1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Linux INET6 implementation 4 * Forwarding Information Database 5 * 6 * Authors: 7 * Pedro Roque <roque@di.fc.ul.pt> 8 * 9 * Changes: 10 * Yuji SEKIYA @USAGI: Support default route on router node; 11 * remove ip6_null_entry from the top of 12 * routing table. 13 * Ville Nuorvala: Fixed routing subtrees. 14 */ 15 16 #define pr_fmt(fmt) "IPv6: " fmt 17 18 #include <linux/errno.h> 19 #include <linux/types.h> 20 #include <linux/net.h> 21 #include <linux/route.h> 22 #include <linux/netdevice.h> 23 #include <linux/in6.h> 24 #include <linux/init.h> 25 #include <linux/list.h> 26 #include <linux/slab.h> 27 28 #include <net/ip.h> 29 #include <net/ipv6.h> 30 #include <net/ndisc.h> 31 #include <net/addrconf.h> 32 #include <net/lwtunnel.h> 33 #include <net/fib_notifier.h> 34 35 #include <net/ip6_fib.h> 36 #include <net/ip6_route.h> 37 38 static struct kmem_cache *fib6_node_kmem __read_mostly; 39 40 struct fib6_cleaner { 41 struct fib6_walker w; 42 struct net *net; 43 int (*func)(struct fib6_info *, void *arg); 44 int sernum; 45 void *arg; 46 bool skip_notify; 47 }; 48 49 #ifdef CONFIG_IPV6_SUBTREES 50 #define FWS_INIT FWS_S 51 #else 52 #define FWS_INIT FWS_L 53 #endif 54 55 static struct fib6_info *fib6_find_prefix(struct net *net, 56 struct fib6_table *table, 57 struct fib6_node *fn); 58 static struct fib6_node *fib6_repair_tree(struct net *net, 59 struct fib6_table *table, 60 struct fib6_node *fn); 61 static int fib6_walk(struct net *net, struct fib6_walker *w); 62 static int fib6_walk_continue(struct fib6_walker *w); 63 64 /* 65 * A routing update causes an increase of the serial number on the 66 * affected subtree. This allows for cached routes to be asynchronously 67 * tested when modifications are made to the destination cache as a 68 * result of redirects, path MTU changes, etc. 69 */ 70 71 static void fib6_gc_timer_cb(struct timer_list *t); 72 73 #define FOR_WALKERS(net, w) \ 74 list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh) 75 76 static void fib6_walker_link(struct net *net, struct fib6_walker *w) 77 { 78 write_lock_bh(&net->ipv6.fib6_walker_lock); 79 list_add(&w->lh, &net->ipv6.fib6_walkers); 80 write_unlock_bh(&net->ipv6.fib6_walker_lock); 81 } 82 83 static void fib6_walker_unlink(struct net *net, struct fib6_walker *w) 84 { 85 write_lock_bh(&net->ipv6.fib6_walker_lock); 86 list_del(&w->lh); 87 write_unlock_bh(&net->ipv6.fib6_walker_lock); 88 } 89 90 static int fib6_new_sernum(struct net *net) 91 { 92 int new, old; 93 94 do { 95 old = atomic_read(&net->ipv6.fib6_sernum); 96 new = old < INT_MAX ? old + 1 : 1; 97 } while (atomic_cmpxchg(&net->ipv6.fib6_sernum, 98 old, new) != old); 99 return new; 100 } 101 102 enum { 103 FIB6_NO_SERNUM_CHANGE = 0, 104 }; 105 106 void fib6_update_sernum(struct net *net, struct fib6_info *f6i) 107 { 108 struct fib6_node *fn; 109 110 fn = rcu_dereference_protected(f6i->fib6_node, 111 lockdep_is_held(&f6i->fib6_table->tb6_lock)); 112 if (fn) 113 fn->fn_sernum = fib6_new_sernum(net); 114 } 115 116 /* 117 * Auxiliary address test functions for the radix tree. 118 * 119 * These assume a 32bit processor (although it will work on 120 * 64bit processors) 121 */ 122 123 /* 124 * test bit 125 */ 126 #if defined(__LITTLE_ENDIAN) 127 # define BITOP_BE32_SWIZZLE (0x1F & ~7) 128 #else 129 # define BITOP_BE32_SWIZZLE 0 130 #endif 131 132 static __be32 addr_bit_set(const void *token, int fn_bit) 133 { 134 const __be32 *addr = token; 135 /* 136 * Here, 137 * 1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f) 138 * is optimized version of 139 * htonl(1 << ((~fn_bit)&0x1F)) 140 * See include/asm-generic/bitops/le.h. 141 */ 142 return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) & 143 addr[fn_bit >> 5]; 144 } 145 146 struct fib6_info *fib6_info_alloc(gfp_t gfp_flags, bool with_fib6_nh) 147 { 148 struct fib6_info *f6i; 149 size_t sz = sizeof(*f6i); 150 151 if (with_fib6_nh) 152 sz += sizeof(struct fib6_nh); 153 154 f6i = kzalloc(sz, gfp_flags); 155 if (!f6i) 156 return NULL; 157 158 /* fib6_siblings is a union with nh_list, so this initializes both */ 159 INIT_LIST_HEAD(&f6i->fib6_siblings); 160 refcount_set(&f6i->fib6_ref, 1); 161 162 return f6i; 163 } 164 165 void fib6_info_destroy_rcu(struct rcu_head *head) 166 { 167 struct fib6_info *f6i = container_of(head, struct fib6_info, rcu); 168 169 WARN_ON(f6i->fib6_node); 170 171 if (f6i->nh) 172 nexthop_put(f6i->nh); 173 else 174 fib6_nh_release(f6i->fib6_nh); 175 176 ip_fib_metrics_put(f6i->fib6_metrics); 177 kfree(f6i); 178 } 179 EXPORT_SYMBOL_GPL(fib6_info_destroy_rcu); 180 181 static struct fib6_node *node_alloc(struct net *net) 182 { 183 struct fib6_node *fn; 184 185 fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC); 186 if (fn) 187 net->ipv6.rt6_stats->fib_nodes++; 188 189 return fn; 190 } 191 192 static void node_free_immediate(struct net *net, struct fib6_node *fn) 193 { 194 kmem_cache_free(fib6_node_kmem, fn); 195 net->ipv6.rt6_stats->fib_nodes--; 196 } 197 198 static void node_free_rcu(struct rcu_head *head) 199 { 200 struct fib6_node *fn = container_of(head, struct fib6_node, rcu); 201 202 kmem_cache_free(fib6_node_kmem, fn); 203 } 204 205 static void node_free(struct net *net, struct fib6_node *fn) 206 { 207 call_rcu(&fn->rcu, node_free_rcu); 208 net->ipv6.rt6_stats->fib_nodes--; 209 } 210 211 static void fib6_free_table(struct fib6_table *table) 212 { 213 inetpeer_invalidate_tree(&table->tb6_peers); 214 kfree(table); 215 } 216 217 static void fib6_link_table(struct net *net, struct fib6_table *tb) 218 { 219 unsigned int h; 220 221 /* 222 * Initialize table lock at a single place to give lockdep a key, 223 * tables aren't visible prior to being linked to the list. 224 */ 225 spin_lock_init(&tb->tb6_lock); 226 h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1); 227 228 /* 229 * No protection necessary, this is the only list mutatation 230 * operation, tables never disappear once they exist. 231 */ 232 hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]); 233 } 234 235 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 236 237 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id) 238 { 239 struct fib6_table *table; 240 241 table = kzalloc(sizeof(*table), GFP_ATOMIC); 242 if (table) { 243 table->tb6_id = id; 244 rcu_assign_pointer(table->tb6_root.leaf, 245 net->ipv6.fib6_null_entry); 246 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO; 247 inet_peer_base_init(&table->tb6_peers); 248 } 249 250 return table; 251 } 252 253 struct fib6_table *fib6_new_table(struct net *net, u32 id) 254 { 255 struct fib6_table *tb; 256 257 if (id == 0) 258 id = RT6_TABLE_MAIN; 259 tb = fib6_get_table(net, id); 260 if (tb) 261 return tb; 262 263 tb = fib6_alloc_table(net, id); 264 if (tb) 265 fib6_link_table(net, tb); 266 267 return tb; 268 } 269 EXPORT_SYMBOL_GPL(fib6_new_table); 270 271 struct fib6_table *fib6_get_table(struct net *net, u32 id) 272 { 273 struct fib6_table *tb; 274 struct hlist_head *head; 275 unsigned int h; 276 277 if (id == 0) 278 id = RT6_TABLE_MAIN; 279 h = id & (FIB6_TABLE_HASHSZ - 1); 280 rcu_read_lock(); 281 head = &net->ipv6.fib_table_hash[h]; 282 hlist_for_each_entry_rcu(tb, head, tb6_hlist) { 283 if (tb->tb6_id == id) { 284 rcu_read_unlock(); 285 return tb; 286 } 287 } 288 rcu_read_unlock(); 289 290 return NULL; 291 } 292 EXPORT_SYMBOL_GPL(fib6_get_table); 293 294 static void __net_init fib6_tables_init(struct net *net) 295 { 296 fib6_link_table(net, net->ipv6.fib6_main_tbl); 297 fib6_link_table(net, net->ipv6.fib6_local_tbl); 298 } 299 #else 300 301 struct fib6_table *fib6_new_table(struct net *net, u32 id) 302 { 303 return fib6_get_table(net, id); 304 } 305 306 struct fib6_table *fib6_get_table(struct net *net, u32 id) 307 { 308 return net->ipv6.fib6_main_tbl; 309 } 310 311 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6, 312 const struct sk_buff *skb, 313 int flags, pol_lookup_t lookup) 314 { 315 struct rt6_info *rt; 316 317 rt = pol_lookup_func(lookup, 318 net, net->ipv6.fib6_main_tbl, fl6, skb, flags); 319 if (rt->dst.error == -EAGAIN) { 320 ip6_rt_put_flags(rt, flags); 321 rt = net->ipv6.ip6_null_entry; 322 if (!