ln); 933 rcu_assign_pointer(in->right, fn); 934 } 935 } else { /* plen <= bit */ 936 937 /* 938 * (new leaf node)[ln] 939 * / \ 940 * (old node)[fn] NULL 941 */ 942 943 ln = node_alloc(net); 944 945 if (!ln) 946 return ERR_PTR(-ENOMEM); 947 948 ln->fn_bit = plen; 949 950 RCU_INIT_POINTER(ln->parent, pn); 951 952 if (addr_bit_set(&key->addr, plen)) 953 RCU_INIT_POINTER(ln->right, fn); 954 else 955 RCU_INIT_POINTER(ln->left, fn); 956 957 rcu_assign_pointer(fn->parent, ln); 958 959 if (dir) 960 rcu_assign_pointer(pn->right, ln); 961 else 962 rcu_assign_pointer(pn->left, ln); 963 } 964 return ln; 965 } 966 967 static void __fib6_drop_pcpu_from(struct fib6_nh *fib6_nh, 968 const struct fib6_info *match, 969 const struct fib6_table *table) 970 { 971 int cpu; 972 973 if (!fib6_nh->rt6i_pcpu) 974 return; 975 976 rcu_read_lock(); 977 /* release the reference to this fib entry from 978 * all of its cached pcpu routes 979 */ 980 for_each_possible_cpu(cpu) { 981 struct rt6_info **ppcpu_rt; 982 struct rt6_info *pcpu_rt; 983 984 ppcpu_rt = per_cpu_ptr(fib6_nh->rt6i_pcpu, cpu); 985 986 /* Paired with xchg() in rt6_get_pcpu_route() */ 987 pcpu_rt = READ_ONCE(*ppcpu_rt); 988 989 /* only dropping the 'from' reference if the cached route 990 * is using 'match'. The cached pcpu_rt->from only changes 991 * from a fib6_info to NULL (ip6_dst_destroy); it can never 992 * change from one fib6_info reference to another 993 */ 994 if (pcpu_rt && rcu_access_pointer(pcpu_rt->from) == match) { 995 struct fib6_info *from; 996 997 from = unrcu_pointer(xchg(&pcpu_rt->from, NULL)); 998 fib6_info_release(from); 999 } 1000 } 1001 rcu_read_unlock(); 1002 } 1003 1004 struct fib6_nh_pcpu_arg { 1005 struct fib6_info *from; 1006 const struct fib6_table *table; 1007 }; 1008 1009 static int fib6_nh_drop_pcpu_from(struct fib6_nh *nh, void *_arg) 1010 { 1011 struct fib6_nh_pcpu_arg *arg = _arg; 1012 1013 __fib6_drop_pcpu_from(nh, arg->from, arg->table); 1014 return 0; 1015 } 1016 1017 static void fib6_drop_pcpu_from(struct fib6_info *f6i, 1018 const struct fib6_table *table) 1019 { 1020 /* Make sure rt6_make_pcpu_route() wont add other percpu routes 1021 * while we are cleaning them here. 1022 */ 1023 f6i->fib6_destroying = 1; 1024 mb(); /* paired with the cmpxchg() in rt6_make_pcpu_route() */ 1025 1026 if (f6i->nh) { 1027 struct fib6_nh_pcpu_arg arg = { 1028 .from = f6i, 1029 .table = table 1030 }; 1031 1032 nexthop_for_each_fib6_nh(f6i->nh, fib6_nh_drop_pcpu_from, 1033 &arg); 1034 } else { 1035 struct fib6_nh *fib6_nh; 1036 1037 fib6_nh = f6i->fib6_nh; 1038 __fib6_drop_pcpu_from(fib6_nh, f6i, table); 1039 } 1040 } 1041 1042 static void fib6_purge_rt(struct fib6_info *rt, struct fib6_node *fn, 1043 struct net *net) 1044 { 1045 struct fib6_table *table = rt->fib6_table; 1046 1047 /* Flush all cached dst in exception table */ 1048 rt6_flush_exceptions(rt); 1049 fib6_drop_pcpu_from(rt, table); 1050 1051 if (rt->nh) { 1052 spin_lock(&rt->nh->lock); 1053 1054 if (!list_empty(&rt->nh_list)) 1055 list_del_init(&rt->nh_list); 1056 1057 spin_unlock(&rt->nh->lock); 1058 } 1059 1060 if (refcount_read(&rt->fib6_ref) != 1) { 1061 /* This route is used as dummy address holder in some split 1062 * nodes. It is not leaked, but it still holds other resources, 1063 * which must be released in time. So, scan ascendant nodes 1064 * and replace dummy references to this route with references 1065 * to still alive ones. 1066 */ 1067 while (fn) { 1068 struct fib6_info *leaf = rcu_dereference_protected(fn->leaf, 1069 lockdep_is_held(&table->tb6_lock)); 1070 struct fib6_info *new_leaf; 1071 if (!(fn->fn_flags & RTN_RTINFO) && leaf == rt) { 1072 new_leaf = fib6_find_prefix(net, table, fn); 1073 fib6_info_hold(new_leaf); 1074 1075 rcu_assign_pointer(fn->leaf, new_leaf); 1076 fib6_info_release(rt); 1077 } 1078 fn = rcu_dereference_protected(fn->parent, 1079 lockdep_is_held(&table->tb6_lock)); 1080 } 1081 } 1082 1083 fib6_clean_expires(rt); 1084 fib6_remove_gc_list(rt); 1085 } 1086 1087 /* 1088 * Insert routing information in a node. 1089 */ 1090 1091 static int fib6_add_rt2node(struct fib6_node *fn, struct fib6_info *rt, 1092 struct nl_info *info, struct netlink_ext_ack *extack, 1093 struct list_head *purge_list) 1094 { 1095 struct fib6_info *leaf = rcu_dereference_protected(fn->leaf, 1096 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1097 struct fib6_info *iter = NULL; 1098 struct fib6_info __rcu **ins; 1099 struct fib6_info __rcu **fallback_ins = NULL; 1100 int replace = (info->nlh && 1101 (info->nlh->nlmsg_flags & NLM_F_REPLACE)); 1102 int add = (!info->nlh || 1103 (info->nlh->nlmsg_flags & NLM_F_CREATE)); 1104 int found = 0; 1105 bool rt_can_ecmp = rt6_qualify_for_ecmp(rt); 1106 bool notify_sibling_rt = false; 1107 u16 nlflags = NLM_F_EXCL; 1108 int err; 1109 1110 if (info->nlh && (info->nlh->nlmsg_flags & NLM_F_APPEND)) 1111 nlflags |= NLM_F_APPEND; 1112 1113 ins = &fn->leaf; 1114 1115 for (iter = leaf; iter; 1116 iter = rcu_dereference_protected(iter->fib6_next, 1117 lockdep_is_held(&rt->fib6_table->tb6_lock))) { 1118 /* 1119 * Search for duplicates 1120 */ 1121 1122 if (iter->fib6_metric == rt->fib6_metric) { 1123 /* 1124 * Same priority level 1125 */ 1126 if (info->nlh && 1127 (info->nlh->nlmsg_flags & NLM_F_EXCL)) 1128 return -EEXIST; 1129 1130 nlflags &= ~NLM_F_EXCL; 1131 if (replace) { 1132 if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) { 1133 found++; 1134 break; 1135 } 1136 fallback_ins = fallback_ins ?: ins; 1137 goto next_iter; 1138 } 1139 1140 if (rt6_duplicate_nexthop(iter, rt)) { 1141 if (rt->fib6_nsiblings) 1142 rt->fib6_nsiblings = 0; 1143 if (!(iter->fib6_flags & RTF_EXPIRES)) 1144 return -EEXIST; 1145 if (!(rt->fib6_flags & RTF_EXPIRES)) { 1146 fib6_clean_expires(iter); 1147 fib6_remove_gc_list(iter); 1148 } else { 1149 fib6_set_expires(iter, rt->expires); 1150 fib6_add_gc_list(iter); 1151 } 1152 1153 if (rt->fib6_pmtu) 1154 fib6_metric_set(iter, RTAX_MTU, 1155 rt->fib6_pmtu); 1156 return -EEXIST; 1157 } 1158 /* If we have the same destination and the same metric, 1159 * but not the same gateway, then the route we try to 1160 * add is sibling to this route, increment our counter 1161 * of siblings, and later we will add our route to the 1162 * list. 1163 * Only static routes (which don't have flag 1164 * RTF_EXPIRES) are used for ECMPv6. 1165 * 1166 * To avoid long list, we only had siblings if the 1167 * route have a gateway. 