xref: /linux/net/ipv6/ip6_fib.c (revision 26b433d0da062d6e19d75350c0171d3cf8ff560d)
1 /*
2  *	Linux INET6 implementation
3  *	Forwarding Information Database
4  *
5  *	Authors:
6  *	Pedro Roque		<roque@di.fc.ul.pt>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *      modify it under the terms of the GNU General Public License
10  *      as published by the Free Software Foundation; either version
11  *      2 of the License, or (at your option) any later version.
12  *
13  *	Changes:
14  *	Yuji SEKIYA @USAGI:	Support default route on router node;
15  *				remove ip6_null_entry from the top of
16  *				routing table.
17  *	Ville Nuorvala:		Fixed routing subtrees.
18  */
19 
20 #define pr_fmt(fmt) "IPv6: " fmt
21 
22 #include <linux/errno.h>
23 #include <linux/types.h>
24 #include <linux/net.h>
25 #include <linux/route.h>
26 #include <linux/netdevice.h>
27 #include <linux/in6.h>
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/slab.h>
31 
32 #include <net/ipv6.h>
33 #include <net/ndisc.h>
34 #include <net/addrconf.h>
35 #include <net/lwtunnel.h>
36 
37 #include <net/ip6_fib.h>
38 #include <net/ip6_route.h>
39 
40 #define RT6_DEBUG 2
41 
42 #if RT6_DEBUG >= 3
43 #define RT6_TRACE(x...) pr_debug(x)
44 #else
45 #define RT6_TRACE(x...) do { ; } while (0)
46 #endif
47 
48 static struct kmem_cache *fib6_node_kmem __read_mostly;
49 
50 struct fib6_cleaner {
51 	struct fib6_walker w;
52 	struct net *net;
53 	int (*func)(struct rt6_info *, void *arg);
54 	int sernum;
55 	void *arg;
56 };
57 
58 #ifdef CONFIG_IPV6_SUBTREES
59 #define FWS_INIT FWS_S
60 #else
61 #define FWS_INIT FWS_L
62 #endif
63 
64 static void fib6_prune_clones(struct net *net, struct fib6_node *fn);
65 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
66 static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
67 static int fib6_walk(struct net *net, struct fib6_walker *w);
68 static int fib6_walk_continue(struct fib6_walker *w);
69 
70 /*
71  *	A routing update causes an increase of the serial number on the
72  *	affected subtree. This allows for cached routes to be asynchronously
73  *	tested when modifications are made to the destination cache as a
74  *	result of redirects, path MTU changes, etc.
75  */
76 
77 static void fib6_gc_timer_cb(unsigned long arg);
78 
79 #define FOR_WALKERS(net, w) \
80 	list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh)
81 
82 static void fib6_walker_link(struct net *net, struct fib6_walker *w)
83 {
84 	write_lock_bh(&net->ipv6.fib6_walker_lock);
85 	list_add(&w->lh, &net->ipv6.fib6_walkers);
86 	write_unlock_bh(&net->ipv6.fib6_walker_lock);
87 }
88 
89 static void fib6_walker_unlink(struct net *net, struct fib6_walker *w)
90 {
91 	write_lock_bh(&net->ipv6.fib6_walker_lock);
92 	list_del(&w->lh);
93 	write_unlock_bh(&net->ipv6.fib6_walker_lock);
94 }
95 
96 static int fib6_new_sernum(struct net *net)
97 {
98 	int new, old;
99 
100 	do {
101 		old = atomic_read(&net->ipv6.fib6_sernum);
102 		new = old < INT_MAX ? old + 1 : 1;
103 	} while (atomic_cmpxchg(&net->ipv6.fib6_sernum,
104 				old, new) != old);
105 	return new;
106 }
107 
108 enum {
109 	FIB6_NO_SERNUM_CHANGE = 0,
110 };
111 
112 /*
113  *	Auxiliary address test functions for the radix tree.
114  *
115  *	These assume a 32bit processor (although it will work on
116  *	64bit processors)
117  */
118 
119 /*
120  *	test bit
121  */
122 #if defined(__LITTLE_ENDIAN)
123 # define BITOP_BE32_SWIZZLE	(0x1F & ~7)
124 #else
125 # define BITOP_BE32_SWIZZLE	0
126 #endif
127 
128 static __be32 addr_bit_set(const void *token, int fn_bit)
129 {
130 	const __be32 *addr = token;
131 	/*
132 	 * Here,
133 	 *	1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
134 	 * is optimized version of
135 	 *	htonl(1 << ((~fn_bit)&0x1F))
136 	 * See include/asm-generic/bitops/le.h.
137 	 */
138 	return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
139 	       addr[fn_bit >> 5];
140 }
141 
142 static struct fib6_node *node_alloc(void)
143 {
144 	struct fib6_node *fn;
145 
146 	fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
147 
148 	return fn;
149 }
150 
151 static void node_free_immediate(struct fib6_node *fn)
152 {
153 	kmem_cache_free(fib6_node_kmem, fn);
154 }
155 
156 static void node_free_rcu(struct rcu_head *head)
157 {
158 	struct fib6_node *fn = container_of(head, struct fib6_node, rcu);
159 
160 	kmem_cache_free(fib6_node_kmem, fn);
161 }
162 
163 static void node_free(struct fib6_node *fn)
164 {
165 	call_rcu(&fn->rcu, node_free_rcu);
166 }
167 
168 static void rt6_free_pcpu(struct rt6_info *non_pcpu_rt)
169 {
170 	int cpu;
171 
172 	if (!non_pcpu_rt->rt6i_pcpu)
173 		return;
174 
175 	for_each_possible_cpu(cpu) {
176 		struct rt6_info **ppcpu_rt;
177 		struct rt6_info *pcpu_rt;
178 
179 		ppcpu_rt = per_cpu_ptr(non_pcpu_rt->rt6i_pcpu, cpu);
180 		pcpu_rt = *ppcpu_rt;
181 		if (pcpu_rt) {
182 			dst_dev_put(&pcpu_rt->dst);
183 			dst_release(&pcpu_rt->dst);
184 			*ppcpu_rt = NULL;
185 		}
186 	}
187 
188 	free_percpu(non_pcpu_rt->rt6i_pcpu);
189 	non_pcpu_rt->rt6i_pcpu = NULL;
190 }
191 
192 static void rt6_release(struct rt6_info *rt)
193 {
194 	if (atomic_dec_and_test(&rt->rt6i_ref)) {
195 		rt6_free_pcpu(rt);
196 		dst_dev_put(&rt->dst);
197 		dst_release(&rt->dst);
198 	}
199 }
200 
201 static void fib6_link_table(struct net *net, struct fib6_table *tb)
202 {
203 	unsigned int h;
204 
205 	/*
206 	 * Initialize table lock at a single place to give lockdep a key,
207 	 * tables aren't visible prior to being linked to the list.
208 	 */
209 	rwlock_init(&tb->tb6_lock);
210 
211 	h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
212 
213 	/*
214 	 * No protection necessary, this is the only list mutatation
215 	 * operation, tables never disappear once they exist.
