xref: /linux/net/ipv6/ip6_fib.c (revision 3da3cc1b5f47115b16b5ffeeb4bf09ec331b0164)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Linux INET6 implementation
4  *	Forwarding Information Database
5  *
6  *	Authors:
7  *	Pedro Roque		<roque@di.fc.ul.pt>
8  *
9  *	Changes:
10  *	Yuji SEKIYA @USAGI:	Support default route on router node;
11  *				remove ip6_null_entry from the top of
12  *				routing table.
13  *	Ville Nuorvala:		Fixed routing subtrees.
14  */
15 
16 #define pr_fmt(fmt) "IPv6: " fmt
17 
18 #include <linux/errno.h>
19 #include <linux/types.h>
20 #include <linux/net.h>
21 #include <linux/route.h>
22 #include <linux/netdevice.h>
23 #include <linux/in6.h>
24 #include <linux/init.h>
25 #include <linux/list.h>
26 #include <linux/slab.h>
27 
28 #include <net/ip.h>
29 #include <net/ipv6.h>
30 #include <net/ndisc.h>
31 #include <net/addrconf.h>
32 #include <net/lwtunnel.h>
33 #include <net/fib_notifier.h>
34 
35 #include <net/ip6_fib.h>
36 #include <net/ip6_route.h>
37 
38 static struct kmem_cache *fib6_node_kmem __read_mostly;
39 
40 struct fib6_cleaner {
41 	struct fib6_walker w;
42 	struct net *net;
43 	int (*func)(struct fib6_info *, void *arg);
44 	int sernum;
45 	void *arg;
46 	bool skip_notify;
47 };
48 
49 #ifdef CONFIG_IPV6_SUBTREES
50 #define FWS_INIT FWS_S
51 #else
52 #define FWS_INIT FWS_L
53 #endif
54 
55 static struct fib6_info *fib6_find_prefix(struct net *net,
56 					 struct fib6_table *table,
57 					 struct fib6_node *fn);
58 static struct fib6_node *fib6_repair_tree(struct net *net,
59 					  struct fib6_table *table,
60 					  struct fib6_node *fn);
61 static int fib6_walk(struct net *net, struct fib6_walker *w);
62 static int fib6_walk_continue(struct fib6_walker *w);
63 
64 /*
65  *	A routing update causes an increase of the serial number on the
66  *	affected subtree. This allows for cached routes to be asynchronously
67  *	tested when modifications are made to the destination cache as a
68  *	result of redirects, path MTU changes, etc.
69  */
70 
71 static void fib6_gc_timer_cb(struct timer_list *t);
72 
73 #define FOR_WALKERS(net, w) \
74 	list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh)
75 
76 static void fib6_walker_link(struct net *net, struct fib6_walker *w)
77 {
78 	write_lock_bh(&net->ipv6.fib6_walker_lock);
79 	list_add(&w->lh, &net->ipv6.fib6_walkers);
80 	write_unlock_bh(&net->ipv6.fib6_walker_lock);
81 }
82 
83 static void fib6_walker_unlink(struct net *net, struct fib6_walker *w)
84 {
85 	write_lock_bh(&net->ipv6.fib6_walker_lock);
86 	list_del(&w->lh);
87 	write_unlock_bh(&net->ipv6.fib6_walker_lock);
88 }
89 
90 static int fib6_new_sernum(struct net *net)
91 {
92 	int new, old;
93 
94 	do {
95 		old = atomic_read(&net->ipv6.fib6_sernum);
96 		new = old < INT_MAX ? old + 1 : 1;
97 	} while (atomic_cmpxchg(&net->ipv6.fib6_sernum,
98 				old, new) != old);
99 	return new;
100 }
101 
102 enum {
103 	FIB6_NO_SERNUM_CHANGE = 0,
104 };
105 
106 void fib6_update_sernum(struct net *net, struct fib6_info *f6i)
107 {
108 	struct fib6_node *fn;
109 
110 	fn = rcu_dereference_protected(f6i->fib6_node,
111 			lockdep_is_held(&f6i->fib6_table->tb6_lock));
112 	if (fn)
113 		fn->fn_sernum = fib6_new_sernum(net);
114 }
115 
116 /*
117  *	Auxiliary address test functions for the radix tree.
118  *
119  *	These assume a 32bit processor (although it will work on
120  *	64bit processors)
121  */
122 
123 /*
124  *	test bit
125  */
126 #if defined(__LITTLE_ENDIAN)
127 # define BITOP_BE32_SWIZZLE	(0x1F & ~7)
128 #else
129 # define BITOP_BE32_SWIZZLE	0
130 #endif
131 
132 static __be32 addr_bit_set(const void *token, int fn_bit)
133 {
134 	const __be32 *addr = token;
135 	/*
136 	 * Here,
137 	 *	1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
138 	 * is optimized version of
139 	 *	htonl(1 << ((~fn_bit)&0x1F))
140 	 * See include/asm-generic/bitops/le.h.
141 	 */
142 	return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
143 	       addr[fn_bit >> 5];
144 }
145 
146 struct fib6_info *fib6_info_alloc(gfp_t gfp_flags, bool with_fib6_nh)
147 {
148 	struct fib6_info *f6i;
149 	size_t sz = sizeof(*f6i);
150 
151 	if (with_fib6_nh)
152 		sz += sizeof(struct fib6_nh);
153 
154 	f6i = kzalloc(sz, gfp_flags);
155 	if (!f6i)
156 		return NULL;
157 
158 	/* fib6_siblings is a union with nh_list, so this initializes both */
159 	INIT_LIST_HEAD(&f6i->fib6_siblings);
160 	refcount_set(&f6i->fib6_ref, 1);
161 
162 	return f6i;
163 }
164 
165 void fib6_info_destroy_rcu(struct rcu_head *head)
166 {
167 	struct fib6_info *f6i = container_of(head, struct fib6_info, rcu);
168 
169 	WARN_ON(f6i->fib6_node);
170 
171 	if (f6i->nh)
172 		nexthop_put(f6i->nh);
173 	else
174 		fib6_nh_release(f6i->fib6_nh);
175 
176 	ip_fib_metrics_put(f6i->fib6_metrics);
177 	kfree(f6i);
178 }
179 EXPORT_SYMBOL_GPL(fib6_info_destroy_rcu);
180 
181 static struct fib6_node *node_alloc(struct net *net)
182 {
183 	struct fib6_node *fn;
184 
185 	fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
186 	if (fn)
187 		net->ipv6.rt6_stats->fib_nodes++;
188 
189 	return fn;
190 }
191 
192 static void node_free_immediate(struct net *net, struct fib6_node *fn)
193 {
194 	kmem_cache_free(fib6_node_kmem, fn);
195 	net->ipv6.rt6_stats->fib_nodes--;
196 }
197 
198 static void node_free_rcu(struct rcu_head *head)
199 {
200 	struct fib6_node *fn = container_of(head, struct fib6_node, rcu);
201 
202 	kmem_cache_free(fib6_node_kmem, fn);
203 }
204 
205 static void node_free(struct net *net, struct fib6_node *fn)
206 {
207 	call_rcu(&fn->rcu, node_free_rcu);
208 	net->ipv6.rt6_stats->fib_nodes--;
209 }
210 
211 static void fib6_free_table(struct fib6_table *table)
212 {
213 	inetpeer_invalidate_tree(&table->tb6_peers);
214 	kfree(table);
215 }
216 
217 static void fib6_link_table(struct net *net, struct fib6_table *tb)
218 {
219 	unsigned int h;
220 
221 	/*
222 	 * Initialize table lock at a single place to give lockdep a key,
223 	 * tables aren't visible prior to being linked to the list.
224 	 */
225 	spin_lock_init(&tb->tb6_lock);
226 	h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
227 
228 	/*
229 	 * No protection necessary, this is the only list mutatation
230 	 * operation, tables never disappear once they exist.
231 	 */
232 	hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
233 }
234 
235 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
236 
237 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
238 {
239 	struct fib6_table *table;
240 
241 	table = kzalloc(sizeof(*table), GFP_ATOMIC);
242 	if (table) {
243 		table->tb6_id = id;
244 		rcu_assign_pointer(table->tb6_root.leaf,
245 				   net->ipv6.fib6_null_entry);
246 		table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
247 		inet_peer_base_init(&table->tb6_peers);
248 	}
249 
250 	return table;
251 }
252 
253 struct fib6_table *fib6_new_table(struct net *net, u32 id)
254 {
255 	struct fib6_table *tb;
256 
257 	if (id == 0)
258 		id = RT6_TABLE_MAIN;
259 	tb = fib6_get_table(net, id);
260 	if (tb)
261 		return tb;
262 
263 	tb = fib6_alloc_table(net, id);
264 	if (tb)
265 		fib6_link_table(net, tb);
266 
267 	return tb;
268 }
269 EXPORT_SYMBOL_GPL(fib6_new_table);
270 
271 struct fib6_table *fib6_get_table(struct net *net, u32 id)
272 {
273 	struct fib6_table *tb;
274 	struct hlist_head *head;
275 	unsigned int h;
276 
277 	if (id == 0)
278 		id = RT6_TABLE_MAIN;
279 	h = id & (FIB6_TABLE_HASHSZ - 1);
280 	rcu_read_lock();
281 	head = &net->ipv6.fib_table_hash[h];
282 	hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
283 		if (tb->tb6_id == id) {
284 			rcu_read_unlock();
285 			return tb;
286 		}
287 	}
288 	rcu_read_unlock();
289 
290 	return NULL;
291 }
292 EXPORT_SYMBOL_GPL(fib6_get_table);
293 
294 static void __net_init fib6_tables_init(struct net *net)
295 {
296 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
297 	fib6_link_table(net, net->ipv6.fib6_local_tbl);
298 }
299 #else
300 
301 struct fib6_table *fib6_new_table(struct net *net, u32 id)
302 {
303 	return fib6_get_table(net, id);
304 }
305 
306 struct fib6_table *fib6_get_table(struct net *net, u32 id)
307 {
308 	  return net->ipv6.fib6_main_tbl;
309 }
310 
311 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
312 				   const struct sk_buff *skb,
313 				   int flags, pol_lookup_t lookup)
314 {
315 	struct rt6_info *rt;
316 
317 	rt = pol_lookup_func(lookup,
318 			net, net->ipv6.fib6_main_tbl, fl6, skb, flags);
319 	if (rt->dst.error == -EAGAIN) {
320 		ip6_rt_put_flags(rt, flags);
321 		rt = net->ipv6.ip6_null_entry;
322 		if (!(flags & RT6_LOOKUP_F_DST_NOREF))
323 			dst_hold(&rt->dst);
324 	}
325 
326 	return &rt->dst;
327 }
328 
329 /* called with rcu lock held; no reference taken on fib6_info */
330 int fib6_lookup(struct net *net, int oif, struct flowi6 *fl6,
331 		struct fib6_result *res, int flags)
332 {
333 	return fib6_table_lookup(net, net->ipv6.fib6_main_tbl, oif, fl6,
334 				 res, flags);
335 }
336 
337 static void __net_init fib6_tables_init(struct net *net)
338 {
339 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
340 }
341 
342 #endif
343 
344 unsigned int fib6_tables_seq_read(struct net *net)
345 {
346 	unsigned int h, fib_seq = 0;
347 
348 	rcu_read_lock();
349 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
350 		struct hlist_head *head = &net->ipv6.fib_table_hash[h];
351 		struct fib6_table *tb;
352 
353 		hlist_for_each_entry_rcu(tb, head, tb6_hlist)
354 			fib_seq += tb->fib_seq;
355 	}
