xref: /linux/net/ipv6/ip6_fib.c (revision 367b8112fe2ea5c39a7bb4d263dcdd9b612fae18)
1 /*
2  *	Linux INET6 implementation
3  *	Forwarding Information Database
4  *
5  *	Authors:
6  *	Pedro Roque		<roque@di.fc.ul.pt>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *      modify it under the terms of the GNU General Public License
10  *      as published by the Free Software Foundation; either version
11  *      2 of the License, or (at your option) any later version.
12  */
13 
14 /*
15  * 	Changes:
16  * 	Yuji SEKIYA @USAGI:	Support default route on router node;
17  * 				remove ip6_null_entry from the top of
18  * 				routing table.
19  * 	Ville Nuorvala:		Fixed routing subtrees.
20  */
21 #include <linux/errno.h>
22 #include <linux/types.h>
23 #include <linux/net.h>
24 #include <linux/route.h>
25 #include <linux/netdevice.h>
26 #include <linux/in6.h>
27 #include <linux/init.h>
28 #include <linux/list.h>
29 
30 #ifdef 	CONFIG_PROC_FS
31 #include <linux/proc_fs.h>
32 #endif
33 
34 #include <net/ipv6.h>
35 #include <net/ndisc.h>
36 #include <net/addrconf.h>
37 
38 #include <net/ip6_fib.h>
39 #include <net/ip6_route.h>
40 
41 #define RT6_DEBUG 2
42 
43 #if RT6_DEBUG >= 3
44 #define RT6_TRACE(x...) printk(KERN_DEBUG x)
45 #else
46 #define RT6_TRACE(x...) do { ; } while (0)
47 #endif
48 
49 static struct kmem_cache * fib6_node_kmem __read_mostly;
50 
51 enum fib_walk_state_t
52 {
53 #ifdef CONFIG_IPV6_SUBTREES
54 	FWS_S,
55 #endif
56 	FWS_L,
57 	FWS_R,
58 	FWS_C,
59 	FWS_U
60 };
61 
62 struct fib6_cleaner_t
63 {
64 	struct fib6_walker_t w;
65 	struct net *net;
66 	int (*func)(struct rt6_info *, void *arg);
67 	void *arg;
68 };
69 
70 static DEFINE_RWLOCK(fib6_walker_lock);
71 
72 #ifdef CONFIG_IPV6_SUBTREES
73 #define FWS_INIT FWS_S
74 #else
75 #define FWS_INIT FWS_L
76 #endif
77 
78 static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
79 			      struct rt6_info *rt);
80 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
81 static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
82 static int fib6_walk(struct fib6_walker_t *w);
83 static int fib6_walk_continue(struct fib6_walker_t *w);
84 
85 /*
86  *	A routing update causes an increase of the serial number on the
87  *	affected subtree. This allows for cached routes to be asynchronously
88  *	tested when modifications are made to the destination cache as a
89  *	result of redirects, path MTU changes, etc.
90  */
91 
92 static __u32 rt_sernum;
93 
94 static void fib6_gc_timer_cb(unsigned long arg);
95 
96 static struct fib6_walker_t fib6_walker_list = {
97 	.prev	= &fib6_walker_list,
98 	.next	= &fib6_walker_list,
99 };
100 
101 #define FOR_WALKERS(w) for ((w)=fib6_walker_list.next; (w) != &fib6_walker_list; (w)=(w)->next)
102 
103 static inline void fib6_walker_link(struct fib6_walker_t *w)
104 {
105 	write_lock_bh(&fib6_walker_lock);
106 	w->next = fib6_walker_list.next;
107 	w->prev = &fib6_walker_list;
108 	w->next->prev = w;
109 	w->prev->next = w;
110 	write_unlock_bh(&fib6_walker_lock);
111 }
112 
113 static inline void fib6_walker_unlink(struct fib6_walker_t *w)
114 {
115 	write_lock_bh(&fib6_walker_lock);
116 	w->next->prev = w->prev;
117 	w->prev->next = w->next;
118 	w->prev = w->next = w;
119 	write_unlock_bh(&fib6_walker_lock);
120 }
121 static __inline__ u32 fib6_new_sernum(void)
122 {
123 	u32 n = ++rt_sernum;
124 	if ((__s32)n <= 0)
125 		rt_sernum = n = 1;
126 	return n;
127 }
128 
129 /*
130  *	Auxiliary address test functions for the radix tree.
131  *
132  *	These assume a 32bit processor (although it will work on
133  *	64bit processors)
134  */
135 
136 /*
137  *	test bit
138  */
139 
140 static __inline__ __be32 addr_bit_set(void *token, int fn_bit)
141 {
142 	__be32 *addr = token;
143 
144 	return htonl(1 << ((~fn_bit)&0x1F)) & addr[fn_bit>>5];
145 }
146 
147 static __inline__ struct fib6_node * node_alloc(void)
148 {
149 	struct fib6_node *fn;
150 
151 	fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
152 
153 	return fn;
154 }
155 
156 static __inline__ void node_free(struct fib6_node * fn)
157 {
158 	kmem_cache_free(fib6_node_kmem, fn);
159 }
160 
161 static __inline__ void rt6_release(struct rt6_info *rt)
162 {
163 	if (atomic_dec_and_test(&rt->rt6i_ref))
164 		dst_free(&rt->u.dst);
165 }
166 
167 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
168 #define FIB_TABLE_HASHSZ 256
169 #else
170 #define FIB_TABLE_HASHSZ 1
171 #endif
172 
173 static void fib6_link_table(struct net *net, struct fib6_table *tb)
174 {
175 	unsigned int h;
176 
177 	/*
178 	 * Initialize table lock at a single place to give lockdep a key,
179 	 * tables aren't visible prior to being linked to the list.
180 	 */
181 	rwlock_init(&tb->tb6_lock);
182 
183 	h = tb->tb6_id & (FIB_TABLE_HASHSZ - 1);
184 
185 	/*
186 	 * No protection necessary, this is the only list mutatation
187 	 * operation, tables never disappear once they exist.
