xref: /linux/net/ipv6/ip6_fib.c (revision 1b044f1cfc65a7d90b209dfabd57e16d98b58c5b)
1 /*
2  *	Linux INET6 implementation
3  *	Forwarding Information Database
4  *
5  *	Authors:
6  *	Pedro Roque		<roque@di.fc.ul.pt>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *      modify it under the terms of the GNU General Public License
10  *      as published by the Free Software Foundation; either version
11  *      2 of the License, or (at your option) any later version.
12  *
13  *	Changes:
14  *	Yuji SEKIYA @USAGI:	Support default route on router node;
15  *				remove ip6_null_entry from the top of
16  *				routing table.
17  *	Ville Nuorvala:		Fixed routing subtrees.
18  */
19 
20 #define pr_fmt(fmt) "IPv6: " fmt
21 
22 #include <linux/errno.h>
23 #include <linux/types.h>
24 #include <linux/net.h>
25 #include <linux/route.h>
26 #include <linux/netdevice.h>
27 #include <linux/in6.h>
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/slab.h>
31 
32 #include <net/ipv6.h>
33 #include <net/ndisc.h>
34 #include <net/addrconf.h>
35 #include <net/lwtunnel.h>
36 
37 #include <net/ip6_fib.h>
38 #include <net/ip6_route.h>
39 
40 #define RT6_DEBUG 2
41 
42 #if RT6_DEBUG >= 3
43 #define RT6_TRACE(x...) pr_debug(x)
44 #else
45 #define RT6_TRACE(x...) do { ; } while (0)
46 #endif
47 
48 static struct kmem_cache *fib6_node_kmem __read_mostly;
49 
50 struct fib6_cleaner {
51 	struct fib6_walker w;
52 	struct net *net;
53 	int (*func)(struct rt6_info *, void *arg);
54 	int sernum;
55 	void *arg;
56 };
57 
58 #ifdef CONFIG_IPV6_SUBTREES
59 #define FWS_INIT FWS_S
60 #else
61 #define FWS_INIT FWS_L
62 #endif
63 
64 static void fib6_prune_clones(struct net *net, struct fib6_node *fn);
65 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
66 static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
67 static int fib6_walk(struct net *net, struct fib6_walker *w);
68 static int fib6_walk_continue(struct fib6_walker *w);
69 
70 /*
71  *	A routing update causes an increase of the serial number on the
72  *	affected subtree. This allows for cached routes to be asynchronously
73  *	tested when modifications are made to the destination cache as a
74  *	result of redirects, path MTU changes, etc.
75  */
76 
77 static void fib6_gc_timer_cb(unsigned long arg);
78 
79 #define FOR_WALKERS(net, w) \
80 	list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh)
81 
82 static void fib6_walker_link(struct net *net, struct fib6_walker *w)
83 {
84 	write_lock_bh(&net->ipv6.fib6_walker_lock);
85 	list_add(&w->lh, &net->ipv6.fib6_walkers);
86 	write_unlock_bh(&net->ipv6.fib6_walker_lock);
87 }
88 
89 static void fib6_walker_unlink(struct net *net, struct fib6_walker *w)
90 {
91 	write_lock_bh(&net->ipv6.fib6_walker_lock);
92 	list_del(&w->lh);
93 	write_unlock_bh(&net->ipv6.fib6_walker_lock);
94 }
95 
96 static int fib6_new_sernum(struct net *net)
97 {
98 	int new, old;
99 
100 	do {
101 		old = atomic_read(&net->ipv6.fib6_sernum);
102 		new = old < INT_MAX ? old + 1 : 1;
103 	} while (atomic_cmpxchg(&net->ipv6.fib6_sernum,
104 				old, new) != old);
105 	return new;
106 }
107 
108 enum {
109 	FIB6_NO_SERNUM_CHANGE = 0,
110 };
111 
112 /*
113  *	Auxiliary address test functions for the radix tree.
114  *
115  *	These assume a 32bit processor (although it will work on
116  *	64bit processors)
117  */
118 
119 /*
120  *	test bit
121  */
122 #if defined(__LITTLE_ENDIAN)
123 # define BITOP_BE32_SWIZZLE	(0x1F & ~7)
124 #else
125 # define BITOP_BE32_SWIZZLE	0
126 #endif
127 
128 static __be32 addr_bit_set(const void *token, int fn_bit)
129 {
130 	const __be32 *addr = token;
131 	/*
132 	 * Here,
133 	 *	1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
134 	 * is optimized version of
135 	 *	htonl(1 << ((~fn_bit)&0x1F))
136 	 * See include/asm-generic/bitops/le.h.
137 	 */
138 	return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
139 	       addr[fn_bit >> 5];
140 }
141 
142 static struct fib6_node *node_alloc(void)
143 {
144 	struct fib6_node *fn;
145 
146 	fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
147 
148 	return fn;
149 }
150 
151 static void node_free(struct fib6_node *fn)
152 {
153 	kmem_cache_free(fib6_node_kmem, fn);
154 }
155 
156 static void rt6_rcu_free(struct rt6_info *rt)
157 {
158 	call_rcu(&rt->dst.rcu_head, dst_rcu_free);
159 }
160 
161 static void rt6_free_pcpu(struct rt6_info *non_pcpu_rt)
162 {
163 	int cpu;
164 
165 	if (!non_pcpu_rt->rt6i_pcpu)
166 		return;
167 
168 	for_each_possible_cpu(cpu) {
169 		struct rt6_info **ppcpu_rt;
170 		struct rt6_info *pcpu_rt;
171 
172 		ppcpu_rt = per_cpu_ptr(non_pcpu_rt->rt6i_pcpu, cpu);
173 		pcpu_rt = *ppcpu_rt;
174 		if (pcpu_rt) {
175 			rt6_rcu_free(pcpu_rt);
176 			*ppcpu_rt = NULL;
177 		}
178 	}
179 
180 	free_percpu(non_pcpu_rt->rt6i_pcpu);
181 	non_pcpu_rt->rt6i_pcpu = NULL;
182 }
183 
184 static void rt6_release(struct rt6_info *rt)
185 {
186 	if (atomic_dec_and_test(&rt->rt6i_ref)) {
187 		rt6_free_pcpu(rt);
188 		rt6_rcu_free(rt);
189 	}
190 }
191 
192 static void fib6_link_table(struct net *net, struct fib6_table *tb)
193 {
194 	unsigned int h;
195 
196 	/*
197 	 * Initialize table lock at a single place to give lockdep a key,
198 	 * tables aren't visible prior to being linked to the list.
199 	 */
200 	rwlock_init(&tb->tb6_lock);
201 
202 	h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
203 
204 	/*
205 	 * No protection necessary, this is the only list mutatation
206 	 * operation, tables never disappear once they exist.