356 	rcu_read_unlock();
357 
358 	return fib_seq;
359 }
360 
361 static int call_fib6_entry_notifier(struct notifier_block *nb,
362 				    enum fib_event_type event_type,
363 				    struct fib6_info *rt,
364 				    struct netlink_ext_ack *extack)
365 {
366 	struct fib6_entry_notifier_info info = {
367 		.info.extack = extack,
368 		.rt = rt,
369 	};
370 
371 	return call_fib6_notifier(nb, event_type, &info.info);
372 }
373 
374 static int call_fib6_multipath_entry_notifier(struct notifier_block *nb,
375 					      enum fib_event_type event_type,
376 					      struct fib6_info *rt,
377 					      unsigned int nsiblings,
378 					      struct netlink_ext_ack *extack)
379 {
380 	struct fib6_entry_notifier_info info = {
381 		.info.extack = extack,
382 		.rt = rt,
383 		.nsiblings = nsiblings,
384 	};
385 
386 	return call_fib6_notifier(nb, event_type, &info.info);
387 }
388 
389 int call_fib6_entry_notifiers(struct net *net,
390 			      enum fib_event_type event_type,
391 			      struct fib6_info *rt,
392 			      struct netlink_ext_ack *extack)
393 {
394 	struct fib6_entry_notifier_info info = {
395 		.info.extack = extack,
396 		.rt = rt,
397 	};
398 
399 	rt->fib6_table->fib_seq++;
400 	return call_fib6_notifiers(net, event_type, &info.info);
401 }
402 
403 int call_fib6_multipath_entry_notifiers(struct net *net,
404 					enum fib_event_type event_type,
405 					struct fib6_info *rt,
406 					unsigned int nsiblings,
407 					struct netlink_ext_ack *extack)
408 {
409 	struct fib6_entry_notifier_info info = {
410 		.info.extack = extack,
411 		.rt = rt,
412 		.nsiblings = nsiblings,
413 	};
414 
415 	rt->fib6_table->fib_seq++;
416 	return call_fib6_notifiers(net, event_type, &info.info);
417 }
418 
419 int call_fib6_entry_notifiers_replace(struct net *net, struct fib6_info *rt)
420 {
421 	struct fib6_entry_notifier_info info = {
422 		.rt = rt,
423 		.nsiblings = rt->fib6_nsiblings,
424 	};
425 
426 	rt->fib6_table->fib_seq++;
427 	return call_fib6_notifiers(net, FIB_EVENT_ENTRY_REPLACE, &info.info);
428 }
429 
430 struct fib6_dump_arg {
431 	struct net *net;
432 	struct notifier_block *nb;
433 	struct netlink_ext_ack *extack;
434 };
435 
436 static int fib6_rt_dump(struct fib6_info *rt, struct fib6_dump_arg *arg)
437 {
438 	enum fib_event_type fib_event = FIB_EVENT_ENTRY_REPLACE;
439 	int err;
440 
441 	if (!rt || rt == arg->net->ipv6.fib6_null_entry)
442 		return 0;
443 
444 	if (rt->fib6_nsiblings)
445 		err = call_fib6_multipath_entry_notifier(arg->nb, fib_event,
446 							 rt,
447 							 rt->fib6_nsiblings,
448 							 arg->extack);
449 	else
450 		err = call_fib6_entry_notifier(arg->nb, fib_event, rt,
451 					       arg->extack);
452 
453 	return err;
454 }
455 
456 static int fib6_node_dump(struct fib6_walker *w)
457 {
458 	int err;
459 
460 	err = fib6_rt_dump(w->leaf, w->args);
461 	w->leaf = NULL;
462 	return err;
463 }
464 
465 static int fib6_table_dump(struct net *net, struct fib6_table *tb,
466 			   struct fib6_walker *w)
467 {
468 	int err;
469 
470 	w->root = &tb->tb6_root;
471 	spin_lock_bh(&tb->tb6_lock);
472 	err = fib6_walk(net, w);
473 	spin_unlock_bh(&tb->tb6_lock);
474 	return err;
475 }
476 
477 /* Called with rcu_read_lock() */
478 int fib6_tables_dump(struct net *net, struct notifier_block *nb,
479 		     struct netlink_ext_ack *extack)
480 {
481 	struct fib6_dump_arg arg;
482 	struct fib6_walker *w;
483 	unsigned int h;
484 	int err = 0;
485 
486 	w = kzalloc(sizeof(*w), GFP_ATOMIC);
487 	if (!w)
488 		return -ENOMEM;
489 
490 	w->func = fib6_node_dump;
491 	arg.net = net;
492 	arg.nb = nb;
493 	arg.extack = extack;
494 	w->args = &arg;
495 
496 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
497 		struct hlist_head *head = &net->ipv6.fib_table_hash[h];
498 		struct fib6_table *tb;
499 
500 		hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
501 			err = fib6_table_dump(net, tb, w);
502 			if (err < 0)
503 				goto out;
504 		}
505 	}
506 
507 out:
508 	kfree(w);
509 
510 	return err;
511 }
512 
513 static int fib6_dump_node(struct fib6_walker *w)
514 {
515 	int res;
516 	struct fib6_info *rt;
517 
518 	for_each_fib6_walker_rt(w) {
519 		res = rt6_dump_route(rt, w->args, w->skip_in_node);
520 		if (res >= 0) {
521 			/* Frame is full, suspend walking */
522 			w->leaf = rt;
523 
524 			/* We'll restart from this node, so if some routes were
525 			 * already dumped, skip them next time.
526 			 */
527 			w->skip_in_node += res;
528 
529 			return 1;
530 		}
531 		w->skip_in_node = 0;
532 
533 		/* Multipath routes are dumped in one route with the
534 		 * RTA_MULTIPATH attribute. Jump 'rt' to point to the
535 		 * last sibling of this route (no need to dump the
536 		 * sibling routes again)
537 		 */
538 		if (rt->fib6_nsiblings)
539 			rt = list_last_entry(&rt->fib6_siblings,
540 					     struct fib6_info,
541 					     fib6_siblings);
542 	}
543 	w->leaf = NULL;
544 	return 0;
545 }
546 
547 static void fib6_dump_end(struct netlink_callback *cb)
548 {
549 	struct net *net = sock_net(cb->skb->sk);
550 	struct fib6_walker *w = (void *)cb->args[2];
551 
552 	if (w) {
553 		if (cb->args[4]) {
554 			cb->args[4] = 0;
555 			fib6_walker_unlink(net, w);
556 		}
557 		cb->args[2] = 0;
558 		kfree(w);
559 	}
560 	cb->done = (void *)cb->args[3];
561 	cb->args[1] = 3;
562 }
563 
564 static int fib6_dump_done(struct netlink_callback *cb)
565 {
566 	fib6_dump_end(cb);
567 	return cb->done ? cb->done(cb) : 0;
568 }
569 
570 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
571 			   struct netlink_callback *cb)
572 {
573 	struct net *net = sock_net(skb->sk);
574 	struct fib6_walker *w;
575 	int res;
576 
577 	w = (void *)cb->args[2];
578 	w->root = &table->tb6_root;
579 
580 	if (cb->args[4] == 0) {
581 		w->count = 0;
582 		w->skip = 0;
583 		w->skip_in_node = 0;
584 
585 		spin_lock_bh(&table->tb6_lock);
586 		res = fib6_walk(net, w);
587 		spin_unlock_bh(&table->tb6_lock);
588 		if (res > 0) {
589 			cb->args[4] = 1;
590 			cb->args[5] = w->root->fn_sernum;
591 		}
592 	} else {
593 		if (cb->args[5] != w->root->fn_sernum) {
594 			/* Begin at the root if the tree changed */
595 			cb->args[5] = w->root->fn_sernum;
596 			w->state = FWS_INIT;
597 			w->node = w->root;
598 			w->skip = w->count;
599 			w->skip_in_node = 0;
600 		} else
601 			w->skip = 0;
602 
603 		spin_lock_bh(&table->tb6_lock);
604 		res = fib6_walk_continue(w);
605 		spin_unlock_bh(&table->tb6_lock);
606 		if (res <= 0) {
607 			fib6_walker_unlink(net, w);
608 			cb->args[4] = 0;
609 		}
610 	}
611 
612 	return res;
613 }
614 
615 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
616 {
617 	struct rt6_rtnl_dump_arg arg = { .filter.dump_exceptions = true,
618 					 .filter.dump_routes = true };
619 	const struct nlmsghdr *nlh = cb->nlh;
620 	struct net *net = sock_net(skb->sk);
621 	unsigned int h, s_h;
622 	unsigned int e = 0, s_e;
623 	struct fib6_walker *w;
624 	struct fib6_table *tb;
625 	struct hlist_head *head;
626 	int res = 0;
627 
628 	if (cb->strict_check) {
629 		int err;
630 
631 		err = ip_valid_fib_dump_req(net, nlh, &arg.filter, cb);
632 		if (err < 0)
633 			return err;
634 	} else if (nlmsg_len(nlh) >= sizeof(struct rtmsg)) {
635 		struct rtmsg *rtm = nlmsg_data(nlh);
636 
637 		if (rtm->rtm_flags & RTM_F_PREFIX)
638 			arg.filter.flags = RTM_F_PREFIX;
639 	}
640 
641 	w = (void *)cb->args[2];
642 	if (!w) {
643 		/* New dump:
644 		 *
645 		 * 1. hook callback destructor.
646 		 */
647 		cb->args[3] = (long)cb->done;
648 		cb->done = fib6_dump_done;
649 
650 		/*
651 		 * 2. allocate and initialize walker.
652 		 */
653 		w = kzalloc(sizeof(*w), GFP_ATOMIC);
654 		if (!w)
655 			return -ENOMEM;
656 		w->func = fib6_dump_node;
657 		cb->args[2] = (long)w;
658 	}
659 
660 	arg.skb = skb;
661 	arg.cb = cb;
662 	arg.net = net;
663 	w->args = &arg;
664 
665 	if (arg.filter.table_id) {
666 		tb = fib6_get_table(net, arg.filter.table_id);
667 		if (!tb) {
668 			if (rtnl_msg_family(cb->nlh) != PF_INET6)
669 				goto out;
670 
671 			NL_SET_ERR_MSG_MOD(cb->extack, "FIB table does not exist");
672 			return -ENOENT;
673 		}
674 
675 		if (!cb->args[0]) {
676 			res = fib6_dump_table(tb, skb, cb);
677 			if (!res)
678 				cb->args[0] = 1;
679 		}
680 		goto out;
681 	}
682 
683 	s_h = cb->args[0];
684 	s_e = cb->args[1];
685 
686 	rcu_read_lock();
687 	for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
688 		e = 0;
689 		head = &net->ipv6.fib_table_hash[h];
690 		hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
691 			if (e < s_e)
692 				goto next;
693 			res = fib6_dump_table(tb, skb, cb);
694 			if (res != 0)
695 				goto out_unlock;
696 next:
697 			e++;
698 		}
699 	}
700 out_unlock:
701 	rcu_read_unlock();
702 	cb->args[1] = e;
703 	cb->args[0] = h;
704 out:
705 	res = res < 0 ? res : skb->len;
706 	if (res <= 0)
707 		fib6_dump_end(cb);
708 	return res;
709 }
710 
711 void fib6_metric_set(struct fib6_info *f6i, int metric, u32 val)
712 {
713 	if (!f6i)
714 		return;
715 
716 	if (f6i->fib6_metrics == &dst_default_metrics) {
717 		struct dst_metrics *p = kzalloc(sizeof(*p), GFP_ATOMIC);
718 
719 		if (!p)
720 			return;
721 
722 		refcount_set(&p->refcnt, 1);
723 		f6i->fib6_metrics = p;
724 	}
725 
726 	f6i->fib6_metrics->metrics[metric - 1] = val;
727 }
728 
729 /*
730  *	Routing Table
731  *
732  *	return the appropriate node for a routing tree "add" operation
733  *	by either creating and inserting or by returning an existing
734  *	node.
