1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Linux INET6 implementation 4 * Forwarding Information Database 5 * 6 * Authors: 7 * Pedro Roque <roque@di.fc.ul.pt> 8 * 9 * Changes: 10 * Yuji SEKIYA @USAGI: Support default route on router node; 11 * remove ip6_null_entry from the top of 12 * routing table. 13 * Ville Nuorvala: Fixed routing subtrees. 14 */ 15 16 #define pr_fmt(fmt) "IPv6: " fmt 17 18 #include <linux/bpf.h> 19 #include <linux/errno.h> 20 #include <linux/types.h> 21 #include <linux/net.h> 22 #include <linux/route.h> 23 #include <linux/netdevice.h> 24 #include <linux/in6.h> 25 #include <linux/init.h> 26 #include <linux/list.h> 27 #include <linux/slab.h> 28 29 #include <net/ip.h> 30 #include <net/ipv6.h> 31 #include <net/ndisc.h> 32 #include <net/addrconf.h> 33 #include <net/lwtunnel.h> 34 #include <net/fib_notifier.h> 35 36 #include <net/ip_fib.h> 37 #include <net/ip6_fib.h> 38 #include <net/ip6_route.h> 39 40 static struct kmem_cache *fib6_node_kmem __read_mostly; 41 42 struct fib6_cleaner { 43 struct fib6_walker w; 44 struct net *net; 45 int (*func)(struct fib6_info *, void *arg); 46 int sernum; 47 void *arg; 48 bool skip_notify; 49 }; 50 51 #ifdef CONFIG_IPV6_SUBTREES 52 #define FWS_INIT FWS_S 53 #else 54 #define FWS_INIT FWS_L 55 #endif 56 57 static struct fib6_info *fib6_find_prefix(struct net *net, 58 struct fib6_table *table, 59 struct fib6_node *fn); 60 static struct fib6_node *fib6_repair_tree(struct net *net, 61 struct fib6_table *table, 62 struct fib6_node *fn); 63 static int fib6_walk(struct net *net, struct fib6_walker *w); 64 static int fib6_walk_continue(struct fib6_walker *w); 65 66 /* 67 * A routing update causes an increase of the serial number on the 68 * affected subtree. This allows for cached routes to be asynchronously 69 * tested when modifications are made to the destination cache as a 70 * result of redirects, path MTU changes, etc. 71 */ 72 73 static void fib6_gc_timer_cb(struct timer_list *t); 74 75 #define FOR_WALKERS(net, w) \ 76 list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh) 77 78 static void fib6_walker_link(struct net *net, struct fib6_walker *w) 79 { 80 write_lock_bh(&net->ipv6.fib6_walker_lock); 81 list_add(&w->lh, &net->ipv6.fib6_walkers); 82 write_unlock_bh(&net->ipv6.fib6_walker_lock); 83 } 84 85 static void fib6_walker_unlink(struct net *net, struct fib6_walker *w) 86 { 87 write_lock_bh(&net->ipv6.fib6_walker_lock); 88 list_del(&w->lh); 89 write_unlock_bh(&net->ipv6.fib6_walker_lock); 90 } 91 92 static int fib6_new_sernum(struct net *net) 93 { 94 int new, old = atomic_read(&net->ipv6.fib6_sernum); 95 96 do { 97 new = old < INT_MAX ? old + 1 : 1; 98 } while (!atomic_try_cmpxchg(&net->ipv6.fib6_sernum, &old, new)); 99 100 return new; 101 } 102 103 enum { 104 FIB6_NO_SERNUM_CHANGE = 0, 105 }; 106 107 void fib6_update_sernum(struct net *net, struct fib6_info *f6i) 108 { 109 struct fib6_node *fn; 110 111 fn = rcu_dereference_protected(f6i->fib6_node, 112 lockdep_is_held(&f6i->fib6_table->tb6_lock)); 113 if (fn) 114 WRITE_ONCE(fn->fn_sernum, fib6_new_sernum(net)); 115 } 116 117 /* 118 * Auxiliary address test functions for the radix tree. 119 * 120 * These assume a 32bit processor (although it will work on 121 * 64bit processors) 122 */ 123 124 /* 125 * test bit 126 */ 127 #if defined(__LITTLE_ENDIAN) 128 # define BITOP_BE32_SWIZZLE (0x1F & ~7) 129 #else 130 # define BITOP_BE32_SWIZZLE 0 131 #endif 132 133 static __be32 addr_bit_set(const void *token, int fn_bit) 134 { 135 const __be32 *addr = token; 136 /* 137 * Here, 138 * 1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f) 139 * is optimized version of 140 * htonl(1 << ((~fn_bit)&0x1F)) 141 * See include/asm-generic/bitops/le.h. 142 */ 143 return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) & 144 addr[fn_bit >> 5]; 145 } 146 147 struct fib6_info *fib6_info_alloc(gfp_t gfp_flags, bool with_fib6_nh) 148 { 149 struct fib6_info *f6i; 150 size_t sz = sizeof(*f6i); 151 152 if (with_fib6_nh) 153 sz += sizeof(struct fib6_nh); 154 155 f6i = kzalloc(sz, gfp_flags); 156 if (!f6i) 157 return NULL; 158 159 /* fib6_siblings is a union with nh_list, so this initializes both */ 160 INIT_LIST_HEAD(&f6i->fib6_siblings); 161 refcount_set(&f6i->fib6_ref, 1); 162 163 INIT_HLIST_NODE(&f6i->gc_link); 164 165 return f6i; 166 } 167 168 void fib6_info_destroy_rcu(struct rcu_head *head) 169 { 170 struct fib6_info *f6i = container_of(head, struct fib6_info, rcu); 171 172 WARN_ON(f6i->fib6_node); 173 174 if (f6i->nh) 175 nexthop_put(f6i->nh); 176 else 177 fib6_nh_release(f6i->fib6_nh); 178 179 ip_fib_metrics_put(f6i->fib6_metrics); 180 kfree(f6i); 181 } 182 EXPORT_SYMBOL_GPL(fib6_info_destroy_rcu); 183 184 static struct fib6_node *node_alloc(struct net *net) 185 { 186 struct fib6_node *fn; 187 188 fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC); 189 if (fn) 190 net->ipv6.rt6_stats->fib_nodes++; 191 192 return fn; 193 } 194 195 static void node_free_immediate(struct net *net, struct fib6_node *fn) 196 { 197 kmem_cache_free(fib6_node_kmem, fn); 198 net->ipv6.rt6_stats->fib_nodes--; 199 } 200 201 static void node_free_rcu(struct rcu_head *head) 202 { 203 struct fib6_node *fn = container_of(head, struct fib6_node, rcu); 204 205 kmem_cache_free(fib6_node_kmem, fn); 206 } 207 208 static void node_free(struct net *net, struct fib6_node *fn) 209 { 210 call_rcu(&fn->rcu, node_free_rcu); 211 net->ipv6.rt6_stats->fib_nodes--; 212 } 213 214 static void fib6_free_table(struct fib6_table *table) 215 { 216 inetpeer_invalidate_tree(&table->tb6_peers); 217 kfree(table); 218 } 219 220 static void fib6_link_table(struct net *net, struct fib6_table *tb) 221 { 222 unsigned int h; 223 224 /* 225 * Initialize table lock at a single place to give lockdep a key, 226 * tables aren't visible prior to being linked to the list. 227 */ 228 spin_lock_init(&tb->tb6_lock); 229 h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1); 230 231 /* 232 * No protection necessary, this is the only list mutatation 233 * operation, tables never disappear once they exist. 234 */ 235 hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]); 236 } 237 238 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 239 240 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id) 241 { 242 struct fib6_table *table; 243 244 table = kzalloc(sizeof(*table), GFP_ATOMIC); 245 if (table) { 246 table->tb6_id = id; 247 rcu_assign_pointer(table->tb6_root.leaf, 248 net->ipv6.fib6_null_entry); 249 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO; 250 inet_peer_base_init(&table->tb6_peers); 251 INIT_HLIST_HEAD(&table->tb6_gc_hlist); 252 } 253 254 return table; 255 } 256 257 struct fib6_table *fib6_new_table(struct net *net, u32 id) 258 { 259 struct fib6_table *tb; 260 261 if (id == 0) 262 id = RT6_TABLE_MAIN; 263 tb = fib6_get_table(net, id); 264 if (tb) 265 return tb; 266 267 tb = fib6_alloc_table(net, id); 268 if (tb) 269 fib6_link_table(net, tb); 270 271 return tb; 272 } 273 EXPORT_SYMBOL_GPL(fib6_new_table); 274 275 struct fib6_table *fib6_get_table(struct net *net, u32 id) 276 { 277 struct fib6_table *tb; 278 struct hlist_head *head; 279 unsigned int h; 280 281 if (id == 0) 282 id = RT6_TABLE_MAIN; 283 h = id & (FIB6_TABLE_HASHSZ - 1); 284 rcu_read_lock(); 285 head = &net->ipv6.fib_table_hash[h]; 286 hlist_for_each_entry_rcu(tb, head, tb6_hlist) { 287 if (tb->tb6_id == id) { 288 rcu_read_unlock(); 289 return tb; 290 } 291 } 292 rcu_read_unlock(); 293 294 return NULL; 295 } 296 EXPORT_SYMBOL_GPL(fib6_get_table); 297 298 static void __net_init fib6_tables_init(struct net *net) 299 { 300 fib6_link_table(net, net->ipv6.fib6_main_tbl); 301 fib6_link_table(net, net->ipv6.fib6_local_tbl); 302 } 303 #else 304 305 struct fib6_table *fib6_new_table(struct net *net, u32 id) 306 { 307 return fib6_get_table(net, id); 308 } 309 310 struct fib6_table *fib6_get_table(struct net *net, u32 id) 311 { 312 return net->ipv6.fib6_main_tbl; 313 } 314 315 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6, 316 const struct sk_buff *skb, 317 int flags, pol_lookup_t lookup) 318 { 319 struct rt6_info *rt; 320 321 rt = pol_lookup_func(lookup, 322 net, net->ipv6.fib6_main_tbl, fl6, skb, flags); 323 if (rt->dst.error == -EAGAIN) { 324 ip6_rt_put_flags(rt, flags); 325 rt = net->ipv6.ip6_null_entry; 326 if (!