(flags & RT6_LOOKUP_F_DST_NOREF)) 323 dst_hold(&rt->dst); 324 } 325 326 return &rt->dst; 327 } 328 329 /* called with rcu lock held; no reference taken on fib6_info */ 330 int fib6_lookup(struct net *net, int oif, struct flowi6 *fl6, 331 struct fib6_result *res, int flags) 332 { 333 return fib6_table_lookup(net, net->ipv6.fib6_main_tbl, oif, fl6, 334 res, flags); 335 } 336 337 static void __net_init fib6_tables_init(struct net *net) 338 { 339 fib6_link_table(net, net->ipv6.fib6_main_tbl); 340 } 341 342 #endif 343 344 unsigned int fib6_tables_seq_read(struct net *net) 345 { 346 unsigned int h, fib_seq = 0; 347 348 rcu_read_lock(); 349 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { 350 struct hlist_head *head = &net->ipv6.fib_table_hash[h]; 351 struct fib6_table *tb; 352 353 hlist_for_each_entry_rcu(tb, head, tb6_hlist) 354 fib_seq += tb->fib_seq; 355 } 356 rcu_read_unlock(); 357 358 return fib_seq; 359 } 360 361 static int call_fib6_entry_notifier(struct notifier_block *nb, 362 enum fib_event_type event_type, 363 struct fib6_info *rt, 364 struct netlink_ext_ack *extack) 365 { 366 struct fib6_entry_notifier_info info = { 367 .info.extack = extack, 368 .rt = rt, 369 }; 370 371 return call_fib6_notifier(nb, event_type, &info.info); 372 } 373 374 static int call_fib6_multipath_entry_notifier(struct notifier_block *nb, 375 enum fib_event_type event_type, 376 struct fib6_info *rt, 377 unsigned int nsiblings, 378 struct netlink_ext_ack *extack) 379 { 380 struct fib6_entry_notifier_info info = { 381 .info.extack = extack, 382 .rt = rt, 383 .nsiblings = nsiblings, 384 }; 385 386 return call_fib6_notifier(nb, event_type, &info.info); 387 } 388 389 int call_fib6_entry_notifiers(struct net *net, 390 enum fib_event_type event_type, 391 struct fib6_info *rt, 392 struct netlink_ext_ack *extack) 393 { 394 struct fib6_entry_notifier_info info = { 395 .info.extack = extack, 396 .rt = rt, 397 }; 398 399 rt->fib6_table->fib_seq++; 400 return call_fib6_notifiers(net, event_type, &info.info); 401 } 402 403 int call_fib6_multipath_entry_notifiers(struct net *net, 404 enum fib_event_type event_type, 405 struct fib6_info *rt, 406 unsigned int nsiblings, 407 struct netlink_ext_ack *extack) 408 { 409 struct fib6_entry_notifier_info info = { 410 .info.extack = extack, 411 .rt = rt, 412 .nsiblings = nsiblings, 413 }; 414 415 rt->fib6_table->fib_seq++; 416 return call_fib6_notifiers(net, event_type, &info.info); 417 } 418 419 int call_fib6_entry_notifiers_replace(struct net *net, struct fib6_info *rt) 420 { 421 struct fib6_entry_notifier_info info = { 422 .rt = rt, 423 .nsiblings = rt->fib6_nsiblings, 424 }; 425 426 rt->fib6_table->fib_seq++; 427 return call_fib6_notifiers(net, FIB_EVENT_ENTRY_REPLACE, &info.info); 428 } 429 430 struct fib6_dump_arg { 431 struct net *net; 432 struct notifier_block *nb; 433 struct netlink_ext_ack *extack; 434 }; 435 436 static int fib6_rt_dump(struct fib6_info *rt, struct fib6_dump_arg *arg) 437 { 438 enum fib_event_type fib_event = FIB_EVENT_ENTRY_REPLACE; 439 int err; 440 441 if (!rt || rt == arg->net->ipv6.fib6_null_entry) 442 return 0; 443 444 if (rt->fib6_nsiblings) 445 err = call_fib6_multipath_entry_notifier(arg->nb, fib_event, 446 rt, 447 rt->fib6_nsiblings, 448 arg->extack); 449 else 450 err = call_fib6_entry_notifier(arg->nb, fib_event, rt, 451 arg->extack); 452 453 return err; 454 } 455 456 static int fib6_node_dump(struct fib6_walker *w) 457 { 458 int err; 459 460 err = fib6_rt_dump(w->leaf, w->args); 461 w->leaf = NULL; 462 return err; 463 } 464 465 static int fib6_table_dump(struct net *net, struct fib6_table *tb, 466 struct fib6_walker *w) 467 { 468 int err; 469 470 w->root = &tb->tb6_root; 471 spin_lock_bh(&tb->tb6_lock); 472 err = fib6_walk(net, w); 473 spin_unlock_bh(&tb->tb6_lock); 474 return err; 475 } 476 477 /* Called with rcu_read_lock() */ 478 int fib6_tables_dump(struct net *net, struct notifier_block *nb, 479 struct netlink_ext_ack *extack) 480 { 481 struct fib6_dump_arg arg; 482 struct fib6_walker *w; 483 unsigned int h; 484 int err = 0; 485 486 w = kzalloc(sizeof(*w), GFP_ATOMIC); 487 if (!w) 488 return -ENOMEM; 489 490 w->func = fib6_node_dump; 491 arg.net = net; 492 arg.nb = nb; 493 arg.extack = extack; 494 w->args = &arg; 495 496 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { 497 struct hlist_head *head = &net->ipv6.fib_table_hash[h]; 498 struct fib6_table *tb; 499 500 hlist_for_each_entry_rcu(tb, head, tb6_hlist) { 501 err = fib6_table_dump(net, tb, w); 502 if (err < 0) 503 goto out; 504 } 505 } 506 507 out: 508 kfree(w); 509 510 return err; 511 } 512 513 static int fib6_dump_node(struct fib6_walker *w) 514 { 515 int res; 516 struct fib6_info *rt; 517 518 for_each_fib6_walker_rt(w) { 519 res = rt6_dump_route(rt, w->args, w->skip_in_node); 520 if (res >= 0) { 521 /* Frame is full, suspend walking */ 522 w->leaf = rt; 523 524 /* We'll restart from this node, so if some routes were 525 * already dumped, skip them next time. 526 */ 527 w->skip_in_node += res; 528 529 return 1; 530 } 531 w->skip_in_node = 0; 532 533 /* Multipath routes are dumped in one route with the 534 * RTA_MULTIPATH attribute. Jump 'rt' to point to the 535 * last sibling of this route (no need to dump the 536 * sibling routes again) 537 */ 538 if (rt->fib6_nsiblings) 539 rt = list_last_entry(&rt->fib6_siblings, 540 struct fib6_info, 541 fib6_siblings); 542 } 543 w->leaf = NULL; 544 return 0; 545 } 546 547 static void fib6_dump_end(struct netlink_callback *cb) 548 { 549 struct net *net = sock_net(cb->skb->sk); 550 struct fib6_walker *w = (void *)cb->args[2]; 551 552 if (w) { 553 if (cb->args[4]) { 554 cb->args[4] = 0; 555 fib6_walker_unlink(net, w); 556 } 557 cb->args[2] = 0; 558 kfree(w); 559 } 560 cb->done = (void *)cb->args[3]; 561 cb->args[1] = 3; 562 } 563 564 static int fib6_dump_done(struct netlink_callback *cb) 565 { 566 fib6_dump_end(cb); 567 return cb->done ? cb->done(cb) : 0; 568 } 569 570 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb, 571 struct netlink_callback *cb) 572 { 573 struct net *net = sock_net(skb->sk); 574 struct fib6_walker *w; 575 int res; 576 577 w = (void *)cb->args[2]; 578 w->root = &table->tb6_root; 579 580 if (cb->args[4] == 0) { 581 w->count = 0; 582 w->skip = 0; 583 w->skip_in_node = 0; 584 585 spin_lock_bh(&table->tb6_lock); 586 res = fib6_walk(net, w); 587 spin_unlock_bh(&table->tb6_lock); 588 if (res > 0) { 589 cb->args[4] = 1; 590 cb->args[5] = w->root->fn_sernum; 591 } 592 } else { 593 if (cb->args[5] != w->root->fn_sernum) { 594 /* Begin at the root if the tree changed */ 595 cb->args[5] = w->root->fn_sernum; 596 w->state = FWS_INIT; 597 w->node = w->root; 598 w->skip = w->count; 599 w->skip_in_node = 0; 600 } else 601 w->skip = 0; 602 603 spin_lock_bh(&table->tb6_lock); 604 res = fib6_walk_continue(w); 605 spin_unlock_bh(&table->tb6_lock); 606 if (res <= 0) { 607 fib6_walker_unlink(net, w); 608 cb->args[4] = 0; 609 } 610 } 611 612 return res; 613 } 614 615 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb) 616 { 617 struct rt6_rtnl_dump_arg arg = { .filter.dump_exceptions = true, 618 .filter.dump_routes = true }; 619 const struct nlmsghdr *nlh = cb->nlh; 620 struct net *net = sock_net(skb->sk); 621 unsigned int h, s_h; 622 unsigned int e = 0, s_e; 623 struct fib6_walker *w; 624 struct fib6_table *tb; 625 struct hlist_head *head; 626 int res = 0; 627 628 if (cb->strict_check) { 629 int err; 630 631 err = ip_valid_fib_dump_req(net, nlh, &arg.filter, cb); 632 if (err < 0) 633 return err; 634 } else if (nlmsg_len(nlh) >= sizeof(struct rtmsg)) { 635 struct rtmsg *rtm = nlmsg_data(nlh); 636 637 if (rtm->rtm_flags & RTM_F_PREFIX) 638 arg.filter.flags = RTM_F_PREFIX; 639 } 640 641 w = (void *)cb->args[2]; 642 if (!w) { 643 /* New dump: 644 * 645 * 1. hook callback destructor. 646 */ 647 cb->args[3] = (long)cb->done; 648 cb->done = fib6_dump_done; 649 650 /* 651 * 2. allocate and initialize walker. 652 */ 653 w = kzalloc(sizeof(*w), GFP_ATOMIC); 654 if (!w) 655 return -ENOMEM; 656 w->func = fib6_dump_node; 657 cb->args[2] = (long)w; 658 } 659 660 arg.skb = skb; 661 arg.cb = cb; 662 arg.net = net; 663 w->args = &arg; 664 665 if (arg.filter.table_id) { 666 tb = fib6_get_table(net, arg.filter.table_id); 667 if (!tb) { 668 if (rtnl_msg_family(cb->nlh) != PF_INET6) 669 goto out; 670 671 NL_SET_ERR_MSG_MOD(cb->extack, "FIB table does not exist"); 672 return -ENOENT; 673 } 674 675 if (!cb->args[0]) { 676 res = fib6_dump_table(tb, skb, cb); 677 if (!res) 678 cb->args[0] = 1; 679 } 680 goto out; 681 } 682 683 s_h = cb->args[0]; 684 s_e = cb->args[1]; 685 686 rcu_read_lock(); 687 for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) { 688 e = 0; 689 head = &net->ipv6.fib_table_hash[h]; 690 hlist_for_each_entry_rcu(tb, head, tb6_hlist) { 691 if (e < s_e) 692 goto next; 693 res = fib6_dump_table(tb, skb, cb); 694 if (res != 0) 695 goto out_unlock; 696 next: 697 e++; 698 } 699 } 700 out_unlock: 701 rcu_read_unlock(); 702 cb->args[1] = e; 703 cb->args[0] = h; 704 out: 705 res = res < 0 ? res : skb->len; 706 if (res <= 0) 707 fib6_dump_end(cb); 708 return res; 709 } 710 711 void fib6_metric_set(struct fib6_info *f6i, int metric, u32 val) 712 { 713 if (!f6i) 714 return; 715 716 if (f6i->fib6_metrics == &dst_default_metrics) { 717 struct dst_metrics *p = kzalloc(sizeof(*p), GFP_ATOMIC); 718 719 if (!p) 720 return; 721 722 refcount_set(&p->refcnt, 1); 723 f6i->fib6_metrics = p; 724 } 725 726 f6i->fib6_metrics->metrics[metric - 1] = val; 727 } 728 729 /* 730 * Routing Table 731 * 732 * return the appropriate node for a routing tree "add" operation 733 * by either creating and inserting or by returning an existing 734 * node. 735 */ 736 737 static struct fib6_node *fib6_add_1(struct net *net, 738 struct fib6_table *table, 739 struct fib6_node *root, 740 struct in6_addr *addr, int plen, 741 int offset, int allow_create, 742 int replace_required, 743 struct netlink_ext_ack *extack) 744 { 745 struct fib6_node *fn, *in, *ln; 746 struct fib6_node *pn = NULL; 747 struct rt6key *key; 748 int bit; 749 __be32 dir = 0; 750 751 RT6_TRACE("fib6_add_1\n"); 752 753 /* insert node in tree */ 754 755 fn = root; 756 757 do { 758 struct fib6_info *leaf = rcu_dereference_protected(fn->leaf, 759 lockdep_is_held(&table->tb6_lock)); 760 key = (struct rt6key *)((u8 *)leaf + offset); 761 762 /* 763 * Prefix match 764 */ 765 if (plen < fn->fn_bit || 766 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) { 767 if (!allow_create) { 768 if (replace_required) { 769 NL_SET_ERR_MSG(extack, 770 "Can not replace route - no match found"); 771 pr_warn("Can't replace route, no match found\n"); 772 return ERR_PTR(-ENOENT); 773 } 774 pr_warn("NLM_F_CREATE should be set when creating new route\n"); 775 } 776 goto insert_above; 777 } 778 779 /* 780 * Exact match ? 