xref: /linux/net/ipv6/ip6_fib.c (revision 2d6ffcca623a9a16df6cdfbe8250b7a5904a5f5e)
1 /*
2  *	Linux INET6 implementation
3  *	Forwarding Information Database
4  *
5  *	Authors:
6  *	Pedro Roque		<roque@di.fc.ul.pt>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *      modify it under the terms of the GNU General Public License
10  *      as published by the Free Software Foundation; either version
11  *      2 of the License, or (at your option) any later version.
12  */
13 
14 /*
15  * 	Changes:
16  * 	Yuji SEKIYA @USAGI:	Support default route on router node;
17  * 				remove ip6_null_entry from the top of
18  * 				routing table.
19  * 	Ville Nuorvala:		Fixed routing subtrees.
20  */
21 #include <linux/errno.h>
22 #include <linux/types.h>
23 #include <linux/net.h>
24 #include <linux/route.h>
25 #include <linux/netdevice.h>
26 #include <linux/in6.h>
27 #include <linux/init.h>
28 #include <linux/list.h>
29 
30 #ifdef 	CONFIG_PROC_FS
31 #include <linux/proc_fs.h>
32 #endif
33 
34 #include <net/ipv6.h>
35 #include <net/ndisc.h>
36 #include <net/addrconf.h>
37 
38 #include <net/ip6_fib.h>
39 #include <net/ip6_route.h>
40 
41 #define RT6_DEBUG 2
42 
43 #if RT6_DEBUG >= 3
44 #define RT6_TRACE(x...) printk(KERN_DEBUG x)
45 #else
46 #define RT6_TRACE(x...) do { ; } while (0)
47 #endif
48 
49 static struct kmem_cache * fib6_node_kmem __read_mostly;
50 
51 enum fib_walk_state_t
52 {
53 #ifdef CONFIG_IPV6_SUBTREES
54 	FWS_S,
55 #endif
56 	FWS_L,
57 	FWS_R,
58 	FWS_C,
59 	FWS_U
60 };
61 
62 struct fib6_cleaner_t
63 {
64 	struct fib6_walker_t w;
65 	struct net *net;
66 	int (*func)(struct rt6_info *, void *arg);
67 	void *arg;
68 };
69 
70 static DEFINE_RWLOCK(fib6_walker_lock);
71 
72 #ifdef CONFIG_IPV6_SUBTREES
73 #define FWS_INIT FWS_S
74 #else
75 #define FWS_INIT FWS_L
76 #endif
77 
78 static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
79 			      struct rt6_info *rt);
80 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
81 static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
82 static int fib6_walk(struct fib6_walker_t *w);
83 static int fib6_walk_continue(struct fib6_walker_t *w);
84 
85 /*
86  *	A routing update causes an increase of the serial number on the
87  *	affected subtree. This allows for cached routes to be asynchronously
88  *	tested when modifications are made to the destination cache as a
89  *	result of redirects, path MTU changes, etc.
90  */
91 
92 static __u32 rt_sernum;
93 
94 static void fib6_gc_timer_cb(unsigned long arg);
95 
96 static struct fib6_walker_t fib6_walker_list = {
97 	.prev	= &fib6_walker_list,
98 	.next	= &fib6_walker_list,
99 };
100 
101 #define FOR_WALKERS(w) for ((w)=fib6_walker_list.next; (w) != &fib6_walker_list; (w)=(w)->next)
102 
103 static inline void fib6_walker_link(struct fib6_walker_t *w)
104 {
105 	write_lock_bh(&fib6_walker_lock);
106 	w->next = fib6_walker_list.next;
107 	w->prev = &fib6_walker_list;
108 	w->next->prev = w;
109 	w->prev->next = w;
110 	write_unlock_bh(&fib6_walker_lock);
111 }
112 
113 static inline void fib6_walker_unlink(struct fib6_walker_t *w)
114 {
115 	write_lock_bh(&fib6_walker_lock);
116 	w->next->prev = w->prev;
117 	w->prev->next = w->next;
118 	w->prev = w->next = w;
119 	write_unlock_bh(&fib6_walker_lock);
120 }
121 static __inline__ u32 fib6_new_sernum(void)
122 {
123 	u32 n = ++rt_sernum;
124 	if ((__s32)n <= 0)
125 		rt_sernum = n = 1;
126 	return n;
127 }
128 
129 /*
130  *	Auxiliary address test functions for the radix tree.
131  *
132  *	These assume a 32bit processor (although it will work on
133  *	64bit processors)
134  */
135 
136 /*
137  *	test bit
138  */
139 
140 static __inline__ __be32 addr_bit_set(void *token, int fn_bit)
141 {
142 	__be32 *addr = token;
143 
144 	return htonl(1 << ((~fn_bit)&0x1F)) & addr[fn_bit>>5];
145 }
146 
147 static __inline__ struct fib6_node * node_alloc(void)
148 {
149 	struct fib6_node *fn;
150 
151 	fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
152 
153 	return fn;
154 }
155 
156 static __inline__ void node_free(struct fib6_node * fn)
157 {
158 	kmem_cache_free(fib6_node_kmem, fn);
159 }
160 
161 static __inline__ void rt6_release(struct rt6_info *rt)
162 {
163 	if (atomic_dec_and_test(&rt->rt6i_ref))
164 		dst_free(&rt->u.dst);
165 }
166 
167 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
168 #define FIB_TABLE_HASHSZ 256
169 #else
170 #define FIB_TABLE_HASHSZ 1
171 #endif
172 
173 static void fib6_link_table(struct net *net, struct fib6_table *tb)
174 {
175 	unsigned int h;
176 
177 	/*
178 	 * Initialize table lock at a single place to give lockdep a key,
179 	 * tables aren't visible prior to being linked to the list.
180 	 */
181 	rwlock_init(&tb->tb6_lock);
182 
183 	h = tb->tb6_id & (FIB_TABLE_HASHSZ - 1);
184 
185 	/*
186 	 * No protection necessary, this is the only list mutatation
187 	 * operation, tables never disappear once they exist.
