1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Linux INET6 implementation 4 * Forwarding Information Database 5 * 6 * Authors: 7 * Pedro Roque <roque@di.fc.ul.pt> 8 * 9 * Changes: 10 * Yuji SEKIYA @USAGI: Support default route on router node; 11 * remove ip6_null_entry from the top of 12 * routing table. 13 * Ville Nuorvala: Fixed routing subtrees. 14 */ 15 16 #define pr_fmt(fmt) "IPv6: " fmt 17 18 #include <linux/bpf.h> 19 #include <linux/errno.h> 20 #include <linux/types.h> 21 #include <linux/net.h> 22 #include <linux/route.h> 23 #include <linux/netdevice.h> 24 #include <linux/in6.h> 25 #include <linux/init.h> 26 #include <linux/list.h> 27 #include <linux/slab.h> 28 29 #include <net/ip.h> 30 #include <net/ipv6.h> 31 #include <net/ndisc.h> 32 #include <net/addrconf.h> 33 #include <net/lwtunnel.h> 34 #include <net/fib_notifier.h> 35 36 #include <net/ip_fib.h> 37 #include <net/ip6_fib.h> 38 #include <net/ip6_route.h> 39 40 static struct kmem_cache *fib6_node_kmem __read_mostly; 41 42 struct fib6_cleaner { 43 struct fib6_walker w; 44 struct net *net; 45 int (*func)(struct fib6_info *, void *arg); 46 int sernum; 47 void *arg; 48 bool skip_notify; 49 }; 50 51 #ifdef CONFIG_IPV6_SUBTREES 52 #define FWS_INIT FWS_S 53 #else 54 #define FWS_INIT FWS_L 55 #endif 56 57 static struct fib6_info *fib6_find_prefix(struct net *net, 58 struct fib6_table *table, 59 struct fib6_node *fn); 60 static struct fib6_node *fib6_repair_tree(struct net *net, 61 struct fib6_table *table, 62 struct fib6_node *fn); 63 static int fib6_walk(struct net *net, struct fib6_walker *w); 64 static int fib6_walk_continue(struct fib6_walker *w); 65 66 /* 67 * A routing update causes an increase of the serial number on the 68 * affected subtree. This allows for cached routes to be asynchronously 69 * tested when modifications are made to the destination cache as a 70 * result of redirects, path MTU changes, etc. 71 */ 72 73 static void fib6_gc_timer_cb(struct timer_list *t); 74 75 #define FOR_WALKERS(net, w) \ 76 list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh) 77 78 static void fib6_walker_link(struct net *net, struct fib6_walker *w) 79 { 80 write_lock_bh(&net->ipv6.fib6_walker_lock); 81 list_add(&w->lh, &net->ipv6.fib6_walkers); 82 write_unlock_bh(&net->ipv6.fib6_walker_lock); 83 } 84 85 static void fib6_walker_unlink(struct net *net, struct fib6_walker *w) 86 { 87 write_lock_bh(&net->ipv6.fib6_walker_lock); 88 list_del(&w->lh); 89 write_unlock_bh(&net->ipv6.fib6_walker_lock); 90 } 91 92 static int fib6_new_sernum(struct net *net) 93 { 94 int new, old = atomic_read(&net->ipv6.fib6_sernum); 95 96 do { 97 new = old < INT_MAX ? old + 1 : 1; 98 } while (!atomic_try_cmpxchg(&net->ipv6.fib6_sernum, &old, new)); 99 100 return new; 101 } 102 103 enum { 104 FIB6_NO_SERNUM_CHANGE = 0, 105 }; 106 107 void fib6_update_sernum(struct net *net, struct fib6_info *f6i) 108 { 109 struct fib6_node *fn; 110 111 fn = rcu_dereference_protected(f6i->fib6_node, 112 lockdep_is_held(&f6i->fib6_table->tb6_lock)); 113 if (fn) 114 WRITE_ONCE(fn->fn_sernum, fib6_new_sernum(net)); 115 } 116 117 /* 118 * Auxiliary address test functions for the radix tree. 119 * 120 * These assume a 32bit processor (although it will work on 121 * 64bit processors) 122 */ 123 124 /* 125 * test bit 126 */ 127 #if defined(__LITTLE_ENDIAN) 128 # define BITOP_BE32_SWIZZLE (0x1F & ~7) 129 #else 130 # define BITOP_BE32_SWIZZLE 0 131 #endif 132 133 static __be32 addr_bit_set(const void *token, int fn_bit) 134 { 135 const __be32 *addr = token; 136 /* 137 * Here, 138 * 1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f) 139 * is optimized version of 140 * htonl(1 << ((~fn_bit)&0x1F)) 141 * See include/asm-generic/bitops/le.h. 142 */ 143 return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) & 144 addr[fn_bit >> 5]; 145 } 146 147 struct fib6_info *fib6_info_alloc(gfp_t gfp_flags, bool with_fib6_nh) 148 { 149 struct fib6_info *f6i; 150 size_t sz = sizeof(*f6i); 151 152 if (with_fib6_nh) 153 sz += sizeof(struct fib6_nh); 154 155 f6i = kzalloc(sz, gfp_flags); 156 if (!f6i) 157 return NULL; 158 159 /* fib6_siblings is a union with nh_list, so this initializes both */ 160 INIT_LIST_HEAD(&f6i->fib6_siblings); 161 refcount_set(&f6i->fib6_ref, 1); 162 163 INIT_HLIST_NODE(&f6i->gc_link); 164 165 return f6i; 166 } 167 168 void fib6_info_destroy_rcu(struct rcu_head *head) 169 { 170 struct fib6_info *f6i = container_of(head, struct fib6_info, rcu); 171 172 WARN_ON(f6i->fib6_node); 173 174 if (f6i->nh) 175 nexthop_put(f6i->nh); 176 else 177 fib6_nh_release(f6i->fib6_nh); 178 179 ip_fib_metrics_put(f6i->fib6_metrics); 180 kfree(f6i); 181 } 182 EXPORT_SYMBOL_GPL(fib6_info_destroy_rcu); 183 184 static struct fib6_node *node_alloc(struct net *net) 185 { 186 struct fib6_node *fn; 187 188 fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC); 189 if (fn) 190 net->ipv6.rt6_stats->fib_nodes++; 191 192 return fn; 193 } 194 195 static void node_free_immediate(struct net *net, struct fib6_node *fn) 196 { 197 kmem_cache_free(fib6_node_kmem, fn); 198 net->ipv6.rt6_stats->fib_nodes--; 199 } 200 201 static void node_free_rcu(struct rcu_head *head) 202 { 203 struct fib6_node *fn = container_of(head, struct fib6_node, rcu); 204 205 kmem_cache_free(fib6_node_kmem, fn); 206 } 207 208 static void node_free(struct net *net, struct fib6_node *fn) 209 { 210 call_rcu(&fn->rcu, node_free_rcu); 211 net->ipv6.rt6_stats->fib_nodes--; 212 } 213 214 static void fib6_free_table(struct fib6_table *table) 215 { 216 inetpeer_invalidate_tree(&table->tb6_peers); 217 kfree(table); 218 } 219 220 static void fib6_link_table(struct net *net, struct fib6_table *tb) 221 { 222 unsigned int h; 223 224 /* 225 * Initialize table lock at a single place to give lockdep a key, 226 * tables aren't visible prior to being linked to the list. 227 */ 228 spin_lock_init(&tb->tb6_lock); 229 h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1); 230 231 /* 232 * No protection necessary, this is the only list mutatation 233 * operation, tables never disappear once they exist. 234 */ 235 hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]); 236 } 237 238 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 239 240 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id) 241 { 242 struct fib6_table *table; 243 244 table = kzalloc(sizeof(*table), GFP_ATOMIC); 245 if (table) { 246 table->tb6_id = id; 247 rcu_assign_pointer(table->tb6_root.leaf, 248 net->ipv6.fib6_null_entry); 249 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO; 250 inet_peer_base_init(&table->tb6_peers); 251 INIT_HLIST_HEAD(&table->tb6_gc_hlist); 252 } 253 254 return table; 255 } 256 257 struct fib6_table *fib6_new_table(struct net *net, u32 id) 258 { 259 struct fib6_table *tb; 260 261 if (id == 0) 262 id = RT6_TABLE_MAIN; 263 tb = fib6_get_table(net, id); 264 if (tb) 265 return tb; 266 267 tb = fib6_alloc_table(net, id); 268 if (tb) 269 fib6_link_table(net, tb); 270 271 return tb; 272 } 273 EXPORT_SYMBOL_GPL(fib6_new_table); 274 275 struct fib6_table *fib6_get_table(struct net *net, u32 id) 276 { 277 struct fib6_table *tb; 278 struct hlist_head *head; 279 unsigned int h; 280 281 if (id == 0) 282 id = RT6_TABLE_MAIN; 283 h = id & (FIB6_TABLE_HASHSZ - 1); 284 rcu_read_lock(); 285 head = &net->ipv6.fib_table_hash[h]; 286 hlist_for_each_entry_rcu(tb, head, tb6_hlist) { 287 if (tb->tb6_id == id) { 288 rcu_read_unlock(); 289 return tb; 290 } 291 } 292 rcu_read_unlock(); 293 294 return NULL; 295 } 296 EXPORT_SYMBOL_GPL(fib6_get_table); 297 298 static void __net_init fib6_tables_init(struct net *net) 299 { 300 fib6_link_table(net, net->ipv6.fib6_main_tbl); 301 fib6_link_table(net, net->ipv6.fib6_local_tbl); 302 } 303 #else 304 305 struct fib6_table *fib6_new_table(struct net *net, u32 id) 306 { 307 return fib6_get_table(net, id); 308 } 309 310 struct fib6_table *fib6_get_table(struct net *net, u32 id) 311 { 312 return net->ipv6.fib6_main_tbl; 313 } 314 315 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6, 316 const struct sk_buff *skb, 317 int flags, pol_lookup_t lookup) 318 { 319 struct rt6_info *rt; 320 321 rt = pol_lookup_func(lookup, 322 net, net->ipv6.fib6_main_tbl, fl6, skb, flags); 323 if (rt->dst.error == -EAGAIN) { 324 ip6_rt_put_flags(rt, flags); 325 rt = net->ipv6.ip6_null_entry; 326 if (!