(flags & RT6_LOOKUP_F_DST_NOREF)) 327 dst_hold(&rt->dst); 328 } 329 330 return &rt->dst; 331 } 332 333 /* called with rcu lock held; no reference taken on fib6_info */ 334 int fib6_lookup(struct net *net, int oif, struct flowi6 *fl6, 335 struct fib6_result *res, int flags) 336 { 337 return fib6_table_lookup(net, net->ipv6.fib6_main_tbl, oif, fl6, 338 res, flags); 339 } 340 341 static void __net_init fib6_tables_init(struct net *net) 342 { 343 fib6_link_table(net, net->ipv6.fib6_main_tbl); 344 } 345 346 #endif 347 348 unsigned int fib6_tables_seq_read(struct net *net) 349 { 350 unsigned int h, fib_seq = 0; 351 352 rcu_read_lock(); 353 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { 354 struct hlist_head *head = &net->ipv6.fib_table_hash[h]; 355 struct fib6_table *tb; 356 357 hlist_for_each_entry_rcu(tb, head, tb6_hlist) 358 fib_seq += tb->fib_seq; 359 } 360 rcu_read_unlock(); 361 362 return fib_seq; 363 } 364 365 static int call_fib6_entry_notifier(struct notifier_block *nb, 366 enum fib_event_type event_type, 367 struct fib6_info *rt, 368 struct netlink_ext_ack *extack) 369 { 370 struct fib6_entry_notifier_info info = { 371 .info.extack = extack, 372 .rt = rt, 373 }; 374 375 return call_fib6_notifier(nb, event_type, &info.info); 376 } 377 378 static int call_fib6_multipath_entry_notifier(struct notifier_block *nb, 379 enum fib_event_type event_type, 380 struct fib6_info *rt, 381 unsigned int nsiblings, 382 struct netlink_ext_ack *extack) 383 { 384 struct fib6_entry_notifier_info info = { 385 .info.extack = extack, 386 .rt = rt, 387 .nsiblings = nsiblings, 388 }; 389 390 return call_fib6_notifier(nb, event_type, &info.info); 391 } 392 393 int call_fib6_entry_notifiers(struct net *net, 394 enum fib_event_type event_type, 395 struct fib6_info *rt, 396 struct netlink_ext_ack *extack) 397 { 398 struct fib6_entry_notifier_info info = { 399 .info.extack = extack, 400 .rt = rt, 401 }; 402 403 rt->fib6_table->fib_seq++; 404 return call_fib6_notifiers(net, event_type, &info.info); 405 } 406 407 int call_fib6_multipath_entry_notifiers(struct net *net, 408 enum fib_event_type event_type, 409 struct fib6_info *rt, 410 unsigned int nsiblings, 411 struct netlink_ext_ack *extack) 412 { 413 struct fib6_entry_notifier_info info = { 414 .info.extack = extack, 415 .rt = rt, 416 .nsiblings = nsiblings, 417 }; 418 419 rt->fib6_table->fib_seq++; 420 return call_fib6_notifiers(net, event_type, &info.info); 421 } 422 423 int call_fib6_entry_notifiers_replace(struct net *net, struct fib6_info *rt) 424 { 425 struct fib6_entry_notifier_info info = { 426 .rt = rt, 427 .nsiblings = rt->fib6_nsiblings, 428 }; 429 430 rt->fib6_table->fib_seq++; 431 return call_fib6_notifiers(net, FIB_EVENT_ENTRY_REPLACE, &info.info); 432 } 433 434 struct fib6_dump_arg { 435 struct net *net; 436 struct notifier_block *nb; 437 struct netlink_ext_ack *extack; 438 }; 439 440 static int fib6_rt_dump(struct fib6_info *rt, struct fib6_dump_arg *arg) 441 { 442 enum fib_event_type fib_event = FIB_EVENT_ENTRY_REPLACE; 443 int err; 444 445 if (!rt || rt == arg->net->ipv6.fib6_null_entry) 446 return 0; 447 448 if (rt->fib6_nsiblings) 449 err = call_fib6_multipath_entry_notifier(arg->nb, fib_event, 450 rt, 451 rt->fib6_nsiblings, 452 arg->extack); 453 else 454 err = call_fib6_entry_notifier(arg->nb, fib_event, rt, 455 arg->extack); 456 457 return err; 458 } 459 460 static int fib6_node_dump(struct fib6_walker *w) 461 { 462 int err; 463 464 err = fib6_rt_dump(w->leaf, w->args); 465 w->leaf = NULL; 466 return err; 467 } 468 469 static int fib6_table_dump(struct net *net, struct fib6_table *tb, 470 struct fib6_walker *w) 471 { 472 int err; 473 474 w->root = &tb->tb6_root; 475 spin_lock_bh(&tb->tb6_lock); 476 err = fib6_walk(net, w); 477 spin_unlock_bh(&tb->tb6_lock); 478 return err; 479 } 480 481 /* Called with rcu_read_lock() */ 482 int fib6_tables_dump(struct net *net, struct notifier_block *nb, 483 struct netlink_ext_ack *extack) 484 { 485 struct fib6_dump_arg arg; 486 struct fib6_walker *w; 487 unsigned int h; 488 int err = 0; 489 490 w = kzalloc(sizeof(*w), GFP_ATOMIC); 491 if (!w) 492 return -ENOMEM; 493 494 w->func = fib6_node_dump; 495 arg.net = net; 496 arg.nb = nb; 497 arg.extack = extack; 498 w->args = &arg; 499 500 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { 501 struct hlist_head *head = &net->ipv6.fib_table_hash[h]; 502 struct fib6_table *tb; 503 504 hlist_for_each_entry_rcu(tb, head, tb6_hlist) { 505 err = fib6_table_dump(net, tb, w); 506 if (err) 507 goto out; 508 } 509 } 510 511 out: 512 kfree(w); 513 514 /* The tree traversal function should never return a positive value. */ 515 return err > 0 ? -EINVAL : err; 516 } 517 518 static int fib6_dump_node(struct fib6_walker *w) 519 { 520 int res; 521 struct fib6_info *rt; 522 523 for_each_fib6_walker_rt(w) { 524 res = rt6_dump_route(rt, w->args, w->skip_in_node); 525 if (res >= 0) { 526 /* Frame is full, suspend walking */ 527 w->leaf = rt; 528 529 /* We'll restart from this node, so if some routes were 530 * already dumped, skip them next time. 531 */ 532 w->skip_in_node += res; 533 534 return 1; 535 } 536 w->skip_in_node = 0; 537 538 /* Multipath routes are dumped in one route with the 539 * RTA_MULTIPATH attribute. Jump 'rt' to point to the 540 * last sibling of this route (no need to dump the 541 * sibling routes again) 542 */ 543 if (rt->fib6_nsiblings) 544 rt = list_last_entry(&rt->fib6_siblings, 545 struct fib6_info, 546 fib6_siblings); 547 } 548 w->leaf = NULL; 549 return 0; 550 } 551 552 static void fib6_dump_end(struct netlink_callback *cb) 553 { 554 struct net *net = sock_net(cb->skb->sk); 555 struct fib6_walker *w = (void *)cb->args[2]; 556 557 if (w) { 558 if (cb->args[4]) { 559 cb->args[4] = 0; 560 fib6_walker_unlink(net, w); 561 } 562 cb->args[2] = 0; 563 kfree(w); 564 } 565 cb->done = (void *)cb->args[3]; 566 cb->args[1] = 3; 567 } 568 569 static int fib6_dump_done(struct netlink_callback *cb) 570 { 571 fib6_dump_end(cb); 572 return cb->done ? cb->done(cb) : 0; 573 } 574 575 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb, 576 struct netlink_callback *cb) 577 { 578 struct net *net = sock_net(skb->sk); 579 struct fib6_walker *w; 580 int res; 581 582 w = (void *)cb->args[2]; 583 w->root = &table->tb6_root; 584 585 if (cb->args[4] == 0) { 586 w->count = 0; 587 w->skip = 0; 588 w->skip_in_node = 0; 589 590 spin_lock_bh(&table->tb6_lock); 591 res = fib6_walk(net, w); 592 spin_unlock_bh(&table->tb6_lock); 593 if (res > 0) { 594 cb->args[4] = 1; 595 cb->args[5] = READ_ONCE(w->root->fn_sernum); 596 } 597 } else { 598 int sernum = READ_ONCE(w->root->fn_sernum); 599 if (cb->args[5] != sernum) { 600 /* Begin at the root if the tree changed */ 601 cb->args[5] = sernum; 602 w->state = FWS_INIT; 603 w->node = w->root; 604 w->skip = w->count; 605 w->skip_in_node = 0; 606 } else 607 w->skip = 0; 608 609 spin_lock_bh(&table->tb6_lock); 610 res = fib6_walk_continue(w); 611 spin_unlock_bh(&table->tb6_lock); 612 if (res <= 0) { 613 fib6_walker_unlink(net, w); 614 cb->args[4] = 0; 615 } 616 } 617 618 return res; 619 } 620 621 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb) 622 { 623 struct rt6_rtnl_dump_arg arg = { 624 .filter.dump_exceptions = true, 625 .filter.dump_routes = true, 626 .filter.rtnl_held = false, 627 }; 628 const struct nlmsghdr *nlh = cb->nlh; 629 struct net *net = sock_net(skb->sk); 630 unsigned int e = 0, s_e; 631 struct hlist_head *head; 632 struct fib6_walker *w; 633 struct fib6_table *tb; 634 unsigned int h, s_h; 635 int err = 0; 636 637 rcu_read_lock(); 638 if (cb->strict_check) { 639 err = ip_valid_fib_dump_req(net, nlh, &arg.filter, cb); 640 if (err < 0) 641 goto unlock; 642 } else if (nlmsg_len(nlh) >= sizeof(struct rtmsg)) { 643 struct rtmsg *rtm = nlmsg_data(nlh); 644 645 if (rtm->rtm_flags & RTM_F_PREFIX) 646 arg.filter.flags = RTM_F_PREFIX; 647 } 648 649 w = (void *)cb->args[2]; 650 if (!w) { 651 /* New dump: 652 * 653 * 1. allocate and initialize walker. 654 */ 655 w = kzalloc(sizeof(*w), GFP_ATOMIC); 656 if (!w) { 657 err = -ENOMEM; 658 goto unlock; 659 } 660 w->func = fib6_dump_node; 661 cb->args[2] = (long)w; 662 663 /* 2. hook callback destructor. 664 */ 665 cb->args[3] = (long)cb->done; 666 cb->done = fib6_dump_done; 667 668 } 669 670 arg.skb = skb; 671 arg.cb = cb; 672 arg.net = net; 673 w->args = &arg; 674 675 if (arg.filter.table_id) { 676 tb = fib6_get_table(net, arg.filter.table_id); 677 if (!tb) { 678 if (rtnl_msg_family(cb->nlh) != PF_INET6) 679 goto unlock; 680 681 NL_SET_ERR_MSG_MOD(cb->extack, "FIB table does not exist"); 682 err = -ENOENT; 683 goto unlock; 684 } 685 686 if (!cb->args[0]) { 687 err = fib6_dump_table(tb, skb, cb); 688 if (!err) 689 cb->args[0] = 1; 690 } 691 goto unlock; 692 } 693 694 s_h = cb->args[0]; 695 s_e = cb->args[1]; 696 697 for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) { 698 e = 0; 699 head = &net->ipv6.fib_table_hash[h]; 700 hlist_for_each_entry_rcu(tb, head, tb6_hlist) { 701 if (e < s_e) 702 goto next; 703 err = fib6_dump_table(tb, skb, cb); 704 if (err != 0) 705 goto out; 706 next: 707 e++; 708 } 709 } 710 out: 711 cb->args[1] = e; 712 cb->args[0] = h; 713 714 unlock: 715 rcu_read_unlock(); 716 if (err <= 0) 717 fib6_dump_end(cb); 718 return err; 719 } 720 721 void fib6_metric_set(struct fib6_info *f6i, int metric, u32 val) 722 { 723 if (!f6i) 724 return; 725 726 if (f6i->fib6_metrics == &dst_default_metrics) { 727 struct dst_metrics *p = kzalloc(sizeof(*p), GFP_ATOMIC); 728 729 if (!p) 730 return; 731 732 refcount_set(&p->refcnt, 1); 733 f6i->fib6_metrics = p; 734 } 735 736 f6i->fib6_metrics->metrics[metric - 1] = val; 737 } 738 739 /* 740 * Routing Table 741 * 742 * return the appropriate node for a routing tree "add" operation 743 * by either creating and inserting or by returning an existing 744 * node. 745 */ 746 747 static struct fib6_node *fib6_add_1(struct net *net, 748 struct fib6_table *table, 749 struct fib6_node *root, 750 struct in6_addr *addr, int plen, 751 int offset, int allow_create, 752 int replace_required, 753 struct netlink_ext_ack *extack) 754 { 755 struct fib6_node *fn, *in, *ln; 756 struct fib6_node *pn = NULL; 757 struct rt6key *key; 758 int bit; 759 __be32 dir = 0; 760 761 /* insert node in tree */ 762 763 fn = root; 764 765 do { 766 struct fib6_info *leaf = rcu_dereference_protected(fn->leaf, 767 lockdep_is_held(&table->tb6_lock)); 768 key = (struct rt6key *)((u8 *)leaf + offset); 769 770 /* 771 * Prefix match 772 */ 773 if (plen < fn->fn_bit || 774 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) { 775 if (!allow_create) { 776 if (replace_required) { 777 NL_SET_ERR_MSG(extack, 778 "Can not replace route - no match found"); 779 pr_warn("Can't replace route, no match found\n"); 780 return ERR_PTR(-ENOENT); 781 } 782 pr_warn("NLM_F_CREATE should be set when creating new route\n"); 783 } 784 goto insert_above; 785 } 786 787 /* 788 * Exact match ? 