188 	 */
189 	hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
190 }
191 
192 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
193 
194 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
195 {
196 	struct fib6_table *table;
197 
198 	table = kzalloc(sizeof(*table), GFP_ATOMIC);
199 	if (table != NULL) {
200 		table->tb6_id = id;
201 		table->tb6_root.leaf = net->ipv6.ip6_null_entry;
202 		table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
203 	}
204 
205 	return table;
206 }
207 
208 struct fib6_table *fib6_new_table(struct net *net, u32 id)
209 {
210 	struct fib6_table *tb;
211 
212 	if (id == 0)
213 		id = RT6_TABLE_MAIN;
214 	tb = fib6_get_table(net, id);
215 	if (tb)
216 		return tb;
217 
218 	tb = fib6_alloc_table(net, id);
219 	if (tb != NULL)
220 		fib6_link_table(net, tb);
221 
222 	return tb;
223 }
224 
225 struct fib6_table *fib6_get_table(struct net *net, u32 id)
226 {
227 	struct fib6_table *tb;
228 	struct hlist_head *head;
229 	struct hlist_node *node;
230 	unsigned int h;
231 
232 	if (id == 0)
233 		id = RT6_TABLE_MAIN;
234 	h = id & (FIB_TABLE_HASHSZ - 1);
235 	rcu_read_lock();
236 	head = &net->ipv6.fib_table_hash[h];
237 	hlist_for_each_entry_rcu(tb, node, head, tb6_hlist) {
238 		if (tb->tb6_id == id) {
239 			rcu_read_unlock();
240 			return tb;
241 		}
242 	}
243 	rcu_read_unlock();
244 
245 	return NULL;
246 }
247 
248 static void fib6_tables_init(struct net *net)
249 {
250 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
251 	fib6_link_table(net, net->ipv6.fib6_local_tbl);
252 }
253 #else
254 
255 struct fib6_table *fib6_new_table(struct net *net, u32 id)
256 {
257 	return fib6_get_table(net, id);
258 }
259 
260 struct fib6_table *fib6_get_table(struct net *net, u32 id)
261 {
262 	  return net->ipv6.fib6_main_tbl;
263 }
264 
265 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi *fl,
266 				   int flags, pol_lookup_t lookup)
267 {
268 	return (struct dst_entry *) lookup(net, net->ipv6.fib6_main_tbl, fl, flags);
269 }
270 
271 static void fib6_tables_init(struct net *net)
272 {
273 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
274 }
275 
276 #endif
277 
278 static int fib6_dump_node(struct fib6_walker_t *w)
279 {
280 	int res;
281 	struct rt6_info *rt;
282 
283 	for (rt = w->leaf; rt; rt = rt->u.dst.rt6_next) {
284 		res = rt6_dump_route(rt, w->args);
285 		if (res < 0) {
286 			/* Frame is full, suspend walking */
287 			w->leaf = rt;
288 			return 1;
289 		}
290 		BUG_TRAP(res!=0);
291 	}
292 	w->leaf = NULL;
293 	return 0;
294 }
295 
296 static void fib6_dump_end(struct netlink_callback *cb)
297 {
298 	struct fib6_walker_t *w = (void*)cb->args[2];
299 
300 	if (w) {
301 		cb->args[2] = 0;
302 		kfree(w);
303 	}
304 	cb->done = (void*)cb->args[3];
305 	cb->args[1] = 3;
306 }
307 
308 static int fib6_dump_done(struct netlink_callback *cb)
309 {
310 	fib6_dump_end(cb);
311 	return cb->done ? cb->done(cb) : 0;
312 }
313 
314 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
315 			   struct netlink_callback *cb)
316 {
317 	struct fib6_walker_t *w;
318 	int res;
319 
320 	w = (void *)cb->args[2];
321 	w->root = &table->tb6_root;
322 
323 	if (cb->args[4] == 0) {
324 		read_lock_bh(&table->tb6_lock);
325 		res = fib6_walk(w);
326 		read_unlock_bh(&table->tb6_lock);
327 		if (res > 0)
328 			cb->args[4] = 1;
329 	} else {
330 		read_lock_bh(&table->tb6_lock);
331 		res = fib6_walk_continue(w);
332 		read_unlock_bh(&table->tb6_lock);
333 		if (res != 0) {
334 			if (res < 0)
335 				fib6_walker_unlink(w);
336 			goto end;
337 		}
338 		fib6_walker_unlink(w);
339 		cb->args[4] = 0;
340 	}
341 end:
342 	return res;
343 }
344 
345 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
346 {
347 	struct net *net = sock_net(skb->sk);
348 	unsigned int h, s_h;
349 	unsigned int e = 0, s_e;
350 	struct rt6_rtnl_dump_arg arg;
351 	struct fib6_walker_t *w;
352 	struct fib6_table *tb;
353 	struct hlist_node *node;
354 	struct hlist_head *head;
355 	int res = 0;
356 
357 	s_h = cb->args[0];
358 	s_e = cb->args[1];
359 
360 	w = (void *)cb->args[2];
361 	if (w == NULL) {
362 		/* New dump:
363 		 *
364 		 * 1. hook callback destructor.
365 		 */
366 		cb->args[3] = (long)cb->done;
367 		cb->done = fib6_dump_done;
368 
369 		/*
370 		 * 2. allocate and initialize walker.
371 		 */
372 		w = kzalloc(sizeof(*w), GFP_ATOMIC);
373 		if (w == NULL)
374 			return -ENOMEM;
375 		w->func = fib6_dump_node;
376 		cb->args[2] = (long)w;
377 	}
378 
379 	arg.skb = skb;
380 	arg.cb = cb;
381 	w->args = &arg;
382 
383 	for (h = s_h; h < FIB_TABLE_HASHSZ; h++, s_e = 0) {
384 		e = 0;
385 		head = &net->ipv6.fib_table_hash[h];
386 		hlist_for_each_entry(tb, node, head, tb6_hlist) {
387 			if (e < s_e)
388 				goto next;
389 			res = fib6_dump_table(tb, skb, cb);
390 			if (res != 0)
391 				goto out;
392 next:
393 			e++;
394 		}
395 	}
396 out:
397 	cb->args[1] = e;
398 	cb->args[0] = h;
399 
400 	res = res < 0 ? res : skb->len;
401 	if (res <= 0)
402 		fib6_dump_end(cb);
403 	return res;
404 }
405 
406 /*
407  *	Routing Table
408  *
409  *	return the appropriate node for a routing tree "add" operation
410  *	by either creating and inserting or by returning an existing
411  *	node.