216 	 */
217 	hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
218 }
219 
220 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
221 
222 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
223 {
224 	struct fib6_table *table;
225 
226 	table = kzalloc(sizeof(*table), GFP_ATOMIC);
227 	if (table) {
228 		table->tb6_id = id;
229 		table->tb6_root.leaf = net->ipv6.ip6_null_entry;
230 		table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
231 		inet_peer_base_init(&table->tb6_peers);
232 	}
233 
234 	return table;
235 }
236 
237 struct fib6_table *fib6_new_table(struct net *net, u32 id)
238 {
239 	struct fib6_table *tb;
240 
241 	if (id == 0)
242 		id = RT6_TABLE_MAIN;
243 	tb = fib6_get_table(net, id);
244 	if (tb)
245 		return tb;
246 
247 	tb = fib6_alloc_table(net, id);
248 	if (tb)
249 		fib6_link_table(net, tb);
250 
251 	return tb;
252 }
253 EXPORT_SYMBOL_GPL(fib6_new_table);
254 
255 struct fib6_table *fib6_get_table(struct net *net, u32 id)
256 {
257 	struct fib6_table *tb;
258 	struct hlist_head *head;
259 	unsigned int h;
260 
261 	if (id == 0)
262 		id = RT6_TABLE_MAIN;
263 	h = id & (FIB6_TABLE_HASHSZ - 1);
264 	rcu_read_lock();
265 	head = &net->ipv6.fib_table_hash[h];
266 	hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
267 		if (tb->tb6_id == id) {
268 			rcu_read_unlock();
269 			return tb;
270 		}
271 	}
272 	rcu_read_unlock();
273 
274 	return NULL;
275 }
276 EXPORT_SYMBOL_GPL(fib6_get_table);
277 
278 static void __net_init fib6_tables_init(struct net *net)
279 {
280 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
281 	fib6_link_table(net, net->ipv6.fib6_local_tbl);
282 }
283 #else
284 
285 struct fib6_table *fib6_new_table(struct net *net, u32 id)
286 {
287 	return fib6_get_table(net, id);
288 }
289 
290 struct fib6_table *fib6_get_table(struct net *net, u32 id)
291 {
292 	  return net->ipv6.fib6_main_tbl;
293 }
294 
295 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
296 				   int flags, pol_lookup_t lookup)
297 {
298 	struct rt6_info *rt;
299 
300 	rt = lookup(net, net->ipv6.fib6_main_tbl, fl6, flags);
301 	if (rt->dst.error == -EAGAIN) {
302 		ip6_rt_put(rt);
303 		rt = net->ipv6.ip6_null_entry;
304 		dst_hold(&rt->dst);
305 	}
306 
307 	return &rt->dst;
308 }
309 
310 static void __net_init fib6_tables_init(struct net *net)
311 {
312 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
313 }
314 
315 #endif
316 
317 static int fib6_dump_node(struct fib6_walker *w)
318 {
319 	int res;
320 	struct rt6_info *rt;
321 
322 	for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
323 		res = rt6_dump_route(rt, w->args);
324 		if (res < 0) {
325 			/* Frame is full, suspend walking */
326 			w->leaf = rt;
327 			return 1;
328 		}
329 
330 		/* Multipath routes are dumped in one route with the
331 		 * RTA_MULTIPATH attribute. Jump 'rt' to point to the
332 		 * last sibling of this route (no need to dump the
333 		 * sibling routes again)
334 		 */
335 		if (rt->rt6i_nsiblings)
336 			rt = list_last_entry(&rt->rt6i_siblings,
337 					     struct rt6_info,
338 					     rt6i_siblings);
339 	}
340 	w->leaf = NULL;
341 	return 0;
342 }
343 
344 static void fib6_dump_end(struct netlink_callback *cb)
345 {
346 	struct net *net = sock_net(cb->skb->sk);
347 	struct fib6_walker *w = (void *)cb->args[2];
348 
349 	if (w) {
350 		if (cb->args[4]) {
351 			cb->args[4] = 0;
352 			fib6_walker_unlink(net, w);
353 		}
354 		cb->args[2] = 0;
355 		kfree(w);
356 	}
357 	cb->done = (void *)cb->args[3];
358 	cb->args[1] = 3;
359 }
360 
361 static int fib6_dump_done(struct netlink_callback *cb)
362 {
363 	fib6_dump_end(cb);
364 	return cb->done ? cb->done(cb) : 0;
365 }
366 
367 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
368 			   struct netlink_callback *cb)
369 {
370 	struct net *net = sock_net(skb->sk);
371 	struct fib6_walker *w;
372 	int res;
373 
374 	w = (void *)cb->args[2];
375 	w->root = &table->tb6_root;
376 
377 	if (cb->args[4] == 0) {
378 		w->count = 0;
379 		w->skip = 0;
380 
381 		read_lock_bh(&table->tb6_lock);
382 		res = fib6_walk(net, w);
383 		read_unlock_bh(&table->tb6_lock);
384 		if (res > 0) {
385 			cb->args[4] = 1;
386 			cb->args[5] = w->root->fn_sernum;
387 		}
388 	} else {
389 		if (cb->args[5] != w->root->fn_sernum) {
390 			/* Begin at the root if the tree changed */
391 			cb->args[5] = w->root->fn_sernum;
392 			w->state = FWS_INIT;
393 			w->node = w->root;
394 			w->skip = w->count;
395 		} else
396 			w->skip = 0;
397 
398 		read_lock_bh(&table->tb6_lock);
399 		res = fib6_walk_continue(w);
400 		read_unlock_bh(&table->tb6_lock);
401 		if (res <= 0) {
402 			fib6_walker_unlink(net, w);
403 			cb->args[4] = 0;
404 		}
405 	}
406 
407 	return res;
408 }
409 
410 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
411 {
412 	struct net *net = sock_net(skb->sk);
413 	unsigned int h, s_h;
414 	unsigned int e = 0, s_e;
415 	struct rt6_rtnl_dump_arg arg;
416 	struct fib6_walker *w;
417 	struct fib6_table *tb;
418 	struct hlist_head *head;
419 	int res = 0;
420 
421 	s_h = cb->args[0];
422 	s_e = cb->args[1];
423 
424 	w = (void *)cb->args[2];
425 	if (!w) {
426 		/* New dump:
427 		 *
428 		 * 1. hook callback destructor.
429 		 */
430 		cb->args[3] = (long)cb->done;
431 		cb->done = fib6_dump_done;
432 
433 		/*
434 		 * 2. allocate and initialize walker.
435 		 */
436 		w = kzalloc(sizeof(*w), GFP_ATOMIC);
437 		if (!w)
438 			return -ENOMEM;
439 		w->func = fib6_dump_node;
440 		cb->args[2] = (long)w;
441 	}
442 
443 	arg.skb = skb;
444 	arg.cb = cb;
445 	arg.net = net;
446 	w->args = &arg;
447 
448 	rcu_read_lock();
449 	for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
450 		e = 0;
451 		head = &net->ipv6.fib_table_hash[h];
452 		hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
453 			if (e < s_e)
454 				goto next;
455 			res = fib6_dump_table(tb, skb, cb);
456 			if (res != 0)
457 				goto out;
458 next:
459 			e++;
460 		}
461 	}
462 out:
463 	rcu_read_unlock();
464 	cb->args[1] = e;
465 	cb->args[0] = h;
466 
467 	res = res < 0 ? res : skb->len;
468 	if (res <= 0)
469 		fib6_dump_end(cb);
470 	return res;
471 }
472 
473 /*
474  *	Routing Table
475  *
476  *	return the appropriate node for a routing tree "add" operation
477  *	by either creating and inserting or by returning an existing
478  *	node.
479  */
480 
481 static struct fib6_node *fib6_add_1(struct fib6_node *root,
482 				     struct in6_addr *addr, int plen,
483 				     int offset, int allow_create,
484 				     int replace_required, int sernum,
485 				     struct netlink_ext_ack *extack)
486 {
487 	struct fib6_node *fn, *in, *ln;
488 	struct fib6_node *pn = NULL;
489 	struct rt6key *key;
490 	int	bit;
491 	__be32	dir = 0;
492 
493 	RT6_TRACE("fib6_add_1\n");
494 
495 	/* insert node in tree */
496 
497 	fn = root;
498 
499 	do {
500 		key = (struct rt6key *)((u8 *)fn->leaf + offset);
501 
502 		/*
503 		 *	Prefix match
504 		 */
505 		if (plen < fn->fn_bit ||
506 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
507 			if (!allow_create) {
508 				if (replace_required) {
509 					NL_SET_ERR_MSG(extack,
510 						       "Can not replace route - no match found");
511 					pr_warn("Can't replace route, no match found\n");
512 					return ERR_PTR(-ENOENT);
513 				}
514 				pr_warn("NLM_F_CREATE should be set when creating new route\n");
515 			}
516 			goto insert_above;
517 		}
518 
519 		/*
520 		 *	Exact match ?
521 		 */
522 
523 		if (plen == fn->fn_bit) {
524 			/* clean up an intermediate node */
525 			if (!(fn->fn_flags & RTN_RTINFO)) {
526 				rt6_release(fn->leaf);
527 				fn->leaf = NULL;
528 			}
529 
530 			fn->fn_sernum = sernum;
531 
532 			return fn;
533 		}
534 
535 		/*
536 		 *	We have more bits to go
537 		 */
538 
539 		/* Try to walk down on tree. */
540 		fn->fn_sernum = sernum;
541 		dir = addr_bit_set(addr, fn->fn_bit);
542 		pn = fn;
543 		fn = dir ? fn->right : fn->left;
544 	} while (fn);
545 
546 	if (!allow_create) {
547 		/* We should not create new node because
548 		 * NLM_F_REPLACE was specified without NLM_F_CREATE
549 		 * I assume it is safe to require NLM_F_CREATE when
550 		 * REPLACE flag is used! Later we may want to remove the
551 		 * check for replace_required, because according
552 		 * to netlink specification, NLM_F_CREATE
553 		 * MUST be specified if new route is created.
554 		 * That would keep IPv6 consistent with IPv4
555 		 */
556 		if (replace_required) {
557 			NL_SET_ERR_MSG(extack,
558 				       "Can not replace route - no match found");
559 			pr_warn("Can't replace route, no match found\n");
560 			return ERR_PTR(-ENOENT);
561 		}
562 		pr_warn("NLM_F_CREATE should be set when creating new route\n");
563 	}
564 	/*
565 	 *	We walked to the bottom of tree.
566 	 *	Create new leaf node without children.