789 */ 790 791 if (plen == fn->fn_bit) { 792 /* clean up an intermediate node */ 793 if (!(fn->fn_flags & RTN_RTINFO)) { 794 RCU_INIT_POINTER(fn->leaf, NULL); 795 fib6_info_release(leaf); 796 /* remove null_entry in the root node */ 797 } else if (fn->fn_flags & RTN_TL_ROOT && 798 rcu_access_pointer(fn->leaf) == 799 net->ipv6.fib6_null_entry) { 800 RCU_INIT_POINTER(fn->leaf, NULL); 801 } 802 803 return fn; 804 } 805 806 /* 807 * We have more bits to go 808 */ 809 810 /* Try to walk down on tree. */ 811 dir = addr_bit_set(addr, fn->fn_bit); 812 pn = fn; 813 fn = dir ? 814 rcu_dereference_protected(fn->right, 815 lockdep_is_held(&table->tb6_lock)) : 816 rcu_dereference_protected(fn->left, 817 lockdep_is_held(&table->tb6_lock)); 818 } while (fn); 819 820 if (!allow_create) { 821 /* We should not create new node because 822 * NLM_F_REPLACE was specified without NLM_F_CREATE 823 * I assume it is safe to require NLM_F_CREATE when 824 * REPLACE flag is used! Later we may want to remove the 825 * check for replace_required, because according 826 * to netlink specification, NLM_F_CREATE 827 * MUST be specified if new route is created. 828 * That would keep IPv6 consistent with IPv4 829 */ 830 if (replace_required) { 831 NL_SET_ERR_MSG(extack, 832 "Can not replace route - no match found"); 833 pr_warn("Can't replace route, no match found\n"); 834 return ERR_PTR(-ENOENT); 835 } 836 pr_warn("NLM_F_CREATE should be set when creating new route\n"); 837 } 838 /* 839 * We walked to the bottom of tree. 840 * Create new leaf node without children. 841 */ 842 843 ln = node_alloc(net); 844 845 if (!ln) 846 return ERR_PTR(-ENOMEM); 847 ln->fn_bit = plen; 848 RCU_INIT_POINTER(ln->parent, pn); 849 850 if (dir) 851 rcu_assign_pointer(pn->right, ln); 852 else 853 rcu_assign_pointer(pn->left, ln); 854 855 return ln; 856 857 858 insert_above: 859 /* 860 * split since we don't have a common prefix anymore or 861 * we have a less significant route. 862 * we've to insert an intermediate node on the list 863 * this new node will point to the one we need to create 864 * and the current 865 */ 866 867 pn = rcu_dereference_protected(fn->parent, 868 lockdep_is_held(&table->tb6_lock)); 869 870 /* find 1st bit in difference between the 2 addrs. 871 872 See comment in __ipv6_addr_diff: bit may be an invalid value, 873 but if it is >= plen, the value is ignored in any case. 874 */ 875 876 bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr)); 877 878 /* 879 * (intermediate)[in] 880 * / \ 881 * (new leaf node)[ln] (old node)[fn] 882 */ 883 if (plen > bit) { 884 in = node_alloc(net); 885 ln = node_alloc(net); 886 887 if (!in || !ln) { 888 if (in) 889 node_free_immediate(net, in); 890 if (ln) 891 node_free_immediate(net, ln); 892 return ERR_PTR(-ENOMEM); 893 } 894 895 /* 896 * new intermediate node. 897 * RTN_RTINFO will 898 * be off since that an address that chooses one of 899 * the branches would not match less specific routes 900 * in the other branch 901 */ 902 903 in->fn_bit = bit; 904 905 RCU_INIT_POINTER(in->parent, pn); 906 in->leaf = fn->leaf; 907 fib6_info_hold(rcu_dereference_protected(in->leaf, 908 lockdep_is_held(&table->tb6_lock))); 909 910 /* update parent pointer */ 911 if (dir) 912 rcu_assign_pointer(pn->right, in); 913 else 914 rcu_assign_pointer(pn->left, in); 915 916 ln->fn_bit = plen; 917 918 RCU_INIT_POINTER(ln->parent, in); 919 rcu_assign_pointer(fn->parent, in); 920 921 if (addr_bit_set(addr, bit)) { 922 rcu_assign_pointer(in->right, ln); 923 rcu_assign_pointer(in->left, fn); 924 } else { 925 rcu_assign_pointer(in->left, ln); 926 rcu_assign_pointer(in->right, fn); 927 } 928 } else { /* plen <= bit */ 929 930 /* 931 * (new leaf node)[ln] 932 * / \ 933 * (old node)[fn] NULL 934 */ 935 936 ln = node_alloc(net); 937 938 if (!ln) 939 return ERR_PTR(-ENOMEM); 940 941 ln->fn_bit = plen; 942 943 RCU_INIT_POINTER(ln->parent, pn); 944 945 if (addr_bit_set(&key->addr, plen)) 946 RCU_INIT_POINTER(ln->right, fn); 947 else 948 RCU_INIT_POINTER(ln->left, fn); 949 950 rcu_assign_pointer(fn->parent, ln); 951 952 if (dir) 953 rcu_assign_pointer(pn->right, ln); 954 else 955 rcu_assign_pointer(pn->left, ln); 956 } 957 return ln; 958 } 959 960 static void __fib6_drop_pcpu_from(struct fib6_nh *fib6_nh, 961 const struct fib6_info *match, 962 const struct fib6_table *table) 963 { 964 int cpu; 965 966 if (!fib6_nh->rt6i_pcpu) 967 return; 968 969 rcu_read_lock(); 970 /* release the reference to this fib entry from 971 * all of its cached pcpu routes 972 */ 973 for_each_possible_cpu(cpu) { 974 struct rt6_info **ppcpu_rt; 975 struct rt6_info *pcpu_rt; 976 977 ppcpu_rt = per_cpu_ptr(fib6_nh->rt6i_pcpu, cpu); 978 979 /* Paired with xchg() in rt6_get_pcpu_route() */ 980 pcpu_rt = READ_ONCE(*ppcpu_rt); 981 982 /* only dropping the 'from' reference if the cached route 983 * is using 'match'. The cached pcpu_rt->from only changes 984 * from a fib6_info to NULL (ip6_dst_destroy); it can never 985 * change from one fib6_info reference to another 986 */ 987 if (pcpu_rt && rcu_access_pointer(pcpu_rt->from) == match) { 988 struct fib6_info *from; 989 990 from = xchg((__force struct fib6_info **)&pcpu_rt->from, NULL); 991 fib6_info_release(from); 992 } 993 } 994 rcu_read_unlock(); 995 } 996 997 struct fib6_nh_pcpu_arg { 998 struct fib6_info *from; 999 const struct fib6_table *table; 1000 }; 1001 1002 static int fib6_nh_drop_pcpu_from(struct fib6_nh *nh, void *_arg) 1003 { 1004 struct fib6_nh_pcpu_arg *arg = _arg; 1005 1006 __fib6_drop_pcpu_from(nh, arg->from, arg->table); 1007 return 0; 1008 } 1009 1010 static void fib6_drop_pcpu_from(struct fib6_info *f6i, 1011 const struct fib6_table *table) 1012 { 1013 /* Make sure rt6_make_pcpu_route() wont add other percpu routes 1014 * while we are cleaning them here. 1015 */ 1016 f6i->fib6_destroying = 1; 1017 mb(); /* paired with the cmpxchg() in rt6_make_pcpu_route() */ 1018 1019 if (f6i->nh) { 1020 struct fib6_nh_pcpu_arg arg = { 1021 .from = f6i, 1022 .table = table 1023 }; 1024 1025 nexthop_for_each_fib6_nh(f6i->nh, fib6_nh_drop_pcpu_from, 1026 &arg); 1027 } else { 1028 struct fib6_nh *fib6_nh; 1029 1030 fib6_nh = f6i->fib6_nh; 1031 __fib6_drop_pcpu_from(fib6_nh, f6i, table); 1032 } 1033 } 1034 1035 static void fib6_purge_rt(struct fib6_info *rt, struct fib6_node *fn, 1036 struct net *net) 1037 { 1038 struct fib6_table *table = rt->fib6_table; 1039 1040 /* Flush all cached dst in exception table */ 1041 rt6_flush_exceptions(rt); 1042 fib6_drop_pcpu_from(rt, table); 1043 1044 if (rt->nh && !list_empty(&rt->nh_list)) 1045 list_del_init(&rt->nh_list); 1046 1047 if (refcount_read(&rt->fib6_ref) != 1) { 1048 /* This route is used as dummy address holder in some split 1049 * nodes. It is not leaked, but it still holds other resources, 1050 * which must be released in time. So, scan ascendant nodes 1051 * and replace dummy references to this route with references 1052 * to still alive ones. 1053 */ 1054 while (fn) { 1055 struct fib6_info *leaf = rcu_dereference_protected(fn->leaf, 1056 lockdep_is_held(&table->tb6_lock)); 1057 struct fib6_info *new_leaf; 1058 if (!(fn->fn_flags & RTN_RTINFO) && leaf == rt) { 1059 new_leaf = fib6_find_prefix(net, table, fn); 1060 fib6_info_hold(new_leaf); 1061 1062 rcu_assign_pointer(fn->leaf, new_leaf); 1063 fib6_info_release(rt); 1064 } 1065 fn = rcu_dereference_protected(fn->parent, 1066 lockdep_is_held(&table->tb6_lock)); 1067 } 1068 } 1069 1070 fib6_clean_expires(rt); 1071 fib6_remove_gc_list(rt); 1072 } 1073 1074 /* 1075 * Insert routing information in a node. 1076 */ 1077 1078 static int fib6_add_rt2node(struct fib6_node *fn, struct fib6_info *rt, 1079 struct nl_info *info, 1080 struct netlink_ext_ack *extack) 1081 { 1082 struct fib6_info *leaf = rcu_dereference_protected(fn->leaf, 1083 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1084 struct fib6_info *iter = NULL; 1085 struct fib6_info __rcu **ins; 1086 struct fib6_info __rcu **fallback_ins = NULL; 1087 int replace = (info->nlh && 1088 (info->nlh->nlmsg_flags & NLM_F_REPLACE)); 1089 int add = (!info->nlh || 1090 (info->nlh->nlmsg_flags & NLM_F_CREATE)); 1091 int found = 0; 1092 bool rt_can_ecmp = rt6_qualify_for_ecmp(rt); 1093 bool notify_sibling_rt = false; 1094 u16 nlflags = NLM_F_EXCL; 1095 int err; 1096 1097 if (info->nlh && (info->nlh->nlmsg_flags & NLM_F_APPEND)) 1098 nlflags |= NLM_F_APPEND; 1099 1100 ins = &fn->leaf; 1101 1102 for (iter = leaf; iter; 1103 iter = rcu_dereference_protected(iter->fib6_next, 1104 lockdep_is_held(&rt->fib6_table->tb6_lock))) { 1105 /* 1106 * Search for duplicates 1107 */ 1108 1109 if (iter->fib6_metric == rt->fib6_metric) { 1110 /* 1111 * Same priority level 1112 */ 1113 if (info->nlh && 1114 (info->nlh->nlmsg_flags & NLM_F_EXCL)) 1115 return -EEXIST; 1116 1117 nlflags &= ~NLM_F_EXCL; 1118 if (replace) { 1119 if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) { 1120 found++; 1121 break; 1122 } 1123 fallback_ins = fallback_ins ?: ins; 1124 goto next_iter; 1125 } 1126 1127 if (rt6_duplicate_nexthop(iter, rt)) { 1128 if (rt->fib6_nsiblings) 1129 rt->fib6_nsiblings = 0; 1130 if (!