735  */
736 
737 static struct fib6_node *fib6_add_1(struct net *net,
738 				    struct fib6_table *table,
739 				    struct fib6_node *root,
740 				    struct in6_addr *addr, int plen,
741 				    int offset, int allow_create,
742 				    int replace_required,
743 				    struct netlink_ext_ack *extack)
744 {
745 	struct fib6_node *fn, *in, *ln;
746 	struct fib6_node *pn = NULL;
747 	struct rt6key *key;
748 	int	bit;
749 	__be32	dir = 0;
750 
751 	RT6_TRACE("fib6_add_1\n");
752 
753 	/* insert node in tree */
754 
755 	fn = root;
756 
757 	do {
758 		struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
759 					    lockdep_is_held(&table->tb6_lock));
760 		key = (struct rt6key *)((u8 *)leaf + offset);
761 
762 		/*
763 		 *	Prefix match
764 		 */
765 		if (plen < fn->fn_bit ||
766 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
767 			if (!allow_create) {
768 				if (replace_required) {
769 					NL_SET_ERR_MSG(extack,
770 						       "Can not replace route - no match found");
771 					pr_warn("Can't replace route, no match found\n");
772 					return ERR_PTR(-ENOENT);
773 				}
774 				pr_warn("NLM_F_CREATE should be set when creating new route\n");
775 			}
776 			goto insert_above;
777 		}
778 
779 		/*
780 		 *	Exact match ?
781 		 */
782 
783 		if (plen == fn->fn_bit) {
784 			/* clean up an intermediate node */
785 			if (!(fn->fn_flags & RTN_RTINFO)) {
786 				RCU_INIT_POINTER(fn->leaf, NULL);
787 				fib6_info_release(leaf);
788 			/* remove null_entry in the root node */
789 			} else if (fn->fn_flags & RTN_TL_ROOT &&
790 				   rcu_access_pointer(fn->leaf) ==
791 				   net->ipv6.fib6_null_entry) {
792 				RCU_INIT_POINTER(fn->leaf, NULL);
793 			}
794 
795 			return fn;
796 		}
797 
798 		/*
799 		 *	We have more bits to go
800 		 */
801 
802 		/* Try to walk down on tree. */
803 		dir = addr_bit_set(addr, fn->fn_bit);
804 		pn = fn;
805 		fn = dir ?
806 		     rcu_dereference_protected(fn->right,
807 					lockdep_is_held(&table->tb6_lock)) :
808 		     rcu_dereference_protected(fn->left,
809 					lockdep_is_held(&table->tb6_lock));
810 	} while (fn);
811 
812 	if (!allow_create) {
813 		/* We should not create new node because
814 		 * NLM_F_REPLACE was specified without NLM_F_CREATE
815 		 * I assume it is safe to require NLM_F_CREATE when
816 		 * REPLACE flag is used! Later we may want to remove the
817 		 * check for replace_required, because according
818 		 * to netlink specification, NLM_F_CREATE
819 		 * MUST be specified if new route is created.
820 		 * That would keep IPv6 consistent with IPv4
821 		 */
822 		if (replace_required) {
823 			NL_SET_ERR_MSG(extack,
824 				       "Can not replace route - no match found");
825 			pr_warn("Can't replace route, no match found\n");
826 			return ERR_PTR(-ENOENT);
827 		}
828 		pr_warn("NLM_F_CREATE should be set when creating new route\n");
829 	}
830 	/*
831 	 *	We walked to the bottom of tree.
832 	 *	Create new leaf node without children.
833 	 */
834 
835 	ln = node_alloc(net);
836 
837 	if (!ln)
838 		return ERR_PTR(-ENOMEM);
839 	ln->fn_bit = plen;
840 	RCU_INIT_POINTER(ln->parent, pn);
841 
842 	if (dir)
843 		rcu_assign_pointer(pn->right, ln);
844 	else
845 		rcu_assign_pointer(pn->left, ln);
846 
847 	return ln;
848 
849 
850 insert_above:
851 	/*
852 	 * split since we don't have a common prefix anymore or
853 	 * we have a less significant route.
854 	 * we've to insert an intermediate node on the list
855 	 * this new node will point to the one we need to create
856 	 * and the current
857 	 */
858 
859 	pn = rcu_dereference_protected(fn->parent,
860 				       lockdep_is_held(&table->tb6_lock));
861 
862 	/* find 1st bit in difference between the 2 addrs.
863 
864 	   See comment in __ipv6_addr_diff: bit may be an invalid value,
865 	   but if it is >= plen, the value is ignored in any case.
866 	 */
867 
868 	bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
869 
870 	/*
871 	 *		(intermediate)[in]
872 	 *	          /	   \
873 	 *	(new leaf node)[ln] (old node)[fn]
874 	 */
875 	if (plen > bit) {
876 		in = node_alloc(net);
877 		ln = node_alloc(net);
878 
879 		if (!in || !ln) {
880 			if (in)
881 				node_free_immediate(net, in);
882 			if (ln)
883 				node_free_immediate(net, ln);
884 			return ERR_PTR(-ENOMEM);
885 		}
886 
887 		/*
888 		 * new intermediate node.
889 		 * RTN_RTINFO will
890 		 * be off since that an address that chooses one of
891 		 * the branches would not match less specific routes
892 		 * in the other branch
893 		 */
894 
895 		in->fn_bit = bit;
896 
897 		RCU_INIT_POINTER(in->parent, pn);
898 		in->leaf = fn->leaf;
899 		fib6_info_hold(rcu_dereference_protected(in->leaf,
900 				lockdep_is_held(&table->tb6_lock)));
901 
902 		/* update parent pointer */
903 		if (dir)
904 			rcu_assign_pointer(pn->right, in);
905 		else
906 			rcu_assign_pointer(pn->left, in);
907 
908 		ln->fn_bit = plen;
909 
910 		RCU_INIT_POINTER(ln->parent, in);
911 		rcu_assign_pointer(fn->parent, in);
912 
913 		if (addr_bit_set(addr, bit)) {
914 			rcu_assign_pointer(in->right, ln);
915 			rcu_assign_pointer(in->left, fn);
916 		} else {
917 			rcu_assign_pointer(in->left, ln);
918 			rcu_assign_pointer(in->right, fn);
919 		}
920 	} else { /* plen <= bit */
921 
922 		/*
923 		 *		(new leaf node)[ln]
924 		 *	          /	   \
925 		 *	     (old node)[fn] NULL
926 		 */
927 
928 		ln = node_alloc(net);
929 
930 		if (!ln)
931 			return ERR_PTR(-ENOMEM);
932 
933 		ln->fn_bit = plen;
934 
935 		RCU_INIT_POINTER(ln->parent, pn);
936 
937 		if (addr_bit_set(&key->addr, plen))
938 			RCU_INIT_POINTER(ln->right, fn);
939 		else
940 			RCU_INIT_POINTER(ln->left, fn);
941 
942 		rcu_assign_pointer(fn->parent, ln);
943 
944 		if (dir)
945 			rcu_assign_pointer(pn->right, ln);
946 		else
947 			rcu_assign_pointer(pn->left, ln);
948 	}
949 	return ln;
950 }
951 
952 static void __fib6_drop_pcpu_from(struct fib6_nh *fib6_nh,
953 				  const struct fib6_info *match,
954 				  const struct fib6_table *table)
955 {
956 	int cpu;
957 
958 	if (!fib6_nh->rt6i_pcpu)
959 		return;
960 
961 	/* release the reference to this fib entry from
962 	 * all of its cached pcpu routes
963 	 */
964 	for_each_possible_cpu(cpu) {
965 		struct rt6_info **ppcpu_rt;
966 		struct rt6_info *pcpu_rt;
967 
968 		ppcpu_rt = per_cpu_ptr(fib6_nh->rt6i_pcpu, cpu);
969 		pcpu_rt = *ppcpu_rt;
970 
971 		/* only dropping the 'from' reference if the cached route
972 		 * is using 'match'. The cached pcpu_rt->from only changes
973 		 * from a fib6_info to NULL (ip6_dst_destroy); it can never
974 		 * change from one fib6_info reference to another
975 		 */
976 		if (pcpu_rt && rcu_access_pointer(pcpu_rt->from) == match) {
977 			struct fib6_info *from;
978 
979 			from = xchg((__force struct fib6_info **)&pcpu_rt->from, NULL);
980 			fib6_info_release(from);
981 		}
982 	}
983 }
984 
985 struct fib6_nh_pcpu_arg {
986 	struct fib6_info	*from;
987 	const struct fib6_table *table;
988 };
989 
990 static int fib6_nh_drop_pcpu_from(struct fib6_nh *nh, void *_arg)
991 {
992 	struct fib6_nh_pcpu_arg *arg = _arg;
993 
994 	__fib6_drop_pcpu_from(nh, arg->from, arg->table);
995 	return 0;
996 }
997 
998 static void fib6_drop_pcpu_from(struct fib6_info *f6i,
999 				const struct fib6_table *table)
1000 {
1001 	/* Make sure rt6_make_pcpu_route() wont add other percpu routes
1002 	 * while we are cleaning them here.
1003 	 */
1004 	f6i->fib6_destroying = 1;
1005 	mb(); /* paired with the cmpxchg() in rt6_make_pcpu_route() */
1006 
1007 	if (f6i->nh) {
1008 		struct fib6_nh_pcpu_arg arg = {
1009 			.from = f6i,
1010 			.table = table
1011 		};
1012 
1013 		nexthop_for_each_fib6_nh(f6i->nh, fib6_nh_drop_pcpu_from,
1014 					 &arg);
1015 	} else {
1016 		struct fib6_nh *fib6_nh;
1017 
1018 		fib6_nh = f6i->fib6_nh;
1019 		__fib6_drop_pcpu_from(fib6_nh, f6i, table);
1020 	}
1021 }
1022 
1023 static void fib6_purge_rt(struct fib6_info *rt, struct fib6_node *fn,
1024 			  struct net *net)
1025 {
1026 	struct fib6_table *table = rt->fib6_table;
1027 
1028 	/* Flush all cached dst in exception table */
1029 	rt6_flush_exceptions(rt);
1030 	fib6_drop_pcpu_from(rt, table);
1031 
1032 	if (rt->nh && !list_empty(&rt->nh_list))
1033 		list_del_init(&rt->nh_list);
1034 
1035 	if (refcount_read(&rt->fib6_ref) != 1) {
1036 		/* This route is used as dummy address holder in some split
1037 		 * nodes. It is not leaked, but it still holds other resources,
1038 		 * which must be released in time. So, scan ascendant nodes
1039 		 * and replace dummy references to this route with references
1040 		 * to still alive ones.
1041 		 */
1042 		while (fn) {
1043 			struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
1044 					    lockdep_is_held(&table->tb6_lock));
1045 			struct fib6_info *new_leaf;
1046 			if (!(fn->fn_flags & RTN_RTINFO) && leaf == rt) {
1047 				new_leaf = fib6_find_prefix(net, table, fn);
1048 				fib6_info_hold(new_leaf);
1049 
1050 				rcu_assign_pointer(fn->leaf, new_leaf);
1051 				fib6_info_release(rt);
1052 			}
1053 			fn = rcu_dereference_protected(fn->parent,
1054 				    lockdep_is_held(&table->tb6_lock));
1055 		}
1056 	}
1057 }
1058 
1059 /*
1060  *	Insert routing information in a node.
