xref: /linux/net/ipv6/ip6_fib.c (revision 68c402fe5c5e5aa9a04c8bba9d99feb08a68afa7)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Linux INET6 implementation
4  *	Forwarding Information Database
5  *
6  *	Authors:
7  *	Pedro Roque		<roque@di.fc.ul.pt>
8  *
9  *	Changes:
10  *	Yuji SEKIYA @USAGI:	Support default route on router node;
11  *				remove ip6_null_entry from the top of
12  *				routing table.
13  *	Ville Nuorvala:		Fixed routing subtrees.
14  */
15 
16 #define pr_fmt(fmt) "IPv6: " fmt
17 
18 #include <linux/bpf.h>
19 #include <linux/errno.h>
20 #include <linux/types.h>
21 #include <linux/net.h>
22 #include <linux/route.h>
23 #include <linux/netdevice.h>
24 #include <linux/in6.h>
25 #include <linux/init.h>
26 #include <linux/list.h>
27 #include <linux/slab.h>
28 
29 #include <net/ip.h>
30 #include <net/ipv6.h>
31 #include <net/ndisc.h>
32 #include <net/addrconf.h>
33 #include <net/lwtunnel.h>
34 #include <net/fib_notifier.h>
35 
36 #include <net/ip_fib.h>
37 #include <net/ip6_fib.h>
38 #include <net/ip6_route.h>
39 
40 static struct kmem_cache *fib6_node_kmem __read_mostly;
41 
42 struct fib6_cleaner {
43 	struct fib6_walker w;
44 	struct net *net;
45 	int (*func)(struct fib6_info *, void *arg);
46 	int sernum;
47 	void *arg;
48 	bool skip_notify;
49 };
50 
51 #ifdef CONFIG_IPV6_SUBTREES
52 #define FWS_INIT FWS_S
53 #else
54 #define FWS_INIT FWS_L
55 #endif
56 
57 static struct fib6_info *fib6_find_prefix(struct net *net,
58 					 struct fib6_table *table,
59 					 struct fib6_node *fn);
60 static struct fib6_node *fib6_repair_tree(struct net *net,
61 					  struct fib6_table *table,
62 					  struct fib6_node *fn);
63 static int fib6_walk(struct net *net, struct fib6_walker *w);
64 static int fib6_walk_continue(struct fib6_walker *w);
65 
66 /*
67  *	A routing update causes an increase of the serial number on the
68  *	affected subtree. This allows for cached routes to be asynchronously
69  *	tested when modifications are made to the destination cache as a
70  *	result of redirects, path MTU changes, etc.
71  */
72 
73 static void fib6_gc_timer_cb(struct timer_list *t);
74 
75 #define FOR_WALKERS(net, w) \
76 	list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh)
77 
78 static void fib6_walker_link(struct net *net, struct fib6_walker *w)
79 {
80 	write_lock_bh(&net->ipv6.fib6_walker_lock);
81 	list_add(&w->lh, &net->ipv6.fib6_walkers);
82 	write_unlock_bh(&net->ipv6.fib6_walker_lock);
83 }
84 
85 static void fib6_walker_unlink(struct net *net, struct fib6_walker *w)
86 {
87 	write_lock_bh(&net->ipv6.fib6_walker_lock);
88 	list_del(&w->lh);
89 	write_unlock_bh(&net->ipv6.fib6_walker_lock);
90 }
91 
92 static int fib6_new_sernum(struct net *net)
93 {
94 	int new, old = atomic_read(&net->ipv6.fib6_sernum);
95 
96 	do {
97 		new = old < INT_MAX ? old + 1 : 1;
98 	} while (!atomic_try_cmpxchg(&net->ipv6.fib6_sernum, &old, new));
99 
100 	return new;
101 }
102 
103 enum {
104 	FIB6_NO_SERNUM_CHANGE = 0,
105 };
106 
107 void fib6_update_sernum(struct net *net, struct fib6_info *f6i)
108 {
109 	struct fib6_node *fn;
110 
111 	fn = rcu_dereference_protected(f6i->fib6_node,
112 			lockdep_is_held(&f6i->fib6_table->tb6_lock));
113 	if (fn)
114 		WRITE_ONCE(fn->fn_sernum, fib6_new_sernum(net));
115 }
116 
117 /*
118  *	Auxiliary address test functions for the radix tree.
119  *
120  *	These assume a 32bit processor (although it will work on
121  *	64bit processors)
122  */
123 
124 /*
125  *	test bit
126  */
127 #if defined(__LITTLE_ENDIAN)
128 # define BITOP_BE32_SWIZZLE	(0x1F & ~7)
129 #else
130 # define BITOP_BE32_SWIZZLE	0
131 #endif
132 
133 static __be32 addr_bit_set(const void *token, int fn_bit)
134 {
135 	const __be32 *addr = token;
136 	/*
137 	 * Here,
138 	 *	1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
139 	 * is optimized version of
140 	 *	htonl(1 << ((~fn_bit)&0x1F))
141 	 * See include/asm-generic/bitops/le.h.
142 	 */
143 	return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
144 	       addr[fn_bit >> 5];
145 }
146 
147 struct fib6_info *fib6_info_alloc(gfp_t gfp_flags, bool with_fib6_nh)
148 {
149 	struct fib6_info *f6i;
150 	size_t sz = sizeof(*f6i);
151 
152 	if (with_fib6_nh)
153 		sz += sizeof(struct fib6_nh);
154 
155 	f6i = kzalloc(sz, gfp_flags);
156 	if (!f6i)
157 		return NULL;
158 
159 	/* fib6_siblings is a union with nh_list, so this initializes both */
160 	INIT_LIST_HEAD(&f6i->fib6_siblings);
161 	refcount_set(&f6i->fib6_ref, 1);
162 
163 	INIT_HLIST_NODE(&f6i->gc_link);
164 
165 	return f6i;
166 }
167 
168 void fib6_info_destroy_rcu(struct rcu_head *head)
169 {
170 	struct fib6_info *f6i = container_of(head, struct fib6_info, rcu);
171 
172 	WARN_ON(f6i->fib6_node);
173 
174 	if (f6i->nh)
175 		nexthop_put(f6i->nh);
176 	else
177 		fib6_nh_release(f6i->fib6_nh);
178 
179 	ip_fib_metrics_put(f6i->fib6_metrics);
180 	kfree(f6i);
181 }
182 EXPORT_SYMBOL_GPL(fib6_info_destroy_rcu);
183 
184 static struct fib6_node *node_alloc(struct net *net)
185 {
186 	struct fib6_node *fn;
187 
188 	fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
189 	if (fn)
190 		net->ipv6.rt6_stats->fib_nodes++;
191 
192 	return fn;
193 }
194 
195 static void node_free_immediate(struct net *net, struct fib6_node *fn)
196 {
197 	kmem_cache_free(fib6_node_kmem, fn);
198 	net->ipv6.rt6_stats->fib_nodes--;
199 }
200 
201 static void node_free_rcu(struct rcu_head *head)
202 {
203 	struct fib6_node *fn = container_of(head, struct fib6_node, rcu);
204 
205 	kmem_cache_free(fib6_node_kmem, fn);
206 }
207 
208 static void node_free(struct net *net, struct fib6_node *fn)
209 {
210 	call_rcu(&fn->rcu, node_free_rcu);
211 	net->ipv6.rt6_stats->fib_nodes--;
212 }
213 
214 static void fib6_free_table(struct fib6_table *table)
215 {
216 	inetpeer_invalidate_tree(&table->tb6_peers);
217 	kfree(table);
218 }
219 
220 static void fib6_link_table(struct net *net, struct fib6_table *tb)
221 {
222 	unsigned int h;
223 
224 	/*
225 	 * Initialize table lock at a single place to give lockdep a key,
226 	 * tables aren't visible prior to being linked to the list.
227 	 */
228 	spin_lock_init(&tb->tb6_lock);
229 	h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
230 
231 	/*
232 	 * No protection necessary, this is the only list mutatation
233 	 * operation, tables never disappear once they exist.
234 	 */
235 	hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
236 }
237 
238 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
239 
240 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
241 {
242 	struct fib6_table *table;
243 
244 	table = kzalloc(sizeof(*table), GFP_ATOMIC);
245 	if (table) {
246 		table->tb6_id = id;
247 		rcu_assign_pointer(table->tb6_root.leaf,
248 				   net->ipv6.fib6_null_entry);
249 		table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
250 		inet_peer_base_init(&table->tb6_peers);
251 		INIT_HLIST_HEAD(&table->tb6_gc_hlist);
252 	}
253 
254 	return table;
255 }
256 
257 struct fib6_table *fib6_new_table(struct net *net, u32 id)
258 {
259 	struct fib6_table *tb;
260 
261 	if (id == 0)
262 		id = RT6_TABLE_MAIN;
263 	tb = fib6_get_table(net, id);
264 	if (tb)
265 		return tb;
266 
267 	tb = fib6_alloc_table(net, id);
268 	if (tb)
269 		fib6_link_table(net, tb);
270 
271 	return tb;
272 }
273 EXPORT_SYMBOL_GPL(fib6_new_table);
274 
275 struct fib6_table *fib6_get_table(struct net *net, u32 id)
276 {
277 	struct fib6_table *tb;
278 	struct hlist_head *head;
279 	unsigned int h;
280 
281 	if (id == 0)
282 		id = RT6_TABLE_MAIN;
283 	h = id & (FIB6_TABLE_HASHSZ - 1);
284 	rcu_read_lock();
285 	head = &net->ipv6.fib_table_hash[h];
286 	hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
287 		if (tb->tb6_id == id) {
288 			rcu_read_unlock();
289 			return tb;
290 		}
291 	}
292 	rcu_read_unlock();
293 
294 	return NULL;
295 }
296 EXPORT_SYMBOL_GPL(fib6_get_table);
297 
298 static void __net_init fib6_tables_init(struct net *net)
299 {
300 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
301 	fib6_link_table(net, net->ipv6.fib6_local_tbl);
302 }
303 #else
304 
305 struct fib6_table *fib6_new_table(struct net *net, u32 id)
306 {
307 	return fib6_get_table(net, id);
308 }
309 
310 struct fib6_table *fib6_get_table(struct net *net, u32 id)
311 {
312 	  return net->ipv6.fib6_main_tbl;
313 }
314 
315 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
316 				   const struct sk_buff *skb,
317 				   int flags, pol_lookup_t lookup)
318 {
319 	struct rt6_info *rt;
320 
321 	rt = pol_lookup_func(lookup,
322 			net, net->ipv6.fib6_main_tbl, fl6, skb, flags);
323 	if (rt->dst.error == -EAGAIN) {
324 		ip6_rt_put_flags(rt, flags);
325 		rt = net->ipv6.ip6_null_entry;
326 		if (!(flags & RT6_LOOKUP_F_DST_NOREF))
327 			dst_hold(&rt->dst);
328 	}
329 
330 	return &rt->dst;
331 }
332 
333 /* called with rcu lock held; no reference taken on fib6_info */
334 int fib6_lookup(struct net *net, int oif, struct flowi6 *fl6,
335 		struct fib6_result *res, int flags)
336 {
337 	return fib6_table_lookup(net, net->ipv6.fib6_main_tbl, oif, fl6,
338 				 res, flags);
339 }
340 
341 static void __net_init fib6_tables_init(struct net *net)
342 {
343 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
344 }
345 
346 #endif
347 
348 unsigned int fib6_tables_seq_read(struct net *net)
349 {
350 	unsigned int h, fib_seq = 0;
351 
352 	rcu_read_lock();
353 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
354 		struct hlist_head *head = &net->ipv6.fib_table_hash[h];
355 		struct fib6_table *tb;
356 
357 		hlist_for_each_entry_rcu(tb, head, tb6_hlist)
358 			fib_seq += tb->fib_seq;
359 	}