(iter->fib6_flags & RTF_EXPIRES)) 1131 return -EEXIST; 1132 if (!(rt->fib6_flags & RTF_EXPIRES)) { 1133 fib6_clean_expires(iter); 1134 fib6_remove_gc_list(iter); 1135 } else { 1136 fib6_set_expires(iter, rt->expires); 1137 fib6_add_gc_list(iter); 1138 } 1139 1140 if (rt->fib6_pmtu) 1141 fib6_metric_set(iter, RTAX_MTU, 1142 rt->fib6_pmtu); 1143 return -EEXIST; 1144 } 1145 /* If we have the same destination and the same metric, 1146 * but not the same gateway, then the route we try to 1147 * add is sibling to this route, increment our counter 1148 * of siblings, and later we will add our route to the 1149 * list. 1150 * Only static routes (which don't have flag 1151 * RTF_EXPIRES) are used for ECMPv6. 1152 * 1153 * To avoid long list, we only had siblings if the 1154 * route have a gateway. 1155 */ 1156 if (rt_can_ecmp && 1157 rt6_qualify_for_ecmp(iter)) 1158 rt->fib6_nsiblings++; 1159 } 1160 1161 if (iter->fib6_metric > rt->fib6_metric) 1162 break; 1163 1164 next_iter: 1165 ins = &iter->fib6_next; 1166 } 1167 1168 if (fallback_ins && !found) { 1169 /* No matching route with same ecmp-able-ness found, replace 1170 * first matching route 1171 */ 1172 ins = fallback_ins; 1173 iter = rcu_dereference_protected(*ins, 1174 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1175 found++; 1176 } 1177 1178 /* Reset round-robin state, if necessary */ 1179 if (ins == &fn->leaf) 1180 fn->rr_ptr = NULL; 1181 1182 /* Link this route to others same route. */ 1183 if (rt->fib6_nsiblings) { 1184 unsigned int fib6_nsiblings; 1185 struct fib6_info *sibling, *temp_sibling; 1186 1187 /* Find the first route that have the same metric */ 1188 sibling = leaf; 1189 notify_sibling_rt = true; 1190 while (sibling) { 1191 if (sibling->fib6_metric == rt->fib6_metric && 1192 rt6_qualify_for_ecmp(sibling)) { 1193 list_add_tail(&rt->fib6_siblings, 1194 &sibling->fib6_siblings); 1195 break; 1196 } 1197 sibling = rcu_dereference_protected(sibling->fib6_next, 1198 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1199 notify_sibling_rt = false; 1200 } 1201 /* For each sibling in the list, increment the counter of 1202 * siblings. BUG() if counters does not match, list of siblings 1203 * is broken! 1204 */ 1205 fib6_nsiblings = 0; 1206 list_for_each_entry_safe(sibling, temp_sibling, 1207 &rt->fib6_siblings, fib6_siblings) { 1208 sibling->fib6_nsiblings++; 1209 BUG_ON(sibling->fib6_nsiblings != rt->fib6_nsiblings); 1210 fib6_nsiblings++; 1211 } 1212 BUG_ON(fib6_nsiblings != rt->fib6_nsiblings); 1213 rt6_multipath_rebalance(temp_sibling); 1214 } 1215 1216 /* 1217 * insert node 1218 */ 1219 if (!replace) { 1220 if (!add) 1221 pr_warn("NLM_F_CREATE should be set when creating new route\n"); 1222 1223 add: 1224 nlflags |= NLM_F_CREATE; 1225 1226 /* The route should only be notified if it is the first 1227 * route in the node or if it is added as a sibling 1228 * route to the first route in the node. 1229 */ 1230 if (!info->skip_notify_kernel && 1231 (notify_sibling_rt || ins == &fn->leaf)) { 1232 enum fib_event_type fib_event; 1233 1234 if (notify_sibling_rt) 1235 fib_event = FIB_EVENT_ENTRY_APPEND; 1236 else 1237 fib_event = FIB_EVENT_ENTRY_REPLACE; 1238 err = call_fib6_entry_notifiers(info->nl_net, 1239 fib_event, rt, 1240 extack); 1241 if (err) { 1242 struct fib6_info *sibling, *next_sibling; 1243 1244 /* If the route has siblings, then it first 1245 * needs to be unlinked from them. 1246 */ 1247 if (!rt->fib6_nsiblings) 1248 return err; 1249 1250 list_for_each_entry_safe(sibling, next_sibling, 1251 &rt->fib6_siblings, 1252 fib6_siblings) 1253 sibling->fib6_nsiblings--; 1254 rt->fib6_nsiblings = 0; 1255 list_del_init(&rt->fib6_siblings); 1256 rt6_multipath_rebalance(next_sibling); 1257 return err; 1258 } 1259 } 1260 1261 rcu_assign_pointer(rt->fib6_next, iter); 1262 fib6_info_hold(rt); 1263 rcu_assign_pointer(rt->fib6_node, fn); 1264 rcu_assign_pointer(*ins, rt); 1265 if (!info->skip_notify) 1266 inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags); 1267 info->nl_net->ipv6.rt6_stats->fib_rt_entries++; 1268 1269 if (!(fn->fn_flags & RTN_RTINFO)) { 1270 info->nl_net->ipv6.rt6_stats->fib_route_nodes++; 1271 fn->fn_flags |= RTN_RTINFO; 1272 } 1273 1274 } else { 1275 int nsiblings; 1276 1277 if (!found) { 1278 if (add) 1279 goto add; 1280 pr_warn("NLM_F_REPLACE set, but no existing node found!\n"); 1281 return -ENOENT; 1282 } 1283 1284 if (!info->skip_notify_kernel && ins == &fn->leaf) { 1285 err = call_fib6_entry_notifiers(info->nl_net, 1286 FIB_EVENT_ENTRY_REPLACE, 1287 rt, extack); 1288 if (err) 1289 return err; 1290 } 1291 1292 fib6_info_hold(rt); 1293 rcu_assign_pointer(rt->fib6_node, fn); 1294 rt->fib6_next = iter->fib6_next; 1295 rcu_assign_pointer(*ins, rt); 1296 if (!info->skip_notify) 1297 inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE); 1298 if (!(fn->fn_flags & RTN_RTINFO)) { 1299 info->nl_net->ipv6.rt6_stats->fib_route_nodes++; 1300 fn->fn_flags |= RTN_RTINFO; 1301 } 1302 nsiblings = iter->fib6_nsiblings; 1303 iter->fib6_node = NULL; 1304 fib6_purge_rt(iter, fn, info->nl_net); 1305 if (rcu_access_pointer(fn->rr_ptr) == iter) 1306 fn->rr_ptr = NULL; 1307 fib6_info_release(iter); 1308 1309 if (nsiblings) { 1310 /* Replacing an ECMP route, remove all siblings */ 1311 ins = &rt->fib6_next; 1312 iter = rcu_dereference_protected(*ins, 1313 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1314 while (iter) { 1315 if (iter->fib6_metric > rt->fib6_metric) 1316 break; 1317 if (rt6_qualify_for_ecmp(iter)) { 1318 *ins = iter->fib6_next; 1319 iter->fib6_node = NULL; 1320 fib6_purge_rt(iter, fn, info->nl_net); 1321 if (rcu_access_pointer(fn->rr_ptr) == iter) 1322 fn->rr_ptr = NULL; 1323 fib6_info_release(iter); 1324 nsiblings--; 1325 info->nl_net->ipv6.rt6_stats->fib_rt_entries--; 1326 } else { 1327 ins = &iter->fib6_next; 1328 } 1329 iter = rcu_dereference_protected(*ins, 1330 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1331 } 1332 WARN_ON(nsiblings != 0); 1333 } 1334 } 1335 1336 return 0; 1337 } 1338 1339 static void fib6_start_gc(struct net *net, struct fib6_info *rt) 1340 { 1341 if (!timer_pending(&net->ipv6.ip6_fib_timer) && 1342 (rt->fib6_flags & RTF_EXPIRES)) 1343 mod_timer(&net->ipv6.ip6_fib_timer, 1344 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval); 1345 } 1346 1347 void fib6_force_start_gc(struct net *net) 1348 { 1349 if (!timer_pending(&net->ipv6.ip6_fib_timer)) 1350 mod_timer(&net->ipv6.ip6_fib_timer, 1351 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval); 1352 } 1353 1354 static void __fib6_update_sernum_upto_root(struct fib6_info *rt, 1355 int sernum) 1356 { 1357 struct fib6_node *fn = rcu_dereference_protected(rt->fib6_node, 1358 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1359 1360 /* paired with smp_rmb() in fib6_get_cookie_safe() */ 1361 smp_wmb(); 1362 while (fn) { 1363 WRITE_ONCE(fn->fn_sernum, sernum); 1364 fn = rcu_dereference_protected(fn->parent, 1365 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1366 } 1367 } 1368 1369 void fib6_update_sernum_upto_root(struct net *net, struct fib6_info *rt) 1370 { 1371 __fib6_update_sernum_upto_root(rt, fib6_new_sernum(net)); 1372 } 1373 1374 /* allow ipv4 to update sernum via ipv6_stub */ 1375 void fib6_update_sernum_stub(struct net *net, struct fib6_info *f6i) 1376 { 1377 spin_lock_bh(&f6i->fib6_table->tb6_lock); 1378 fib6_update_sernum_upto_root(net, f6i); 1379 spin_unlock_bh(&f6i->fib6_table->tb6_lock); 1380 } 1381 1382 /* 1383 * Add routing information to the routing tree. 1384 * <destination addr>/<source addr> 1385 * with source addr info in sub-trees 1386 * Need to own table->tb6_lock 1387 */ 1388 1389 int fib6_add(struct fib6_node *root, struct fib6_info *rt, 1390 struct nl_info *info, struct netlink_ext_ack *extack) 1391 { 1392 struct fib6_table *table = rt->fib6_table; 1393 struct fib6_node *fn; 1394 #ifdef CONFIG_IPV6_SUBTREES 1395 struct fib6_node *pn = NULL; 1396 #endif 1397 int err = -ENOMEM; 1398 int allow_create = 1; 1399 int replace_required = 0; 1400 1401 if (info->nlh) { 1402 if (!