567 	 */
568 
569 	ln = node_alloc();
570 
571 	if (!ln)
572 		return ERR_PTR(-ENOMEM);
573 	ln->fn_bit = plen;
574 
575 	ln->parent = pn;
576 	ln->fn_sernum = sernum;
577 
578 	if (dir)
579 		pn->right = ln;
580 	else
581 		pn->left  = ln;
582 
583 	return ln;
584 
585 
586 insert_above:
587 	/*
588 	 * split since we don't have a common prefix anymore or
589 	 * we have a less significant route.
590 	 * we've to insert an intermediate node on the list
591 	 * this new node will point to the one we need to create
592 	 * and the current
593 	 */
594 
595 	pn = fn->parent;
596 
597 	/* find 1st bit in difference between the 2 addrs.
598 
599 	   See comment in __ipv6_addr_diff: bit may be an invalid value,
600 	   but if it is >= plen, the value is ignored in any case.
601 	 */
602 
603 	bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
604 
605 	/*
606 	 *		(intermediate)[in]
607 	 *	          /	   \
608 	 *	(new leaf node)[ln] (old node)[fn]
609 	 */
610 	if (plen > bit) {
611 		in = node_alloc();
612 		ln = node_alloc();
613 
614 		if (!in || !ln) {
615 			if (in)
616 				node_free_immediate(in);
617 			if (ln)
618 				node_free_immediate(ln);
619 			return ERR_PTR(-ENOMEM);
620 		}
621 
622 		/*
623 		 * new intermediate node.
624 		 * RTN_RTINFO will
625 		 * be off since that an address that chooses one of
626 		 * the branches would not match less specific routes
627 		 * in the other branch
628 		 */
629 
630 		in->fn_bit = bit;
631 
632 		in->parent = pn;
633 		in->leaf = fn->leaf;
634 		atomic_inc(&in->leaf->rt6i_ref);
635 
636 		in->fn_sernum = sernum;
637 
638 		/* update parent pointer */
639 		if (dir)
640 			pn->right = in;
641 		else
642 			pn->left  = in;
643 
644 		ln->fn_bit = plen;
645 
646 		ln->parent = in;
647 		fn->parent = in;
648 
649 		ln->fn_sernum = sernum;
650 
651 		if (addr_bit_set(addr, bit)) {
652 			in->right = ln;
653 			in->left  = fn;
654 		} else {
655 			in->left  = ln;
656 			in->right = fn;
657 		}
658 	} else { /* plen <= bit */
659 
660 		/*
661 		 *		(new leaf node)[ln]
662 		 *	          /	   \
663 		 *	     (old node)[fn] NULL
664 		 */
665 
666 		ln = node_alloc();
667 
668 		if (!ln)
669 			return ERR_PTR(-ENOMEM);
670 
671 		ln->fn_bit = plen;
672 
673 		ln->parent = pn;
674 
675 		ln->fn_sernum = sernum;
676 
677 		if (dir)
678 			pn->right = ln;
679 		else
680 			pn->left  = ln;
681 
682 		if (addr_bit_set(&key->addr, plen))
683 			ln->right = fn;
684 		else
685 			ln->left  = fn;
686 
687 		fn->parent = ln;
688 	}
689 	return ln;
690 }
691 
692 static bool rt6_qualify_for_ecmp(struct rt6_info *rt)
693 {
694 	return (rt->rt6i_flags & (RTF_GATEWAY|RTF_ADDRCONF|RTF_DYNAMIC)) ==
695 	       RTF_GATEWAY;
696 }
697 
698 static void fib6_copy_metrics(u32 *mp, const struct mx6_config *mxc)
699 {
700 	int i;
701 
702 	for (i = 0; i < RTAX_MAX; i++) {
703 		if (test_bit(i, mxc->mx_valid))
704 			mp[i] = mxc->mx[i];
705 	}
706 }
707 
708 static int fib6_commit_metrics(struct dst_entry *dst, struct mx6_config *mxc)
709 {
710 	if (!mxc->mx)
711 		return 0;
712 
713 	if (dst->flags & DST_HOST) {
714 		u32 *mp = dst_metrics_write_ptr(dst);
715 
716 		if (unlikely(!mp))
717 			return -ENOMEM;
718 
719 		fib6_copy_metrics(mp, mxc);
720 	} else {
721 		dst_init_metrics(dst, mxc->mx, false);
722 
723 		/* We've stolen mx now. */
724 		mxc->mx = NULL;
725 	}
726 
727 	return 0;
728 }
729 
730 static void fib6_purge_rt(struct rt6_info *rt, struct fib6_node *fn,
731 			  struct net *net)
732 {
733 	if (atomic_read(&rt->rt6i_ref) != 1) {
734 		/* This route is used as dummy address holder in some split
735 		 * nodes. It is not leaked, but it still holds other resources,
736 		 * which must be released in time. So, scan ascendant nodes
737 		 * and replace dummy references to this route with references
738 		 * to still alive ones.
739 		 */
740 		while (fn) {
741 			if (!(fn->fn_flags & RTN_RTINFO) && fn->leaf == rt) {
742 				fn->leaf = fib6_find_prefix(net, fn);
743 				atomic_inc(&fn->leaf->rt6i_ref);
744 				rt6_release(rt);
745 			}
746 			fn = fn->parent;
747 		}
748 		/* No more references are possible at this point. */
749 		BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
750 	}
751 }
752 
753 /*
754  *	Insert routing information in a node.
755  */
756 
757 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
758 			    struct nl_info *info, struct mx6_config *mxc)
759 {
760 	struct rt6_info *iter = NULL;
761 	struct rt6_info **ins;
762 	struct rt6_info **fallback_ins = NULL;
763 	int replace = (info->nlh &&
764 		       (info->nlh->nlmsg_flags & NLM_F_REPLACE));
765 	int add = (!info->nlh ||
766 		   (info->nlh->nlmsg_flags & NLM_F_CREATE));
767 	int found = 0;
768 	bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
769 	u16 nlflags = NLM_F_EXCL;
770 	int err;
771 
772 	if (info->nlh && (info->nlh->nlmsg_flags & NLM_F_APPEND))
773 		nlflags |= NLM_F_APPEND;
774 
775 	ins = &fn->leaf;
776 
777 	for (iter = fn->leaf; iter; iter = iter->dst.rt6_next) {
778 		/*
779 		 *	Search for duplicates
780 		 */
781 
782 		if (iter->rt6i_metric == rt->rt6i_metric) {
783 			/*
784 			 *	Same priority level
785 			 */
786 			if (info->nlh &&
787 			    (info->nlh->nlmsg_flags & NLM_F_EXCL))
788 				return -EEXIST;
789 
790 			nlflags &= ~NLM_F_EXCL;
791 			if (replace) {
792 				if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) {
793 					found++;
794 					break;
795 				}
796 				if (rt_can_ecmp)
797 					fallback_ins = fallback_ins ?: ins;
798 				goto next_iter;
799 			}
800 
801 			if (rt6_duplicate_nexthop(iter, rt)) {
802 				if (rt->rt6i_nsiblings)
803 					rt->rt6i_nsiblings = 0;
804 				if (!(iter->rt6i_flags & RTF_EXPIRES))
805 					return -EEXIST;
806 				if (!(rt->rt6i_flags & RTF_EXPIRES))
807 					rt6_clean_expires(iter);
808 				else
809 					rt6_set_expires(iter, rt->dst.expires);
810 				iter->rt6i_pmtu = rt->rt6i_pmtu;
811 				return -EEXIST;
812 			}
813 			/* If we have the same destination and the same metric,
814 			 * but not the same gateway, then the route we try to
815 			 * add is sibling to this route, increment our counter
816 			 * of siblings, and later we will add our route to the
817 			 * list.
818 			 * Only static routes (which don't have flag
819 			 * RTF_EXPIRES) are used for ECMPv6.
820 			 *
821 			 * To avoid long list, we only had siblings if the
822 			 * route have a gateway.
823 			 */
824 			if (rt_can_ecmp &&
825 			    rt6_qualify_for_ecmp(iter))
826 				rt->rt6i_nsiblings++;
827 		}
828 
829 		if (iter->rt6i_metric > rt->rt6i_metric)
830 			break;
831 
832 next_iter:
833 		ins = &iter->dst.rt6_next;
834 	}
835 
836 	if (fallback_ins && !found) {
837 		/* No ECMP-able route found, replace first non-ECMP one */
838 		ins = fallback_ins;
839 		iter = *ins;
840 		found++;
841 	}
842 
843 	/* Reset round-robin state, if necessary */
844 	if (ins == &fn->leaf)
845 		fn->rr_ptr = NULL;
846 
847 	/* Link this route to others same route. */
848 	if (rt->rt6i_nsiblings) {
849 		unsigned int rt6i_nsiblings;
850 		struct rt6_info *sibling, *temp_sibling;
851 
852 		/* Find the first route that have the same metric */
853 		sibling = fn->leaf;
854 		while (sibling) {
855 			if (sibling->rt6i_metric == rt->rt6i_metric &&
856 			    rt6_qualify_for_ecmp(sibling)) {
857 				list_add_tail(&rt->rt6i_siblings,
858 					      &sibling->rt6i_siblings);
859 				break;
860 			}
861 			sibling = sibling->dst.rt6_next;
862 		}
863 		/* For each sibling in the list, increment the counter of
864 		 * siblings. BUG() if counters does not match, list of siblings
865 		 * is broken!