188 	 */
189 	hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
190 }
191 
192 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
193 
194 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
195 {
196 	struct fib6_table *table;
197 
198 	table = kzalloc(sizeof(*table), GFP_ATOMIC);
199 	if (table != NULL) {
200 		table->tb6_id = id;
201 		table->tb6_root.leaf = net->ipv6.ip6_null_entry;
202 		table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
203 	}
204 
205 	return table;
206 }
207 
208 struct fib6_table *fib6_new_table(struct net *net, u32 id)
209 {
210 	struct fib6_table *tb;
211 
212 	if (id == 0)
213 		id = RT6_TABLE_MAIN;
214 	tb = fib6_get_table(net, id);
215 	if (tb)
216 		return tb;
217 
218 	tb = fib6_alloc_table(net, id);
219 	if (tb != NULL)
220 		fib6_link_table(net, tb);
221 
222 	return tb;
223 }
224 
225 struct fib6_table *fib6_get_table(struct net *net, u32 id)
226 {
227 	struct fib6_table *tb;
228 	struct hlist_head *head;
229 	struct hlist_node *node;
230 	unsigned int h;
231 
232 	if (id == 0)
233 		id = RT6_TABLE_MAIN;
234 	h = id & (FIB_TABLE_HASHSZ - 1);
235 	rcu_read_lock();
236 	head = &net->ipv6.fib_table_hash[h];
237 	hlist_for_each_entry_rcu(tb, node, head, tb6_hlist) {
238 		if (tb->tb6_id == id) {
239 			rcu_read_unlock();
240 			return tb;
241 		}
242 	}
243 	rcu_read_unlock();
244 
245 	return NULL;
246 }
247 
248 static void fib6_tables_init(struct net *net)
249 {
250 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
251 	fib6_link_table(net, net->ipv6.fib6_local_tbl);
252 }
253 #else
254 
255 struct fib6_table *fib6_new_table(struct net *net, u32 id)
256 {
257 	return fib6_get_table(net, id);
258 }
259 
260 struct fib6_table *fib6_get_table(struct net *net, u32 id)
261 {
262 	  return net->ipv6.fib6_main_tbl;
263 }
264 
265 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi *fl,
266 				   int flags, pol_lookup_t lookup)
267 {
268 	return (struct dst_entry *) lookup(net, net->ipv6.fib6_main_tbl, fl, flags);
269 }
270 
271 static void fib6_tables_init(struct net *net)
272 {
273 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
274 }
275 
276 #endif
277 
278 static int fib6_dump_node(struct fib6_walker_t *w)
279 {
280 	int res;
281 	struct rt6_info *rt;
282 
283 	for (rt = w->leaf; rt; rt = rt->u.dst.rt6_next) {
284 		res = rt6_dump_route(rt, w->args);
285 		if (res < 0) {
286 			/* Frame is full, suspend walking */
287 			w->leaf = rt;
288 			return 1;
289 		}
290 		WARN_ON(res == 0);
291 	}
292 	w->leaf = NULL;
293 	return 0;
294 }
295 
296 static void fib6_dump_end(struct netlink_callback *cb)
297 {
298 	struct fib6_walker_t *w = (void*)cb->args[2];
299 
300 	if (w) {
301 		cb->args[2] = 0;
302 		kfree(w);
303 	}
304 	cb->done = (void*)cb->args[3];
305 	cb->args[1] = 3;
306 }
307 
308 static int fib6_dump_done(struct netlink_callback *cb)
309 {
310 	fib6_dump_end(cb);
311 	return cb->done ? cb->done(cb) : 0;
312 }
313 
314 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
315 			   struct netlink_callback *cb)
316 {
317 	struct fib6_walker_t *w;
318 	int res;
319 
320 	w = (void *)cb->args[2];
321 	w->root = &table->tb6_root;
322 
323 	if (cb->args[4] == 0) {
324 		read_lock_bh(&table->tb6_lock);
325 		res = fib6_walk(w);
326 		read_unlock_bh(&table->tb6_lock);
327 		if (res > 0)
328 			cb->args[4] = 1;
329 	} else {
330 		read_lock_bh(&table->tb6_lock);
331 		res = fib6_walk_continue(w);
332 		read_unlock_bh(&table->tb6_lock);
333 		if (res != 0) {
334 			if (res < 0)
335 				fib6_walker_unlink(w);
336 			goto end;
337 		}
338 		fib6_walker_unlink(w);
339 		cb->args[4] = 0;
340 	}
341 end:
342 	return res;
343 }
344 
345 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
346 {
347 	struct net *net = sock_net(skb->sk);
348 	unsigned int h, s_h;
349 	unsigned int e = 0, s_e;
350 	struct rt6_rtnl_dump_arg arg;
351 	struct fib6_walker_t *w;
352 	struct fib6_table *tb;
353 	struct hlist_node *node;
354 	struct hlist_head *head;
355 	int res = 0;
356 
357 	s_h = cb->args[0];
358 	s_e = cb->args[1];
359 
360 	w = (void *)cb->args[2];
361 	if (w == NULL) {
362 		/* New dump:
363 		 *
364 		 * 1. hook callback destructor.
365 		 */
366 		cb->args[3] = (long)cb->done;
367 		cb->done = fib6_dump_done;
368 
369 		/*
370 		 * 2. allocate and initialize walker.
371 		 */
372 		w = kzalloc(sizeof(*w), GFP_ATOMIC);
373 		if (w == NULL)
374 			return -ENOMEM;
375 		w->func = fib6_dump_node;
376 		cb->args[2] = (long)w;
377 	}
378 
379 	arg.skb = skb;
380 	arg.cb = cb;
381 	arg.net = net;
382 	w->args = &arg;
383 
384 	for (h = s_h; h < FIB_TABLE_HASHSZ; h++, s_e = 0) {
385 		e = 0;
386 		head = &net->ipv6.fib_table_hash[h];
387 		hlist_for_each_entry(tb, node, head, tb6_hlist) {
388 			if (e < s_e)
389 				goto next;
390 			res = fib6_dump_table(tb, skb, cb);
391 			if (res != 0)
392 				goto out;
393 next:
394 			e++;
395 		}
396 	}
397 out:
398 	cb->args[1] = e;
399 	cb->args[0] = h;
400 
401 	res = res < 0 ? res : skb->len;
402 	if (res <= 0)
403 		fib6_dump_end(cb);
404 	return res;
405 }
406 
407 /*
408  *	Routing Table
409  *
410  *	return the appropriate node for a routing tree "add" operation
411  *	by either creating and inserting or by returning an existing
412  *	node.