(info->nlh->nlmsg_flags & NLM_F_CREATE)) 1403 allow_create = 0; 1404 if (info->nlh->nlmsg_flags & NLM_F_REPLACE) 1405 replace_required = 1; 1406 } 1407 if (!allow_create && !replace_required) 1408 pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n"); 1409 1410 fn = fib6_add_1(info->nl_net, table, root, 1411 &rt->fib6_dst.addr, rt->fib6_dst.plen, 1412 offsetof(struct fib6_info, fib6_dst), allow_create, 1413 replace_required, extack); 1414 if (IS_ERR(fn)) { 1415 err = PTR_ERR(fn); 1416 fn = NULL; 1417 goto out; 1418 } 1419 1420 #ifdef CONFIG_IPV6_SUBTREES 1421 pn = fn; 1422 1423 if (rt->fib6_src.plen) { 1424 struct fib6_node *sn; 1425 1426 if (!rcu_access_pointer(fn->subtree)) { 1427 struct fib6_node *sfn; 1428 1429 /* 1430 * Create subtree. 1431 * 1432 * fn[main tree] 1433 * | 1434 * sfn[subtree root] 1435 * \ 1436 * sn[new leaf node] 1437 */ 1438 1439 /* Create subtree root node */ 1440 sfn = node_alloc(info->nl_net); 1441 if (!sfn) 1442 goto failure; 1443 1444 fib6_info_hold(info->nl_net->ipv6.fib6_null_entry); 1445 rcu_assign_pointer(sfn->leaf, 1446 info->nl_net->ipv6.fib6_null_entry); 1447 sfn->fn_flags = RTN_ROOT; 1448 1449 /* Now add the first leaf node to new subtree */ 1450 1451 sn = fib6_add_1(info->nl_net, table, sfn, 1452 &rt->fib6_src.addr, rt->fib6_src.plen, 1453 offsetof(struct fib6_info, fib6_src), 1454 allow_create, replace_required, extack); 1455 1456 if (IS_ERR(sn)) { 1457 /* If it is failed, discard just allocated 1458 root, and then (in failure) stale node 1459 in main tree. 1460 */ 1461 node_free_immediate(info->nl_net, sfn); 1462 err = PTR_ERR(sn); 1463 goto failure; 1464 } 1465 1466 /* Now link new subtree to main tree */ 1467 rcu_assign_pointer(sfn->parent, fn); 1468 rcu_assign_pointer(fn->subtree, sfn); 1469 } else { 1470 sn = fib6_add_1(info->nl_net, table, FIB6_SUBTREE(fn), 1471 &rt->fib6_src.addr, rt->fib6_src.plen, 1472 offsetof(struct fib6_info, fib6_src), 1473 allow_create, replace_required, extack); 1474 1475 if (IS_ERR(sn)) { 1476 err = PTR_ERR(sn); 1477 goto failure; 1478 } 1479 } 1480 1481 if (!rcu_access_pointer(fn->leaf)) { 1482 if (fn->fn_flags & RTN_TL_ROOT) { 1483 /* put back null_entry for root node */ 1484 rcu_assign_pointer(fn->leaf, 1485 info->nl_net->ipv6.fib6_null_entry); 1486 } else { 1487 fib6_info_hold(rt); 1488 rcu_assign_pointer(fn->leaf, rt); 1489 } 1490 } 1491 fn = sn; 1492 } 1493 #endif 1494 1495 err = fib6_add_rt2node(fn, rt, info, extack); 1496 if (!err) { 1497 if (rt->nh) 1498 list_add(&rt->nh_list, &rt->nh->f6i_list); 1499 __fib6_update_sernum_upto_root(rt, fib6_new_sernum(info->nl_net)); 1500 1501 if (rt->fib6_flags & RTF_EXPIRES) 1502 fib6_add_gc_list(rt); 1503 1504 fib6_start_gc(info->nl_net, rt); 1505 } 1506 1507 out: 1508 if (err) { 1509 #ifdef CONFIG_IPV6_SUBTREES 1510 /* 1511 * If fib6_add_1 has cleared the old leaf pointer in the 1512 * super-tree leaf node we have to find a new one for it. 1513 */ 1514 if (pn != fn) { 1515 struct fib6_info *pn_leaf = 1516 rcu_dereference_protected(pn->leaf, 1517 lockdep_is_held(&table->tb6_lock)); 1518 if (pn_leaf == rt) { 1519 pn_leaf = NULL; 1520 RCU_INIT_POINTER(pn->leaf, NULL); 1521 fib6_info_release(rt); 1522 } 1523 if (!pn_leaf && !(pn->fn_flags & RTN_RTINFO)) { 1524 pn_leaf = fib6_find_prefix(info->nl_net, table, 1525 pn); 1526 if (!pn_leaf) 1527 pn_leaf = 1528 info->nl_net->ipv6.fib6_null_entry; 1529 fib6_info_hold(pn_leaf); 1530 rcu_assign_pointer(pn->leaf, pn_leaf); 1531 } 1532 } 1533 #endif 1534 goto failure; 1535 } else if (fib6_requires_src(rt)) { 1536 fib6_routes_require_src_inc(info->nl_net); 1537 } 1538 return err; 1539 1540 failure: 1541 /* fn->leaf could be NULL and fib6_repair_tree() needs to be called if: 1542 * 1. fn is an intermediate node and we failed to add the new 1543 * route to it in both subtree creation failure and fib6_add_rt2node() 1544 * failure case. 1545 * 2. fn is the root node in the table and we fail to add the first 1546 * default route to it. 1547 */ 1548 if (fn && 1549 (!(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)) || 1550 (fn->fn_flags & RTN_TL_ROOT && 1551 !rcu_access_pointer(fn->leaf)))) 1552 fib6_repair_tree(info->nl_net, table, fn); 1553 return err; 1554 } 1555 1556 /* 1557 * Routing tree lookup 1558 * 1559 */ 1560 1561 struct lookup_args { 1562 int offset; /* key offset on fib6_info */ 1563 const struct in6_addr *addr; /* search key */ 1564 }; 1565 1566 static struct fib6_node *fib6_node_lookup_1(struct fib6_node *root, 1567 struct lookup_args *args) 1568 { 1569 struct fib6_node *fn; 1570 __be32 dir; 1571 1572 if (unlikely(args->offset == 0)) 1573 return NULL; 1574 1575 /* 1576 * Descend on a tree 1577 */ 1578 1579 fn = root; 1580 1581 for (;;) { 1582 struct fib6_node *next; 1583 1584 dir = addr_bit_set(args->addr, fn->fn_bit); 1585 1586 next = dir ? rcu_dereference(fn->right) : 1587 rcu_dereference(fn->left); 1588 1589 if (next) { 1590 fn = next; 1591 continue; 1592 } 1593 break; 1594 } 1595 1596 while (fn) { 1597 struct fib6_node *subtree = FIB6_SUBTREE(fn); 1598 1599 if (subtree || fn->fn_flags & RTN_RTINFO) { 1600 struct fib6_info *leaf = rcu_dereference(fn->leaf); 1601 struct rt6key *key; 1602 1603 if (!leaf) 1604 goto backtrack; 1605 1606 key = (struct rt6key *) ((u8 *)leaf + args->offset); 1607 1608 if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) { 1609 #ifdef CONFIG_IPV6_SUBTREES 1610 if (subtree) { 1611 struct fib6_node *sfn; 1612 sfn = fib6_node_lookup_1(subtree, 1613 args + 1); 1614 if (!sfn) 1615 goto backtrack; 1616 fn = sfn; 1617 } 1618 #endif 1619 if (fn->fn_flags & RTN_RTINFO) 1620 return fn; 1621 } 1622 } 1623 backtrack: 1624 if (fn->fn_flags & RTN_ROOT) 1625 break; 1626 1627 fn = rcu_dereference(fn->parent); 1628 } 1629 1630 return NULL; 1631 } 1632 1633 /* called with rcu_read_lock() held 1634 */ 1635 struct fib6_node *fib6_node_lookup(struct fib6_node *root, 1636 const struct in6_addr *daddr, 1637 const struct in6_addr *saddr) 1638 { 1639 struct fib6_node *fn; 1640 struct lookup_args args[] = { 1641 { 1642 .offset = offsetof(struct fib6_info, fib6_dst), 1643 .addr = daddr, 1644 }, 1645 #ifdef CONFIG_IPV6_SUBTREES 1646 { 1647 .offset = offsetof(struct fib6_info, fib6_src), 1648 .addr = saddr, 1649 }, 1650 #endif 1651 { 1652 .offset = 0, /* sentinel */ 1653 } 1654 }; 1655 1656 fn = fib6_node_lookup_1(root, daddr ? args : args + 1); 1657 if (!fn || fn->fn_flags & RTN_TL_ROOT) 1658 fn = root; 1659 1660 return fn; 1661 } 1662 1663 /* 1664 * Get node with specified destination prefix (and source prefix, 1665 * if subtrees are used) 1666 * exact_match == true means we try to find fn with exact match of 1667 * the passed in prefix addr 1668 * exact_match == false means we try to find fn with longest prefix 1669 * match of the passed in prefix addr. This is useful for finding fn 1670 * for cached route as it will be stored in the exception table under 1671 * the node with longest prefix length. 1672 */ 1673 1674 1675 static struct fib6_node *fib6_locate_1(struct fib6_node *root, 1676 const struct in6_addr *addr, 1677 int plen, int offset, 1678 bool exact_match) 1679 { 1680 struct fib6_node *fn, *prev = NULL; 1681 1682 for (fn = root; fn ; ) { 1683 struct fib6_info *leaf = rcu_dereference(fn->leaf); 1684 struct rt6key *key; 1685 1686 /* This node is being deleted */ 1687 if (!leaf) { 1688 if (plen <= fn->fn_bit) 1689 goto out; 1690 else 1691 goto next; 1692 } 1693 1694 key = (struct rt6key *)((u8 *)leaf + offset); 1695 1696 /* 1697 * Prefix match 1698 */ 1699 if (plen < fn->fn_bit || 1700 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) 1701 goto out; 1702 1703 if (plen == fn->fn_bit) 1704 return fn; 1705 1706 if (fn->fn_flags & RTN_RTINFO) 1707 prev = fn; 1708 1709 next: 1710 /* 1711 * We have more bits to go 1712 */ 1713 if (addr_bit_set(addr, fn->fn_bit)) 1714 fn = rcu_dereference(fn->right); 1715 else 1716 fn = rcu_dereference(fn->left); 1717 } 1718 out: 1719 if (exact_match) 1720 return NULL; 1721 else 1722 return prev; 1723 } 1724 1725 struct fib6_node *fib6_locate(struct fib6_node *root, 1726 const struct in6_addr *daddr, int dst_len, 1727 const struct in6_addr *saddr, int src_len, 1728 bool exact_match) 1729 { 1730 struct fib6_node *fn; 1731 1732 fn = fib6_locate_1(root, daddr, dst_len, 1733 offsetof(struct fib6_info, fib6_dst), 1734 exact_match); 1735 1736 #ifdef CONFIG_IPV6_SUBTREES 1737 if (src_len) { 1738 WARN_ON(saddr == NULL); 1739 if (fn) { 1740 struct fib6_node *subtree = FIB6_SUBTREE(fn); 1741 1742 if (subtree) { 1743 fn = fib6_locate_1(subtree, saddr, src_len, 1744 offsetof(struct fib6_info, fib6_src), 1745 exact_match); 1746 } 1747 } 1748 } 1749 #endif 1750 1751 if (fn && fn->fn_flags & RTN_RTINFO) 1752 return fn; 1753 1754 return NULL; 1755 } 1756 1757 1758 /* 1759 * Deletion 1760 * 1761 */ 1762 1763 static struct fib6_info *fib6_find_prefix(struct net *net, 1764 struct fib6_table *table, 1765 struct fib6_node *fn) 1766 { 1767 struct fib6_node *child_left, *child_right; 1768 1769 if (fn->fn_flags & RTN_ROOT) 1770 return net->ipv6.fib6_null_entry; 1771 1772 while (fn) { 1773 child_left = rcu_dereference_protected(fn->left, 1774 lockdep_is_held(&table->tb6_lock)); 1775 child_right = rcu_dereference_protected(fn->right, 1776 lockdep_is_held(&table->tb6_lock)); 1777 if (child_left) 1778 return rcu_dereference_protected(child_left->leaf, 1779 lockdep_is_held(&table->tb6_lock)); 1780 if (child_right) 1781 return rcu_dereference_protected(child_right->leaf, 1782 lockdep_is_held(&table->tb6_lock)); 1783 1784 fn = FIB6_SUBTREE(fn); 1785 } 1786 return NULL; 1787 } 1788 1789 /* 1790 * Called to trim the tree of intermediate nodes when possible. "fn" 1791 * is the node we want to try and remove. 