1061  */
1062 
1063 static int fib6_add_rt2node(struct fib6_node *fn, struct fib6_info *rt,
1064 			    struct nl_info *info,
1065 			    struct netlink_ext_ack *extack)
1066 {
1067 	struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
1068 				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1069 	struct fib6_info *iter = NULL;
1070 	struct fib6_info __rcu **ins;
1071 	struct fib6_info __rcu **fallback_ins = NULL;
1072 	int replace = (info->nlh &&
1073 		       (info->nlh->nlmsg_flags & NLM_F_REPLACE));
1074 	int add = (!info->nlh ||
1075 		   (info->nlh->nlmsg_flags & NLM_F_CREATE));
1076 	int found = 0;
1077 	bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
1078 	bool notify_sibling_rt = false;
1079 	u16 nlflags = NLM_F_EXCL;
1080 	int err;
1081 
1082 	if (info->nlh && (info->nlh->nlmsg_flags & NLM_F_APPEND))
1083 		nlflags |= NLM_F_APPEND;
1084 
1085 	ins = &fn->leaf;
1086 
1087 	for (iter = leaf; iter;
1088 	     iter = rcu_dereference_protected(iter->fib6_next,
1089 				lockdep_is_held(&rt->fib6_table->tb6_lock))) {
1090 		/*
1091 		 *	Search for duplicates
1092 		 */
1093 
1094 		if (iter->fib6_metric == rt->fib6_metric) {
1095 			/*
1096 			 *	Same priority level
1097 			 */
1098 			if (info->nlh &&
1099 			    (info->nlh->nlmsg_flags & NLM_F_EXCL))
1100 				return -EEXIST;
1101 
1102 			nlflags &= ~NLM_F_EXCL;
1103 			if (replace) {
1104 				if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) {
1105 					found++;
1106 					break;
1107 				}
1108 				fallback_ins = fallback_ins ?: ins;
1109 				goto next_iter;
1110 			}
1111 
1112 			if (rt6_duplicate_nexthop(iter, rt)) {
1113 				if (rt->fib6_nsiblings)
1114 					rt->fib6_nsiblings = 0;
1115 				if (!(iter->fib6_flags & RTF_EXPIRES))
1116 					return -EEXIST;
1117 				if (!(rt->fib6_flags & RTF_EXPIRES))
1118 					fib6_clean_expires(iter);
1119 				else
1120 					fib6_set_expires(iter, rt->expires);
1121 
1122 				if (rt->fib6_pmtu)
1123 					fib6_metric_set(iter, RTAX_MTU,
1124 							rt->fib6_pmtu);
1125 				return -EEXIST;
1126 			}
1127 			/* If we have the same destination and the same metric,
1128 			 * but not the same gateway, then the route we try to
1129 			 * add is sibling to this route, increment our counter
1130 			 * of siblings, and later we will add our route to the
1131 			 * list.
1132 			 * Only static routes (which don't have flag
1133 			 * RTF_EXPIRES) are used for ECMPv6.
1134 			 *
1135 			 * To avoid long list, we only had siblings if the
1136 			 * route have a gateway.
1137 			 */
1138 			if (rt_can_ecmp &&
1139 			    rt6_qualify_for_ecmp(iter))
1140 				rt->fib6_nsiblings++;
1141 		}
1142 
1143 		if (iter->fib6_metric > rt->fib6_metric)
1144 			break;
1145 
1146 next_iter:
1147 		ins = &iter->fib6_next;
1148 	}
1149 
1150 	if (fallback_ins && !found) {
1151 		/* No matching route with same ecmp-able-ness found, replace
1152 		 * first matching route
1153 		 */
1154 		ins = fallback_ins;
1155 		iter = rcu_dereference_protected(*ins,
1156 				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1157 		found++;
1158 	}
1159 
1160 	/* Reset round-robin state, if necessary */
1161 	if (ins == &fn->leaf)
1162 		fn->rr_ptr = NULL;
1163 
1164 	/* Link this route to others same route. */
1165 	if (rt->fib6_nsiblings) {
1166 		unsigned int fib6_nsiblings;
1167 		struct fib6_info *sibling, *temp_sibling;
1168 
1169 		/* Find the first route that have the same metric */
1170 		sibling = leaf;
1171 		notify_sibling_rt = true;
1172 		while (sibling) {
1173 			if (sibling->fib6_metric == rt->fib6_metric &&
1174 			    rt6_qualify_for_ecmp(sibling)) {
1175 				list_add_tail(&rt->fib6_siblings,
1176 					      &sibling->fib6_siblings);
1177 				break;
1178 			}
1179 			sibling = rcu_dereference_protected(sibling->fib6_next,
1180 				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1181 			notify_sibling_rt = false;
1182 		}
1183 		/* For each sibling in the list, increment the counter of
1184 		 * siblings. BUG() if counters does not match, list of siblings
1185 		 * is broken!
1186 		 */
1187 		fib6_nsiblings = 0;
1188 		list_for_each_entry_safe(sibling, temp_sibling,
1189 					 &rt->fib6_siblings, fib6_siblings) {
1190 			sibling->fib6_nsiblings++;
1191 			BUG_ON(sibling->fib6_nsiblings != rt->fib6_nsiblings);
1192 			fib6_nsiblings++;
1193 		}
1194 		BUG_ON(fib6_nsiblings != rt->fib6_nsiblings);
1195 		rt6_multipath_rebalance(temp_sibling);
1196 	}
1197 
1198 	/*
1199 	 *	insert node
1200 	 */
1201 	if (!replace) {
1202 		if (!add)
1203 			pr_warn("NLM_F_CREATE should be set when creating new route\n");
1204 
1205 add:
1206 		nlflags |= NLM_F_CREATE;
1207 
1208 		/* The route should only be notified if it is the first
1209 		 * route in the node or if it is added as a sibling
1210 		 * route to the first route in the node.
1211 		 */
1212 		if (!info->skip_notify_kernel &&
1213 		    (notify_sibling_rt || ins == &fn->leaf)) {
1214 			enum fib_event_type fib_event;
1215 
1216 			if (notify_sibling_rt)
1217 				fib_event = FIB_EVENT_ENTRY_APPEND;
1218 			else
1219 				fib_event = FIB_EVENT_ENTRY_REPLACE;
1220 			err = call_fib6_entry_notifiers(info->nl_net,
1221 							fib_event, rt,
1222 							extack);
1223 			if (err) {
1224 				struct fib6_info *sibling, *next_sibling;
1225 
1226 				/* If the route has siblings, then it first
1227 				 * needs to be unlinked from them.
1228 				 */
1229 				if (!rt->fib6_nsiblings)
1230 					return err;
1231 
1232 				list_for_each_entry_safe(sibling, next_sibling,
1233 							 &rt->fib6_siblings,
1234 							 fib6_siblings)
1235 					sibling->fib6_nsiblings--;
1236 				rt->fib6_nsiblings = 0;
1237 				list_del_init(&rt->fib6_siblings);
1238 				rt6_multipath_rebalance(next_sibling);
1239 				return err;
1240 			}
1241 		}
1242 
1243 		rcu_assign_pointer(rt->fib6_next, iter);
1244 		fib6_info_hold(rt);
1245 		rcu_assign_pointer(rt->fib6_node, fn);
1246 		rcu_assign_pointer(*ins, rt);
1247 		if (!info->skip_notify)
1248 			inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags);
1249 		info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
1250 
1251 		if (!(fn->fn_flags & RTN_RTINFO)) {
1252 			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1253 			fn->fn_flags |= RTN_RTINFO;
1254 		}
1255 
1256 	} else {
1257 		int nsiblings;
1258 
1259 		if (!found) {
1260 			if (add)
1261 				goto add;
1262 			pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
1263 			return -ENOENT;
1264 		}
1265 
1266 		if (!info->skip_notify_kernel && ins == &fn->leaf) {
1267 			err = call_fib6_entry_notifiers(info->nl_net,
1268 							FIB_EVENT_ENTRY_REPLACE,
1269 							rt, extack);
1270 			if (err)
1271 				return err;
1272 		}
1273 
1274 		fib6_info_hold(rt);
1275 		rcu_assign_pointer(rt->fib6_node, fn);
1276 		rt->fib6_next = iter->fib6_next;
1277 		rcu_assign_pointer(*ins, rt);
1278 		if (!info->skip_notify)
1279 			inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE);
1280 		if (!(fn->fn_flags & RTN_RTINFO)) {
1281 			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1282 			fn->fn_flags |= RTN_RTINFO;
1283 		}
1284 		nsiblings = iter->fib6_nsiblings;
1285 		iter->fib6_node = NULL;
1286 		fib6_purge_rt(iter, fn, info->nl_net);
1287 		if (rcu_access_pointer(fn->rr_ptr) == iter)
1288 			fn->rr_ptr = NULL;
1289 		fib6_info_release(iter);
1290 
1291 		if (nsiblings) {
1292 			/* Replacing an ECMP route, remove all siblings */
1293 			ins = &rt->fib6_next;
1294 			iter = rcu_dereference_protected(*ins,
1295 				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1296 			while (iter) {
1297 				if (iter->fib6_metric > rt->fib6_metric)
1298 					break;
1299 				if (rt6_qualify_for_ecmp(iter)) {
1300 					*ins = iter->fib6_next;
1301 					iter->fib6_node = NULL;
1302 					fib6_purge_rt(iter, fn, info->nl_net);
1303 					if (rcu_access_pointer(fn->rr_ptr) == iter)
1304 						fn->rr_ptr = NULL;
1305 					fib6_info_release(iter);
1306 					nsiblings--;
1307 					info->nl_net->ipv6.rt6_stats->fib_rt_entries--;
1308 				} else {
1309 					ins = &iter->fib6_next;
1310 				}
1311 				iter = rcu_dereference_protected(*ins,
1312 					lockdep_is_held(&rt->fib6_table->tb6_lock));
1313 			}
1314 			WARN_ON(nsiblings != 0);
1315 		}
1316 	}
1317 
1318 	return 0;
1319 }
1320 
1321 static void fib6_start_gc(struct net *net, struct fib6_info *rt)
1322 {
1323 	if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
1324 	    (rt->fib6_flags & RTF_EXPIRES))
1325 		mod_timer(&net->ipv6.ip6_fib_timer,
1326 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1327 }
1328 
1329 void fib6_force_start_gc(struct net *net)
1330 {
1331 	if (!timer_pending(&net->ipv6.ip6_fib_timer))
1332 		mod_timer(&net->ipv6.ip6_fib_timer,
1333 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1334 }
1335 
1336 static void __fib6_update_sernum_upto_root(struct fib6_info *rt,
1337 					   int sernum)
1338 {
1339 	struct fib6_node *fn = rcu_dereference_protected(rt->fib6_node,
1340 				lockdep_is_held(&rt->fib6_table->tb6_lock));
1341 
1342 	/* paired with smp_rmb() in rt6_get_cookie_safe() */
1343 	smp_wmb();
1344 	while (fn) {
1345 		fn->fn_sernum = sernum;
1346 		fn = rcu_dereference_protected(fn->parent,
1347 				lockdep_is_held(&rt->fib6_table->tb6_lock));
1348 	}
1349 }
1350 
1351 void fib6_update_sernum_upto_root(struct net *net, struct fib6_info *rt)
1352 {
1353 	__fib6_update_sernum_upto_root(rt, fib6_new_sernum(net));
1354 }
1355 
1356 /* allow ipv4 to update sernum via ipv6_stub */
1357 void fib6_update_sernum_stub(struct net *net, struct fib6_info *f6i)
1358 {
1359 	spin_lock_bh(&f6i->fib6_table->tb6_lock);
1360 	fib6_update_sernum_upto_root(net, f6i);
1361 	spin_unlock_bh(&f6i->fib6_table->tb6_lock);
1362 }
1363 
1364 /*
1365  *	Add routing information to the routing tree.
1366  *	<destination addr>/<source addr>
1367  *	with source addr info in sub-trees
1368  *	Need to own table->tb6_lock
1369  */
1370 
1371 int fib6_add(struct fib6_node *root, struct fib6_info *rt,
1372 	     struct nl_info *info, struct netlink_ext_ack *extack)
1373 {
1374 	struct fib6_table *table = rt->fib6_table;
1375 	struct fib6_node *fn, *pn = NULL;
1376 	int err = -ENOMEM;
1377 	int allow_create = 1;
1378 	int replace_required = 0;
1379 	int sernum = fib6_new_sernum(info->nl_net);
1380 
1381 	if (info->nlh) {
1382 		if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
1383 			allow_create = 0;
1384 		if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
1385 			replace_required = 1;
1386 	}
1387 	if (!allow_create && !replace_required)
1388 		pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
1389 
1390 	fn = fib6_add_1(info->nl_net, table, root,
1391 			&rt->fib6_dst.addr, rt->fib6_dst.plen,
1392 			offsetof(struct fib6_info, fib6_dst), allow_create,
1393 			replace_required, extack);
1394 	if (IS_ERR(fn)) {
1395 		err = PTR_ERR(fn);
1396 		fn = NULL;
1397 		goto out;
1398 	}
1399 
1400 	pn = fn;
1401 
1402 #ifdef CONFIG_IPV6_SUBTREES
1403 	if (rt->fib6_src.plen) {
1404 		struct fib6_node *sn;
1405 
1406 		if (!rcu_access_pointer(fn->subtree)) {
1407 			struct fib6_node *sfn;
1408 
1409 			/*
1410 			 * Create subtree.