781 */ 782 783 if (plen == fn->fn_bit) { 784 /* clean up an intermediate node */ 785 if (!(fn->fn_flags & RTN_RTINFO)) { 786 RCU_INIT_POINTER(fn->leaf, NULL); 787 fib6_info_release(leaf); 788 /* remove null_entry in the root node */ 789 } else if (fn->fn_flags & RTN_TL_ROOT && 790 rcu_access_pointer(fn->leaf) == 791 net->ipv6.fib6_null_entry) { 792 RCU_INIT_POINTER(fn->leaf, NULL); 793 } 794 795 return fn; 796 } 797 798 /* 799 * We have more bits to go 800 */ 801 802 /* Try to walk down on tree. */ 803 dir = addr_bit_set(addr, fn->fn_bit); 804 pn = fn; 805 fn = dir ? 806 rcu_dereference_protected(fn->right, 807 lockdep_is_held(&table->tb6_lock)) : 808 rcu_dereference_protected(fn->left, 809 lockdep_is_held(&table->tb6_lock)); 810 } while (fn); 811 812 if (!allow_create) { 813 /* We should not create new node because 814 * NLM_F_REPLACE was specified without NLM_F_CREATE 815 * I assume it is safe to require NLM_F_CREATE when 816 * REPLACE flag is used! Later we may want to remove the 817 * check for replace_required, because according 818 * to netlink specification, NLM_F_CREATE 819 * MUST be specified if new route is created. 820 * That would keep IPv6 consistent with IPv4 821 */ 822 if (replace_required) { 823 NL_SET_ERR_MSG(extack, 824 "Can not replace route - no match found"); 825 pr_warn("Can't replace route, no match found\n"); 826 return ERR_PTR(-ENOENT); 827 } 828 pr_warn("NLM_F_CREATE should be set when creating new route\n"); 829 } 830 /* 831 * We walked to the bottom of tree. 832 * Create new leaf node without children. 833 */ 834 835 ln = node_alloc(net); 836 837 if (!ln) 838 return ERR_PTR(-ENOMEM); 839 ln->fn_bit = plen; 840 RCU_INIT_POINTER(ln->parent, pn); 841 842 if (dir) 843 rcu_assign_pointer(pn->right, ln); 844 else 845 rcu_assign_pointer(pn->left, ln); 846 847 return ln; 848 849 850 insert_above: 851 /* 852 * split since we don't have a common prefix anymore or 853 * we have a less significant route. 854 * we've to insert an intermediate node on the list 855 * this new node will point to the one we need to create 856 * and the current 857 */ 858 859 pn = rcu_dereference_protected(fn->parent, 860 lockdep_is_held(&table->tb6_lock)); 861 862 /* find 1st bit in difference between the 2 addrs. 863 864 See comment in __ipv6_addr_diff: bit may be an invalid value, 865 but if it is >= plen, the value is ignored in any case. 866 */ 867 868 bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr)); 869 870 /* 871 * (intermediate)[in] 872 * / \ 873 * (new leaf node)[ln] (old node)[fn] 874 */ 875 if (plen > bit) { 876 in = node_alloc(net); 877 ln = node_alloc(net); 878 879 if (!in || !ln) { 880 if (in) 881 node_free_immediate(net, in); 882 if (ln) 883 node_free_immediate(net, ln); 884 return ERR_PTR(-ENOMEM); 885 } 886 887 /* 888 * new intermediate node. 889 * RTN_RTINFO will 890 * be off since that an address that chooses one of 891 * the branches would not match less specific routes 892 * in the other branch 893 */ 894 895 in->fn_bit = bit; 896 897 RCU_INIT_POINTER(in->parent, pn); 898 in->leaf = fn->leaf; 899 fib6_info_hold(rcu_dereference_protected(in->leaf, 900 lockdep_is_held(&table->tb6_lock))); 901 902 /* update parent pointer */ 903 if (dir) 904 rcu_assign_pointer(pn->right, in); 905 else 906 rcu_assign_pointer(pn->left, in); 907 908 ln->fn_bit = plen; 909 910 RCU_INIT_POINTER(ln->parent, in); 911 rcu_assign_pointer(fn->parent, in); 912 913 if (addr_bit_set(addr, bit)) { 914 rcu_assign_pointer(in->right, ln); 915 rcu_assign_pointer(in->left, fn); 916 } else { 917 rcu_assign_pointer(in->left, ln); 918 rcu_assign_pointer(in->right, fn); 919 } 920 } else { /* plen <= bit */ 921 922 /* 923 * (new leaf node)[ln] 924 * / \ 925 * (old node)[fn] NULL 926 */ 927 928 ln = node_alloc(net); 929 930 if (!ln) 931 return ERR_PTR(-ENOMEM); 932 933 ln->fn_bit = plen; 934 935 RCU_INIT_POINTER(ln->parent, pn); 936 937 if (addr_bit_set(&key->addr, plen)) 938 RCU_INIT_POINTER(ln->right, fn); 939 else 940 RCU_INIT_POINTER(ln->left, fn); 941 942 rcu_assign_pointer(fn->parent, ln); 943 944 if (dir) 945 rcu_assign_pointer(pn->right, ln); 946 else 947 rcu_assign_pointer(pn->left, ln); 948 } 949 return ln; 950 } 951 952 static void __fib6_drop_pcpu_from(struct fib6_nh *fib6_nh, 953 const struct fib6_info *match, 954 const struct fib6_table *table) 955 { 956 int cpu; 957 958 if (!fib6_nh->rt6i_pcpu) 959 return; 960 961 /* release the reference to this fib entry from 962 * all of its cached pcpu routes 963 */ 964 for_each_possible_cpu(cpu) { 965 struct rt6_info **ppcpu_rt; 966 struct rt6_info *pcpu_rt; 967 968 ppcpu_rt = per_cpu_ptr(fib6_nh->rt6i_pcpu, cpu); 969 pcpu_rt = *ppcpu_rt; 970 971 /* only dropping the 'from' reference if the cached route 972 * is using 'match'. The cached pcpu_rt->from only changes 973 * from a fib6_info to NULL (ip6_dst_destroy); it can never 974 * change from one fib6_info reference to another 975 */ 976 if (pcpu_rt && rcu_access_pointer(pcpu_rt->from) == match) { 977 struct fib6_info *from; 978 979 from = xchg((__force struct fib6_info **)&pcpu_rt->from, NULL); 980 fib6_info_release(from); 981 } 982 } 983 } 984 985 struct fib6_nh_pcpu_arg { 986 struct fib6_info *from; 987 const struct fib6_table *table; 988 }; 989 990 static int fib6_nh_drop_pcpu_from(struct fib6_nh *nh, void *_arg) 991 { 992 struct fib6_nh_pcpu_arg *arg = _arg; 993 994 __fib6_drop_pcpu_from(nh, arg->from, arg->table); 995 return 0; 996 } 997 998 static void fib6_drop_pcpu_from(struct fib6_info *f6i, 999 const struct fib6_table *table) 1000 { 1001 /* Make sure rt6_make_pcpu_route() wont add other percpu routes 1002 * while we are cleaning them here. 1003 */ 1004 f6i->fib6_destroying = 1; 1005 mb(); /* paired with the cmpxchg() in rt6_make_pcpu_route() */ 1006 1007 if (f6i->nh) { 1008 struct fib6_nh_pcpu_arg arg = { 1009 .from = f6i, 1010 .table = table 1011 }; 1012 1013 nexthop_for_each_fib6_nh(f6i->nh, fib6_nh_drop_pcpu_from, 1014 &arg); 1015 } else { 1016 struct fib6_nh *fib6_nh; 1017 1018 fib6_nh = f6i->fib6_nh; 1019 __fib6_drop_pcpu_from(fib6_nh, f6i, table); 1020 } 1021 } 1022 1023 static void fib6_purge_rt(struct fib6_info *rt, struct fib6_node *fn, 1024 struct net *net) 1025 { 1026 struct fib6_table *table = rt->fib6_table; 1027 1028 /* Flush all cached dst in exception table */ 1029 rt6_flush_exceptions(rt); 1030 fib6_drop_pcpu_from(rt, table); 1031 1032 if (rt->nh && !list_empty(&rt->nh_list)) 1033 list_del_init(&rt->nh_list); 1034 1035 if (refcount_read(&rt->fib6_ref) != 1) { 1036 /* This route is used as dummy address holder in some split 1037 * nodes. It is not leaked, but it still holds other resources, 1038 * which must be released in time. So, scan ascendant nodes 1039 * and replace dummy references to this route with references 1040 * to still alive ones. 1041 */ 1042 while (fn) { 1043 struct fib6_info *leaf = rcu_dereference_protected(fn->leaf, 1044 lockdep_is_held(&table->tb6_lock)); 1045 struct fib6_info *new_leaf; 1046 if (!