1792 * Need to own table->tb6_lock 1793 */ 1794 1795 static struct fib6_node *fib6_repair_tree(struct net *net, 1796 struct fib6_table *table, 1797 struct fib6_node *fn) 1798 { 1799 int children; 1800 int nstate; 1801 struct fib6_node *child; 1802 struct fib6_walker *w; 1803 int iter = 0; 1804 1805 /* Set fn->leaf to null_entry for root node. */ 1806 if (fn->fn_flags & RTN_TL_ROOT) { 1807 rcu_assign_pointer(fn->leaf, net->ipv6.fib6_null_entry); 1808 return fn; 1809 } 1810 1811 for (;;) { 1812 struct fib6_node *fn_r = rcu_dereference_protected(fn->right, 1813 lockdep_is_held(&table->tb6_lock)); 1814 struct fib6_node *fn_l = rcu_dereference_protected(fn->left, 1815 lockdep_is_held(&table->tb6_lock)); 1816 struct fib6_node *pn = rcu_dereference_protected(fn->parent, 1817 lockdep_is_held(&table->tb6_lock)); 1818 struct fib6_node *pn_r = rcu_dereference_protected(pn->right, 1819 lockdep_is_held(&table->tb6_lock)); 1820 struct fib6_node *pn_l = rcu_dereference_protected(pn->left, 1821 lockdep_is_held(&table->tb6_lock)); 1822 struct fib6_info *fn_leaf = rcu_dereference_protected(fn->leaf, 1823 lockdep_is_held(&table->tb6_lock)); 1824 struct fib6_info *pn_leaf = rcu_dereference_protected(pn->leaf, 1825 lockdep_is_held(&table->tb6_lock)); 1826 struct fib6_info *new_fn_leaf; 1827 1828 pr_debug("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter); 1829 iter++; 1830 1831 WARN_ON(fn->fn_flags & RTN_RTINFO); 1832 WARN_ON(fn->fn_flags & RTN_TL_ROOT); 1833 WARN_ON(fn_leaf); 1834 1835 children = 0; 1836 child = NULL; 1837 if (fn_r) { 1838 child = fn_r; 1839 children |= 1; 1840 } 1841 if (fn_l) { 1842 child = fn_l; 1843 children |= 2; 1844 } 1845 1846 if (children == 3 || FIB6_SUBTREE(fn) 1847 #ifdef CONFIG_IPV6_SUBTREES 1848 /* Subtree root (i.e. fn) may have one child */ 1849 || (children && fn->fn_flags & RTN_ROOT) 1850 #endif 1851 ) { 1852 new_fn_leaf = fib6_find_prefix(net, table, fn); 1853 #if RT6_DEBUG >= 2 1854 if (!new_fn_leaf) { 1855 WARN_ON(!new_fn_leaf); 1856 new_fn_leaf = net->ipv6.fib6_null_entry; 1857 } 1858 #endif 1859 fib6_info_hold(new_fn_leaf); 1860 rcu_assign_pointer(fn->leaf, new_fn_leaf); 1861 return pn; 1862 } 1863 1864 #ifdef CONFIG_IPV6_SUBTREES 1865 if (FIB6_SUBTREE(pn) == fn) { 1866 WARN_ON(!(fn->fn_flags & RTN_ROOT)); 1867 RCU_INIT_POINTER(pn->subtree, NULL); 1868 nstate = FWS_L; 1869 } else { 1870 WARN_ON(fn->fn_flags & RTN_ROOT); 1871 #endif 1872 if (pn_r == fn) 1873 rcu_assign_pointer(pn->right, child); 1874 else if (pn_l == fn) 1875 rcu_assign_pointer(pn->left, child); 1876 #if RT6_DEBUG >= 2 1877 else 1878 WARN_ON(1); 1879 #endif 1880 if (child) 1881 rcu_assign_pointer(child->parent, pn); 1882 nstate = FWS_R; 1883 #ifdef CONFIG_IPV6_SUBTREES 1884 } 1885 #endif 1886 1887 read_lock(&net->ipv6.fib6_walker_lock); 1888 FOR_WALKERS(net, w) { 1889 if (!child) { 1890 if (w->node == fn) { 1891 pr_debug("W %p adjusted by delnode 1, s=%d/%d\n", 1892 w, w->state, nstate); 1893 w->node = pn; 1894 w->state = nstate; 1895 } 1896 } else { 1897 if (w->node == fn) { 1898 w->node = child; 1899 if (children&2) { 1900 pr_debug("W %p adjusted by delnode 2, s=%d\n", 1901 w, w->state); 1902 w->state = w->state >= FWS_R ? FWS_U : FWS_INIT; 1903 } else { 1904 pr_debug("W %p adjusted by delnode 2, s=%d\n", 1905 w, w->state); 1906 w->state = w->state >= FWS_C ? FWS_U : FWS_INIT; 1907 } 1908 } 1909 } 1910 } 1911 read_unlock(&net->ipv6.fib6_walker_lock); 1912 1913 node_free(net, fn); 1914 if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn)) 1915 return pn; 1916 1917 RCU_INIT_POINTER(pn->leaf, NULL); 1918 fib6_info_release(pn_leaf); 1919 fn = pn; 1920 } 1921 } 1922 1923 static void fib6_del_route(struct fib6_table *table, struct fib6_node *fn, 1924 struct fib6_info __rcu **rtp, struct nl_info *info) 1925 { 1926 struct fib6_info *leaf, *replace_rt = NULL; 1927 struct fib6_walker *w; 1928 struct fib6_info *rt = rcu_dereference_protected(*rtp, 1929 lockdep_is_held(&table->tb6_lock)); 1930 struct net *net = info->nl_net; 1931 bool notify_del = false; 1932 1933 /* If the deleted route is the first in the node and it is not part of 1934 * a multipath route, then we need to replace it with the next route 1935 * in the node, if exists. 1936 */ 1937 leaf = rcu_dereference_protected(fn->leaf, 1938 lockdep_is_held(&table->tb6_lock)); 1939 if (leaf == rt && !rt->fib6_nsiblings) { 1940 if (rcu_access_pointer(rt->fib6_next)) 1941 replace_rt = rcu_dereference_protected(rt->fib6_next, 1942 lockdep_is_held(&table->tb6_lock)); 1943 else 1944 notify_del = true; 1945 } 1946 1947 /* Unlink it */ 1948 *rtp = rt->fib6_next; 1949 rt->fib6_node = NULL; 1950 net->ipv6.rt6_stats->fib_rt_entries--; 1951 net->ipv6.rt6_stats->fib_discarded_routes++; 1952 1953 /* Reset round-robin state, if necessary */ 1954 if (rcu_access_pointer(fn->rr_ptr) == rt) 1955 fn->rr_ptr = NULL; 1956 1957 /* Remove this entry from other siblings */ 1958 if (rt->fib6_nsiblings) { 1959 struct fib6_info *sibling, *next_sibling; 1960 1961 /* The route is deleted from a multipath route. If this 1962 * multipath route is the first route in the node, then we need 1963 * to emit a delete notification. Otherwise, we need to skip 1964 * the notification. 1965 */ 1966 if (rt->fib6_metric == leaf->fib6_metric && 1967 rt6_qualify_for_ecmp(leaf)) 1968 notify_del = true; 1969 list_for_each_entry_safe(sibling, next_sibling, 1970 &rt->fib6_siblings, fib6_siblings) 1971 sibling->fib6_nsiblings--; 1972 rt->fib6_nsiblings = 0; 1973 list_del_init(&rt->fib6_siblings); 1974 rt6_multipath_rebalance(next_sibling); 1975 } 1976 1977 /* Adjust walkers */ 1978 read_lock(&net->ipv6.fib6_walker_lock); 1979 FOR_WALKERS(net, w) { 1980 if (w->state == FWS_C && w->leaf == rt) { 1981 pr_debug("walker %p adjusted by delroute\n", w); 1982 w->leaf = rcu_dereference_protected(rt->fib6_next, 1983 lockdep_is_held(&table->tb6_lock)); 1984 if (!w->leaf) 1985 w->state = FWS_U; 1986 } 1987 } 1988 read_unlock(&net->ipv6.fib6_walker_lock); 1989 1990 /* If it was last route, call fib6_repair_tree() to: 1991 * 1. For root node, put back null_entry as how the table was created. 1992 * 2. For other nodes, expunge its radix tree node. 1993 */ 1994 if (!rcu_access_pointer(fn->leaf)) { 1995 if (!(fn->fn_flags & RTN_TL_ROOT)) { 1996 fn->fn_flags &= ~RTN_RTINFO; 1997 net->ipv6.rt6_stats->fib_route_nodes--; 1998 } 1999 fn = fib6_repair_tree(net, table, fn); 2000 } 2001 2002 fib6_purge_rt(rt, fn, net); 2003 2004 if (!info->skip_notify_kernel) { 2005 if (notify_del) 2006 call_fib6_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, 2007 rt, NULL); 2008 else if (replace_rt) 2009 call_fib6_entry_notifiers_replace(net, replace_rt); 2010 } 2011 if (!info->skip_notify) 2012 inet6_rt_notify(RTM_DELROUTE, rt, info, 0); 2013 2014 fib6_info_release(rt); 2015 } 2016 2017 /* Need to own table->tb6_lock */ 2018 int fib6_del(struct fib6_info *rt, struct nl_info *info) 2019 { 2020 struct net *net = info->nl_net; 2021 struct fib6_info __rcu **rtp; 2022 struct fib6_info __rcu **rtp_next; 2023 struct fib6_table *table; 2024 struct fib6_node *fn; 2025 2026 if (rt == net->ipv6.fib6_null_entry) 2027 return -ENOENT; 2028 2029 table = rt->fib6_table; 2030 fn = rcu_dereference_protected(rt->fib6_node, 2031 lockdep_is_held(&table->tb6_lock)); 2032 if (!fn) 2033 return -ENOENT; 2034 2035 WARN_ON(!(fn->fn_flags & RTN_RTINFO)); 2036 2037 /* 2038 * Walk the leaf entries looking for ourself 2039 */ 2040 2041 for (rtp = &fn->leaf; *rtp; rtp = rtp_next) { 2042 struct fib6_info *cur = rcu_dereference_protected(*rtp, 2043 lockdep_is_held(&table->tb6_lock)); 2044 if (rt == cur) { 2045 if (fib6_requires_src(cur)) 2046 fib6_routes_require_src_dec(info->nl_net); 2047 fib6_del_route(table, fn, rtp, info); 2048 return 0; 2049 } 2050 rtp_next = &cur->fib6_next; 2051 } 2052 return -ENOENT; 2053 } 2054 2055 /* 2056 * Tree traversal function. 2057 * 2058 * Certainly, it is not interrupt safe. 2059 * However, it is internally reenterable wrt itself and fib6_add/fib6_del. 2060 * It means, that we can modify tree during walking 2061 * and use this function for garbage collection, clone pruning, 2062 * cleaning tree when a device goes down etc. etc. 2063 * 2064 * It guarantees that every node will be traversed, 2065 * and that it will be traversed only once. 2066 * 2067 * Callback function w->func may return: 2068 * 0 -> continue walking. 2069 * positive value -> walking is suspended (used by tree dumps, 2070 * and probably by gc, if it will be split to several slices) 2071 * negative value -> terminate walking. 2072 * 2073 * The function itself returns: 2074 * 0 -> walk is complete. 2075 * >0 -> walk is incomplete (i.e. suspended) 2076 * <0 -> walk is terminated by an error. 2077 * 2078 * This function is called with tb6_lock held. 2079 */ 2080 2081 static int fib6_walk_continue(struct fib6_walker *w) 2082 { 2083 struct fib6_node *fn, *pn, *left, *right; 2084 2085 /* w->root should always be table->tb6_root */ 2086 WARN_ON_ONCE(!