412  */
413 
414 static struct fib6_node * fib6_add_1(struct fib6_node *root, void *addr,
415 				     int addrlen, int plen,
416 				     int offset)
417 {
418 	struct fib6_node *fn, *in, *ln;
419 	struct fib6_node *pn = NULL;
420 	struct rt6key *key;
421 	int	bit;
422 	__be32	dir = 0;
423 	__u32	sernum = fib6_new_sernum();
424 
425 	RT6_TRACE("fib6_add_1\n");
426 
427 	/* insert node in tree */
428 
429 	fn = root;
430 
431 	do {
432 		key = (struct rt6key *)((u8 *)fn->leaf + offset);
433 
434 		/*
435 		 *	Prefix match
436 		 */
437 		if (plen < fn->fn_bit ||
438 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
439 			goto insert_above;
440 
441 		/*
442 		 *	Exact match ?
443 		 */
444 
445 		if (plen == fn->fn_bit) {
446 			/* clean up an intermediate node */
447 			if ((fn->fn_flags & RTN_RTINFO) == 0) {
448 				rt6_release(fn->leaf);
449 				fn->leaf = NULL;
450 			}
451 
452 			fn->fn_sernum = sernum;
453 
454 			return fn;
455 		}
456 
457 		/*
458 		 *	We have more bits to go
459 		 */
460 
461 		/* Try to walk down on tree. */
462 		fn->fn_sernum = sernum;
463 		dir = addr_bit_set(addr, fn->fn_bit);
464 		pn = fn;
465 		fn = dir ? fn->right: fn->left;
466 	} while (fn);
467 
468 	/*
469 	 *	We walked to the bottom of tree.
470 	 *	Create new leaf node without children.
471 	 */
472 
473 	ln = node_alloc();
474 
475 	if (ln == NULL)
476 		return NULL;
477 	ln->fn_bit = plen;
478 
479 	ln->parent = pn;
480 	ln->fn_sernum = sernum;
481 
482 	if (dir)
483 		pn->right = ln;
484 	else
485 		pn->left  = ln;
486 
487 	return ln;
488 
489 
490 insert_above:
491 	/*
492 	 * split since we don't have a common prefix anymore or
493 	 * we have a less significant route.
494 	 * we've to insert an intermediate node on the list
495 	 * this new node will point to the one we need to create
496 	 * and the current
497 	 */
498 
499 	pn = fn->parent;
500 
501 	/* find 1st bit in difference between the 2 addrs.
502 
503 	   See comment in __ipv6_addr_diff: bit may be an invalid value,
504 	   but if it is >= plen, the value is ignored in any case.
505 	 */
506 
507 	bit = __ipv6_addr_diff(addr, &key->addr, addrlen);
508 
509 	/*
510 	 *		(intermediate)[in]
511 	 *	          /	   \
512 	 *	(new leaf node)[ln] (old node)[fn]
513 	 */
514 	if (plen > bit) {
515 		in = node_alloc();
516 		ln = node_alloc();
517 
518 		if (in == NULL || ln == NULL) {
519 			if (in)
520 				node_free(in);
521 			if (ln)
522 				node_free(ln);
523 			return NULL;
524 		}
525 
526 		/*
527 		 * new intermediate node.
528 		 * RTN_RTINFO will
529 		 * be off since that an address that chooses one of
530 		 * the branches would not match less specific routes
531 		 * in the other branch
532 		 */
533 
534 		in->fn_bit = bit;
535 
536 		in->parent = pn;
537 		in->leaf = fn->leaf;
538 		atomic_inc(&in->leaf->rt6i_ref);
539 
540 		in->fn_sernum = sernum;
541 
542 		/* update parent pointer */
543 		if (dir)
544 			pn->right = in;
545 		else
546 			pn->left  = in;
547 
548 		ln->fn_bit = plen;
549 
550 		ln->parent = in;
551 		fn->parent = in;
552 
553 		ln->fn_sernum = sernum;
554 
555 		if (addr_bit_set(addr, bit)) {
556 			in->right = ln;
557 			in->left  = fn;
558 		} else {
559 			in->left  = ln;
560 			in->right = fn;
561 		}
562 	} else { /* plen <= bit */
563 
564 		/*
565 		 *		(new leaf node)[ln]
566 		 *	          /	   \
567 		 *	     (old node)[fn] NULL
568 		 */
569 
570 		ln = node_alloc();
571 
572 		if (ln == NULL)
573 			return NULL;
574 
575 		ln->fn_bit = plen;
576 
577 		ln->parent = pn;
578 
579 		ln->fn_sernum = sernum;
580 
581 		if (dir)
582 			pn->right = ln;
583 		else
584 			pn->left  = ln;
585 
586 		if (addr_bit_set(&key->addr, plen))
587 			ln->right = fn;
588 		else
589 			ln->left  = fn;
590 
591 		fn->parent = ln;
592 	}
593 	return ln;
594 }
595 
596 /*
597  *	Insert routing information in a node.