1168 */ 1169 if (rt_can_ecmp && 1170 rt6_qualify_for_ecmp(iter)) 1171 rt->fib6_nsiblings++; 1172 } 1173 1174 if (iter->fib6_metric > rt->fib6_metric) 1175 break; 1176 1177 next_iter: 1178 ins = &iter->fib6_next; 1179 } 1180 1181 if (fallback_ins && !found) { 1182 /* No matching route with same ecmp-able-ness found, replace 1183 * first matching route 1184 */ 1185 ins = fallback_ins; 1186 iter = rcu_dereference_protected(*ins, 1187 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1188 found++; 1189 } 1190 1191 /* Reset round-robin state, if necessary */ 1192 if (ins == &fn->leaf) 1193 fn->rr_ptr = NULL; 1194 1195 /* Link this route to others same route. */ 1196 if (rt->fib6_nsiblings) { 1197 unsigned int fib6_nsiblings; 1198 struct fib6_info *sibling, *temp_sibling; 1199 1200 /* Find the first route that have the same metric */ 1201 sibling = leaf; 1202 notify_sibling_rt = true; 1203 while (sibling) { 1204 if (sibling->fib6_metric == rt->fib6_metric && 1205 rt6_qualify_for_ecmp(sibling)) { 1206 list_add_tail_rcu(&rt->fib6_siblings, 1207 &sibling->fib6_siblings); 1208 break; 1209 } 1210 sibling = rcu_dereference_protected(sibling->fib6_next, 1211 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1212 notify_sibling_rt = false; 1213 } 1214 /* For each sibling in the list, increment the counter of 1215 * siblings. BUG() if counters does not match, list of siblings 1216 * is broken! 1217 */ 1218 fib6_nsiblings = 0; 1219 list_for_each_entry_safe(sibling, temp_sibling, 1220 &rt->fib6_siblings, fib6_siblings) { 1221 sibling->fib6_nsiblings++; 1222 BUG_ON(sibling->fib6_nsiblings != rt->fib6_nsiblings); 1223 fib6_nsiblings++; 1224 } 1225 BUG_ON(fib6_nsiblings != rt->fib6_nsiblings); 1226 rt6_multipath_rebalance(temp_sibling); 1227 } 1228 1229 /* 1230 * insert node 1231 */ 1232 if (!replace) { 1233 if (!add) 1234 pr_warn("NLM_F_CREATE should be set when creating new route\n"); 1235 1236 add: 1237 nlflags |= NLM_F_CREATE; 1238 1239 /* The route should only be notified if it is the first 1240 * route in the node or if it is added as a sibling 1241 * route to the first route in the node. 1242 */ 1243 if (!info->skip_notify_kernel && 1244 (notify_sibling_rt || ins == &fn->leaf)) { 1245 enum fib_event_type fib_event; 1246 1247 if (notify_sibling_rt) 1248 fib_event = FIB_EVENT_ENTRY_APPEND; 1249 else 1250 fib_event = FIB_EVENT_ENTRY_REPLACE; 1251 err = call_fib6_entry_notifiers(info->nl_net, 1252 fib_event, rt, 1253 extack); 1254 if (err) { 1255 struct fib6_info *sibling, *next_sibling; 1256 1257 /* If the route has siblings, then it first 1258 * needs to be unlinked from them. 1259 */ 1260 if (!rt->fib6_nsiblings) 1261 return err; 1262 1263 list_for_each_entry_safe(sibling, next_sibling, 1264 &rt->fib6_siblings, 1265 fib6_siblings) 1266 sibling->fib6_nsiblings--; 1267 rt->fib6_nsiblings = 0; 1268 list_del_rcu(&rt->fib6_siblings); 1269 rt6_multipath_rebalance(next_sibling); 1270 return err; 1271 } 1272 } 1273 1274 rcu_assign_pointer(rt->fib6_next, iter); 1275 fib6_info_hold(rt); 1276 rcu_assign_pointer(rt->fib6_node, fn); 1277 rcu_assign_pointer(*ins, rt); 1278 if (!info->skip_notify) 1279 inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags); 1280 info->nl_net->ipv6.rt6_stats->fib_rt_entries++; 1281 1282 if (!(fn->fn_flags & RTN_RTINFO)) { 1283 info->nl_net->ipv6.rt6_stats->fib_route_nodes++; 1284 fn->fn_flags |= RTN_RTINFO; 1285 } 1286 1287 } else { 1288 int nsiblings; 1289 1290 if (!found) { 1291 if (add) 1292 goto add; 1293 pr_warn("NLM_F_REPLACE set, but no existing node found!\n"); 1294 return -ENOENT; 1295 } 1296 1297 if (!info->skip_notify_kernel && ins == &fn->leaf) { 1298 err = call_fib6_entry_notifiers(info->nl_net, 1299 FIB_EVENT_ENTRY_REPLACE, 1300 rt, extack); 1301 if (err) 1302 return err; 1303 } 1304 1305 fib6_info_hold(rt); 1306 rcu_assign_pointer(rt->fib6_node, fn); 1307 rt->fib6_next = iter->fib6_next; 1308 rcu_assign_pointer(*ins, rt); 1309 if (!info->skip_notify) 1310 inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE); 1311 if (!(fn->fn_flags & RTN_RTINFO)) { 1312 info->nl_net->ipv6.rt6_stats->fib_route_nodes++; 1313 fn->fn_flags |= RTN_RTINFO; 1314 } 1315 nsiblings = iter->fib6_nsiblings; 1316 iter->fib6_node = NULL; 1317 list_add(&iter->purge_link, purge_list); 1318 if (rcu_access_pointer(fn->rr_ptr) == iter) 1319 fn->rr_ptr = NULL; 1320 1321 if (nsiblings) { 1322 /* Replacing an ECMP route, remove all siblings */ 1323 ins = &rt->fib6_next; 1324 iter = rcu_dereference_protected(*ins, 1325 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1326 while (iter) { 1327 if (iter->fib6_metric > rt->fib6_metric) 1328 break; 1329 if (rt6_qualify_for_ecmp(iter)) { 1330 *ins = iter->fib6_next; 1331 iter->fib6_node = NULL; 1332 list_add(&iter->purge_link, purge_list); 1333 if (rcu_access_pointer(fn->rr_ptr) == iter) 1334 fn->rr_ptr = NULL; 1335 nsiblings--; 1336 info->nl_net->ipv6.rt6_stats->fib_rt_entries--; 1337 } else { 1338 ins = &iter->fib6_next; 1339 } 1340 iter = rcu_dereference_protected(*ins, 1341 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1342 } 1343 WARN_ON(nsiblings != 0); 1344 } 1345 } 1346 1347 return 0; 1348 } 1349 1350 static int fib6_add_rt2node_nh(struct fib6_node *fn, struct fib6_info *rt, 1351 struct nl_info *info, struct netlink_ext_ack *extack, 1352 struct list_head *purge_list) 1353 { 1354 int err; 1355 1356 spin_lock(&rt->nh->lock); 1357 1358 if (rt->nh->dead) { 1359 NL_SET_ERR_MSG(extack, "Nexthop has been deleted"); 1360 err = -EINVAL; 1361 } else { 1362 err = fib6_add_rt2node(fn, rt, info, extack, purge_list); 1363 if (!err) 1364 list_add(&rt->nh_list, &rt->nh->f6i_list); 1365 } 1366 1367 spin_unlock(&rt->nh->lock); 1368 1369 return err; 1370 } 1371 1372 static void fib6_start_gc(struct net *net, struct fib6_info *rt) 1373 { 1374 if (!timer_pending(&net->ipv6.ip6_fib_timer) && 1375 (rt->fib6_flags & RTF_EXPIRES)) 1376 mod_timer(&net->ipv6.ip6_fib_timer, 1377 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval); 1378 } 1379 1380 void fib6_force_start_gc(struct net *net) 1381 { 1382 if (!timer_pending(&net->ipv6.ip6_fib_timer)) 1383 mod_timer(&net->ipv6.ip6_fib_timer, 1384 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval); 1385 } 1386 1387 static void __fib6_update_sernum_upto_root(struct fib6_info *rt, 1388 int sernum) 1389 { 1390 struct fib6_node *fn = rcu_dereference_protected(rt->fib6_node, 1391 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1392 1393 /* paired