413  */
414 
415 static struct fib6_node * fib6_add_1(struct fib6_node *root, void *addr,
416 				     int addrlen, int plen,
417 				     int offset)
418 {
419 	struct fib6_node *fn, *in, *ln;
420 	struct fib6_node *pn = NULL;
421 	struct rt6key *key;
422 	int	bit;
423 	__be32	dir = 0;
424 	__u32	sernum = fib6_new_sernum();
425 
426 	RT6_TRACE("fib6_add_1\n");
427 
428 	/* insert node in tree */
429 
430 	fn = root;
431 
432 	do {
433 		key = (struct rt6key *)((u8 *)fn->leaf + offset);
434 
435 		/*
436 		 *	Prefix match
437 		 */
438 		if (plen < fn->fn_bit ||
439 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
440 			goto insert_above;
441 
442 		/*
443 		 *	Exact match ?
444 		 */
445 
446 		if (plen == fn->fn_bit) {
447 			/* clean up an intermediate node */
448 			if ((fn->fn_flags & RTN_RTINFO) == 0) {
449 				rt6_release(fn->leaf);
450 				fn->leaf = NULL;
451 			}
452 
453 			fn->fn_sernum = sernum;
454 
455 			return fn;
456 		}
457 
458 		/*
459 		 *	We have more bits to go
460 		 */
461 
462 		/* Try to walk down on tree. */
463 		fn->fn_sernum = sernum;
464 		dir = addr_bit_set(addr, fn->fn_bit);
465 		pn = fn;
466 		fn = dir ? fn->right: fn->left;
467 	} while (fn);
468 
469 	/*
470 	 *	We walked to the bottom of tree.
471 	 *	Create new leaf node without children.
472 	 */
473 
474 	ln = node_alloc();
475 
476 	if (ln == NULL)
477 		return NULL;
478 	ln->fn_bit = plen;
479 
480 	ln->parent = pn;
481 	ln->fn_sernum = sernum;
482 
483 	if (dir)
484 		pn->right = ln;
485 	else
486 		pn->left  = ln;
487 
488 	return ln;
489 
490 
491 insert_above:
492 	/*
493 	 * split since we don't have a common prefix anymore or
494 	 * we have a less significant route.
495 	 * we've to insert an intermediate node on the list
496 	 * this new node will point to the one we need to create
497 	 * and the current
498 	 */
499 
500 	pn = fn->parent;
501 
502 	/* find 1st bit in difference between the 2 addrs.
503 
504 	   See comment in __ipv6_addr_diff: bit may be an invalid value,
505 	   but if it is >= plen, the value is ignored in any case.
506 	 */
507 
508 	bit = __ipv6_addr_diff(addr, &key->addr, addrlen);
509 
510 	/*
511 	 *		(intermediate)[in]
512 	 *	          /	   \
513 	 *	(new leaf node)[ln] (old node)[fn]
514 	 */
515 	if (plen > bit) {
516 		in = node_alloc();
517 		ln = node_alloc();
518 
519 		if (in == NULL || ln == NULL) {
520 			if (in)
521 				node_free(in);
522 			if (ln)
523 				node_free(ln);
524 			return NULL;
525 		}
526 
527 		/*
528 		 * new intermediate node.
529 		 * RTN_RTINFO will
530 		 * be off since that an address that chooses one of
531 		 * the branches would not match less specific routes
532 		 * in the other branch
533 		 */
534 
535 		in->fn_bit = bit;
536 
537 		in->parent = pn;
538 		in->leaf = fn->leaf;
539 		atomic_inc(&in->leaf->rt6i_ref);
540 
541 		in->fn_sernum = sernum;
542 
543 		/* update parent pointer */
544 		if (dir)
545 			pn->right = in;
546 		else
547 			pn->left  = in;
548 
549 		ln->fn_bit = plen;
550 
551 		ln->parent = in;
552 		fn->parent = in;
553 
554 		ln->fn_sernum = sernum;
555 
556 		if (addr_bit_set(addr, bit)) {
557 			in->right = ln;
558 			in->left  = fn;
559 		} else {
560 			in->left  = ln;
561 			in->right = fn;
562 		}
563 	} else { /* plen <= bit */
564 
565 		/*
566 		 *		(new leaf node)[ln]
567 		 *	          /	   \
568 		 *	     (old node)[fn] NULL
569 		 */
570 
571 		ln = node_alloc();
572 
573 		if (ln == NULL)
574 			return NULL;
575 
576 		ln->fn_bit = plen;
577 
578 		ln->parent = pn;
579 
580 		ln->fn_sernum = sernum;
581 
582 		if (dir)
583 			pn->right = ln;
584 		else
585 			pn->left  = ln;
586 
587 		if (addr_bit_set(&key->addr, plen))
588 			ln->right = fn;
589 		else
590 			ln->left  = fn;
591 
592 		fn->parent = ln;
593 	}
594 	return ln;
595 }
596 
597 /*
598  *	Insert routing information in a node.