(flags & RT6_LOOKUP_F_DST_NOREF)) 327 dst_hold(&rt->dst); 328 } 329 330 return &rt->dst; 331 } 332 333 /* called with rcu lock held; no reference taken on fib6_info */ 334 int fib6_lookup(struct net *net, int oif, struct flowi6 *fl6, 335 struct fib6_result *res, int flags) 336 { 337 return fib6_table_lookup(net, net->ipv6.fib6_main_tbl, oif, fl6, 338 res, flags); 339 } 340 341 static void __net_init fib6_tables_init(struct net *net) 342 { 343 fib6_link_table(net, net->ipv6.fib6_main_tbl); 344 } 345 346 #endif 347 348 unsigned int fib6_tables_seq_read(struct net *net) 349 { 350 unsigned int h, fib_seq = 0; 351 352 rcu_read_lock(); 353 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { 354 struct hlist_head *head = &net->ipv6.fib_table_hash[h]; 355 struct fib6_table *tb; 356 357 hlist_for_each_entry_rcu(tb, head, tb6_hlist) 358 fib_seq += tb->fib_seq; 359 } 360 rcu_read_unlock(); 361 362 return fib_seq; 363 } 364 365 static int call_fib6_entry_notifier(struct notifier_block *nb, 366 enum fib_event_type event_type, 367 struct fib6_info *rt, 368 struct netlink_ext_ack *extack) 369 { 370 struct fib6_entry_notifier_info info = { 371 .info.extack = extack, 372 .rt = rt, 373 }; 374 375 return call_fib6_notifier(nb, event_type, &info.info); 376 } 377 378 static int call_fib6_multipath_entry_notifier(struct notifier_block *nb, 379 enum fib_event_type event_type, 380 struct fib6_info *rt, 381 unsigned int nsiblings, 382 struct netlink_ext_ack *extack) 383 { 384 struct fib6_entry_notifier_info info = { 385 .info.extack = extack, 386 .rt = rt, 387 .nsiblings = nsiblings, 388 }; 389 390 return call_fib6_notifier(nb, event_type, &info.info); 391 } 392 393 int call_fib6_entry_notifiers(struct net *net, 394 enum fib_event_type event_type, 395 struct fib6_info *rt, 396 struct netlink_ext_ack *extack) 397 { 398 struct fib6_entry_notifier_info info = { 399 .info.extack = extack, 400 .rt = rt, 401 }; 402 403 rt->fib6_table->fib_seq++; 404 return call_fib6_notifiers(net, event_type, &info.info); 405 } 406 407 int call_fib6_multipath_entry_notifiers(struct net *net, 408 enum fib_event_type event_type, 409 struct fib6_info *rt, 410 unsigned int nsiblings, 411 struct netlink_ext_ack *extack) 412 { 413 struct fib6_entry_notifier_info info = { 414 .info.extack = extack, 415 .rt = rt, 416 .nsiblings = nsiblings, 417 }; 418 419 rt->fib6_table->fib_seq++; 420 return call_fib6_notifiers(net, event_type, &info.info); 421 } 422 423 int call_fib6_entry_notifiers_replace(struct net *net, struct fib6_info *rt) 424 { 425 struct fib6_entry_notifier_info info = { 426 .rt = rt, 427 .nsiblings = rt->fib6_nsiblings, 428 }; 429 430 rt->fib6_table->fib_seq++; 431 return call_fib6_notifiers(net, FIB_EVENT_ENTRY_REPLACE, &info.info); 432 } 433 434 struct fib6_dump_arg { 435 struct net *net; 436 struct notifier_block *nb; 437 struct netlink_ext_ack *extack; 438 }; 439 440 static int fib6_rt_dump(struct fib6_info *rt, struct fib6_dump_arg *arg) 441 { 442 enum fib_event_type fib_event = FIB_EVENT_ENTRY_REPLACE; 443 int err; 444 445 if (!rt || rt == arg->net->ipv6.fib6_null_entry) 446 return 0; 447 448 if (rt->fib6_nsiblings) 449 err = call_fib6_multipath_entry_notifier(arg->nb, fib_event, 450 rt, 451 rt->fib6_nsiblings, 452 arg->extack); 453 else 454 err = call_fib6_entry_notifier(arg->nb, fib_event, rt, 455 arg->extack); 456 457 return err; 458 } 459 460 static int fib6_node_dump(struct fib6_walker *w) 461 { 462 int err; 463 464 err = fib6_rt_dump(w->leaf, w->args); 465 w->leaf = NULL; 466 return err; 467 } 468 469 static int fib6_table_dump(struct net *net, struct fib6_table *tb, 470 struct fib6_walker *w) 471 { 472 int err; 473 474 w->root = &tb->tb6_root; 475 spin_lock_bh(&tb->tb6_lock); 476 err = fib6_walk(net, w); 477 spin_unlock_bh(&tb->tb6_lock); 478 return err; 479 } 480 481 /* Called with rcu_read_lock() */ 482 int fib6_tables_dump(struct net *net, struct notifier_block *nb, 483 struct netlink_ext_ack *extack) 484 { 485 struct fib6_dump_arg arg; 486 struct fib6_walker *w; 487 unsigned int h; 488 int err = 0; 489 490 w = kzalloc(sizeof(*w), GFP_ATOMIC); 491 if (!w) 492 return -ENOMEM; 493 494 w->func = fib6_node_dump; 495 arg.net = net; 496 arg.nb = nb; 497 arg.extack = extack; 498 w->args = &arg; 499 500 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { 501 struct hlist_head *head = &net->ipv6.fib_table_hash[h]; 502 struct fib6_table *tb; 503 504 hlist_for_each_entry_rcu(tb, head, tb6_hlist) { 505 err = fib6_table_dump(net, tb, w); 506 if (err) 507 goto out; 508 } 509 } 510 511 out: 512 kfree(w); 513 514 /* The tree traversal function should never return a positive value. */ 515 return err > 0 ? -EINVAL : err; 516 } 517 518 static int fib6_dump_node(struct fib6_walker *w) 519 { 520 int res; 521 struct fib6_info *rt; 522 523 for_each_fib6_walker_rt(w) { 524 res = rt6_dump_route(rt, w->args, w->skip_in_node); 525 if (res >= 0) { 526 /* Frame is full, suspend walking */ 527 w->leaf = rt; 528 529 /* We'll restart from this node, so if some routes were 530 * already dumped, skip them next time. 531 */ 532 w->skip_in_node += res; 533 534 return 1; 535 } 536 w->skip_in_node = 0; 537 538 /* Multipath routes are dumped in one route with the 539 * RTA_MULTIPATH attribute. Jump 'rt' to point to the 540 * last sibling of this route (no need to dump the 541 * sibling routes again) 542 */ 543 if (rt->fib6_nsiblings) 544 rt = list_last_entry(&rt->fib6_siblings, 545 struct fib6_info, 546 fib6_siblings); 547 } 548 w->leaf = NULL; 549 return 0; 550 } 551 552 static void fib6_dump_end(struct netlink_callback *cb) 553 { 554 struct net *net = sock_net(cb->skb->sk); 555 struct fib6_walker *w = (void *)cb->args[2]; 556 557 if (w) { 558 if (cb->args[4]) { 559 cb->args[4] = 0; 560 fib6_walker_unlink(net, w); 561 } 562 cb->args[2] = 0; 563 kfree(w); 564 } 565 cb->done = (void *)cb->args[3]; 566 cb->args[1] = 3; 567 } 568 569 static int fib6_dump_done(struct netlink_callback *cb) 570 { 571 fib6_dump_end(cb); 572 return cb->done ? cb->done(cb) : 0; 573 } 574 575 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb, 576 struct netlink_callback *cb) 577 { 578 struct net *net = sock_net(skb->sk); 579 struct fib6_walker *w; 580 int res; 581 582 w = (void *)cb->args[2]; 583 w->root = &table->tb6_root; 584 585 if (cb->args[4] == 0) { 586 w->count = 0; 587 w->skip = 0; 588 w->skip_in_node = 0; 589 590 spin_lock_bh(&table->tb6_lock); 591 res = fib6_walk(net, w); 592 spin_unlock_bh(&table->tb6_lock); 593 if (res > 0) { 594 cb->args[4] = 1; 595 cb->args[5] = READ_ONCE(w->root->fn_sernum); 596 } 597 } else { 598 int sernum = READ_ONCE(w->root->fn_sernum); 599 if (cb->args[5] != sernum) { 600 /* Begin at the root if the tree changed */ 601 cb->args[5] = sernum; 602 w->state = FWS_INIT; 603 w->node = w->root; 604 w->skip = w->count; 605 w->skip_in_node = 0; 606 } else 607 w->skip = 0; 608 609 spin_lock_bh(&table->tb6_lock); 610 res = fib6_walk_continue(w); 611 spin_unlock_bh(&table->tb6_lock); 612 if (res <= 0) { 613 fib6_walker_unlink(net, w); 614 cb->args[4] = 0; 615 } 616 } 617 618 return res; 619 } 620 621 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb) 622 { 623 struct rt6_rtnl_dump_arg arg = { 624 .filter.dump_exceptions = true, 625 .filter.dump_routes = true, 626 .filter.rtnl_held = true, 627 }; 628 const struct nlmsghdr *nlh = cb->nlh; 629 struct net *net = sock_net(skb->sk); 630 unsigned int h, s_h; 631 unsigned int e = 0, s_e; 632 struct fib6_walker *w; 633 struct fib6_table *tb; 634 struct hlist_head *head; 635 int res = 0; 636 637 if (cb->strict_check) { 638 int err; 639 640 err = ip_valid_fib_dump_req(net, nlh, &arg.filter, cb); 641 if (err < 0) 642 return err; 643 } else if (nlmsg_len(nlh) >= sizeof(struct rtmsg)) { 644 struct rtmsg *rtm = nlmsg_data(nlh); 645 646 if (rtm->rtm_flags & RTM_F_PREFIX) 647 arg.filter.flags = RTM_F_PREFIX; 648 } 649 650 w = (void *)cb->args[2]; 651 if (!w) { 652 /* New dump: 653 * 654 * 1. hook callback destructor. 655 */ 656 cb->args[3] = (long)cb->done; 657 cb->done = fib6_dump_done; 658 659 /* 660 * 2. allocate and initialize walker. 661 */ 662 w = kzalloc(sizeof(*w), GFP_ATOMIC); 663 if (!w) 664 return -ENOMEM; 665 w->func = fib6_dump_node; 666 cb->args[2] = (long)w; 667 } 668 669 arg.skb = skb; 670 arg.cb = cb; 671 arg.net = net; 672 w->args = &arg; 673 674 if (arg.filter.table_id) { 675 tb = fib6_get_table(net, arg.filter.table_id); 676 if (!tb) { 677 if (rtnl_msg_family(cb->nlh) != PF_INET6) 678 goto out; 679 680 NL_SET_ERR_MSG_MOD(cb->extack, "FIB table does not exist"); 681 return -ENOENT; 682 } 683 684 if (!cb->args[0]) { 685 res = fib6_dump_table(tb, skb, cb); 686 if (!res) 687 cb->args[0] = 1; 688 } 689 goto out; 690 } 691 692 s_h = cb->args[0]; 693 s_e = cb->args[1]; 694 695 rcu_read_lock(); 696 for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) { 697 e = 0; 698 head = &net->ipv6.fib_table_hash[h]; 699 hlist_for_each_entry_rcu(tb, head, tb6_hlist) { 700 if (e < s_e) 701 goto next; 702 res = fib6_dump_table(tb, skb, cb); 703 if (res != 0) 704 goto out_unlock; 705 next: 706 e++; 707 } 708 } 709 out_unlock: 710 rcu_read_unlock(); 711 cb->args[1] = e; 712 cb->args[0] = h; 713 out: 714 res = res < 0 ? res : skb->len; 715 if (res <= 0) 716 fib6_dump_end(cb); 717 return res; 718 } 719 720 void fib6_metric_set(struct fib6_info *f6i, int metric, u32 val) 721 { 722 if (!f6i) 723 return; 724 725 if (f6i->fib6_metrics == &dst_default_metrics) { 726 struct dst_metrics *p = kzalloc(sizeof(*p), GFP_ATOMIC); 727 728 if (!p) 729 return; 730 731 refcount_set(&p->refcnt, 1); 732 f6i->fib6_metrics = p; 733 } 734 735 f6i->fib6_metrics->metrics[metric - 1] = val; 736 } 737 738 /* 739 * Routing Table 740 * 741 * return the appropriate node for a routing tree "add" operation 742 * by either creating and inserting or by returning an existing 743 * node. 744 */ 745 746 static struct fib6_node *fib6_add_1(struct net *net, 747 struct fib6_table *table, 748 struct fib6_node *root, 749 struct in6_addr *addr, int plen, 750 int offset, int allow_create, 751 int replace_required, 752 struct netlink_ext_ack *extack) 753 { 754 struct fib6_node *fn, *in, *ln; 755 struct fib6_node *pn = NULL; 756 struct rt6key *key; 757 int bit; 758 __be32 dir = 0; 759 760 /* insert node in tree */ 761 762 fn = root; 763 764 do { 765 struct fib6_info *leaf = rcu_dereference_protected(fn->leaf, 766 lockdep_is_held(&table->tb6_lock)); 767 key = (struct rt6key *)((u8 *)leaf + offset); 768 769 /* 770 * Prefix match 771 */ 772 if (plen < fn->fn_bit || 773 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) { 774 if (!allow_create) { 775 if (replace_required) { 776 NL_SET_ERR_MSG(extack, 777 "Can not replace route - no match found"); 778 pr_warn("Can't replace route, no match found\n"); 779 return ERR_PTR(-ENOENT); 780 } 781 pr_warn("NLM_F_CREATE should be set when creating new route\n"); 782 } 783 goto insert_above; 784 } 785 786 /* 787 * Exact match ? 