with smp_rmb() in fib6_get_cookie_safe() */ 1394 smp_wmb(); 1395 while (fn) { 1396 WRITE_ONCE(fn->fn_sernum, sernum); 1397 fn = rcu_dereference_protected(fn->parent, 1398 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1399 } 1400 } 1401 1402 void fib6_update_sernum_upto_root(struct net *net, struct fib6_info *rt) 1403 { 1404 __fib6_update_sernum_upto_root(rt, fib6_new_sernum(net)); 1405 } 1406 1407 /* allow ipv4 to update sernum via ipv6_stub */ 1408 void fib6_update_sernum_stub(struct net *net, struct fib6_info *f6i) 1409 { 1410 spin_lock_bh(&f6i->fib6_table->tb6_lock); 1411 fib6_update_sernum_upto_root(net, f6i); 1412 spin_unlock_bh(&f6i->fib6_table->tb6_lock); 1413 } 1414 1415 /* 1416 * Add routing information to the routing tree. 1417 * <destination addr>/<source addr> 1418 * with source addr info in sub-trees 1419 * Need to own table->tb6_lock 1420 */ 1421 1422 int fib6_add(struct fib6_node *root, struct fib6_info *rt, 1423 struct nl_info *info, struct netlink_ext_ack *extack) 1424 { 1425 struct fib6_table *table = rt->fib6_table; 1426 LIST_HEAD(purge_list); 1427 struct fib6_node *fn; 1428 #ifdef CONFIG_IPV6_SUBTREES 1429 struct fib6_node *pn = NULL; 1430 #endif 1431 int err = -ENOMEM; 1432 int allow_create = 1; 1433 int replace_required = 0; 1434 1435 if (info->nlh) { 1436 if (!(info->nlh->nlmsg_flags & NLM_F_CREATE)) 1437 allow_create = 0; 1438 if (info->nlh->nlmsg_flags & NLM_F_REPLACE) 1439 replace_required = 1; 1440 } 1441 if (!allow_create && !replace_required) 1442 pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n"); 1443 1444 fn = fib6_add_1(info->nl_net, table, root, 1445 &rt->fib6_dst.addr, rt->fib6_dst.plen, 1446 offsetof(struct fib6_info, fib6_dst), allow_create, 1447 replace_required, extack); 1448 if (IS_ERR(fn)) { 1449 err = PTR_ERR(fn); 1450 fn = NULL; 1451 goto out; 1452 } 1453 1454 #ifdef CONFIG_IPV6_SUBTREES 1455 pn = fn; 1456 1457 if (rt->fib6_src.plen) { 1458 struct fib6_node *sn; 1459 1460 if (!rcu_access_pointer(fn->subtree)) { 1461 struct fib6_node *sfn; 1462 1463 /* 1464 * Create subtree. 1465 * 1466 * fn[main tree] 1467 * | 1468 * sfn[subtree root] 1469 * \ 1470 * sn[new leaf node] 1471 */ 1472 1473 /* Create subtree root node */ 1474 sfn = node_alloc(info->nl_net); 1475 if (!sfn) 1476 goto failure; 1477 1478 fib6_info_hold(info->nl_net->ipv6.fib6_null_entry); 1479 rcu_assign_pointer(sfn->leaf, 1480 info->nl_net->ipv6.fib6_null_entry); 1481 sfn->fn_flags = RTN_ROOT; 1482 1483 /* Now add the first leaf node to new subtree */ 1484 1485 sn = fib6_add_1(info->nl_net, table, sfn, 1486 &rt->fib6_src.addr, rt->fib6_src.plen, 1487 offsetof(struct fib6_info, fib6_src), 1488 allow_create, replace_required, extack); 1489 1490 if (IS_ERR(sn)) { 1491 /* If it is failed, discard just allocated 1492 root, and then (in failure) stale node 1493 in main tree. 1494 */ 1495 node_free_immediate(info->nl_net, sfn); 1496 err = PTR_ERR(sn); 1497 goto failure; 1498 } 1499 1500 /* Now link new subtree to main tree */ 1501 rcu_assign_pointer(sfn->parent, fn); 1502 rcu_assign_pointer(fn->subtree, sfn); 1503 } else { 1504 sn = fib6_add_1(info->nl_net, table, FIB6_SUBTREE(fn), 1505 &rt->fib6_src.addr, rt->fib6_src.plen, 1506 offsetof(struct fib6_info, fib6_src), 1507 allow_create, replace_required, extack); 1508 1509 if (IS_ERR(sn)) { 1510 err = PTR_ERR(sn); 1511 goto failure; 1512 } 1513 } 1514 1515 if (!rcu_access_pointer(fn->leaf)) { 1516 if (fn->fn_flags & RTN_TL_ROOT) { 1517 /* put back null_entry for root node */ 1518 rcu_assign_pointer(fn->leaf, 1519 info->nl_net->ipv6.fib6_null_entry); 1520 } else { 1521 fib6_info_hold(rt); 1522 rcu_assign_pointer(fn->leaf, rt); 1523 } 1524 } 1525 fn = sn; 1526 } 1527 #endif 1528 1529 if (rt->nh) 1530 err = fib6_add_rt2node_nh(fn, rt, info, extack, &purge_list); 1531 else 1532 err = fib6_add_rt2node(fn, rt, info, extack, &purge_list); 1533 if (!err) { 1534 struct fib6_info *iter, *next; 1535 1536 list_for_each_entry_safe(iter, next, &purge_list, purge_link) { 1537 list_del(&iter->purge_link); 1538 fib6_purge_rt(iter, fn, info->nl_net); 1539 fib6_info_release(iter); 1540 } 1541 1542 __fib6_update_sernum_upto_root(rt, fib6_new_sernum(info->nl_net)); 1543 1544 if (rt->fib6_flags & RTF_EXPIRES) 1545 fib6_add_gc_list(rt); 1546 1547 fib6_start_gc(info->nl_net, rt); 1548 } 1549 1550 out: 1551 if (err) { 1552 #ifdef CONFIG_IPV6_SUBTREES 1553 /* 1554 * If fib6_add_1 has cleared the old leaf pointer in the 1555 * super-tree leaf node we have to find a new one for it. 1556 */ 1557 if (pn != fn) { 1558 struct fib6_info *pn_leaf = 1559 rcu_dereference_protected(pn->leaf, 1560 lockdep_is_held(&table->tb6_lock)); 1561 if (pn_leaf == rt) { 1562 pn_leaf = NULL; 1563 RCU_INIT_POINTER(pn->leaf, NULL); 1564 fib6_info_release(rt); 1565 } 1566 if (!pn_leaf && !(pn->fn_flags & RTN_RTINFO)) { 1567 pn_leaf = fib6_find_prefix(info->nl_net, table, 1568 pn); 1569 if (!pn_leaf) 1570 pn_leaf = 1571 info->nl_net->ipv6.fib6_null_entry; 1572 fib6_info_hold(pn_leaf); 1573 rcu_assign_pointer(pn->leaf, pn_leaf); 1574 } 1575 } 1576 #endif 1577 goto failure; 1578 } else if (fib6_requires_src(rt)) { 1579 fib6_routes_require_src_inc(info->nl_net); 1580 } 1581 return err; 1582 1583 failure: 1584 /* fn->leaf could be NULL and fib6_repair_tree() needs to be called if: 1585 * 1. fn is an intermediate node and we failed to add the new 1586 * route to it in both subtree creation failure and fib6_add_rt2node() 1587 * failure case. 1588 * 2. fn is the root node in the table and we fail to add the first 1589 * default route to it. 1590 */ 1591 if (fn && 1592 (!