207 	 */
208 	hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
209 }
210 
211 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
212 
213 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
214 {
215 	struct fib6_table *table;
216 
217 	table = kzalloc(sizeof(*table), GFP_ATOMIC);
218 	if (table) {
219 		table->tb6_id = id;
220 		table->tb6_root.leaf = net->ipv6.ip6_null_entry;
221 		table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
222 		inet_peer_base_init(&table->tb6_peers);
223 	}
224 
225 	return table;
226 }
227 
228 struct fib6_table *fib6_new_table(struct net *net, u32 id)
229 {
230 	struct fib6_table *tb;
231 
232 	if (id == 0)
233 		id = RT6_TABLE_MAIN;
234 	tb = fib6_get_table(net, id);
235 	if (tb)
236 		return tb;
237 
238 	tb = fib6_alloc_table(net, id);
239 	if (tb)
240 		fib6_link_table(net, tb);
241 
242 	return tb;
243 }
244 EXPORT_SYMBOL_GPL(fib6_new_table);
245 
246 struct fib6_table *fib6_get_table(struct net *net, u32 id)
247 {
248 	struct fib6_table *tb;
249 	struct hlist_head *head;
250 	unsigned int h;
251 
252 	if (id == 0)
253 		id = RT6_TABLE_MAIN;
254 	h = id & (FIB6_TABLE_HASHSZ - 1);
255 	rcu_read_lock();
256 	head = &net->ipv6.fib_table_hash[h];
257 	hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
258 		if (tb->tb6_id == id) {
259 			rcu_read_unlock();
260 			return tb;
261 		}
262 	}
263 	rcu_read_unlock();
264 
265 	return NULL;
266 }
267 EXPORT_SYMBOL_GPL(fib6_get_table);
268 
269 static void __net_init fib6_tables_init(struct net *net)
270 {
271 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
272 	fib6_link_table(net, net->ipv6.fib6_local_tbl);
273 }
274 #else
275 
276 struct fib6_table *fib6_new_table(struct net *net, u32 id)
277 {
278 	return fib6_get_table(net, id);
279 }
280 
281 struct fib6_table *fib6_get_table(struct net *net, u32 id)
282 {
283 	  return net->ipv6.fib6_main_tbl;
284 }
285 
286 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
287 				   int flags, pol_lookup_t lookup)
288 {
289 	struct rt6_info *rt;
290 
291 	rt = lookup(net, net->ipv6.fib6_main_tbl, fl6, flags);
292 	if (rt->dst.error == -EAGAIN) {
293 		ip6_rt_put(rt);
294 		rt = net->ipv6.ip6_null_entry;
295 		dst_hold(&rt->dst);
296 	}
297 
298 	return &rt->dst;
299 }
300 
301 static void __net_init fib6_tables_init(struct net *net)
302 {
303 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
304 }
305 
306 #endif
307 
308 static int fib6_dump_node(struct fib6_walker *w)
309 {
310 	int res;
311 	struct rt6_info *rt;
312 
313 	for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
314 		res = rt6_dump_route(rt, w->args);
315 		if (res < 0) {
316 			/* Frame is full, suspend walking */
317 			w->leaf = rt;
318 			return 1;
319 		}
320 
321 		/* Multipath routes are dumped in one route with the
322 		 * RTA_MULTIPATH attribute. Jump 'rt' to point to the
323 		 * last sibling of this route (no need to dump the
324 		 * sibling routes again)
325 		 */
326 		if (rt->rt6i_nsiblings)
327 			rt = list_last_entry(&rt->rt6i_siblings,
328 					     struct rt6_info,
329 					     rt6i_siblings);
330 	}
331 	w->leaf = NULL;
332 	return 0;
333 }
334 
335 static void fib6_dump_end(struct netlink_callback *cb)
336 {
337 	struct net *net = sock_net(cb->skb->sk);
338 	struct fib6_walker *w = (void *)cb->args[2];
339 
340 	if (w) {
341 		if (cb->args[4]) {
342 			cb->args[4] = 0;
343 			fib6_walker_unlink(net, w);
344 		}
345 		cb->args[2] = 0;
346 		kfree(w);
347 	}
348 	cb->done = (void *)cb->args[3];
349 	cb->args[1] = 3;
350 }
351 
352 static int fib6_dump_done(struct netlink_callback *cb)
353 {
354 	fib6_dump_end(cb);
355 	return cb->done ? cb->done(cb) : 0;
356 }
357 
358 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
359 			   struct netlink_callback *cb)
360 {
361 	struct net *net = sock_net(skb->sk);
362 	struct fib6_walker *w;
363 	int res;
364 
365 	w = (void *)cb->args[2];
366 	w->root = &table->tb6_root;
367 
368 	if (cb->args[4] == 0) {
369 		w->count = 0;
370 		w->skip = 0;
371 
372 		read_lock_bh(&table->tb6_lock);
373 		res = fib6_walk(net, w);
374 		read_unlock_bh(&table->tb6_lock);
375 		if (res > 0) {
376 			cb->args[4] = 1;
377 			cb->args[5] = w->root->fn_sernum;
378 		}
379 	} else {
380 		if (cb->args[5] != w->root->fn_sernum) {
381 			/* Begin at the root if the tree changed */
382 			cb->args[5] = w->root->fn_sernum;
383 			w->state = FWS_INIT;
384 			w->node = w->root;
385 			w->skip = w->count;
386 		} else
387 			w->skip = 0;
388 
389 		read_lock_bh(&table->tb6_lock);
390 		res = fib6_walk_continue(w);
391 		read_unlock_bh(&table->tb6_lock);
392 		if (res <= 0) {
393 			fib6_walker_unlink(net, w);
394 			cb->args[4] = 0;
395 		}
396 	}
397 
398 	return res;
399 }
400 
401 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
402 {
403 	struct net *net = sock_net(skb->sk);
404 	unsigned int h, s_h;
405 	unsigned int e = 0, s_e;
406 	struct rt6_rtnl_dump_arg arg;
407 	struct fib6_walker *w;
408 	struct fib6_table *tb;
409 	struct hlist_head *head;
410 	int res = 0;
411 
412 	s_h = cb->args[0];
413 	s_e = cb->args[1];
414 
415 	w = (void *)cb->args[2];
416 	if (!w) {
417 		/* New dump:
418 		 *
419 		 * 1. hook callback destructor.
420 		 */
421 		cb->args[3] = (long)cb->done;
422 		cb->done = fib6_dump_done;
423 
424 		/*
425 		 * 2. allocate and initialize walker.
426 		 */
427 		w = kzalloc(sizeof(*w), GFP_ATOMIC);
428 		if (!w)
429 			return -ENOMEM;
430 		w->func = fib6_dump_node;
431 		cb->args[2] = (long)w;
432 	}
433 
434 	arg.skb = skb;
435 	arg.cb = cb;
436 	arg.net = net;
437 	w->args = &arg;
438 
439 	rcu_read_lock();
440 	for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
441 		e = 0;
442 		head = &net->ipv6.fib_table_hash[h];
443 		hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
444 			if (e < s_e)
445 				goto next;
446 			res = fib6_dump_table(tb, skb, cb);
447 			if (res != 0)
448 				goto out;
449 next:
450 			e++;
451 		}
452 	}
453 out:
454 	rcu_read_unlock();
455 	cb->args[1] = e;
456 	cb->args[0] = h;
457 
458 	res = res < 0 ? res : skb->len;
459 	if (res <= 0)
460 		fib6_dump_end(cb);
461 	return res;
462 }
463 
464 /*
465  *	Routing Table
466  *
467  *	return the appropriate node for a routing tree "add" operation
468  *	by either creating and inserting or by returning an existing
469  *	node.