866 		 */
867 		rt6i_nsiblings = 0;
868 		list_for_each_entry_safe(sibling, temp_sibling,
869 					 &rt->rt6i_siblings, rt6i_siblings) {
870 			sibling->rt6i_nsiblings++;
871 			BUG_ON(sibling->rt6i_nsiblings != rt->rt6i_nsiblings);
872 			rt6i_nsiblings++;
873 		}
874 		BUG_ON(rt6i_nsiblings != rt->rt6i_nsiblings);
875 	}
876 
877 	/*
878 	 *	insert node
879 	 */
880 	if (!replace) {
881 		if (!add)
882 			pr_warn("NLM_F_CREATE should be set when creating new route\n");
883 
884 add:
885 		nlflags |= NLM_F_CREATE;
886 		err = fib6_commit_metrics(&rt->dst, mxc);
887 		if (err)
888 			return err;
889 
890 		rt->dst.rt6_next = iter;
891 		*ins = rt;
892 		rcu_assign_pointer(rt->rt6i_node, fn);
893 		atomic_inc(&rt->rt6i_ref);
894 		if (!info->skip_notify)
895 			inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags);
896 		info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
897 
898 		if (!(fn->fn_flags & RTN_RTINFO)) {
899 			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
900 			fn->fn_flags |= RTN_RTINFO;
901 		}
902 
903 	} else {
904 		int nsiblings;
905 
906 		if (!found) {
907 			if (add)
908 				goto add;
909 			pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
910 			return -ENOENT;
911 		}
912 
913 		err = fib6_commit_metrics(&rt->dst, mxc);
914 		if (err)
915 			return err;
916 
917 		*ins = rt;
918 		rcu_assign_pointer(rt->rt6i_node, fn);
919 		rt->dst.rt6_next = iter->dst.rt6_next;
920 		atomic_inc(&rt->rt6i_ref);
921 		if (!info->skip_notify)
922 			inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE);
923 		if (!(fn->fn_flags & RTN_RTINFO)) {
924 			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
925 			fn->fn_flags |= RTN_RTINFO;
926 		}
927 		nsiblings = iter->rt6i_nsiblings;
928 		fib6_purge_rt(iter, fn, info->nl_net);
929 		if (fn->rr_ptr == iter)
930 			fn->rr_ptr = NULL;
931 		rt6_release(iter);
932 
933 		if (nsiblings) {
934 			/* Replacing an ECMP route, remove all siblings */
935 			ins = &rt->dst.rt6_next;
936 			iter = *ins;
937 			while (iter) {
938 				if (iter->rt6i_metric > rt->rt6i_metric)
939 					break;
940 				if (rt6_qualify_for_ecmp(iter)) {
941 					*ins = iter->dst.rt6_next;
942 					fib6_purge_rt(iter, fn, info->nl_net);
943 					if (fn->rr_ptr == iter)
944 						fn->rr_ptr = NULL;
945 					rt6_release(iter);
946 					nsiblings--;
947 				} else {
948 					ins = &iter->dst.rt6_next;
949 				}
950 				iter = *ins;
951 			}
952 			WARN_ON(nsiblings != 0);
953 		}
954 	}
955 
956 	return 0;
957 }
958 
959 static void fib6_start_gc(struct net *net, struct rt6_info *rt)
960 {
961 	if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
962 	    (rt->rt6i_flags & (RTF_EXPIRES | RTF_CACHE)))
963 		mod_timer(&net->ipv6.ip6_fib_timer,
964 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
965 }
966 
967 void fib6_force_start_gc(struct net *net)
968 {
969 	if (!timer_pending(&net->ipv6.ip6_fib_timer))
970 		mod_timer(&net->ipv6.ip6_fib_timer,
971 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
972 }
973 
974 /*
975  *	Add routing information to the routing tree.
976  *	<destination addr>/<source addr>
977  *	with source addr info in sub-trees
978  */
979 
980 int fib6_add(struct fib6_node *root, struct rt6_info *rt,
981 	     struct nl_info *info, struct mx6_config *mxc,
982 	     struct netlink_ext_ack *extack)
983 {
984 	struct fib6_node *fn, *pn = NULL;
985 	int err = -ENOMEM;
986 	int allow_create = 1;
987 	int replace_required = 0;
988 	int sernum = fib6_new_sernum(info->nl_net);
989 
990 	if (WARN_ON_ONCE(!atomic_read(&rt->dst.__refcnt)))
991 		return -EINVAL;
992 
993 	if (info->nlh) {
994 		if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
995 			allow_create = 0;
996 		if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
997 			replace_required = 1;
998 	}
999 	if (!allow_create && !replace_required)
1000 		pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
1001 
1002 	fn = fib6_add_1(root, &rt->rt6i_dst.addr, rt->rt6i_dst.plen,
1003 			offsetof(struct rt6_info, rt6i_dst), allow_create,
1004 			replace_required, sernum, extack);
1005 	if (IS_ERR(fn)) {
1006 		err = PTR_ERR(fn);
1007 		fn = NULL;
1008 		goto out;
1009 	}
1010 
1011 	pn = fn;
1012 
1013 #ifdef CONFIG_IPV6_SUBTREES
1014 	if (rt->rt6i_src.plen) {
1015 		struct fib6_node *sn;
1016 
1017 		if (!fn->subtree) {
1018 			struct fib6_node *sfn;
1019 
1020 			/*
1021 			 * Create subtree.
1022 			 *
1023 			 *		fn[main tree]
1024 			 *		|
1025 			 *		sfn[subtree root]
1026 			 *		   \
1027 			 *		    sn[new leaf node]
1028 			 */
1029 
1030 			/* Create subtree root node */
1031 			sfn = node_alloc();
1032 			if (!sfn)
1033 				goto failure;
1034 
1035 			sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
1036 			atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
1037 			sfn->fn_flags = RTN_ROOT;
1038 			sfn->fn_sernum = sernum;
1039 
1040 			/* Now add the first leaf node to new subtree */
1041 
1042 			sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
1043 					rt->rt6i_src.plen,
1044 					offsetof(struct rt6_info, rt6i_src),
1045 					allow_create, replace_required, sernum,
1046 					extack);
1047 
1048 			if (IS_ERR(sn)) {
1049 				/* If it is failed, discard just allocated
1050 				   root, and then (in failure) stale node
1051 				   in main tree.
1052 				 */
1053 				node_free_immediate(sfn);
1054 				err = PTR_ERR(sn);
1055 				goto failure;
1056 			}
1057 
1058 			/* Now link new subtree to main tree */
1059 			sfn->parent = fn;
1060 			fn->subtree = sfn;
1061 		} else {
1062 			sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
1063 					rt->rt6i_src.plen,
1064 					offsetof(struct rt6_info, rt6i_src),
1065 					allow_create, replace_required, sernum,
1066 					extack);
1067 
1068 			if (IS_ERR(sn)) {
1069 				err = PTR_ERR(sn);
1070 				goto failure;
1071 			}
1072 		}
1073 
1074 		if (!fn->leaf) {
1075 			fn->leaf = rt;
1076 			atomic_inc(&rt->rt6i_ref);
1077 		}
1078 		fn = sn;
1079 	}
1080 #endif
1081 
1082 	err = fib6_add_rt2node(fn, rt, info, mxc);
1083 	if (!err) {
1084 		fib6_start_gc(info->nl_net, rt);
1085 		if (!(rt->rt6i_flags & RTF_CACHE))
1086 			fib6_prune_clones(info->nl_net, pn);
1087 	}
1088 
1089 out:
1090 	if (err) {
1091 #ifdef CONFIG_IPV6_SUBTREES
1092 		/*
1093 		 * If fib6_add_1 has cleared the old leaf pointer in the
1094 		 * super-tree leaf node we have to find a new one for it.
1095 		 */
1096 		if (pn != fn && pn->leaf == rt) {
1097 			pn->leaf = NULL;
1098 			atomic_dec(&rt->rt6i_ref);
1099 		}
1100 		if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
1101 			pn->leaf = fib6_find_prefix(info->nl_net, pn);
1102 #if RT6_DEBUG >= 2
1103 			if (!pn->leaf) {
1104 				WARN_ON(pn->leaf == NULL);
1105 				pn->leaf = info->nl_net->ipv6.ip6_null_entry;
1106 			}
1107 #endif
1108 			atomic_inc(&pn->leaf->rt6i_ref);
1109 		}
1110 #endif
1111 		goto failure;
1112 	}
1113 	return err;
1114 
1115 failure:
1116 	/* fn->leaf could be NULL if fn is an intermediate node and we
1117 	 * failed to add the new route to it in both subtree creation
1118 	 * failure and fib6_add_rt2node() failure case.