(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)) || 1593 (fn->fn_flags & RTN_TL_ROOT && 1594 !rcu_access_pointer(fn->leaf)))) 1595 fib6_repair_tree(info->nl_net, table, fn); 1596 return err; 1597 } 1598 1599 /* 1600 * Routing tree lookup 1601 * 1602 */ 1603 1604 struct lookup_args { 1605 int offset; /* key offset on fib6_info */ 1606 const struct in6_addr *addr; /* search key */ 1607 }; 1608 1609 static struct fib6_node *fib6_node_lookup_1(struct fib6_node *root, 1610 struct lookup_args *args) 1611 { 1612 struct fib6_node *fn; 1613 __be32 dir; 1614 1615 if (unlikely(args->offset == 0)) 1616 return NULL; 1617 1618 /* 1619 * Descend on a tree 1620 */ 1621 1622 fn = root; 1623 1624 for (;;) { 1625 struct fib6_node *next; 1626 1627 dir = addr_bit_set(args->addr, fn->fn_bit); 1628 1629 next = dir ? rcu_dereference(fn->right) : 1630 rcu_dereference(fn->left); 1631 1632 if (next) { 1633 fn = next; 1634 continue; 1635 } 1636 break; 1637 } 1638 1639 while (fn) { 1640 struct fib6_node *subtree = FIB6_SUBTREE(fn); 1641 1642 if (subtree || fn->fn_flags & RTN_RTINFO) { 1643 struct fib6_info *leaf = rcu_dereference(fn->leaf); 1644 struct rt6key *key; 1645 1646 if (!leaf) 1647 goto backtrack; 1648 1649 key = (struct rt6key *) ((u8 *)leaf + args->offset); 1650 1651 if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) { 1652 #ifdef CONFIG_IPV6_SUBTREES 1653 if (subtree) { 1654 struct fib6_node *sfn; 1655 sfn = fib6_node_lookup_1(subtree, 1656 args + 1); 1657 if (!sfn) 1658 goto backtrack; 1659 fn = sfn; 1660 } 1661 #endif 1662 if (fn->fn_flags & RTN_RTINFO) 1663 return fn; 1664 } 1665 } 1666 backtrack: 1667 if (fn->fn_flags & RTN_ROOT) 1668 break; 1669 1670 fn = rcu_dereference(fn->parent); 1671 } 1672 1673 return NULL; 1674 } 1675 1676 /* called with rcu_read_lock() held 1677 */ 1678 struct fib6_node *fib6_node_lookup(struct fib6_node *root, 1679 const struct in6_addr *daddr, 1680 const struct in6_addr *saddr) 1681 { 1682 struct fib6_node *fn; 1683 struct lookup_args args[] = { 1684 { 1685 .offset = offsetof(struct fib6_info, fib6_dst), 1686 .addr = daddr, 1687 }, 1688 #ifdef CONFIG_IPV6_SUBTREES 1689 { 1690 .offset = offsetof(struct fib6_info, fib6_src), 1691 .addr = saddr, 1692 }, 1693 #endif 1694 { 1695 .offset = 0, /* sentinel */ 1696 } 1697 }; 1698 1699 fn = fib6_node_lookup_1(root, daddr ? args : args + 1); 1700 if (!fn || fn->fn_flags & RTN_TL_ROOT) 1701 fn = root; 1702 1703 return fn; 1704 } 1705 1706 /* 1707 * Get node with specified destination prefix (and source prefix, 1708 * if subtrees are used) 1709 * exact_match == true means we try to find fn with exact match of 1710 * the passed in prefix addr 1711 * exact_match == false means we try to find fn with longest prefix 1712 * match of the passed in prefix addr. This is useful for finding fn 1713 * for cached route as it will be stored in the exception table under 1714 * the node with longest prefix length. 1715 */ 1716 1717 1718 static struct fib6_node *fib6_locate_1(struct fib6_node *root, 1719 const struct in6_addr *addr, 1720 int plen, int offset, 1721 bool exact_match) 1722 { 1723 struct fib6_node *fn, *prev = NULL; 1724 1725 for (fn = root; fn ; ) { 1726 struct fib6_info *leaf = rcu_dereference(fn->leaf); 1727 struct rt6key *key; 1728 1729 /* This node is being deleted */ 1730 if (!leaf) { 1731 if (plen <= fn->fn_bit) 1732 goto out; 1733 else 1734 goto next; 1735 } 1736 1737 key = (struct rt6key *)((u8 *)leaf + offset); 1738 1739 /* 1740 * Prefix match 1741 */ 1742 if (plen < fn->fn_bit || 1743 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) 1744 goto out; 1745 1746 if (plen == fn->fn_bit) 1747 return fn; 1748 1749 if (fn->fn_flags & RTN_RTINFO) 1750 prev = fn; 1751 1752 next: 1753 /* 1754 * We have more bits to go 1755 */ 1756 if (addr_bit_set(addr, fn->fn_bit)) 1757 fn = rcu_dereference(fn->right); 1758 else 1759 fn = rcu_dereference(fn->left); 1760 } 1761 out: 1762 if (exact_match) 1763 return NULL; 1764 else 1765 return prev; 1766 } 1767 1768 struct fib6_node *fib6_locate(struct fib6_node *root, 1769 const struct in6_addr *daddr, int dst_len, 1770 const struct in6_addr *saddr, int src_len, 1771 bool exact_match) 1772 { 1773 struct fib6_node *fn; 1774 1775 fn = fib6_locate_1(root, daddr, dst_len, 1776 offsetof(struct fib6_info, fib6_dst), 1777 exact_match); 1778 1779 #ifdef CONFIG_IPV6_SUBTREES 1780 if (src_len) { 1781 WARN_ON(saddr == NULL); 1782 if (fn) { 1783 struct fib6_node *subtree = FIB6_SUBTREE(fn); 1784 1785 if (subtree) { 1786 fn = fib6_locate_1(subtree, saddr, src_len, 1787 offsetof(struct fib6_info, fib6_src), 1788 exact_match); 1789 } 1790 } 1791 } 1792 #endif 1793 1794 if (fn && fn->fn_flags & RTN_RTINFO) 1795 return fn; 1796 1797 return NULL; 1798 } 1799 1800 1801 /* 1802 * Deletion 1803 * 1804 */ 1805 1806 static struct fib6_info *fib6_find_prefix(struct net *net, 1807 struct fib6_table *table, 1808 struct fib6_node *fn) 1809 { 1810 struct fib6_node *child_left, *child_right; 1811 1812 if (fn->fn_flags & RTN_ROOT) 1813 return net->ipv6.fib6_null_entry; 1814 1815 while (fn) { 1816 child_left = rcu_dereference_protected(fn->left, 1817 lockdep_is_held(&table->tb6_lock)); 1818 child_right = rcu_dereference_protected(fn->right, 1819 lockdep_is_held(&table->tb6_lock)); 1820 if (child_left) 1821 return rcu_dereference_protected(child_left->leaf, 1822 lockdep_is_held(&table->tb6_lock)); 1823 if (child_right) 1824 return rcu_dereference_protected(child_right->leaf, 1825 lockdep_is_held(&table->tb6_lock)); 1826 1827 fn = FIB6_SUBTREE(fn); 1828 } 1829 return NULL; 1830 } 1831 1832 /* 1833 * Called to trim the tree of intermediate nodes when possible. "fn" 1834 * is the node we want to try and remove. 1835 * Need to own table->tb6_lock 1836 */ 1837 1838 static struct fib6_node *fib6_repair_tree(struct net *net, 1839 struct fib6_table *table, 1840 struct fib6_node *fn) 1841 { 1842 int children; 1843 int nstate; 1844 struct fib6_node *child; 1845 struct fib6_walker *w; 1846 int iter = 0; 1847 1848 /* Set fn->leaf to null_entry for root node. */ 1849 if (fn->fn_flags & RTN_TL_ROOT) { 1850 rcu_assign_pointer(fn->leaf, net->ipv6.fib6_null_entry); 1851 return fn; 1852 } 1853 1854 for (;;) { 1855 struct fib6_node *fn_r = rcu_dereference_protected(fn->right, 1856 lockdep_is_held(&table->tb6_lock)); 1857 struct fib6_node *fn_l = rcu_dereference_protected(fn->left, 1858 lockdep_is_held(&table->tb6_lock)); 1859 struct fib6_node *pn = rcu_dereference_protected(fn->parent, 1860 lockdep_is_held(&table->tb6_lock)); 1861 struct fib6_node *pn_r = rcu_dereference_protected(pn->right, 1862 lockdep_is_held(&table->tb6_lock)); 1863 struct fib6_node *pn_l = rcu_dereference_protected(pn->left, 1864 lockdep_is_held(&table->tb6_lock)); 1865 struct fib6_info *fn_leaf = rcu_dereference_protected(fn->leaf, 1866 lockdep_is_held(&table->tb6_lock)); 1867 struct fib6_info *pn_leaf = rcu_dereference_protected(pn->leaf, 1868 lockdep_is_held(&table->tb6_lock)); 1869 struct fib6_info *new_fn_leaf; 1870 1871 pr_debug("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter); 1872 iter++; 1873 1874 WARN_ON(fn->fn_flags & RTN_RTINFO); 1875 WARN_ON(fn->fn_flags & RTN_TL_ROOT); 1876 WARN_ON(fn_leaf); 1877 1878 children = 0; 1879 child = NULL; 1880 if (fn_r) { 1881 child = fn_r; 1882 children |= 1; 1883 } 1884 if (fn_l) { 1885 child = fn_l; 1886 children |= 2; 1887 } 1888 1889 if (children == 3 || FIB6_SUBTREE(fn) 1890 #ifdef CONFIG_IPV6_SUBTREES 1891 /* Subtree root (i.e. fn) may have one child */ 1892 || (children && fn->fn_flags & RTN_ROOT) 1893 #endif 1894 ) { 1895 new_fn_leaf = fib6_find_prefix(net, table, fn); 1896 #if RT6_DEBUG >= 2 1897 if (!new_fn_leaf) { 1898 WARN_ON(!new_fn_leaf); 1899 new_fn_leaf = net->ipv6.fib6_null_entry; 1900 } 1901 #endif 1902 fib6_info_hold(new_fn_leaf); 1903 rcu_assign_pointer(fn->leaf, new_fn_leaf); 1904 return pn; 1905 } 1906 1907 #ifdef CONFIG_IPV6_SUBTREES 1908 if (FIB6_SUBTREE(pn) == fn) { 1909 WARN_ON(!