470  */
471 
472 static struct fib6_node *fib6_add_1(struct fib6_node *root,
473 				     struct in6_addr *addr, int plen,
474 				     int offset, int allow_create,
475 				     int replace_required, int sernum)
476 {
477 	struct fib6_node *fn, *in, *ln;
478 	struct fib6_node *pn = NULL;
479 	struct rt6key *key;
480 	int	bit;
481 	__be32	dir = 0;
482 
483 	RT6_TRACE("fib6_add_1\n");
484 
485 	/* insert node in tree */
486 
487 	fn = root;
488 
489 	do {
490 		key = (struct rt6key *)((u8 *)fn->leaf + offset);
491 
492 		/*
493 		 *	Prefix match
494 		 */
495 		if (plen < fn->fn_bit ||
496 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
497 			if (!allow_create) {
498 				if (replace_required) {
499 					pr_warn("Can't replace route, no match found\n");
500 					return ERR_PTR(-ENOENT);
501 				}
502 				pr_warn("NLM_F_CREATE should be set when creating new route\n");
503 			}
504 			goto insert_above;
505 		}
506 
507 		/*
508 		 *	Exact match ?
509 		 */
510 
511 		if (plen == fn->fn_bit) {
512 			/* clean up an intermediate node */
513 			if (!(fn->fn_flags & RTN_RTINFO)) {
514 				rt6_release(fn->leaf);
515 				fn->leaf = NULL;
516 			}
517 
518 			fn->fn_sernum = sernum;
519 
520 			return fn;
521 		}
522 
523 		/*
524 		 *	We have more bits to go
525 		 */
526 
527 		/* Try to walk down on tree. */
528 		fn->fn_sernum = sernum;
529 		dir = addr_bit_set(addr, fn->fn_bit);
530 		pn = fn;
531 		fn = dir ? fn->right : fn->left;
532 	} while (fn);
533 
534 	if (!allow_create) {
535 		/* We should not create new node because
536 		 * NLM_F_REPLACE was specified without NLM_F_CREATE
537 		 * I assume it is safe to require NLM_F_CREATE when
538 		 * REPLACE flag is used! Later we may want to remove the
539 		 * check for replace_required, because according
540 		 * to netlink specification, NLM_F_CREATE
541 		 * MUST be specified if new route is created.
542 		 * That would keep IPv6 consistent with IPv4
543 		 */
544 		if (replace_required) {
545 			pr_warn("Can't replace route, no match found\n");
546 			return ERR_PTR(-ENOENT);
547 		}
548 		pr_warn("NLM_F_CREATE should be set when creating new route\n");
549 	}
550 	/*
551 	 *	We walked to the bottom of tree.
552 	 *	Create new leaf node without children.
553 	 */
554 
555 	ln = node_alloc();
556 
557 	if (!ln)
558 		return ERR_PTR(-ENOMEM);
559 	ln->fn_bit = plen;
560 
561 	ln->parent = pn;
562 	ln->fn_sernum = sernum;
563 
564 	if (dir)
565 		pn->right = ln;
566 	else
567 		pn->left  = ln;
568 
569 	return ln;
570 
571 
572 insert_above:
573 	/*
574 	 * split since we don't have a common prefix anymore or
575 	 * we have a less significant route.
576 	 * we've to insert an intermediate node on the list
577 	 * this new node will point to the one we need to create
578 	 * and the current
579 	 */
580 
581 	pn = fn->parent;
582 
583 	/* find 1st bit in difference between the 2 addrs.
584 
585 	   See comment in __ipv6_addr_diff: bit may be an invalid value,
586 	   but if it is >= plen, the value is ignored in any case.
587 	 */
588 
589 	bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
590 
591 	/*
592 	 *		(intermediate)[in]
593 	 *	          /	   \
594 	 *	(new leaf node)[ln] (old node)[fn]
595 	 */
596 	if (plen > bit) {
597 		in = node_alloc();
598 		ln = node_alloc();
599 
600 		if (!in || !ln) {
601 			if (in)
602 				node_free(in);
603 			if (ln)
604 				node_free(ln);
605 			return ERR_PTR(-ENOMEM);
606 		}
607 
608 		/*
609 		 * new intermediate node.
610 		 * RTN_RTINFO will
611 		 * be off since that an address that chooses one of
612 		 * the branches would not match less specific routes
613 		 * in the other branch
614 		 */
615 
616 		in->fn_bit = bit;
617 
618 		in->parent = pn;
619 		in->leaf = fn->leaf;
620 		atomic_inc(&in->leaf->rt6i_ref);
621 
622 		in->fn_sernum = sernum;
623 
624 		/* update parent pointer */
625 		if (dir)
626 			pn->right = in;
627 		else
628 			pn->left  = in;
629 
630 		ln->fn_bit = plen;
631 
632 		ln->parent = in;
633 		fn->parent = in;
634 
635 		ln->fn_sernum = sernum;
636 
637 		if (addr_bit_set(addr, bit)) {
638 			in->right = ln;
639 			in->left  = fn;
640 		} else {
641 			in->left  = ln;
642 			in->right = fn;
643 		}
644 	} else { /* plen <= bit */
645 
646 		/*
647 		 *		(new leaf node)[ln]
648 		 *	          /	   \
649 		 *	     (old node)[fn] NULL
650 		 */
651 
652 		ln = node_alloc();
653 
654 		if (!ln)
655 			return ERR_PTR(-ENOMEM);
656 
657 		ln->fn_bit = plen;
658 
659 		ln->parent = pn;
660 
661 		ln->fn_sernum = sernum;
662 
663 		if (dir)
664 			pn->right = ln;
665 		else
666 			pn->left  = ln;
667 
668 		if (addr_bit_set(&key->addr, plen))
669 			ln->right = fn;
670 		else
671 			ln->left  = fn;
672 
673 		fn->parent = ln;
674 	}
675 	return ln;
676 }
677 
678 static bool rt6_qualify_for_ecmp(struct rt6_info *rt)
679 {
680 	return (rt->rt6i_flags & (RTF_GATEWAY|RTF_ADDRCONF|RTF_DYNAMIC)) ==
681 	       RTF_GATEWAY;
682 }
683 
684 static void fib6_copy_metrics(u32 *mp, const struct mx6_config *mxc)
685 {
686 	int i;
687 
688 	for (i = 0; i < RTAX_MAX; i++) {
689 		if (test_bit(i, mxc->mx_valid))
690 			mp[i] = mxc->mx[i];
691 	}
692 }
693 
694 static int fib6_commit_metrics(struct dst_entry *dst, struct mx6_config *mxc)
695 {
696 	if (!mxc->mx)
697 		return 0;
698 
699 	if (dst->flags & DST_HOST) {
700 		u32 *mp = dst_metrics_write_ptr(dst);
701 
702 		if (unlikely(!mp))
703 			return -ENOMEM;
704 
705 		fib6_copy_metrics(mp, mxc);
706 	} else {
707 		dst_init_metrics(dst, mxc->mx, false);
708 
709 		/* We've stolen mx now. */
710 		mxc->mx = NULL;
711 	}
712 
713 	return 0;
714 }
715 
716 static void fib6_purge_rt(struct rt6_info *rt, struct fib6_node *fn,
717 			  struct net *net)
718 {
719 	if (atomic_read(&rt->rt6i_ref) != 1) {
720 		/* This route is used as dummy address holder in some split
721 		 * nodes. It is not leaked, but it still holds other resources,
722 		 * which must be released in time. So, scan ascendant nodes
723 		 * and replace dummy references to this route with references
724 		 * to still alive ones.