1119 	 * In both cases, fib6_repair_tree() should be called to fix
1120 	 * fn->leaf.
1121 	 */
1122 	if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
1123 		fib6_repair_tree(info->nl_net, fn);
1124 	/* Always release dst as dst->__refcnt is guaranteed
1125 	 * to be taken before entering this function
1126 	 */
1127 	dst_release_immediate(&rt->dst);
1128 	return err;
1129 }
1130 
1131 /*
1132  *	Routing tree lookup
1133  *
1134  */
1135 
1136 struct lookup_args {
1137 	int			offset;		/* key offset on rt6_info	*/
1138 	const struct in6_addr	*addr;		/* search key			*/
1139 };
1140 
1141 static struct fib6_node *fib6_lookup_1(struct fib6_node *root,
1142 				       struct lookup_args *args)
1143 {
1144 	struct fib6_node *fn;
1145 	__be32 dir;
1146 
1147 	if (unlikely(args->offset == 0))
1148 		return NULL;
1149 
1150 	/*
1151 	 *	Descend on a tree
1152 	 */
1153 
1154 	fn = root;
1155 
1156 	for (;;) {
1157 		struct fib6_node *next;
1158 
1159 		dir = addr_bit_set(args->addr, fn->fn_bit);
1160 
1161 		next = dir ? fn->right : fn->left;
1162 
1163 		if (next) {
1164 			fn = next;
1165 			continue;
1166 		}
1167 		break;
1168 	}
1169 
1170 	while (fn) {
1171 		if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
1172 			struct rt6key *key;
1173 
1174 			key = (struct rt6key *) ((u8 *) fn->leaf +
1175 						 args->offset);
1176 
1177 			if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1178 #ifdef CONFIG_IPV6_SUBTREES
1179 				if (fn->subtree) {
1180 					struct fib6_node *sfn;
1181 					sfn = fib6_lookup_1(fn->subtree,
1182 							    args + 1);
1183 					if (!sfn)
1184 						goto backtrack;
1185 					fn = sfn;
1186 				}
1187 #endif
1188 				if (fn->fn_flags & RTN_RTINFO)
1189 					return fn;
1190 			}
1191 		}
1192 #ifdef CONFIG_IPV6_SUBTREES
1193 backtrack:
1194 #endif
1195 		if (fn->fn_flags & RTN_ROOT)
1196 			break;
1197 
1198 		fn = fn->parent;
1199 	}
1200 
1201 	return NULL;
1202 }
1203 
1204 struct fib6_node *fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr,
1205 			      const struct in6_addr *saddr)
1206 {
1207 	struct fib6_node *fn;
1208 	struct lookup_args args[] = {
1209 		{
1210 			.offset = offsetof(struct rt6_info, rt6i_dst),
1211 			.addr = daddr,
1212 		},
1213 #ifdef CONFIG_IPV6_SUBTREES
1214 		{
1215 			.offset = offsetof(struct rt6_info, rt6i_src),
1216 			.addr = saddr,
1217 		},
1218 #endif
1219 		{
1220 			.offset = 0,	/* sentinel */
1221 		}
1222 	};
1223 
1224 	fn = fib6_lookup_1(root, daddr ? args : args + 1);
1225 	if (!fn || fn->fn_flags & RTN_TL_ROOT)
1226 		fn = root;
1227 
1228 	return fn;
1229 }
1230 
1231 /*
1232  *	Get node with specified destination prefix (and source prefix,
1233  *	if subtrees are used)
1234  */
1235 
1236 
1237 static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1238 				       const struct in6_addr *addr,
1239 				       int plen, int offset)
1240 {
1241 	struct fib6_node *fn;
1242 
1243 	for (fn = root; fn ; ) {
1244 		struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
1245 
1246 		/*
1247 		 *	Prefix match
1248 		 */
1249 		if (plen < fn->fn_bit ||
1250 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1251 			return NULL;
1252 
1253 		if (plen == fn->fn_bit)
1254 			return fn;
1255 
1256 		/*
1257 		 *	We have more bits to go
1258 		 */
1259 		if (addr_bit_set(addr, fn->fn_bit))
1260 			fn = fn->right;
1261 		else
1262 			fn = fn->left;
1263 	}
1264 	return NULL;
1265 }
1266 
1267 struct fib6_node *fib6_locate(struct fib6_node *root,
1268 			      const struct in6_addr *daddr, int dst_len,
1269 			      const struct in6_addr *saddr, int src_len)
1270 {
1271 	struct fib6_node *fn;
1272 
1273 	fn = fib6_locate_1(root, daddr, dst_len,
1274 			   offsetof(struct rt6_info, rt6i_dst));
1275 
1276 #ifdef CONFIG_IPV6_SUBTREES
1277 	if (src_len) {
1278 		WARN_ON(saddr == NULL);
1279 		if (fn && fn->subtree)
1280 			fn = fib6_locate_1(fn->subtree, saddr, src_len,
1281 					   offsetof(struct rt6_info, rt6i_src));
1282 	}
1283 #endif
1284 
1285 	if (fn && fn->fn_flags & RTN_RTINFO)
1286 		return fn;
1287 
1288 	return NULL;
1289 }
1290 
1291 
1292 /*
1293  *	Deletion
1294  *
1295  */
1296 
1297 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
1298 {
1299 	if (fn->fn_flags & RTN_ROOT)
1300 		return net->ipv6.ip6_null_entry;
1301 
1302 	while (fn) {
1303 		if (fn->left)
1304 			return fn->left->leaf;
1305 		if (fn->right)
1306 			return fn->right->leaf;
1307 
1308 		fn = FIB6_SUBTREE(fn);
1309 	}
1310 	return NULL;
1311 }
1312 
1313 /*
1314  *	Called to trim the tree of intermediate nodes when possible. "fn"
1315  *	is the node we want to try and remove.