(fn->fn_flags & RTN_ROOT)); 1910 RCU_INIT_POINTER(pn->subtree, NULL); 1911 nstate = FWS_L; 1912 } else { 1913 WARN_ON(fn->fn_flags & RTN_ROOT); 1914 #endif 1915 if (pn_r == fn) 1916 rcu_assign_pointer(pn->right, child); 1917 else if (pn_l == fn) 1918 rcu_assign_pointer(pn->left, child); 1919 #if RT6_DEBUG >= 2 1920 else 1921 WARN_ON(1); 1922 #endif 1923 if (child) 1924 rcu_assign_pointer(child->parent, pn); 1925 nstate = FWS_R; 1926 #ifdef CONFIG_IPV6_SUBTREES 1927 } 1928 #endif 1929 1930 read_lock(&net->ipv6.fib6_walker_lock); 1931 FOR_WALKERS(net, w) { 1932 if (!child) { 1933 if (w->node == fn) { 1934 pr_debug("W %p adjusted by delnode 1, s=%d/%d\n", 1935 w, w->state, nstate); 1936 w->node = pn; 1937 w->state = nstate; 1938 } 1939 } else { 1940 if (w->node == fn) { 1941 w->node = child; 1942 if (children&2) { 1943 pr_debug("W %p adjusted by delnode 2, s=%d\n", 1944 w, w->state); 1945 w->state = w->state >= FWS_R ? FWS_U : FWS_INIT; 1946 } else { 1947 pr_debug("W %p adjusted by delnode 2, s=%d\n", 1948 w, w->state); 1949 w->state = w->state >= FWS_C ? FWS_U : FWS_INIT; 1950 } 1951 } 1952 } 1953 } 1954 read_unlock(&net->ipv6.fib6_walker_lock); 1955 1956 node_free(net, fn); 1957 if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn)) 1958 return pn; 1959 1960 RCU_INIT_POINTER(pn->leaf, NULL); 1961 fib6_info_release(pn_leaf); 1962 fn = pn; 1963 } 1964 } 1965 1966 static void fib6_del_route(struct fib6_table *table, struct fib6_node *fn, 1967 struct fib6_info __rcu **rtp, struct nl_info *info) 1968 { 1969 struct fib6_info *leaf, *replace_rt = NULL; 1970 struct fib6_walker *w; 1971 struct fib6_info *rt = rcu_dereference_protected(*rtp, 1972 lockdep_is_held(&table->tb6_lock)); 1973 struct net *net = info->nl_net; 1974 bool notify_del = false; 1975 1976 /* If the deleted route is the first in the node and it is not part of 1977 * a multipath route, then we need to replace it with the next route 1978 * in the node, if exists. 1979 */ 1980 leaf = rcu_dereference_protected(fn->leaf, 1981 lockdep_is_held(&table->tb6_lock)); 1982 if (leaf == rt && !rt->fib6_nsiblings) { 1983 if (rcu_access_pointer(rt->fib6_next)) 1984 replace_rt = rcu_dereference_protected(rt->fib6_next, 1985 lockdep_is_held(&table->tb6_lock)); 1986 else 1987 notify_del = true; 1988 } 1989 1990 /* Unlink it */ 1991 *rtp = rt->fib6_next; 1992 rt->fib6_node = NULL; 1993 net->ipv6.rt6_stats->fib_rt_entries--; 1994 net->ipv6.rt6_stats->fib_discarded_routes++; 1995 1996 /* Reset round-robin state, if necessary */ 1997 if (rcu_access_pointer(fn->rr_ptr) == rt) 1998 fn->rr_ptr = NULL; 1999 2000 /* Remove this entry from other siblings */ 2001 if (rt->fib6_nsiblings) { 2002 struct fib6_info *sibling, *next_sibling; 2003 2004 /* The route is deleted from a multipath route. If this 2005 * multipath route is the first route in the node, then we need 2006 * to emit a delete notification. Otherwise, we need to skip 2007 * the notification. 2008 */ 2009 if (rt->fib6_metric == leaf->fib6_metric && 2010 rt6_qualify_for_ecmp(leaf)) 2011 notify_del = true; 2012 list_for_each_entry_safe(sibling, next_sibling, 2013 &rt->fib6_siblings, fib6_siblings) 2014 sibling->fib6_nsiblings--; 2015 rt->fib6_nsiblings = 0; 2016 list_del_rcu(&rt->fib6_siblings); 2017 rt6_multipath_rebalance(next_sibling); 2018 } 2019 2020 /* Adjust walkers */ 2021 read_lock(&net->ipv6.fib6_walker_lock); 2022 FOR_WALKERS(net, w) { 2023 if (w->state == FWS_C && w->leaf == rt) { 2024 pr_debug("walker %p adjusted by delroute\n", w); 2025 w->leaf = rcu_dereference_protected(rt->fib6_next, 2026 lockdep_is_held(&table->tb6_lock)); 2027 if (!w->leaf) 2028 w->state = FWS_U; 2029 } 2030 } 2031 read_unlock(&net->ipv6.fib6_walker_lock); 2032 2033 /* If it was last route, call fib6_repair_tree() to: 2034 * 1. For root node, put back null_entry as how the table was created. 2035 * 2. For other nodes, expunge its radix tree node. 2036 */ 2037 if (!rcu_access_pointer(fn->leaf)) { 2038 if (!(fn->fn_flags & RTN_TL_ROOT)) { 2039 fn->fn_flags &= ~RTN_RTINFO; 2040 net->ipv6.rt6_stats->fib_route_nodes--; 2041 } 2042 fn = fib6_repair_tree(net, table, fn); 2043 } 2044 2045 fib6_purge_rt(rt, fn, net); 2046 2047 if (!info->skip_notify_kernel) { 2048 if (notify_del) 2049 call_fib6_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, 2050 rt, NULL); 2051 else if (replace_rt) 2052 call_fib6_entry_notifiers_replace(net, replace_rt); 2053 } 2054 if (!info->skip_notify) 2055 inet6_rt_notify(RTM_DELROUTE, rt, info, 0); 2056 2057 fib6_info_release(rt); 2058 } 2059 2060 /* Need to own table->tb6_lock */ 2061 int fib6_del(struct fib6_info *rt, struct nl_info *info) 2062 { 2063 struct net *net = info->nl_net; 2064 struct fib6_info __rcu **rtp; 2065 struct fib6_info __rcu **rtp_next; 2066 struct fib6_table *table; 2067 struct fib6_node *fn; 2068 2069 if (rt == net->ipv6.fib6_null_entry) 2070 return -ENOENT; 2071 2072 table = rt->fib6_table; 2073 fn = rcu_dereference_protected(rt->fib6_node, 2074 lockdep_is_held(&table->tb6_lock)); 2075 if (!fn) 2076 return -ENOENT; 2077 2078 WARN_ON(!(fn->fn_flags & RTN_RTINFO)); 2079 2080 /* 2081 * Walk the leaf entries looking for ourself 2082 */ 2083 2084 for (rtp = &fn->leaf; *rtp; rtp = rtp_next) { 2085 struct fib6_info *cur = rcu_dereference_protected(*rtp, 2086 lockdep_is_held(&table->tb6_lock)); 2087 if (rt == cur) { 2088 if (fib6_requires_src(cur)) 2089 fib6_routes_require_src_dec(info->nl_net); 2090 fib6_del_route(table, fn, rtp, info); 2091 return 0; 2092 } 2093 rtp_next = &cur->fib6_next; 2094 } 2095 return -ENOENT; 2096 } 2097 2098 /* 2099 * Tree traversal function. 