360 	rcu_read_unlock();
361 
362 	return fib_seq;
363 }
364 
365 static int call_fib6_entry_notifier(struct notifier_block *nb,
366 				    enum fib_event_type event_type,
367 				    struct fib6_info *rt,
368 				    struct netlink_ext_ack *extack)
369 {
370 	struct fib6_entry_notifier_info info = {
371 		.info.extack = extack,
372 		.rt = rt,
373 	};
374 
375 	return call_fib6_notifier(nb, event_type, &info.info);
376 }
377 
378 static int call_fib6_multipath_entry_notifier(struct notifier_block *nb,
379 					      enum fib_event_type event_type,
380 					      struct fib6_info *rt,
381 					      unsigned int nsiblings,
382 					      struct netlink_ext_ack *extack)
383 {
384 	struct fib6_entry_notifier_info info = {
385 		.info.extack = extack,
386 		.rt = rt,
387 		.nsiblings = nsiblings,
388 	};
389 
390 	return call_fib6_notifier(nb, event_type, &info.info);
391 }
392 
393 int call_fib6_entry_notifiers(struct net *net,
394 			      enum fib_event_type event_type,
395 			      struct fib6_info *rt,
396 			      struct netlink_ext_ack *extack)
397 {
398 	struct fib6_entry_notifier_info info = {
399 		.info.extack = extack,
400 		.rt = rt,
401 	};
402 
403 	rt->fib6_table->fib_seq++;
404 	return call_fib6_notifiers(net, event_type, &info.info);
405 }
406 
407 int call_fib6_multipath_entry_notifiers(struct net *net,
408 					enum fib_event_type event_type,
409 					struct fib6_info *rt,
410 					unsigned int nsiblings,
411 					struct netlink_ext_ack *extack)
412 {
413 	struct fib6_entry_notifier_info info = {
414 		.info.extack = extack,
415 		.rt = rt,
416 		.nsiblings = nsiblings,
417 	};
418 
419 	rt->fib6_table->fib_seq++;
420 	return call_fib6_notifiers(net, event_type, &info.info);
421 }
422 
423 int call_fib6_entry_notifiers_replace(struct net *net, struct fib6_info *rt)
424 {
425 	struct fib6_entry_notifier_info info = {
426 		.rt = rt,
427 		.nsiblings = rt->fib6_nsiblings,
428 	};
429 
430 	rt->fib6_table->fib_seq++;
431 	return call_fib6_notifiers(net, FIB_EVENT_ENTRY_REPLACE, &info.info);
432 }
433 
434 struct fib6_dump_arg {
435 	struct net *net;
436 	struct notifier_block *nb;
437 	struct netlink_ext_ack *extack;
438 };
439 
440 static int fib6_rt_dump(struct fib6_info *rt, struct fib6_dump_arg *arg)
441 {
442 	enum fib_event_type fib_event = FIB_EVENT_ENTRY_REPLACE;
443 	int err;
444 
445 	if (!rt || rt == arg->net->ipv6.fib6_null_entry)
446 		return 0;
447 
448 	if (rt->fib6_nsiblings)
449 		err = call_fib6_multipath_entry_notifier(arg->nb, fib_event,
450 							 rt,
451 							 rt->fib6_nsiblings,
452 							 arg->extack);
453 	else
454 		err = call_fib6_entry_notifier(arg->nb, fib_event, rt,
455 					       arg->extack);
456 
457 	return err;
458 }
459 
460 static int fib6_node_dump(struct fib6_walker *w)
461 {
462 	int err;
463 
464 	err = fib6_rt_dump(w->leaf, w->args);
465 	w->leaf = NULL;
466 	return err;
467 }
468 
469 static int fib6_table_dump(struct net *net, struct fib6_table *tb,
470 			   struct fib6_walker *w)
471 {
472 	int err;
473 
474 	w->root = &tb->tb6_root;
475 	spin_lock_bh(&tb->tb6_lock);
476 	err = fib6_walk(net, w);
477 	spin_unlock_bh(&tb->tb6_lock);
478 	return err;
479 }
480 
481 /* Called with rcu_read_lock() */
482 int fib6_tables_dump(struct net *net, struct notifier_block *nb,
483 		     struct netlink_ext_ack *extack)
484 {
485 	struct fib6_dump_arg arg;
486 	struct fib6_walker *w;
487 	unsigned int h;
488 	int err = 0;
489 
490 	w = kzalloc(sizeof(*w), GFP_ATOMIC);
491 	if (!w)
492 		return -ENOMEM;
493 
494 	w->func = fib6_node_dump;
495 	arg.net = net;
496 	arg.nb = nb;
497 	arg.extack = extack;
498 	w->args = &arg;
499 
500 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
501 		struct hlist_head *head = &net->ipv6.fib_table_hash[h];
502 		struct fib6_table *tb;
503 
504 		hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
505 			err = fib6_table_dump(net, tb, w);
506 			if (err)
507 				goto out;
508 		}
509 	}
510 
511 out:
512 	kfree(w);
513 
514 	/* The tree traversal function should never return a positive value. */
515 	return err > 0 ? -EINVAL : err;
516 }
517 
518 static int fib6_dump_node(struct fib6_walker *w)
519 {
520 	int res;
521 	struct fib6_info *rt;
522 
523 	for_each_fib6_walker_rt(w) {
524 		res = rt6_dump_route(rt, w->args, w->skip_in_node);
525 		if (res >= 0) {
526 			/* Frame is full, suspend walking */
527 			w->leaf = rt;
528 
529 			/* We'll restart from this node, so if some routes were
530 			 * already dumped, skip them next time.
531 			 */
532 			w->skip_in_node += res;
533 
534 			return 1;
535 		}
536 		w->skip_in_node = 0;
537 
538 		/* Multipath routes are dumped in one route with the
539 		 * RTA_MULTIPATH attribute. Jump 'rt' to point to the
540 		 * last sibling of this route (no need to dump the
541 		 * sibling routes again)
542 		 */
543 		if (rt->fib6_nsiblings)
544 			rt = list_last_entry(&rt->fib6_siblings,
545 					     struct fib6_info,
546 					     fib6_siblings);
547 	}
548 	w->leaf = NULL;
549 	return 0;
550 }
551 
552 static void fib6_dump_end(struct netlink_callback *cb)
553 {
554 	struct net *net = sock_net(cb->skb->sk);
555 	struct fib6_walker *w = (void *)cb->args[2];
556 
557 	if (w) {
558 		if (cb->args[4]) {
559 			cb->args[4] = 0;
560 			fib6_walker_unlink(net, w);
561 		}
562 		cb->args[2] = 0;
563 		kfree(w);
564 	}
565 	cb->done = (void *)cb->args[3];
566 	cb->args[1] = 3;
567 }
568 
569 static int fib6_dump_done(struct netlink_callback *cb)
570 {
571 	fib6_dump_end(cb);
572 	return cb->done ? cb->done(cb) : 0;
573 }
574 
575 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
576 			   struct netlink_callback *cb)
577 {
578 	struct net *net = sock_net(skb->sk);
579 	struct fib6_walker *w;
580 	int res;
581 
582 	w = (void *)cb->args[2];
583 	w->root = &table->tb6_root;
584 
585 	if (cb->args[4] == 0) {
586 		w->count = 0;
587 		w->skip = 0;
588 		w->skip_in_node = 0;
589 
590 		spin_lock_bh(&table->tb6_lock);
591 		res = fib6_walk(net, w);
592 		spin_unlock_bh(&table->tb6_lock);
593 		if (res > 0) {
594 			cb->args[4] = 1;
595 			cb->args[5] = READ_ONCE(w->root->fn_sernum);
596 		}
597 	} else {
598 		int sernum = READ_ONCE(w->root->fn_sernum);
599 		if (cb->args[5] != sernum) {
600 			/* Begin at the root if the tree changed */
601 			cb->args[5] = sernum;
602 			w->state = FWS_INIT;
603 			w->node = w->root;
604 			w->skip = w->count;
605 			w->skip_in_node = 0;
606 		} else
607 			w->skip = 0;
608 
609 		spin_lock_bh(&table->tb6_lock);
610 		res = fib6_walk_continue(w);
611 		spin_unlock_bh(&table->tb6_lock);
612 		if (res <= 0) {
613 			fib6_walker_unlink(net, w);
614 			cb->args[4] = 0;
615 		}
616 	}
617 
618 	return res;
619 }
620 
621 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
622 {
623 	struct rt6_rtnl_dump_arg arg = {
624 		.filter.dump_exceptions = true,
625 		.filter.dump_routes = true,
626 		.filter.rtnl_held = false,
627 	};
628 	const struct nlmsghdr *nlh = cb->nlh;
629 	struct net *net = sock_net(skb->sk);
630 	unsigned int e = 0, s_e;
631 	struct hlist_head *head;
632 	struct fib6_walker *w;
633 	struct fib6_table *tb;
634 	unsigned int h, s_h;
635 	int err = 0;
636 
637 	rcu_read_lock();
638 	if (cb->strict_check) {
639 		err = ip_valid_fib_dump_req(net, nlh, &arg.filter, cb);
640 		if (err < 0)
641 			goto unlock;
642 	} else if (nlmsg_len(nlh) >= sizeof(struct rtmsg)) {
643 		struct rtmsg *rtm = nlmsg_data(nlh);
644 
645 		if (rtm->rtm_flags & RTM_F_PREFIX)
646 			arg.filter.flags = RTM_F_PREFIX;
647 	}
648 
649 	w = (void *)cb->args[2];
650 	if (!w) {
651 		/* New dump:
652 		 *
653 		 * 1. allocate and initialize walker.
654 		 */
655 		w = kzalloc(sizeof(*w), GFP_ATOMIC);
656 		if (!w) {
657 			err = -ENOMEM;
658 			goto unlock;
659 		}
660 		w->func = fib6_dump_node;
661 		cb->args[2] = (long)w;
662 
663 		/* 2. hook callback destructor.
664 		 */
665 		cb->args[3] = (long)cb->done;
666 		cb->done = fib6_dump_done;
667 
668 	}
669 
670 	arg.skb = skb;
671 	arg.cb = cb;
672 	arg.net = net;
673 	w->args = &arg;
674 
675 	if (arg.filter.table_id) {
676 		tb = fib6_get_table(net, arg.filter.table_id);
677 		if (!tb) {
678 			if (rtnl_msg_family(cb->nlh) != PF_INET6)
679 				goto unlock;
680 
681 			NL_SET_ERR_MSG_MOD(cb->extack, "FIB table does not exist");
682 			err = -ENOENT;
683 			goto unlock;
684 		}
685 
686 		if (!cb->args[0]) {
687 			err = fib6_dump_table(tb, skb, cb);
688 			if (!err)
689 				cb->args[0] = 1;
690 		}
691 		goto unlock;
692 	}
693 
694 	s_h = cb->args[0];
695 	s_e = cb->args[1];
696 
697 	for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
698 		e = 0;
699 		head = &net->ipv6.fib_table_hash[h];
700 		hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
701 			if (e < s_e)
702 				goto next;
703 			err = fib6_dump_table(tb, skb, cb);
704 			if (err != 0)
705 				goto out;
706 next:
707 			e++;
708 		}
709 	}
710 out:
711 	cb->args[1] = e;
712 	cb->args[0] = h;
713 
714 unlock:
715 	rcu_read_unlock();
716 	if (err <= 0)
717 		fib6_dump_end(cb);
718 	return err;
719 }
720 
721 void fib6_metric_set(struct fib6_info *f6i, int metric, u32 val)
722 {
723 	if (!f6i)
724 		return;
725 
726 	if (f6i->fib6_metrics == &dst_default_metrics) {
727 		struct dst_metrics *p = kzalloc(sizeof(*p), GFP_ATOMIC);
728 
729 		if (!p)
730 			return;
731 
732 		refcount_set(&p->refcnt, 1);
733 		f6i->fib6_metrics = p;
734 	}
735 
736 	f6i->fib6_metrics->metrics[metric - 1] = val;
737 }
738 
739 /*
740  *	Routing Table
741  *
742  *	return the appropriate node for a routing tree "add" operation
743  *	by either creating and inserting or by returning an existing
744  *	node.