1316  */
1317 
1318 static struct fib6_node *fib6_repair_tree(struct net *net,
1319 					   struct fib6_node *fn)
1320 {
1321 	int children;
1322 	int nstate;
1323 	struct fib6_node *child, *pn;
1324 	struct fib6_walker *w;
1325 	int iter = 0;
1326 
1327 	for (;;) {
1328 		RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1329 		iter++;
1330 
1331 		WARN_ON(fn->fn_flags & RTN_RTINFO);
1332 		WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1333 		WARN_ON(fn->leaf);
1334 
1335 		children = 0;
1336 		child = NULL;
1337 		if (fn->right)
1338 			child = fn->right, children |= 1;
1339 		if (fn->left)
1340 			child = fn->left, children |= 2;
1341 
1342 		if (children == 3 || FIB6_SUBTREE(fn)
1343 #ifdef CONFIG_IPV6_SUBTREES
1344 		    /* Subtree root (i.e. fn) may have one child */
1345 		    || (children && fn->fn_flags & RTN_ROOT)
1346 #endif
1347 		    ) {
1348 			fn->leaf = fib6_find_prefix(net, fn);
1349 #if RT6_DEBUG >= 2
1350 			if (!fn->leaf) {
1351 				WARN_ON(!fn->leaf);
1352 				fn->leaf = net->ipv6.ip6_null_entry;
1353 			}
1354 #endif
1355 			atomic_inc(&fn->leaf->rt6i_ref);
1356 			return fn->parent;
1357 		}
1358 
1359 		pn = fn->parent;
1360 #ifdef CONFIG_IPV6_SUBTREES
1361 		if (FIB6_SUBTREE(pn) == fn) {
1362 			WARN_ON(!(fn->fn_flags & RTN_ROOT));
1363 			FIB6_SUBTREE(pn) = NULL;
1364 			nstate = FWS_L;
1365 		} else {
1366 			WARN_ON(fn->fn_flags & RTN_ROOT);
1367 #endif
1368 			if (pn->right == fn)
1369 				pn->right = child;
1370 			else if (pn->left == fn)
1371 				pn->left = child;
1372 #if RT6_DEBUG >= 2
1373 			else
1374 				WARN_ON(1);
1375 #endif
1376 			if (child)
1377 				child->parent = pn;
1378 			nstate = FWS_R;
1379 #ifdef CONFIG_IPV6_SUBTREES
1380 		}
1381 #endif
1382 
1383 		read_lock(&net->ipv6.fib6_walker_lock);
1384 		FOR_WALKERS(net, w) {
1385 			if (!child) {
1386 				if (w->root == fn) {
1387 					w->root = w->node = NULL;
1388 					RT6_TRACE("W %p adjusted by delroot 1\n", w);
1389 				} else if (w->node == fn) {
1390 					RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1391 					w->node = pn;
1392 					w->state = nstate;
1393 				}
1394 			} else {
1395 				if (w->root == fn) {
1396 					w->root = child;
1397 					RT6_TRACE("W %p adjusted by delroot 2\n", w);
1398 				}
1399 				if (w->node == fn) {
1400 					w->node = child;
1401 					if (children&2) {
1402 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1403 						w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1404 					} else {
1405 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1406 						w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1407 					}
1408 				}
1409 			}
1410 		}
1411 		read_unlock(&net->ipv6.fib6_walker_lock);
1412 
1413 		node_free(fn);
1414 		if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1415 			return pn;
1416 
1417 		rt6_release(pn->leaf);
1418 		pn->leaf = NULL;
1419 		fn = pn;
1420 	}
1421 }
1422 
1423 static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1424 			   struct nl_info *info)
1425 {
1426 	struct fib6_walker *w;
1427 	struct rt6_info *rt = *rtp;
1428 	struct net *net = info->nl_net;
1429 
1430 	RT6_TRACE("fib6_del_route\n");
1431 
1432 	/* Unlink it */
1433 	*rtp = rt->dst.rt6_next;
1434 	rt->rt6i_node = NULL;
1435 	net->ipv6.rt6_stats->fib_rt_entries--;
1436 	net->ipv6.rt6_stats->fib_discarded_routes++;
1437 
1438 	/* Reset round-robin state, if necessary */
1439 	if (fn->rr_ptr == rt)
1440 		fn->rr_ptr = NULL;
1441 
1442 	/* Remove this entry from other siblings */
1443 	if (rt->rt6i_nsiblings) {
1444 		struct rt6_info *sibling, *next_sibling;
1445 
1446 		list_for_each_entry_safe(sibling, next_sibling,
1447 					 &rt->rt6i_siblings, rt6i_siblings)
1448 			sibling->rt6i_nsiblings--;
1449 		rt->rt6i_nsiblings = 0;
1450 		list_del_init(&rt->rt6i_siblings);
1451 	}
1452 
1453 	/* Adjust walkers */
1454 	read_lock(&net->ipv6.fib6_walker_lock);
1455 	FOR_WALKERS(net, w) {
1456 		if (w->state == FWS_C && w->leaf == rt) {
1457 			RT6_TRACE("walker %p adjusted by delroute\n", w);
1458 			w->leaf = rt->dst.rt6_next;
1459 			if (!w->leaf)
1460 				w->state = FWS_U;
1461 		}
1462 	}
1463 	read_unlock(&net->ipv6.fib6_walker_lock);
1464 
1465 	rt->dst.rt6_next = NULL;
1466 
1467 	/* If it was last route, expunge its radix tree node */
1468 	if (!fn->leaf) {
1469 		fn->fn_flags &= ~RTN_RTINFO;
1470 		net->ipv6.rt6_stats->fib_route_nodes--;
1471 		fn = fib6_repair_tree(net, fn);
1472 	}
1473 
1474 	fib6_purge_rt(rt, fn, net);
1475 
1476 	if (!info->skip_notify)
1477 		inet6_rt_notify(RTM_DELROUTE, rt, info, 0);
1478 	rt6_release(rt);
1479 }
1480 
1481 int fib6_del(struct rt6_info *rt, struct nl_info *info)
1482 {
1483 	struct fib6_node *fn = rcu_dereference_protected(rt->rt6i_node,
1484 				    lockdep_is_held(&rt->rt6i_table->tb6_lock));
1485 	struct net *net = info->nl_net;
1486 	struct rt6_info **rtp;
1487 
1488 #if RT6_DEBUG >= 2
1489 	if (rt->dst.obsolete > 0) {
1490 		WARN_ON(fn);
1491 		return -ENOENT;
1492 	}
1493 #endif
1494 	if (!fn || rt == net->ipv6.ip6_null_entry)
1495 		return -ENOENT;
1496 
1497 	WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1498 
1499 	if (!(rt->rt6i_flags & RTF_CACHE)) {
1500 		struct fib6_node *pn = fn;
1501 #ifdef CONFIG_IPV6_SUBTREES
1502 		/* clones of this route might be in another subtree */
1503 		if (rt->rt6i_src.plen) {
1504 			while (!(pn->fn_flags & RTN_ROOT))
1505 				pn = pn->parent;
1506 			pn = pn->parent;
1507 		}
1508 #endif
1509 		fib6_prune_clones(info->nl_net, pn);
1510 	}
1511 
1512 	/*
1513 	 *	Walk the leaf entries looking for ourself
1514 	 */
1515 
1516 	for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->dst.rt6_next) {
1517 		if (*rtp == rt) {
1518 			fib6_del_route(fn, rtp, info);
1519 			return 0;
1520 		}
1521 	}
1522 	return -ENOENT;
1523 }
1524 
1525 /*
1526  *	Tree traversal function.
1527  *
1528  *	Certainly, it is not interrupt safe.
1529  *	However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1530  *	It means, that we can modify tree during walking
1531  *	and use this function for garbage collection, clone pruning,
1532  *	cleaning tree when a device goes down etc. etc.
1533  *
1534  *	It guarantees that every node will be traversed,
1535  *	and that it will be traversed only once.
1536  *
1537  *	Callback function w->func may return:
1538  *	0 -> continue walking.
1539  *	positive value -> walking is suspended (used by tree dumps,
1540  *	and probably by gc, if it will be split to several slices)
1541  *	negative value -> terminate walking.
1542  *
1543  *	The function itself returns:
1544  *	0   -> walk is complete.
1545  *	>0  -> walk is incomplete (i.e. suspended)
1546  *	<0  -> walk is terminated by an error.
1547  */
1548 
1549 static int fib6_walk_continue(struct fib6_walker *w)
1550 {
1551 	struct fib6_node *fn, *pn;
1552 
1553 	for (;;) {
1554 		fn = w->node;
1555 		if (!fn)
1556 			return 0;
1557 
1558 		if (w->prune && fn != w->root &&
1559 		    fn->fn_flags & RTN_RTINFO && w->state < FWS_C) {
1560 			w->state = FWS_C;
1561 			w->leaf = fn->leaf;
1562 		}
1563 		switch (w->state) {
1564 #ifdef CONFIG_IPV6_SUBTREES
1565 		case FWS_S:
1566 			if (FIB6_SUBTREE(fn)) {
1567 				w->node = FIB6_SUBTREE(fn);
1568 				continue;
1569 			}
1570 			w->state = FWS_L;
1571 #endif
1572 		case FWS_L:
1573 			if (fn->left) {
1574 				w->node = fn->left;
1575 				w->state = FWS_INIT;
1576 				continue;
1577 			}
1578 			w->state = FWS_R;
1579 		case FWS_R:
1580 			if (fn->right) {
1581 				w->node = fn->right;
1582 				w->state = FWS_INIT;
1583 				continue;
1584 			}
1585 			w->state = FWS_C;
1586 			w->leaf = fn->leaf;
1587 		case FWS_C:
1588 			if (w->leaf && fn->fn_flags & RTN_RTINFO) {
1589 				int err;
1590 
1591 				if (w->skip) {
1592 					w->skip--;
1593 					goto skip;
1594 				}
1595 
1596 				err = w->func(w);
1597 				if (err)
1598 					return err;
1599 
1600 				w->count++;
1601 				continue;
1602 			}
1603 skip:
1604 			w->state = FWS_U;
1605 		case FWS_U:
1606 			if (fn == w->root)
1607 				return 0;
1608 			pn = fn->parent;
1609 			w->node = pn;
1610 #ifdef CONFIG_IPV6_SUBTREES
1611 			if (FIB6_SUBTREE(pn) == fn) {
1612 				WARN_ON(!(fn->fn_flags & RTN_ROOT));
1613 				w->state = FWS_L;
1614 				continue;
1615 			}
1616 #endif
1617 			if (pn->left == fn) {
1618 				w->state = FWS_R;
1619 				continue;
1620 			}
1621 			if (pn->right == fn) {
1622 				w->state = FWS_C;
1623 				w->leaf = w->node->leaf;
1624 				continue;
1625 			}
1626 #if RT6_DEBUG >= 2
1627 			WARN_ON(1);
1628 #endif
1629 		}
1630 	}
1631 }
1632 
1633 static int fib6_walk(struct net *net, struct fib6_walker *w)
1634 {
1635 	int res;
1636 
1637 	w->state = FWS_INIT;
1638 	w->node = w->root;
1639 
1640 	fib6_walker_link(net, w);
1641 	res = fib6_walk_continue(w);
1642 	if (res <= 0)
1643 		fib6_walker_unlink(net, w);
1644 	return res;
1645 }
1646 
1647 static int fib6_clean_node(struct fib6_walker *w)
1648 {
1649 	int res;
1650 	struct rt6_info *rt;
1651 	struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w);
1652 	struct nl_info info = {
1653 		.nl_net = c->net,
1654 	};
1655 
1656 	if (c->sernum != FIB6_NO_SERNUM_CHANGE &&
1657 	    w->node->fn_sernum != c->sernum)
1658 		w->node->fn_sernum = c->sernum;
1659 
1660 	if (!c->func) {
1661 		WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE);
1662 		w->leaf = NULL;
1663 		return 0;
1664 	}
1665 
1666 	for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
1667 		res = c->func(rt, c->arg);
1668 		if (res < 0) {
1669 			w->leaf = rt;
1670 			res = fib6_del(rt, &info);
1671 			if (res) {
1672 #if RT6_DEBUG >= 2
1673 				pr_debug("%s: del failed: rt=%p@%p err=%d\n",
1674 					 __func__, rt,
1675 					 rcu_access_pointer(rt->rt6i_node),
1676 					 res);
1677 #endif
1678 				continue;
1679 			}
1680 			return 0;
1681 		}
1682 		WARN_ON(res != 0);
1683 	}
1684 	w->leaf = rt;
1685 	return 0;
1686 }
1687 
1688 /*
1689  *	Convenient frontend to tree walker.