(w->root->fn_flags & RTN_TL_ROOT)); 2087 2088 for (;;) { 2089 fn = w->node; 2090 if (!fn) 2091 return 0; 2092 2093 switch (w->state) { 2094 #ifdef CONFIG_IPV6_SUBTREES 2095 case FWS_S: 2096 if (FIB6_SUBTREE(fn)) { 2097 w->node = FIB6_SUBTREE(fn); 2098 continue; 2099 } 2100 w->state = FWS_L; 2101 fallthrough; 2102 #endif 2103 case FWS_L: 2104 left = rcu_dereference_protected(fn->left, 1); 2105 if (left) { 2106 w->node = left; 2107 w->state = FWS_INIT; 2108 continue; 2109 } 2110 w->state = FWS_R; 2111 fallthrough; 2112 case FWS_R: 2113 right = rcu_dereference_protected(fn->right, 1); 2114 if (right) { 2115 w->node = right; 2116 w->state = FWS_INIT; 2117 continue; 2118 } 2119 w->state = FWS_C; 2120 w->leaf = rcu_dereference_protected(fn->leaf, 1); 2121 fallthrough; 2122 case FWS_C: 2123 if (w->leaf && fn->fn_flags & RTN_RTINFO) { 2124 int err; 2125 2126 if (w->skip) { 2127 w->skip--; 2128 goto skip; 2129 } 2130 2131 err = w->func(w); 2132 if (err) 2133 return err; 2134 2135 w->count++; 2136 continue; 2137 } 2138 skip: 2139 w->state = FWS_U; 2140 fallthrough; 2141 case FWS_U: 2142 if (fn == w->root) 2143 return 0; 2144 pn = rcu_dereference_protected(fn->parent, 1); 2145 left = rcu_dereference_protected(pn->left, 1); 2146 right = rcu_dereference_protected(pn->right, 1); 2147 w->node = pn; 2148 #ifdef CONFIG_IPV6_SUBTREES 2149 if (FIB6_SUBTREE(pn) == fn) { 2150 WARN_ON(!(fn->fn_flags & RTN_ROOT)); 2151 w->state = FWS_L; 2152 continue; 2153 } 2154 #endif 2155 if (left == fn) { 2156 w->state = FWS_R; 2157 continue; 2158 } 2159 if (right == fn) { 2160 w->state = FWS_C; 2161 w->leaf = rcu_dereference_protected(w->node->leaf, 1); 2162 continue; 2163 } 2164 #if RT6_DEBUG >= 2 2165 WARN_ON(1); 2166 #endif 2167 } 2168 } 2169 } 2170 2171 static int fib6_walk(struct net *net, struct fib6_walker *w) 2172 { 2173 int res; 2174 2175 w->state = FWS_INIT; 2176 w->node = w->root; 2177 2178 fib6_walker_link(net, w); 2179 res = fib6_walk_continue(w); 2180 if (res <= 0) 2181 fib6_walker_unlink(net, w); 2182 return res; 2183 } 2184 2185 static int fib6_clean_node(struct fib6_walker *w) 2186 { 2187 int res; 2188 struct fib6_info *rt; 2189 struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w); 2190 struct nl_info info = { 2191 .nl_net = c->net, 2192 .skip_notify = c->skip_notify, 2193 }; 2194 2195 if (c->sernum != FIB6_NO_SERNUM_CHANGE && 2196 READ_ONCE(w->node->fn_sernum) != c->sernum) 2197 WRITE_ONCE(w->node->fn_sernum, c->sernum); 2198 2199 if (!c->func) { 2200 WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE); 2201 w->leaf = NULL; 2202 return 0; 2203 } 2204 2205 for_each_fib6_walker_rt(w) { 2206 res = c->func(rt, c->arg); 2207 if (res == -1) { 2208 w->leaf = rt; 2209 res = fib6_del(rt, &info); 2210 if (res) { 2211 #if RT6_DEBUG >= 2 2212 pr_debug("%s: del failed: rt=%p@%p err=%d\n", 2213 __func__, rt, 2214 rcu_access_pointer(rt->fib6_node), 2215 res); 2216 #endif 2217 continue; 2218 } 2219 return 0; 2220 } else if (res == -2) { 2221 if (WARN_ON(!rt->fib6_nsiblings)) 2222 continue; 2223 rt = list_last_entry(&rt->fib6_siblings, 2224 struct fib6_info, fib6_siblings); 2225 continue; 2226 } 2227 WARN_ON(res != 0); 2228 } 2229 w->leaf = rt; 2230 return 0; 2231 } 2232 2233 /* 2234 * Convenient frontend to tree walker. 2235 * 2236 * func is called on each route. 2237 * It may return -2 -> skip multipath route. 2238 * -1 -> delete this route. 2239 * 0 -> continue walking 2240 */ 2241 2242 static void fib6_clean_tree(struct net *net, struct fib6_node *root, 2243 int (*func)(struct fib6_info *, void *arg), 2244 int sernum, void *arg, bool skip_notify) 2245 { 2246 struct fib6_cleaner c; 2247 2248 c.w.root = root; 2249 c.w.func = fib6_clean_node; 2250 c.w.count = 0; 2251 c.w.skip = 0; 2252 c.w.skip_in_node = 0; 2253 c.func = func; 2254 c.sernum = sernum; 2255 c.arg = arg; 2256 c.net = net; 2257 c.skip_notify = skip_notify; 2258 2259 fib6_walk(net, &c.w); 2260 } 2261 2262 static void __fib6_clean_all(struct net *net, 2263 int (*func)(struct fib6_info *, void *), 2264 int sernum, void *arg, bool skip_notify) 2265 { 2266 struct fib6_table *table; 2267 struct hlist_head *head; 2268 unsigned int h; 2269 2270 rcu_read_lock(); 2271 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { 2272 head = &net->ipv6.fib_table_hash[h]; 2273 hlist_for_each_entry_rcu(table, head, tb6_hlist) { 2274 spin_lock_bh(&table->tb6_lock); 2275 fib6_clean_tree(net, &table->tb6_root, 2276 func, sernum, arg, skip_notify); 2277 spin_unlock_bh(&table->tb6_lock); 2278 } 2279 } 2280 rcu_read_unlock(); 2281 } 2282 2283 void fib6_clean_all(struct net *net, int (*func)(struct fib6_info *, void *), 2284 void *arg) 2285 { 2286 __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, false); 2287 } 2288 2289 void fib6_clean_all_skip_notify(struct net *net, 2290 int (*func)(struct fib6_info *, void *), 2291 void *arg) 2292 { 2293 __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, true); 2294 } 2295 2296 static void fib6_flush_trees(struct net *net) 2297 { 2298 int new_sernum = fib6_new_sernum(net); 2299 2300 __fib6_clean_all(net, NULL, new_sernum, NULL, false); 2301 } 2302 2303 /* 2304 * Garbage collection 2305 */ 2306 2307 static int fib6_age(struct fib6_info *rt, struct fib6_gc_args *gc_args) 2308 { 2309 unsigned long now = jiffies; 2310 2311 /* 2312 * check addrconf expiration here. 2313 * Routes are expired even if they are in use. 2314 */ 2315 2316 if (rt->fib6_flags & RTF_EXPIRES && rt->expires) { 2317 if (time_after(now, rt->expires)) { 2318 pr_debug("expiring %p\n", rt); 2319 return -1; 2320 } 2321 gc_args->more++; 2322 } 2323 2324 /* Also age clones in the exception table. 2325 * Note, that clones are aged out 2326 * only if they are not in use now. 2327 */ 2328 rt6_age_exceptions(rt, gc_args, now); 2329 2330 return 0; 2331 } 2332 2333 static void fib6_gc_table(struct net *net, 2334 struct fib6_table *tb6, 2335 struct fib6_gc_args *gc_args) 2336 { 2337 struct fib6_info *rt; 2338 struct hlist_node *n; 2339 struct nl_info info = { 2340 .nl_net = net, 2341 .skip_notify = false, 2342 }; 2343 2344 hlist_for_each_entry_safe(rt, n, &tb6->tb6_gc_hlist, gc_link) 2345 if (fib6_age(rt, gc_args) == -1) 2346 fib6_del(rt, &info); 2347 } 2348 2349 static void fib6_gc_all(struct net *net, struct fib6_gc_args *gc_args) 2350 { 2351 struct fib6_table *table; 2352 struct hlist_head *head; 2353 unsigned int h; 2354 2355 rcu_read_lock(); 2356 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { 2357 head = &net->ipv6.fib_table_hash[h]; 2358 hlist_for_each_entry_rcu(table, head, tb6_hlist) { 2359 spin_lock_bh(&table->tb6_lock); 2360 2361 fib6_gc_table(net, table, gc_args); 2362 2363 spin_unlock_bh(&table->tb6_lock); 2364 } 2365 } 2366 rcu_read_unlock(); 2367 } 2368 2369 void fib6_run_gc(unsigned long expires, struct net *net, bool force) 2370 { 2371 struct fib6_gc_args gc_args; 2372 unsigned long now; 2373 2374 if (force) { 2375 spin_lock_bh(&net->ipv6.fib6_gc_lock); 2376 } else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) { 2377 mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ); 2378 return; 2379 } 2380 gc_args.timeout = expires ? (int)expires : 2381 net->ipv6.sysctl.ip6_rt_gc_interval; 2382 gc_args.more = 0; 2383 2384 fib6_gc_all(net, &gc_args); 2385 now = jiffies; 2386 net->ipv6.ip6_rt_last_gc = now; 2387 2388 if (gc_args.more) 2389 mod_timer(&net->ipv6.ip6_fib_timer, 2390 round_jiffies(now 2391 + net->ipv6.sysctl.ip6_rt_gc_interval)); 2392 else 2393 del_timer(&net->ipv6.ip6_fib_timer); 2394 spin_unlock_bh(&net->ipv6.fib6_gc_lock); 2395 } 2396 2397 static void fib6_gc_timer_cb(struct timer_list *t) 2398 { 2399 struct net *arg = from_timer(arg, t, ipv6.ip6_fib_timer); 2400 2401 fib6_run_gc(0, arg, true); 2402 } 2403 2404 static int __net_init fib6_net_init(struct net *net) 2405 { 2406 size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ; 2407 int err; 2408 2409 err = fib6_notifier_init(net); 2410 if (err) 2411 return err; 2412 2413 /* Default to 3-tuple */ 2414 net->ipv6.sysctl.multipath_hash_fields = 2415 FIB_MULTIPATH_HASH_FIELD_DEFAULT_MASK; 2416 2417 spin_lock_init(&net->ipv6.fib6_gc_lock); 2418 rwlock_init(&net->ipv6.fib6_walker_lock); 2419 INIT_LIST_HEAD(&net->ipv6.fib6_walkers); 2420 timer_setup(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, 0); 2421 2422 net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL); 2423 if (!net->ipv6.rt6_stats) 2424 goto out_notifier; 2425 2426 /* Avoid false sharing : Use at least a full cache line */ 2427 size = max_t(size_t, size, L1_CACHE_BYTES); 2428 2429 net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL); 2430 if (!net->ipv6.fib_table_hash) 2431 goto out_rt6_stats; 2432 2433 net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl), 2434 GFP_KERNEL); 2435 if (!net->ipv6.fib6_main_tbl) 2436 goto out_fib_table_hash; 2437 2438 net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN; 2439 rcu_assign_pointer(net->ipv6.fib6_main_tbl->tb6_root.leaf, 2440 net->ipv6.fib6_null_entry); 2441 net->ipv6.fib6_main_tbl->tb6_root.fn_flags = 2442 