725 		 */
726 		while (fn) {
727 			if (!(fn->fn_flags & RTN_RTINFO) && fn->leaf == rt) {
728 				fn->leaf = fib6_find_prefix(net, fn);
729 				atomic_inc(&fn->leaf->rt6i_ref);
730 				rt6_release(rt);
731 			}
732 			fn = fn->parent;
733 		}
734 		/* No more references are possible at this point. */
735 		BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
736 	}
737 }
738 
739 /*
740  *	Insert routing information in a node.
741  */
742 
743 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
744 			    struct nl_info *info, struct mx6_config *mxc)
745 {
746 	struct rt6_info *iter = NULL;
747 	struct rt6_info **ins;
748 	struct rt6_info **fallback_ins = NULL;
749 	int replace = (info->nlh &&
750 		       (info->nlh->nlmsg_flags & NLM_F_REPLACE));
751 	int add = (!info->nlh ||
752 		   (info->nlh->nlmsg_flags & NLM_F_CREATE));
753 	int found = 0;
754 	bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
755 	u16 nlflags = NLM_F_EXCL;
756 	int err;
757 
758 	if (info->nlh && (info->nlh->nlmsg_flags & NLM_F_APPEND))
759 		nlflags |= NLM_F_APPEND;
760 
761 	ins = &fn->leaf;
762 
763 	for (iter = fn->leaf; iter; iter = iter->dst.rt6_next) {
764 		/*
765 		 *	Search for duplicates
766 		 */
767 
768 		if (iter->rt6i_metric == rt->rt6i_metric) {
769 			/*
770 			 *	Same priority level
771 			 */
772 			if (info->nlh &&
773 			    (info->nlh->nlmsg_flags & NLM_F_EXCL))
774 				return -EEXIST;
775 
776 			nlflags &= ~NLM_F_EXCL;
777 			if (replace) {
778 				if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) {
779 					found++;
780 					break;
781 				}
782 				if (rt_can_ecmp)
783 					fallback_ins = fallback_ins ?: ins;
784 				goto next_iter;
785 			}
786 
787 			if (iter->dst.dev == rt->dst.dev &&
788 			    iter->rt6i_idev == rt->rt6i_idev &&
789 			    ipv6_addr_equal(&iter->rt6i_gateway,
790 					    &rt->rt6i_gateway)) {
791 				if (rt->rt6i_nsiblings)
792 					rt->rt6i_nsiblings = 0;
793 				if (!(iter->rt6i_flags & RTF_EXPIRES))
794 					return -EEXIST;
795 				if (!(rt->rt6i_flags & RTF_EXPIRES))
796 					rt6_clean_expires(iter);
797 				else
798 					rt6_set_expires(iter, rt->dst.expires);
799 				iter->rt6i_pmtu = rt->rt6i_pmtu;
800 				return -EEXIST;
801 			}
802 			/* If we have the same destination and the same metric,
803 			 * but not the same gateway, then the route we try to
804 			 * add is sibling to this route, increment our counter
805 			 * of siblings, and later we will add our route to the
806 			 * list.
807 			 * Only static routes (which don't have flag
808 			 * RTF_EXPIRES) are used for ECMPv6.
809 			 *
810 			 * To avoid long list, we only had siblings if the
811 			 * route have a gateway.
812 			 */
813 			if (rt_can_ecmp &&
814 			    rt6_qualify_for_ecmp(iter))
815 				rt->rt6i_nsiblings++;
816 		}
817 
818 		if (iter->rt6i_metric > rt->rt6i_metric)
819 			break;
820 
821 next_iter:
822 		ins = &iter->dst.rt6_next;
823 	}
824 
825 	if (fallback_ins && !found) {
826 		/* No ECMP-able route found, replace first non-ECMP one */
827 		ins = fallback_ins;
828 		iter = *ins;
829 		found++;
830 	}
831 
832 	/* Reset round-robin state, if necessary */
833 	if (ins == &fn->leaf)
834 		fn->rr_ptr = NULL;
835 
836 	/* Link this route to others same route. */
837 	if (rt->rt6i_nsiblings) {
838 		unsigned int rt6i_nsiblings;
839 		struct rt6_info *sibling, *temp_sibling;
840 
841 		/* Find the first route that have the same metric */
842 		sibling = fn->leaf;
843 		while (sibling) {
844 			if (sibling->rt6i_metric == rt->rt6i_metric &&
845 			    rt6_qualify_for_ecmp(sibling)) {
846 				list_add_tail(&rt->rt6i_siblings,
847 					      &sibling->rt6i_siblings);
848 				break;
849 			}
850 			sibling = sibling->dst.rt6_next;
851 		}
852 		/* For each sibling in the list, increment the counter of
853 		 * siblings. BUG() if counters does not match, list of siblings
854 		 * is broken!