1690  *
1691  *	func is called on each route.
1692  *		It may return -1 -> delete this route.
1693  *		              0  -> continue walking
1694  *
1695  *	prune==1 -> only immediate children of node (certainly,
1696  *	ignoring pure split nodes) will be scanned.
1697  */
1698 
1699 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1700 			    int (*func)(struct rt6_info *, void *arg),
1701 			    bool prune, int sernum, void *arg)
1702 {
1703 	struct fib6_cleaner c;
1704 
1705 	c.w.root = root;
1706 	c.w.func = fib6_clean_node;
1707 	c.w.prune = prune;
1708 	c.w.count = 0;
1709 	c.w.skip = 0;
1710 	c.func = func;
1711 	c.sernum = sernum;
1712 	c.arg = arg;
1713 	c.net = net;
1714 
1715 	fib6_walk(net, &c.w);
1716 }
1717 
1718 static void __fib6_clean_all(struct net *net,
1719 			     int (*func)(struct rt6_info *, void *),
1720 			     int sernum, void *arg)
1721 {
1722 	struct fib6_table *table;
1723 	struct hlist_head *head;
1724 	unsigned int h;
1725 
1726 	rcu_read_lock();
1727 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1728 		head = &net->ipv6.fib_table_hash[h];
1729 		hlist_for_each_entry_rcu(table, head, tb6_hlist) {
1730 			write_lock_bh(&table->tb6_lock);
1731 			fib6_clean_tree(net, &table->tb6_root,
1732 					func, false, sernum, arg);
1733 			write_unlock_bh(&table->tb6_lock);
1734 		}
1735 	}
1736 	rcu_read_unlock();
1737 }
1738 
1739 void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *),
1740 		    void *arg)
1741 {
1742 	__fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg);
1743 }
1744 
1745 static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1746 {
1747 	if (rt->rt6i_flags & RTF_CACHE) {
1748 		RT6_TRACE("pruning clone %p\n", rt);
1749 		return -1;
1750 	}
1751 
1752 	return 0;
1753 }
1754 
1755 static void fib6_prune_clones(struct net *net, struct fib6_node *fn)
1756 {
1757 	fib6_clean_tree(net, fn, fib6_prune_clone, true,
1758 			FIB6_NO_SERNUM_CHANGE, NULL);
1759 }
1760 
1761 static void fib6_flush_trees(struct net *net)
1762 {
1763 	int new_sernum = fib6_new_sernum(net);
1764 
1765 	__fib6_clean_all(net, NULL, new_sernum, NULL);
1766 }
1767 
1768 /*
1769  *	Garbage collection
1770  */
1771 
1772 struct fib6_gc_args
1773 {
1774 	int			timeout;
1775 	int			more;
1776 };
1777 
1778 static int fib6_age(struct rt6_info *rt, void *arg)
1779 {
1780 	struct fib6_gc_args *gc_args = arg;
1781 	unsigned long now = jiffies;
1782 
1783 	/*
1784 	 *	check addrconf expiration here.
1785 	 *	Routes are expired even if they are in use.
1786 	 *
1787 	 *	Also age clones. Note, that clones are aged out
1788 	 *	only if they are not in use now.
1789 	 */
1790 
1791 	if (rt->rt6i_flags & RTF_EXPIRES && rt->dst.expires) {
1792 		if (time_after(now, rt->dst.expires)) {
1793 			RT6_TRACE("expiring %p\n", rt);
1794 			return -1;
1795 		}
1796 		gc_args->more++;
1797 	} else if (rt->rt6i_flags & RTF_CACHE) {
1798 		if (time_after_eq(now, rt->dst.lastuse + gc_args->timeout))
1799 			rt->dst.obsolete = DST_OBSOLETE_KILL;
1800 		if (atomic_read(&rt->dst.__refcnt) == 1 &&
1801 		    rt->dst.obsolete == DST_OBSOLETE_KILL) {
1802 			RT6_TRACE("aging clone %p\n", rt);
1803 			return -1;
1804 		} else if (rt->rt6i_flags & RTF_GATEWAY) {
1805 			struct neighbour *neigh;
1806 			__u8 neigh_flags = 0;
1807 
1808 			neigh = dst_neigh_lookup(&rt->dst, &rt->rt6i_gateway);
1809 			if (neigh) {
1810 				neigh_flags = neigh->flags;
1811 				neigh_release(neigh);
1812 			}
1813 			if (!(neigh_flags & NTF_ROUTER)) {
1814 				RT6_TRACE("purging route %p via non-router but gateway\n",
1815 					  rt);
1816 				return -1;
1817 			}
1818 		}
1819 		gc_args->more++;
1820 	}
1821 
1822 	return 0;
1823 }
1824 
1825 void fib6_run_gc(unsigned long expires, struct net *net, bool force)
1826 {
1827 	struct fib6_gc_args gc_args;
1828 	unsigned long now;
1829 
1830 	if (force) {
1831 		spin_lock_bh(&net->ipv6.fib6_gc_lock);
1832 	} else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) {
1833 		mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
1834 		return;
1835 	}
1836 	gc_args.timeout = expires ? (int)expires :
1837 			  net->ipv6.sysctl.ip6_rt_gc_interval;
1838 	gc_args.more = 0;
1839 
1840 	fib6_clean_all(net, fib6_age, &gc_args);
1841 	now = jiffies;
1842 	net->ipv6.ip6_rt_last_gc = now;
1843 
1844 	if (gc_args.more)
1845 		mod_timer(&net->ipv6.ip6_fib_timer,
1846 			  round_jiffies(now
1847 					+ net->ipv6.sysctl.ip6_rt_gc_interval));
1848 	else
1849 		del_timer(&net->ipv6.ip6_fib_timer);
1850 	spin_unlock_bh(&net->ipv6.fib6_gc_lock);
1851 }
1852 
1853 static void fib6_gc_timer_cb(unsigned long arg)
1854 {
1855 	fib6_run_gc(0, (struct net *)arg, true);
1856 }
1857 
1858 static int __net_init fib6_net_init(struct net *net)
1859 {
1860 	size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
1861 
1862 	spin_lock_init(&net->ipv6.fib6_gc_lock);
1863 	rwlock_init(&net->ipv6.fib6_walker_lock);
1864 	INIT_LIST_HEAD(&net->ipv6.fib6_walkers);
1865 	setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
1866 
1867 	net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
1868 	if (!net->ipv6.rt6_stats)
1869 		goto out_timer;
1870 
1871 	/* Avoid false sharing : Use at least a full cache line */
1872 	size = max_t(size_t, size, L1_CACHE_BYTES);
1873 
1874 	net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
1875 	if (!net->ipv6.fib_table_hash)
1876 		goto out_rt6_stats;
1877 
1878 	net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1879 					  GFP_KERNEL);
1880 	if (!net->ipv6.fib6_main_tbl)
1881 		goto out_fib_table_hash;
1882 
1883 	net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1884 	net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1885 	net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1886 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1887 	inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
1888 
1889 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1890 	net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
1891 					   GFP_KERNEL);
1892 	if (!net->ipv6.fib6_local_tbl)
1893 		goto out_fib6_main_tbl;
1894 	net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
1895 	net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1896 	net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
1897 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1898 	inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
1899 #endif
1900 	fib6_tables_init(net);
1901 
1902 	return 0;
1903 
1904 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1905 out_fib6_main_tbl:
1906 	kfree(net->ipv6.fib6_main_tbl);
1907 #endif
1908 out_fib_table_hash:
1909 	kfree(net->ipv6.fib_table_hash);
1910 out_rt6_stats:
1911 	kfree(net->ipv6.rt6_stats);
1912 out_timer:
1913 	return -ENOMEM;