598  */
599 
600 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
601 			    struct nl_info *info)
602 {
603 	struct rt6_info *iter = NULL;
604 	struct rt6_info **ins;
605 
606 	ins = &fn->leaf;
607 
608 	for (iter = fn->leaf; iter; iter=iter->u.dst.rt6_next) {
609 		/*
610 		 *	Search for duplicates
611 		 */
612 
613 		if (iter->rt6i_metric == rt->rt6i_metric) {
614 			/*
615 			 *	Same priority level
616 			 */
617 
618 			if (iter->rt6i_dev == rt->rt6i_dev &&
619 			    iter->rt6i_idev == rt->rt6i_idev &&
620 			    ipv6_addr_equal(&iter->rt6i_gateway,
621 					    &rt->rt6i_gateway)) {
622 				if (!(iter->rt6i_flags&RTF_EXPIRES))
623 					return -EEXIST;
624 				iter->rt6i_expires = rt->rt6i_expires;
625 				if (!(rt->rt6i_flags&RTF_EXPIRES)) {
626 					iter->rt6i_flags &= ~RTF_EXPIRES;
627 					iter->rt6i_expires = 0;
628 				}
629 				return -EEXIST;
630 			}
631 		}
632 
633 		if (iter->rt6i_metric > rt->rt6i_metric)
634 			break;
635 
636 		ins = &iter->u.dst.rt6_next;
637 	}
638 
639 	/* Reset round-robin state, if necessary */
640 	if (ins == &fn->leaf)
641 		fn->rr_ptr = NULL;
642 
643 	/*
644 	 *	insert node
645 	 */
646 
647 	rt->u.dst.rt6_next = iter;
648 	*ins = rt;
649 	rt->rt6i_node = fn;
650 	atomic_inc(&rt->rt6i_ref);
651 	inet6_rt_notify(RTM_NEWROUTE, rt, info);
652 	info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
653 
654 	if ((fn->fn_flags & RTN_RTINFO) == 0) {
655 		info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
656 		fn->fn_flags |= RTN_RTINFO;
657 	}
658 
659 	return 0;
660 }
661 
662 static __inline__ void fib6_start_gc(struct net *net, struct rt6_info *rt)
663 {
664 	if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
665 	    (rt->rt6i_flags & (RTF_EXPIRES|RTF_CACHE)))
666 		mod_timer(&net->ipv6.ip6_fib_timer,
667 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
668 }
669 
670 void fib6_force_start_gc(struct net *net)
671 {
672 	if (!timer_pending(&net->ipv6.ip6_fib_timer))
673 		mod_timer(&net->ipv6.ip6_fib_timer,
674 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
675 }
676 
677 /*
678  *	Add routing information to the routing tree.
679  *	<destination addr>/<source addr>
680  *	with source addr info in sub-trees
681  */
682 
683 int fib6_add(struct fib6_node *root, struct rt6_info *rt, struct nl_info *info)
684 {
685 	struct fib6_node *fn, *pn = NULL;
686 	int err = -ENOMEM;
687 
688 	fn = fib6_add_1(root, &rt->rt6i_dst.addr, sizeof(struct in6_addr),
689 			rt->rt6i_dst.plen, offsetof(struct rt6_info, rt6i_dst));
690 
691 	if (fn == NULL)
692 		goto out;
693 
694 	pn = fn;
695 
696 #ifdef CONFIG_IPV6_SUBTREES
697 	if (rt->rt6i_src.plen) {
698 		struct fib6_node *sn;
699 
700 		if (fn->subtree == NULL) {
701 			struct fib6_node *sfn;
702 
703 			/*
704 			 * Create subtree.
705 			 *
706 			 *		fn[main tree]
707 			 *		|
708 			 *		sfn[subtree root]
709 			 *		   \
710 			 *		    sn[new leaf node]
711 			 */
712 
713 			/* Create subtree root node */
714 			sfn = node_alloc();
715 			if (sfn == NULL)
716 				goto st_failure;
717 
718 			sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
719 			atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
720 			sfn->fn_flags = RTN_ROOT;
721 			sfn->fn_sernum = fib6_new_sernum();
722 
723 			/* Now add the first leaf node to new subtree */
724 
725 			sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
726 					sizeof(struct in6_addr), rt->rt6i_src.plen,
727 					offsetof(struct rt6_info, rt6i_src));
728 
729 			if (sn == NULL) {
730 				/* If it is failed, discard just allocated
731 				   root, and then (in st_failure) stale node
732 				   in main tree.
733 				 */
734 				node_free(sfn);
735 				goto st_failure;
736 			}
737 
738 			/* Now link new subtree to main tree */
739 			sfn->parent = fn;
740 			fn->subtree = sfn;
741 		} else {
742 			sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
743 					sizeof(struct in6_addr), rt->rt6i_src.plen,
744 					offsetof(struct rt6_info, rt6i_src));
745 
746 			if (sn == NULL)
747 				goto st_failure;
748 		}
749 
750 		if (fn->leaf == NULL) {
751 			fn->leaf = rt;
752 			atomic_inc(&rt->rt6i_ref);
753 		}
754 		fn = sn;
755 	}
756 #endif
757 
758 	err = fib6_add_rt2node(fn, rt, info);
759 
760 	if (err == 0) {
761 		fib6_start_gc(info->nl_net, rt);
762 		if (!(rt->rt6i_flags&RTF_CACHE))
763 			fib6_prune_clones(info->nl_net, pn, rt);
764 	}
765 
766 out:
767 	if (err) {
768 #ifdef CONFIG_IPV6_SUBTREES
769 		/*
770 		 * If fib6_add_1 has cleared the old leaf pointer in the
771 		 * super-tree leaf node we have to find a new one for it.
772 		 */
773 		if (pn != fn && pn->leaf == rt) {
774 			pn->leaf = NULL;
775 			atomic_dec(&rt->rt6i_ref);
776 		}
777 		if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
778 			pn->leaf = fib6_find_prefix(info->nl_net, pn);
779 #if RT6_DEBUG >= 2
780 			if (!pn->leaf) {
781 				BUG_TRAP(pn->leaf != NULL);
782 				pn->leaf = info->nl_net->ipv6.ip6_null_entry;
783 			}
784 #endif
785 			atomic_inc(&pn->leaf->rt6i_ref);
786 		}
787 #endif
788 		dst_free(&rt->u.dst);
789 	}
790 	return err;
791 
792 #ifdef CONFIG_IPV6_SUBTREES
793 	/* Subtree creation failed, probably main tree node
794 	   is orphan. If it is, shoot it.