599  */
600 
601 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
602 			    struct nl_info *info)
603 {
604 	struct rt6_info *iter = NULL;
605 	struct rt6_info **ins;
606 
607 	ins = &fn->leaf;
608 
609 	for (iter = fn->leaf; iter; iter=iter->u.dst.rt6_next) {
610 		/*
611 		 *	Search for duplicates
612 		 */
613 
614 		if (iter->rt6i_metric == rt->rt6i_metric) {
615 			/*
616 			 *	Same priority level
617 			 */
618 
619 			if (iter->rt6i_dev == rt->rt6i_dev &&
620 			    iter->rt6i_idev == rt->rt6i_idev &&
621 			    ipv6_addr_equal(&iter->rt6i_gateway,
622 					    &rt->rt6i_gateway)) {
623 				if (!(iter->rt6i_flags&RTF_EXPIRES))
624 					return -EEXIST;
625 				iter->rt6i_expires = rt->rt6i_expires;
626 				if (!(rt->rt6i_flags&RTF_EXPIRES)) {
627 					iter->rt6i_flags &= ~RTF_EXPIRES;
628 					iter->rt6i_expires = 0;
629 				}
630 				return -EEXIST;
631 			}
632 		}
633 
634 		if (iter->rt6i_metric > rt->rt6i_metric)
635 			break;
636 
637 		ins = &iter->u.dst.rt6_next;
638 	}
639 
640 	/* Reset round-robin state, if necessary */
641 	if (ins == &fn->leaf)
642 		fn->rr_ptr = NULL;
643 
644 	/*
645 	 *	insert node
646 	 */
647 
648 	rt->u.dst.rt6_next = iter;
649 	*ins = rt;
650 	rt->rt6i_node = fn;
651 	atomic_inc(&rt->rt6i_ref);
652 	inet6_rt_notify(RTM_NEWROUTE, rt, info);
653 	info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
654 
655 	if ((fn->fn_flags & RTN_RTINFO) == 0) {
656 		info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
657 		fn->fn_flags |= RTN_RTINFO;
658 	}
659 
660 	return 0;
661 }
662 
663 static __inline__ void fib6_start_gc(struct net *net, struct rt6_info *rt)
664 {
665 	if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
666 	    (rt->rt6i_flags & (RTF_EXPIRES|RTF_CACHE)))
667 		mod_timer(&net->ipv6.ip6_fib_timer,
668 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
669 }
670 
671 void fib6_force_start_gc(struct net *net)
672 {
673 	if (!timer_pending(&net->ipv6.ip6_fib_timer))
674 		mod_timer(&net->ipv6.ip6_fib_timer,
675 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
676 }
677 
678 /*
679  *	Add routing information to the routing tree.
680  *	<destination addr>/<source addr>
681  *	with source addr info in sub-trees
682  */
683 
684 int fib6_add(struct fib6_node *root, struct rt6_info *rt, struct nl_info *info)
685 {
686 	struct fib6_node *fn, *pn = NULL;
687 	int err = -ENOMEM;
688 
689 	fn = fib6_add_1(root, &rt->rt6i_dst.addr, sizeof(struct in6_addr),
690 			rt->rt6i_dst.plen, offsetof(struct rt6_info, rt6i_dst));
691 
692 	if (fn == NULL)
693 		goto out;
694 
695 	pn = fn;
696 
697 #ifdef CONFIG_IPV6_SUBTREES
698 	if (rt->rt6i_src.plen) {
699 		struct fib6_node *sn;
700 
701 		if (fn->subtree == NULL) {
702 			struct fib6_node *sfn;
703 
704 			/*
705 			 * Create subtree.
706 			 *
707 			 *		fn[main tree]
708 			 *		|
709 			 *		sfn[subtree root]
710 			 *		   \
711 			 *		    sn[new leaf node]
712 			 */
713 
714 			/* Create subtree root node */
715 			sfn = node_alloc();
716 			if (sfn == NULL)
717 				goto st_failure;
718 
719 			sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
720 			atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
721 			sfn->fn_flags = RTN_ROOT;
722 			sfn->fn_sernum = fib6_new_sernum();
723 
724 			/* Now add the first leaf node to new subtree */
725 
726 			sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
727 					sizeof(struct in6_addr), rt->rt6i_src.plen,
728 					offsetof(struct rt6_info, rt6i_src));
729 
730 			if (sn == NULL) {
731 				/* If it is failed, discard just allocated
732 				   root, and then (in st_failure) stale node
733 				   in main tree.
734 				 */
735 				node_free(sfn);
736 				goto st_failure;
737 			}
738 
739 			/* Now link new subtree to main tree */
740 			sfn->parent = fn;
741 			fn->subtree = sfn;
742 		} else {
743 			sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
744 					sizeof(struct in6_addr), rt->rt6i_src.plen,
745 					offsetof(struct rt6_info, rt6i_src));
746 
747 			if (sn == NULL)
748 				goto st_failure;
749 		}
750 
751 		if (fn->leaf == NULL) {
752 			fn->leaf = rt;
753 			atomic_inc(&rt->rt6i_ref);
754 		}
755 		fn = sn;
756 	}
757 #endif
758 
759 	err = fib6_add_rt2node(fn, rt, info);
760 
761 	if (err == 0) {
762 		fib6_start_gc(info->nl_net, rt);
763 		if (!(rt->rt6i_flags&RTF_CACHE))
764 			fib6_prune_clones(info->nl_net, pn, rt);
765 	}
766 
767 out:
768 	if (err) {
769 #ifdef CONFIG_IPV6_SUBTREES
770 		/*
771 		 * If fib6_add_1 has cleared the old leaf pointer in the
772 		 * super-tree leaf node we have to find a new one for it.
773 		 */
774 		if (pn != fn && pn->leaf == rt) {
775 			pn->leaf = NULL;
776 			atomic_dec(&rt->rt6i_ref);
777 		}
778 		if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
779 			pn->leaf = fib6_find_prefix(info->nl_net, pn);
780 #if RT6_DEBUG >= 2
781 			if (!pn->leaf) {
782 				WARN_ON(pn->leaf == NULL);
783 				pn->leaf = info->nl_net->ipv6.ip6_null_entry;
784 			}
785 #endif
786 			atomic_inc(&pn->leaf->rt6i_ref);
787 		}
788 #endif
789 		dst_free(&rt->u.dst);
790 	}
791 	return err;
792 
793 #ifdef CONFIG_IPV6_SUBTREES
794 	/* Subtree creation failed, probably main tree node
795 	   is orphan. If it is, shoot it.