(fn->fn_flags & RTN_RTINFO) && leaf == rt) { 1047 new_leaf = fib6_find_prefix(net, table, fn); 1048 fib6_info_hold(new_leaf); 1049 1050 rcu_assign_pointer(fn->leaf, new_leaf); 1051 fib6_info_release(rt); 1052 } 1053 fn = rcu_dereference_protected(fn->parent, 1054 lockdep_is_held(&table->tb6_lock)); 1055 } 1056 } 1057 } 1058 1059 /* 1060 * Insert routing information in a node. 1061 */ 1062 1063 static int fib6_add_rt2node(struct fib6_node *fn, struct fib6_info *rt, 1064 struct nl_info *info, 1065 struct netlink_ext_ack *extack) 1066 { 1067 struct fib6_info *leaf = rcu_dereference_protected(fn->leaf, 1068 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1069 struct fib6_info *iter = NULL; 1070 struct fib6_info __rcu **ins; 1071 struct fib6_info __rcu **fallback_ins = NULL; 1072 int replace = (info->nlh && 1073 (info->nlh->nlmsg_flags & NLM_F_REPLACE)); 1074 int add = (!info->nlh || 1075 (info->nlh->nlmsg_flags & NLM_F_CREATE)); 1076 int found = 0; 1077 bool rt_can_ecmp = rt6_qualify_for_ecmp(rt); 1078 bool notify_sibling_rt = false; 1079 u16 nlflags = NLM_F_EXCL; 1080 int err; 1081 1082 if (info->nlh && (info->nlh->nlmsg_flags & NLM_F_APPEND)) 1083 nlflags |= NLM_F_APPEND; 1084 1085 ins = &fn->leaf; 1086 1087 for (iter = leaf; iter; 1088 iter = rcu_dereference_protected(iter->fib6_next, 1089 lockdep_is_held(&rt->fib6_table->tb6_lock))) { 1090 /* 1091 * Search for duplicates 1092 */ 1093 1094 if (iter->fib6_metric == rt->fib6_metric) { 1095 /* 1096 * Same priority level 1097 */ 1098 if (info->nlh && 1099 (info->nlh->nlmsg_flags & NLM_F_EXCL)) 1100 return -EEXIST; 1101 1102 nlflags &= ~NLM_F_EXCL; 1103 if (replace) { 1104 if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) { 1105 found++; 1106 break; 1107 } 1108 fallback_ins = fallback_ins ?: ins; 1109 goto next_iter; 1110 } 1111 1112 if (rt6_duplicate_nexthop(iter, rt)) { 1113 if (rt->fib6_nsiblings) 1114 rt->fib6_nsiblings = 0; 1115 if (!(iter->fib6_flags & RTF_EXPIRES)) 1116 return -EEXIST; 1117 if (!(rt->fib6_flags & RTF_EXPIRES)) 1118 fib6_clean_expires(iter); 1119 else 1120 fib6_set_expires(iter, rt->expires); 1121 1122 if (rt->fib6_pmtu) 1123 fib6_metric_set(iter, RTAX_MTU, 1124 rt->fib6_pmtu); 1125 return -EEXIST; 1126 } 1127 /* If we have the same destination and the same metric, 1128 * but not the same gateway, then the route we try to 1129 * add is sibling to this route, increment our counter 1130 * of siblings, and later we will add our route to the 1131 * list. 1132 * Only static routes (which don't have flag 1133 * RTF_EXPIRES) are used for ECMPv6. 1134 * 1135 * To avoid long list, we only had siblings if the 1136 * route have a gateway. 1137 */ 1138 if (rt_can_ecmp && 1139 rt6_qualify_for_ecmp(iter)) 1140 rt->fib6_nsiblings++; 1141 } 1142 1143 if (iter->fib6_metric > rt->fib6_metric) 1144 break; 1145 1146 next_iter: 1147 ins = &iter->fib6_next; 1148 } 1149 1150 if (fallback_ins && !found) { 1151 /* No matching route with same ecmp-able-ness found, replace 1152 * first matching route 1153 */ 1154 ins = fallback_ins; 1155 iter = rcu_dereference_protected(*ins, 1156 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1157 found++; 1158 } 1159 1160 /* Reset round-robin state, if necessary */ 1161 if (ins == &fn->leaf) 1162 fn->rr_ptr = NULL; 1163 1164 /* Link this route to others same route. */ 1165 if (rt->fib6_nsiblings) { 1166 unsigned int fib6_nsiblings; 1167 struct fib6_info *sibling, *temp_sibling; 1168 1169 /* Find the first route that have the same metric */ 1170 sibling = leaf; 1171 notify_sibling_rt = true; 1172 while (sibling) { 1173 if (sibling->fib6_metric == rt->fib6_metric && 1174 rt6_qualify_for_ecmp(sibling)) { 1175 list_add_tail(&rt->fib6_siblings, 1176 &sibling->fib6_siblings); 1177 break; 1178 } 1179 sibling = rcu_dereference_protected(sibling->fib6_next, 1180 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1181 notify_sibling_rt = false; 1182 } 1183 /* For each sibling in the list, increment the counter of 1184 * siblings. BUG() if counters does not match, list of siblings 1185 * is broken! 1186 */ 1187 fib6_nsiblings = 0; 1188 list_for_each_entry_safe(sibling, temp_sibling, 1189 &rt->fib6_siblings, fib6_siblings) { 1190 sibling->fib6_nsiblings++; 1191 BUG_ON(sibling->fib6_nsiblings != rt->fib6_nsiblings); 1192 fib6_nsiblings++; 1193 } 1194 BUG_ON(fib6_nsiblings != rt->fib6_nsiblings); 1195 rt6_multipath_rebalance(temp_sibling); 1196 } 1197 1198 /* 1199 * insert node 1200 */ 1201 if (!replace) { 1202 if (!add) 1203 pr_warn("NLM_F_CREATE should be set when creating new route\n"); 1204 1205 add: 1206 nlflags |= NLM_F_CREATE; 1207 1208 /* The route should only be notified if it is the first 1209 * route in the node or if it is added as a sibling 1210 * route to the first route in the node. 1211 */ 1212 if (!info->skip_notify_kernel && 1213 (notify_sibling_rt || ins == &fn->leaf)) { 1214 enum fib_event_type fib_event; 1215 1216 if (notify_sibling_rt) 1217 fib_event = FIB_EVENT_ENTRY_APPEND; 1218 else 1219 fib_event = FIB_EVENT_ENTRY_REPLACE; 1220 err = call_fib6_entry_notifiers(info->nl_net, 1221 fib_event, rt, 1222 extack); 1223 if (err) { 1224 struct fib6_info *sibling, *next_sibling; 1225 1226 /* If the route has siblings, then it first 1227 * needs to be unlinked from them. 1228 */ 1229 if (!rt->fib6_nsiblings) 1230 return err; 1231 1232 list_for_each_entry_safe(sibling, next_sibling, 1233 &rt->fib6_siblings, 1234 fib6_siblings) 1235 sibling->fib6_nsiblings--; 1236 rt->fib6_nsiblings = 0; 1237 list_del_init(&rt->fib6_siblings); 1238 rt6_multipath_rebalance(next_sibling); 1239 return err; 1240 } 1241 } 1242 1243 rcu_assign_pointer(rt->fib6_next, iter); 1244 fib6_info_hold(rt); 1245 rcu_assign_pointer(rt->fib6_node, fn); 1246 rcu_assign_pointer(*ins, rt); 1247 if (!info->skip_notify) 1248 inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags); 1249 info->nl_net->ipv6.rt6_stats->fib_rt_entries++; 1250 1251 if (!(fn->fn_flags & RTN_RTINFO)) { 1252 info->nl_net->ipv6.rt6_stats->fib_route_nodes++; 1253 fn->fn_flags |= RTN_RTINFO; 1254 } 1255 1256 } else { 1257 int nsiblings; 1258 1259 if (!found) { 1260 if (add) 1261 goto add; 1262 pr_warn("NLM_F_REPLACE set, but no existing node found!\n"); 1263 return -ENOENT; 1264 } 1265 1266 if (!info->skip_notify_kernel && ins == &fn->leaf) { 1267 err = call_fib6_entry_notifiers(info->nl_net, 1268 FIB_EVENT_ENTRY_REPLACE, 1269 rt, extack); 1270 if (err) 1271 return err; 1272 } 1273 1274 fib6_info_hold(rt); 1275 rcu_assign_pointer(rt->fib6_node, fn); 1276 rt->fib6_next = iter->fib6_next; 1277 rcu_assign_pointer(*ins, rt); 1278 if (!info->skip_notify) 1279 inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE); 1280 if (!(fn->fn_flags & RTN_RTINFO)) { 1281 info->nl_net->ipv6.rt6_stats->fib_route_nodes++; 1282 fn->fn_flags |= RTN_RTINFO; 1283 } 1284 nsiblings = iter->fib6_nsiblings; 1285 iter->fib6_node = NULL; 1286 fib6_purge_rt(iter, fn, info->nl_net); 1287 if (rcu_access_pointer(fn->rr_ptr) == iter) 1288 fn->rr_ptr = NULL; 1289 fib6_info_release(iter); 1290 1291 if (nsiblings) { 1292 /* Replacing an ECMP route, remove all siblings */ 1293 ins = &rt->fib6_next; 1294 iter = rcu_dereference_protected(*ins, 1295 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1296 while (iter) { 1297 if (iter->fib6_metric > rt->fib6_metric) 1298 break; 1299 if (rt6_qualify_for_ecmp(iter)) { 1300 *ins = iter->fib6_next; 1301 iter->fib6_node = NULL; 1302 fib6_purge_rt(iter, fn, info->nl_net); 1303 if (rcu_access_pointer(fn->rr_ptr) == iter) 1304 fn->rr_ptr = NULL; 1305 fib6_info_release(iter); 1306 nsiblings--; 1307 info->nl_net->ipv6.rt6_stats->fib_rt_entries--; 1308 } else { 1309 ins = &iter->fib6_next; 1310 } 1311 iter = rcu_dereference_protected(*ins, 1312 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1313 } 1314 WARN_ON(nsiblings != 0); 1315 } 1316 } 1317 1318 return 0; 1319 } 1320 1321 static void fib6_start_gc(struct net *net, struct fib6_info *rt) 1322 { 1323 if (!timer_pending(&net->ipv6.ip6_fib_timer) && 1324 (rt->fib6_flags & RTF_EXPIRES)) 1325 mod_timer(&net->ipv6.ip6_fib_timer, 1326 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval); 1327 } 1328 1329 void fib6_force_start_gc(struct net *net) 1330 { 1331 if (!timer_pending(&net->ipv6.ip6_fib_timer)) 1332 mod_timer(&net->ipv6.ip6_fib_timer, 1333 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval); 1334 } 1335 1336 static void __fib6_update_sernum_upto_root(struct fib6_info *rt, 1337 int sernum) 1338 { 1339 struct fib6_node *fn = rcu_dereference_protected(rt->fib6_node, 1340 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1341 1342 /* paired with smp_rmb() in rt6_get_cookie_safe() */ 1343 smp_wmb(); 1344 while (fn) { 1345 fn->fn_sernum = sernum; 1346 fn = rcu_dereference_protected(fn->parent, 1347 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1348 } 1349 } 1350 1351 void fib6_update_sernum_upto_root(struct net *net, struct fib6_info *rt) 1352 { 1353 __fib6_update_sernum_upto_root(rt, fib6_new_sernum(net)); 1354 } 1355 1356 /* allow ipv4 to update sernum via ipv6_stub */ 1357 void fib6_update_sernum_stub(struct net *net, struct fib6_info *f6i) 1358 { 1359 spin_lock_bh(&f6i->fib6_table->tb6_lock); 1360 fib6_update_sernum_upto_root(net, f6i); 1361 spin_unlock_bh(&f6i->fib6_table->tb6_lock); 1362 } 1363 1364 /* 1365 * Add routing information to the routing tree. 1366 * <destination addr>/<source addr> 1367 * with source addr info in sub-trees 1368 * Need to own table->tb6_lock 1369 */ 1370 1371 int fib6_add(struct fib6_node *root, struct fib6_info *rt, 1372 struct nl_info *info, struct netlink_ext_ack *extack) 1373 { 1374 struct fib6_table *table = rt->fib6_table; 1375 struct fib6_node *fn, *pn = NULL; 1376 int err = -ENOMEM; 1377 int allow_create = 1; 1378 int replace_required = 0; 1379 int sernum = fib6_new_sernum(info->nl_net); 1380 1381 if (info->nlh) { 1382 if (!