1411 			 *
1412 			 *		fn[main tree]
1413 			 *		|
1414 			 *		sfn[subtree root]
1415 			 *		   \
1416 			 *		    sn[new leaf node]
1417 			 */
1418 
1419 			/* Create subtree root node */
1420 			sfn = node_alloc(info->nl_net);
1421 			if (!sfn)
1422 				goto failure;
1423 
1424 			fib6_info_hold(info->nl_net->ipv6.fib6_null_entry);
1425 			rcu_assign_pointer(sfn->leaf,
1426 					   info->nl_net->ipv6.fib6_null_entry);
1427 			sfn->fn_flags = RTN_ROOT;
1428 
1429 			/* Now add the first leaf node to new subtree */
1430 
1431 			sn = fib6_add_1(info->nl_net, table, sfn,
1432 					&rt->fib6_src.addr, rt->fib6_src.plen,
1433 					offsetof(struct fib6_info, fib6_src),
1434 					allow_create, replace_required, extack);
1435 
1436 			if (IS_ERR(sn)) {
1437 				/* If it is failed, discard just allocated
1438 				   root, and then (in failure) stale node
1439 				   in main tree.
1440 				 */
1441 				node_free_immediate(info->nl_net, sfn);
1442 				err = PTR_ERR(sn);
1443 				goto failure;
1444 			}
1445 
1446 			/* Now link new subtree to main tree */
1447 			rcu_assign_pointer(sfn->parent, fn);
1448 			rcu_assign_pointer(fn->subtree, sfn);
1449 		} else {
1450 			sn = fib6_add_1(info->nl_net, table, FIB6_SUBTREE(fn),
1451 					&rt->fib6_src.addr, rt->fib6_src.plen,
1452 					offsetof(struct fib6_info, fib6_src),
1453 					allow_create, replace_required, extack);
1454 
1455 			if (IS_ERR(sn)) {
1456 				err = PTR_ERR(sn);
1457 				goto failure;
1458 			}
1459 		}
1460 
1461 		if (!rcu_access_pointer(fn->leaf)) {
1462 			if (fn->fn_flags & RTN_TL_ROOT) {
1463 				/* put back null_entry for root node */
1464 				rcu_assign_pointer(fn->leaf,
1465 					    info->nl_net->ipv6.fib6_null_entry);
1466 			} else {
1467 				fib6_info_hold(rt);
1468 				rcu_assign_pointer(fn->leaf, rt);
1469 			}
1470 		}
1471 		fn = sn;
1472 	}
1473 #endif
1474 
1475 	err = fib6_add_rt2node(fn, rt, info, extack);
1476 	if (!err) {
1477 		if (rt->nh)
1478 			list_add(&rt->nh_list, &rt->nh->f6i_list);
1479 		__fib6_update_sernum_upto_root(rt, sernum);
1480 		fib6_start_gc(info->nl_net, rt);
1481 	}
1482 
1483 out:
1484 	if (err) {
1485 #ifdef CONFIG_IPV6_SUBTREES
1486 		/*
1487 		 * If fib6_add_1 has cleared the old leaf pointer in the
1488 		 * super-tree leaf node we have to find a new one for it.
1489 		 */
1490 		if (pn != fn) {
1491 			struct fib6_info *pn_leaf =
1492 				rcu_dereference_protected(pn->leaf,
1493 				    lockdep_is_held(&table->tb6_lock));
1494 			if (pn_leaf == rt) {
1495 				pn_leaf = NULL;
1496 				RCU_INIT_POINTER(pn->leaf, NULL);
1497 				fib6_info_release(rt);
1498 			}
1499 			if (!pn_leaf && !(pn->fn_flags & RTN_RTINFO)) {
1500 				pn_leaf = fib6_find_prefix(info->nl_net, table,
1501 							   pn);
1502 #if RT6_DEBUG >= 2
1503 				if (!pn_leaf) {
1504 					WARN_ON(!pn_leaf);
1505 					pn_leaf =
1506 					    info->nl_net->ipv6.fib6_null_entry;
1507 				}
1508 #endif
1509 				fib6_info_hold(pn_leaf);
1510 				rcu_assign_pointer(pn->leaf, pn_leaf);
1511 			}
1512 		}
1513 #endif
1514 		goto failure;
1515 	} else if (fib6_requires_src(rt)) {
1516 		fib6_routes_require_src_inc(info->nl_net);
1517 	}
1518 	return err;
1519 
1520 failure:
1521 	/* fn->leaf could be NULL and fib6_repair_tree() needs to be called if:
1522 	 * 1. fn is an intermediate node and we failed to add the new
1523 	 * route to it in both subtree creation failure and fib6_add_rt2node()
1524 	 * failure case.
1525 	 * 2. fn is the root node in the table and we fail to add the first
1526 	 * default route to it.
1527 	 */
1528 	if (fn &&
1529 	    (!(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)) ||
1530 	     (fn->fn_flags & RTN_TL_ROOT &&
1531 	      !rcu_access_pointer(fn->leaf))))
1532 		fib6_repair_tree(info->nl_net, table, fn);
1533 	return err;
1534 }
1535 
1536 /*
1537  *	Routing tree lookup
1538  *
1539  */
1540 
1541 struct lookup_args {
1542 	int			offset;		/* key offset on fib6_info */
1543 	const struct in6_addr	*addr;		/* search key			*/
1544 };
1545 
1546 static struct fib6_node *fib6_node_lookup_1(struct fib6_node *root,
1547 					    struct lookup_args *args)
1548 {
1549 	struct fib6_node *fn;
1550 	__be32 dir;
1551 
1552 	if (unlikely(args->offset == 0))
1553 		return NULL;
1554 
1555 	/*
1556 	 *	Descend on a tree
1557 	 */
1558 
1559 	fn = root;
1560 
1561 	for (;;) {
1562 		struct fib6_node *next;
1563 
1564 		dir = addr_bit_set(args->addr, fn->fn_bit);
1565 
1566 		next = dir ? rcu_dereference(fn->right) :
1567 			     rcu_dereference(fn->left);
1568 
1569 		if (next) {
1570 			fn = next;
1571 			continue;
1572 		}
1573 		break;
1574 	}
1575 
1576 	while (fn) {
1577 		struct fib6_node *subtree = FIB6_SUBTREE(fn);
1578 
1579 		if (subtree || fn->fn_flags & RTN_RTINFO) {
1580 			struct fib6_info *leaf = rcu_dereference(fn->leaf);
1581 			struct rt6key *key;
1582 
1583 			if (!leaf)
1584 				goto backtrack;
1585 
1586 			key = (struct rt6key *) ((u8 *)leaf + args->offset);
1587 
1588 			if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1589 #ifdef CONFIG_IPV6_SUBTREES
1590 				if (subtree) {
1591 					struct fib6_node *sfn;
1592 					sfn = fib6_node_lookup_1(subtree,
1593 								 args + 1);
1594 					if (!sfn)
1595 						goto backtrack;
1596 					fn = sfn;
1597 				}
1598 #endif
1599 				if (fn->fn_flags & RTN_RTINFO)
1600 					return fn;
1601 			}
1602 		}
1603 backtrack:
1604 		if (fn->fn_flags & RTN_ROOT)
1605 			break;
1606 
1607 		fn = rcu_dereference(fn->parent);
1608 	}
1609 
1610 	return NULL;
1611 }
1612 
1613 /* called with rcu_read_lock() held
1614  */
1615 struct fib6_node *fib6_node_lookup(struct fib6_node *root,
1616 				   const struct in6_addr *daddr,
1617 				   const struct in6_addr *saddr)
1618 {
1619 	struct fib6_node *fn;
1620 	struct lookup_args args[] = {
1621 		{
1622 			.offset = offsetof(struct fib6_info, fib6_dst),
1623 			.addr = daddr,
1624 		},
1625 #ifdef CONFIG_IPV6_SUBTREES
1626 		{
1627 			.offset = offsetof(struct fib6_info, fib6_src),
1628 			.addr = saddr,
1629 		},
1630 #endif
1631 		{
1632 			.offset = 0,	/* sentinel */
1633 		}
1634 	};
1635 
1636 	fn = fib6_node_lookup_1(root, daddr ? args : args + 1);
1637 	if (!fn || fn->fn_flags & RTN_TL_ROOT)
1638 		fn = root;
1639 
1640 	return fn;
1641 }
1642 
1643 /*
1644  *	Get node with specified destination prefix (and source prefix,
1645  *	if subtrees are used)
1646  *	exact_match == true means we try to find fn with exact match of
1647  *	the passed in prefix addr
1648  *	exact_match == false means we try to find fn with longest prefix
1649  *	match of the passed in prefix addr. This is useful for finding fn
1650  *	for cached route as it will be stored in the exception table under
1651  *	the node with longest prefix length.
1652  */
1653 
1654 
1655 static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1656 				       const struct in6_addr *addr,
1657 				       int plen, int offset,
1658 				       bool exact_match)
1659 {
1660 	struct fib6_node *fn, *prev = NULL;
1661 
1662 	for (fn = root; fn ; ) {
1663 		struct fib6_info *leaf = rcu_dereference(fn->leaf);
1664 		struct rt6key *key;
1665 
1666 		/* This node is being deleted */
1667 		if (!leaf) {
1668 			if (plen <= fn->fn_bit)
1669 				goto out;
1670 			else
1671 				goto next;
1672 		}
1673 
1674 		key = (struct rt6key *)((u8 *)leaf + offset);
1675 
1676 		/*
1677 		 *	Prefix match
1678 		 */
1679 		if (plen < fn->fn_bit ||
1680 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1681 			goto out;
1682 
1683 		if (plen == fn->fn_bit)
1684 			return fn;
1685 
1686 		if (fn->fn_flags & RTN_RTINFO)
1687 			prev = fn;
1688 
1689 next:
1690 		/*
1691 		 *	We have more bits to go
1692 		 */
1693 		if (addr_bit_set(addr, fn->fn_bit))
1694 			fn = rcu_dereference(fn->right);
1695 		else
1696 			fn = rcu_dereference(fn->left);
1697 	}
1698 out:
1699 	if (exact_match)
1700 		return NULL;
1701 	else
1702 		return prev;
1703 }
1704 
1705 struct fib6_node *fib6_locate(struct fib6_node *root,
1706 			      const struct in6_addr *daddr, int dst_len,
1707 			      const struct in6_addr *saddr, int src_len,
1708 			      bool exact_match)
1709 {
1710 	struct fib6_node *fn;
1711 
1712 	fn = fib6_locate_1(root, daddr, dst_len,
1713 			   offsetof(struct fib6_info, fib6_dst),
1714 			   exact_match);
1715 
1716 #ifdef CONFIG_IPV6_SUBTREES
1717 	if (src_len) {
1718 		WARN_ON(saddr == NULL);
1719 		if (fn) {
1720 			struct fib6_node *subtree = FIB6_SUBTREE(fn);
1721 
1722 			if (subtree) {
1723 				fn = fib6_locate_1(subtree, saddr, src_len,
1724 					   offsetof(struct fib6_info, fib6_src),
1725 					   exact_match);
1726 			}
1727 		}
1728 	}
1729 #endif
1730 
1731 	if (fn && fn->fn_flags & RTN_RTINFO)
1732 		return fn;
1733 
1734 	return NULL;
1735 }
1736 
1737 
1738 /*
1739  *	Deletion
1740  *
1741  */
1742 
1743 static struct fib6_info *fib6_find_prefix(struct net *net,
1744 					 struct fib6_table *table,
1745 					 struct fib6_node *fn)
1746 {
1747 	struct fib6_node *child_left, *child_right;
1748 
1749 	if (fn->fn_flags & RTN_ROOT)
1750 		return net->ipv6.fib6_null_entry;
1751 
1752 	while (fn) {
1753 		child_left = rcu_dereference_protected(fn->left,
1754 				    lockdep_is_held(&table->tb6_lock));
1755 		child_right = rcu_dereference_protected(fn->right,
1756 				    lockdep_is_held(&table->tb6_lock));
1757 		if (child_left)
1758 			return rcu_dereference_protected(child_left->leaf,
1759 					lockdep_is_held(&table->tb6_lock));
1760 		if (child_right)
1761 			return rcu_dereference_protected(child_right->leaf,
1762 					lockdep_is_held(&table->tb6_lock));
1763 
1764 		fn = FIB6_SUBTREE(fn);
1765 	}
1766 	return NULL;
1767 }
1768 
1769 /*
1770  *	Called to trim the tree of intermediate nodes when possible. "fn"
1771  *	is the node we want to try and remove.