855 		 */
856 		rt6i_nsiblings = 0;
857 		list_for_each_entry_safe(sibling, temp_sibling,
858 					 &rt->rt6i_siblings, rt6i_siblings) {
859 			sibling->rt6i_nsiblings++;
860 			BUG_ON(sibling->rt6i_nsiblings != rt->rt6i_nsiblings);
861 			rt6i_nsiblings++;
862 		}
863 		BUG_ON(rt6i_nsiblings != rt->rt6i_nsiblings);
864 	}
865 
866 	/*
867 	 *	insert node
868 	 */
869 	if (!replace) {
870 		if (!add)
871 			pr_warn("NLM_F_CREATE should be set when creating new route\n");
872 
873 add:
874 		nlflags |= NLM_F_CREATE;
875 		err = fib6_commit_metrics(&rt->dst, mxc);
876 		if (err)
877 			return err;
878 
879 		rt->dst.rt6_next = iter;
880 		*ins = rt;
881 		rt->rt6i_node = fn;
882 		atomic_inc(&rt->rt6i_ref);
883 		if (!info->skip_notify)
884 			inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags);
885 		info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
886 
887 		if (!(fn->fn_flags & RTN_RTINFO)) {
888 			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
889 			fn->fn_flags |= RTN_RTINFO;
890 		}
891 
892 	} else {
893 		int nsiblings;
894 
895 		if (!found) {
896 			if (add)
897 				goto add;
898 			pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
899 			return -ENOENT;
900 		}
901 
902 		err = fib6_commit_metrics(&rt->dst, mxc);
903 		if (err)
904 			return err;
905 
906 		*ins = rt;
907 		rt->rt6i_node = fn;
908 		rt->dst.rt6_next = iter->dst.rt6_next;
909 		atomic_inc(&rt->rt6i_ref);
910 		if (!info->skip_notify)
911 			inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE);
912 		if (!(fn->fn_flags & RTN_RTINFO)) {
913 			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
914 			fn->fn_flags |= RTN_RTINFO;
915 		}
916 		nsiblings = iter->rt6i_nsiblings;
917 		fib6_purge_rt(iter, fn, info->nl_net);
918 		rt6_release(iter);
919 
920 		if (nsiblings) {
921 			/* Replacing an ECMP route, remove all siblings */
922 			ins = &rt->dst.rt6_next;
923 			iter = *ins;
924 			while (iter) {
925 				if (iter->rt6i_metric > rt->rt6i_metric)
926 					break;
927 				if (rt6_qualify_for_ecmp(iter)) {
928 					*ins = iter->dst.rt6_next;
929 					fib6_purge_rt(iter, fn, info->nl_net);
930 					rt6_release(iter);
931 					nsiblings--;
932 				} else {
933 					ins = &iter->dst.rt6_next;
934 				}
935 				iter = *ins;
936 			}
937 			WARN_ON(nsiblings != 0);
938 		}
939 	}
940 
941 	return 0;
942 }
943 
944 static void fib6_start_gc(struct net *net, struct rt6_info *rt)
945 {
946 	if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
947 	    (rt->rt6i_flags & (RTF_EXPIRES | RTF_CACHE)))
948 		mod_timer(&net->ipv6.ip6_fib_timer,
949 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
950 }
951 
952 void fib6_force_start_gc(struct net *net)
953 {
954 	if (!timer_pending(&net->ipv6.ip6_fib_timer))
955 		mod_timer(&net->ipv6.ip6_fib_timer,
956 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
957 }
958 
959 /*
960  *	Add routing information to the routing tree.
961  *	<destination addr>/<source addr>
962  *	with source addr info in sub-trees
963  */
964 
965 int fib6_add(struct fib6_node *root, struct rt6_info *rt,
966 	     struct nl_info *info, struct mx6_config *mxc)
967 {
968 	struct fib6_node *fn, *pn = NULL;
969 	int err = -ENOMEM;
970 	int allow_create = 1;
971 	int replace_required = 0;
972 	int sernum = fib6_new_sernum(info->nl_net);
973 
974 	if (WARN_ON_ONCE((rt->dst.flags & DST_NOCACHE) &&
975 			 !atomic_read(&rt->dst.__refcnt)))
976 		return -EINVAL;
977 
978 	if (info->nlh) {
979 		if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
980 			allow_create = 0;
981 		if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
982 			replace_required = 1;
983 	}
984 	if (!allow_create && !replace_required)
985 		pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
986 
987 	fn = fib6_add_1(root, &rt->rt6i_dst.addr, rt->rt6i_dst.plen,
988 			offsetof(struct rt6_info, rt6i_dst), allow_create,
989 			replace_required, sernum);
990 	if (IS_ERR(fn)) {
991 		err = PTR_ERR(fn);
992 		fn = NULL;
993 		goto out;
994 	}
995 
996 	pn = fn;
997 
998 #ifdef CONFIG_IPV6_SUBTREES
999 	if (rt->rt6i_src.plen) {
1000 		struct fib6_node *sn;
1001 
1002 		if (!fn->subtree) {
1003 			struct fib6_node *sfn;
1004 
1005 			/*
1006 			 * Create subtree.
1007 			 *
1008 			 *		fn[main tree]
1009 			 *		|
1010 			 *		sfn[subtree root]
1011 			 *		   \
1012 			 *		    sn[new leaf node]
1013 			 */
1014 
1015 			/* Create subtree root node */
1016 			sfn = node_alloc();
1017 			if (!sfn)
1018 				goto st_failure;
1019 
1020 			sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
1021 			atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
1022 			sfn->fn_flags = RTN_ROOT;
1023 			sfn->fn_sernum = sernum;
1024 
1025 			/* Now add the first leaf node to new subtree */
1026 
1027 			sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
1028 					rt->rt6i_src.plen,
1029 					offsetof(struct rt6_info, rt6i_src),
1030 					allow_create, replace_required, sernum);
1031 
1032 			if (IS_ERR(sn)) {
1033 				/* If it is failed, discard just allocated
1034 				   root, and then (in st_failure) stale node
1035 				   in main tree.
1036 				 */
1037 				node_free(sfn);
1038 				err = PTR_ERR(sn);
1039 				goto st_failure;
1040 			}
1041 
1042 			/* Now link new subtree to main tree */
1043 			sfn->parent = fn;
1044 			fn->subtree = sfn;
1045 		} else {
1046 			sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
1047 					rt->rt6i_src.plen,
1048 					offsetof(struct rt6_info, rt6i_src),
1049 					allow_create, replace_required, sernum);
1050 
1051 			if (IS_ERR(sn)) {
1052 				err = PTR_ERR(sn);
1053 				goto st_failure;
1054 			}
1055 		}
1056 
1057 		if (!fn->leaf) {
1058 			fn->leaf = rt;
1059 			atomic_inc(&rt->rt6i_ref);
1060 		}
1061 		fn = sn;
1062 	}
1063 #endif
1064 
1065 	err = fib6_add_rt2node(fn, rt, info, mxc);
1066 	if (!err) {
1067 		fib6_start_gc(info->nl_net, rt);
1068 		if (!(rt->rt6i_flags & RTF_CACHE))
1069 			fib6_prune_clones(info->nl_net, pn);
1070 		rt->dst.flags &= ~DST_NOCACHE;
1071 	}
1072 
1073 out:
1074 	if (err) {
1075 #ifdef CONFIG_IPV6_SUBTREES
1076 		/*
1077 		 * If fib6_add_1 has cleared the old leaf pointer in the
1078 		 * super-tree leaf node we have to find a new one for it.