(info->nlh->nlmsg_flags & NLM_F_CREATE)) 1383 allow_create = 0; 1384 if (info->nlh->nlmsg_flags & NLM_F_REPLACE) 1385 replace_required = 1; 1386 } 1387 if (!allow_create && !replace_required) 1388 pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n"); 1389 1390 fn = fib6_add_1(info->nl_net, table, root, 1391 &rt->fib6_dst.addr, rt->fib6_dst.plen, 1392 offsetof(struct fib6_info, fib6_dst), allow_create, 1393 replace_required, extack); 1394 if (IS_ERR(fn)) { 1395 err = PTR_ERR(fn); 1396 fn = NULL; 1397 goto out; 1398 } 1399 1400 pn = fn; 1401 1402 #ifdef CONFIG_IPV6_SUBTREES 1403 if (rt->fib6_src.plen) { 1404 struct fib6_node *sn; 1405 1406 if (!rcu_access_pointer(fn->subtree)) { 1407 struct fib6_node *sfn; 1408 1409 /* 1410 * Create subtree. 1411 * 1412 * fn[main tree] 1413 * | 1414 * sfn[subtree root] 1415 * \ 1416 * sn[new leaf node] 1417 */ 1418 1419 /* Create subtree root node */ 1420 sfn = node_alloc(info->nl_net); 1421 if (!sfn) 1422 goto failure; 1423 1424 fib6_info_hold(info->nl_net->ipv6.fib6_null_entry); 1425 rcu_assign_pointer(sfn->leaf, 1426 info->nl_net->ipv6.fib6_null_entry); 1427 sfn->fn_flags = RTN_ROOT; 1428 1429 /* Now add the first leaf node to new subtree */ 1430 1431 sn = fib6_add_1(info->nl_net, table, sfn, 1432 &rt->fib6_src.addr, rt->fib6_src.plen, 1433 offsetof(struct fib6_info, fib6_src), 1434 allow_create, replace_required, extack); 1435 1436 if (IS_ERR(sn)) { 1437 /* If it is failed, discard just allocated 1438 root, and then (in failure) stale node 1439 in main tree. 1440 */ 1441 node_free_immediate(info->nl_net, sfn); 1442 err = PTR_ERR(sn); 1443 goto failure; 1444 } 1445 1446 /* Now link new subtree to main tree */ 1447 rcu_assign_pointer(sfn->parent, fn); 1448 rcu_assign_pointer(fn->subtree, sfn); 1449 } else { 1450 sn = fib6_add_1(info->nl_net, table, FIB6_SUBTREE(fn), 1451 &rt->fib6_src.addr, rt->fib6_src.plen, 1452 offsetof(struct fib6_info, fib6_src), 1453 allow_create, replace_required, extack); 1454 1455 if (IS_ERR(sn)) { 1456 err = PTR_ERR(sn); 1457 goto failure; 1458 } 1459 } 1460 1461 if (!rcu_access_pointer(fn->leaf)) { 1462 if (fn->fn_flags & RTN_TL_ROOT) { 1463 /* put back null_entry for root node */ 1464 rcu_assign_pointer(fn->leaf, 1465 info->nl_net->ipv6.fib6_null_entry); 1466 } else { 1467 fib6_info_hold(rt); 1468 rcu_assign_pointer(fn->leaf, rt); 1469 } 1470 } 1471 fn = sn; 1472 } 1473 #endif 1474 1475 err = fib6_add_rt2node(fn, rt, info, extack); 1476 if (!err) { 1477 if (rt->nh) 1478 list_add(&rt->nh_list, &rt->nh->f6i_list); 1479 __fib6_update_sernum_upto_root(rt, sernum); 1480 fib6_start_gc(info->nl_net, rt); 1481 } 1482 1483 out: 1484 if (err) { 1485 #ifdef CONFIG_IPV6_SUBTREES 1486 /* 1487 * If fib6_add_1 has cleared the old leaf pointer in the 1488 * super-tree leaf node we have to find a new one for it. 1489 */ 1490 if (pn != fn) { 1491 struct fib6_info *pn_leaf = 1492 rcu_dereference_protected(pn->leaf, 1493 lockdep_is_held(&table->tb6_lock)); 1494 if (pn_leaf == rt) { 1495 pn_leaf = NULL; 1496 RCU_INIT_POINTER(pn->leaf, NULL); 1497 fib6_info_release(rt); 1498 } 1499 if (!pn_leaf && !(pn->fn_flags & RTN_RTINFO)) { 1500 pn_leaf = fib6_find_prefix(info->nl_net, table, 1501 pn); 1502 #if RT6_DEBUG >= 2 1503 if (!pn_leaf) { 1504 WARN_ON(!pn_leaf); 1505 pn_leaf = 1506 info->nl_net->ipv6.fib6_null_entry; 1507 } 1508 #endif 1509 fib6_info_hold(pn_leaf); 1510 rcu_assign_pointer(pn->leaf, pn_leaf); 1511 } 1512 } 1513 #endif 1514 goto failure; 1515 } else if (fib6_requires_src(rt)) { 1516 fib6_routes_require_src_inc(info->nl_net); 1517 } 1518 return err; 1519 1520 failure: 1521 /* fn->leaf could be NULL and fib6_repair_tree() needs to be called if: 1522 * 1. fn is an intermediate node and we failed to add the new 1523 * route to it in both subtree creation failure and fib6_add_rt2node() 1524 * failure case. 1525 * 2. fn is the root node in the table and we fail to add the first 1526 * default route to it. 1527 */ 1528 if (fn && 1529 (!(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)) || 1530 (fn->fn_flags & RTN_TL_ROOT && 1531 !rcu_access_pointer(fn->leaf)))) 1532 fib6_repair_tree(info->nl_net, table, fn); 1533 return err; 1534 } 1535 1536 /* 1537 * Routing tree lookup 1538 * 1539 */ 1540 1541 struct lookup_args { 1542 int offset; /* key offset on fib6_info */ 1543 const struct in6_addr *addr; /* search key */ 1544 }; 1545 1546 static struct fib6_node *fib6_node_lookup_1(struct fib6_node *root, 1547 struct lookup_args *args) 1548 { 1549 struct fib6_node *fn; 1550 __be32 dir; 1551 1552 if (unlikely(args->offset == 0)) 1553 return NULL; 1554 1555 /* 1556 * Descend on a tree 1557 */ 1558 1559 fn = root; 1560 1561 for (;;) { 1562 struct fib6_node *next; 1563 1564 dir = addr_bit_set(args->addr, fn->fn_bit); 1565 1566 next = dir ? rcu_dereference(fn->right) : 1567 rcu_dereference(fn->left); 1568 1569 if (next) { 1570 fn = next; 1571 continue; 1572 } 1573 break; 1574 } 1575 1576 while (fn) { 1577 struct fib6_node *subtree = FIB6_SUBTREE(fn); 1578 1579 if (subtree || fn->fn_flags & RTN_RTINFO) { 1580 struct fib6_info *leaf = rcu_dereference(fn->leaf); 1581 struct rt6key *key; 1582 1583 if (!leaf) 1584 goto backtrack; 1585 1586 key = (struct rt6key *) ((u8 *)leaf + args->offset); 1587 1588 if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) { 1589 #ifdef CONFIG_IPV6_SUBTREES 1590 if (subtree) { 1591 struct fib6_node *sfn; 1592 sfn = fib6_node_lookup_1(subtree, 1593 args + 1); 1594 if (!sfn) 1595 goto backtrack; 1596 fn = sfn; 1597 } 1598 #endif 1599 if (fn->fn_flags & RTN_RTINFO) 1600 return fn; 1601 } 1602 } 1603 backtrack: 1604 if (fn->fn_flags & RTN_ROOT) 1605 break; 1606 1607 fn = rcu_dereference(fn->parent); 1608 } 1609 1610 return NULL; 1611 } 1612 1613 /* called with rcu_read_lock() held 1614 */ 1615 struct fib6_node *fib6_node_lookup(struct fib6_node *root, 1616 const struct in6_addr *daddr, 1617 const struct in6_addr *saddr) 1618 { 1619 struct fib6_node *fn; 1620 struct lookup_args args[] = { 1621 { 1622 .offset = offsetof(struct fib6_info, fib6_dst), 1623 .addr = daddr, 1624 }, 1625 #ifdef CONFIG_IPV6_SUBTREES 1626 { 1627 .offset = offsetof(struct fib6_info, fib6_src), 1628 .addr = saddr, 1629 }, 1630 #endif 1631 { 1632 .offset = 0, /* sentinel */ 1633 } 1634 }; 1635 1636 fn = fib6_node_lookup_1(root, daddr ? args : args + 1); 1637 if (!fn || fn->fn_flags & RTN_TL_ROOT) 1638 fn = root; 1639 1640 return fn; 1641 } 1642 1643 /* 1644 * Get node with specified destination prefix (and source prefix, 1645 * if subtrees are used) 1646 * exact_match == true means we try to find fn with exact match of 1647 * the passed in prefix addr 1648 * exact_match == false means we try to find fn with longest prefix 1649 * match of the passed in prefix addr. This is useful for finding fn 1650 * for cached route as it will be stored in the exception table under 1651 * the node with longest prefix length. 1652 */ 1653 1654 1655 static struct fib6_node *fib6_locate_1(struct fib6_node *root, 1656 const struct in6_addr *addr, 1657 int plen, int offset, 1658 bool exact_match) 1659 { 1660 struct fib6_node *fn, *prev = NULL; 1661 1662 for (fn = root; fn ; ) { 1663 struct fib6_info *leaf = rcu_dereference(fn->leaf); 1664 struct rt6key *key; 1665 1666 /* This node is being deleted */ 1667 if (!leaf) { 1668 if (plen <= fn->fn_bit) 1669 goto out; 1670 else 1671 goto next; 1672 } 1673 1674 key = (struct rt6key *)((u8 *)leaf + offset); 1675 1676 /* 1677 * Prefix match 1678 */ 1679 if (plen < fn->fn_bit || 1680 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) 1681 goto out; 1682 1683 if (plen == fn->fn_bit) 1684 return fn; 1685 1686 if (fn->fn_flags & RTN_RTINFO) 1687 prev = fn; 1688 1689 next: 1690 /* 1691 * We have more bits to go 1692 */ 1693 if (addr_bit_set(addr, fn->fn_bit)) 1694 fn = rcu_dereference(fn->right); 1695 else 1696 fn = rcu_dereference(fn->left); 1697 } 1698 out: 1699 if (exact_match) 1700 return NULL; 1701 else 1702 return prev; 1703 } 1704 1705 struct fib6_node *fib6_locate(struct fib6_node *root, 1706 const struct in6_addr *daddr, int dst_len, 1707 const struct in6_addr *saddr, int src_len, 1708 bool exact_match) 1709 { 1710 struct fib6_node *fn; 1711 1712 fn = fib6_locate_1(root, daddr, dst_len, 1713 offsetof(struct fib6_info, fib6_dst), 1714 exact_match); 1715 1716 #ifdef CONFIG_IPV6_SUBTREES 1717 if (src_len) { 1718 WARN_ON(saddr == NULL); 1719 if (fn) { 1720 struct fib6_node *subtree = FIB6_SUBTREE(fn); 1721 1722 if (subtree) { 1723 fn = fib6_locate_1(subtree, saddr, src_len, 1724 offsetof(struct fib6_info, fib6_src), 1725 exact_match); 1726 } 1727 } 1728 } 1729 #endif 1730 1731 if (fn && fn->fn_flags & RTN_RTINFO) 1732 return fn; 1733 1734 return NULL; 1735 } 1736 1737 1738 /* 1739 * Deletion 1740 * 1741 */ 1742 1743 static struct fib6_info *fib6_find_prefix(struct net *net, 1744 struct fib6_table *table, 1745 struct fib6_node *fn) 1746 { 1747 struct fib6_node *child_left, *child_right; 1748 1749 if (fn->fn_flags & RTN_ROOT) 1750 return net->ipv6.fib6_null_entry; 1751 1752 while (fn) { 1753 child_left = rcu_dereference_protected(fn->left, 1754 lockdep_is_held(&table->tb6_lock)); 1755 child_right = rcu_dereference_protected(fn->right, 1756 lockdep_is_held(&table->tb6_lock)); 1757 if (child_left) 1758 return rcu_dereference_protected(child_left->leaf, 1759 lockdep_is_held(&table->tb6_lock)); 1760 if (child_right) 1761 return rcu_dereference_protected(child_right->leaf, 1762 lockdep_is_held(&table->tb6_lock)); 1763 1764 fn = FIB6_SUBTREE(fn); 1765 } 1766 return NULL; 1767 } 1768 1769 /* 1770 * Called to trim the tree of intermediate nodes when possible. "fn" 1771 * is the node we want to try and remove. 