796 	 */
797 st_failure:
798 	if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
799 		fib6_repair_tree(info->nl_net, fn);
800 	dst_free(&rt->u.dst);
801 	return err;
802 #endif
803 }
804 
805 /*
806  *	Routing tree lookup
807  *
808  */
809 
810 struct lookup_args {
811 	int		offset;		/* key offset on rt6_info	*/
812 	struct in6_addr	*addr;		/* search key			*/
813 };
814 
815 static struct fib6_node * fib6_lookup_1(struct fib6_node *root,
816 					struct lookup_args *args)
817 {
818 	struct fib6_node *fn;
819 	__be32 dir;
820 
821 	if (unlikely(args->offset == 0))
822 		return NULL;
823 
824 	/*
825 	 *	Descend on a tree
826 	 */
827 
828 	fn = root;
829 
830 	for (;;) {
831 		struct fib6_node *next;
832 
833 		dir = addr_bit_set(args->addr, fn->fn_bit);
834 
835 		next = dir ? fn->right : fn->left;
836 
837 		if (next) {
838 			fn = next;
839 			continue;
840 		}
841 
842 		break;
843 	}
844 
845 	while(fn) {
846 		if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
847 			struct rt6key *key;
848 
849 			key = (struct rt6key *) ((u8 *) fn->leaf +
850 						 args->offset);
851 
852 			if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
853 #ifdef CONFIG_IPV6_SUBTREES
854 				if (fn->subtree)
855 					fn = fib6_lookup_1(fn->subtree, args + 1);
856 #endif
857 				if (!fn || fn->fn_flags & RTN_RTINFO)
858 					return fn;
859 			}
860 		}
861 
862 		if (fn->fn_flags & RTN_ROOT)
863 			break;
864 
865 		fn = fn->parent;
866 	}
867 
868 	return NULL;
869 }
870 
871 struct fib6_node * fib6_lookup(struct fib6_node *root, struct in6_addr *daddr,
872 			       struct in6_addr *saddr)
873 {
874 	struct fib6_node *fn;
875 	struct lookup_args args[] = {
876 		{
877 			.offset = offsetof(struct rt6_info, rt6i_dst),
878 			.addr = daddr,
879 		},
880 #ifdef CONFIG_IPV6_SUBTREES
881 		{
882 			.offset = offsetof(struct rt6_info, rt6i_src),
883 			.addr = saddr,
884 		},
885 #endif
886 		{
887 			.offset = 0,	/* sentinel */
888 		}
889 	};
890 
891 	fn = fib6_lookup_1(root, daddr ? args : args + 1);
892 
893 	if (fn == NULL || fn->fn_flags & RTN_TL_ROOT)
894 		fn = root;
895 
896 	return fn;
897 }
898 
899 /*
900  *	Get node with specified destination prefix (and source prefix,
901  *	if subtrees are used)
902  */
903 
904 
905 static struct fib6_node * fib6_locate_1(struct fib6_node *root,
906 					struct in6_addr *addr,
907 					int plen, int offset)
908 {
909 	struct fib6_node *fn;
910 
911 	for (fn = root; fn ; ) {
912 		struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
913 
914 		/*
915 		 *	Prefix match
916 		 */
917 		if (plen < fn->fn_bit ||
918 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
919 			return NULL;
920 
921 		if (plen == fn->fn_bit)
922 			return fn;
923 
924 		/*
925 		 *	We have more bits to go
926 		 */
927 		if (addr_bit_set(addr, fn->fn_bit))
928 			fn = fn->right;
929 		else
930 			fn = fn->left;
931 	}
932 	return NULL;
933 }
934 
935 struct fib6_node * fib6_locate(struct fib6_node *root,
936 			       struct in6_addr *daddr, int dst_len,
937 			       struct in6_addr *saddr, int src_len)
938 {
939 	struct fib6_node *fn;
940 
941 	fn = fib6_locate_1(root, daddr, dst_len,
942 			   offsetof(struct rt6_info, rt6i_dst));
943 
944 #ifdef CONFIG_IPV6_SUBTREES
945 	if (src_len) {
946 		WARN_ON(saddr == NULL);
947 		if (fn && fn->subtree)
948 			fn = fib6_locate_1(fn->subtree, saddr, src_len,
949 					   offsetof(struct rt6_info, rt6i_src));
950 	}
951 #endif
952 
953 	if (fn && fn->fn_flags&RTN_RTINFO)
954 		return fn;
955 
956 	return NULL;
957 }
958 
959 
960 /*
961  *	Deletion
962  *
963  */
964 
965 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
966 {
967 	if (fn->fn_flags&RTN_ROOT)
968 		return net->ipv6.ip6_null_entry;
969 
970 	while(fn) {
971 		if(fn->left)
972 			return fn->left->leaf;
973 
974 		if(fn->right)
975 			return fn->right->leaf;
976 
977 		fn = FIB6_SUBTREE(fn);
978 	}
979 	return NULL;
980 }
981 
982 /*
983  *	Called to trim the tree of intermediate nodes when possible. "fn"
984  *	is the node we want to try and remove.
985  */
986 
987 static struct fib6_node *fib6_repair_tree(struct net *net,
988 					   struct fib6_node *fn)
989 {
990 	int children;
991 	int nstate;
992 	struct fib6_node *child, *pn;
993 	struct fib6_walker_t *w;
994 	int iter = 0;
995 
996 	for (;;) {
997 		RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
998 		iter++;
999 
1000 		WARN_ON(fn->fn_flags & RTN_RTINFO);
1001 		WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1002 		WARN_ON(fn->leaf != NULL);
1003 
1004 		children = 0;
1005 		child = NULL;
1006 		if (fn->right) child = fn->right, children |= 1;
1007 		if (fn->left) child = fn->left, children |= 2;
1008 
1009 		if (children == 3 || FIB6_SUBTREE(fn)
1010 #ifdef CONFIG_IPV6_SUBTREES
1011 		    /* Subtree root (i.e. fn) may have one child */
1012 		    || (children && fn->fn_flags&RTN_ROOT)
1013 #endif
1014 		    ) {
1015 			fn->leaf = fib6_find_prefix(net, fn);
1016 #if RT6_DEBUG >= 2
1017 			if (fn->leaf==NULL) {
1018 				WARN_ON(!fn->leaf);
1019 				fn->leaf = net->ipv6.ip6_null_entry;
1020 			}
1021 #endif
1022 			atomic_inc(&fn->leaf->rt6i_ref);
1023 			return fn->parent;
1024 		}
1025 
1026 		pn = fn->parent;
1027 #ifdef CONFIG_IPV6_SUBTREES
1028 		if (FIB6_SUBTREE(pn) == fn) {
1029 			WARN_ON(!(fn->fn_flags & RTN_ROOT));
1030 			FIB6_SUBTREE(pn) = NULL;