788 */ 789 790 if (plen == fn->fn_bit) { 791 /* clean up an intermediate node */ 792 if (!(fn->fn_flags & RTN_RTINFO)) { 793 RCU_INIT_POINTER(fn->leaf, NULL); 794 fib6_info_release(leaf); 795 /* remove null_entry in the root node */ 796 } else if (fn->fn_flags & RTN_TL_ROOT && 797 rcu_access_pointer(fn->leaf) == 798 net->ipv6.fib6_null_entry) { 799 RCU_INIT_POINTER(fn->leaf, NULL); 800 } 801 802 return fn; 803 } 804 805 /* 806 * We have more bits to go 807 */ 808 809 /* Try to walk down on tree. */ 810 dir = addr_bit_set(addr, fn->fn_bit); 811 pn = fn; 812 fn = dir ? 813 rcu_dereference_protected(fn->right, 814 lockdep_is_held(&table->tb6_lock)) : 815 rcu_dereference_protected(fn->left, 816 lockdep_is_held(&table->tb6_lock)); 817 } while (fn); 818 819 if (!allow_create) { 820 /* We should not create new node because 821 * NLM_F_REPLACE was specified without NLM_F_CREATE 822 * I assume it is safe to require NLM_F_CREATE when 823 * REPLACE flag is used! Later we may want to remove the 824 * check for replace_required, because according 825 * to netlink specification, NLM_F_CREATE 826 * MUST be specified if new route is created. 827 * That would keep IPv6 consistent with IPv4 828 */ 829 if (replace_required) { 830 NL_SET_ERR_MSG(extack, 831 "Can not replace route - no match found"); 832 pr_warn("Can't replace route, no match found\n"); 833 return ERR_PTR(-ENOENT); 834 } 835 pr_warn("NLM_F_CREATE should be set when creating new route\n"); 836 } 837 /* 838 * We walked to the bottom of tree. 839 * Create new leaf node without children. 840 */ 841 842 ln = node_alloc(net); 843 844 if (!ln) 845 return ERR_PTR(-ENOMEM); 846 ln->fn_bit = plen; 847 RCU_INIT_POINTER(ln->parent, pn); 848 849 if (dir) 850 rcu_assign_pointer(pn->right, ln); 851 else 852 rcu_assign_pointer(pn->left, ln); 853 854 return ln; 855 856 857 insert_above: 858 /* 859 * split since we don't have a common prefix anymore or 860 * we have a less significant route. 861 * we've to insert an intermediate node on the list 862 * this new node will point to the one we need to create 863 * and the current 864 */ 865 866 pn = rcu_dereference_protected(fn->parent, 867 lockdep_is_held(&table->tb6_lock)); 868 869 /* find 1st bit in difference between the 2 addrs. 870 871 See comment in __ipv6_addr_diff: bit may be an invalid value, 872 but if it is >= plen, the value is ignored in any case. 873 */ 874 875 bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr)); 876 877 /* 878 * (intermediate)[in] 879 * / \ 880 * (new leaf node)[ln] (old node)[fn] 881 */ 882 if (plen > bit) { 883 in = node_alloc(net); 884 ln = node_alloc(net); 885 886 if (!in || !ln) { 887 if (in) 888 node_free_immediate(net, in); 889 if (ln) 890 node_free_immediate(net, ln); 891 return ERR_PTR(-ENOMEM); 892 } 893 894 /* 895 * new intermediate node. 896 * RTN_RTINFO will 897 * be off since that an address that chooses one of 898 * the branches would not match less specific routes 899 * in the other branch 900 */ 901 902 in->fn_bit = bit; 903 904 RCU_INIT_POINTER(in->parent, pn); 905 in->leaf = fn->leaf; 906 fib6_info_hold(rcu_dereference_protected(in->leaf, 907 lockdep_is_held(&table->tb6_lock))); 908 909 /* update parent pointer */ 910 if (dir) 911 rcu_assign_pointer(pn->right, in); 912 else 913 rcu_assign_pointer(pn->left, in); 914 915 ln->fn_bit = plen; 916 917 RCU_INIT_POINTER(ln->parent, in); 918 rcu_assign_pointer(fn->parent, in); 919 920 if (addr_bit_set(addr, bit)) { 921 rcu_assign_pointer(in->right, ln); 922 rcu_assign_pointer(in->left, fn); 923 } else { 924 rcu_assign_pointer(in->left, ln); 925 rcu_assign_pointer(in->right, fn); 926 } 927 } else { /* plen <= bit */ 928 929 /* 930 * (new leaf node)[ln] 931 * / \ 932 * (old node)[fn] NULL 933 */ 934 935 ln = node_alloc(net); 936 937 if (!ln) 938 return ERR_PTR(-ENOMEM); 939 940 ln->fn_bit = plen; 941 942 RCU_INIT_POINTER(ln->parent, pn); 943 944 if (addr_bit_set(&key->addr, plen)) 945 RCU_INIT_POINTER(ln->right, fn); 946 else 947 RCU_INIT_POINTER(ln->left, fn); 948 949 rcu_assign_pointer(fn->parent, ln); 950 951 if (dir) 952 rcu_assign_pointer(pn->right, ln); 953 else 954 rcu_assign_pointer(pn->left, ln); 955 } 956 return ln; 957 } 958 959 static void __fib6_drop_pcpu_from(struct fib6_nh *fib6_nh, 960 const struct fib6_info *match, 961 const struct fib6_table *table) 962 { 963 int cpu; 964 965 if (!fib6_nh->rt6i_pcpu) 966 return; 967 968 /* release the reference to this fib entry from 969 * all of its cached pcpu routes 970 */ 971 for_each_possible_cpu(cpu) { 972 struct rt6_info **ppcpu_rt; 973 struct rt6_info *pcpu_rt; 974 975 ppcpu_rt = per_cpu_ptr(fib6_nh->rt6i_pcpu, cpu); 976 pcpu_rt = *ppcpu_rt; 977 978 /* only dropping the 'from' reference if the cached route 979 * is using 'match'. The cached pcpu_rt->from only changes 980 * from a fib6_info to NULL (ip6_dst_destroy); it can never 981 * change from one fib6_info reference to another 982 */ 983 if (pcpu_rt && rcu_access_pointer(pcpu_rt->from) == match) { 984 struct fib6_info *from; 985 986 from = xchg((__force struct fib6_info **)&pcpu_rt->from, NULL); 987 fib6_info_release(from); 988 } 989 } 990 } 991 992 struct fib6_nh_pcpu_arg { 993 struct fib6_info *from; 994 const struct fib6_table *table; 995 }; 996 997 static int fib6_nh_drop_pcpu_from(struct fib6_nh *nh, void *_arg) 998 { 999 struct fib6_nh_pcpu_arg *arg = _arg; 1000 1001 __fib6_drop_pcpu_from(nh, arg->from, arg->table); 1002 return 0; 1003 } 1004 1005 static void fib6_drop_pcpu_from(struct fib6_info *f6i, 1006 const struct fib6_table *table) 1007 { 1008 /* Make sure rt6_make_pcpu_route() wont add other percpu routes 1009 * while we are cleaning them here. 1010 */ 1011 f6i->fib6_destroying = 1; 1012 mb(); /* paired with the cmpxchg() in rt6_make_pcpu_route() */ 1013 1014 if (f6i->nh) { 1015 struct fib6_nh_pcpu_arg arg = { 1016 .from = f6i, 1017 .table = table 1018 }; 1019 1020 nexthop_for_each_fib6_nh(f6i->nh, fib6_nh_drop_pcpu_from, 1021 &arg); 1022 } else { 1023 struct fib6_nh *fib6_nh; 1024 1025 fib6_nh = f6i->fib6_nh; 1026 __fib6_drop_pcpu_from(fib6_nh, f6i, table); 1027 } 1028 } 1029 1030 static void fib6_purge_rt(struct fib6_info *rt, struct fib6_node *fn, 1031 struct net *net) 1032 { 1033 struct fib6_table *table = rt->fib6_table; 1034 1035 /* Flush all cached dst in exception table */ 1036 rt6_flush_exceptions(rt); 1037 fib6_drop_pcpu_from(rt, table); 1038 1039 if (rt->nh && !list_empty(&rt->nh_list)) 1040 list_del_init(&rt->nh_list); 1041 1042 if (refcount_read(&rt->fib6_ref) != 1) { 1043 /* This route is used as dummy address holder in some split 1044 * nodes. It is not leaked, but it still holds other resources, 1045 * which must be released in time. So, scan ascendant nodes 1046 * and replace dummy references to this route with references 1047 * to still alive ones. 1048 */ 1049 while (fn) { 1050 struct fib6_info *leaf = rcu_dereference_protected(fn->leaf, 1051 lockdep_is_held(&table->tb6_lock)); 1052 struct fib6_info *new_leaf; 1053 if (!(fn->fn_flags & RTN_RTINFO) && leaf == rt) { 1054 new_leaf = fib6_find_prefix(net, table, fn); 1055 fib6_info_hold(new_leaf); 1056 1057 rcu_assign_pointer(fn->leaf, new_leaf); 1058 fib6_info_release(rt); 1059 } 1060 fn = rcu_dereference_protected(fn->parent, 1061 lockdep_is_held(&table->tb6_lock)); 1062 } 1063 } 1064 1065 fib6_clean_expires(rt); 1066 fib6_remove_gc_list(rt); 1067 } 1068 1069 /* 1070 * Insert routing information in a node. 1071 */ 1072 1073 static int fib6_add_rt2node(struct fib6_node *fn, struct fib6_info *rt, 1074 struct nl_info *info, 1075 struct netlink_ext_ack *extack) 1076 { 1077 struct fib6_info *leaf = rcu_dereference_protected(fn->leaf, 1078 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1079 struct fib6_info *iter = NULL; 1080 struct fib6_info __rcu **ins; 1081 struct fib6_info __rcu **fallback_ins = NULL; 1082 int replace = (info->nlh && 1083 (info->nlh->nlmsg_flags & NLM_F_REPLACE)); 1084 int add = (!info->nlh || 1085 (info->nlh->nlmsg_flags & NLM_F_CREATE)); 1086 int found = 0; 1087 bool rt_can_ecmp = rt6_qualify_for_ecmp(rt); 1088 bool notify_sibling_rt = false; 1089 u16 nlflags = NLM_F_EXCL; 1090 int err; 1091 1092 if (info->nlh && (info->nlh->nlmsg_flags & NLM_F_APPEND)) 1093 nlflags |= NLM_F_APPEND; 1094 1095 ins = &fn->leaf; 1096 1097 for (iter = leaf; iter; 1098 iter = rcu_dereference_protected(iter->fib6_next, 1099 lockdep_is_held(&rt->fib6_table->tb6_lock))) { 1100 /* 1101 * Search for duplicates 1102 */ 1103 1104 if (iter->fib6_metric == rt->fib6_metric) { 1105 /* 1106 * Same priority level 1107 */ 1108 if (info->nlh && 1109 (info->nlh->nlmsg_flags & NLM_F_EXCL)) 1110 return -EEXIST; 1111 1112 nlflags &= ~NLM_F_EXCL; 1113 if (replace) { 1114 if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) { 1115 found++; 1116 break; 1117 } 1118 fallback_ins = fallback_ins ?: ins; 1119 goto next_iter; 1120 } 1121 1122 if (rt6_duplicate_nexthop(iter, rt)) { 1123 if (rt->fib6_nsiblings) 1124 rt->fib6_nsiblings = 0; 1125 if (!