795 	 */
796 st_failure:
797 	if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
798 		fib6_repair_tree(info->nl_net, fn);
799 	dst_free(&rt->u.dst);
800 	return err;
801 #endif
802 }
803 
804 /*
805  *	Routing tree lookup
806  *
807  */
808 
809 struct lookup_args {
810 	int		offset;		/* key offset on rt6_info	*/
811 	struct in6_addr	*addr;		/* search key			*/
812 };
813 
814 static struct fib6_node * fib6_lookup_1(struct fib6_node *root,
815 					struct lookup_args *args)
816 {
817 	struct fib6_node *fn;
818 	__be32 dir;
819 
820 	if (unlikely(args->offset == 0))
821 		return NULL;
822 
823 	/*
824 	 *	Descend on a tree
825 	 */
826 
827 	fn = root;
828 
829 	for (;;) {
830 		struct fib6_node *next;
831 
832 		dir = addr_bit_set(args->addr, fn->fn_bit);
833 
834 		next = dir ? fn->right : fn->left;
835 
836 		if (next) {
837 			fn = next;
838 			continue;
839 		}
840 
841 		break;
842 	}
843 
844 	while(fn) {
845 		if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
846 			struct rt6key *key;
847 
848 			key = (struct rt6key *) ((u8 *) fn->leaf +
849 						 args->offset);
850 
851 			if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
852 #ifdef CONFIG_IPV6_SUBTREES
853 				if (fn->subtree)
854 					fn = fib6_lookup_1(fn->subtree, args + 1);
855 #endif
856 				if (!fn || fn->fn_flags & RTN_RTINFO)
857 					return fn;
858 			}
859 		}
860 
861 		if (fn->fn_flags & RTN_ROOT)
862 			break;
863 
864 		fn = fn->parent;
865 	}
866 
867 	return NULL;
868 }
869 
870 struct fib6_node * fib6_lookup(struct fib6_node *root, struct in6_addr *daddr,
871 			       struct in6_addr *saddr)
872 {
873 	struct fib6_node *fn;
874 	struct lookup_args args[] = {
875 		{
876 			.offset = offsetof(struct rt6_info, rt6i_dst),
877 			.addr = daddr,
878 		},
879 #ifdef CONFIG_IPV6_SUBTREES
880 		{
881 			.offset = offsetof(struct rt6_info, rt6i_src),
882 			.addr = saddr,
883 		},
884 #endif
885 		{
886 			.offset = 0,	/* sentinel */
887 		}
888 	};
889 
890 	fn = fib6_lookup_1(root, daddr ? args : args + 1);
891 
892 	if (fn == NULL || fn->fn_flags & RTN_TL_ROOT)
893 		fn = root;
894 
895 	return fn;
896 }
897 
898 /*
899  *	Get node with specified destination prefix (and source prefix,
900  *	if subtrees are used)
901  */
902 
903 
904 static struct fib6_node * fib6_locate_1(struct fib6_node *root,
905 					struct in6_addr *addr,
906 					int plen, int offset)
907 {
908 	struct fib6_node *fn;
909 
910 	for (fn = root; fn ; ) {
911 		struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
912 
913 		/*
914 		 *	Prefix match
915 		 */
916 		if (plen < fn->fn_bit ||
917 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
918 			return NULL;
919 
920 		if (plen == fn->fn_bit)
921 			return fn;
922 
923 		/*
924 		 *	We have more bits to go
925 		 */
926 		if (addr_bit_set(addr, fn->fn_bit))
927 			fn = fn->right;
928 		else
929 			fn = fn->left;
930 	}
931 	return NULL;
932 }
933 
934 struct fib6_node * fib6_locate(struct fib6_node *root,
935 			       struct in6_addr *daddr, int dst_len,
936 			       struct in6_addr *saddr, int src_len)
937 {
938 	struct fib6_node *fn;
939 
940 	fn = fib6_locate_1(root, daddr, dst_len,
941 			   offsetof(struct rt6_info, rt6i_dst));
942 
943 #ifdef CONFIG_IPV6_SUBTREES
944 	if (src_len) {
945 		BUG_TRAP(saddr!=NULL);
946 		if (fn && fn->subtree)
947 			fn = fib6_locate_1(fn->subtree, saddr, src_len,
948 					   offsetof(struct rt6_info, rt6i_src));
949 	}
950 #endif
951 
952 	if (fn && fn->fn_flags&RTN_RTINFO)
953 		return fn;
954 
955 	return NULL;
956 }
957 
958 
959 /*
960  *	Deletion
961  *
962  */
963 
964 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
965 {
966 	if (fn->fn_flags&RTN_ROOT)
967 		return net->ipv6.ip6_null_entry;
968 
969 	while(fn) {
970 		if(fn->left)
971 			return fn->left->leaf;
972 
973 		if(fn->right)
974 			return fn->right->leaf;
975 
976 		fn = FIB6_SUBTREE(fn);
977 	}
978 	return NULL;
979 }
980 
981 /*
982  *	Called to trim the tree of intermediate nodes when possible. "fn"
983  *	is the node we want to try and remove.
984  */
985 
986 static struct fib6_node *fib6_repair_tree(struct net *net,
987 					   struct fib6_node *fn)
988 {
989 	int children;
990 	int nstate;
991 	struct fib6_node *child, *pn;
992 	struct fib6_walker_t *w;
993 	int iter = 0;
994 
995 	for (;;) {
996 		RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
997 		iter++;
998 
999 		BUG_TRAP(!(fn->fn_flags&RTN_RTINFO));
1000 		BUG_TRAP(!(fn->fn_flags&RTN_TL_ROOT));
1001 		BUG_TRAP(fn->leaf==NULL);
1002 
1003 		children = 0;
1004 		child = NULL;
1005 		if (fn->right) child = fn->right, children |= 1;
1006 		if (fn->left) child = fn->left, children |= 2;
1007 
1008 		if (children == 3 || FIB6_SUBTREE(fn)
1009 #ifdef CONFIG_IPV6_SUBTREES
1010 		    /* Subtree root (i.e. fn) may have one child */
1011 		    || (children && fn->fn_flags&RTN_ROOT)
1012 #endif
1013 		    ) {
1014 			fn->leaf = fib6_find_prefix(net, fn);
1015 #if RT6_DEBUG >= 2
1016 			if (fn->leaf==NULL) {
1017 				BUG_TRAP(fn->leaf);
1018 				fn->leaf = net->ipv6.ip6_null_entry;
1019 			}
1020 #endif
1021 			atomic_inc(&fn->leaf->rt6i_ref);
1022 			return fn->parent;
1023 		}
1024 
1025 		pn = fn->parent;
1026 #ifdef CONFIG_IPV6_SUBTREES
1027 		if (FIB6_SUBTREE(pn) == fn) {