1031 			nstate = FWS_L;
1032 		} else {
1033 			WARN_ON(fn->fn_flags & RTN_ROOT);
1034 #endif
1035 			if (pn->right == fn) pn->right = child;
1036 			else if (pn->left == fn) pn->left = child;
1037 #if RT6_DEBUG >= 2
1038 			else
1039 				WARN_ON(1);
1040 #endif
1041 			if (child)
1042 				child->parent = pn;
1043 			nstate = FWS_R;
1044 #ifdef CONFIG_IPV6_SUBTREES
1045 		}
1046 #endif
1047 
1048 		read_lock(&fib6_walker_lock);
1049 		FOR_WALKERS(w) {
1050 			if (child == NULL) {
1051 				if (w->root == fn) {
1052 					w->root = w->node = NULL;
1053 					RT6_TRACE("W %p adjusted by delroot 1\n", w);
1054 				} else if (w->node == fn) {
1055 					RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1056 					w->node = pn;
1057 					w->state = nstate;
1058 				}
1059 			} else {
1060 				if (w->root == fn) {
1061 					w->root = child;
1062 					RT6_TRACE("W %p adjusted by delroot 2\n", w);
1063 				}
1064 				if (w->node == fn) {
1065 					w->node = child;
1066 					if (children&2) {
1067 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1068 						w->state = w->state>=FWS_R ? FWS_U : FWS_INIT;
1069 					} else {
1070 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1071 						w->state = w->state>=FWS_C ? FWS_U : FWS_INIT;
1072 					}
1073 				}
1074 			}
1075 		}
1076 		read_unlock(&fib6_walker_lock);
1077 
1078 		node_free(fn);
1079 		if (pn->fn_flags&RTN_RTINFO || FIB6_SUBTREE(pn))
1080 			return pn;
1081 
1082 		rt6_release(pn->leaf);
1083 		pn->leaf = NULL;
1084 		fn = pn;
1085 	}
1086 }
1087 
1088 static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1089 			   struct nl_info *info)
1090 {
1091 	struct fib6_walker_t *w;
1092 	struct rt6_info *rt = *rtp;
1093 	struct net *net = info->nl_net;
1094 
1095 	RT6_TRACE("fib6_del_route\n");
1096 
1097 	/* Unlink it */
1098 	*rtp = rt->u.dst.rt6_next;
1099 	rt->rt6i_node = NULL;
1100 	net->ipv6.rt6_stats->fib_rt_entries--;
1101 	net->ipv6.rt6_stats->fib_discarded_routes++;
1102 
1103 	/* Reset round-robin state, if necessary */
1104 	if (fn->rr_ptr == rt)
1105 		fn->rr_ptr = NULL;
1106 
1107 	/* Adjust walkers */
1108 	read_lock(&fib6_walker_lock);
1109 	FOR_WALKERS(w) {
1110 		if (w->state == FWS_C && w->leaf == rt) {
1111 			RT6_TRACE("walker %p adjusted by delroute\n", w);
1112 			w->leaf = rt->u.dst.rt6_next;
1113 			if (w->leaf == NULL)
1114 				w->state = FWS_U;
1115 		}
1116 	}
1117 	read_unlock(&fib6_walker_lock);
1118 
1119 	rt->u.dst.rt6_next = NULL;
1120 
1121 	/* If it was last route, expunge its radix tree node */
1122 	if (fn->leaf == NULL) {
1123 		fn->fn_flags &= ~RTN_RTINFO;
1124 		net->ipv6.rt6_stats->fib_route_nodes--;
1125 		fn = fib6_repair_tree(net, fn);
1126 	}
1127 
1128 	if (atomic_read(&rt->rt6i_ref) != 1) {
1129 		/* This route is used as dummy address holder in some split
1130 		 * nodes. It is not leaked, but it still holds other resources,
1131 		 * which must be released in time. So, scan ascendant nodes
1132 		 * and replace dummy references to this route with references
1133 		 * to still alive ones.
1134 		 */
1135 		while (fn) {
1136 			if (!(fn->fn_flags&RTN_RTINFO) && fn->leaf == rt) {
1137 				fn->leaf = fib6_find_prefix(net, fn);
1138 				atomic_inc(&fn->leaf->rt6i_ref);
1139 				rt6_release(rt);
1140 			}
1141 			fn = fn->parent;
1142 		}
1143 		/* No more references are possible at this point. */
1144 		BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
1145 	}
1146 
1147 	inet6_rt_notify(RTM_DELROUTE, rt, info);
1148 	rt6_release(rt);
1149 }
1150 
1151 int fib6_del(struct rt6_info *rt, struct nl_info *info)
1152 {
1153 	struct net *net = info->nl_net;
1154 	struct fib6_node *fn = rt->rt6i_node;
1155 	struct rt6_info **rtp;
1156 
1157 #if RT6_DEBUG >= 2
1158 	if (rt->u.dst.obsolete>0) {
1159 		WARN_ON(fn != NULL);
1160 		return -ENOENT;
1161 	}
1162 #endif
1163 	if (fn == NULL || rt == net->ipv6.ip6_null_entry)
1164 		return -ENOENT;
1165 
1166 	WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1167 
1168 	if (!(rt->rt6i_flags&RTF_CACHE)) {
1169 		struct fib6_node *pn = fn;
1170 #ifdef CONFIG_IPV6_SUBTREES
1171 		/* clones of this route might be in another subtree */
1172 		if (rt->rt6i_src.plen) {
1173 			while (!(pn->fn_flags&RTN_ROOT))
1174 				pn = pn->parent;
1175 			pn = pn->parent;
1176 		}
1177 #endif
1178 		fib6_prune_clones(info->nl_net, pn, rt);
1179 	}
1180 
1181 	/*
1182 	 *	Walk the leaf entries looking for ourself
1183 	 */
1184 
1185 	for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->u.dst.rt6_next) {
1186 		if (*rtp == rt) {
1187 			fib6_del_route(fn, rtp, info);
1188 			return 0;
1189 		}
1190 	}
1191 	return -ENOENT;
1192 }
1193 
1194 /*
1195  *	Tree traversal function.
1196  *
1197  *	Certainly, it is not interrupt safe.
1198  *	However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1199  *	It means, that we can modify tree during walking
1200  *	and use this function for garbage collection, clone pruning,
1201  *	cleaning tree when a device goes down etc. etc.
1202  *
1203  *	It guarantees that every node will be traversed,
1204  *	and that it will be traversed only once.
1205  *
1206  *	Callback function w->func may return:
1207  *	0 -> continue walking.
1208  *	positive value -> walking is suspended (used by tree dumps,
1209  *	and probably by gc, if it will be split to several slices)
1210  *	negative value -> terminate walking.