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO; 2443 inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers); 2444 INIT_HLIST_HEAD(&net->ipv6.fib6_main_tbl->tb6_gc_hlist); 2445 2446 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 2447 net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl), 2448 GFP_KERNEL); 2449 if (!net->ipv6.fib6_local_tbl) 2450 goto out_fib6_main_tbl; 2451 net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL; 2452 rcu_assign_pointer(net->ipv6.fib6_local_tbl->tb6_root.leaf, 2453 net->ipv6.fib6_null_entry); 2454 net->ipv6.fib6_local_tbl->tb6_root.fn_flags = 2455 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO; 2456 inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers); 2457 INIT_HLIST_HEAD(&net->ipv6.fib6_local_tbl->tb6_gc_hlist); 2458 #endif 2459 fib6_tables_init(net); 2460 2461 return 0; 2462 2463 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 2464 out_fib6_main_tbl: 2465 kfree(net->ipv6.fib6_main_tbl); 2466 #endif 2467 out_fib_table_hash: 2468 kfree(net->ipv6.fib_table_hash); 2469 out_rt6_stats: 2470 kfree(net->ipv6.rt6_stats); 2471 out_notifier: 2472 fib6_notifier_exit(net); 2473 return -ENOMEM; 2474 } 2475 2476 static void fib6_net_exit(struct net *net) 2477 { 2478 unsigned int i; 2479 2480 del_timer_sync(&net->ipv6.ip6_fib_timer); 2481 2482 for (i = 0; i < FIB6_TABLE_HASHSZ; i++) { 2483 struct hlist_head *head = &net->ipv6.fib_table_hash[i]; 2484 struct hlist_node *tmp; 2485 struct fib6_table *tb; 2486 2487 hlist_for_each_entry_safe(tb, tmp, head, tb6_hlist) { 2488 hlist_del(&tb->tb6_hlist); 2489 fib6_free_table(tb); 2490 } 2491 } 2492 2493 kfree(net->ipv6.fib_table_hash); 2494 kfree(net->ipv6.rt6_stats); 2495 fib6_notifier_exit(net); 2496 } 2497 2498 static struct pernet_operations fib6_net_ops = { 2499 .init = fib6_net_init, 2500 .exit = fib6_net_exit, 2501 }; 2502 2503 int __init fib6_init(void) 2504 { 2505 int ret = -ENOMEM; 2506 2507 fib6_node_kmem = KMEM_CACHE(fib6_node, 2508 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT); 2509 if (!fib6_node_kmem) 2510 goto out; 2511 2512 ret = register_pernet_subsys(&fib6_net_ops); 2513 if (ret) 2514 goto out_kmem_cache_create; 2515 2516 ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_GETROUTE, NULL, 2517 inet6_dump_fib, RTNL_FLAG_DUMP_UNLOCKED | 2518 RTNL_FLAG_DUMP_SPLIT_NLM_DONE); 2519 if (ret) 2520 goto out_unregister_subsys; 2521 2522 __fib6_flush_trees = fib6_flush_trees; 2523 out: 2524 return ret; 2525 2526 out_unregister_subsys: 2527 unregister_pernet_subsys(&fib6_net_ops); 2528 out_kmem_cache_create: 2529 kmem_cache_destroy(fib6_node_kmem); 2530 goto out; 2531 } 2532 2533 void fib6_gc_cleanup(void) 2534 { 2535 unregister_pernet_subsys(&fib6_net_ops); 2536 kmem_cache_destroy(fib6_node_kmem); 2537 } 2538 2539 #ifdef CONFIG_PROC_FS 2540 static int ipv6_route_native_seq_show(struct seq_file *seq, void *v) 2541 { 2542 struct fib6_info *rt = v; 2543 struct ipv6_route_iter *iter = seq->private; 2544 struct fib6_nh *fib6_nh = rt->fib6_nh; 2545 unsigned int flags = rt->fib6_flags; 2546 const struct net_device *dev; 2547 2548 if (rt->nh) 2549 fib6_nh = nexthop_fib6_nh(rt->nh); 2550 2551 seq_printf(seq, "%pi6 %02x ", &rt->fib6_dst.addr, rt->fib6_dst.plen); 2552 2553 #ifdef CONFIG_IPV6_SUBTREES 2554 seq_printf(seq, "%pi6 %02x ", &rt->fib6_src.addr, rt->fib6_src.plen); 2555 #else 2556 seq_puts(seq, "00000000000000000000000000000000 00 "); 2557 #endif 2558 if (fib6_nh->fib_nh_gw_family) { 2559 flags |= RTF_GATEWAY; 2560 seq_printf(seq, "%pi6", &fib6_nh->fib_nh_gw6); 2561 } else { 2562 seq_puts(seq, "00000000000000000000000000000000"); 2563 } 2564 2565 dev = fib6_nh->fib_nh_dev; 2566 seq_printf(seq, " %08x %08x %08x %08x %8s\n", 2567 rt->fib6_metric, refcount_read(&rt->fib6_ref), 0, 2568 flags, dev ? dev->name : ""); 2569 iter->w.leaf = NULL; 2570 return 0; 2571 } 2572 2573 static int ipv6_route_yield(struct fib6_walker *w) 2574 { 2575 struct ipv6_route_iter *iter = w->args; 2576 2577 if (!iter->skip) 2578 return 1; 2579 2580 do { 2581 iter->w.leaf = rcu_dereference_protected( 2582 iter->w.leaf->fib6_next, 2583 lockdep_is_held(&iter->tbl->tb6_lock)); 2584 iter->skip--; 2585 if (!iter->skip && iter->w.leaf) 2586 return 1; 2587 } while (iter->w.leaf); 2588 2589 return 0; 2590 } 2591 2592 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter, 2593 struct net *net) 2594 { 2595 memset(&iter->w, 0, sizeof(iter->w)); 2596 iter->w.func = ipv6_route_yield; 2597 iter->w.root = &iter->tbl->tb6_root; 2598 iter->w.state = FWS_INIT; 2599 iter->w.node = iter->w.root; 2600 iter->w.args = iter; 2601 iter->sernum = READ_ONCE(iter->w.root->fn_sernum); 2602 INIT_LIST_HEAD(&iter->w.lh); 2603 fib6_walker_link(net, &iter->w); 2604 } 2605 2606 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl, 2607 struct net *net) 2608 { 2609 unsigned int h; 2610 struct hlist_node *node; 2611 2612 if (tbl) { 2613 h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1; 2614 node = rcu_dereference(hlist_next_rcu(&tbl->tb6_hlist)); 2615 } else { 2616 h = 0; 2617 node = NULL; 2618 } 2619 2620 while (!node && h < FIB6_TABLE_HASHSZ) { 2621 node = rcu_dereference( 2622 hlist_first_rcu(&net->ipv6.fib_table_hash[h++])); 2623 } 2624 return hlist_entry_safe(node, struct fib6_table, tb6_hlist); 2625 } 2626 2627 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter) 2628 { 2629 int sernum = READ_ONCE(iter->w.root->fn_sernum); 2630 2631 if (iter->sernum != sernum) { 2632 iter->sernum = sernum; 2633 iter->w.state = FWS_INIT; 2634 iter->w.node = iter->w.root; 2635 WARN_ON(iter->w.skip); 2636 iter->w.skip = iter->w.count; 2637 } 2638 } 2639 2640 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2641 { 2642 int r; 2643 struct fib6_info *n; 2644 struct net *net = seq_file_net(seq); 2645 struct ipv6_route_iter *iter = seq->private; 2646 2647 ++(*pos); 2648 if (!v) 2649 goto iter_table; 2650 2651 n = rcu_dereference(((struct fib6_info *)v)->fib6_next); 2652 if (n) 2653 return n; 2654 2655 iter_table: 2656 ipv6_route_check_sernum(iter); 2657 spin_lock_bh(&iter->tbl->tb6_lock); 2658 r = fib6_walk_continue(&iter->w); 2659 spin_unlock_bh(&iter->tbl->tb6_lock); 2660 if (r > 0) { 2661 return iter->w.leaf; 2662 } else if (r < 0) { 2663 fib6_walker_unlink(net, &iter->w); 2664 return NULL; 2665 } 2666 fib6_walker_unlink(net, &iter->w); 2667 2668 iter->tbl = ipv6_route_seq_next_table(iter->tbl, net); 2669 if (!iter->tbl) 2670 return NULL; 2671 2672 ipv6_route_seq_setup_walk(iter, net); 2673 goto iter_table; 2674 } 2675 2676 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos) 2677 __acquires(RCU) 2678 { 2679 struct net *net = seq_file_net(seq); 2680 struct ipv6_route_iter *iter = seq->private; 2681 2682 rcu_read_lock(); 2683 iter->tbl = ipv6_route_seq_next_table(NULL, net); 2684 iter->skip = *pos; 2685 2686 if (iter->tbl) { 2687 loff_t p = 0; 2688 2689 ipv6_route_seq_setup_walk(iter, net); 2690 return ipv6_route_seq_next(seq, NULL, &p); 2691 } else { 2692 return NULL; 2693 } 2694 } 2695 2696 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter) 2697 { 2698 struct fib6_walker *w = &iter->w; 2699 return w->node && !(w->state == FWS_U && w->node == w->root); 2700 } 2701 2702 static void ipv6_route_native_seq_stop(struct seq_file *seq, void *v) 2703 __releases(RCU) 2704 { 2705 struct net *net = seq_file_net(seq); 2706 struct ipv6_route_iter *iter = seq->private; 2707 2708 if (ipv6_route_iter_active(iter)) 2709 fib6_walker_unlink(net, &iter->w); 2710 2711 rcu_read_unlock(); 2712 } 2713 2714 #if IS_BUILTIN(CONFIG_IPV6) && defined(CONFIG_BPF_SYSCALL) 2715 static int ipv6_route_prog_seq_show(struct bpf_prog *prog, 2716 struct bpf_iter_meta *meta, 2717 void *v) 2718 { 2719 struct bpf_iter__ipv6_route ctx; 2720 2721 ctx.meta = meta; 2722 ctx.rt = v; 2723 return bpf_iter_run_prog(prog, &ctx); 2724 } 2725 2726 static int ipv6_route_seq_show(struct seq_file *seq, void *v) 2727 { 2728 struct ipv6_route_iter *iter = seq->private; 2729 struct bpf_iter_meta meta; 2730 struct bpf_prog *prog; 2731 int ret; 2732 2733 meta.seq = seq; 2734 prog = bpf_iter_get_info(&meta, false); 2735 if (!prog) 2736 return ipv6_route_native_seq_show(seq, v); 2737 2738 ret = ipv6_route_prog_seq_show(prog, &meta, v); 2739 iter->w.leaf = NULL; 2740 2741 return ret; 2742 } 2743 2744 static void ipv6_route_seq_stop(struct seq_file *seq, void *v) 2745 { 2746 struct bpf_iter_meta meta; 2747 struct bpf_prog *prog; 2748 2749 if (!v) { 2750 meta.seq = seq; 2751 prog = bpf_iter_get_info(&meta, true); 2752 if (prog) 2753 (void)ipv6_route_prog_seq_show(prog, &meta, v); 2754 } 2755 2756 ipv6_route_native_seq_stop(seq, v); 2757 } 2758 #else 2759 static int ipv6_route_seq_show(struct seq_file *seq, void *v) 2760 { 2761 return ipv6_route_native_seq_show(seq, v); 2762 } 2763 2764 static void ipv6_route_seq_stop(struct seq_file *seq, void *v) 2765 { 2766 ipv6_route_native_seq_stop(seq, v); 2767 } 2768 #endif 2769 2770 const struct seq_operations ipv6_route_seq_ops = { 2771 .start = ipv6_route_seq_start, 2772 .next = ipv6_route_seq_next, 2773 .stop = ipv6_route_seq_stop, 2774 .show = ipv6_route_seq_show 2775 }; 2776 #endif /* CONFIG_PROC_FS */ 2777