745  */
746 
747 static struct fib6_node *fib6_add_1(struct net *net,
748 				    struct fib6_table *table,
749 				    struct fib6_node *root,
750 				    struct in6_addr *addr, int plen,
751 				    int offset, int allow_create,
752 				    int replace_required,
753 				    struct netlink_ext_ack *extack)
754 {
755 	struct fib6_node *fn, *in, *ln;
756 	struct fib6_node *pn = NULL;
757 	struct rt6key *key;
758 	int	bit;
759 	__be32	dir = 0;
760 
761 	/* insert node in tree */
762 
763 	fn = root;
764 
765 	do {
766 		struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
767 					    lockdep_is_held(&table->tb6_lock));
768 		key = (struct rt6key *)((u8 *)leaf + offset);
769 
770 		/*
771 		 *	Prefix match
772 		 */
773 		if (plen < fn->fn_bit ||
774 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
775 			if (!allow_create) {
776 				if (replace_required) {
777 					NL_SET_ERR_MSG(extack,
778 						       "Can not replace route - no match found");
779 					pr_warn("Can't replace route, no match found\n");
780 					return ERR_PTR(-ENOENT);
781 				}
782 				pr_warn("NLM_F_CREATE should be set when creating new route\n");
783 			}
784 			goto insert_above;
785 		}
786 
787 		/*
788 		 *	Exact match ?
789 		 */
790 
791 		if (plen == fn->fn_bit) {
792 			/* clean up an intermediate node */
793 			if (!(fn->fn_flags & RTN_RTINFO)) {
794 				RCU_INIT_POINTER(fn->leaf, NULL);
795 				fib6_info_release(leaf);
796 			/* remove null_entry in the root node */
797 			} else if (fn->fn_flags & RTN_TL_ROOT &&
798 				   rcu_access_pointer(fn->leaf) ==
799 				   net->ipv6.fib6_null_entry) {
800 				RCU_INIT_POINTER(fn->leaf, NULL);
801 			}
802 
803 			return fn;
804 		}
805 
806 		/*
807 		 *	We have more bits to go
808 		 */
809 
810 		/* Try to walk down on tree. */
811 		dir = addr_bit_set(addr, fn->fn_bit);
812 		pn = fn;
813 		fn = dir ?
814 		     rcu_dereference_protected(fn->right,
815 					lockdep_is_held(&table->tb6_lock)) :
816 		     rcu_dereference_protected(fn->left,
817 					lockdep_is_held(&table->tb6_lock));
818 	} while (fn);
819 
820 	if (!allow_create) {
821 		/* We should not create new node because
822 		 * NLM_F_REPLACE was specified without NLM_F_CREATE
823 		 * I assume it is safe to require NLM_F_CREATE when
824 		 * REPLACE flag is used! Later we may want to remove the
825 		 * check for replace_required, because according
826 		 * to netlink specification, NLM_F_CREATE
827 		 * MUST be specified if new route is created.
828 		 * That would keep IPv6 consistent with IPv4
829 		 */
830 		if (replace_required) {
831 			NL_SET_ERR_MSG(extack,
832 				       "Can not replace route - no match found");
833 			pr_warn("Can't replace route, no match found\n");
834 			return ERR_PTR(-ENOENT);
835 		}
836 		pr_warn("NLM_F_CREATE should be set when creating new route\n");
837 	}
838 	/*
839 	 *	We walked to the bottom of tree.
840 	 *	Create new leaf node without children.
841 	 */
842 
843 	ln = node_alloc(net);
844 
845 	if (!ln)
846 		return ERR_PTR(-ENOMEM);
847 	ln->fn_bit = plen;
848 	RCU_INIT_POINTER(ln->parent, pn);
849 
850 	if (dir)
851 		rcu_assign_pointer(pn->right, ln);
852 	else
853 		rcu_assign_pointer(pn->left, ln);
854 
855 	return ln;
856 
857 
858 insert_above:
859 	/*
860 	 * split since we don't have a common prefix anymore or
861 	 * we have a less significant route.
862 	 * we've to insert an intermediate node on the list
863 	 * this new node will point to the one we need to create
864 	 * and the current
865 	 */
866 
867 	pn = rcu_dereference_protected(fn->parent,
868 				       lockdep_is_held(&table->tb6_lock));
869 
870 	/* find 1st bit in difference between the 2 addrs.
871 
872 	   See comment in __ipv6_addr_diff: bit may be an invalid value,
873 	   but if it is >= plen, the value is ignored in any case.
874 	 */
875 
876 	bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
877 
878 	/*
879 	 *		(intermediate)[in]
880 	 *	          /	   \
881 	 *	(new leaf node)[ln] (old node)[fn]
882 	 */
883 	if (plen > bit) {
884 		in = node_alloc(net);
885 		ln = node_alloc(net);
886 
887 		if (!in || !ln) {
888 			if (in)
889 				node_free_immediate(net, in);
890 			if (ln)
891 				node_free_immediate(net, ln);
892 			return ERR_PTR(-ENOMEM);
893 		}
894 
895 		/*
896 		 * new intermediate node.
897 		 * RTN_RTINFO will
898 		 * be off since that an address that chooses one of
899 		 * the branches would not match less specific routes
900 		 * in the other branch
901 		 */
902 
903 		in->fn_bit = bit;
904 
905 		RCU_INIT_POINTER(in->parent, pn);
906 		in->leaf = fn->leaf;
907 		fib6_info_hold(rcu_dereference_protected(in->leaf,
908 				lockdep_is_held(&table->tb6_lock)));
909 
910 		/* update parent pointer */
911 		if (dir)
912 			rcu_assign_pointer(pn->right, in);
913 		else
914 			rcu_assign_pointer(pn->left, in);
915 
916 		ln->fn_bit = plen;
917 
918 		RCU_INIT_POINTER(ln->parent, in);
919 		rcu_assign_pointer(fn->parent, in);
920 
921 		if (addr_bit_set(addr, bit)) {
922 			rcu_assign_pointer(in->right, ln);
923 			rcu_assign_pointer(in->left, fn);
924 		} else {
925 			rcu_assign_pointer(in->left, ln);
926 			rcu_assign_pointer(in->right, fn);
927 		}
928 	} else { /* plen <= bit */
929 
930 		/*
931 		 *		(new leaf node)[ln]
932 		 *	          /	   \
933 		 *	     (old node)[fn] NULL
934 		 */
935 
936 		ln = node_alloc(net);
937 
938 		if (!ln)
939 			return ERR_PTR(-ENOMEM);
940 
941 		ln->fn_bit = plen;
942 
943 		RCU_INIT_POINTER(ln->parent, pn);
944 
945 		if (addr_bit_set(&key->addr, plen))
946 			RCU_INIT_POINTER(ln->right, fn);
947 		else
948 			RCU_INIT_POINTER(ln->left, fn);
949 
950 		rcu_assign_pointer(fn->parent, ln);
951 
952 		if (dir)
953 			rcu_assign_pointer(pn->right, ln);
954 		else
955 			rcu_assign_pointer(pn->left, ln);
956 	}
957 	return ln;
958 }
959 
960 static void __fib6_drop_pcpu_from(struct fib6_nh *fib6_nh,
961 				  const struct fib6_info *match,
962 				  const struct fib6_table *table)
963 {
964 	int cpu;
965 
966 	if (!fib6_nh->rt6i_pcpu)
967 		return;
968 
969 	/* release the reference to this fib entry from
970 	 * all of its cached pcpu routes
971 	 */
972 	for_each_possible_cpu(cpu) {
973 		struct rt6_info **ppcpu_rt;
974 		struct rt6_info *pcpu_rt;
975 
976 		ppcpu_rt = per_cpu_ptr(fib6_nh->rt6i_pcpu, cpu);
977 		pcpu_rt = *ppcpu_rt;
978 
979 		/* only dropping the 'from' reference if the cached route
980 		 * is using 'match'. The cached pcpu_rt->from only changes
981 		 * from a fib6_info to NULL (ip6_dst_destroy); it can never
982 		 * change from one fib6_info reference to another
983 		 */
984 		if (pcpu_rt && rcu_access_pointer(pcpu_rt->from) == match) {
985 			struct fib6_info *from;
986 
987 			from = xchg((__force struct fib6_info **)&pcpu_rt->from, NULL);
988 			fib6_info_release(from);
989 		}
990 	}
991 }
992 
993 struct fib6_nh_pcpu_arg {
994 	struct fib6_info	*from;
995 	const struct fib6_table *table;
996 };
997 
998 static int fib6_nh_drop_pcpu_from(struct fib6_nh *nh, void *_arg)
999 {
1000 	struct fib6_nh_pcpu_arg *arg = _arg;
1001 
1002 	__fib6_drop_pcpu_from(nh, arg->from, arg->table);
1003 	return 0;
1004 }
1005 
1006 static void fib6_drop_pcpu_from(struct fib6_info *f6i,
1007 				const struct fib6_table *table)
1008 {
1009 	/* Make sure rt6_make_pcpu_route() wont add other percpu routes
1010 	 * while we are cleaning them here.
1011 	 */
1012 	f6i->fib6_destroying = 1;
1013 	mb(); /* paired with the cmpxchg() in rt6_make_pcpu_route() */
1014 
1015 	if (f6i->nh) {
1016 		struct fib6_nh_pcpu_arg arg = {
1017 			.from = f6i,
1018 			.table = table
1019 		};
1020 
1021 		nexthop_for_each_fib6_nh(f6i->nh, fib6_nh_drop_pcpu_from,
1022 					 &arg);
1023 	} else {
1024 		struct fib6_nh *fib6_nh;
1025 
1026 		fib6_nh = f6i->fib6_nh;
1027 		__fib6_drop_pcpu_from(fib6_nh, f6i, table);
1028 	}
1029 }
1030 
1031 static void fib6_purge_rt(struct fib6_info *rt, struct fib6_node *fn,
1032 			  struct net *net)
1033 {
1034 	struct fib6_table *table = rt->fib6_table;
1035 
1036 	/* Flush all cached dst in exception table */
1037 	rt6_flush_exceptions(rt);
1038 	fib6_drop_pcpu_from(rt, table);
1039 
1040 	if (rt->nh && !list_empty(&rt->nh_list))
1041 		list_del_init(&rt->nh_list);
1042 
1043 	if (refcount_read(&rt->fib6_ref) != 1) {
1044 		/* This route is used as dummy address holder in some split
1045 		 * nodes. It is not leaked, but it still holds other resources,
1046 		 * which must be released in time. So, scan ascendant nodes
1047 		 * and replace dummy references to this route with references
1048 		 * to still alive ones.
1049 		 */
1050 		while (fn) {
1051 			struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
1052 					    lockdep_is_held(&table->tb6_lock));
1053 			struct fib6_info *new_leaf;
1054 			if (!(fn->fn_flags & RTN_RTINFO) && leaf == rt) {
1055 				new_leaf = fib6_find_prefix(net, table, fn);
1056 				fib6_info_hold(new_leaf);
1057 
1058 				rcu_assign_pointer(fn->leaf, new_leaf);
1059 				fib6_info_release(rt);
1060 			}
1061 			fn = rcu_dereference_protected(fn->parent,
1062 				    lockdep_is_held(&table->tb6_lock));
1063 		}
1064 	}
1065 
1066 	fib6_clean_expires(rt);
1067 	fib6_remove_gc_list(rt);
1068 }
1069 
1070 /*
1071  *	Insert routing information in a node.