1028 			BUG_TRAP(fn->fn_flags&RTN_ROOT);
1029 			FIB6_SUBTREE(pn) = NULL;
1030 			nstate = FWS_L;
1031 		} else {
1032 			BUG_TRAP(!(fn->fn_flags&RTN_ROOT));
1033 #endif
1034 			if (pn->right == fn) pn->right = child;
1035 			else if (pn->left == fn) pn->left = child;
1036 #if RT6_DEBUG >= 2
1037 			else BUG_TRAP(0);
1038 #endif
1039 			if (child)
1040 				child->parent = pn;
1041 			nstate = FWS_R;
1042 #ifdef CONFIG_IPV6_SUBTREES
1043 		}
1044 #endif
1045 
1046 		read_lock(&fib6_walker_lock);
1047 		FOR_WALKERS(w) {
1048 			if (child == NULL) {
1049 				if (w->root == fn) {
1050 					w->root = w->node = NULL;
1051 					RT6_TRACE("W %p adjusted by delroot 1\n", w);
1052 				} else if (w->node == fn) {
1053 					RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1054 					w->node = pn;
1055 					w->state = nstate;
1056 				}
1057 			} else {
1058 				if (w->root == fn) {
1059 					w->root = child;
1060 					RT6_TRACE("W %p adjusted by delroot 2\n", w);
1061 				}
1062 				if (w->node == fn) {
1063 					w->node = child;
1064 					if (children&2) {
1065 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1066 						w->state = w->state>=FWS_R ? FWS_U : FWS_INIT;
1067 					} else {
1068 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1069 						w->state = w->state>=FWS_C ? FWS_U : FWS_INIT;
1070 					}
1071 				}
1072 			}
1073 		}
1074 		read_unlock(&fib6_walker_lock);
1075 
1076 		node_free(fn);
1077 		if (pn->fn_flags&RTN_RTINFO || FIB6_SUBTREE(pn))
1078 			return pn;
1079 
1080 		rt6_release(pn->leaf);
1081 		pn->leaf = NULL;
1082 		fn = pn;
1083 	}
1084 }
1085 
1086 static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1087 			   struct nl_info *info)
1088 {
1089 	struct fib6_walker_t *w;
1090 	struct rt6_info *rt = *rtp;
1091 	struct net *net = info->nl_net;
1092 
1093 	RT6_TRACE("fib6_del_route\n");
1094 
1095 	/* Unlink it */
1096 	*rtp = rt->u.dst.rt6_next;
1097 	rt->rt6i_node = NULL;
1098 	net->ipv6.rt6_stats->fib_rt_entries--;
1099 	net->ipv6.rt6_stats->fib_discarded_routes++;
1100 
1101 	/* Reset round-robin state, if necessary */
1102 	if (fn->rr_ptr == rt)
1103 		fn->rr_ptr = NULL;
1104 
1105 	/* Adjust walkers */
1106 	read_lock(&fib6_walker_lock);
1107 	FOR_WALKERS(w) {
1108 		if (w->state == FWS_C && w->leaf == rt) {
1109 			RT6_TRACE("walker %p adjusted by delroute\n", w);
1110 			w->leaf = rt->u.dst.rt6_next;
1111 			if (w->leaf == NULL)
1112 				w->state = FWS_U;
1113 		}
1114 	}
1115 	read_unlock(&fib6_walker_lock);
1116 
1117 	rt->u.dst.rt6_next = NULL;
1118 
1119 	/* If it was last route, expunge its radix tree node */
1120 	if (fn->leaf == NULL) {
1121 		fn->fn_flags &= ~RTN_RTINFO;
1122 		net->ipv6.rt6_stats->fib_route_nodes--;
1123 		fn = fib6_repair_tree(net, fn);
1124 	}
1125 
1126 	if (atomic_read(&rt->rt6i_ref) != 1) {
1127 		/* This route is used as dummy address holder in some split
1128 		 * nodes. It is not leaked, but it still holds other resources,
1129 		 * which must be released in time. So, scan ascendant nodes
1130 		 * and replace dummy references to this route with references
1131 		 * to still alive ones.
1132 		 */
1133 		while (fn) {
1134 			if (!(fn->fn_flags&RTN_RTINFO) && fn->leaf == rt) {
1135 				fn->leaf = fib6_find_prefix(net, fn);
1136 				atomic_inc(&fn->leaf->rt6i_ref);
1137 				rt6_release(rt);
1138 			}
1139 			fn = fn->parent;
1140 		}
1141 		/* No more references are possible at this point. */
1142 		BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
1143 	}
1144 
1145 	inet6_rt_notify(RTM_DELROUTE, rt, info);
1146 	rt6_release(rt);
1147 }
1148 
1149 int fib6_del(struct rt6_info *rt, struct nl_info *info)
1150 {
1151 	struct net *net = info->nl_net;
1152 	struct fib6_node *fn = rt->rt6i_node;
1153 	struct rt6_info **rtp;
1154 
1155 #if RT6_DEBUG >= 2
1156 	if (rt->u.dst.obsolete>0) {
1157 		BUG_TRAP(fn==NULL);
1158 		return -ENOENT;
1159 	}
1160 #endif
1161 	if (fn == NULL || rt == net->ipv6.ip6_null_entry)
1162 		return -ENOENT;
1163 
1164 	BUG_TRAP(fn->fn_flags&RTN_RTINFO);
1165 
1166 	if (!(rt->rt6i_flags&RTF_CACHE)) {
1167 		struct fib6_node *pn = fn;
1168 #ifdef CONFIG_IPV6_SUBTREES
1169 		/* clones of this route might be in another subtree */
1170 		if (rt->rt6i_src.plen) {
1171 			while (!(pn->fn_flags&RTN_ROOT))
1172 				pn = pn->parent;
1173 			pn = pn->parent;
1174 		}
1175 #endif
1176 		fib6_prune_clones(info->nl_net, pn, rt);
1177 	}
1178 
1179 	/*
1180 	 *	Walk the leaf entries looking for ourself
1181 	 */
1182 
1183 	for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->u.dst.rt6_next) {
1184 		if (*rtp == rt) {
1185 			fib6_del_route(fn, rtp, info);
1186 			return 0;
1187 		}
1188 	}
1189 	return -ENOENT;
1190 }
1191 
1192 /*
1193  *	Tree traversal function.
1194  *
1195  *	Certainly, it is not interrupt safe.
1196  *	However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1197  *	It means, that we can modify tree during walking
1198  *	and use this function for garbage collection, clone pruning,
1199  *	cleaning tree when a device goes down etc. etc.
1200  *
1201  *	It guarantees that every node will be traversed,
1202  *	and that it will be traversed only once.
1203  *
1204  *	Callback function w->func may return:
1205  *	0 -> continue walking.