1211  *
1212  *	The function itself returns:
1213  *	0   -> walk is complete.
1214  *	>0  -> walk is incomplete (i.e. suspended)
1215  *	<0  -> walk is terminated by an error.
1216  */
1217 
1218 static int fib6_walk_continue(struct fib6_walker_t *w)
1219 {
1220 	struct fib6_node *fn, *pn;
1221 
1222 	for (;;) {
1223 		fn = w->node;
1224 		if (fn == NULL)
1225 			return 0;
1226 
1227 		if (w->prune && fn != w->root &&
1228 		    fn->fn_flags&RTN_RTINFO && w->state < FWS_C) {
1229 			w->state = FWS_C;
1230 			w->leaf = fn->leaf;
1231 		}
1232 		switch (w->state) {
1233 #ifdef CONFIG_IPV6_SUBTREES
1234 		case FWS_S:
1235 			if (FIB6_SUBTREE(fn)) {
1236 				w->node = FIB6_SUBTREE(fn);
1237 				continue;
1238 			}
1239 			w->state = FWS_L;
1240 #endif
1241 		case FWS_L:
1242 			if (fn->left) {
1243 				w->node = fn->left;
1244 				w->state = FWS_INIT;
1245 				continue;
1246 			}
1247 			w->state = FWS_R;
1248 		case FWS_R:
1249 			if (fn->right) {
1250 				w->node = fn->right;
1251 				w->state = FWS_INIT;
1252 				continue;
1253 			}
1254 			w->state = FWS_C;
1255 			w->leaf = fn->leaf;
1256 		case FWS_C:
1257 			if (w->leaf && fn->fn_flags&RTN_RTINFO) {
1258 				int err = w->func(w);
1259 				if (err)
1260 					return err;
1261 				continue;
1262 			}
1263 			w->state = FWS_U;
1264 		case FWS_U:
1265 			if (fn == w->root)
1266 				return 0;
1267 			pn = fn->parent;
1268 			w->node = pn;
1269 #ifdef CONFIG_IPV6_SUBTREES
1270 			if (FIB6_SUBTREE(pn) == fn) {
1271 				WARN_ON(!(fn->fn_flags & RTN_ROOT));
1272 				w->state = FWS_L;
1273 				continue;
1274 			}
1275 #endif
1276 			if (pn->left == fn) {
1277 				w->state = FWS_R;
1278 				continue;
1279 			}
1280 			if (pn->right == fn) {
1281 				w->state = FWS_C;
1282 				w->leaf = w->node->leaf;
1283 				continue;
1284 			}
1285 #if RT6_DEBUG >= 2
1286 			WARN_ON(1);
1287 #endif
1288 		}
1289 	}
1290 }
1291 
1292 static int fib6_walk(struct fib6_walker_t *w)
1293 {
1294 	int res;
1295 
1296 	w->state = FWS_INIT;
1297 	w->node = w->root;
1298 
1299 	fib6_walker_link(w);
1300 	res = fib6_walk_continue(w);
1301 	if (res <= 0)
1302 		fib6_walker_unlink(w);
1303 	return res;
1304 }
1305 
1306 static int fib6_clean_node(struct fib6_walker_t *w)
1307 {
1308 	int res;
1309 	struct rt6_info *rt;
1310 	struct fib6_cleaner_t *c = container_of(w, struct fib6_cleaner_t, w);
1311 	struct nl_info info = {
1312 		.nl_net = c->net,
1313 	};
1314 
1315 	for (rt = w->leaf; rt; rt = rt->u.dst.rt6_next) {
1316 		res = c->func(rt, c->arg);
1317 		if (res < 0) {
1318 			w->leaf = rt;
1319 			res = fib6_del(rt, &info);
1320 			if (res) {
1321 #if RT6_DEBUG >= 2
1322 				printk(KERN_DEBUG "fib6_clean_node: del failed: rt=%p@%p err=%d\n", rt, rt->rt6i_node, res);
1323 #endif
1324 				continue;
1325 			}
1326 			return 0;
1327 		}
1328 		WARN_ON(res != 0);
1329 	}
1330 	w->leaf = rt;
1331 	return 0;
1332 }
1333 
1334 /*
1335  *	Convenient frontend to tree walker.
1336  *
1337  *	func is called on each route.
1338  *		It may return -1 -> delete this route.
1339  *		              0  -> continue walking
1340  *
1341  *	prune==1 -> only immediate children of node (certainly,
1342  *	ignoring pure split nodes) will be scanned.
1343  */
1344 
1345 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1346 			    int (*func)(struct rt6_info *, void *arg),
1347 			    int prune, void *arg)
1348 {
1349 	struct fib6_cleaner_t c;
1350 
1351 	c.w.root = root;
1352 	c.w.func = fib6_clean_node;
1353 	c.w.prune = prune;
1354 	c.func = func;
1355 	c.arg = arg;
1356 	c.net = net;
1357 
1358 	fib6_walk(&c.w);
1359 }
1360 
1361 void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *arg),
1362 		    int prune, void *arg)
1363 {
1364 	struct fib6_table *table;
1365 	struct hlist_node *node;
1366 	struct hlist_head *head;
1367 	unsigned int h;
1368 
1369 	rcu_read_lock();
1370 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
1371 		head = &net->ipv6.fib_table_hash[h];
1372 		hlist_for_each_entry_rcu(table, node, head, tb6_hlist) {
1373 			write_lock_bh(&table->tb6_lock);
1374 			fib6_clean_tree(net, &table->tb6_root,
1375 					func, prune, arg);
1376 			write_unlock_bh(&table->tb6_lock);
1377 		}
1378 	}
1379 	rcu_read_unlock();
1380 }
1381 
1382 static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1383 {
1384 	if (rt->rt6i_flags & RTF_CACHE) {
1385 		RT6_TRACE("pruning clone %p\n", rt);
1386 		return -1;
1387 	}
1388 
1389 	return 0;
1390 }
1391 
1392 static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
1393 			      struct rt6_info *rt)
1394 {
1395 	fib6_clean_tree(net, fn, fib6_prune_clone, 1, rt);
1396 }
1397 
1398 /*
1399  *	Garbage collection
1400  */
1401 
1402 static struct fib6_gc_args
1403 {
1404 	int			timeout;
1405 	int			more;
1406 } gc_args;
1407 
1408 static int fib6_age(struct rt6_info *rt, void *arg)
1409 {
1410 	unsigned long now = jiffies;
1411 
1412 	/*
1413 	 *	check addrconf expiration here.