2100 * 2101 * Certainly, it is not interrupt safe. 2102 * However, it is internally reenterable wrt itself and fib6_add/fib6_del. 2103 * It means, that we can modify tree during walking 2104 * and use this function for garbage collection, clone pruning, 2105 * cleaning tree when a device goes down etc. etc. 2106 * 2107 * It guarantees that every node will be traversed, 2108 * and that it will be traversed only once. 2109 * 2110 * Callback function w->func may return: 2111 * 0 -> continue walking. 2112 * positive value -> walking is suspended (used by tree dumps, 2113 * and probably by gc, if it will be split to several slices) 2114 * negative value -> terminate walking. 2115 * 2116 * The function itself returns: 2117 * 0 -> walk is complete. 2118 * >0 -> walk is incomplete (i.e. suspended) 2119 * <0 -> walk is terminated by an error. 2120 * 2121 * This function is called with tb6_lock held. 2122 */ 2123 2124 static int fib6_walk_continue(struct fib6_walker *w) 2125 { 2126 struct fib6_node *fn, *pn, *left, *right; 2127 2128 /* w->root should always be table->tb6_root */ 2129 WARN_ON_ONCE(!(w->root->fn_flags & RTN_TL_ROOT)); 2130 2131 for (;;) { 2132 fn = w->node; 2133 if (!fn) 2134 return 0; 2135 2136 switch (w->state) { 2137 #ifdef CONFIG_IPV6_SUBTREES 2138 case FWS_S: 2139 if (FIB6_SUBTREE(fn)) { 2140 w->node = FIB6_SUBTREE(fn); 2141 continue; 2142 } 2143 w->state = FWS_L; 2144 fallthrough; 2145 #endif 2146 case FWS_L: 2147 left = rcu_dereference_protected(fn->left, 1); 2148 if (left) { 2149 w->node = left; 2150 w->state = FWS_INIT; 2151 continue; 2152 } 2153 w->state = FWS_R; 2154 fallthrough; 2155 case FWS_R: 2156 right = rcu_dereference_protected(fn->right, 1); 2157 if (right) { 2158 w->node = right; 2159 w->state = FWS_INIT; 2160 continue; 2161 } 2162 w->state = FWS_C; 2163 w->leaf = rcu_dereference_protected(fn->leaf, 1); 2164 fallthrough; 2165 case FWS_C: 2166 if (w->leaf && fn->fn_flags & RTN_RTINFO) { 2167 int err; 2168 2169 if (w->skip) { 2170 w->skip--; 2171 goto skip; 2172 } 2173 2174 err = w->func(w); 2175 if (err) 2176 return err; 2177 2178 w->count++; 2179 continue; 2180 } 2181 skip: 2182 w->state = FWS_U; 2183 fallthrough; 2184 case FWS_U: 2185 if (fn == w->root) 2186 return 0; 2187 pn = rcu_dereference_protected(fn->parent, 1); 2188 left = rcu_dereference_protected(pn->left, 1); 2189 right = rcu_dereference_protected(pn->right, 1); 2190 w->node = pn; 2191 #ifdef CONFIG_IPV6_SUBTREES 2192 if (FIB6_SUBTREE(pn) == fn) { 2193 WARN_ON(!(fn->fn_flags & RTN_ROOT)); 2194 w->state = FWS_L; 2195 continue; 2196 } 2197 #endif 2198 if (left == fn) { 2199 w->state = FWS_R; 2200 continue; 2201 } 2202 if (right == fn) { 2203 w->state = FWS_C; 2204 w->leaf = rcu_dereference_protected(w->node->leaf, 1); 2205 continue; 2206 } 2207 #if RT6_DEBUG >= 2 2208 WARN_ON(1); 2209 #endif 2210 } 2211 } 2212 } 2213 2214 static int fib6_walk(struct net *net, struct fib6_walker *w) 2215 { 2216 int res; 2217 2218 w->state = FWS_INIT; 2219 w->node = w->root; 2220 2221 fib6_walker_link(net, w); 2222 res = fib6_walk_continue(w); 2223 if (res <= 0) 2224 fib6_walker_unlink(net, w); 2225 return res; 2226 } 2227 2228 static int fib6_clean_node(struct fib6_walker *w) 2229 { 2230 int res; 2231 struct fib6_info *rt; 2232 struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w); 2233 struct nl_info info = { 2234 .nl_net = c->net, 2235 .skip_notify = c->skip_notify, 2236 }; 2237 2238 if (c->sernum != FIB6_NO_SERNUM_CHANGE && 2239 READ_ONCE(w->node->fn_sernum) != c->sernum) 2240 WRITE_ONCE(w->node->fn_sernum, c->sernum); 2241 2242 if (!c->func) { 2243 WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE); 2244 w->leaf = NULL; 2245 return 0; 2246 } 2247 2248 for_each_fib6_walker_rt(w) { 2249 res = c->func(rt, c->arg); 2250 if (res == -1) { 2251 w->leaf = rt; 2252 res = fib6_del(rt, &info); 2253 if (res) { 2254 #if RT6_DEBUG >= 2 2255 pr_debug("%s: del failed: rt=%p@%p err=%d\n", 2256 __func__, rt, 2257 rcu_access_pointer(rt->fib6_node), 2258 res); 2259 #endif 2260 continue; 2261 } 2262 return 0; 2263 } else if (res == -2) { 2264 if (WARN_ON(!rt->fib6_nsiblings)) 2265 continue; 2266 rt = list_last_entry(&rt->fib6_siblings, 2267 struct fib6_info, fib6_siblings); 2268 continue; 2269 } 2270 WARN_ON(res != 0); 2271 } 2272 w->leaf = rt; 2273 return 0; 2274 } 2275 2276 /* 2277 * Convenient frontend to tree walker. 2278 * 2279 * func is called on each route. 2280 * It may return -2 -> skip multipath route. 2281 * -1 -> delete this route. 2282 * 0 -> continue walking 2283 */ 2284 2285 static void fib6_clean_tree(struct net *net, struct fib6_node *root, 2286 int (*func)(struct fib6_info *, void *arg), 2287 int sernum, void *arg, bool skip_notify) 2288 { 2289 struct fib6_cleaner c; 2290 2291 c.w.root = root; 2292 c.w.func = fib6_clean_node; 2293 c.w.count = 0; 2294 c.w.skip = 0; 2295 c.w.skip_in_node = 0; 2296 c.func = func; 2297 c.sernum = sernum; 2298 c.arg = arg; 2299 c.net = net; 2300 c.skip_notify = skip_notify; 2301 2302 fib6_walk(net, &c.w); 2303 } 2304 2305 static void __fib6_clean_all(struct net *net, 2306 int (*func)(struct fib6_info *, void *), 2307 int sernum, void *arg, bool skip_notify) 2308 { 2309 struct fib6_table *table; 2310 struct hlist_head *head; 2311 unsigned int h; 2312 2313 rcu_read_lock(); 2314 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { 2315 head = &net->ipv6.fib_table_hash[h]; 2316 hlist_for_each_entry_rcu(table, head, tb6_hlist) { 2317 spin_lock_bh(&table->tb6_lock); 2318 fib6_clean_tree(net, &table->tb6_root, 2319 func, sernum, arg, skip_notify); 2320 spin_unlock_bh(&table->tb6_lock); 2321 } 2322 } 2323 rcu_read_unlock(); 2324 } 2325 2326 void fib6_clean_all(struct net *net, int (*func)(struct fib6_info *, void *), 2327 void *arg) 2328 { 2329 __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, false); 2330 } 2331 2332 void fib6_clean_all_skip_notify(struct net *net, 2333 int (*func)(struct fib6_info *, void *), 2334 void *arg) 2335 { 2336 __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, true); 2337 } 2338 2339 static void fib6_flush_trees(struct net *net) 2340 { 2341 int new_sernum = fib6_new_sernum(net); 2342 2343 __fib6_clean_all(net, NULL, new_sernum, NULL, false); 2344 } 2345 2346 /* 2347 * Garbage collection 2348 */ 2349 2350 static int fib6_age(struct fib6_info *rt, struct fib6_gc_args *gc_args) 2351 { 2352 unsigned long now = jiffies; 2353 2354 /* 2355 * check addrconf expiration here. 2356 * Routes are expired even if they are in use. 2357 */ 2358 2359 if (rt->fib6_flags & RTF_EXPIRES && rt->expires) { 2360 if (time_after(now, rt->expires)) { 2361 pr_debug("expiring %p\n", rt); 2362 return -1; 2363 } 2364 gc_args->more++; 2365 } 2366 2367 /* Also age clones in the exception table. 