1772 * Need to own table->tb6_lock 1773 */ 1774 1775 static struct fib6_node *fib6_repair_tree(struct net *net, 1776 struct fib6_table *table, 1777 struct fib6_node *fn) 1778 { 1779 int children; 1780 int nstate; 1781 struct fib6_node *child; 1782 struct fib6_walker *w; 1783 int iter = 0; 1784 1785 /* Set fn->leaf to null_entry for root node. */ 1786 if (fn->fn_flags & RTN_TL_ROOT) { 1787 rcu_assign_pointer(fn->leaf, net->ipv6.fib6_null_entry); 1788 return fn; 1789 } 1790 1791 for (;;) { 1792 struct fib6_node *fn_r = rcu_dereference_protected(fn->right, 1793 lockdep_is_held(&table->tb6_lock)); 1794 struct fib6_node *fn_l = rcu_dereference_protected(fn->left, 1795 lockdep_is_held(&table->tb6_lock)); 1796 struct fib6_node *pn = rcu_dereference_protected(fn->parent, 1797 lockdep_is_held(&table->tb6_lock)); 1798 struct fib6_node *pn_r = rcu_dereference_protected(pn->right, 1799 lockdep_is_held(&table->tb6_lock)); 1800 struct fib6_node *pn_l = rcu_dereference_protected(pn->left, 1801 lockdep_is_held(&table->tb6_lock)); 1802 struct fib6_info *fn_leaf = rcu_dereference_protected(fn->leaf, 1803 lockdep_is_held(&table->tb6_lock)); 1804 struct fib6_info *pn_leaf = rcu_dereference_protected(pn->leaf, 1805 lockdep_is_held(&table->tb6_lock)); 1806 struct fib6_info *new_fn_leaf; 1807 1808 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter); 1809 iter++; 1810 1811 WARN_ON(fn->fn_flags & RTN_RTINFO); 1812 WARN_ON(fn->fn_flags & RTN_TL_ROOT); 1813 WARN_ON(fn_leaf); 1814 1815 children = 0; 1816 child = NULL; 1817 if (fn_r) { 1818 child = fn_r; 1819 children |= 1; 1820 } 1821 if (fn_l) { 1822 child = fn_l; 1823 children |= 2; 1824 } 1825 1826 if (children == 3 || FIB6_SUBTREE(fn) 1827 #ifdef CONFIG_IPV6_SUBTREES 1828 /* Subtree root (i.e. fn) may have one child */ 1829 || (children && fn->fn_flags & RTN_ROOT) 1830 #endif 1831 ) { 1832 new_fn_leaf = fib6_find_prefix(net, table, fn); 1833 #if RT6_DEBUG >= 2 1834 if (!new_fn_leaf) { 1835 WARN_ON(!new_fn_leaf); 1836 new_fn_leaf = net->ipv6.fib6_null_entry; 1837 } 1838 #endif 1839 fib6_info_hold(new_fn_leaf); 1840 rcu_assign_pointer(fn->leaf, new_fn_leaf); 1841 return pn; 1842 } 1843 1844 #ifdef CONFIG_IPV6_SUBTREES 1845 if (FIB6_SUBTREE(pn) == fn) { 1846 WARN_ON(!(fn->fn_flags & RTN_ROOT)); 1847 RCU_INIT_POINTER(pn->subtree, NULL); 1848 nstate = FWS_L; 1849 } else { 1850 WARN_ON(fn->fn_flags & RTN_ROOT); 1851 #endif 1852 if (pn_r == fn) 1853 rcu_assign_pointer(pn->right, child); 1854 else if (pn_l == fn) 1855 rcu_assign_pointer(pn->left, child); 1856 #if RT6_DEBUG >= 2 1857 else 1858 WARN_ON(1); 1859 #endif 1860 if (child) 1861 rcu_assign_pointer(child->parent, pn); 1862 nstate = FWS_R; 1863 #ifdef CONFIG_IPV6_SUBTREES 1864 } 1865 #endif 1866 1867 read_lock(&net->ipv6.fib6_walker_lock); 1868 FOR_WALKERS(net, w) { 1869 if (!child) { 1870 if (w->node == fn) { 1871 RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate); 1872 w->node = pn; 1873 w->state = nstate; 1874 } 1875 } else { 1876 if (w->node == fn) { 1877 w->node = child; 1878 if (children&2) { 1879 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state); 1880 w->state = w->state >= FWS_R ? FWS_U : FWS_INIT; 1881 } else { 1882 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state); 1883 w->state = w->state >= FWS_C ? FWS_U : FWS_INIT; 1884 } 1885 } 1886 } 1887 } 1888 read_unlock(&net->ipv6.fib6_walker_lock); 1889 1890 node_free(net, fn); 1891 if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn)) 1892 return pn; 1893 1894 RCU_INIT_POINTER(pn->leaf, NULL); 1895 fib6_info_release(pn_leaf); 1896 fn = pn; 1897 } 1898 } 1899 1900 static void fib6_del_route(struct fib6_table *table, struct fib6_node *fn, 1901 struct fib6_info __rcu **rtp, struct nl_info *info) 1902 { 1903 struct fib6_info *leaf, *replace_rt = NULL; 1904 struct fib6_walker *w; 1905 struct fib6_info *rt = rcu_dereference_protected(*rtp, 1906 lockdep_is_held(&table->tb6_lock)); 1907 struct net *net = info->nl_net; 1908 bool notify_del = false; 1909 1910 RT6_TRACE("fib6_del_route\n"); 1911 1912 /* If the deleted route is the first in the node and it is not part of 1913 * a multipath route, then we need to replace it with the next route 1914 * in the node, if exists. 1915 */ 1916 leaf = rcu_dereference_protected(fn->leaf, 1917 lockdep_is_held(&table->tb6_lock)); 1918 if (leaf == rt && !rt->fib6_nsiblings) { 1919 if (rcu_access_pointer(rt->fib6_next)) 1920 replace_rt = rcu_dereference_protected(rt->fib6_next, 1921 lockdep_is_held(&table->tb6_lock)); 1922 else 1923 notify_del = true; 1924 } 1925 1926 /* Unlink it */ 1927 *rtp = rt->fib6_next; 1928 rt->fib6_node = NULL; 1929 net->ipv6.rt6_stats->fib_rt_entries--; 1930 net->ipv6.rt6_stats->fib_discarded_routes++; 1931 1932 /* Reset round-robin state, if necessary */ 1933 if (rcu_access_pointer(fn->rr_ptr) == rt) 1934 fn->rr_ptr = NULL; 1935 1936 /* Remove this entry from other siblings */ 1937 if (rt->fib6_nsiblings) { 1938 struct fib6_info *sibling, *next_sibling; 1939 1940 /* The route is deleted from a multipath route. If this 1941 * multipath route is the first route in the node, then we need 1942 * to emit a delete notification. Otherwise, we need to skip 1943 * the notification. 1944 */ 1945 if (rt->fib6_metric == leaf->fib6_metric && 1946 rt6_qualify_for_ecmp(leaf)) 1947 notify_del = true; 1948 list_for_each_entry_safe(sibling, next_sibling, 1949 &rt->fib6_siblings, fib6_siblings) 1950 sibling->fib6_nsiblings--; 1951 rt->fib6_nsiblings = 0; 1952 list_del_init(&rt->fib6_siblings); 1953 rt6_multipath_rebalance(next_sibling); 1954 } 1955 1956 /* Adjust walkers */ 1957 read_lock(&net->ipv6.fib6_walker_lock); 1958 FOR_WALKERS(net, w) { 1959 if (w->state == FWS_C && w->leaf == rt) { 1960 RT6_TRACE("walker %p adjusted by delroute\n", w); 1961 w->leaf = rcu_dereference_protected(rt->fib6_next, 1962 lockdep_is_held(&table->tb6_lock)); 1963 if (!w->leaf) 1964 w->state = FWS_U; 1965 } 1966 } 1967 read_unlock(&net->ipv6.fib6_walker_lock); 1968 1969 /* If it was last route, call fib6_repair_tree() to: 1970 * 1. For root node, put back null_entry as how the table was created. 1971 * 2. For other nodes, expunge its radix tree node. 1972 */ 1973 if (!rcu_access_pointer(fn->leaf)) { 1974 if (!(fn->fn_flags & RTN_TL_ROOT)) { 1975 fn->fn_flags &= ~RTN_RTINFO; 1976 net->ipv6.rt6_stats->fib_route_nodes--; 1977 } 1978 fn = fib6_repair_tree(net, table, fn); 1979 } 1980 1981 fib6_purge_rt(rt, fn, net); 1982 1983 if (!info->skip_notify_kernel) { 1984 if (notify_del) 1985 call_fib6_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, 1986 rt, NULL); 1987 else if (replace_rt) 1988 call_fib6_entry_notifiers_replace(net, replace_rt); 1989 } 1990 if (!info->skip_notify) 1991 inet6_rt_notify(RTM_DELROUTE, rt, info, 0); 1992 1993 fib6_info_release(rt); 1994 } 1995 1996 /* Need to own table->tb6_lock */ 1997 int fib6_del(struct fib6_info *rt, struct nl_info *info) 1998 { 1999 struct net *net = info->nl_net; 2000 struct fib6_info __rcu **rtp; 2001 struct fib6_info __rcu **rtp_next; 2002 struct fib6_table *table; 2003 struct fib6_node *fn; 2004 2005 if (rt == net->ipv6.fib6_null_entry) 2006 return -ENOENT; 2007 2008 table = rt->fib6_table; 2009 fn = rcu_dereference_protected(rt->fib6_node, 2010 lockdep_is_held(&table->tb6_lock)); 2011 if (!fn) 2012 return -ENOENT; 2013 2014 WARN_ON(!(fn->fn_flags & RTN_RTINFO)); 2015 2016 /* 2017 * Walk the leaf entries looking for ourself 2018 */ 2019 2020 for (rtp = &fn->leaf; *rtp; rtp = rtp_next) { 2021 struct fib6_info *cur = rcu_dereference_protected(*rtp, 2022 lockdep_is_held(&table->tb6_lock)); 2023 if (rt == cur) { 2024 if (fib6_requires_src(cur)) 2025 fib6_routes_require_src_dec(info->nl_net); 2026 fib6_del_route(table, fn, rtp, info); 2027 return 0; 2028 } 2029 rtp_next = &cur->fib6_next; 2030 } 2031 return -ENOENT; 2032 } 2033 2034 /* 2035 * Tree traversal function. 