1079 		 */
1080 		if (pn != fn && pn->leaf == rt) {
1081 			pn->leaf = NULL;
1082 			atomic_dec(&rt->rt6i_ref);
1083 		}
1084 		if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
1085 			pn->leaf = fib6_find_prefix(info->nl_net, pn);
1086 #if RT6_DEBUG >= 2
1087 			if (!pn->leaf) {
1088 				WARN_ON(pn->leaf == NULL);
1089 				pn->leaf = info->nl_net->ipv6.ip6_null_entry;
1090 			}
1091 #endif
1092 			atomic_inc(&pn->leaf->rt6i_ref);
1093 		}
1094 #endif
1095 		if (!(rt->dst.flags & DST_NOCACHE))
1096 			dst_free(&rt->dst);
1097 	}
1098 	return err;
1099 
1100 #ifdef CONFIG_IPV6_SUBTREES
1101 	/* Subtree creation failed, probably main tree node
1102 	   is orphan. If it is, shoot it.
1103 	 */
1104 st_failure:
1105 	if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
1106 		fib6_repair_tree(info->nl_net, fn);
1107 	if (!(rt->dst.flags & DST_NOCACHE))
1108 		dst_free(&rt->dst);
1109 	return err;
1110 #endif
1111 }
1112 
1113 /*
1114  *	Routing tree lookup
1115  *
1116  */
1117 
1118 struct lookup_args {
1119 	int			offset;		/* key offset on rt6_info	*/
1120 	const struct in6_addr	*addr;		/* search key			*/
1121 };
1122 
1123 static struct fib6_node *fib6_lookup_1(struct fib6_node *root,
1124 				       struct lookup_args *args)
1125 {
1126 	struct fib6_node *fn;
1127 	__be32 dir;
1128 
1129 	if (unlikely(args->offset == 0))
1130 		return NULL;
1131 
1132 	/*
1133 	 *	Descend on a tree
1134 	 */
1135 
1136 	fn = root;
1137 
1138 	for (;;) {
1139 		struct fib6_node *next;
1140 
1141 		dir = addr_bit_set(args->addr, fn->fn_bit);
1142 
1143 		next = dir ? fn->right : fn->left;
1144 
1145 		if (next) {
1146 			fn = next;
1147 			continue;
1148 		}
1149 		break;
1150 	}
1151 
1152 	while (fn) {
1153 		if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
1154 			struct rt6key *key;
1155 
1156 			key = (struct rt6key *) ((u8 *) fn->leaf +
1157 						 args->offset);
1158 
1159 			if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1160 #ifdef CONFIG_IPV6_SUBTREES
1161 				if (fn->subtree) {
1162 					struct fib6_node *sfn;
1163 					sfn = fib6_lookup_1(fn->subtree,
1164 							    args + 1);
1165 					if (!sfn)
1166 						goto backtrack;
1167 					fn = sfn;
1168 				}
1169 #endif
1170 				if (fn->fn_flags & RTN_RTINFO)
1171 					return fn;
1172 			}
1173 		}
1174 #ifdef CONFIG_IPV6_SUBTREES
1175 backtrack:
1176 #endif
1177 		if (fn->fn_flags & RTN_ROOT)
1178 			break;
1179 
1180 		fn = fn->parent;
1181 	}
1182 
1183 	return NULL;
1184 }
1185 
1186 struct fib6_node *fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr,
1187 			      const struct in6_addr *saddr)
1188 {
1189 	struct fib6_node *fn;
1190 	struct lookup_args args[] = {
1191 		{
1192 			.offset = offsetof(struct rt6_info, rt6i_dst),
1193 			.addr = daddr,
1194 		},
1195 #ifdef CONFIG_IPV6_SUBTREES
1196 		{
1197 			.offset = offsetof(struct rt6_info, rt6i_src),
1198 			.addr = saddr,
1199 		},
1200 #endif
1201 		{
1202 			.offset = 0,	/* sentinel */
1203 		}
1204 	};
1205 
1206 	fn = fib6_lookup_1(root, daddr ? args : args + 1);
1207 	if (!fn || fn->fn_flags & RTN_TL_ROOT)
1208 		fn = root;
1209 
1210 	return fn;
1211 }
1212 
1213 /*
1214  *	Get node with specified destination prefix (and source prefix,
1215  *	if subtrees are used)
1216  */
1217 
1218 
1219 static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1220 				       const struct in6_addr *addr,
1221 				       int plen, int offset)
1222 {
1223 	struct fib6_node *fn;
1224 
1225 	for (fn = root; fn ; ) {
1226 		struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
1227 
1228 		/*
1229 		 *	Prefix match
1230 		 */
1231 		if (plen < fn->fn_bit ||
1232 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1233 			return NULL;
1234 
1235 		if (plen == fn->fn_bit)
1236 			return fn;
1237 
1238 		/*
1239 		 *	We have more bits to go
1240 		 */
1241 		if (addr_bit_set(addr, fn->fn_bit))
1242 			fn = fn->right;
1243 		else
1244 			fn = fn->left;
1245 	}
1246 	return NULL;
1247 }
1248 
1249 struct fib6_node *fib6_locate(struct fib6_node *root,
1250 			      const struct in6_addr *daddr, int dst_len,
1251 			      const struct in6_addr *saddr, int src_len)
1252 {
1253 	struct fib6_node *fn;
1254 
1255 	fn = fib6_locate_1(root, daddr, dst_len,
1256 			   offsetof(struct rt6_info, rt6i_dst));
1257 
1258 #ifdef CONFIG_IPV6_SUBTREES
1259 	if (src_len) {
1260 		WARN_ON(saddr == NULL);
1261 		if (fn && fn->subtree)
1262 			fn = fib6_locate_1(fn->subtree, saddr, src_len,
1263 					   offsetof(struct rt6_info, rt6i_src));
1264 	}
1265 #endif
1266 
1267 	if (fn && fn->fn_flags & RTN_RTINFO)
1268 		return fn;
1269 
1270 	return NULL;
1271 }
1272 
1273 
1274 /*
1275  *	Deletion
1276  *
1277  */
1278 
1279 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
1280 {
1281 	if (fn->fn_flags & RTN_ROOT)
1282 		return net->ipv6.ip6_null_entry;
1283 
1284 	while (fn) {
1285 		if (fn->left)
1286 			return fn->left->leaf;
1287 		if (fn->right)
1288 			return fn->right->leaf;
1289 
1290 		fn = FIB6_SUBTREE(fn);
1291 	}
1292 	return NULL;
1293 }
1294 
1295 /*
1296  *	Called to trim the tree of intermediate nodes when possible. "fn"
1297  *	is the node we want to try and remove.