(iter->fib6_flags & RTF_EXPIRES)) 1126 return -EEXIST; 1127 if (!(rt->fib6_flags & RTF_EXPIRES)) { 1128 fib6_clean_expires(iter); 1129 fib6_remove_gc_list(iter); 1130 } else { 1131 fib6_set_expires(iter, rt->expires); 1132 fib6_add_gc_list(iter); 1133 } 1134 1135 if (rt->fib6_pmtu) 1136 fib6_metric_set(iter, RTAX_MTU, 1137 rt->fib6_pmtu); 1138 return -EEXIST; 1139 } 1140 /* If we have the same destination and the same metric, 1141 * but not the same gateway, then the route we try to 1142 * add is sibling to this route, increment our counter 1143 * of siblings, and later we will add our route to the 1144 * list. 1145 * Only static routes (which don't have flag 1146 * RTF_EXPIRES) are used for ECMPv6. 1147 * 1148 * To avoid long list, we only had siblings if the 1149 * route have a gateway. 1150 */ 1151 if (rt_can_ecmp && 1152 rt6_qualify_for_ecmp(iter)) 1153 rt->fib6_nsiblings++; 1154 } 1155 1156 if (iter->fib6_metric > rt->fib6_metric) 1157 break; 1158 1159 next_iter: 1160 ins = &iter->fib6_next; 1161 } 1162 1163 if (fallback_ins && !found) { 1164 /* No matching route with same ecmp-able-ness found, replace 1165 * first matching route 1166 */ 1167 ins = fallback_ins; 1168 iter = rcu_dereference_protected(*ins, 1169 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1170 found++; 1171 } 1172 1173 /* Reset round-robin state, if necessary */ 1174 if (ins == &fn->leaf) 1175 fn->rr_ptr = NULL; 1176 1177 /* Link this route to others same route. */ 1178 if (rt->fib6_nsiblings) { 1179 unsigned int fib6_nsiblings; 1180 struct fib6_info *sibling, *temp_sibling; 1181 1182 /* Find the first route that have the same metric */ 1183 sibling = leaf; 1184 notify_sibling_rt = true; 1185 while (sibling) { 1186 if (sibling->fib6_metric == rt->fib6_metric && 1187 rt6_qualify_for_ecmp(sibling)) { 1188 list_add_tail(&rt->fib6_siblings, 1189 &sibling->fib6_siblings); 1190 break; 1191 } 1192 sibling = rcu_dereference_protected(sibling->fib6_next, 1193 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1194 notify_sibling_rt = false; 1195 } 1196 /* For each sibling in the list, increment the counter of 1197 * siblings. BUG() if counters does not match, list of siblings 1198 * is broken! 1199 */ 1200 fib6_nsiblings = 0; 1201 list_for_each_entry_safe(sibling, temp_sibling, 1202 &rt->fib6_siblings, fib6_siblings) { 1203 sibling->fib6_nsiblings++; 1204 BUG_ON(sibling->fib6_nsiblings != rt->fib6_nsiblings); 1205 fib6_nsiblings++; 1206 } 1207 BUG_ON(fib6_nsiblings != rt->fib6_nsiblings); 1208 rt6_multipath_rebalance(temp_sibling); 1209 } 1210 1211 /* 1212 * insert node 1213 */ 1214 if (!replace) { 1215 if (!add) 1216 pr_warn("NLM_F_CREATE should be set when creating new route\n"); 1217 1218 add: 1219 nlflags |= NLM_F_CREATE; 1220 1221 /* The route should only be notified if it is the first 1222 * route in the node or if it is added as a sibling 1223 * route to the first route in the node. 1224 */ 1225 if (!info->skip_notify_kernel && 1226 (notify_sibling_rt || ins == &fn->leaf)) { 1227 enum fib_event_type fib_event; 1228 1229 if (notify_sibling_rt) 1230 fib_event = FIB_EVENT_ENTRY_APPEND; 1231 else 1232 fib_event = FIB_EVENT_ENTRY_REPLACE; 1233 err = call_fib6_entry_notifiers(info->nl_net, 1234 fib_event, rt, 1235 extack); 1236 if (err) { 1237 struct fib6_info *sibling, *next_sibling; 1238 1239 /* If the route has siblings, then it first 1240 * needs to be unlinked from them. 1241 */ 1242 if (!rt->fib6_nsiblings) 1243 return err; 1244 1245 list_for_each_entry_safe(sibling, next_sibling, 1246 &rt->fib6_siblings, 1247 fib6_siblings) 1248 sibling->fib6_nsiblings--; 1249 rt->fib6_nsiblings = 0; 1250 list_del_init(&rt->fib6_siblings); 1251 rt6_multipath_rebalance(next_sibling); 1252 return err; 1253 } 1254 } 1255 1256 rcu_assign_pointer(rt->fib6_next, iter); 1257 fib6_info_hold(rt); 1258 rcu_assign_pointer(rt->fib6_node, fn); 1259 rcu_assign_pointer(*ins, rt); 1260 if (!info->skip_notify) 1261 inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags); 1262 info->nl_net->ipv6.rt6_stats->fib_rt_entries++; 1263 1264 if (!(fn->fn_flags & RTN_RTINFO)) { 1265 info->nl_net->ipv6.rt6_stats->fib_route_nodes++; 1266 fn->fn_flags |= RTN_RTINFO; 1267 } 1268 1269 } else { 1270 int nsiblings; 1271 1272 if (!found) { 1273 if (add) 1274 goto add; 1275 pr_warn("NLM_F_REPLACE set, but no existing node found!\n"); 1276 return -ENOENT; 1277 } 1278 1279 if (!info->skip_notify_kernel && ins == &fn->leaf) { 1280 err = call_fib6_entry_notifiers(info->nl_net, 1281 FIB_EVENT_ENTRY_REPLACE, 1282 rt, extack); 1283 if (err) 1284 return err; 1285 } 1286 1287 fib6_info_hold(rt); 1288 rcu_assign_pointer(rt->fib6_node, fn); 1289 rt->fib6_next = iter->fib6_next; 1290 rcu_assign_pointer(*ins, rt); 1291 if (!info->skip_notify) 1292 inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE); 1293 if (!(fn->fn_flags & RTN_RTINFO)) { 1294 info->nl_net->ipv6.rt6_stats->fib_route_nodes++; 1295 fn->fn_flags |= RTN_RTINFO; 1296 } 1297 nsiblings = iter->fib6_nsiblings; 1298 iter->fib6_node = NULL; 1299 fib6_purge_rt(iter, fn, info->nl_net); 1300 if (rcu_access_pointer(fn->rr_ptr) == iter) 1301 fn->rr_ptr = NULL; 1302 fib6_info_release(iter); 1303 1304 if (nsiblings) { 1305 /* Replacing an ECMP route, remove all siblings */ 1306 ins = &rt->fib6_next; 1307 iter = rcu_dereference_protected(*ins, 1308 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1309 while (iter) { 1310 if (iter->fib6_metric > rt->fib6_metric) 1311 break; 1312 if (rt6_qualify_for_ecmp(iter)) { 1313 *ins = iter->fib6_next; 1314 iter->fib6_node = NULL; 1315 fib6_purge_rt(iter, fn, info->nl_net); 1316 if (rcu_access_pointer(fn->rr_ptr) == iter) 1317 fn->rr_ptr = NULL; 1318 fib6_info_release(iter); 1319 nsiblings--; 1320 info->nl_net->ipv6.rt6_stats->fib_rt_entries--; 1321 } else { 1322 ins = &iter->fib6_next; 1323 } 1324 iter = rcu_dereference_protected(*ins, 1325 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1326 } 1327 WARN_ON(nsiblings != 0); 1328 } 1329 } 1330 1331 return 0; 1332 } 1333 1334 static void fib6_start_gc(struct net *net, struct fib6_info *rt) 1335 { 1336 if (!timer_pending(&net->ipv6.ip6_fib_timer) && 1337 (rt->fib6_flags & RTF_EXPIRES)) 1338 mod_timer(&net->ipv6.ip6_fib_timer, 1339 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval); 1340 } 1341 1342 void fib6_force_start_gc(struct net *net) 1343 { 1344 if (!timer_pending(&net->ipv6.ip6_fib_timer)) 1345 mod_timer(&net->ipv6.ip6_fib_timer, 1346 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval); 1347 } 1348 1349 static void __fib6_update_sernum_upto_root(struct fib6_info *rt, 1350 int sernum) 1351 { 1352 struct fib6_node *fn = rcu_dereference_protected(rt->fib6_node, 1353 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1354 1355 /* paired with smp_rmb() in fib6_get_cookie_safe() */ 1356 smp_wmb(); 1357 while (fn) { 1358 WRITE_ONCE(fn->fn_sernum, sernum); 1359 fn = rcu_dereference_protected(fn->parent, 1360 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1361 } 1362 } 1363 1364 void fib6_update_sernum_upto_root(struct net *net, struct fib6_info *rt) 1365 { 1366 __fib6_update_sernum_upto_root(rt, fib6_new_sernum(net)); 1367 } 1368 1369 /* allow ipv4 to update sernum via ipv6_stub */ 1370 void fib6_update_sernum_stub(struct net *net, struct fib6_info *f6i) 1371 { 1372 spin_lock_bh(&f6i->fib6_table->tb6_lock); 1373 fib6_update_sernum_upto_root(net, f6i); 1374 spin_unlock_bh(&f6i->fib6_table->tb6_lock); 1375 } 1376 1377 /* 1378 * Add routing information to the routing tree. 1379 * <destination addr>/<source addr> 1380 * with source addr info in sub-trees 1381 * Need to own table->tb6_lock 1382 */ 1383 1384 int fib6_add(struct fib6_node *root, struct fib6_info *rt, 1385 struct nl_info *info, struct netlink_ext_ack *extack) 1386 { 1387 struct fib6_table *table = rt->fib6_table; 1388 struct fib6_node *fn, *pn = NULL; 1389 int err = -ENOMEM; 1390 int allow_create = 1; 1391 int replace_required = 0; 1392 1393 if (info->nlh) { 1394 if (!