2036 * 2037 * Certainly, it is not interrupt safe. 2038 * However, it is internally reenterable wrt itself and fib6_add/fib6_del. 2039 * It means, that we can modify tree during walking 2040 * and use this function for garbage collection, clone pruning, 2041 * cleaning tree when a device goes down etc. etc. 2042 * 2043 * It guarantees that every node will be traversed, 2044 * and that it will be traversed only once. 2045 * 2046 * Callback function w->func may return: 2047 * 0 -> continue walking. 2048 * positive value -> walking is suspended (used by tree dumps, 2049 * and probably by gc, if it will be split to several slices) 2050 * negative value -> terminate walking. 2051 * 2052 * The function itself returns: 2053 * 0 -> walk is complete. 2054 * >0 -> walk is incomplete (i.e. suspended) 2055 * <0 -> walk is terminated by an error. 2056 * 2057 * This function is called with tb6_lock held. 2058 */ 2059 2060 static int fib6_walk_continue(struct fib6_walker *w) 2061 { 2062 struct fib6_node *fn, *pn, *left, *right; 2063 2064 /* w->root should always be table->tb6_root */ 2065 WARN_ON_ONCE(!(w->root->fn_flags & RTN_TL_ROOT)); 2066 2067 for (;;) { 2068 fn = w->node; 2069 if (!fn) 2070 return 0; 2071 2072 switch (w->state) { 2073 #ifdef CONFIG_IPV6_SUBTREES 2074 case FWS_S: 2075 if (FIB6_SUBTREE(fn)) { 2076 w->node = FIB6_SUBTREE(fn); 2077 continue; 2078 } 2079 w->state = FWS_L; 2080 fallthrough; 2081 #endif 2082 case FWS_L: 2083 left = rcu_dereference_protected(fn->left, 1); 2084 if (left) { 2085 w->node = left; 2086 w->state = FWS_INIT; 2087 continue; 2088 } 2089 w->state = FWS_R; 2090 fallthrough; 2091 case FWS_R: 2092 right = rcu_dereference_protected(fn->right, 1); 2093 if (right) { 2094 w->node = right; 2095 w->state = FWS_INIT; 2096 continue; 2097 } 2098 w->state = FWS_C; 2099 w->leaf = rcu_dereference_protected(fn->leaf, 1); 2100 fallthrough; 2101 case FWS_C: 2102 if (w->leaf && fn->fn_flags & RTN_RTINFO) { 2103 int err; 2104 2105 if (w->skip) { 2106 w->skip--; 2107 goto skip; 2108 } 2109 2110 err = w->func(w); 2111 if (err) 2112 return err; 2113 2114 w->count++; 2115 continue; 2116 } 2117 skip: 2118 w->state = FWS_U; 2119 fallthrough; 2120 case FWS_U: 2121 if (fn == w->root) 2122 return 0; 2123 pn = rcu_dereference_protected(fn->parent, 1); 2124 left = rcu_dereference_protected(pn->left, 1); 2125 right = rcu_dereference_protected(pn->right, 1); 2126 w->node = pn; 2127 #ifdef CONFIG_IPV6_SUBTREES 2128 if (FIB6_SUBTREE(pn) == fn) { 2129 WARN_ON(!(fn->fn_flags & RTN_ROOT)); 2130 w->state = FWS_L; 2131 continue; 2132 } 2133 #endif 2134 if (left == fn) { 2135 w->state = FWS_R; 2136 continue; 2137 } 2138 if (right == fn) { 2139 w->state = FWS_C; 2140 w->leaf = rcu_dereference_protected(w->node->leaf, 1); 2141 continue; 2142 } 2143 #if RT6_DEBUG >= 2 2144 WARN_ON(1); 2145 #endif 2146 } 2147 } 2148 } 2149 2150 static int fib6_walk(struct net *net, struct fib6_walker *w) 2151 { 2152 int res; 2153 2154 w->state = FWS_INIT; 2155 w->node = w->root; 2156 2157 fib6_walker_link(net, w); 2158 res = fib6_walk_continue(w); 2159 if (res <= 0) 2160 fib6_walker_unlink(net, w); 2161 return res; 2162 } 2163 2164 static int fib6_clean_node(struct fib6_walker *w) 2165 { 2166 int res; 2167 struct fib6_info *rt; 2168 struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w); 2169 struct nl_info info = { 2170 .nl_net = c->net, 2171 .skip_notify = c->skip_notify, 2172 }; 2173 2174 if (c->sernum != FIB6_NO_SERNUM_CHANGE && 2175 w->node->fn_sernum != c->sernum) 2176 w->node->fn_sernum = c->sernum; 2177 2178 if (!c->func) { 2179 WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE); 2180 w->leaf = NULL; 2181 return 0; 2182 } 2183 2184 for_each_fib6_walker_rt(w) { 2185 res = c->func(rt, c->arg); 2186 if (res == -1) { 2187 w->leaf = rt; 2188 res = fib6_del(rt, &info); 2189 if (res) { 2190 #if RT6_DEBUG >= 2 2191 pr_debug("%s: del failed: rt=%p@%p err=%d\n", 2192 __func__, rt, 2193 rcu_access_pointer(rt->fib6_node), 2194 res); 2195 #endif 2196 continue; 2197 } 2198 return 0; 2199 } else if (res == -2) { 2200 if (WARN_ON(!rt->fib6_nsiblings)) 2201 continue; 2202 rt = list_last_entry(&rt->fib6_siblings, 2203 struct fib6_info, fib6_siblings); 2204 continue; 2205 } 2206 WARN_ON(res != 0); 2207 } 2208 w->leaf = rt; 2209 return 0; 2210 } 2211 2212 /* 2213 * Convenient frontend to tree walker. 2214 * 2215 * func is called on each route. 2216 * It may return -2 -> skip multipath route. 2217 * -1 -> delete this route. 2218 * 0 -> continue walking 2219 */ 2220 2221 static void fib6_clean_tree(struct net *net, struct fib6_node *root, 2222 int (*func)(struct fib6_info *, void *arg), 2223 int sernum, void *arg, bool skip_notify) 2224 { 2225 struct fib6_cleaner c; 2226 2227 c.w.root = root; 2228 c.w.func = fib6_clean_node; 2229 c.w.count = 0; 2230 c.w.skip = 0; 2231 c.w.skip_in_node = 0; 2232 c.func = func; 2233 c.sernum = sernum; 2234 c.arg = arg; 2235 c.net = net; 2236 c.skip_notify = skip_notify; 2237 2238 fib6_walk(net, &c.w); 2239 } 2240 2241 static void __fib6_clean_all(struct net *net, 2242 int (*func)(struct fib6_info *, void *), 2243 int sernum, void *arg, bool skip_notify) 2244 { 2245 struct fib6_table *table; 2246 struct hlist_head *head; 2247 unsigned int h; 2248 2249 rcu_read_lock(); 2250 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { 2251 head = &net->ipv6.fib_table_hash[h]; 2252 hlist_for_each_entry_rcu(table, head, tb6_hlist) { 2253 spin_lock_bh(&table->tb6_lock); 2254 fib6_clean_tree(net, &table->tb6_root, 2255 func, sernum, arg, skip_notify); 2256 spin_unlock_bh(&table->tb6_lock); 2257 } 2258 } 2259 rcu_read_unlock(); 2260 } 2261 2262 void fib6_clean_all(struct net *net, int (*func)(struct fib6_info *, void *), 2263 void *arg) 2264 { 2265 __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, false); 2266 } 2267 2268 void fib6_clean_all_skip_notify(struct net *net, 2269 int (*func)(struct fib6_info *, void *), 2270 void *arg) 2271 { 2272 __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, true); 2273 } 2274 2275 static void fib6_flush_trees(struct net *net) 2276 { 2277 int new_sernum = fib6_new_sernum(net); 2278 2279 __fib6_clean_all(net, NULL, new_sernum, NULL, false); 2280 } 2281 2282 /* 2283 * Garbage collection 2284 */ 2285 2286 static int fib6_age(struct fib6_info *rt, void *arg) 2287 { 2288 struct fib6_gc_args *gc_args = arg; 2289 unsigned long now = jiffies; 2290 2291 /* 2292 * check addrconf expiration here. 2293 * Routes are expired even if they are in use. 2294 */ 2295 2296 if (rt->fib6_flags & RTF_EXPIRES && rt->expires) { 2297 if (time_after(now, rt->expires)) { 2298 RT6_TRACE("expiring %p\n", rt); 2299 return -1; 2300 } 2301 gc_args->more++; 2302 } 2303 2304 /* Also age clones in the exception table. 2305 * Note, that clones are aged out 2306 * only if they are not in use now. 2307 */ 2308 rt6_age_exceptions(rt, gc_args, now); 2309 2310 return 0; 2311 } 2312 2313 void fib6_run_gc(unsigned long expires, struct net *net, bool force) 2314 { 2315 struct fib6_gc_args gc_args; 2316 unsigned long now; 2317 2318 if (force) { 2319 spin_lock_bh(&net->ipv6.fib6_gc_lock); 2320 } else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) { 2321 mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ); 2322 return; 2323 } 2324 gc_args.timeout = expires ? (int)expires : 2325 net->ipv6.sysctl.ip6_rt_gc_interval; 2326 gc_args.more = 0; 2327 2328 fib6_clean_all(net, fib6_age, &gc_args); 2329 now = jiffies; 2330 net->ipv6.ip6_rt_last_gc = now; 2331 2332 if (gc_args.more) 2333 mod_timer(&net->ipv6.ip6_fib_timer, 2334 round_jiffies(now 2335 + net->ipv6.sysctl.ip6_rt_gc_interval)); 2336 else 2337 del_timer(&net->ipv6.ip6_fib_timer); 2338 spin_unlock_bh(&net->ipv6.fib6_gc_lock); 2339 } 2340 2341 static void fib6_gc_timer_cb(struct timer_list *t) 2342 { 2343 struct net *arg = from_timer(arg, t, ipv6.ip6_fib_timer); 2344 2345 fib6_run_gc(0, arg, true); 2346 } 2347 2348 static int __net_init fib6_net_init(struct net *net) 2349 { 2350 size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ; 2351 int err; 2352 2353 err = fib6_notifier_init(net); 2354 if (err) 2355 return err; 2356 2357 spin_lock_init(&net->ipv6.fib6_gc_lock); 2358 rwlock_init(&net->ipv6.fib6_walker_lock); 2359 INIT_LIST_HEAD(&net->ipv6.fib6_walkers); 2360 timer_setup(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, 0); 2361 2362 net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL); 2363 if (!net->ipv6.rt6_stats) 2364 goto out_timer; 2365 2366 /* Avoid false sharing : Use at least a full cache line */ 2367 size = max_t(size_t, size, L1_CACHE_BYTES); 2368 2369 net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL); 2370 if (!net->ipv6.fib_table_hash) 2371 goto out_rt6_stats; 2372 2373 net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl), 2374 GFP_KERNEL); 2375 if (!net->ipv6.fib6_main_tbl) 2376 goto out_fib_table_hash; 2377 2378 net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN; 2379 rcu_assign_pointer(net->ipv6.fib6_main_tbl->tb6_root.leaf, 2380 net->ipv6.fib6_null_entry); 2381 net->ipv6.fib6_main_tbl->tb6_root.fn_flags = 2382 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO; 