1414 	 *	Routes are expired even if they are in use.
1415 	 *
1416 	 *	Also age clones. Note, that clones are aged out
1417 	 *	only if they are not in use now.
1418 	 */
1419 
1420 	if (rt->rt6i_flags&RTF_EXPIRES && rt->rt6i_expires) {
1421 		if (time_after(now, rt->rt6i_expires)) {
1422 			RT6_TRACE("expiring %p\n", rt);
1423 			return -1;
1424 		}
1425 		gc_args.more++;
1426 	} else if (rt->rt6i_flags & RTF_CACHE) {
1427 		if (atomic_read(&rt->u.dst.__refcnt) == 0 &&
1428 		    time_after_eq(now, rt->u.dst.lastuse + gc_args.timeout)) {
1429 			RT6_TRACE("aging clone %p\n", rt);
1430 			return -1;
1431 		} else if ((rt->rt6i_flags & RTF_GATEWAY) &&
1432 			   (!(rt->rt6i_nexthop->flags & NTF_ROUTER))) {
1433 			RT6_TRACE("purging route %p via non-router but gateway\n",
1434 				  rt);
1435 			return -1;
1436 		}
1437 		gc_args.more++;
1438 	}
1439 
1440 	return 0;
1441 }
1442 
1443 static DEFINE_SPINLOCK(fib6_gc_lock);
1444 
1445 void fib6_run_gc(unsigned long expires, struct net *net)
1446 {
1447 	if (expires != ~0UL) {
1448 		spin_lock_bh(&fib6_gc_lock);
1449 		gc_args.timeout = expires ? (int)expires :
1450 			net->ipv6.sysctl.ip6_rt_gc_interval;
1451 	} else {
1452 		if (!spin_trylock_bh(&fib6_gc_lock)) {
1453 			mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
1454 			return;
1455 		}
1456 		gc_args.timeout = net->ipv6.sysctl.ip6_rt_gc_interval;
1457 	}
1458 
1459 	gc_args.more = icmp6_dst_gc();
1460 
1461 	fib6_clean_all(net, fib6_age, 0, NULL);
1462 
1463 	if (gc_args.more)
1464 		mod_timer(&net->ipv6.ip6_fib_timer,
1465 			  round_jiffies(jiffies
1466 					+ net->ipv6.sysctl.ip6_rt_gc_interval));
1467 	else
1468 		del_timer(&net->ipv6.ip6_fib_timer);
1469 	spin_unlock_bh(&fib6_gc_lock);
1470 }
1471 
1472 static void fib6_gc_timer_cb(unsigned long arg)
1473 {
1474 	fib6_run_gc(0, (struct net *)arg);
1475 }
1476 
1477 static int fib6_net_init(struct net *net)
1478 {
1479 	setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
1480 
1481 	net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
1482 	if (!net->ipv6.rt6_stats)
1483 		goto out_timer;
1484 
1485 	net->ipv6.fib_table_hash = kcalloc(FIB_TABLE_HASHSZ,
1486 					   sizeof(*net->ipv6.fib_table_hash),
1487 					   GFP_KERNEL);
1488 	if (!net->ipv6.fib_table_hash)
1489 		goto out_rt6_stats;
1490 
1491 	net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1492 					  GFP_KERNEL);
1493 	if (!net->ipv6.fib6_main_tbl)
1494 		goto out_fib_table_hash;
1495 
1496 	net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1497 	net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1498 	net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1499 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1500 
1501 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1502 	net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
1503 					   GFP_KERNEL);
1504 	if (!net->ipv6.fib6_local_tbl)
1505 		goto out_fib6_main_tbl;
1506 	net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
1507 	net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1508 	net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
1509 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1510 #endif
1511 	fib6_tables_init(net);
1512 
1513 	return 0;
1514 
1515 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1516 out_fib6_main_tbl:
1517 	kfree(net->ipv6.fib6_main_tbl);
1518 #endif
1519 out_fib_table_hash:
1520 	kfree(net->ipv6.fib_table_hash);
1521 out_rt6_stats:
1522 	kfree(net->ipv6.rt6_stats);
1523 out_timer:
1524 	return -ENOMEM;
1525  }
1526 
1527 static void fib6_net_exit(struct net *net)
1528 {
1529 	rt6_ifdown(net, NULL);
1530 	del_timer_sync(&net->ipv6.ip6_fib_timer);
1531 
1532 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1533 	kfree(net->ipv6.fib6_local_tbl);
1534 #endif
1535 	kfree(net->ipv6.fib6_main_tbl);
1536 	kfree(net->ipv6.fib_table_hash);
1537 	kfree(net->ipv6.rt6_stats);
1538 }
1539 
1540 static struct pernet_operations fib6_net_ops = {
1541 	.init = fib6_net_init,
1542 	.exit = fib6_net_exit,
1543 };
1544 
1545 int __init fib6_init(void)
1546 {
1547 	int ret = -ENOMEM;
1548 
1549 	fib6_node_kmem = kmem_cache_create("fib6_nodes",
1550 					   sizeof(struct fib6_node),
1551 					   0, SLAB_HWCACHE_ALIGN,
1552 					   NULL);
1553 	if (!fib6_node_kmem)
1554 		goto out;
1555 
1556 	ret = register_pernet_subsys(&fib6_net_ops);
1557 	if (ret)
1558 		goto out_kmem_cache_create;
1559 
1560 	ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib);
1561 	if (ret)
1562 		goto out_unregister_subsys;
1563 out:
1564 	return ret;
1565 
1566 out_unregister_subsys:
1567 	unregister_pernet_subsys(&fib6_net_ops);
1568 out_kmem_cache_create:
1569 	kmem_cache_destroy(fib6_node_kmem);
1570 	goto out;
1571 }
1572 
1573 void fib6_gc_cleanup(void)
1574 {
1575 	unregister_pernet_subsys(&fib6_net_ops);
1576 	kmem_cache_destroy(fib6_node_kmem);
1577 }
1578