2368 * Note, that clones are aged out 2369 * only if they are not in use now. 2370 */ 2371 rt6_age_exceptions(rt, gc_args, now); 2372 2373 return 0; 2374 } 2375 2376 static void fib6_gc_table(struct net *net, 2377 struct fib6_table *tb6, 2378 struct fib6_gc_args *gc_args) 2379 { 2380 struct fib6_info *rt; 2381 struct hlist_node *n; 2382 struct nl_info info = { 2383 .nl_net = net, 2384 .skip_notify = false, 2385 }; 2386 2387 hlist_for_each_entry_safe(rt, n, &tb6->tb6_gc_hlist, gc_link) 2388 if (fib6_age(rt, gc_args) == -1) 2389 fib6_del(rt, &info); 2390 } 2391 2392 static void fib6_gc_all(struct net *net, struct fib6_gc_args *gc_args) 2393 { 2394 struct fib6_table *table; 2395 struct hlist_head *head; 2396 unsigned int h; 2397 2398 rcu_read_lock(); 2399 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { 2400 head = &net->ipv6.fib_table_hash[h]; 2401 hlist_for_each_entry_rcu(table, head, tb6_hlist) { 2402 spin_lock_bh(&table->tb6_lock); 2403 2404 fib6_gc_table(net, table, gc_args); 2405 2406 spin_unlock_bh(&table->tb6_lock); 2407 } 2408 } 2409 rcu_read_unlock(); 2410 } 2411 2412 void fib6_run_gc(unsigned long expires, struct net *net, bool force) 2413 { 2414 struct fib6_gc_args gc_args; 2415 unsigned long now; 2416 2417 if (force) { 2418 spin_lock_bh(&net->ipv6.fib6_gc_lock); 2419 } else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) { 2420 mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ); 2421 return; 2422 } 2423 gc_args.timeout = expires ? (int)expires : 2424 net->ipv6.sysctl.ip6_rt_gc_interval; 2425 gc_args.more = 0; 2426 2427 fib6_gc_all(net, &gc_args); 2428 now = jiffies; 2429 net->ipv6.ip6_rt_last_gc = now; 2430 2431 if (gc_args.more) 2432 mod_timer(&net->ipv6.ip6_fib_timer, 2433 round_jiffies(now 2434 + net->ipv6.sysctl.ip6_rt_gc_interval)); 2435 else 2436 timer_delete(&net->ipv6.ip6_fib_timer); 2437 spin_unlock_bh(&net->ipv6.fib6_gc_lock); 2438 } 2439 2440 static void fib6_gc_timer_cb(struct timer_list *t) 2441 { 2442 struct net *arg = from_timer(arg, t, ipv6.ip6_fib_timer); 2443 2444 fib6_run_gc(0, arg, true); 2445 } 2446 2447 static int __net_init fib6_net_init(struct net *net) 2448 { 2449 size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ; 2450 int err; 2451 2452 err = fib6_notifier_init(net); 2453 if (err) 2454 return err; 2455 2456 /* Default to 3-tuple */ 2457 net->ipv6.sysctl.multipath_hash_fields = 2458 FIB_MULTIPATH_HASH_FIELD_DEFAULT_MASK; 2459 2460 spin_lock_init(&net->ipv6.fib6_gc_lock); 2461 rwlock_init(&net->ipv6.fib6_walker_lock); 2462 INIT_LIST_HEAD(&net->ipv6.fib6_walkers); 2463 timer_setup(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, 0); 2464 2465 net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL); 2466 if (!net->ipv6.rt6_stats) 2467 goto out_notifier; 2468 2469 /* Avoid false sharing : Use at least a full cache line */ 2470 size = max_t(size_t, size, L1_CACHE_BYTES); 2471 2472 net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL); 2473 if (!net->ipv6.fib_table_hash) 2474 goto out_rt6_stats; 2475 2476 spin_lock_init(&net->ipv6.fib_table_hash_lock); 2477 2478 net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl), 2479 GFP_KERNEL); 2480 if (!net->ipv6.fib6_main_tbl) 2481 goto out_fib_table_hash; 2482 2483 net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN; 2484 rcu_assign_pointer(net->ipv6.fib6_main_tbl->tb6_root.leaf, 2485 net->ipv6.fib6_null_entry); 2486 net->ipv6.fib6_main_tbl->tb6_root.fn_flags = 2487 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO; 2488 inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers); 2489 INIT_HLIST_HEAD(&net->ipv6.fib6_main_tbl->tb6_gc_hlist); 2490 2491 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 2492 net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl), 2493 GFP_KERNEL); 2494 if (!net->ipv6.fib6_local_tbl) 2495 goto out_fib6_main_tbl; 2496 net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL; 2497 rcu_assign_pointer(net->ipv6.fib6_local_tbl->tb6_root.leaf, 2498 net->ipv6.fib6_null_entry); 2499 net->ipv6.fib6_local_tbl->tb6_root.fn_flags = 2500 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO; 2501 inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers); 2502 INIT_HLIST_HEAD(&net->ipv6.fib6_local_tbl->tb6_gc_hlist); 2503 #endif 2504 fib6_tables_init(net); 2505 2506 return 0; 2507 2508 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 2509 out_fib6_main_tbl: 2510 kfree(net->ipv6.fib6_main_tbl); 2511 #endif 2512 out_fib_table_hash: 2513 kfree(net->ipv6.fib_table_hash); 2514 out_rt6_stats: 2515 kfree(net->ipv6.rt6_stats); 2516 out_notifier: 2517 fib6_notifier_exit(net); 2518 return -ENOMEM; 2519 } 2520 2521 static void fib6_net_exit(struct net *net) 2522 { 2523 unsigned int i; 2524 2525 timer_delete_sync(&net->ipv6.ip6_fib_timer); 2526 2527 for (i = 0; i < FIB6_TABLE_HASHSZ; i++) { 2528 struct hlist_head *head = &net->ipv6.fib_table_hash[i]; 2529 struct hlist_node *tmp; 2530 struct fib6_table *tb; 2531 2532 hlist_for_each_entry_safe(tb, tmp, head, tb6_hlist) { 2533 hlist_del(&tb->tb6_hlist); 2534 fib6_free_table(tb); 2535 } 2536 } 2537 2538 kfree(net->ipv6.fib_table_hash); 2539 kfree(net->ipv6.rt6_stats); 2540 fib6_notifier_exit(net); 2541 } 2542 2543 static struct pernet_operations fib6_net_ops = { 2544 .init = fib6_net_init, 2545 .exit = fib6_net_exit, 2546 }; 2547 2548 static const struct rtnl_msg_handler fib6_rtnl_msg_handlers[] __initconst_or_module = { 2549 {.owner = THIS_MODULE, .protocol = PF_INET6, .msgtype = RTM_GETROUTE, 2550 .dumpit = inet6_dump_fib, 2551 .flags = RTNL_FLAG_DUMP_UNLOCKED | RTNL_FLAG_DUMP_SPLIT_NLM_DONE}, 2552 }; 2553 2554 int __init fib6_init(void) 2555 { 2556 int ret = -ENOMEM; 2557 2558 fib6_node_kmem = KMEM_CACHE(fib6_node, 2559 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT); 2560 if (!fib6_node_kmem) 2561 goto out; 2562 2563 ret = register_pernet_subsys(&fib6_net_ops); 2564 if (ret) 2565 goto out_kmem_cache_create; 2566 2567 ret = rtnl_register_many(fib6_rtnl_msg_handlers); 2568 if (ret) 2569 goto out_unregister_subsys; 2570 2571 __fib6_flush_trees = fib6_flush_trees; 2572 out: 2573 return ret; 2574 2575 out_unregister_subsys: 2576 unregister_pernet_subsys(&fib6_net_ops); 2577 out_kmem_cache_create: 2578 kmem_cache_destroy(fib6_node_kmem); 2579 goto out; 2580 } 2581 2582 void fib6_gc_cleanup(void) 2583 { 2584 