1072  */
1073 
1074 static int fib6_add_rt2node(struct fib6_node *fn, struct fib6_info *rt,
1075 			    struct nl_info *info,
1076 			    struct netlink_ext_ack *extack)
1077 {
1078 	struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
1079 				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1080 	struct fib6_info *iter = NULL;
1081 	struct fib6_info __rcu **ins;
1082 	struct fib6_info __rcu **fallback_ins = NULL;
1083 	int replace = (info->nlh &&
1084 		       (info->nlh->nlmsg_flags & NLM_F_REPLACE));
1085 	int add = (!info->nlh ||
1086 		   (info->nlh->nlmsg_flags & NLM_F_CREATE));
1087 	int found = 0;
1088 	bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
1089 	bool notify_sibling_rt = false;
1090 	u16 nlflags = NLM_F_EXCL;
1091 	int err;
1092 
1093 	if (info->nlh && (info->nlh->nlmsg_flags & NLM_F_APPEND))
1094 		nlflags |= NLM_F_APPEND;
1095 
1096 	ins = &fn->leaf;
1097 
1098 	for (iter = leaf; iter;
1099 	     iter = rcu_dereference_protected(iter->fib6_next,
1100 				lockdep_is_held(&rt->fib6_table->tb6_lock))) {
1101 		/*
1102 		 *	Search for duplicates
1103 		 */
1104 
1105 		if (iter->fib6_metric == rt->fib6_metric) {
1106 			/*
1107 			 *	Same priority level
1108 			 */
1109 			if (info->nlh &&
1110 			    (info->nlh->nlmsg_flags & NLM_F_EXCL))
1111 				return -EEXIST;
1112 
1113 			nlflags &= ~NLM_F_EXCL;
1114 			if (replace) {
1115 				if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) {
1116 					found++;
1117 					break;
1118 				}
1119 				fallback_ins = fallback_ins ?: ins;
1120 				goto next_iter;
1121 			}
1122 
1123 			if (rt6_duplicate_nexthop(iter, rt)) {
1124 				if (rt->fib6_nsiblings)
1125 					rt->fib6_nsiblings = 0;
1126 				if (!(iter->fib6_flags & RTF_EXPIRES))
1127 					return -EEXIST;
1128 				if (!(rt->fib6_flags & RTF_EXPIRES)) {
1129 					fib6_clean_expires(iter);
1130 					fib6_remove_gc_list(iter);
1131 				} else {
1132 					fib6_set_expires(iter, rt->expires);
1133 					fib6_add_gc_list(iter);
1134 				}
1135 
1136 				if (rt->fib6_pmtu)
1137 					fib6_metric_set(iter, RTAX_MTU,
1138 							rt->fib6_pmtu);
1139 				return -EEXIST;
1140 			}
1141 			/* If we have the same destination and the same metric,
1142 			 * but not the same gateway, then the route we try to
1143 			 * add is sibling to this route, increment our counter
1144 			 * of siblings, and later we will add our route to the
1145 			 * list.
1146 			 * Only static routes (which don't have flag
1147 			 * RTF_EXPIRES) are used for ECMPv6.
1148 			 *
1149 			 * To avoid long list, we only had siblings if the
1150 			 * route have a gateway.
1151 			 */
1152 			if (rt_can_ecmp &&
1153 			    rt6_qualify_for_ecmp(iter))
1154 				rt->fib6_nsiblings++;
1155 		}
1156 
1157 		if (iter->fib6_metric > rt->fib6_metric)
1158 			break;
1159 
1160 next_iter:
1161 		ins = &iter->fib6_next;
1162 	}
1163 
1164 	if (fallback_ins && !found) {
1165 		/* No matching route with same ecmp-able-ness found, replace
1166 		 * first matching route
1167 		 */
1168 		ins = fallback_ins;
1169 		iter = rcu_dereference_protected(*ins,
1170 				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1171 		found++;
1172 	}
1173 
1174 	/* Reset round-robin state, if necessary */
1175 	if (ins == &fn->leaf)
1176 		fn->rr_ptr = NULL;
1177 
1178 	/* Link this route to others same route. */
1179 	if (rt->fib6_nsiblings) {
1180 		unsigned int fib6_nsiblings;
1181 		struct fib6_info *sibling, *temp_sibling;
1182 
1183 		/* Find the first route that have the same metric */
1184 		sibling = leaf;
1185 		notify_sibling_rt = true;
1186 		while (sibling) {
1187 			if (sibling->fib6_metric == rt->fib6_metric &&
1188 			    rt6_qualify_for_ecmp(sibling)) {
1189 				list_add_tail(&rt->fib6_siblings,
1190 					      &sibling->fib6_siblings);
1191 				break;
1192 			}
1193 			sibling = rcu_dereference_protected(sibling->fib6_next,
1194 				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1195 			notify_sibling_rt = false;
1196 		}
1197 		/* For each sibling in the list, increment the counter of
1198 		 * siblings. BUG() if counters does not match, list of siblings
1199 		 * is broken!
1200 		 */
1201 		fib6_nsiblings = 0;
1202 		list_for_each_entry_safe(sibling, temp_sibling,
1203 					 &rt->fib6_siblings, fib6_siblings) {
1204 			sibling->fib6_nsiblings++;
1205 			BUG_ON(sibling->fib6_nsiblings != rt->fib6_nsiblings);
1206 			fib6_nsiblings++;
1207 		}
1208 		BUG_ON(fib6_nsiblings != rt->fib6_nsiblings);
1209 		rt6_multipath_rebalance(temp_sibling);
1210 	}
1211 
1212 	/*
1213 	 *	insert node
1214 	 */
1215 	if (!replace) {
1216 		if (!add)
1217 			pr_warn("NLM_F_CREATE should be set when creating new route\n");
1218 
1219 add:
1220 		nlflags |= NLM_F_CREATE;
1221 
1222 		/* The route should only be notified if it is the first
1223 		 * route in the node or if it is added as a sibling
1224 		 * route to the first route in the node.
1225 		 */
1226 		if (!info->skip_notify_kernel &&
1227 		    (notify_sibling_rt || ins == &fn->leaf)) {
1228 			enum fib_event_type fib_event;
1229 
1230 			if (notify_sibling_rt)
1231 				fib_event = FIB_EVENT_ENTRY_APPEND;
1232 			else
1233 				fib_event = FIB_EVENT_ENTRY_REPLACE;
1234 			err = call_fib6_entry_notifiers(info->nl_net,
1235 							fib_event, rt,
1236 							extack);
1237 			if (err) {
1238 				struct fib6_info *sibling, *next_sibling;
1239 
1240 				/* If the route has siblings, then it first
1241 				 * needs to be unlinked from them.
1242 				 */
1243 				if (!rt->fib6_nsiblings)
1244 					return err;
1245 
1246 				list_for_each_entry_safe(sibling, next_sibling,
1247 							 &rt->fib6_siblings,
1248 							 fib6_siblings)
1249 					sibling->fib6_nsiblings--;
1250 				rt->fib6_nsiblings = 0;
1251 				list_del_init(&rt->fib6_siblings);
1252 				rt6_multipath_rebalance(next_sibling);
1253 				return err;
1254 			}
1255 		}
1256 
1257 		rcu_assign_pointer(rt->fib6_next, iter);
1258 		fib6_info_hold(rt);
1259 		rcu_assign_pointer(rt->fib6_node, fn);
1260 		rcu_assign_pointer(*ins, rt);
1261 		if (!info->skip_notify)
1262 			inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags);
1263 		info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
1264 
1265 		if (!(fn->fn_flags & RTN_RTINFO)) {
1266 			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1267 			fn->fn_flags |= RTN_RTINFO;
1268 		}
1269 
1270 	} else {
1271 		int nsiblings;
1272 
1273 		if (!found) {
1274 			if (add)
1275 				goto add;
1276 			pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
1277 			return -ENOENT;
1278 		}
1279 
1280 		if (!info->skip_notify_kernel && ins == &fn->leaf) {
1281 			err = call_fib6_entry_notifiers(info->nl_net,
1282 							FIB_EVENT_ENTRY_REPLACE,
1283 							rt, extack);
1284 			if (err)
1285 				return err;
1286 		}
1287 
1288 		fib6_info_hold(rt);
1289 		rcu_assign_pointer(rt->fib6_node, fn);
1290 		rt->fib6_next = iter->fib6_next;
1291 		rcu_assign_pointer(*ins, rt);
1292 		if (!info->skip_notify)
1293 			inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE);
1294 		if (!(fn->fn_flags & RTN_RTINFO)) {
1295 			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1296 			fn->fn_flags |= RTN_RTINFO;
1297 		}
1298 		nsiblings = iter->fib6_nsiblings;
1299 		iter->fib6_node = NULL;
1300 		fib6_purge_rt(iter, fn, info->nl_net);
1301 		if (rcu_access_pointer(fn->rr_ptr) == iter)
1302 			fn->rr_ptr = NULL;
1303 		fib6_info_release(iter);
1304 
1305 		if (nsiblings) {
1306 			/* Replacing an ECMP route, remove all siblings */
1307 			ins = &rt->fib6_next;
1308 			iter = rcu_dereference_protected(*ins,
1309 				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1310 			while (iter) {
1311 				if (iter->fib6_metric > rt->fib6_metric)
1312 					break;
1313 				if (rt6_qualify_for_ecmp(iter)) {
1314 					*ins = iter->fib6_next;
1315 					iter->fib6_node = NULL;
1316 					fib6_purge_rt(iter, fn, info->nl_net);
1317 					if (rcu_access_pointer(fn->rr_ptr) == iter)
1318 						fn->rr_ptr = NULL;
1319 					fib6_info_release(iter);
1320 					nsiblings--;
1321 					info->nl_net->ipv6.rt6_stats->fib_rt_entries--;
1322 				} else {
1323 					ins = &iter->fib6_next;
1324 				}
1325 				iter = rcu_dereference_protected(*ins,
1326 					lockdep_is_held(&rt->fib6_table->tb6_lock));
1327 			}
1328 			WARN_ON(nsiblings != 0);
1329 		}
1330 	}
1331 
1332 	return 0;
1333 }
1334 
1335 static void fib6_start_gc(struct net *net, struct fib6_info *rt)
1336 {
1337 	if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
1338 	    (rt->fib6_flags & RTF_EXPIRES))
1339 		mod_timer(&net->ipv6.ip6_fib_timer,
1340 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1341 }
1342 
1343 void fib6_force_start_gc(struct net *net)
1344 {
1345 	if (!timer_pending(&net->ipv6.ip6_fib_timer))
1346 		mod_timer(&net->ipv6.ip6_fib_timer,
1347 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1348 }
1349 
1350 static void __fib6_update_sernum_upto_root(struct fib6_info *rt,
1351 					   int sernum)
1352 {
1353 	struct fib6_node *fn = rcu_dereference_protected(rt->fib6_node,
1354 				lockdep_is_held(&rt->fib6_table->tb6_lock));
1355 
1356 	/* paired with smp_rmb() in fib6_get_cookie_safe() */
1357 	smp_wmb();
1358 	while (fn) {
1359 		WRITE_ONCE(fn->fn_sernum, sernum);
1360 		fn = rcu_dereference_protected(fn->parent,
1361 				lockdep_is_held(&rt->fib6_table->tb6_lock));
1362 	}
1363 }
1364 
1365 void fib6_update_sernum_upto_root(struct net *net, struct fib6_info *rt)
1366 {
1367 	__fib6_update_sernum_upto_root(rt, fib6_new_sernum(net));
1368 }
1369 
1370 /* allow ipv4 to update sernum via ipv6_stub */
1371 void fib6_update_sernum_stub(struct net *net, struct fib6_info *f6i)
1372 {
1373 	spin_lock_bh(&f6i->fib6_table->tb6_lock);
1374 	fib6_update_sernum_upto_root(net, f6i);
1375 	spin_unlock_bh(&f6i->fib6_table->tb6_lock);
1376 }
1377 
1378 /*
1379  *	Add routing information to the routing tree.
1380  *	<destination addr>/<source addr>
1381  *	with source addr info in sub-trees
1382  *	Need to own table->tb6_lock
1383  */
1384 
1385 int fib6_add(struct fib6_node *root, struct fib6_info *rt,
1386 	     struct nl_info *info, struct netlink_ext_ack *extack)
1387 {
1388 	struct fib6_table *table = rt->fib6_table;
1389 	struct fib6_node *fn;
1390 #ifdef CONFIG_IPV6_SUBTREES
1391 	struct fib6_node *pn = NULL;
1392 #endif
1393 	int err = -ENOMEM;
1394 	int allow_create = 1;
1395 	int replace_required = 0;
1396 
1397 	if (info->nlh) {
1398 		if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
1399 			allow_create = 0;
1400 		if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
1401 			replace_required = 1;
1402 	}
1403 	if (!allow_create && !replace_required)
1404 		pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
1405 
1406 	fn = fib6_add_1(info->nl_net, table, root,
1407 			&rt->fib6_dst.addr, rt->fib6_dst.plen,
1408 			offsetof(struct fib6_info, fib6_dst), allow_create,
1409 			replace_required, extack);
1410 	if (IS_ERR(fn)) {
1411 		err = PTR_ERR(fn);
1412 		fn = NULL;
1413 		goto out;
1414 	}
1415 
1416 #ifdef CONFIG_IPV6_SUBTREES
1417 	pn = fn;
1418 
1419 	if (rt->fib6_src.plen) {
1420 		struct fib6_node *sn;
1421 
1422 		if (!rcu_access_pointer(fn->subtree)) {
1423 			struct fib6_node *sfn;
1424 
1425 			/*
1426 			 * Create subtree.