1772  *	Need to own table->tb6_lock
1773  */
1774 
1775 static struct fib6_node *fib6_repair_tree(struct net *net,
1776 					  struct fib6_table *table,
1777 					  struct fib6_node *fn)
1778 {
1779 	int children;
1780 	int nstate;
1781 	struct fib6_node *child;
1782 	struct fib6_walker *w;
1783 	int iter = 0;
1784 
1785 	/* Set fn->leaf to null_entry for root node. */
1786 	if (fn->fn_flags & RTN_TL_ROOT) {
1787 		rcu_assign_pointer(fn->leaf, net->ipv6.fib6_null_entry);
1788 		return fn;
1789 	}
1790 
1791 	for (;;) {
1792 		struct fib6_node *fn_r = rcu_dereference_protected(fn->right,
1793 					    lockdep_is_held(&table->tb6_lock));
1794 		struct fib6_node *fn_l = rcu_dereference_protected(fn->left,
1795 					    lockdep_is_held(&table->tb6_lock));
1796 		struct fib6_node *pn = rcu_dereference_protected(fn->parent,
1797 					    lockdep_is_held(&table->tb6_lock));
1798 		struct fib6_node *pn_r = rcu_dereference_protected(pn->right,
1799 					    lockdep_is_held(&table->tb6_lock));
1800 		struct fib6_node *pn_l = rcu_dereference_protected(pn->left,
1801 					    lockdep_is_held(&table->tb6_lock));
1802 		struct fib6_info *fn_leaf = rcu_dereference_protected(fn->leaf,
1803 					    lockdep_is_held(&table->tb6_lock));
1804 		struct fib6_info *pn_leaf = rcu_dereference_protected(pn->leaf,
1805 					    lockdep_is_held(&table->tb6_lock));
1806 		struct fib6_info *new_fn_leaf;
1807 
1808 		RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1809 		iter++;
1810 
1811 		WARN_ON(fn->fn_flags & RTN_RTINFO);
1812 		WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1813 		WARN_ON(fn_leaf);
1814 
1815 		children = 0;
1816 		child = NULL;
1817 		if (fn_r) {
1818 			child = fn_r;
1819 			children |= 1;
1820 		}
1821 		if (fn_l) {
1822 			child = fn_l;
1823 			children |= 2;
1824 		}
1825 
1826 		if (children == 3 || FIB6_SUBTREE(fn)
1827 #ifdef CONFIG_IPV6_SUBTREES
1828 		    /* Subtree root (i.e. fn) may have one child */
1829 		    || (children && fn->fn_flags & RTN_ROOT)
1830 #endif
1831 		    ) {
1832 			new_fn_leaf = fib6_find_prefix(net, table, fn);
1833 #if RT6_DEBUG >= 2
1834 			if (!new_fn_leaf) {
1835 				WARN_ON(!new_fn_leaf);
1836 				new_fn_leaf = net->ipv6.fib6_null_entry;
1837 			}
1838 #endif
1839 			fib6_info_hold(new_fn_leaf);
1840 			rcu_assign_pointer(fn->leaf, new_fn_leaf);
1841 			return pn;
1842 		}
1843 
1844 #ifdef CONFIG_IPV6_SUBTREES
1845 		if (FIB6_SUBTREE(pn) == fn) {
1846 			WARN_ON(!(fn->fn_flags & RTN_ROOT));
1847 			RCU_INIT_POINTER(pn->subtree, NULL);
1848 			nstate = FWS_L;
1849 		} else {
1850 			WARN_ON(fn->fn_flags & RTN_ROOT);
1851 #endif
1852 			if (pn_r == fn)
1853 				rcu_assign_pointer(pn->right, child);
1854 			else if (pn_l == fn)
1855 				rcu_assign_pointer(pn->left, child);
1856 #if RT6_DEBUG >= 2
1857 			else
1858 				WARN_ON(1);
1859 #endif
1860 			if (child)
1861 				rcu_assign_pointer(child->parent, pn);
1862 			nstate = FWS_R;
1863 #ifdef CONFIG_IPV6_SUBTREES
1864 		}
1865 #endif
1866 
1867 		read_lock(&net->ipv6.fib6_walker_lock);
1868 		FOR_WALKERS(net, w) {
1869 			if (!child) {
1870 				if (w->node == fn) {
1871 					RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1872 					w->node = pn;
1873 					w->state = nstate;
1874 				}
1875 			} else {
1876 				if (w->node == fn) {
1877 					w->node = child;
1878 					if (children&2) {
1879 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1880 						w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1881 					} else {
1882 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1883 						w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1884 					}
1885 				}
1886 			}
1887 		}
1888 		read_unlock(&net->ipv6.fib6_walker_lock);
1889 
1890 		node_free(net, fn);
1891 		if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1892 			return pn;
1893 
1894 		RCU_INIT_POINTER(pn->leaf, NULL);
1895 		fib6_info_release(pn_leaf);
1896 		fn = pn;
1897 	}
1898 }
1899 
1900 static void fib6_del_route(struct fib6_table *table, struct fib6_node *fn,
1901 			   struct fib6_info __rcu **rtp, struct nl_info *info)
1902 {
1903 	struct fib6_info *leaf, *replace_rt = NULL;
1904 	struct fib6_walker *w;
1905 	struct fib6_info *rt = rcu_dereference_protected(*rtp,
1906 				    lockdep_is_held(&table->tb6_lock));
1907 	struct net *net = info->nl_net;
1908 	bool notify_del = false;
1909 
1910 	RT6_TRACE("fib6_del_route\n");
1911 
1912 	/* If the deleted route is the first in the node and it is not part of
1913 	 * a multipath route, then we need to replace it with the next route
1914 	 * in the node, if exists.
1915 	 */
1916 	leaf = rcu_dereference_protected(fn->leaf,
1917 					 lockdep_is_held(&table->tb6_lock));
1918 	if (leaf == rt && !rt->fib6_nsiblings) {
1919 		if (rcu_access_pointer(rt->fib6_next))
1920 			replace_rt = rcu_dereference_protected(rt->fib6_next,
1921 					    lockdep_is_held(&table->tb6_lock));
1922 		else
1923 			notify_del = true;
1924 	}
1925 
1926 	/* Unlink it */
1927 	*rtp = rt->fib6_next;
1928 	rt->fib6_node = NULL;
1929 	net->ipv6.rt6_stats->fib_rt_entries--;
1930 	net->ipv6.rt6_stats->fib_discarded_routes++;
1931 
1932 	/* Reset round-robin state, if necessary */
1933 	if (rcu_access_pointer(fn->rr_ptr) == rt)
1934 		fn->rr_ptr = NULL;
1935 
1936 	/* Remove this entry from other siblings */
1937 	if (rt->fib6_nsiblings) {
1938 		struct fib6_info *sibling, *next_sibling;
1939 
1940 		/* The route is deleted from a multipath route. If this
1941 		 * multipath route is the first route in the node, then we need
1942 		 * to emit a delete notification. Otherwise, we need to skip
1943 		 * the notification.
1944 		 */
1945 		if (rt->fib6_metric == leaf->fib6_metric &&
1946 		    rt6_qualify_for_ecmp(leaf))
1947 			notify_del = true;
1948 		list_for_each_entry_safe(sibling, next_sibling,
1949 					 &rt->fib6_siblings, fib6_siblings)
1950 			sibling->fib6_nsiblings--;
1951 		rt->fib6_nsiblings = 0;
1952 		list_del_init(&rt->fib6_siblings);
1953 		rt6_multipath_rebalance(next_sibling);
1954 	}
1955 
1956 	/* Adjust walkers */
1957 	read_lock(&net->ipv6.fib6_walker_lock);
1958 	FOR_WALKERS(net, w) {
1959 		if (w->state == FWS_C && w->leaf == rt) {
1960 			RT6_TRACE("walker %p adjusted by delroute\n", w);
1961 			w->leaf = rcu_dereference_protected(rt->fib6_next,
1962 					    lockdep_is_held(&table->tb6_lock));
1963 			if (!w->leaf)
1964 				w->state = FWS_U;
1965 		}
1966 	}
1967 	read_unlock(&net->ipv6.fib6_walker_lock);
1968 
1969 	/* If it was last route, call fib6_repair_tree() to:
1970 	 * 1. For root node, put back null_entry as how the table was created.
1971 	 * 2. For other nodes, expunge its radix tree node.
1972 	 */
1973 	if (!rcu_access_pointer(fn->leaf)) {
1974 		if (!(fn->fn_flags & RTN_TL_ROOT)) {
1975 			fn->fn_flags &= ~RTN_RTINFO;
1976 			net->ipv6.rt6_stats->fib_route_nodes--;
1977 		}
1978 		fn = fib6_repair_tree(net, table, fn);
1979 	}
1980 
1981 	fib6_purge_rt(rt, fn, net);
1982 
1983 	if (!info->skip_notify_kernel) {
1984 		if (notify_del)
1985 			call_fib6_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
1986 						  rt, NULL);
1987 		else if (replace_rt)
1988 			call_fib6_entry_notifiers_replace(net, replace_rt);
1989 	}
1990 	if (!info->skip_notify)
1991 		inet6_rt_notify(RTM_DELROUTE, rt, info, 0);
1992 
1993 	fib6_info_release(rt);
1994 }
1995 
1996 /* Need to own table->tb6_lock */
1997 int fib6_del(struct fib6_info *rt, struct nl_info *info)
1998 {
1999 	struct net *net = info->nl_net;
2000 	struct fib6_info __rcu **rtp;
2001 	struct fib6_info __rcu **rtp_next;
2002 	struct fib6_table *table;
2003 	struct fib6_node *fn;
2004 
2005 	if (rt == net->ipv6.fib6_null_entry)
2006 		return -ENOENT;
2007 
2008 	table = rt->fib6_table;
2009 	fn = rcu_dereference_protected(rt->fib6_node,
2010 				       lockdep_is_held(&table->tb6_lock));
2011 	if (!fn)
2012 		return -ENOENT;
2013 
2014 	WARN_ON(!(fn->fn_flags & RTN_RTINFO));
2015 
2016 	/*
2017 	 *	Walk the leaf entries looking for ourself
2018 	 */
2019 
2020 	for (rtp = &fn->leaf; *rtp; rtp = rtp_next) {
2021 		struct fib6_info *cur = rcu_dereference_protected(*rtp,
2022 					lockdep_is_held(&table->tb6_lock));
2023 		if (rt == cur) {
2024 			if (fib6_requires_src(cur))
2025 				fib6_routes_require_src_dec(info->nl_net);
2026 			fib6_del_route(table, fn, rtp, info);
2027 			return 0;
2028 		}
2029 		rtp_next = &cur->fib6_next;
2030 	}
2031 	return -ENOENT;
2032 }
2033 
2034 /*
2035  *	Tree traversal function.