(info->nlh->nlmsg_flags & NLM_F_CREATE)) 1395 allow_create = 0; 1396 if (info->nlh->nlmsg_flags & NLM_F_REPLACE) 1397 replace_required = 1; 1398 } 1399 if (!allow_create && !replace_required) 1400 pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n"); 1401 1402 fn = fib6_add_1(info->nl_net, table, root, 1403 &rt->fib6_dst.addr, rt->fib6_dst.plen, 1404 offsetof(struct fib6_info, fib6_dst), allow_create, 1405 replace_required, extack); 1406 if (IS_ERR(fn)) { 1407 err = PTR_ERR(fn); 1408 fn = NULL; 1409 goto out; 1410 } 1411 1412 pn = fn; 1413 1414 #ifdef CONFIG_IPV6_SUBTREES 1415 if (rt->fib6_src.plen) { 1416 struct fib6_node *sn; 1417 1418 if (!rcu_access_pointer(fn->subtree)) { 1419 struct fib6_node *sfn; 1420 1421 /* 1422 * Create subtree. 1423 * 1424 * fn[main tree] 1425 * | 1426 * sfn[subtree root] 1427 * \ 1428 * sn[new leaf node] 1429 */ 1430 1431 /* Create subtree root node */ 1432 sfn = node_alloc(info->nl_net); 1433 if (!sfn) 1434 goto failure; 1435 1436 fib6_info_hold(info->nl_net->ipv6.fib6_null_entry); 1437 rcu_assign_pointer(sfn->leaf, 1438 info->nl_net->ipv6.fib6_null_entry); 1439 sfn->fn_flags = RTN_ROOT; 1440 1441 /* Now add the first leaf node to new subtree */ 1442 1443 sn = fib6_add_1(info->nl_net, table, sfn, 1444 &rt->fib6_src.addr, rt->fib6_src.plen, 1445 offsetof(struct fib6_info, fib6_src), 1446 allow_create, replace_required, extack); 1447 1448 if (IS_ERR(sn)) { 1449 /* If it is failed, discard just allocated 1450 root, and then (in failure) stale node 1451 in main tree. 1452 */ 1453 node_free_immediate(info->nl_net, sfn); 1454 err = PTR_ERR(sn); 1455 goto failure; 1456 } 1457 1458 /* Now link new subtree to main tree */ 1459 rcu_assign_pointer(sfn->parent, fn); 1460 rcu_assign_pointer(fn->subtree, sfn); 1461 } else { 1462 sn = fib6_add_1(info->nl_net, table, FIB6_SUBTREE(fn), 1463 &rt->fib6_src.addr, rt->fib6_src.plen, 1464 offsetof(struct fib6_info, fib6_src), 1465 allow_create, replace_required, extack); 1466 1467 if (IS_ERR(sn)) { 1468 err = PTR_ERR(sn); 1469 goto failure; 1470 } 1471 } 1472 1473 if (!rcu_access_pointer(fn->leaf)) { 1474 if (fn->fn_flags & RTN_TL_ROOT) { 1475 /* put back null_entry for root node */ 1476 rcu_assign_pointer(fn->leaf, 1477 info->nl_net->ipv6.fib6_null_entry); 1478 } else { 1479 fib6_info_hold(rt); 1480 rcu_assign_pointer(fn->leaf, rt); 1481 } 1482 } 1483 fn = sn; 1484 } 1485 #endif 1486 1487 err = fib6_add_rt2node(fn, rt, info, extack); 1488 if (!err) { 1489 if (rt->nh) 1490 list_add(&rt->nh_list, &rt->nh->f6i_list); 1491 __fib6_update_sernum_upto_root(rt, fib6_new_sernum(info->nl_net)); 1492 1493 if (rt->fib6_flags & RTF_EXPIRES) 1494 fib6_add_gc_list(rt); 1495 1496 fib6_start_gc(info->nl_net, rt); 1497 } 1498 1499 out: 1500 if (err) { 1501 #ifdef CONFIG_IPV6_SUBTREES 1502 /* 1503 * If fib6_add_1 has cleared the old leaf pointer in the 1504 * super-tree leaf node we have to find a new one for it. 1505 */ 1506 if (pn != fn) { 1507 struct fib6_info *pn_leaf = 1508 rcu_dereference_protected(pn->leaf, 1509 lockdep_is_held(&table->tb6_lock)); 1510 if (pn_leaf == rt) { 1511 pn_leaf = NULL; 1512 RCU_INIT_POINTER(pn->leaf, NULL); 1513 fib6_info_release(rt); 1514 } 1515 if (!pn_leaf && !(pn->fn_flags & RTN_RTINFO)) { 1516 pn_leaf = fib6_find_prefix(info->nl_net, table, 1517 pn); 1518 if (!pn_leaf) 1519 pn_leaf = 1520 info->nl_net->ipv6.fib6_null_entry; 1521 fib6_info_hold(pn_leaf); 1522 rcu_assign_pointer(pn->leaf, pn_leaf); 1523 } 1524 } 1525 #endif 1526 goto failure; 1527 } else if (fib6_requires_src(rt)) { 1528 fib6_routes_require_src_inc(info->nl_net); 1529 } 1530 return err; 1531 1532 failure: 1533 /* fn->leaf could be NULL and fib6_repair_tree() needs to be called if: 1534 * 1. fn is an intermediate node and we failed to add the new 1535 * route to it in both subtree creation failure and fib6_add_rt2node() 1536 * failure case. 1537 * 2. fn is the root node in the table and we fail to add the first 1538 * default route to it. 1539 */ 1540 if (fn && 1541 (!(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)) || 1542 (fn->fn_flags & RTN_TL_ROOT && 1543 !rcu_access_pointer(fn->leaf)))) 1544 fib6_repair_tree(info->nl_net, table, fn); 1545 return err; 1546 } 1547 1548 /* 1549 * Routing tree lookup 1550 * 1551 */ 1552 1553 struct lookup_args { 1554 int offset; /* key offset on fib6_info */ 1555 const struct in6_addr *addr; /* search key */ 1556 }; 1557 1558 static struct fib6_node *fib6_node_lookup_1(struct fib6_node *root, 1559 struct lookup_args *args) 1560 { 1561 struct fib6_node *fn; 1562 __be32 dir; 1563 1564 if (unlikely(args->offset == 0)) 1565 return NULL; 1566 1567 /* 1568 * Descend on a tree 1569 */ 1570 1571 fn = root; 1572 1573 for (;;) { 1574 struct fib6_node *next; 1575 1576 dir = addr_bit_set(args->addr, fn->fn_bit); 1577 1578 next = dir ? rcu_dereference(fn->right) : 1579 rcu_dereference(fn->left); 1580 1581 if (next) { 1582 fn = next; 1583 continue; 1584 } 1585 break; 1586 } 1587 1588 while (fn) { 1589 struct fib6_node *subtree = FIB6_SUBTREE(fn); 1590 1591 if (subtree || fn->fn_flags & RTN_RTINFO) { 1592 struct fib6_info *leaf = rcu_dereference(fn->leaf); 1593 struct rt6key *key; 1594 1595 if (!leaf) 1596 goto backtrack; 1597 1598 key = (struct rt6key *) ((u8 *)leaf + args->offset); 1599 1600 if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) { 1601 #ifdef CONFIG_IPV6_SUBTREES 1602 if (subtree) { 1603 struct fib6_node *sfn; 1604 sfn = fib6_node_lookup_1(subtree, 1605 args + 1); 1606 if (!sfn) 1607 goto backtrack; 1608 fn = sfn; 1609 } 1610 #endif 1611 if (fn->fn_flags & RTN_RTINFO) 1612 return fn; 1613 } 1614 } 1615 backtrack: 1616 if (fn->fn_flags & RTN_ROOT) 1617 break; 1618 1619 fn = rcu_dereference(fn->parent); 1620 } 1621 1622 return NULL; 1623 } 1624 1625 /* called with rcu_read_lock() held 1626 */ 1627 struct fib6_node *fib6_node_lookup(struct fib6_node *root, 1628 const struct in6_addr *daddr, 1629 const struct in6_addr *saddr) 1630 { 1631 struct fib6_node *fn; 1632 struct lookup_args args[] = { 1633 { 1634 .offset = offsetof(struct fib6_info, fib6_dst), 1635 .addr = daddr, 1636 }, 1637 #ifdef CONFIG_IPV6_SUBTREES 1638 { 1639 .offset = offsetof(struct fib6_info, fib6_src), 1640 .addr = saddr, 1641 }, 1642 #endif 1643 { 1644 .offset = 0, /* sentinel */ 1645 } 1646 }; 1647 1648 fn = fib6_node_lookup_1(root, daddr ? args : args + 1); 1649 if (!fn || fn->fn_flags & RTN_TL_ROOT) 1650 fn = root; 1651 1652 return fn; 1653 } 1654 1655 /* 1656 * Get node with specified destination prefix (and source prefix, 1657 * if subtrees are used) 1658 * exact_match == true means we try to find fn with exact match of 1659 * the passed in prefix addr 1660 * exact_match == false means we try to find fn with longest prefix 1661 * match of the passed in prefix addr. This is useful for finding fn 1662 * for cached route as it will be stored in the exception table under 1663 * the node with longest prefix length. 1664 */ 1665 1666 1667 static struct fib6_node *fib6_locate_1(struct fib6_node *root, 1668 const struct in6_addr *addr, 1669 int plen, int offset, 1670 bool exact_match) 1671 { 1672 struct fib6_node *fn, *prev = NULL; 1673 1674 for (fn = root; fn ; ) { 1675 struct fib6_info *leaf = rcu_dereference(fn->leaf); 1676 struct rt6key *key; 1677 1678 /* This node is being deleted */ 1679 if (!leaf) { 1680 if (plen <= fn->fn_bit) 1681 goto out; 1682 else 1683 goto next; 1684 } 1685 1686 key = (struct rt6key *)((u8 *)leaf + offset); 1687 1688 /* 1689 * Prefix match 1690 */ 1691 if (plen < fn->fn_bit || 1692 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) 1693 goto out; 1694 1695 if (plen == fn->fn_bit) 1696 return fn; 1697 1698 if (fn->fn_flags & RTN_RTINFO) 1699 prev = fn; 1700 1701 next: 1702 /* 1703 * We have more bits to go 1704 */ 1705 if (addr_bit_set(addr, fn->fn_bit)) 1706 fn = rcu_dereference(fn->right); 1707 else 1708 fn = rcu_dereference(fn->left); 1709 } 1710 out: 1711 if (exact_match) 1712 return NULL; 1713 else 1714 return prev; 1715 } 1716 1717 struct fib6_node *fib6_locate(struct fib6_node *root, 1718 const struct in6_addr *daddr, int dst_len, 1719 const struct in6_addr *saddr, int src_len, 1720 bool exact_match) 1721 { 1722 struct fib6_node *fn; 1723 1724 fn = fib6_locate_1(root, daddr, dst_len, 1725 offsetof(struct fib6_info, fib6_dst), 1726 exact_match); 1727 1728 #ifdef CONFIG_IPV6_SUBTREES 1729 if (src_len) { 1730 WARN_ON(saddr == NULL); 1731 if (fn) { 1732 struct fib6_node *subtree = FIB6_SUBTREE(fn); 1733 1734 if (subtree) { 1735 fn = fib6_locate_1(subtree, saddr, src_len, 1736 offsetof(struct fib6_info, fib6_src), 1737 exact_match); 1738 } 1739 } 1740 } 1741 #endif 1742 1743 if (fn && fn->fn_flags & RTN_RTINFO) 1744 return fn; 1745 1746 return NULL; 1747 } 1748 1749 1750 /* 1751 * Deletion 1752 * 1753 */ 1754 1755 static struct fib6_info *fib6_find_prefix(struct net *net, 1756 struct fib6_table *table, 1757 struct fib6_node *fn) 1758 { 1759 struct fib6_node *child_left, *child_right; 1760 1761 if (fn->fn_flags & RTN_ROOT) 1762 return net->ipv6.fib6_null_entry; 1763 1764 while (fn) { 1765 child_left = rcu_dereference_protected(fn->left, 1766 lockdep_is_held(&table->tb6_lock)); 1767 child_right = rcu_dereference_protected(fn->right, 1768 lockdep_is_held(&table->tb6_lock)); 1769 if (child_left) 1770 return rcu_dereference_protected(child_left->leaf, 1771 lockdep_is_held(&table->tb6_lock)); 1772 if (child_right) 1773 return rcu_dereference_protected(child_right->leaf, 1774 lockdep_is_held(&table->tb6_lock)); 1775 1776 fn = FIB6_SUBTREE(fn); 1777 } 1778 return NULL; 1779 } 1780 1781 /* 1782 * Called to trim the tree of intermediate nodes when possible. "fn" 1783 * is the node we want to try and remove. 