1427 			 *
1428 			 *		fn[main tree]
1429 			 *		|
1430 			 *		sfn[subtree root]
1431 			 *		   \
1432 			 *		    sn[new leaf node]
1433 			 */
1434 
1435 			/* Create subtree root node */
1436 			sfn = node_alloc(info->nl_net);
1437 			if (!sfn)
1438 				goto failure;
1439 
1440 			fib6_info_hold(info->nl_net->ipv6.fib6_null_entry);
1441 			rcu_assign_pointer(sfn->leaf,
1442 					   info->nl_net->ipv6.fib6_null_entry);
1443 			sfn->fn_flags = RTN_ROOT;
1444 
1445 			/* Now add the first leaf node to new subtree */
1446 
1447 			sn = fib6_add_1(info->nl_net, table, sfn,
1448 					&rt->fib6_src.addr, rt->fib6_src.plen,
1449 					offsetof(struct fib6_info, fib6_src),
1450 					allow_create, replace_required, extack);
1451 
1452 			if (IS_ERR(sn)) {
1453 				/* If it is failed, discard just allocated
1454 				   root, and then (in failure) stale node
1455 				   in main tree.
1456 				 */
1457 				node_free_immediate(info->nl_net, sfn);
1458 				err = PTR_ERR(sn);
1459 				goto failure;
1460 			}
1461 
1462 			/* Now link new subtree to main tree */
1463 			rcu_assign_pointer(sfn->parent, fn);
1464 			rcu_assign_pointer(fn->subtree, sfn);
1465 		} else {
1466 			sn = fib6_add_1(info->nl_net, table, FIB6_SUBTREE(fn),
1467 					&rt->fib6_src.addr, rt->fib6_src.plen,
1468 					offsetof(struct fib6_info, fib6_src),
1469 					allow_create, replace_required, extack);
1470 
1471 			if (IS_ERR(sn)) {
1472 				err = PTR_ERR(sn);
1473 				goto failure;
1474 			}
1475 		}
1476 
1477 		if (!rcu_access_pointer(fn->leaf)) {
1478 			if (fn->fn_flags & RTN_TL_ROOT) {
1479 				/* put back null_entry for root node */
1480 				rcu_assign_pointer(fn->leaf,
1481 					    info->nl_net->ipv6.fib6_null_entry);
1482 			} else {
1483 				fib6_info_hold(rt);
1484 				rcu_assign_pointer(fn->leaf, rt);
1485 			}
1486 		}
1487 		fn = sn;
1488 	}
1489 #endif
1490 
1491 	err = fib6_add_rt2node(fn, rt, info, extack);
1492 	if (!err) {
1493 		if (rt->nh)
1494 			list_add(&rt->nh_list, &rt->nh->f6i_list);
1495 		__fib6_update_sernum_upto_root(rt, fib6_new_sernum(info->nl_net));
1496 
1497 		if (rt->fib6_flags & RTF_EXPIRES)
1498 			fib6_add_gc_list(rt);
1499 
1500 		fib6_start_gc(info->nl_net, rt);
1501 	}
1502 
1503 out:
1504 	if (err) {
1505 #ifdef CONFIG_IPV6_SUBTREES
1506 		/*
1507 		 * If fib6_add_1 has cleared the old leaf pointer in the
1508 		 * super-tree leaf node we have to find a new one for it.
1509 		 */
1510 		if (pn != fn) {
1511 			struct fib6_info *pn_leaf =
1512 				rcu_dereference_protected(pn->leaf,
1513 				    lockdep_is_held(&table->tb6_lock));
1514 			if (pn_leaf == rt) {
1515 				pn_leaf = NULL;
1516 				RCU_INIT_POINTER(pn->leaf, NULL);
1517 				fib6_info_release(rt);
1518 			}
1519 			if (!pn_leaf && !(pn->fn_flags & RTN_RTINFO)) {
1520 				pn_leaf = fib6_find_prefix(info->nl_net, table,
1521 							   pn);
1522 				if (!pn_leaf)
1523 					pn_leaf =
1524 					    info->nl_net->ipv6.fib6_null_entry;
1525 				fib6_info_hold(pn_leaf);
1526 				rcu_assign_pointer(pn->leaf, pn_leaf);
1527 			}
1528 		}
1529 #endif
1530 		goto failure;
1531 	} else if (fib6_requires_src(rt)) {
1532 		fib6_routes_require_src_inc(info->nl_net);
1533 	}
1534 	return err;
1535 
1536 failure:
1537 	/* fn->leaf could be NULL and fib6_repair_tree() needs to be called if:
1538 	 * 1. fn is an intermediate node and we failed to add the new
1539 	 * route to it in both subtree creation failure and fib6_add_rt2node()
1540 	 * failure case.
1541 	 * 2. fn is the root node in the table and we fail to add the first
1542 	 * default route to it.
1543 	 */
1544 	if (fn &&
1545 	    (!(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)) ||
1546 	     (fn->fn_flags & RTN_TL_ROOT &&
1547 	      !rcu_access_pointer(fn->leaf))))
1548 		fib6_repair_tree(info->nl_net, table, fn);
1549 	return err;
1550 }
1551 
1552 /*
1553  *	Routing tree lookup
1554  *
1555  */
1556 
1557 struct lookup_args {
1558 	int			offset;		/* key offset on fib6_info */
1559 	const struct in6_addr	*addr;		/* search key			*/
1560 };
1561 
1562 static struct fib6_node *fib6_node_lookup_1(struct fib6_node *root,
1563 					    struct lookup_args *args)
1564 {
1565 	struct fib6_node *fn;
1566 	__be32 dir;
1567 
1568 	if (unlikely(args->offset == 0))
1569 		return NULL;
1570 
1571 	/*
1572 	 *	Descend on a tree
1573 	 */
1574 
1575 	fn = root;
1576 
1577 	for (;;) {
1578 		struct fib6_node *next;
1579 
1580 		dir = addr_bit_set(args->addr, fn->fn_bit);
1581 
1582 		next = dir ? rcu_dereference(fn->right) :
1583 			     rcu_dereference(fn->left);
1584 
1585 		if (next) {
1586 			fn = next;
1587 			continue;
1588 		}
1589 		break;
1590 	}
1591 
1592 	while (fn) {
1593 		struct fib6_node *subtree = FIB6_SUBTREE(fn);
1594 
1595 		if (subtree || fn->fn_flags & RTN_RTINFO) {
1596 			struct fib6_info *leaf = rcu_dereference(fn->leaf);
1597 			struct rt6key *key;
1598 
1599 			if (!leaf)
1600 				goto backtrack;
1601 
1602 			key = (struct rt6key *) ((u8 *)leaf + args->offset);
1603 
1604 			if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1605 #ifdef CONFIG_IPV6_SUBTREES
1606 				if (subtree) {
1607 					struct fib6_node *sfn;
1608 					sfn = fib6_node_lookup_1(subtree,
1609 								 args + 1);
1610 					if (!sfn)
1611 						goto backtrack;
1612 					fn = sfn;
1613 				}
1614 #endif
1615 				if (fn->fn_flags & RTN_RTINFO)
1616 					return fn;
1617 			}
1618 		}
1619 backtrack:
1620 		if (fn->fn_flags & RTN_ROOT)
1621 			break;
1622 
1623 		fn = rcu_dereference(fn->parent);
1624 	}
1625 
1626 	return NULL;
1627 }
1628 
1629 /* called with rcu_read_lock() held
1630  */
1631 struct fib6_node *fib6_node_lookup(struct fib6_node *root,
1632 				   const struct in6_addr *daddr,
1633 				   const struct in6_addr *saddr)
1634 {
1635 	struct fib6_node *fn;
1636 	struct lookup_args args[] = {
1637 		{
1638 			.offset = offsetof(struct fib6_info, fib6_dst),
1639 			.addr = daddr,
1640 		},
1641 #ifdef CONFIG_IPV6_SUBTREES
1642 		{
1643 			.offset = offsetof(struct fib6_info, fib6_src),
1644 			.addr = saddr,
1645 		},
1646 #endif
1647 		{
1648 			.offset = 0,	/* sentinel */
1649 		}
1650 	};
1651 
1652 	fn = fib6_node_lookup_1(root, daddr ? args : args + 1);
1653 	if (!fn || fn->fn_flags & RTN_TL_ROOT)
1654 		fn = root;
1655 
1656 	return fn;
1657 }
1658 
1659 /*
1660  *	Get node with specified destination prefix (and source prefix,
1661  *	if subtrees are used)
1662  *	exact_match == true means we try to find fn with exact match of
1663  *	the passed in prefix addr
1664  *	exact_match == false means we try to find fn with longest prefix
1665  *	match of the passed in prefix addr. This is useful for finding fn
1666  *	for cached route as it will be stored in the exception table under
1667  *	the node with longest prefix length.
1668  */
1669 
1670 
1671 static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1672 				       const struct in6_addr *addr,
1673 				       int plen, int offset,
1674 				       bool exact_match)
1675 {
1676 	struct fib6_node *fn, *prev = NULL;
1677 
1678 	for (fn = root; fn ; ) {
1679 		struct fib6_info *leaf = rcu_dereference(fn->leaf);
1680 		struct rt6key *key;
1681 
1682 		/* This node is being deleted */
1683 		if (!leaf) {
1684 			if (plen <= fn->fn_bit)
1685 				goto out;
1686 			else
1687 				goto next;
1688 		}
1689 
1690 		key = (struct rt6key *)((u8 *)leaf + offset);
1691 
1692 		/*
1693 		 *	Prefix match
1694 		 */
1695 		if (plen < fn->fn_bit ||
1696 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1697 			goto out;
1698 
1699 		if (plen == fn->fn_bit)
1700 			return fn;
1701 
1702 		if (fn->fn_flags & RTN_RTINFO)
1703 			prev = fn;
1704 
1705 next:
1706 		/*
1707 		 *	We have more bits to go
1708 		 */
1709 		if (addr_bit_set(addr, fn->fn_bit))
1710 			fn = rcu_dereference(fn->right);
1711 		else
1712 			fn = rcu_dereference(fn->left);
1713 	}
1714 out:
1715 	if (exact_match)
1716 		return NULL;
1717 	else
1718 		return prev;
1719 }
1720 
1721 struct fib6_node *fib6_locate(struct fib6_node *root,
1722 			      const struct in6_addr *daddr, int dst_len,
1723 			      const struct in6_addr *saddr, int src_len,
1724 			      bool exact_match)
1725 {
1726 	struct fib6_node *fn;
1727 
1728 	fn = fib6_locate_1(root, daddr, dst_len,
1729 			   offsetof(struct fib6_info, fib6_dst),
1730 			   exact_match);
1731 
1732 #ifdef CONFIG_IPV6_SUBTREES
1733 	if (src_len) {
1734 		WARN_ON(saddr == NULL);
1735 		if (fn) {
1736 			struct fib6_node *subtree = FIB6_SUBTREE(fn);
1737 
1738 			if (subtree) {
1739 				fn = fib6_locate_1(subtree, saddr, src_len,
1740 					   offsetof(struct fib6_info, fib6_src),
1741 					   exact_match);
1742 			}
1743 		}
1744 	}
1745 #endif
1746 
1747 	if (fn && fn->fn_flags & RTN_RTINFO)
1748 		return fn;
1749 
1750 	return NULL;
1751 }
1752 
1753 
1754 /*
1755  *	Deletion
1756  *
1757  */
1758 
1759 static struct fib6_info *fib6_find_prefix(struct net *net,
1760 					 struct fib6_table *table,
1761 					 struct fib6_node *fn)
1762 {
1763 	struct fib6_node *child_left, *child_right;
1764 
1765 	if (fn->fn_flags & RTN_ROOT)
1766 		return net->ipv6.fib6_null_entry;
1767 
1768 	while (fn) {
1769 		child_left = rcu_dereference_protected(fn->left,
1770 				    lockdep_is_held(&table->tb6_lock));
1771 		child_right = rcu_dereference_protected(fn->right,
1772 				    lockdep_is_held(&table->tb6_lock));
1773 		if (child_left)
1774 			return rcu_dereference_protected(child_left->leaf,
1775 					lockdep_is_held(&table->tb6_lock));
1776 		if (child_right)
1777 			return rcu_dereference_protected(child_right->leaf,
1778 					lockdep_is_held(&table->tb6_lock));
1779 
1780 		fn = FIB6_SUBTREE(fn);
1781 	}
1782 	return NULL;
1783 }
1784 
1785 /*
1786  *	Called to trim the tree of intermediate nodes when possible. "fn"
1787  *	is the node we want to try and remove.