2036  *
2037  *	Certainly, it is not interrupt safe.
2038  *	However, it is internally reenterable wrt itself and fib6_add/fib6_del.
2039  *	It means, that we can modify tree during walking
2040  *	and use this function for garbage collection, clone pruning,
2041  *	cleaning tree when a device goes down etc. etc.
2042  *
2043  *	It guarantees that every node will be traversed,
2044  *	and that it will be traversed only once.
2045  *
2046  *	Callback function w->func may return:
2047  *	0 -> continue walking.
2048  *	positive value -> walking is suspended (used by tree dumps,
2049  *	and probably by gc, if it will be split to several slices)
2050  *	negative value -> terminate walking.
2051  *
2052  *	The function itself returns:
2053  *	0   -> walk is complete.
2054  *	>0  -> walk is incomplete (i.e. suspended)
2055  *	<0  -> walk is terminated by an error.
2056  *
2057  *	This function is called with tb6_lock held.
2058  */
2059 
2060 static int fib6_walk_continue(struct fib6_walker *w)
2061 {
2062 	struct fib6_node *fn, *pn, *left, *right;
2063 
2064 	/* w->root should always be table->tb6_root */
2065 	WARN_ON_ONCE(!(w->root->fn_flags & RTN_TL_ROOT));
2066 
2067 	for (;;) {
2068 		fn = w->node;
2069 		if (!fn)
2070 			return 0;
2071 
2072 		switch (w->state) {
2073 #ifdef CONFIG_IPV6_SUBTREES
2074 		case FWS_S:
2075 			if (FIB6_SUBTREE(fn)) {
2076 				w->node = FIB6_SUBTREE(fn);
2077 				continue;
2078 			}
2079 			w->state = FWS_L;
2080 			fallthrough;
2081 #endif
2082 		case FWS_L:
2083 			left = rcu_dereference_protected(fn->left, 1);
2084 			if (left) {
2085 				w->node = left;
2086 				w->state = FWS_INIT;
2087 				continue;
2088 			}
2089 			w->state = FWS_R;
2090 			fallthrough;
2091 		case FWS_R:
2092 			right = rcu_dereference_protected(fn->right, 1);
2093 			if (right) {
2094 				w->node = right;
2095 				w->state = FWS_INIT;
2096 				continue;
2097 			}
2098 			w->state = FWS_C;
2099 			w->leaf = rcu_dereference_protected(fn->leaf, 1);
2100 			fallthrough;
2101 		case FWS_C:
2102 			if (w->leaf && fn->fn_flags & RTN_RTINFO) {
2103 				int err;
2104 
2105 				if (w->skip) {
2106 					w->skip--;
2107 					goto skip;
2108 				}
2109 
2110 				err = w->func(w);
2111 				if (err)
2112 					return err;
2113 
2114 				w->count++;
2115 				continue;
2116 			}
2117 skip:
2118 			w->state = FWS_U;
2119 			fallthrough;
2120 		case FWS_U:
2121 			if (fn == w->root)
2122 				return 0;
2123 			pn = rcu_dereference_protected(fn->parent, 1);
2124 			left = rcu_dereference_protected(pn->left, 1);
2125 			right = rcu_dereference_protected(pn->right, 1);
2126 			w->node = pn;
2127 #ifdef CONFIG_IPV6_SUBTREES
2128 			if (FIB6_SUBTREE(pn) == fn) {
2129 				WARN_ON(!(fn->fn_flags & RTN_ROOT));
2130 				w->state = FWS_L;
2131 				continue;
2132 			}
2133 #endif
2134 			if (left == fn) {
2135 				w->state = FWS_R;
2136 				continue;
2137 			}
2138 			if (right == fn) {
2139 				w->state = FWS_C;
2140 				w->leaf = rcu_dereference_protected(w->node->leaf, 1);
2141 				continue;
2142 			}
2143 #if RT6_DEBUG >= 2
2144 			WARN_ON(1);
2145 #endif
2146 		}
2147 	}
2148 }
2149 
2150 static int fib6_walk(struct net *net, struct fib6_walker *w)
2151 {
2152 	int res;
2153 
2154 	w->state = FWS_INIT;
2155 	w->node = w->root;
2156 
2157 	fib6_walker_link(net, w);
2158 	res = fib6_walk_continue(w);
2159 	if (res <= 0)
2160 		fib6_walker_unlink(net, w);
2161 	return res;
2162 }
2163 
2164 static int fib6_clean_node(struct fib6_walker *w)
2165 {
2166 	int res;
2167 	struct fib6_info *rt;
2168 	struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w);
2169 	struct nl_info info = {
2170 		.nl_net = c->net,
2171 		.skip_notify = c->skip_notify,
2172 	};
2173 
2174 	if (c->sernum != FIB6_NO_SERNUM_CHANGE &&
2175 	    w->node->fn_sernum != c->sernum)
2176 		w->node->fn_sernum = c->sernum;
2177 
2178 	if (!c->func) {
2179 		WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE);
2180 		w->leaf = NULL;
2181 		return 0;
2182 	}
2183 
2184 	for_each_fib6_walker_rt(w) {
2185 		res = c->func(rt, c->arg);
2186 		if (res == -1) {
2187 			w->leaf = rt;
2188 			res = fib6_del(rt, &info);
2189 			if (res) {
2190 #if RT6_DEBUG >= 2
2191 				pr_debug("%s: del failed: rt=%p@%p err=%d\n",
2192 					 __func__, rt,
2193 					 rcu_access_pointer(rt->fib6_node),
2194 					 res);
2195 #endif
2196 				continue;
2197 			}
2198 			return 0;
2199 		} else if (res == -2) {
2200 			if (WARN_ON(!rt->fib6_nsiblings))
2201 				continue;
2202 			rt = list_last_entry(&rt->fib6_siblings,
2203 					     struct fib6_info, fib6_siblings);
2204 			continue;
2205 		}
2206 		WARN_ON(res != 0);
2207 	}
2208 	w->leaf = rt;
2209 	return 0;
2210 }
2211 
2212 /*
2213  *	Convenient frontend to tree walker.
2214  *
2215  *	func is called on each route.
2216  *		It may return -2 -> skip multipath route.
2217  *			      -1 -> delete this route.
2218  *		              0  -> continue walking
2219  */
2220 
2221 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
2222 			    int (*func)(struct fib6_info *, void *arg),
2223 			    int sernum, void *arg, bool skip_notify)
2224 {
2225 	struct fib6_cleaner c;
2226 
2227 	c.w.root = root;
2228 	c.w.func = fib6_clean_node;
2229 	c.w.count = 0;
2230 	c.w.skip = 0;
2231 	c.w.skip_in_node = 0;
2232 	c.func = func;
2233 	c.sernum = sernum;
2234 	c.arg = arg;
2235 	c.net = net;
2236 	c.skip_notify = skip_notify;
2237 
2238 	fib6_walk(net, &c.w);
2239 }
2240 
2241 static void __fib6_clean_all(struct net *net,
2242 			     int (*func)(struct fib6_info *, void *),
2243 			     int sernum, void *arg, bool skip_notify)
2244 {
2245 	struct fib6_table *table;
2246 	struct hlist_head *head;
2247 	unsigned int h;
2248 
2249 	rcu_read_lock();
2250 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
2251 		head = &net->ipv6.fib_table_hash[h];
2252 		hlist_for_each_entry_rcu(table, head, tb6_hlist) {
2253 			spin_lock_bh(&table->tb6_lock);
2254 			fib6_clean_tree(net, &table->tb6_root,
2255 					func, sernum, arg, skip_notify);
2256 			spin_unlock_bh(&table->tb6_lock);
2257 		}
2258 	}
2259 	rcu_read_unlock();
2260 }
2261 
2262 void fib6_clean_all(struct net *net, int (*func)(struct fib6_info *, void *),
2263 		    void *arg)
2264 {
2265 	__fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, false);
2266 }
2267 
2268 void fib6_clean_all_skip_notify(struct net *net,
2269 				int (*func)(struct fib6_info *, void *),
2270 				void *arg)
2271 {
2272 	__fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, true);
2273 }
2274 
2275 static void fib6_flush_trees(struct net *net)
2276 {
2277 	int new_sernum = fib6_new_sernum(net);
2278 
2279 	__fib6_clean_all(net, NULL, new_sernum, NULL, false);
2280 }
2281 
2282 /*
2283  *	Garbage collection
2284  */
2285 
2286 static int fib6_age(struct fib6_info *rt, void *arg)
2287 {
2288 	struct fib6_gc_args *gc_args = arg;
2289 	unsigned long now = jiffies;
2290 
2291 	/*
2292 	 *	check addrconf expiration here.
2293 	 *	Routes are expired even if they are in use.
2294 	 */
2295 
2296 	if (rt->fib6_flags & RTF_EXPIRES && rt->expires) {
2297 		if (time_after(now, rt->expires)) {
2298 			RT6_TRACE("expiring %p\n", rt);
2299 			return -1;
2300 		}
2301 		gc_args->more++;
2302 	}
2303 
2304 	/*	Also age clones in the exception table.
2305 	 *	Note, that clones are aged out
2306 	 *	only if they are not in use now.