1784 * Need to own table->tb6_lock 1785 */ 1786 1787 static struct fib6_node *fib6_repair_tree(struct net *net, 1788 struct fib6_table *table, 1789 struct fib6_node *fn) 1790 { 1791 int children; 1792 int nstate; 1793 struct fib6_node *child; 1794 struct fib6_walker *w; 1795 int iter = 0; 1796 1797 /* Set fn->leaf to null_entry for root node. */ 1798 if (fn->fn_flags & RTN_TL_ROOT) { 1799 rcu_assign_pointer(fn->leaf, net->ipv6.fib6_null_entry); 1800 return fn; 1801 } 1802 1803 for (;;) { 1804 struct fib6_node *fn_r = rcu_dereference_protected(fn->right, 1805 lockdep_is_held(&table->tb6_lock)); 1806 struct fib6_node *fn_l = rcu_dereference_protected(fn->left, 1807 lockdep_is_held(&table->tb6_lock)); 1808 struct fib6_node *pn = rcu_dereference_protected(fn->parent, 1809 lockdep_is_held(&table->tb6_lock)); 1810 struct fib6_node *pn_r = rcu_dereference_protected(pn->right, 1811 lockdep_is_held(&table->tb6_lock)); 1812 struct fib6_node *pn_l = rcu_dereference_protected(pn->left, 1813 lockdep_is_held(&table->tb6_lock)); 1814 struct fib6_info *fn_leaf = rcu_dereference_protected(fn->leaf, 1815 lockdep_is_held(&table->tb6_lock)); 1816 struct fib6_info *pn_leaf = rcu_dereference_protected(pn->leaf, 1817 lockdep_is_held(&table->tb6_lock)); 1818 struct fib6_info *new_fn_leaf; 1819 1820 pr_debug("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter); 1821 iter++; 1822 1823 WARN_ON(fn->fn_flags & RTN_RTINFO); 1824 WARN_ON(fn->fn_flags & RTN_TL_ROOT); 1825 WARN_ON(fn_leaf); 1826 1827 children = 0; 1828 child = NULL; 1829 if (fn_r) { 1830 child = fn_r; 1831 children |= 1; 1832 } 1833 if (fn_l) { 1834 child = fn_l; 1835 children |= 2; 1836 } 1837 1838 if (children == 3 || FIB6_SUBTREE(fn) 1839 #ifdef CONFIG_IPV6_SUBTREES 1840 /* Subtree root (i.e. fn) may have one child */ 1841 || (children && fn->fn_flags & RTN_ROOT) 1842 #endif 1843 ) { 1844 new_fn_leaf = fib6_find_prefix(net, table, fn); 1845 #if RT6_DEBUG >= 2 1846 if (!new_fn_leaf) { 1847 WARN_ON(!new_fn_leaf); 1848 new_fn_leaf = net->ipv6.fib6_null_entry; 1849 } 1850 #endif 1851 fib6_info_hold(new_fn_leaf); 1852 rcu_assign_pointer(fn->leaf, new_fn_leaf); 1853 return pn; 1854 } 1855 1856 #ifdef CONFIG_IPV6_SUBTREES 1857 if (FIB6_SUBTREE(pn) == fn) { 1858 WARN_ON(!(fn->fn_flags & RTN_ROOT)); 1859 RCU_INIT_POINTER(pn->subtree, NULL); 1860 nstate = FWS_L; 1861 } else { 1862 WARN_ON(fn->fn_flags & RTN_ROOT); 1863 #endif 1864 if (pn_r == fn) 1865 rcu_assign_pointer(pn->right, child); 1866 else if (pn_l == fn) 1867 rcu_assign_pointer(pn->left, child); 1868 #if RT6_DEBUG >= 2 1869 else 1870 WARN_ON(1); 1871 #endif 1872 if (child) 1873 rcu_assign_pointer(child->parent, pn); 1874 nstate = FWS_R; 1875 #ifdef CONFIG_IPV6_SUBTREES 1876 } 1877 #endif 1878 1879 read_lock(&net->ipv6.fib6_walker_lock); 1880 FOR_WALKERS(net, w) { 1881 if (!child) { 1882 if (w->node == fn) { 1883 pr_debug("W %p adjusted by delnode 1, s=%d/%d\n", 1884 w, w->state, nstate); 1885 w->node = pn; 1886 w->state = nstate; 1887 } 1888 } else { 1889 if (w->node == fn) { 1890 w->node = child; 1891 if (children&2) { 1892 pr_debug("W %p adjusted by delnode 2, s=%d\n", 1893 w, w->state); 1894 w->state = w->state >= FWS_R ? FWS_U : FWS_INIT; 1895 } else { 1896 pr_debug("W %p adjusted by delnode 2, s=%d\n", 1897 w, w->state); 1898 w->state = w->state >= FWS_C ? FWS_U : FWS_INIT; 1899 } 1900 } 1901 } 1902 } 1903 read_unlock(&net->ipv6.fib6_walker_lock); 1904 1905 node_free(net, fn); 1906 if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn)) 1907 return pn; 1908 1909 RCU_INIT_POINTER(pn->leaf, NULL); 1910 fib6_info_release(pn_leaf); 1911 fn = pn; 1912 } 1913 } 1914 1915 static void fib6_del_route(struct fib6_table *table, struct fib6_node *fn, 1916 struct fib6_info __rcu **rtp, struct nl_info *info) 1917 { 1918 struct fib6_info *leaf, *replace_rt = NULL; 1919 struct fib6_walker *w; 1920 struct fib6_info *rt = rcu_dereference_protected(*rtp, 1921 lockdep_is_held(&table->tb6_lock)); 1922 struct net *net = info->nl_net; 1923 bool notify_del = false; 1924 1925 /* If the deleted route is the first in the node and it is not part of 1926 * a multipath route, then we need to replace it with the next route 1927 * in the node, if exists. 1928 */ 1929 leaf = rcu_dereference_protected(fn->leaf, 1930 lockdep_is_held(&table->tb6_lock)); 1931 if (leaf == rt && !rt->fib6_nsiblings) { 1932 if (rcu_access_pointer(rt->fib6_next)) 1933 replace_rt = rcu_dereference_protected(rt->fib6_next, 1934 lockdep_is_held(&table->tb6_lock)); 1935 else 1936 notify_del = true; 1937 } 1938 1939 /* Unlink it */ 1940 *rtp = rt->fib6_next; 1941 rt->fib6_node = NULL; 1942 net->ipv6.rt6_stats->fib_rt_entries--; 1943 net->ipv6.rt6_stats->fib_discarded_routes++; 1944 1945 /* Reset round-robin state, if necessary */ 1946 if (rcu_access_pointer(fn->rr_ptr) == rt) 1947 fn->rr_ptr = NULL; 1948 1949 /* Remove this entry from other siblings */ 1950 if (rt->fib6_nsiblings) { 1951 struct fib6_info *sibling, *next_sibling; 1952 1953 /* The route is deleted from a multipath route. If this 1954 * multipath route is the first route in the node, then we need 1955 * to emit a delete notification. Otherwise, we need to skip 1956 * the notification. 1957 */ 1958 if (rt->fib6_metric == leaf->fib6_metric && 1959 rt6_qualify_for_ecmp(leaf)) 1960 notify_del = true; 1961 list_for_each_entry_safe(sibling, next_sibling, 1962 &rt->fib6_siblings, fib6_siblings) 1963 sibling->fib6_nsiblings--; 1964 rt->fib6_nsiblings = 0; 1965 list_del_init(&rt->fib6_siblings); 1966 rt6_multipath_rebalance(next_sibling); 1967 } 1968 1969 /* Adjust walkers */ 1970 read_lock(&net->ipv6.fib6_walker_lock); 1971 FOR_WALKERS(net, w) { 1972 if (w->state == FWS_C && w->leaf == rt) { 1973 pr_debug("walker %p adjusted by delroute\n", w); 1974 w->leaf = rcu_dereference_protected(rt->fib6_next, 1975 lockdep_is_held(&table->tb6_lock)); 1976 if (!w->leaf) 1977 w->state = FWS_U; 1978 } 1979 } 1980 read_unlock(&net->ipv6.fib6_walker_lock); 1981 1982 /* If it was last route, call fib6_repair_tree() to: 1983 * 1. For root node, put back null_entry as how the table was created. 1984 * 2. For other nodes, expunge its radix tree node. 1985 */ 1986 if (!rcu_access_pointer(fn->leaf)) { 1987 if (!(fn->fn_flags & RTN_TL_ROOT)) { 1988 fn->fn_flags &= ~RTN_RTINFO; 1989 net->ipv6.rt6_stats->fib_route_nodes--; 1990 } 1991 fn = fib6_repair_tree(net, table, fn); 1992 } 1993 1994 fib6_purge_rt(rt, fn, net); 1995 1996 if (!info->skip_notify_kernel) { 1997 if (notify_del) 1998 call_fib6_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, 1999 rt, NULL); 2000 else if (replace_rt) 2001 call_fib6_entry_notifiers_replace(net, replace_rt); 2002 } 2003 if (!info->skip_notify) 2004 inet6_rt_notify(RTM_DELROUTE, rt, info, 0); 2005 2006 fib6_info_release(rt); 2007 } 2008 2009 /* Need to own table->tb6_lock */ 2010 int fib6_del(struct fib6_info *rt, struct nl_info *info) 2011 { 2012 struct net *net = info->nl_net; 2013 struct fib6_info __rcu **rtp; 2014 struct fib6_info __rcu **rtp_next; 2015 struct fib6_table *table; 2016 struct fib6_node *fn; 2017 2018 if (rt == net->ipv6.fib6_null_entry) 2019 return -ENOENT; 2020 2021 table = rt->fib6_table; 2022 fn = rcu_dereference_protected(rt->fib6_node, 2023 lockdep_is_held(&table->tb6_lock)); 2024 if (!fn) 2025 return -ENOENT; 2026 2027 WARN_ON(!(fn->fn_flags & RTN_RTINFO)); 2028 2029 /* 2030 * Walk the leaf entries looking for ourself 2031 */ 2032 2033 for (rtp = &fn->leaf; *rtp; rtp = rtp_next) { 2034 struct fib6_info *cur = rcu_dereference_protected(*rtp, 2035 lockdep_is_held(&table->tb6_lock)); 2036 if (rt == cur) { 2037 if (fib6_requires_src(cur)) 2038 fib6_routes_require_src_dec(info->nl_net); 2039 fib6_del_route(table, fn, rtp, info); 2040 return 0; 2041 } 2042 rtp_next = &cur->fib6_next; 2043 } 2044 return -ENOENT; 2045 } 2046 2047 /* 2048 * Tree traversal function. 2049 * 2050 * Certainly, it is not interrupt safe. 2051 * However, it is internally reenterable wrt itself and fib6_add/fib6_del. 2052 * It means, that we can modify tree during walking 2053 * and use this function for garbage collection, clone pruning, 2054 * cleaning tree when a device goes down etc. etc. 2055 * 2056 * It guarantees that every node will be traversed, 2057 * and that it will be traversed only once. 2058 * 2059 * Callback function w->func may return: 2060 * 0 -> continue walking. 2061 * positive value -> walking is suspended (used by tree dumps, 2062 * and probably by gc, if it will be split to several slices) 2063 * negative value -> terminate walking. 2064 * 2065 * The function itself returns: 2066 * 0 -> walk is complete. 2067 * >0 -> walk is incomplete (i.e. suspended) 2068 * <0 -> walk is terminated by an error. 2069 * 2070 * This function is called with tb6_lock held. 2071 */ 2072 2073 static int fib6_walk_continue(struct fib6_walker *w) 2074 { 2075 struct fib6_node *fn, *pn, *left, *right; 2076 2077 /* w->root should always be table->tb6_root */ 2078 WARN_ON_ONCE(!