1788  *	Need to own table->tb6_lock
1789  */
1790 
1791 static struct fib6_node *fib6_repair_tree(struct net *net,
1792 					  struct fib6_table *table,
1793 					  struct fib6_node *fn)
1794 {
1795 	int children;
1796 	int nstate;
1797 	struct fib6_node *child;
1798 	struct fib6_walker *w;
1799 	int iter = 0;
1800 
1801 	/* Set fn->leaf to null_entry for root node. */
1802 	if (fn->fn_flags & RTN_TL_ROOT) {
1803 		rcu_assign_pointer(fn->leaf, net->ipv6.fib6_null_entry);
1804 		return fn;
1805 	}
1806 
1807 	for (;;) {
1808 		struct fib6_node *fn_r = rcu_dereference_protected(fn->right,
1809 					    lockdep_is_held(&table->tb6_lock));
1810 		struct fib6_node *fn_l = rcu_dereference_protected(fn->left,
1811 					    lockdep_is_held(&table->tb6_lock));
1812 		struct fib6_node *pn = rcu_dereference_protected(fn->parent,
1813 					    lockdep_is_held(&table->tb6_lock));
1814 		struct fib6_node *pn_r = rcu_dereference_protected(pn->right,
1815 					    lockdep_is_held(&table->tb6_lock));
1816 		struct fib6_node *pn_l = rcu_dereference_protected(pn->left,
1817 					    lockdep_is_held(&table->tb6_lock));
1818 		struct fib6_info *fn_leaf = rcu_dereference_protected(fn->leaf,
1819 					    lockdep_is_held(&table->tb6_lock));
1820 		struct fib6_info *pn_leaf = rcu_dereference_protected(pn->leaf,
1821 					    lockdep_is_held(&table->tb6_lock));
1822 		struct fib6_info *new_fn_leaf;
1823 
1824 		pr_debug("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1825 		iter++;
1826 
1827 		WARN_ON(fn->fn_flags & RTN_RTINFO);
1828 		WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1829 		WARN_ON(fn_leaf);
1830 
1831 		children = 0;
1832 		child = NULL;
1833 		if (fn_r) {
1834 			child = fn_r;
1835 			children |= 1;
1836 		}
1837 		if (fn_l) {
1838 			child = fn_l;
1839 			children |= 2;
1840 		}
1841 
1842 		if (children == 3 || FIB6_SUBTREE(fn)
1843 #ifdef CONFIG_IPV6_SUBTREES
1844 		    /* Subtree root (i.e. fn) may have one child */
1845 		    || (children && fn->fn_flags & RTN_ROOT)
1846 #endif
1847 		    ) {
1848 			new_fn_leaf = fib6_find_prefix(net, table, fn);
1849 #if RT6_DEBUG >= 2
1850 			if (!new_fn_leaf) {
1851 				WARN_ON(!new_fn_leaf);
1852 				new_fn_leaf = net->ipv6.fib6_null_entry;
1853 			}
1854 #endif
1855 			fib6_info_hold(new_fn_leaf);
1856 			rcu_assign_pointer(fn->leaf, new_fn_leaf);
1857 			return pn;
1858 		}
1859 
1860 #ifdef CONFIG_IPV6_SUBTREES
1861 		if (FIB6_SUBTREE(pn) == fn) {
1862 			WARN_ON(!(fn->fn_flags & RTN_ROOT));
1863 			RCU_INIT_POINTER(pn->subtree, NULL);
1864 			nstate = FWS_L;
1865 		} else {
1866 			WARN_ON(fn->fn_flags & RTN_ROOT);
1867 #endif
1868 			if (pn_r == fn)
1869 				rcu_assign_pointer(pn->right, child);
1870 			else if (pn_l == fn)
1871 				rcu_assign_pointer(pn->left, child);
1872 #if RT6_DEBUG >= 2
1873 			else
1874 				WARN_ON(1);
1875 #endif
1876 			if (child)
1877 				rcu_assign_pointer(child->parent, pn);
1878 			nstate = FWS_R;
1879 #ifdef CONFIG_IPV6_SUBTREES
1880 		}
1881 #endif
1882 
1883 		read_lock(&net->ipv6.fib6_walker_lock);
1884 		FOR_WALKERS(net, w) {
1885 			if (!child) {
1886 				if (w->node == fn) {
1887 					pr_debug("W %p adjusted by delnode 1, s=%d/%d\n",
1888 						 w, w->state, nstate);
1889 					w->node = pn;
1890 					w->state = nstate;
1891 				}
1892 			} else {
1893 				if (w->node == fn) {
1894 					w->node = child;
1895 					if (children&2) {
1896 						pr_debug("W %p adjusted by delnode 2, s=%d\n",
1897 							 w, w->state);
1898 						w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1899 					} else {
1900 						pr_debug("W %p adjusted by delnode 2, s=%d\n",
1901 							 w, w->state);
1902 						w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1903 					}
1904 				}
1905 			}
1906 		}
1907 		read_unlock(&net->ipv6.fib6_walker_lock);
1908 
1909 		node_free(net, fn);
1910 		if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1911 			return pn;
1912 
1913 		RCU_INIT_POINTER(pn->leaf, NULL);
1914 		fib6_info_release(pn_leaf);
1915 		fn = pn;
1916 	}
1917 }
1918 
1919 static void fib6_del_route(struct fib6_table *table, struct fib6_node *fn,
1920 			   struct fib6_info __rcu **rtp, struct nl_info *info)
1921 {
1922 	struct fib6_info *leaf, *replace_rt = NULL;
1923 	struct fib6_walker *w;
1924 	struct fib6_info *rt = rcu_dereference_protected(*rtp,
1925 				    lockdep_is_held(&table->tb6_lock));
1926 	struct net *net = info->nl_net;
1927 	bool notify_del = false;
1928 
1929 	/* If the deleted route is the first in the node and it is not part of
1930 	 * a multipath route, then we need to replace it with the next route
1931 	 * in the node, if exists.
1932 	 */
1933 	leaf = rcu_dereference_protected(fn->leaf,
1934 					 lockdep_is_held(&table->tb6_lock));
1935 	if (leaf == rt && !rt->fib6_nsiblings) {
1936 		if (rcu_access_pointer(rt->fib6_next))
1937 			replace_rt = rcu_dereference_protected(rt->fib6_next,
1938 					    lockdep_is_held(&table->tb6_lock));
1939 		else
1940 			notify_del = true;
1941 	}
1942 
1943 	/* Unlink it */
1944 	*rtp = rt->fib6_next;
1945 	rt->fib6_node = NULL;
1946 	net->ipv6.rt6_stats->fib_rt_entries--;
1947 	net->ipv6.rt6_stats->fib_discarded_routes++;
1948 
1949 	/* Reset round-robin state, if necessary */
1950 	if (rcu_access_pointer(fn->rr_ptr) == rt)
1951 		fn->rr_ptr = NULL;
1952 
1953 	/* Remove this entry from other siblings */
1954 	if (rt->fib6_nsiblings) {
1955 		struct fib6_info *sibling, *next_sibling;
1956 
1957 		/* The route is deleted from a multipath route. If this
1958 		 * multipath route is the first route in the node, then we need
1959 		 * to emit a delete notification. Otherwise, we need to skip
1960 		 * the notification.
1961 		 */
1962 		if (rt->fib6_metric == leaf->fib6_metric &&
1963 		    rt6_qualify_for_ecmp(leaf))
1964 			notify_del = true;
1965 		list_for_each_entry_safe(sibling, next_sibling,
1966 					 &rt->fib6_siblings, fib6_siblings)
1967 			sibling->fib6_nsiblings--;
1968 		rt->fib6_nsiblings = 0;
1969 		list_del_init(&rt->fib6_siblings);
1970 		rt6_multipath_rebalance(next_sibling);
1971 	}
1972 
1973 	/* Adjust walkers */
1974 	read_lock(&net->ipv6.fib6_walker_lock);
1975 	FOR_WALKERS(net, w) {
1976 		if (w->state == FWS_C && w->leaf == rt) {
1977 			pr_debug("walker %p adjusted by delroute\n", w);
1978 			w->leaf = rcu_dereference_protected(rt->fib6_next,
1979 					    lockdep_is_held(&table->tb6_lock));
1980 			if (!w->leaf)
1981 				w->state = FWS_U;
1982 		}
1983 	}
1984 	read_unlock(&net->ipv6.fib6_walker_lock);
1985 
1986 	/* If it was last route, call fib6_repair_tree() to:
1987 	 * 1. For root node, put back null_entry as how the table was created.
1988 	 * 2. For other nodes, expunge its radix tree node.
1989 	 */
1990 	if (!rcu_access_pointer(fn->leaf)) {
1991 		if (!(fn->fn_flags & RTN_TL_ROOT)) {
1992 			fn->fn_flags &= ~RTN_RTINFO;
1993 			net->ipv6.rt6_stats->fib_route_nodes--;
1994 		}
1995 		fn = fib6_repair_tree(net, table, fn);
1996 	}
1997 
1998 	fib6_purge_rt(rt, fn, net);
1999 
2000 	if (!info->skip_notify_kernel) {
2001 		if (notify_del)
2002 			call_fib6_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
2003 						  rt, NULL);
2004 		else if (replace_rt)
2005 			call_fib6_entry_notifiers_replace(net, replace_rt);
2006 	}
2007 	if (!info->skip_notify)
2008 		inet6_rt_notify(RTM_DELROUTE, rt, info, 0);
2009 
2010 	fib6_info_release(rt);
2011 }
2012 
2013 /* Need to own table->tb6_lock */
2014 int fib6_del(struct fib6_info *rt, struct nl_info *info)
2015 {
2016 	struct net *net = info->nl_net;
2017 	struct fib6_info __rcu **rtp;
2018 	struct fib6_info __rcu **rtp_next;
2019 	struct fib6_table *table;
2020 	struct fib6_node *fn;
2021 
2022 	if (rt == net->ipv6.fib6_null_entry)
2023 		return -ENOENT;
2024 
2025 	table = rt->fib6_table;
2026 	fn = rcu_dereference_protected(rt->fib6_node,
2027 				       lockdep_is_held(&table->tb6_lock));
2028 	if (!fn)
2029 		return -ENOENT;
2030 
2031 	WARN_ON(!(fn->fn_flags & RTN_RTINFO));
2032 
2033 	/*
2034 	 *	Walk the leaf entries looking for ourself
2035 	 */
2036 
2037 	for (rtp = &fn->leaf; *rtp; rtp = rtp_next) {
2038 		struct fib6_info *cur = rcu_dereference_protected(*rtp,
2039 					lockdep_is_held(&table->tb6_lock));
2040 		if (rt == cur) {
2041 			if (fib6_requires_src(cur))
2042 				fib6_routes_require_src_dec(info->nl_net);
2043 			fib6_del_route(table, fn, rtp, info);
2044 			return 0;
2045 		}
2046 		rtp_next = &cur->fib6_next;
2047 	}
2048 	return -ENOENT;
2049 }
2050 
2051 /*
2052  *	Tree traversal function.
2053  *
2054  *	Certainly, it is not interrupt safe.
2055  *	However, it is internally reenterable wrt itself and fib6_add/fib6_del.
2056  *	It means, that we can modify tree during walking
2057  *	and use this function for garbage collection, clone pruning,
2058  *	cleaning tree when a device goes down etc. etc.
2059  *
2060  *	It guarantees that every node will be traversed,
2061  *	and that it will be traversed only once.
2062  *
2063  *	Callback function w->func may return:
2064  *	0 -> continue walking.
2065  *	positive value -> walking is suspended (used by tree dumps,
2066  *	and probably by gc, if it will be split to several slices)
2067  *	negative value -> terminate walking.
2068  *
2069  *	The function itself returns:
2070  *	0   -> walk is complete.