2307 	 */
2308 	rt6_age_exceptions(rt, gc_args, now);
2309 
2310 	return 0;
2311 }
2312 
2313 void fib6_run_gc(unsigned long expires, struct net *net, bool force)
2314 {
2315 	struct fib6_gc_args gc_args;
2316 	unsigned long now;
2317 
2318 	if (force) {
2319 		spin_lock_bh(&net->ipv6.fib6_gc_lock);
2320 	} else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) {
2321 		mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
2322 		return;
2323 	}
2324 	gc_args.timeout = expires ? (int)expires :
2325 			  net->ipv6.sysctl.ip6_rt_gc_interval;
2326 	gc_args.more = 0;
2327 
2328 	fib6_clean_all(net, fib6_age, &gc_args);
2329 	now = jiffies;
2330 	net->ipv6.ip6_rt_last_gc = now;
2331 
2332 	if (gc_args.more)
2333 		mod_timer(&net->ipv6.ip6_fib_timer,
2334 			  round_jiffies(now
2335 					+ net->ipv6.sysctl.ip6_rt_gc_interval));
2336 	else
2337 		del_timer(&net->ipv6.ip6_fib_timer);
2338 	spin_unlock_bh(&net->ipv6.fib6_gc_lock);
2339 }
2340 
2341 static void fib6_gc_timer_cb(struct timer_list *t)
2342 {
2343 	struct net *arg = from_timer(arg, t, ipv6.ip6_fib_timer);
2344 
2345 	fib6_run_gc(0, arg, true);
2346 }
2347 
2348 static int __net_init fib6_net_init(struct net *net)
2349 {
2350 	size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
2351 	int err;
2352 
2353 	err = fib6_notifier_init(net);
2354 	if (err)
2355 		return err;
2356 
2357 	spin_lock_init(&net->ipv6.fib6_gc_lock);
2358 	rwlock_init(&net->ipv6.fib6_walker_lock);
2359 	INIT_LIST_HEAD(&net->ipv6.fib6_walkers);
2360 	timer_setup(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, 0);
2361 
2362 	net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
2363 	if (!net->ipv6.rt6_stats)
2364 		goto out_timer;
2365 
2366 	/* Avoid false sharing : Use at least a full cache line */
2367 	size = max_t(size_t, size, L1_CACHE_BYTES);
2368 
2369 	net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
2370 	if (!net->ipv6.fib_table_hash)
2371 		goto out_rt6_stats;
2372 
2373 	net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
2374 					  GFP_KERNEL);
2375 	if (!net->ipv6.fib6_main_tbl)
2376 		goto out_fib_table_hash;
2377 
2378 	net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
2379 	rcu_assign_pointer(net->ipv6.fib6_main_tbl->tb6_root.leaf,
2380 			   net->ipv6.fib6_null_entry);
2381 	net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
2382 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2383 	inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
2384 
2385 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2386 	net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
2387 					   GFP_KERNEL);
2388 	if (!net->ipv6.fib6_local_tbl)
2389 		goto out_fib6_main_tbl;
2390 	net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
2391 	rcu_assign_pointer(net->ipv6.fib6_local_tbl->tb6_root.leaf,
2392 			   net->ipv6.fib6_null_entry);
2393 	net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
2394 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2395 	inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
2396 #endif
2397 	fib6_tables_init(net);
2398 
2399 	return 0;
2400 
2401 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2402 out_fib6_main_tbl:
2403 	kfree(net->ipv6.fib6_main_tbl);
2404 #endif
2405 out_fib_table_hash:
2406 	kfree(net->ipv6.fib_table_hash);
2407 out_rt6_stats:
2408 	kfree(net->ipv6.rt6_stats);
2409 out_timer:
2410 	fib6_notifier_exit(net);
2411 	return -ENOMEM;
2412 }
2413 
2414 static void fib6_net_exit(struct net *net)
2415 {
2416 	unsigned int i;
2417 
2418 	del_timer_sync(&net->ipv6.ip6_fib_timer);
2419 
2420 	for (i = 0; i < FIB6_TABLE_HASHSZ; i++) {
2421 		struct hlist_head *head = &net->ipv6.fib_table_hash[i];
2422 		struct hlist_node *tmp;
2423 		struct fib6_table *tb;
2424 
2425 		hlist_for_each_entry_safe(tb, tmp, head, tb6_hlist) {
2426 			hlist_del(&tb->tb6_hlist);
2427 			fib6_free_table(tb);
2428 		}
2429 	}
2430 
2431 	kfree(net->ipv6.fib_table_hash);
2432 	kfree(net->ipv6.rt6_stats);
2433 	fib6_notifier_exit(net);
2434 }
2435 
2436 static struct pernet_operations fib6_net_ops = {
2437 	.init = fib6_net_init,
2438 	.exit = fib6_net_exit,
2439 };
2440 
2441 int __init fib6_init(void)
2442 {
2443 	int ret = -ENOMEM;
2444 
2445 	fib6_node_kmem = kmem_cache_create("fib6_nodes",
2446 					   sizeof(struct fib6_node),
2447 					   0, SLAB_HWCACHE_ALIGN,
2448 					   NULL);
2449 	if (!fib6_node_kmem)
2450 		goto out;
2451 
2452 	ret = register_pernet_subsys(&fib6_net_ops);
2453 	if (ret)
2454 		goto out_kmem_cache_create;
2455 
2456 	ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_GETROUTE, NULL,
2457 				   inet6_dump_fib, 0);
2458 	if (ret)
2459 		goto out_unregister_subsys;
2460 
2461 	__fib6_flush_trees = fib6_flush_trees;
2462 out:
2463 	return ret;
2464 
2465 out_unregister_subsys:
2466 	unregister_pernet_subsys(&fib6_net_ops);
2467 out_kmem_cache_create:
2468 	kmem_cache_destroy(fib6_node_kmem);
2469 	goto out;
2470 }
2471 
2472 void fib6_gc_cleanup(void)
2473 {
2474 	unregister_pernet_subsys(&fib6_net_ops);
2475 	kmem_cache_destroy(fib6_node_kmem);
2476 }
2477 
2478 #ifdef CONFIG_PROC_FS
2479 static int ipv6_route_native_seq_show(struct seq_file *seq, void *v)
2480 {
2481 	struct fib6_info *rt = v;
2482 	struct ipv6_route_iter *iter = seq->private;
2483 	struct fib6_nh *fib6_nh = rt->fib6_nh;
2484 	unsigned int flags = rt->fib6_flags;
2485 	const struct net_device *dev;
2486 
2487 	if (rt->nh)
2488 		fib6_nh = nexthop_fib6_nh(rt->nh);
2489 
2490 	seq_printf(seq, "%pi6 %02x ", &rt->fib6_dst.addr, rt->fib6_dst.plen);
2491 
2492 #ifdef CONFIG_IPV6_SUBTREES
2493 	seq_printf(seq, "%pi6 %02x ", &rt->fib6_src.addr, rt->fib6_src.plen);
2494 #else
2495 	seq_puts(seq, "00000000000000000000000000000000 00 ");
2496 #endif
2497 	if (fib6_nh->fib_nh_gw_family) {
2498 		flags |= RTF_GATEWAY;
2499 		seq_printf(seq, "%pi6", &fib6_nh->fib_nh_gw6);
2500 	} else {
2501 		seq_puts(seq, "00000000000000000000000000000000");
2502 	}
2503 
2504 	dev = fib6_nh->fib_nh_dev;
2505 	seq_printf(seq, " %08x %08x %08x %08x %8s\n",
2506 		   rt->fib6_metric, refcount_read(&rt->fib6_ref), 0,
2507 		   flags, dev ? dev->name : "");
2508 	iter->w.leaf = NULL;
2509 	return 0;
2510 }
2511 
2512 static int ipv6_route_yield(struct fib6_walker *w)
2513 {
2514 	struct ipv6_route_iter *iter = w->args;
2515 
2516 	if (!iter->skip)
2517 		return 1;
2518 
2519 	do {
2520 		iter->w.leaf = rcu_dereference_protected(
2521 				iter->w.leaf->fib6_next,
2522 				lockdep_is_held(&iter->tbl->tb6_lock));
2523 		iter->skip--;
2524 		if (!iter->skip && iter->w.leaf)
2525 			return 1;
2526 	} while (iter->w.leaf);
2527 
2528 	return 0;
2529 }
2530 
2531 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter,
2532 				      struct net *net)
2533 {
2534 	memset(&iter->w, 0, sizeof(iter->w));
2535 	iter->w.func = ipv6_route_yield;
2536 	iter->w.root = &iter->tbl->tb6_root;
2537 	iter->w.state = FWS_INIT;
2538 	iter->w.node = iter->w.root;
2539 	iter->w.args = iter;
2540 	iter->sernum = iter->w.root->fn_sernum;
2541 	INIT_LIST_HEAD(&iter->w.lh);
2542 	fib6_walker_link(net, &iter->w);
2543 }
2544 
2545 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
2546 						    struct net *net)
2547 {
2548 	unsigned int h;
2549 	struct hlist_node *node;
2550 
2551 	if (tbl) {
2552 		h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
2553 		node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist));
2554 	} else {
2555 		h = 0;
2556 		node = NULL;
2557 	}
2558 
2559 	while (!node && h < FIB6_TABLE_HASHSZ) {
2560 		node = rcu_dereference_bh(
2561 			hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
2562 	}
2563 	return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
2564 }
2565 
2566 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
2567 {
2568 	if (iter->sernum != iter->w.root->fn_sernum) {
2569 		iter->sernum = iter->w.root->fn_sernum;
2570 		iter->w.state = FWS_INIT;
2571 		iter->w.node = iter->w.root;
2572 		WARN_ON(iter->w.skip);
2573 		iter->w.skip = iter->w.count;
2574 	}
2575 }
2576 
2577 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2578 {
2579 	int r;
2580 	struct fib6_info *n;
2581 	struct net *net = seq_file_net(seq);
2582 	struct ipv6_route_iter *iter = seq->private;
2583 
2584 	++(*pos);
2585 	if (!v)
2586 		goto iter_table;
2587 
2588 	n = rcu_dereference_bh(((struct fib6_info *)v)->fib6_next);
2589 	if (n)
2590 		return n;
2591 
2592 iter_table:
2593 	ipv6_route_check_sernum(iter);
2594 	spin_lock_bh(&iter->tbl->tb6_lock);
2595 	r = fib6_walk_continue(&iter->w);
2596 	spin_unlock_bh(&iter->tbl->tb6_lock);
2597 	if (r > 0) {
2598 		return iter->w.leaf;
2599 	} else if (r < 0) {
2600 		fib6_walker_unlink(net, &iter->w);
2601 		return NULL;
2602 	}
2603 	fib6_walker_unlink(net, &iter->w);
2604 
2605 	iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
2606 	if (!iter->tbl)
2607 		return NULL;
2608 
2609 	ipv6_route_seq_setup_walk(iter, net);
2610 	goto iter_table;
2611 }
2612 
2613 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
2614 	__acquires(RCU_BH)
2615 {
2616 	struct net *net = seq_file_net(seq);
2617 	struct ipv6_route_iter *iter = seq->private;
2618 
2619 	rcu_read_lock_bh();
2620 	iter->tbl = ipv6_route_seq_next_table(NULL, net);
2621 	iter->skip = *pos;
2622 
2623 	if (iter->tbl) {
2624 		loff_t p = 0;
2625 
2626 		ipv6_route_seq_setup_walk(iter, net);
2627 		return ipv6_route_seq_next(seq, NULL, &p);
2628 	} else {
2629 		return NULL;
2630 	}
2631 }
2632 
2633 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
2634 {
2635 	struct fib6_walker *w = &iter->w;
2636 	return w->node && !(w->state == FWS_U && w->node == w->root);
2637 }
2638 
2639 static void ipv6_route_native_seq_stop(struct seq_file *seq, void *v)
2640 	__releases(RCU_BH)
2641 {
2642 	struct net *net = seq_file_net(seq);
2643 	struct ipv6_route_iter *iter = seq->private;
2644 
2645 	if (ipv6_route_iter_active(iter))
2646 		fib6_walker_unlink(net, &iter->w);
2647 
2648 	rcu_read_unlock_bh();
2649 }
2650 
2651 #if IS_BUILTIN(CONFIG_IPV6) && defined(CONFIG_BPF_SYSCALL)
2652 static int ipv6_route_prog_seq_show(struct bpf_prog *prog,
2653 				    struct bpf_iter_meta *meta,
2654 				    void *v)
2655 {
2656 	struct bpf_iter__ipv6_route ctx;
2657 
2658 	ctx.meta = meta;
2659 	ctx.rt = v;
2660 	return bpf_iter_run_prog(prog, &ctx);
2661 }
2662 
2663 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
2664 {
2665 	struct ipv6_route_iter *iter = seq->private;
2666 	struct bpf_iter_meta meta;
2667 	struct bpf_prog *prog;
2668 	int ret;
2669 
2670 	meta.seq = seq;
2671 	prog = bpf_iter_get_info(&meta, false);
2672 	if (!prog)
2673 		return ipv6_route_native_seq_show(seq, v);
2674 
2675 	ret = ipv6_route_prog_seq_show(prog, &meta, v);
2676 	iter->w.leaf = NULL;
2677 
2678 	return ret;
2679 }
2680 
2681 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2682 {
2683 	struct bpf_iter_meta meta;
2684 	struct bpf_prog *prog;
2685 
2686 	if (!v) {
2687 		meta.seq = seq;
2688 		prog = bpf_iter_get_info(&meta, true);
2689 		if (prog)
2690 			(void)ipv6_route_prog_seq_show(prog, &meta, v);
2691 	}
2692 
2693 	ipv6_route_native_seq_stop(seq, v);
2694 }
2695 #else
2696 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
2697 {
2698 	return ipv6_route_native_seq_show(seq, v);
2699 }
2700 
2701 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2702 {
2703 	ipv6_route_native_seq_stop(seq, v);
2704 }
2705 #endif
2706 
2707 const struct seq_operations ipv6_route_seq_ops = {
2708 	.start	= ipv6_route_seq_start,
2709 	.next	= ipv6_route_seq_next,
2710 	.stop	= ipv6_route_seq_stop,
2711 	.show	= ipv6_route_seq_show
2712 };
2713 #endif /* CONFIG_PROC_FS */
2714