1206  *	positive value -> walking is suspended (used by tree dumps,
1207  *	and probably by gc, if it will be split to several slices)
1208  *	negative value -> terminate walking.
1209  *
1210  *	The function itself returns:
1211  *	0   -> walk is complete.
1212  *	>0  -> walk is incomplete (i.e. suspended)
1213  *	<0  -> walk is terminated by an error.
1214  */
1215 
1216 static int fib6_walk_continue(struct fib6_walker_t *w)
1217 {
1218 	struct fib6_node *fn, *pn;
1219 
1220 	for (;;) {
1221 		fn = w->node;
1222 		if (fn == NULL)
1223 			return 0;
1224 
1225 		if (w->prune && fn != w->root &&
1226 		    fn->fn_flags&RTN_RTINFO && w->state < FWS_C) {
1227 			w->state = FWS_C;
1228 			w->leaf = fn->leaf;
1229 		}
1230 		switch (w->state) {
1231 #ifdef CONFIG_IPV6_SUBTREES
1232 		case FWS_S:
1233 			if (FIB6_SUBTREE(fn)) {
1234 				w->node = FIB6_SUBTREE(fn);
1235 				continue;
1236 			}
1237 			w->state = FWS_L;
1238 #endif
1239 		case FWS_L:
1240 			if (fn->left) {
1241 				w->node = fn->left;
1242 				w->state = FWS_INIT;
1243 				continue;
1244 			}
1245 			w->state = FWS_R;
1246 		case FWS_R:
1247 			if (fn->right) {
1248 				w->node = fn->right;
1249 				w->state = FWS_INIT;
1250 				continue;
1251 			}
1252 			w->state = FWS_C;
1253 			w->leaf = fn->leaf;
1254 		case FWS_C:
1255 			if (w->leaf && fn->fn_flags&RTN_RTINFO) {
1256 				int err = w->func(w);
1257 				if (err)
1258 					return err;
1259 				continue;
1260 			}
1261 			w->state = FWS_U;
1262 		case FWS_U:
1263 			if (fn == w->root)
1264 				return 0;
1265 			pn = fn->parent;
1266 			w->node = pn;
1267 #ifdef CONFIG_IPV6_SUBTREES
1268 			if (FIB6_SUBTREE(pn) == fn) {
1269 				BUG_TRAP(fn->fn_flags&RTN_ROOT);
1270 				w->state = FWS_L;
1271 				continue;
1272 			}
1273 #endif
1274 			if (pn->left == fn) {
1275 				w->state = FWS_R;
1276 				continue;
1277 			}
1278 			if (pn->right == fn) {
1279 				w->state = FWS_C;
1280 				w->leaf = w->node->leaf;
1281 				continue;
1282 			}
1283 #if RT6_DEBUG >= 2
1284 			BUG_TRAP(0);
1285 #endif
1286 		}
1287 	}
1288 }
1289 
1290 static int fib6_walk(struct fib6_walker_t *w)
1291 {
1292 	int res;
1293 
1294 	w->state = FWS_INIT;
1295 	w->node = w->root;
1296 
1297 	fib6_walker_link(w);
1298 	res = fib6_walk_continue(w);
1299 	if (res <= 0)
1300 		fib6_walker_unlink(w);
1301 	return res;
1302 }
1303 
1304 static int fib6_clean_node(struct fib6_walker_t *w)
1305 {
1306 	int res;
1307 	struct rt6_info *rt;
1308 	struct fib6_cleaner_t *c = container_of(w, struct fib6_cleaner_t, w);
1309 	struct nl_info info = {
1310 		.nl_net = c->net,
1311 	};
1312 
1313 	for (rt = w->leaf; rt; rt = rt->u.dst.rt6_next) {
1314 		res = c->func(rt, c->arg);
1315 		if (res < 0) {
1316 			w->leaf = rt;
1317 			res = fib6_del(rt, &info);
1318 			if (res) {
1319 #if RT6_DEBUG >= 2
1320 				printk(KERN_DEBUG "fib6_clean_node: del failed: rt=%p@%p err=%d\n", rt, rt->rt6i_node, res);
1321 #endif
1322 				continue;
1323 			}
1324 			return 0;
1325 		}
1326 		BUG_TRAP(res==0);
1327 	}
1328 	w->leaf = rt;
1329 	return 0;
1330 }
1331 
1332 /*
1333  *	Convenient frontend to tree walker.
1334  *
1335  *	func is called on each route.
1336  *		It may return -1 -> delete this route.
1337  *		              0  -> continue walking
1338  *
1339  *	prune==1 -> only immediate children of node (certainly,
1340  *	ignoring pure split nodes) will be scanned.
1341  */
1342 
1343 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1344 			    int (*func)(struct rt6_info *, void *arg),
1345 			    int prune, void *arg)
1346 {
1347 	struct fib6_cleaner_t c;
1348 
1349 	c.w.root = root;
1350 	c.w.func = fib6_clean_node;
1351 	c.w.prune = prune;
1352 	c.func = func;
1353 	c.arg = arg;
1354 	c.net = net;
1355 
1356 	fib6_walk(&c.w);
1357 }
1358 
1359 void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *arg),
1360 		    int prune, void *arg)
1361 {
1362 	struct fib6_table *table;
1363 	struct hlist_node *node;
1364 	struct hlist_head *head;
1365 	unsigned int h;
1366 
1367 	rcu_read_lock();
1368 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
1369 		head = &net->ipv6.fib_table_hash[h];
1370 		hlist_for_each_entry_rcu(table, node, head, tb6_hlist) {
1371 			write_lock_bh(&table->tb6_lock);
1372 			fib6_clean_tree(net, &table->tb6_root,
1373 					func, prune, arg);
1374 			write_unlock_bh(&table->tb6_lock);
1375 		}
1376 	}
1377 	rcu_read_unlock();
1378 }
1379 
1380 static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1381 {
1382 	if (rt->rt6i_flags & RTF_CACHE) {
1383 		RT6_TRACE("pruning clone %p\n", rt);
1384 		return -1;
1385 	}
1386 
1387 	return 0;
1388 }
1389 
1390 static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
1391 			      struct rt6_info *rt)
1392 {
1393 	fib6_clean_tree(net, fn, fib6_prune_clone, 1, rt);
1394 }
1395 
1396 /*
1397  *	Garbage collection
1398  */
1399 
1400 static struct fib6_gc_args
1401 {
1402 	int			timeout;
1403 	int			more;
1404 } gc_args;
1405 
1406 static int fib6_age(struct rt6_info *rt, void *arg)
1407 {
1408 	unsigned long now = jiffies;
1409 
1410 	/*
1411 	 *	check addrconf expiration here.