2071  *	>0  -> walk is incomplete (i.e. suspended)
2072  *	<0  -> walk is terminated by an error.
2073  *
2074  *	This function is called with tb6_lock held.
2075  */
2076 
2077 static int fib6_walk_continue(struct fib6_walker *w)
2078 {
2079 	struct fib6_node *fn, *pn, *left, *right;
2080 
2081 	/* w->root should always be table->tb6_root */
2082 	WARN_ON_ONCE(!(w->root->fn_flags & RTN_TL_ROOT));
2083 
2084 	for (;;) {
2085 		fn = w->node;
2086 		if (!fn)
2087 			return 0;
2088 
2089 		switch (w->state) {
2090 #ifdef CONFIG_IPV6_SUBTREES
2091 		case FWS_S:
2092 			if (FIB6_SUBTREE(fn)) {
2093 				w->node = FIB6_SUBTREE(fn);
2094 				continue;
2095 			}
2096 			w->state = FWS_L;
2097 			fallthrough;
2098 #endif
2099 		case FWS_L:
2100 			left = rcu_dereference_protected(fn->left, 1);
2101 			if (left) {
2102 				w->node = left;
2103 				w->state = FWS_INIT;
2104 				continue;
2105 			}
2106 			w->state = FWS_R;
2107 			fallthrough;
2108 		case FWS_R:
2109 			right = rcu_dereference_protected(fn->right, 1);
2110 			if (right) {
2111 				w->node = right;
2112 				w->state = FWS_INIT;
2113 				continue;
2114 			}
2115 			w->state = FWS_C;
2116 			w->leaf = rcu_dereference_protected(fn->leaf, 1);
2117 			fallthrough;
2118 		case FWS_C:
2119 			if (w->leaf && fn->fn_flags & RTN_RTINFO) {
2120 				int err;
2121 
2122 				if (w->skip) {
2123 					w->skip--;
2124 					goto skip;
2125 				}
2126 
2127 				err = w->func(w);
2128 				if (err)
2129 					return err;
2130 
2131 				w->count++;
2132 				continue;
2133 			}
2134 skip:
2135 			w->state = FWS_U;
2136 			fallthrough;
2137 		case FWS_U:
2138 			if (fn == w->root)
2139 				return 0;
2140 			pn = rcu_dereference_protected(fn->parent, 1);
2141 			left = rcu_dereference_protected(pn->left, 1);
2142 			right = rcu_dereference_protected(pn->right, 1);
2143 			w->node = pn;
2144 #ifdef CONFIG_IPV6_SUBTREES
2145 			if (FIB6_SUBTREE(pn) == fn) {
2146 				WARN_ON(!(fn->fn_flags & RTN_ROOT));
2147 				w->state = FWS_L;
2148 				continue;
2149 			}
2150 #endif
2151 			if (left == fn) {
2152 				w->state = FWS_R;
2153 				continue;
2154 			}
2155 			if (right == fn) {
2156 				w->state = FWS_C;
2157 				w->leaf = rcu_dereference_protected(w->node->leaf, 1);
2158 				continue;
2159 			}
2160 #if RT6_DEBUG >= 2
2161 			WARN_ON(1);
2162 #endif
2163 		}
2164 	}
2165 }
2166 
2167 static int fib6_walk(struct net *net, struct fib6_walker *w)
2168 {
2169 	int res;
2170 
2171 	w->state = FWS_INIT;
2172 	w->node = w->root;
2173 
2174 	fib6_walker_link(net, w);
2175 	res = fib6_walk_continue(w);
2176 	if (res <= 0)
2177 		fib6_walker_unlink(net, w);
2178 	return res;
2179 }
2180 
2181 static int fib6_clean_node(struct fib6_walker *w)
2182 {
2183 	int res;
2184 	struct fib6_info *rt;
2185 	struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w);
2186 	struct nl_info info = {
2187 		.nl_net = c->net,
2188 		.skip_notify = c->skip_notify,
2189 	};
2190 
2191 	if (c->sernum != FIB6_NO_SERNUM_CHANGE &&
2192 	    READ_ONCE(w->node->fn_sernum) != c->sernum)
2193 		WRITE_ONCE(w->node->fn_sernum, c->sernum);
2194 
2195 	if (!c->func) {
2196 		WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE);
2197 		w->leaf = NULL;
2198 		return 0;
2199 	}
2200 
2201 	for_each_fib6_walker_rt(w) {
2202 		res = c->func(rt, c->arg);
2203 		if (res == -1) {
2204 			w->leaf = rt;
2205 			res = fib6_del(rt, &info);
2206 			if (res) {
2207 #if RT6_DEBUG >= 2
2208 				pr_debug("%s: del failed: rt=%p@%p err=%d\n",
2209 					 __func__, rt,
2210 					 rcu_access_pointer(rt->fib6_node),
2211 					 res);
2212 #endif
2213 				continue;
2214 			}
2215 			return 0;
2216 		} else if (res == -2) {
2217 			if (WARN_ON(!rt->fib6_nsiblings))
2218 				continue;
2219 			rt = list_last_entry(&rt->fib6_siblings,
2220 					     struct fib6_info, fib6_siblings);
2221 			continue;
2222 		}
2223 		WARN_ON(res != 0);
2224 	}
2225 	w->leaf = rt;
2226 	return 0;
2227 }
2228 
2229 /*
2230  *	Convenient frontend to tree walker.
2231  *
2232  *	func is called on each route.
2233  *		It may return -2 -> skip multipath route.
2234  *			      -1 -> delete this route.
2235  *		              0  -> continue walking
2236  */
2237 
2238 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
2239 			    int (*func)(struct fib6_info *, void *arg),
2240 			    int sernum, void *arg, bool skip_notify)
2241 {
2242 	struct fib6_cleaner c;
2243 
2244 	c.w.root = root;
2245 	c.w.func = fib6_clean_node;
2246 	c.w.count = 0;
2247 	c.w.skip = 0;
2248 	c.w.skip_in_node = 0;
2249 	c.func = func;
2250 	c.sernum = sernum;
2251 	c.arg = arg;
2252 	c.net = net;
2253 	c.skip_notify = skip_notify;
2254 
2255 	fib6_walk(net, &c.w);
2256 }
2257 
2258 static void __fib6_clean_all(struct net *net,
2259 			     int (*func)(struct fib6_info *, void *),
2260 			     int sernum, void *arg, bool skip_notify)
2261 {
2262 	struct fib6_table *table;
2263 	struct hlist_head *head;
2264 	unsigned int h;
2265 
2266 	rcu_read_lock();
2267 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
2268 		head = &net->ipv6.fib_table_hash[h];
2269 		hlist_for_each_entry_rcu(table, head, tb6_hlist) {
2270 			spin_lock_bh(&table->tb6_lock);
2271 			fib6_clean_tree(net, &table->tb6_root,
2272 					func, sernum, arg, skip_notify);
2273 			spin_unlock_bh(&table->tb6_lock);
2274 		}
2275 	}
2276 	rcu_read_unlock();
2277 }
2278 
2279 void fib6_clean_all(struct net *net, int (*func)(struct fib6_info *, void *),
2280 		    void *arg)
2281 {
2282 	__fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, false);
2283 }
2284 
2285 void fib6_clean_all_skip_notify(struct net *net,
2286 				int (*func)(struct fib6_info *, void *),
2287 				void *arg)
2288 {
2289 	__fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, true);
2290 }
2291 
2292 static void fib6_flush_trees(struct net *net)
2293 {
2294 	int new_sernum = fib6_new_sernum(net);
2295 
2296 	__fib6_clean_all(net, NULL, new_sernum, NULL, false);
2297 }
2298 
2299 /*
2300  *	Garbage collection
2301  */
2302 
2303 static int fib6_age(struct fib6_info *rt, struct fib6_gc_args *gc_args)
2304 {
2305 	unsigned long now = jiffies;
2306 
2307 	/*
2308 	 *	check addrconf expiration here.
2309 	 *	Routes are expired even if they are in use.
2310 	 */
2311 
2312 	if (rt->fib6_flags & RTF_EXPIRES && rt->expires) {
2313 		if (time_after(now, rt->expires)) {
2314 			pr_debug("expiring %p\n", rt);
2315 			return -1;
2316 		}
2317 		gc_args->more++;
2318 	}
2319 
2320 	/*	Also age clones in the exception table.
2321 	 *	Note, that clones are aged out
2322 	 *	only if they are not in use now.
2323 	 */
2324 	rt6_age_exceptions(rt, gc_args, now);
2325 
2326 	return 0;
2327 }
2328 
2329 static void fib6_gc_table(struct net *net,
2330 			  struct fib6_table *tb6,
2331 			  struct fib6_gc_args *gc_args)
2332 {
2333 	struct fib6_info *rt;
2334 	struct hlist_node *n;
2335 	struct nl_info info = {
2336 		.nl_net = net,
2337 		.skip_notify = false,
2338 	};
2339 
2340 	hlist_for_each_entry_safe(rt, n, &tb6->tb6_gc_hlist, gc_link)
2341 		if (fib6_age(rt, gc_args) == -1)
2342 			fib6_del(rt, &info);
2343 }
2344 
2345 static void fib6_gc_all(struct net *net, struct fib6_gc_args *gc_args)
2346 {
2347 	struct fib6_table *table;
2348 	struct hlist_head *head;
2349 	unsigned int h;
2350 
2351 	rcu_read_lock();
2352 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
2353 		head = &net->ipv6.fib_table_hash[h];
2354 		hlist_for_each_entry_rcu(table, head, tb6_hlist) {
2355 			spin_lock_bh(&table->tb6_lock);
2356 
2357 			fib6_gc_table(net, table, gc_args);
2358 
2359 			spin_unlock_bh(&table->tb6_lock);
2360 		}
2361 	}
2362 	rcu_read_unlock();
2363 }
2364 
2365 void fib6_run_gc(unsigned long expires, struct net *net, bool force)
2366 {
2367 	struct fib6_gc_args gc_args;
2368 	unsigned long now;
2369 
2370 	if (force) {
2371 		spin_lock_bh(&net->ipv6.fib6_gc_lock);
2372 	} else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) {
2373 		mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
2374 		return;
2375 	}
2376 	gc_args.timeout = expires ? (int)expires :
2377 			  net->ipv6.sysctl.ip6_rt_gc_interval;
2378 	gc_args.more = 0;
2379 
2380 	fib6_gc_all(net, &gc_args);
2381 	now = jiffies;
2382 	net->ipv6.ip6_rt_last_gc = now;
2383 
2384 	if (gc_args.more)
2385 		mod_timer(&net->ipv6.ip6_fib_timer,
2386 			  round_jiffies(now
2387 					+ net->ipv6.sysctl.ip6_rt_gc_interval));
2388 	else
2389 		del_timer(&net->ipv6.ip6_fib_timer);
2390 	spin_unlock_bh(&net->ipv6.fib6_gc_lock);
2391 }
2392 
2393 static void fib6_gc_timer_cb(struct timer_list *t)
2394 {
2395 	struct net *arg = from_timer(arg, t, ipv6.ip6_fib_timer);
2396 
2397 	fib6_run_gc(0, arg, true);
2398 }
2399 
2400 static int __net_init fib6_net_init(struct net *net)
2401 {
2402 	size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
2403 	int err;
2404 
2405 	err = fib6_notifier_init(net);
2406 	if (err)
2407 		return err;
2408 
2409 	/* Default to 3-tuple */
2410 	net->ipv6.sysctl.multipath_hash_fields =
2411 		FIB_MULTIPATH_HASH_FIELD_DEFAULT_MASK;
2412 
2413 	spin_lock_init(&net->ipv6.fib6_gc_lock);
2414 	rwlock_init(&net->ipv6.fib6_walker_lock);
2415 	INIT_LIST_HEAD(&net->ipv6.fib6_walkers);
2416 	timer_setup(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, 0);
2417 
2418 	net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
2419 	if (!net->ipv6.rt6_stats)
2420 		goto out_notifier;
2421 
2422 	/* Avoid false sharing : Use at least a full cache line */
2423 	size = max_t(size_t, size, L1_CACHE_BYTES);
2424 
2425 	net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
2426 	if (!net->ipv6.fib_table_hash)
2427 		goto out_rt6_stats;
2428 
2429 	net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
2430 					  GFP_KERNEL);