unregister_pernet_subsys(&fib6_net_ops); 2585 kmem_cache_destroy(fib6_node_kmem); 2586 } 2587 2588 #ifdef CONFIG_PROC_FS 2589 static int ipv6_route_native_seq_show(struct seq_file *seq, void *v) 2590 { 2591 struct fib6_info *rt = v; 2592 struct ipv6_route_iter *iter = seq->private; 2593 struct fib6_nh *fib6_nh = rt->fib6_nh; 2594 unsigned int flags = rt->fib6_flags; 2595 const struct net_device *dev; 2596 2597 if (rt->nh) 2598 fib6_nh = nexthop_fib6_nh(rt->nh); 2599 2600 seq_printf(seq, "%pi6 %02x ", &rt->fib6_dst.addr, rt->fib6_dst.plen); 2601 2602 #ifdef CONFIG_IPV6_SUBTREES 2603 seq_printf(seq, "%pi6 %02x ", &rt->fib6_src.addr, rt->fib6_src.plen); 2604 #else 2605 seq_puts(seq, "00000000000000000000000000000000 00 "); 2606 #endif 2607 if (fib6_nh->fib_nh_gw_family) { 2608 flags |= RTF_GATEWAY; 2609 seq_printf(seq, "%pi6", &fib6_nh->fib_nh_gw6); 2610 } else { 2611 seq_puts(seq, "00000000000000000000000000000000"); 2612 } 2613 2614 dev = fib6_nh->fib_nh_dev; 2615 seq_printf(seq, " %08x %08x %08x %08x %8s\n", 2616 rt->fib6_metric, refcount_read(&rt->fib6_ref), 0, 2617 flags, dev ? dev->name : ""); 2618 iter->w.leaf = NULL; 2619 return 0; 2620 } 2621 2622 static int ipv6_route_yield(struct fib6_walker *w) 2623 { 2624 struct ipv6_route_iter *iter = w->args; 2625 2626 if (!iter->skip) 2627 return 1; 2628 2629 do { 2630 iter->w.leaf = rcu_dereference_protected( 2631 iter->w.leaf->fib6_next, 2632 lockdep_is_held(&iter->tbl->tb6_lock)); 2633 iter->skip--; 2634 if (!iter->skip && iter->w.leaf) 2635 return 1; 2636 } while (iter->w.leaf); 2637 2638 return 0; 2639 } 2640 2641 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter, 2642 struct net *net) 2643 { 2644 memset(&iter->w, 0, sizeof(iter->w)); 2645 iter->w.func = ipv6_route_yield; 2646 iter->w.root = &iter->tbl->tb6_root; 2647 iter->w.state = FWS_INIT; 2648 iter->w.node = iter->w.root; 2649 iter->w.args = iter; 2650 iter->sernum = READ_ONCE(iter->w.root->fn_sernum); 2651 INIT_LIST_HEAD(&iter->w.lh); 2652 fib6_walker_link(net, &iter->w); 2653 } 2654 2655 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl, 2656 struct net *net) 2657 { 2658 unsigned int h; 2659 struct hlist_node *node; 2660 2661 if (tbl) { 2662 h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1; 2663 node = rcu_dereference(hlist_next_rcu(&tbl->tb6_hlist)); 2664 } else { 2665 h = 0; 2666 node = NULL; 2667 } 2668 2669 while (!node && h < FIB6_TABLE_HASHSZ) { 2670 node = rcu_dereference( 2671 hlist_first_rcu(&net->ipv6.fib_table_hash[h++])); 2672 } 2673 return hlist_entry_safe(node, struct fib6_table, tb6_hlist); 2674 } 2675 2676 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter) 2677 { 2678 int sernum = READ_ONCE(iter->w.root->fn_sernum); 2679 2680 if (iter->sernum != sernum) { 2681 iter->sernum = sernum; 2682 iter->w.state = FWS_INIT; 2683 iter->w.node = iter->w.root; 2684 WARN_ON(iter->w.skip); 2685 iter->w.skip = iter->w.count; 2686 } 2687 } 2688 2689 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2690 { 2691 int r; 2692 struct fib6_info *n; 2693 struct net *net = seq_file_net(seq); 2694 struct ipv6_route_iter *iter = seq->private; 2695 2696 ++(*pos); 2697 if (!v) 2698 goto iter_table; 2699 2700 n = rcu_dereference(((struct fib6_info *)v)->fib6_next); 2701 if (n) 2702 return n; 2703 2704 iter_table: 2705 ipv6_route_check_sernum(iter); 2706 spin_lock_bh(&iter->tbl->tb6_lock); 2707 r = fib6_walk_continue(&iter->w); 2708 spin_unlock_bh(&iter->tbl->tb6_lock); 2709 if (r > 0) { 2710 return iter->w.leaf; 2711 } else if (r < 0) { 2712 fib6_walker_unlink(net, &iter->w); 2713 return NULL; 2714 } 2715 fib6_walker_unlink(net, &iter->w); 2716 2717 iter->tbl = ipv6_route_seq_next_table(iter->tbl, net); 2718 if (!iter->tbl) 2719 return NULL; 2720 2721 ipv6_route_seq_setup_walk(iter, net); 2722 goto iter_table; 2723 } 2724 2725 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos) 2726 __acquires(RCU) 2727 { 2728 struct net *net = seq_file_net(seq); 2729 struct ipv6_route_iter *iter = seq->private; 2730 2731 rcu_read_lock(); 2732 iter->tbl = ipv6_route_seq_next_table(NULL, net); 2733 iter->skip = *pos; 2734 2735 if (iter->tbl) { 2736 loff_t p = 0; 2737 2738 ipv6_route_seq_setup_walk(iter, net); 2739 return ipv6_route_seq_next(seq, NULL, &p); 2740 } else { 2741 return NULL; 2742 } 2743 } 2744 2745 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter) 2746 { 2747 struct fib6_walker *w = &iter->w; 2748 return w->node && !(w->state == FWS_U && w->node == w->root); 2749 } 2750 2751 static void ipv6_route_native_seq_stop(struct seq_file *seq, void *v) 2752 __releases(RCU) 2753 { 2754 struct net *net = seq_file_net(seq); 2755 struct ipv6_route_iter *iter = seq->private; 2756 2757 if (ipv6_route_iter_active(iter)) 2758 fib6_walker_unlink(net, &iter->w); 2759 2760 rcu_read_unlock(); 2761 } 2762 2763 #if IS_BUILTIN(CONFIG_IPV6) && defined(CONFIG_BPF_SYSCALL) 2764 static int ipv6_route_prog_seq_show(struct bpf_prog *prog, 2765 struct bpf_iter_meta *meta, 2766 void *v) 2767 { 2768 struct bpf_iter__ipv6_route ctx; 2769 2770 ctx.meta = meta; 2771 ctx.rt = v; 2772 return bpf_iter_run_prog(prog, &ctx); 2773 } 2774 2775 static int ipv6_route_seq_show(struct seq_file *seq, void *v) 2776 { 2777 struct ipv6_route_iter *iter = seq->private; 2778 struct bpf_iter_meta meta; 2779 struct bpf_prog *prog; 2780 int ret; 2781 2782 meta.seq = seq; 2783 prog = bpf_iter_get_info(&meta, false); 2784 if (!prog) 2785 return ipv6_route_native_seq_show(seq, v); 2786 2787 ret = ipv6_route_prog_seq_show(prog, &meta, v); 2788 iter->w.leaf = NULL; 2789 2790 return ret; 2791 } 2792 2793 static void ipv6_route_seq_stop(struct seq_file *seq, void *v) 2794 { 2795 struct bpf_iter_meta meta; 2796 struct bpf_prog *prog; 2797 2798 if (!v) { 2799 meta.seq = seq; 2800 prog = bpf_iter_get_info(&meta, true); 2801 if (prog) 2802 (void)ipv6_route_prog_seq_show(prog, &meta, v); 2803 } 2804 2805 ipv6_route_native_seq_stop(seq, v); 2806 } 2807 #else 2808 static int ipv6_route_seq_show(struct seq_file *seq, void *v) 2809 { 2810 return ipv6_route_native_seq_show(seq, v); 2811 } 2812 2813 static void ipv6_route_seq_stop(struct seq_file *seq, void *v) 2814 { 2815 ipv6_route_native_seq_stop(seq, v); 2816 } 2817 #endif 2818 2819 const struct seq_operations ipv6_route_seq_ops = { 2820 .start = ipv6_route_seq_start, 2821 .next = ipv6_route_seq_next, 2822 .stop = ipv6_route_seq_stop, 2823 .show = ipv6_route_seq_show 2824 }; 2825 #endif /* CONFIG_PROC_FS */ 2826