1298  */
1299 
1300 static struct fib6_node *fib6_repair_tree(struct net *net,
1301 					   struct fib6_node *fn)
1302 {
1303 	int children;
1304 	int nstate;
1305 	struct fib6_node *child, *pn;
1306 	struct fib6_walker *w;
1307 	int iter = 0;
1308 
1309 	for (;;) {
1310 		RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1311 		iter++;
1312 
1313 		WARN_ON(fn->fn_flags & RTN_RTINFO);
1314 		WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1315 		WARN_ON(fn->leaf);
1316 
1317 		children = 0;
1318 		child = NULL;
1319 		if (fn->right)
1320 			child = fn->right, children |= 1;
1321 		if (fn->left)
1322 			child = fn->left, children |= 2;
1323 
1324 		if (children == 3 || FIB6_SUBTREE(fn)
1325 #ifdef CONFIG_IPV6_SUBTREES
1326 		    /* Subtree root (i.e. fn) may have one child */
1327 		    || (children && fn->fn_flags & RTN_ROOT)
1328 #endif
1329 		    ) {
1330 			fn->leaf = fib6_find_prefix(net, fn);
1331 #if RT6_DEBUG >= 2
1332 			if (!fn->leaf) {
1333 				WARN_ON(!fn->leaf);
1334 				fn->leaf = net->ipv6.ip6_null_entry;
1335 			}
1336 #endif
1337 			atomic_inc(&fn->leaf->rt6i_ref);
1338 			return fn->parent;
1339 		}
1340 
1341 		pn = fn->parent;
1342 #ifdef CONFIG_IPV6_SUBTREES
1343 		if (FIB6_SUBTREE(pn) == fn) {
1344 			WARN_ON(!(fn->fn_flags & RTN_ROOT));
1345 			FIB6_SUBTREE(pn) = NULL;
1346 			nstate = FWS_L;
1347 		} else {
1348 			WARN_ON(fn->fn_flags & RTN_ROOT);
1349 #endif
1350 			if (pn->right == fn)
1351 				pn->right = child;
1352 			else if (pn->left == fn)
1353 				pn->left = child;
1354 #if RT6_DEBUG >= 2
1355 			else
1356 				WARN_ON(1);
1357 #endif
1358 			if (child)
1359 				child->parent = pn;
1360 			nstate = FWS_R;
1361 #ifdef CONFIG_IPV6_SUBTREES
1362 		}
1363 #endif
1364 
1365 		read_lock(&net->ipv6.fib6_walker_lock);
1366 		FOR_WALKERS(net, w) {
1367 			if (!child) {
1368 				if (w->root == fn) {
1369 					w->root = w->node = NULL;
1370 					RT6_TRACE("W %p adjusted by delroot 1\n", w);
1371 				} else if (w->node == fn) {
1372 					RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1373 					w->node = pn;
1374 					w->state = nstate;
1375 				}
1376 			} else {
1377 				if (w->root == fn) {
1378 					w->root = child;
1379 					RT6_TRACE("W %p adjusted by delroot 2\n", w);
1380 				}
1381 				if (w->node == fn) {
1382 					w->node = child;
1383 					if (children&2) {
1384 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1385 						w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1386 					} else {
1387 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1388 						w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1389 					}
1390 				}
1391 			}
1392 		}
1393 		read_unlock(&net->ipv6.fib6_walker_lock);
1394 
1395 		node_free(fn);
1396 		if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1397 			return pn;
1398 
1399 		rt6_release(pn->leaf);
1400 		pn->leaf = NULL;
1401 		fn = pn;
1402 	}
1403 }
1404 
1405 static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1406 			   struct nl_info *info)
1407 {
1408 	struct fib6_walker *w;
1409 	struct rt6_info *rt = *rtp;
1410 	struct net *net = info->nl_net;
1411 
1412 	RT6_TRACE("fib6_del_route\n");
1413 
1414 	/* Unlink it */
1415 	*rtp = rt->dst.rt6_next;
1416 	rt->rt6i_node = NULL;
1417 	net->ipv6.rt6_stats->fib_rt_entries--;
1418 	net->ipv6.rt6_stats->fib_discarded_routes++;
1419 
1420 	/* Reset round-robin state, if necessary */
1421 	if (fn->rr_ptr == rt)
1422 		fn->rr_ptr = NULL;
1423 
1424 	/* Remove this entry from other siblings */
1425 	if (rt->rt6i_nsiblings) {
1426 		struct rt6_info *sibling, *next_sibling;
1427 
1428 		list_for_each_entry_safe(sibling, next_sibling,
1429 					 &rt->rt6i_siblings, rt6i_siblings)
1430 			sibling->rt6i_nsiblings--;
1431 		rt->rt6i_nsiblings = 0;
1432 		list_del_init(&rt->rt6i_siblings);
1433 	}
1434 
1435 	/* Adjust walkers */
1436 	read_lock(&net->ipv6.fib6_walker_lock);
1437 	FOR_WALKERS(net, w) {
1438 		if (w->state == FWS_C && w->leaf == rt) {
1439 			RT6_TRACE("walker %p adjusted by delroute\n", w);
1440 			w->leaf = rt->dst.rt6_next;
1441 			if (!w->leaf)
1442 				w->state = FWS_U;
1443 		}
1444 	}
1445 	read_unlock(&net->ipv6.fib6_walker_lock);
1446 
1447 	rt->dst.rt6_next = NULL;
1448 
1449 	/* If it was last route, expunge its radix tree node */
1450 	if (!fn->leaf) {
1451 		fn->fn_flags &= ~RTN_RTINFO;
1452 		net->ipv6.rt6_stats->fib_route_nodes--;
1453 		fn = fib6_repair_tree(net, fn);
1454 	}
1455 
1456 	fib6_purge_rt(rt, fn, net);
1457 
1458 	if (!info->skip_notify)
1459 		inet6_rt_notify(RTM_DELROUTE, rt, info, 0);
1460 	rt6_release(rt);
1461 }
1462 
1463 int fib6_del(struct rt6_info *rt, struct nl_info *info)
1464 {
1465 	struct net *net = info->nl_net;
1466 	struct fib6_node *fn = rt->rt6i_node;
1467 	struct rt6_info **rtp;
1468 
1469 #if RT6_DEBUG >= 2
1470 	if (rt->dst.obsolete > 0) {
1471 		WARN_ON(fn);
1472 		return -ENOENT;
1473 	}
1474 #endif
1475 	if (!fn || rt == net->ipv6.ip6_null_entry)
1476 		return -ENOENT;
1477 
1478 	WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1479 
1480 	if (!(rt->rt6i_flags & RTF_CACHE)) {
1481 		struct fib6_node *pn = fn;
1482 #ifdef CONFIG_IPV6_SUBTREES
1483 		/* clones of this route might be in another subtree */
1484 		if (rt->rt6i_src.plen) {
1485 			while (!(pn->fn_flags & RTN_ROOT))
1486 				pn = pn->parent;
1487 			pn = pn->parent;
1488 		}
1489 #endif
1490 		fib6_prune_clones(info->nl_net, pn);
1491 	}
1492 
1493 	/*
1494 	 *	Walk the leaf entries looking for ourself
1495 	 */
1496 
1497 	for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->dst.rt6_next) {
1498 		if (*rtp == rt) {
1499 			fib6_del_route(fn, rtp, info);
1500 			return 0;
1501 		}
1502 	}
1503 	return -ENOENT;
1504 }
1505 
1506 /*
1507  *	Tree traversal function.
1508  *
1509  *	Certainly, it is not interrupt safe.
1510  *	However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1511  *	It means, that we can modify tree during walking
1512  *	and use this function for garbage collection, clone pruning,
1513  *	cleaning tree when a device goes down etc. etc.