2383 inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers); 2384 2385 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 2386 net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl), 2387 GFP_KERNEL); 2388 if (!net->ipv6.fib6_local_tbl) 2389 goto out_fib6_main_tbl; 2390 net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL; 2391 rcu_assign_pointer(net->ipv6.fib6_local_tbl->tb6_root.leaf, 2392 net->ipv6.fib6_null_entry); 2393 net->ipv6.fib6_local_tbl->tb6_root.fn_flags = 2394 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO; 2395 inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers); 2396 #endif 2397 fib6_tables_init(net); 2398 2399 return 0; 2400 2401 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 2402 out_fib6_main_tbl: 2403 kfree(net->ipv6.fib6_main_tbl); 2404 #endif 2405 out_fib_table_hash: 2406 kfree(net->ipv6.fib_table_hash); 2407 out_rt6_stats: 2408 kfree(net->ipv6.rt6_stats); 2409 out_timer: 2410 fib6_notifier_exit(net); 2411 return -ENOMEM; 2412 } 2413 2414 static void fib6_net_exit(struct net *net) 2415 { 2416 unsigned int i; 2417 2418 del_timer_sync(&net->ipv6.ip6_fib_timer); 2419 2420 for (i = 0; i < FIB6_TABLE_HASHSZ; i++) { 2421 struct hlist_head *head = &net->ipv6.fib_table_hash[i]; 2422 struct hlist_node *tmp; 2423 struct fib6_table *tb; 2424 2425 hlist_for_each_entry_safe(tb, tmp, head, tb6_hlist) { 2426 hlist_del(&tb->tb6_hlist); 2427 fib6_free_table(tb); 2428 } 2429 } 2430 2431 kfree(net->ipv6.fib_table_hash); 2432 kfree(net->ipv6.rt6_stats); 2433 fib6_notifier_exit(net); 2434 } 2435 2436 static struct pernet_operations fib6_net_ops = { 2437 .init = fib6_net_init, 2438 .exit = fib6_net_exit, 2439 }; 2440 2441 int __init fib6_init(void) 2442 { 2443 int ret = -ENOMEM; 2444 2445 fib6_node_kmem = kmem_cache_create("fib6_nodes", 2446 sizeof(struct fib6_node), 2447 0, SLAB_HWCACHE_ALIGN, 2448 NULL); 2449 if (!fib6_node_kmem) 2450 goto out; 2451 2452 ret = register_pernet_subsys(&fib6_net_ops); 2453 if (ret) 2454 goto out_kmem_cache_create; 2455 2456 ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_GETROUTE, NULL, 2457 inet6_dump_fib, 0); 2458 if (ret) 2459 goto out_unregister_subsys; 2460 2461 __fib6_flush_trees = fib6_flush_trees; 2462 out: 2463 return ret; 2464 2465 out_unregister_subsys: 2466 unregister_pernet_subsys(&fib6_net_ops); 2467 out_kmem_cache_create: 2468 kmem_cache_destroy(fib6_node_kmem); 2469 goto out; 2470 } 2471 2472 void fib6_gc_cleanup(void) 2473 { 2474 unregister_pernet_subsys(&fib6_net_ops); 2475 kmem_cache_destroy(fib6_node_kmem); 2476 } 2477 2478 #ifdef CONFIG_PROC_FS 2479 static int ipv6_route_native_seq_show(struct seq_file *seq, void *v) 2480 { 2481 struct fib6_info *rt = v; 2482 struct ipv6_route_iter *iter = seq->private; 2483 struct fib6_nh *fib6_nh = rt->fib6_nh; 2484 unsigned int flags = rt->fib6_flags; 2485 const struct net_device *dev; 2486 2487 if (rt->nh) 2488 fib6_nh = nexthop_fib6_nh(rt->nh); 2489 2490 seq_printf(seq, "%pi6 %02x ", &rt->fib6_dst.addr, rt->fib6_dst.plen); 2491 2492 #ifdef CONFIG_IPV6_SUBTREES 2493 seq_printf(seq, "%pi6 %02x ", &rt->fib6_src.addr, rt->fib6_src.plen); 2494 #else 2495 seq_puts(seq, "00000000000000000000000000000000 00 "); 2496 #endif 2497 if (fib6_nh->fib_nh_gw_family) { 2498 flags |= RTF_GATEWAY; 2499 seq_printf(seq, "%pi6", &fib6_nh->fib_nh_gw6); 2500 } else { 2501 seq_puts(seq, "00000000000000000000000000000000"); 2502 } 2503 2504 dev = fib6_nh->fib_nh_dev; 2505 seq_printf(seq, " %08x %08x %08x %08x %8s\n", 2506 rt->fib6_metric, refcount_read(&rt->fib6_ref), 0, 2507 flags, dev ? dev->name : ""); 2508 iter->w.leaf = NULL; 2509 return 0; 2510 } 2511 2512 static int ipv6_route_yield(struct fib6_walker *w) 2513 { 2514 struct ipv6_route_iter *iter = w->args; 2515 2516 if (!iter->skip) 2517 return 1; 2518 2519 do { 2520 iter->w.leaf = rcu_dereference_protected( 2521 iter->w.leaf->fib6_next, 2522 lockdep_is_held(&iter->tbl->tb6_lock)); 2523 iter->skip--; 2524 if (!iter->skip && iter->w.leaf) 2525 return 1; 2526 } while (iter->w.leaf); 2527 2528 return 0; 2529 } 2530 2531 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter, 2532 struct net *net) 2533 { 2534 memset(&iter->w, 0, sizeof(iter->w)); 2535 iter->w.func = ipv6_route_yield; 2536 iter->w.root = &iter->tbl->tb6_root; 2537 iter->w.state = FWS_INIT; 2538 iter->w.node = iter->w.root; 2539 iter->w.args = iter; 2540 iter->sernum = iter->w.root->fn_sernum; 2541 INIT_LIST_HEAD(&iter->w.lh); 2542 fib6_walker_link(net, &iter->w); 2543 } 2544 2545 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl, 2546 struct net *net) 2547 { 2548 unsigned int h; 2549 struct hlist_node *node; 2550 2551 if (tbl) { 2552 h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1; 2553 node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist)); 2554 } else { 2555 h = 0; 2556 node = NULL; 2557 } 2558 2559 while (!node && h < FIB6_TABLE_HASHSZ) { 2560 node = rcu_dereference_bh( 2561 hlist_first_rcu(&net->ipv6.fib_table_hash[h++])); 2562 } 2563 return hlist_entry_safe(node, struct fib6_table, tb6_hlist); 2564 } 2565 2566 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter) 2567 { 2568 if (iter->sernum != iter->w.root->fn_sernum) { 2569 iter->sernum = iter->w.root->fn_sernum; 2570 iter->w.state = FWS_INIT; 2571 iter->w.node = iter->w.root; 2572 WARN_ON(iter->w.skip); 2573 iter->w.skip = iter->w.count; 2574 } 2575 } 2576 2577 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2578 { 2579 int r; 2580 struct fib6_info *n; 2581 struct net *net = seq_file_net(seq); 2582 struct ipv6_route_iter *iter = seq->private; 2583 2584 ++(*pos); 2585 if (!v) 2586 goto iter_table; 2587 2588 n = rcu_dereference_bh(((struct fib6_info *)v)->fib6_next); 2589 if (n) 2590 return n; 2591 2592 iter_table: 2593 ipv6_route_check_sernum(iter); 2594 spin_lock_bh(&iter->tbl->tb6_lock); 2595 r = fib6_walk_continue(&iter->w); 2596 spin_unlock_bh(&iter->tbl->tb6_lock); 2597 if (r > 0) { 2598 return iter->w.leaf; 2599 } else if (r < 0) { 2600 fib6_walker_unlink(net, &iter->w); 2601 return NULL; 2602 } 2603 fib6_walker_unlink(net, &iter->w); 2604 2605 iter->tbl = ipv6_route_seq_next_table(iter->tbl, net); 2606 if (!iter->tbl) 2607 return NULL; 2608 2609 ipv6_route_seq_setup_walk(iter, net); 2610 goto iter_table; 2611 } 2612 2613 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos) 2614 __acquires(RCU_BH) 2615 { 2616 struct net *net = seq_file_net(seq); 2617 struct ipv6_route_iter *iter = seq->private; 2618 2619 rcu_read_lock_bh(); 2620 iter->tbl = ipv6_route_seq_next_table(NULL, net); 2621 iter->skip = *pos; 2622 2623 if (iter->tbl) { 2624 loff_t p = 0; 2625 2626 ipv6_route_seq_setup_walk(iter, net); 2627 return ipv6_route_seq_next(seq, NULL, &p); 2628 } else { 2629 return NULL; 2630 } 2631 } 2632 2633 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter) 2634 { 2635 struct fib6_walker *w = &iter->w; 2636 return w->node && !(w->state == FWS_U && w->node == w->root); 2637 } 2638 2639 static void ipv6_route_native_seq_stop(struct seq_file *seq, void *v) 2640 __releases(RCU_BH) 2641 { 2642 struct net *net = seq_file_net(seq); 2643 struct ipv6_route_iter *iter = seq->private; 2644 2645 if (ipv6_route_iter_active(iter)) 2646 fib6_walker_unlink(net, &iter->w); 2647 2648 rcu_read_unlock_bh(); 2649 } 2650 2651 #if IS_BUILTIN(CONFIG_IPV6) && defined(CONFIG_BPF_SYSCALL) 2652 static int ipv6_route_prog_seq_show(struct bpf_prog *prog, 2653 struct bpf_iter_meta *meta, 2654 void *v) 2655 { 2656 struct bpf_iter__ipv6_route ctx; 2657 2658 ctx.meta = meta; 2659 ctx.rt = v; 2660 return bpf_iter_run_prog(prog, &ctx); 2661 } 2662 2663 static int ipv6_route_seq_show(struct seq_file *seq, void *v) 2664 { 2665 struct ipv6_route_iter *iter = seq->private; 2666 struct bpf_iter_meta meta; 2667 struct bpf_prog *prog; 2668 int ret; 2669 2670 meta.seq = seq; 2671 prog = bpf_iter_get_info(&meta, false); 2672 if (!prog) 2673 return ipv6_route_native_seq_show(seq, v); 2674 2675 ret = ipv6_route_prog_seq_show(prog, &meta, v); 2676 iter->w.leaf = NULL; 2677 2678 return ret; 2679 } 2680 2681 static void ipv6_route_seq_stop(struct seq_file *seq, void *v) 2682 { 2683 struct bpf_iter_meta meta; 2684 struct bpf_prog *prog; 2685 2686 if (!v) { 2687 meta.seq = seq; 2688 prog = bpf_iter_get_info(&meta, true); 2689 if (prog) 2690 (void)ipv6_route_prog_seq_show(prog, &meta, v); 2691 } 2692 2693 ipv6_route_native_seq_stop(seq, v); 2694 } 2695 #else 2696 static int ipv6_route_seq_show(struct seq_file *seq, void *v) 2697 { 2698 return ipv6_route_native_seq_show(seq, v); 2699 } 2700 2701 static void ipv6_route_seq_stop(struct seq_file *seq, void *v) 2702 { 2703 ipv6_route_native_seq_stop(seq, v); 2704 } 2705 #endif 2706 2707 const struct seq_operations ipv6_route_seq_ops = { 2708 .start = ipv6_route_seq_start, 2709 .next = ipv6_route_seq_next, 2710 .stop = ipv6_route_seq_stop, 2711 .show = ipv6_route_seq_show 2712 }; 2713 #endif /* CONFIG_PROC_FS */ 2714