1412 	 *	Routes are expired even if they are in use.
1413 	 *
1414 	 *	Also age clones. Note, that clones are aged out
1415 	 *	only if they are not in use now.
1416 	 */
1417 
1418 	if (rt->rt6i_flags&RTF_EXPIRES && rt->rt6i_expires) {
1419 		if (time_after(now, rt->rt6i_expires)) {
1420 			RT6_TRACE("expiring %p\n", rt);
1421 			return -1;
1422 		}
1423 		gc_args.more++;
1424 	} else if (rt->rt6i_flags & RTF_CACHE) {
1425 		if (atomic_read(&rt->u.dst.__refcnt) == 0 &&
1426 		    time_after_eq(now, rt->u.dst.lastuse + gc_args.timeout)) {
1427 			RT6_TRACE("aging clone %p\n", rt);
1428 			return -1;
1429 		} else if ((rt->rt6i_flags & RTF_GATEWAY) &&
1430 			   (!(rt->rt6i_nexthop->flags & NTF_ROUTER))) {
1431 			RT6_TRACE("purging route %p via non-router but gateway\n",
1432 				  rt);
1433 			return -1;
1434 		}
1435 		gc_args.more++;
1436 	}
1437 
1438 	return 0;
1439 }
1440 
1441 static DEFINE_SPINLOCK(fib6_gc_lock);
1442 
1443 void fib6_run_gc(unsigned long expires, struct net *net)
1444 {
1445 	if (expires != ~0UL) {
1446 		spin_lock_bh(&fib6_gc_lock);
1447 		gc_args.timeout = expires ? (int)expires :
1448 			net->ipv6.sysctl.ip6_rt_gc_interval;
1449 	} else {
1450 		if (!spin_trylock_bh(&fib6_gc_lock)) {
1451 			mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
1452 			return;
1453 		}
1454 		gc_args.timeout = net->ipv6.sysctl.ip6_rt_gc_interval;
1455 	}
1456 
1457 	gc_args.more = icmp6_dst_gc();
1458 
1459 	fib6_clean_all(net, fib6_age, 0, NULL);
1460 
1461 	if (gc_args.more)
1462 		mod_timer(&net->ipv6.ip6_fib_timer,
1463 			  round_jiffies(jiffies
1464 					+ net->ipv6.sysctl.ip6_rt_gc_interval));
1465 	else
1466 		del_timer(&net->ipv6.ip6_fib_timer);
1467 	spin_unlock_bh(&fib6_gc_lock);
1468 }
1469 
1470 static void fib6_gc_timer_cb(unsigned long arg)
1471 {
1472 	fib6_run_gc(0, (struct net *)arg);
1473 }
1474 
1475 static int fib6_net_init(struct net *net)
1476 {
1477 	setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
1478 
1479 	net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
1480 	if (!net->ipv6.rt6_stats)
1481 		goto out_timer;
1482 
1483 	net->ipv6.fib_table_hash = kcalloc(FIB_TABLE_HASHSZ,
1484 					   sizeof(*net->ipv6.fib_table_hash),
1485 					   GFP_KERNEL);
1486 	if (!net->ipv6.fib_table_hash)
1487 		goto out_rt6_stats;
1488 
1489 	net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1490 					  GFP_KERNEL);
1491 	if (!net->ipv6.fib6_main_tbl)
1492 		goto out_fib_table_hash;
1493 
1494 	net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1495 	net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1496 	net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1497 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1498 
1499 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1500 	net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
1501 					   GFP_KERNEL);
1502 	if (!net->ipv6.fib6_local_tbl)
1503 		goto out_fib6_main_tbl;
1504 	net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
1505 	net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1506 	net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
1507 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1508 #endif
1509 	fib6_tables_init(net);
1510 
1511 	return 0;
1512 
1513 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1514 out_fib6_main_tbl:
1515 	kfree(net->ipv6.fib6_main_tbl);
1516 #endif
1517 out_fib_table_hash:
1518 	kfree(net->ipv6.fib_table_hash);
1519 out_rt6_stats:
1520 	kfree(net->ipv6.rt6_stats);
1521 out_timer:
1522 	return -ENOMEM;
1523  }
1524 
1525 static void fib6_net_exit(struct net *net)
1526 {
1527 	rt6_ifdown(net, NULL);
1528 	del_timer_sync(&net->ipv6.ip6_fib_timer);
1529 
1530 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1531 	kfree(net->ipv6.fib6_local_tbl);
1532 #endif
1533 	kfree(net->ipv6.fib6_main_tbl);
1534 	kfree(net->ipv6.fib_table_hash);
1535 	kfree(net->ipv6.rt6_stats);
1536 }
1537 
1538 static struct pernet_operations fib6_net_ops = {
1539 	.init = fib6_net_init,
1540 	.exit = fib6_net_exit,
1541 };
1542 
1543 int __init fib6_init(void)
1544 {
1545 	int ret = -ENOMEM;
1546 
1547 	fib6_node_kmem = kmem_cache_create("fib6_nodes",
1548 					   sizeof(struct fib6_node),
1549 					   0, SLAB_HWCACHE_ALIGN,
1550 					   NULL);
1551 	if (!fib6_node_kmem)
1552 		goto out;
1553 
1554 	ret = register_pernet_subsys(&fib6_net_ops);
1555 	if (ret)
1556 		goto out_kmem_cache_create;
1557 
1558 	ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib);
1559 	if (ret)
1560 		goto out_unregister_subsys;
1561 out:
1562 	return ret;
1563 
1564 out_unregister_subsys:
1565 	unregister_pernet_subsys(&fib6_net_ops);
1566 out_kmem_cache_create:
1567 	kmem_cache_destroy(fib6_node_kmem);
1568 	goto out;
1569 }
1570 
1571 void fib6_gc_cleanup(void)
1572 {
1573 	unregister_pernet_subsys(&fib6_net_ops);
1574 	kmem_cache_destroy(fib6_node_kmem);
1575 }
1576