1914 }
1915 
1916 static void fib6_net_exit(struct net *net)
1917 {
1918 	rt6_ifdown(net, NULL);
1919 	del_timer_sync(&net->ipv6.ip6_fib_timer);
1920 
1921 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1922 	inetpeer_invalidate_tree(&net->ipv6.fib6_local_tbl->tb6_peers);
1923 	kfree(net->ipv6.fib6_local_tbl);
1924 #endif
1925 	inetpeer_invalidate_tree(&net->ipv6.fib6_main_tbl->tb6_peers);
1926 	kfree(net->ipv6.fib6_main_tbl);
1927 	kfree(net->ipv6.fib_table_hash);
1928 	kfree(net->ipv6.rt6_stats);
1929 }
1930 
1931 static struct pernet_operations fib6_net_ops = {
1932 	.init = fib6_net_init,
1933 	.exit = fib6_net_exit,
1934 };
1935 
1936 int __init fib6_init(void)
1937 {
1938 	int ret = -ENOMEM;
1939 
1940 	fib6_node_kmem = kmem_cache_create("fib6_nodes",
1941 					   sizeof(struct fib6_node),
1942 					   0, SLAB_HWCACHE_ALIGN,
1943 					   NULL);
1944 	if (!fib6_node_kmem)
1945 		goto out;
1946 
1947 	ret = register_pernet_subsys(&fib6_net_ops);
1948 	if (ret)
1949 		goto out_kmem_cache_create;
1950 
1951 	ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib,
1952 			      NULL);
1953 	if (ret)
1954 		goto out_unregister_subsys;
1955 
1956 	__fib6_flush_trees = fib6_flush_trees;
1957 out:
1958 	return ret;
1959 
1960 out_unregister_subsys:
1961 	unregister_pernet_subsys(&fib6_net_ops);
1962 out_kmem_cache_create:
1963 	kmem_cache_destroy(fib6_node_kmem);
1964 	goto out;
1965 }
1966 
1967 void fib6_gc_cleanup(void)
1968 {
1969 	unregister_pernet_subsys(&fib6_net_ops);
1970 	kmem_cache_destroy(fib6_node_kmem);
1971 }
1972 
1973 #ifdef CONFIG_PROC_FS
1974 
1975 struct ipv6_route_iter {
1976 	struct seq_net_private p;
1977 	struct fib6_walker w;
1978 	loff_t skip;
1979 	struct fib6_table *tbl;
1980 	int sernum;
1981 };
1982 
1983 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
1984 {
1985 	struct rt6_info *rt = v;
1986 	struct ipv6_route_iter *iter = seq->private;
1987 
1988 	seq_printf(seq, "%pi6 %02x ", &rt->rt6i_dst.addr, rt->rt6i_dst.plen);
1989 
1990 #ifdef CONFIG_IPV6_SUBTREES
1991 	seq_printf(seq, "%pi6 %02x ", &rt->rt6i_src.addr, rt->rt6i_src.plen);
1992 #else
1993 	seq_puts(seq, "00000000000000000000000000000000 00 ");
1994 #endif
1995 	if (rt->rt6i_flags & RTF_GATEWAY)
1996 		seq_printf(seq, "%pi6", &rt->rt6i_gateway);
1997 	else
1998 		seq_puts(seq, "00000000000000000000000000000000");
1999 
2000 	seq_printf(seq, " %08x %08x %08x %08x %8s\n",
2001 		   rt->rt6i_metric, atomic_read(&rt->dst.__refcnt),
2002 		   rt->dst.__use, rt->rt6i_flags,
2003 		   rt->dst.dev ? rt->dst.dev->name : "");
2004 	iter->w.leaf = NULL;
2005 	return 0;
2006 }
2007 
2008 static int ipv6_route_yield(struct fib6_walker *w)
2009 {
2010 	struct ipv6_route_iter *iter = w->args;
2011 
2012 	if (!iter->skip)
2013 		return 1;
2014 
2015 	do {
2016 		iter->w.leaf = iter->w.leaf->dst.rt6_next;
2017 		iter->skip--;
2018 		if (!iter->skip && iter->w.leaf)
2019 			return 1;
2020 	} while (iter->w.leaf);
2021 
2022 	return 0;
2023 }
2024 
2025 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter,
2026 				      struct net *net)
2027 {
2028 	memset(&iter->w, 0, sizeof(iter->w));
2029 	iter->w.func = ipv6_route_yield;
2030 	iter->w.root = &iter->tbl->tb6_root;
2031 	iter->w.state = FWS_INIT;
2032 	iter->w.node = iter->w.root;
2033 	iter->w.args = iter;
2034 	iter->sernum = iter->w.root->fn_sernum;
2035 	INIT_LIST_HEAD(&iter->w.lh);
2036 	fib6_walker_link(net, &iter->w);
2037 }
2038 
2039 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
2040 						    struct net *net)
2041 {
2042 	unsigned int h;
2043 	struct hlist_node *node;
2044 
2045 	if (tbl) {
2046 		h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
2047 		node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist));
2048 	} else {
2049 		h = 0;
2050 		node = NULL;
2051 	}
2052 
2053 	while (!node && h < FIB6_TABLE_HASHSZ) {
2054 		node = rcu_dereference_bh(
2055 			hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
2056 	}
2057 	return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
2058 }
2059 
2060 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
2061 {
2062 	if (iter->sernum != iter->w.root->fn_sernum) {
2063 		iter->sernum = iter->w.root->fn_sernum;
2064 		iter->w.state = FWS_INIT;
2065 		iter->w.node = iter->w.root;
2066 		WARN_ON(iter->w.skip);
2067 		iter->w.skip = iter->w.count;
2068 	}
2069 }
2070 
2071 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2072 {
2073 	int r;
2074 	struct rt6_info *n;
2075 	struct net *net = seq_file_net(seq);
2076 	struct ipv6_route_iter *iter = seq->private;
2077 
2078 	if (!v)
2079 		goto iter_table;
2080 
2081 	n = ((struct rt6_info *)v)->dst.rt6_next;
2082 	if (n) {
2083 		++*pos;
2084 		return n;
2085 	}
2086 
2087 iter_table:
2088 	ipv6_route_check_sernum(iter);
2089 	read_lock(&iter->tbl->tb6_lock);
2090 	r = fib6_walk_continue(&iter->w);
2091 	read_unlock(&iter->tbl->tb6_lock);
2092 	if (r > 0) {
2093 		if (v)
2094 			++*pos;
2095 		return iter->w.leaf;
2096 	} else if (r < 0) {
2097 		fib6_walker_unlink(net, &iter->w);
2098 		return NULL;
2099 	}
2100 	fib6_walker_unlink(net, &iter->w);
2101 
2102 	iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
2103 	if (!iter->tbl)
2104 		return NULL;
2105 
2106 	ipv6_route_seq_setup_walk(iter, net);
2107 	goto iter_table;
2108 }
2109 
2110 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
2111 	__acquires(RCU_BH)
2112 {
2113 	struct net *net = seq_file_net(seq);
2114 	struct ipv6_route_iter *iter = seq->private;
2115 
2116 	rcu_read_lock_bh();
2117 	iter->tbl = ipv6_route_seq_next_table(NULL, net);
2118 	iter->skip = *pos;
2119 
2120 	if (iter->tbl) {
2121 		ipv6_route_seq_setup_walk(iter, net);
2122 		return ipv6_route_seq_next(seq, NULL, pos);
2123 	} else {
2124 		return NULL;
2125 	}
2126 }
2127 
2128 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
2129 {
2130 	struct fib6_walker *w = &iter->w;
2131 	return w->node && !(w->state == FWS_U && w->node == w->root);
2132 }
2133 
2134 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2135 	__releases(RCU_BH)
2136 {
2137 	struct net *net = seq_file_net(seq);
2138 	struct ipv6_route_iter *iter = seq->private;
2139 
2140 	if (ipv6_route_iter_active(iter))
2141 		fib6_walker_unlink(net, &iter->w);
2142 
2143 	rcu_read_unlock_bh();
2144 }
2145 
2146 static const struct seq_operations ipv6_route_seq_ops = {
2147 	.start	= ipv6_route_seq_start,
2148 	.next	= ipv6_route_seq_next,
2149 	.stop	= ipv6_route_seq_stop,
2150 	.show	= ipv6_route_seq_show
2151 };
2152 
2153 int ipv6_route_open(struct inode *inode, struct file *file)
2154 {
2155 	return seq_open_net(inode, file, &ipv6_route_seq_ops,
2156 			    sizeof(struct ipv6_route_iter));
2157 }
2158 
2159 #endif /* CONFIG_PROC_FS */
2160