2431 	if (!net->ipv6.fib6_main_tbl)
2432 		goto out_fib_table_hash;
2433 
2434 	net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
2435 	rcu_assign_pointer(net->ipv6.fib6_main_tbl->tb6_root.leaf,
2436 			   net->ipv6.fib6_null_entry);
2437 	net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
2438 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2439 	inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
2440 	INIT_HLIST_HEAD(&net->ipv6.fib6_main_tbl->tb6_gc_hlist);
2441 
2442 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2443 	net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
2444 					   GFP_KERNEL);
2445 	if (!net->ipv6.fib6_local_tbl)
2446 		goto out_fib6_main_tbl;
2447 	net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
2448 	rcu_assign_pointer(net->ipv6.fib6_local_tbl->tb6_root.leaf,
2449 			   net->ipv6.fib6_null_entry);
2450 	net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
2451 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2452 	inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
2453 	INIT_HLIST_HEAD(&net->ipv6.fib6_local_tbl->tb6_gc_hlist);
2454 #endif
2455 	fib6_tables_init(net);
2456 
2457 	return 0;
2458 
2459 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2460 out_fib6_main_tbl:
2461 	kfree(net->ipv6.fib6_main_tbl);
2462 #endif
2463 out_fib_table_hash:
2464 	kfree(net->ipv6.fib_table_hash);
2465 out_rt6_stats:
2466 	kfree(net->ipv6.rt6_stats);
2467 out_notifier:
2468 	fib6_notifier_exit(net);
2469 	return -ENOMEM;
2470 }
2471 
2472 static void fib6_net_exit(struct net *net)
2473 {
2474 	unsigned int i;
2475 
2476 	del_timer_sync(&net->ipv6.ip6_fib_timer);
2477 
2478 	for (i = 0; i < FIB6_TABLE_HASHSZ; i++) {
2479 		struct hlist_head *head = &net->ipv6.fib_table_hash[i];
2480 		struct hlist_node *tmp;
2481 		struct fib6_table *tb;
2482 
2483 		hlist_for_each_entry_safe(tb, tmp, head, tb6_hlist) {
2484 			hlist_del(&tb->tb6_hlist);
2485 			fib6_free_table(tb);
2486 		}
2487 	}
2488 
2489 	kfree(net->ipv6.fib_table_hash);
2490 	kfree(net->ipv6.rt6_stats);
2491 	fib6_notifier_exit(net);
2492 }
2493 
2494 static struct pernet_operations fib6_net_ops = {
2495 	.init = fib6_net_init,
2496 	.exit = fib6_net_exit,
2497 };
2498 
2499 int __init fib6_init(void)
2500 {
2501 	int ret = -ENOMEM;
2502 
2503 	fib6_node_kmem = KMEM_CACHE(fib6_node,
2504 				    SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT);
2505 	if (!fib6_node_kmem)
2506 		goto out;
2507 
2508 	ret = register_pernet_subsys(&fib6_net_ops);
2509 	if (ret)
2510 		goto out_kmem_cache_create;
2511 
2512 	ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_GETROUTE, NULL,
2513 				   inet6_dump_fib, RTNL_FLAG_DUMP_UNLOCKED);
2514 	if (ret)
2515 		goto out_unregister_subsys;
2516 
2517 	__fib6_flush_trees = fib6_flush_trees;
2518 out:
2519 	return ret;
2520 
2521 out_unregister_subsys:
2522 	unregister_pernet_subsys(&fib6_net_ops);
2523 out_kmem_cache_create:
2524 	kmem_cache_destroy(fib6_node_kmem);
2525 	goto out;
2526 }
2527 
2528 void fib6_gc_cleanup(void)
2529 {
2530 	unregister_pernet_subsys(&fib6_net_ops);
2531 	kmem_cache_destroy(fib6_node_kmem);
2532 }
2533 
2534 #ifdef CONFIG_PROC_FS
2535 static int ipv6_route_native_seq_show(struct seq_file *seq, void *v)
2536 {
2537 	struct fib6_info *rt = v;
2538 	struct ipv6_route_iter *iter = seq->private;
2539 	struct fib6_nh *fib6_nh = rt->fib6_nh;
2540 	unsigned int flags = rt->fib6_flags;
2541 	const struct net_device *dev;
2542 
2543 	if (rt->nh)
2544 		fib6_nh = nexthop_fib6_nh(rt->nh);
2545 
2546 	seq_printf(seq, "%pi6 %02x ", &rt->fib6_dst.addr, rt->fib6_dst.plen);
2547 
2548 #ifdef CONFIG_IPV6_SUBTREES
2549 	seq_printf(seq, "%pi6 %02x ", &rt->fib6_src.addr, rt->fib6_src.plen);
2550 #else
2551 	seq_puts(seq, "00000000000000000000000000000000 00 ");
2552 #endif
2553 	if (fib6_nh->fib_nh_gw_family) {
2554 		flags |= RTF_GATEWAY;
2555 		seq_printf(seq, "%pi6", &fib6_nh->fib_nh_gw6);
2556 	} else {
2557 		seq_puts(seq, "00000000000000000000000000000000");
2558 	}
2559 
2560 	dev = fib6_nh->fib_nh_dev;
2561 	seq_printf(seq, " %08x %08x %08x %08x %8s\n",
2562 		   rt->fib6_metric, refcount_read(&rt->fib6_ref), 0,
2563 		   flags, dev ? dev->name : "");
2564 	iter->w.leaf = NULL;
2565 	return 0;
2566 }
2567 
2568 static int ipv6_route_yield(struct fib6_walker *w)
2569 {
2570 	struct ipv6_route_iter *iter = w->args;
2571 
2572 	if (!iter->skip)
2573 		return 1;
2574 
2575 	do {
2576 		iter->w.leaf = rcu_dereference_protected(
2577 				iter->w.leaf->fib6_next,
2578 				lockdep_is_held(&iter->tbl->tb6_lock));
2579 		iter->skip--;
2580 		if (!iter->skip && iter->w.leaf)
2581 			return 1;
2582 	} while (iter->w.leaf);
2583 
2584 	return 0;
2585 }
2586 
2587 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter,
2588 				      struct net *net)
2589 {
2590 	memset(&iter->w, 0, sizeof(iter->w));
2591 	iter->w.func = ipv6_route_yield;
2592 	iter->w.root = &iter->tbl->tb6_root;
2593 	iter->w.state = FWS_INIT;
2594 	iter->w.node = iter->w.root;
2595 	iter->w.args = iter;
2596 	iter->sernum = READ_ONCE(iter->w.root->fn_sernum);
2597 	INIT_LIST_HEAD(&iter->w.lh);
2598 	fib6_walker_link(net, &iter->w);
2599 }
2600 
2601 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
2602 						    struct net *net)
2603 {
2604 	unsigned int h;
2605 	struct hlist_node *node;
2606 
2607 	if (tbl) {
2608 		h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
2609 		node = rcu_dereference(hlist_next_rcu(&tbl->tb6_hlist));
2610 	} else {
2611 		h = 0;
2612 		node = NULL;
2613 	}
2614 
2615 	while (!node && h < FIB6_TABLE_HASHSZ) {
2616 		node = rcu_dereference(
2617 			hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
2618 	}
2619 	return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
2620 }
2621 
2622 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
2623 {
2624 	int sernum = READ_ONCE(iter->w.root->fn_sernum);
2625 
2626 	if (iter->sernum != sernum) {
2627 		iter->sernum = sernum;
2628 		iter->w.state = FWS_INIT;
2629 		iter->w.node = iter->w.root;
2630 		WARN_ON(iter->w.skip);
2631 		iter->w.skip = iter->w.count;
2632 	}
2633 }
2634 
2635 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2636 {
2637 	int r;
2638 	struct fib6_info *n;
2639 	struct net *net = seq_file_net(seq);
2640 	struct ipv6_route_iter *iter = seq->private;
2641 
2642 	++(*pos);
2643 	if (!v)
2644 		goto iter_table;
2645 
2646 	n = rcu_dereference(((struct fib6_info *)v)->fib6_next);
2647 	if (n)
2648 		return n;
2649 
2650 iter_table:
2651 	ipv6_route_check_sernum(iter);
2652 	spin_lock_bh(&iter->tbl->tb6_lock);
2653 	r = fib6_walk_continue(&iter->w);
2654 	spin_unlock_bh(&iter->tbl->tb6_lock);
2655 	if (r > 0) {
2656 		return iter->w.leaf;
2657 	} else if (r < 0) {
2658 		fib6_walker_unlink(net, &iter->w);
2659 		return NULL;
2660 	}
2661 	fib6_walker_unlink(net, &iter->w);
2662 
2663 	iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
2664 	if (!iter->tbl)
2665 		return NULL;
2666 
2667 	ipv6_route_seq_setup_walk(iter, net);
2668 	goto iter_table;
2669 }
2670 
2671 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
2672 	__acquires(RCU)
2673 {
2674 	struct net *net = seq_file_net(seq);
2675 	struct ipv6_route_iter *iter = seq->private;
2676 
2677 	rcu_read_lock();
2678 	iter->tbl = ipv6_route_seq_next_table(NULL, net);
2679 	iter->skip = *pos;
2680 
2681 	if (iter->tbl) {
2682 		loff_t p = 0;
2683 
2684 		ipv6_route_seq_setup_walk(iter, net);
2685 		return ipv6_route_seq_next(seq, NULL, &p);
2686 	} else {
2687 		return NULL;
2688 	}
2689 }
2690 
2691 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
2692 {
2693 	struct fib6_walker *w = &iter->w;
2694 	return w->node && !(w->state == FWS_U && w->node == w->root);
2695 }
2696 
2697 static void ipv6_route_native_seq_stop(struct seq_file *seq, void *v)
2698 	__releases(RCU)
2699 {
2700 	struct net *net = seq_file_net(seq);
2701 	struct ipv6_route_iter *iter = seq->private;
2702 
2703 	if (ipv6_route_iter_active(iter))
2704 		fib6_walker_unlink(net, &iter->w);
2705 
2706 	rcu_read_unlock();
2707 }
2708 
2709 #if IS_BUILTIN(CONFIG_IPV6) && defined(CONFIG_BPF_SYSCALL)
2710 static int ipv6_route_prog_seq_show(struct bpf_prog *prog,
2711 				    struct bpf_iter_meta *meta,
2712 				    void *v)
2713 {
2714 	struct bpf_iter__ipv6_route ctx;
2715 
2716 	ctx.meta = meta;
2717 	ctx.rt = v;
2718 	return bpf_iter_run_prog(prog, &ctx);
2719 }
2720 
2721 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
2722 {
2723 	struct ipv6_route_iter *iter = seq->private;
2724 	struct bpf_iter_meta meta;
2725 	struct bpf_prog *prog;
2726 	int ret;
2727 
2728 	meta.seq = seq;
2729 	prog = bpf_iter_get_info(&meta, false);
2730 	if (!prog)
2731 		return ipv6_route_native_seq_show(seq, v);
2732 
2733 	ret = ipv6_route_prog_seq_show(prog, &meta, v);
2734 	iter->w.leaf = NULL;
2735 
2736 	return ret;
2737 }
2738 
2739 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2740 {
2741 	struct bpf_iter_meta meta;
2742 	struct bpf_prog *prog;
2743 
2744 	if (!v) {
2745 		meta.seq = seq;
2746 		prog = bpf_iter_get_info(&meta, true);
2747 		if (prog)
2748 			(void)ipv6_route_prog_seq_show(prog, &meta, v);
2749 	}
2750 
2751 	ipv6_route_native_seq_stop(seq, v);
2752 }
2753 #else
2754 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
2755 {
2756 	return ipv6_route_native_seq_show(seq, v);
2757 }
2758 
2759 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2760 {
2761 	ipv6_route_native_seq_stop(seq, v);
2762 }
2763 #endif
2764 
2765 const struct seq_operations ipv6_route_seq_ops = {
2766 	.start	= ipv6_route_seq_start,
2767 	.next	= ipv6_route_seq_next,
2768 	.stop	= ipv6_route_seq_stop,
2769 	.show	= ipv6_route_seq_show
2770 };
2771 #endif /* CONFIG_PROC_FS */
2772