(w->root->fn_flags & RTN_TL_ROOT)); 2079 2080 for (;;) { 2081 fn = w->node; 2082 if (!fn) 2083 return 0; 2084 2085 switch (w->state) { 2086 #ifdef CONFIG_IPV6_SUBTREES 2087 case FWS_S: 2088 if (FIB6_SUBTREE(fn)) { 2089 w->node = FIB6_SUBTREE(fn); 2090 continue; 2091 } 2092 w->state = FWS_L; 2093 fallthrough; 2094 #endif 2095 case FWS_L: 2096 left = rcu_dereference_protected(fn->left, 1); 2097 if (left) { 2098 w->node = left; 2099 w->state = FWS_INIT; 2100 continue; 2101 } 2102 w->state = FWS_R; 2103 fallthrough; 2104 case FWS_R: 2105 right = rcu_dereference_protected(fn->right, 1); 2106 if (right) { 2107 w->node = right; 2108 w->state = FWS_INIT; 2109 continue; 2110 } 2111 w->state = FWS_C; 2112 w->leaf = rcu_dereference_protected(fn->leaf, 1); 2113 fallthrough; 2114 case FWS_C: 2115 if (w->leaf && fn->fn_flags & RTN_RTINFO) { 2116 int err; 2117 2118 if (w->skip) { 2119 w->skip--; 2120 goto skip; 2121 } 2122 2123 err = w->func(w); 2124 if (err) 2125 return err; 2126 2127 w->count++; 2128 continue; 2129 } 2130 skip: 2131 w->state = FWS_U; 2132 fallthrough; 2133 case FWS_U: 2134 if (fn == w->root) 2135 return 0; 2136 pn = rcu_dereference_protected(fn->parent, 1); 2137 left = rcu_dereference_protected(pn->left, 1); 2138 right = rcu_dereference_protected(pn->right, 1); 2139 w->node = pn; 2140 #ifdef CONFIG_IPV6_SUBTREES 2141 if (FIB6_SUBTREE(pn) == fn) { 2142 WARN_ON(!(fn->fn_flags & RTN_ROOT)); 2143 w->state = FWS_L; 2144 continue; 2145 } 2146 #endif 2147 if (left == fn) { 2148 w->state = FWS_R; 2149 continue; 2150 } 2151 if (right == fn) { 2152 w->state = FWS_C; 2153 w->leaf = rcu_dereference_protected(w->node->leaf, 1); 2154 continue; 2155 } 2156 #if RT6_DEBUG >= 2 2157 WARN_ON(1); 2158 #endif 2159 } 2160 } 2161 } 2162 2163 static int fib6_walk(struct net *net, struct fib6_walker *w) 2164 { 2165 int res; 2166 2167 w->state = FWS_INIT; 2168 w->node = w->root; 2169 2170 fib6_walker_link(net, w); 2171 res = fib6_walk_continue(w); 2172 if (res <= 0) 2173 fib6_walker_unlink(net, w); 2174 return res; 2175 } 2176 2177 static int fib6_clean_node(struct fib6_walker *w) 2178 { 2179 int res; 2180 struct fib6_info *rt; 2181 struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w); 2182 struct nl_info info = { 2183 .nl_net = c->net, 2184 .skip_notify = c->skip_notify, 2185 }; 2186 2187 if (c->sernum != FIB6_NO_SERNUM_CHANGE && 2188 READ_ONCE(w->node->fn_sernum) != c->sernum) 2189 WRITE_ONCE(w->node->fn_sernum, c->sernum); 2190 2191 if (!c->func) { 2192 WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE); 2193 w->leaf = NULL; 2194 return 0; 2195 } 2196 2197 for_each_fib6_walker_rt(w) { 2198 res = c->func(rt, c->arg); 2199 if (res == -1) { 2200 w->leaf = rt; 2201 res = fib6_del(rt, &info); 2202 if (res) { 2203 #if RT6_DEBUG >= 2 2204 pr_debug("%s: del failed: rt=%p@%p err=%d\n", 2205 __func__, rt, 2206 rcu_access_pointer(rt->fib6_node), 2207 res); 2208 #endif 2209 continue; 2210 } 2211 return 0; 2212 } else if (res == -2) { 2213 if (WARN_ON(!rt->fib6_nsiblings)) 2214 continue; 2215 rt = list_last_entry(&rt->fib6_siblings, 2216 struct fib6_info, fib6_siblings); 2217 continue; 2218 } 2219 WARN_ON(res != 0); 2220 } 2221 w->leaf = rt; 2222 return 0; 2223 } 2224 2225 /* 2226 * Convenient frontend to tree walker. 2227 * 2228 * func is called on each route. 2229 * It may return -2 -> skip multipath route. 2230 * -1 -> delete this route. 2231 * 0 -> continue walking 2232 */ 2233 2234 static void fib6_clean_tree(struct net *net, struct fib6_node *root, 2235 int (*func)(struct fib6_info *, void *arg), 2236 int sernum, void *arg, bool skip_notify) 2237 { 2238 struct fib6_cleaner c; 2239 2240 c.w.root = root; 2241 c.w.func = fib6_clean_node; 2242 c.w.count = 0; 2243 c.w.skip = 0; 2244 c.w.skip_in_node = 0; 2245 c.func = func; 2246 c.sernum = sernum; 2247 c.arg = arg; 2248 c.net = net; 2249 c.skip_notify = skip_notify; 2250 2251 fib6_walk(net, &c.w); 2252 } 2253 2254 static void __fib6_clean_all(struct net *net, 2255 int (*func)(struct fib6_info *, void *), 2256 int sernum, void *arg, bool skip_notify) 2257 { 2258 struct fib6_table *table; 2259 struct hlist_head *head; 2260 unsigned int h; 2261 2262 rcu_read_lock(); 2263 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { 2264 head = &net->ipv6.fib_table_hash[h]; 2265 hlist_for_each_entry_rcu(table, head, tb6_hlist) { 2266 spin_lock_bh(&table->tb6_lock); 2267 fib6_clean_tree(net, &table->tb6_root, 2268 func, sernum, arg, skip_notify); 2269 spin_unlock_bh(&table->tb6_lock); 2270 } 2271 } 2272 rcu_read_unlock(); 2273 } 2274 2275 void fib6_clean_all(struct net *net, int (*func)(struct fib6_info *, void *), 2276 void *arg) 2277 { 2278 __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, false); 2279 } 2280 2281 void fib6_clean_all_skip_notify(struct net *net, 2282 int (*func)(struct fib6_info *, void *), 2283 void *arg) 2284 { 2285 __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, true); 2286 } 2287 2288 static void fib6_flush_trees(struct net *net) 2289 { 2290 int new_sernum = fib6_new_sernum(net); 2291 2292 __fib6_clean_all(net, NULL, new_sernum, NULL, false); 2293 } 2294 2295 /* 2296 * Garbage collection 2297 */ 2298 2299 static int fib6_age(struct fib6_info *rt, struct fib6_gc_args *gc_args) 2300 { 2301 unsigned long now = jiffies; 2302 2303 /* 2304 * check addrconf expiration here. 2305 * Routes are expired even if they are in use. 2306 */ 2307 2308 if (rt->fib6_flags & RTF_EXPIRES && rt->expires) { 2309 if (time_after(now, rt->expires)) { 2310 pr_debug("expiring %p\n", rt); 2311 return -1; 2312 } 2313 gc_args->more++; 2314 } 2315 2316 /* Also age clones in the exception table. 2317 * Note, that clones are aged out 2318 * only if they are not in use now. 2319 */ 2320 rt6_age_exceptions(rt, gc_args, now); 2321 2322 return 0; 2323 } 2324 2325 static void fib6_gc_table(struct net *net, 2326 struct fib6_table *tb6, 2327 struct fib6_gc_args *gc_args) 2328 { 2329 struct fib6_info *rt; 2330 struct hlist_node *n; 2331 struct nl_info info = { 2332 .nl_net = net, 2333 .skip_notify = false, 2334 }; 2335 2336 hlist_for_each_entry_safe(rt, n, &tb6->tb6_gc_hlist, gc_link) 2337 if (fib6_age(rt, gc_args) == -1) 2338 fib6_del(rt, &info); 2339 } 2340 2341 static void fib6_gc_all(struct net *net, struct fib6_gc_args *gc_args) 2342 { 2343 struct fib6_table *table; 2344 struct hlist_head *head; 2345 unsigned int h; 2346 2347 rcu_read_lock(); 2348 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { 2349 head = &net->ipv6.fib_table_hash[h]; 2350 hlist_for_each_entry_rcu(table, head, tb6_hlist) { 2351 spin_lock_bh(&table->tb6_lock); 2352 2353 fib6_gc_table(net, table, gc_args); 2354 2355 spin_unlock_bh(&table->tb6_lock); 2356 } 2357 } 2358 rcu_read_unlock(); 2359 } 2360 2361 void fib6_run_gc(unsigned long expires, struct net *net, bool force) 2362 { 2363 struct fib6_gc_args gc_args; 2364 unsigned long now; 2365 2366 if (force) { 2367 spin_lock_bh(&net->ipv6.fib6_gc_lock); 2368 } else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) { 2369 mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ); 2370 return; 2371 } 2372 gc_args.timeout = expires ? (int)expires : 2373 net->ipv6.sysctl.ip6_rt_gc_interval; 2374 gc_args.more = 0; 2375 2376 fib6_gc_all(net, &gc_args); 2377 now = jiffies; 2378 net->ipv6.ip6_rt_last_gc = now; 2379 2380 if (gc_args.more) 2381 mod_timer(&net->ipv6.ip6_fib_timer, 2382 round_jiffies(now 2383 + net->ipv6.sysctl.ip6_rt_gc_interval)); 2384 else 2385 del_timer(&net->ipv6.ip6_fib_timer); 2386 spin_unlock_bh(&net->ipv6.fib6_gc_lock); 2387 } 2388 2389 static void fib6_gc_timer_cb(struct timer_list *t) 2390 { 2391 struct net *arg = from_timer(arg, t, ipv6.ip6_fib_timer); 2392 2393 fib6_run_gc(0, arg, true); 2394 } 2395 2396 static int __net_init fib6_net_init(struct net *net) 2397 { 2398 size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ; 2399 int err; 2400 2401 err = fib6_notifier_init(net); 2402 if (err) 2403 return err; 2404 2405 /* Default to 3-tuple */ 2406 net->ipv6.sysctl.multipath_hash_fields = 2407 FIB_MULTIPATH_HASH_FIELD_DEFAULT_MASK; 2408 2409 spin_lock_init(&net->ipv6.fib6_gc_lock); 2410 rwlock_init(&net->ipv6.fib6_walker_lock); 2411 INIT_LIST_HEAD(&net->ipv6.fib6_walkers); 2412 timer_setup(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, 0); 2413 2414 net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL); 2415 if (!net->ipv6.rt6_stats) 2416 goto out_notifier; 2417 2418 /* Avoid false sharing : Use at least a full cache line */ 2419 size = max_t(size_t, size, L1_CACHE_BYTES); 2420 2421 net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL); 2422 if (!net->ipv6.fib_table_hash) 2423 goto out_rt6_stats; 2424 2425 net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl), 2426 GFP_KERNEL); 2427 if (!net->ipv6.fib6_main_tbl) 2428 goto out_fib_table_hash; 2429 2430 net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN; 2431 rcu_assign_pointer(net->ipv6.fib6_main_tbl->tb6_root.leaf, 2432 net->ipv6.fib6_null_entry); 2433 net->ipv6.fib6_main_tbl->tb6_root.fn_flags = 2434 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO; 2435 inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers); 2436 INIT_HLIST_HEAD(&net->ipv6.fib6_main_tbl->tb6_gc_hlist); 2437 2438 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 2439 net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl), 2440 GFP_KERNEL); 2441 if (!net->ipv6.fib6_local_tbl) 2442 goto out_fib6_main_tbl; 2443 net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL; 2444 rcu_assign_pointer(net->ipv6.fib6_local_tbl->tb6_root.leaf, 2445 net->ipv6.fib6_null_entry); 2446 net->ipv6.fib6_local_tbl->tb6_root.fn_flags = 2447 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO; 2448 inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers); 2449 INIT_HLIST_HEAD(&net->ipv6.fib6_local_tbl->tb6_gc_hlist); 2450 #endif 2451 fib6_tables_init(net); 2452 2453 return 0; 2454 2455 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 2456 out_fib6_main_tbl: 2457 kfree(net->ipv6.fib6_main_tbl); 2458 #endif 2459 out_fib_table_hash: 2460 kfree(net->ipv6.fib_table_hash); 2461 out_rt6_stats: 2462 kfree(net->ipv6.rt6_stats); 2463 out_notifier: 2464 fib6_notifier_exit(net); 2465 return -ENOMEM; 2466 } 2467 2468 static void fib6_net_exit(struct net *net) 2469 { 2470 unsigned int i; 2471 2472 del_timer_sync(&net->ipv6.ip6_fib_timer); 2473 2474 for (i = 0; i < FIB6_TABLE_HASHSZ; i++) { 2475 struct hlist_head *head = &net->ipv6.fib_table_hash[i]; 2476 struct hlist_node *tmp; 2477 struct fib6_table *tb; 2478 2479 hlist_for_each_entry_safe(tb, tmp, head, tb6_hlist) { 2480 hlist_del(&tb->tb6_hlist); 2481 fib6_free_table(tb); 2482 } 2483 } 2484 2485 kfree(net->ipv6.fib_table_hash); 2486 kfree(net->ipv6.rt6_stats); 2487 fib6_notifier_exit(net); 2488 } 2489 2490 static struct pernet_operations fib6_net_ops = { 2491 .init = fib6_net_init, 2492 .exit = fib6_net_exit, 2493 }; 2494 2495 int __init fib6_init(void) 2496 { 2497 int ret = -ENOMEM; 2498 2499 fib6_node_kmem = KMEM_CACHE(fib6_node, 2500 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT); 2501 if (!fib6_node_kmem) 2502 goto out; 2503 2504 ret = register_pernet_subsys(&fib6_net_ops); 2505 if (ret) 2506 goto out_kmem_cache_create; 2507 2508 ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_GETROUTE, NULL, 2509 inet6_dump_fib, 0); 2510 if (ret) 2511 goto out_unregister_subsys; 2512 2513 __fib6_flush_trees = fib6_flush_trees; 2514 out: 2515 return ret; 2516 2517 out_unregister_subsys: 2518 unregister_pernet_subsys(&fib6_net_ops); 2519 out_kmem_cache_create: 2520 kmem_cache_destroy(fib6_node_kmem); 2521 goto out; 2522 } 2523 2524 void fib6_gc_cleanup(void) 2525 { 2526 unregister_pernet_subsys(&fib6_net_ops); 2527 kmem_cache_destroy(fib6_node_kmem); 2528 } 2529 2530 #ifdef CONFIG_PROC_FS 2531 static int ipv6_route_native_seq_show(struct seq_file *seq, void *v) 2532 { 2533 struct fib6_info *rt = v; 2534 struct ipv6_route_iter *iter = seq->private; 2535 struct fib6_nh *fib6_nh = rt->fib6_nh; 2536 unsigned int flags = rt->fib6_flags; 2537 const struct net_device *dev; 2538 2539 if (rt->nh) 2540 fib6_nh = nexthop_fib6_nh(rt->nh); 2541 2542 seq_printf(seq, "%pi6 %02x ", &rt->fib6_dst.addr, rt->fib6_dst.plen); 2543 2544 #ifdef CONFIG_IPV6_SUBTREES 2545 seq_printf(seq, "%pi6 %02x ", &rt->fib6_src.addr, rt->fib6_src.plen); 2546 #else 2547 seq_puts(seq, "00000000000000000000000000000000 00 "); 2548 #endif 2549 if (fib6_nh->fib_nh_gw_family) { 2550 flags |= RTF_GATEWAY; 2551 seq_printf(seq, "%pi6", &fib6_nh->fib_nh_gw6); 2552 } else { 2553 seq_puts(seq, "00000000000000000000000000000000"); 2554 } 2555 2556 dev = fib6_nh->fib_nh_dev; 2557 seq_printf(seq, " %08x %08x %08x %08x %8s\n", 2558 rt->fib6_metric, refcount_read(&rt->fib6_ref), 0, 2559 flags, dev ? dev->name : ""); 2560 iter->w.leaf = NULL; 2561 return 0; 2562 } 2563 2564 static int ipv6_route_yield(struct fib6_walker *w) 2565 { 2566 struct ipv6_route_iter *iter = w->args; 2567 2568 if (!iter->skip) 2569 return 1; 2570 2571 do { 2572 iter->w.leaf = rcu_dereference_protected( 2573 iter->w.leaf->fib6_next, 2574 lockdep_is_held(&iter->tbl->tb6_lock)); 2575 iter->skip--; 2576 if (!iter->skip && iter->w.leaf) 2577 return 1; 2578 } while (iter->w.leaf); 2579 2580 return 0; 2581 } 2582 2583 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter, 2584 struct net *net) 2585 { 2586 memset(&iter->w, 0, sizeof(iter->w)); 2587 iter->w.func = ipv6_route_yield; 2588 iter->w.root = &iter->tbl->tb6_root; 2589 iter->w.state = FWS_INIT; 2590 iter->w.node = iter->w.root; 2591 iter->w.args = iter; 2592 iter->sernum = READ_ONCE(iter->w.root->fn_sernum); 2593 INIT_LIST_HEAD(&iter->w.lh); 2594 fib6_walker_link(net, &iter->w); 2595 } 2596 2597 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl, 2598 struct net *net) 2599 { 2600 unsigned int h; 2601 struct hlist_node *node; 2602 2603 if (tbl) { 2604 h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1; 2605 node = rcu_dereference(hlist_next_rcu(&tbl->tb6_hlist)); 2606 } else { 2607 h = 0; 2608 node = NULL; 2609 } 2610 2611 while (!node && h < FIB6_TABLE_HASHSZ) { 2612 node = rcu_dereference( 2613 hlist_first_rcu(&net->ipv6.fib_table_hash[h++])); 2614 } 2615 return hlist_entry_safe(node, struct fib6_table, tb6_hlist); 2616 } 2617 2618 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter) 2619 { 2620 int sernum = READ_ONCE(iter->w.root->fn_sernum); 2621 2622 if (iter->sernum != sernum) { 2623 iter->sernum = sernum; 2624 iter->w.state = FWS_INIT; 2625 iter->w.node = iter->w.root; 2626 WARN_ON(iter->w.skip); 2627 iter->w.skip = iter->w.count; 2628 } 2629 } 2630 2631 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2632 { 2633 int r; 2634 struct fib6_info *n; 2635 struct net *net = seq_file_net(seq); 2636 struct ipv6_route_iter *iter = seq->private; 2637 2638 ++(*pos); 2639 if (!v) 2640 goto iter_table; 2641 2642 n = rcu_dereference(((struct fib6_info *)v)->fib6_next); 2643 if (n) 2644 return n; 2645 2646 iter_table: 2647 ipv6_route_check_sernum(iter); 2648 spin_lock_bh(&iter->tbl->tb6_lock); 2649 r = fib6_walk_continue(&iter->w); 2650 spin_unlock_bh(&iter->tbl->tb6_lock); 2651 if (r > 0) { 2652 return iter->w.leaf; 2653 } else if (r < 0) { 2654 fib6_walker_unlink(net, &iter->w); 2655 return NULL; 2656 } 2657 fib6_walker_unlink(net, &iter->w); 2658 2659 iter->tbl = ipv6_route_seq_next_table(iter->tbl, net); 2660 if (!iter->tbl) 2661 return NULL; 2662 2663 ipv6_route_seq_setup_walk(iter, net); 2664 goto iter_table; 2665 } 2666 2667 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos) 2668 __acquires(RCU) 2669 { 2670 struct net *net = seq_file_net(seq); 2671 struct ipv6_route_iter *iter = seq->private; 2672 2673 rcu_read_lock(); 2674 iter->tbl = ipv6_route_seq_next_table(NULL, net); 2675 iter->skip = *pos; 2676 2677 if (iter->tbl) { 2678 loff_t p = 0; 2679 2680 ipv6_route_seq_setup_walk(iter, net); 2681 return ipv6_route_seq_next(seq, NULL, &p); 2682 } else { 2683 return NULL; 2684 } 2685 } 2686 2687 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter) 2688 { 2689 struct fib6_walker *w = &iter->w; 2690 return w->node && !(w->state == FWS_U && w->node == w->root); 2691 } 2692 2693 static void ipv6_route_native_seq_stop(struct seq_file *seq, void *v) 2694 __releases(RCU) 2695 { 2696 struct net *net = seq_file_net(seq); 2697 struct ipv6_route_iter *iter = seq->private; 2698 2699 if (ipv6_route_iter_active(iter)) 2700 fib6_walker_unlink(net, &iter->w); 2701 2702 rcu_read_unlock(); 2703 } 2704 2705 #if IS_BUILTIN(CONFIG_IPV6) && defined(CONFIG_BPF_SYSCALL) 2706 static int ipv6_route_prog_seq_show(struct bpf_prog *prog, 2707 struct bpf_iter_meta *meta, 2708 void *v) 2709 { 2710 struct bpf_iter__ipv6_route ctx; 2711 2712 ctx.meta = meta; 2713 ctx.rt = v; 2714 return bpf_iter_run_prog(prog, &ctx); 2715 } 2716 2717 static int ipv6_route_seq_show(struct seq_file *seq, void *v) 2718 { 2719 struct ipv6_route_iter *iter = seq->private; 2720 struct bpf_iter_meta meta; 2721 struct bpf_prog *prog; 2722 int ret; 2723 2724 meta.seq = seq; 2725 prog = bpf_iter_get_info(&meta, false); 2726 if (!prog) 2727 return ipv6_route_native_seq_show(seq, v); 2728 2729 ret = ipv6_route_prog_seq_show(prog, &meta, v); 2730 iter->w.leaf = NULL; 2731 2732 return ret; 2733 } 2734 2735 static void ipv6_route_seq_stop(struct seq_file *seq, void *v) 2736 { 2737 struct bpf_iter_meta meta; 2738 struct bpf_prog *prog; 2739 2740 if (!v) { 2741 meta.seq = seq; 2742 prog = bpf_iter_get_info(&meta, true); 2743 if (prog) 2744 (void)ipv6_route_prog_seq_show(prog, &meta, v); 2745 } 2746 2747 ipv6_route_native_seq_stop(seq, v); 2748 } 2749 #else 2750 static int ipv6_route_seq_show(struct seq_file *seq, void *v) 2751 { 2752 return ipv6_route_native_seq_show(seq, v); 2753 } 2754 2755 static void ipv6_route_seq_stop(struct seq_file *seq, void *v) 2756 { 2757 ipv6_route_native_seq_stop(seq, v); 2758 } 2759 #endif 2760 2761 const struct seq_operations ipv6_route_seq_ops = { 2762 .start = ipv6_route_seq_start, 2763 .next = ipv6_route_seq_next, 2764 .stop = ipv6_route_seq_stop, 2765 .show = ipv6_route_seq_show 2766 }; 2767 #endif /* CONFIG_PROC_FS */ 2768