1514  *
1515  *	It guarantees that every node will be traversed,
1516  *	and that it will be traversed only once.
1517  *
1518  *	Callback function w->func may return:
1519  *	0 -> continue walking.
1520  *	positive value -> walking is suspended (used by tree dumps,
1521  *	and probably by gc, if it will be split to several slices)
1522  *	negative value -> terminate walking.
1523  *
1524  *	The function itself returns:
1525  *	0   -> walk is complete.
1526  *	>0  -> walk is incomplete (i.e. suspended)
1527  *	<0  -> walk is terminated by an error.
1528  */
1529 
1530 static int fib6_walk_continue(struct fib6_walker *w)
1531 {
1532 	struct fib6_node *fn, *pn;
1533 
1534 	for (;;) {
1535 		fn = w->node;
1536 		if (!fn)
1537 			return 0;
1538 
1539 		if (w->prune && fn != w->root &&
1540 		    fn->fn_flags & RTN_RTINFO && w->state < FWS_C) {
1541 			w->state = FWS_C;
1542 			w->leaf = fn->leaf;
1543 		}
1544 		switch (w->state) {
1545 #ifdef CONFIG_IPV6_SUBTREES
1546 		case FWS_S:
1547 			if (FIB6_SUBTREE(fn)) {
1548 				w->node = FIB6_SUBTREE(fn);
1549 				continue;
1550 			}
1551 			w->state = FWS_L;
1552 #endif
1553 		case FWS_L:
1554 			if (fn->left) {
1555 				w->node = fn->left;
1556 				w->state = FWS_INIT;
1557 				continue;
1558 			}
1559 			w->state = FWS_R;
1560 		case FWS_R:
1561 			if (fn->right) {
1562 				w->node = fn->right;
1563 				w->state = FWS_INIT;
1564 				continue;
1565 			}
1566 			w->state = FWS_C;
1567 			w->leaf = fn->leaf;
1568 		case FWS_C:
1569 			if (w->leaf && fn->fn_flags & RTN_RTINFO) {
1570 				int err;
1571 
1572 				if (w->skip) {
1573 					w->skip--;
1574 					goto skip;
1575 				}
1576 
1577 				err = w->func(w);
1578 				if (err)
1579 					return err;
1580 
1581 				w->count++;
1582 				continue;
1583 			}
1584 skip:
1585 			w->state = FWS_U;
1586 		case FWS_U:
1587 			if (fn == w->root)
1588 				return 0;
1589 			pn = fn->parent;
1590 			w->node = pn;
1591 #ifdef CONFIG_IPV6_SUBTREES
1592 			if (FIB6_SUBTREE(pn) == fn) {
1593 				WARN_ON(!(fn->fn_flags & RTN_ROOT));
1594 				w->state = FWS_L;
1595 				continue;
1596 			}
1597 #endif
1598 			if (pn->left == fn) {
1599 				w->state = FWS_R;
1600 				continue;
1601 			}
1602 			if (pn->right == fn) {
1603 				w->state = FWS_C;
1604 				w->leaf = w->node->leaf;
1605 				continue;
1606 			}
1607 #if RT6_DEBUG >= 2
1608 			WARN_ON(1);
1609 #endif
1610 		}
1611 	}
1612 }
1613 
1614 static int fib6_walk(struct net *net, struct fib6_walker *w)
1615 {
1616 	int res;
1617 
1618 	w->state = FWS_INIT;
1619 	w->node = w->root;
1620 
1621 	fib6_walker_link(net, w);
1622 	res = fib6_walk_continue(w);
1623 	if (res <= 0)
1624 		fib6_walker_unlink(net, w);
1625 	return res;
1626 }
1627 
1628 static int fib6_clean_node(struct fib6_walker *w)
1629 {
1630 	int res;
1631 	struct rt6_info *rt;
1632 	struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w);
1633 	struct nl_info info = {
1634 		.nl_net = c->net,
1635 	};
1636 
1637 	if (c->sernum != FIB6_NO_SERNUM_CHANGE &&
1638 	    w->node->fn_sernum != c->sernum)
1639 		w->node->fn_sernum = c->sernum;
1640 
1641 	if (!c->func) {
1642 		WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE);
1643 		w->leaf = NULL;
1644 		return 0;
1645 	}
1646 
1647 	for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
1648 		res = c->func(rt, c->arg);
1649 		if (res < 0) {
1650 			w->leaf = rt;
1651 			res = fib6_del(rt, &info);
1652 			if (res) {
1653 #if RT6_DEBUG >= 2
1654 				pr_debug("%s: del failed: rt=%p@%p err=%d\n",
1655 					 __func__, rt, rt->rt6i_node, res);
1656 #endif
1657 				continue;
1658 			}
1659 			return 0;
1660 		}
1661 		WARN_ON(res != 0);
1662 	}
1663 	w->leaf = rt;
1664 	return 0;
1665 }
1666 
1667 /*
1668  *	Convenient frontend to tree walker.
1669  *
1670  *	func is called on each route.
1671  *		It may return -1 -> delete this route.
1672  *		              0  -> continue walking
1673  *
1674  *	prune==1 -> only immediate children of node (certainly,
1675  *	ignoring pure split nodes) will be scanned.
1676  */
1677 
1678 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1679 			    int (*func)(struct rt6_info *, void *arg),
1680 			    bool prune, int sernum, void *arg)
1681 {
1682 	struct fib6_cleaner c;
1683 
1684 	c.w.root = root;
1685 	c.w.func = fib6_clean_node;
1686 	c.w.prune = prune;
1687 	c.w.count = 0;
1688 	c.w.skip = 0;
1689 	c.func = func;
1690 	c.sernum = sernum;
1691 	c.arg = arg;
1692 	c.net = net;
1693 
1694 	fib6_walk(net, &c.w);
1695 }
1696 
1697 static void __fib6_clean_all(struct net *net,
1698 			     int (*func)(struct rt6_info *, void *),
1699 			     int sernum, void *arg)
1700 {
1701 	struct fib6_table *table;
1702 	struct hlist_head *head;
1703 	unsigned int h;
1704 
1705 	rcu_read_lock();
1706 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1707 		head = &net->ipv6.fib_table_hash[h];
1708 		hlist_for_each_entry_rcu(table, head, tb6_hlist) {
1709 			write_lock_bh(&table->tb6_lock);
1710 			fib6_clean_tree(net, &table->tb6_root,
1711 					func, false, sernum, arg);
1712 			write_unlock_bh(&table->tb6_lock);
1713 		}
1714 	}
1715 	rcu_read_unlock();
1716 }
1717 
1718 void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *),
1719 		    void *arg)
1720 {
1721 	__fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg);
1722 }
1723 
1724 static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1725 {
1726 	if (rt->rt6i_flags & RTF_CACHE) {
1727 		RT6_TRACE("pruning clone %p\n", rt);
1728 		return -1;
1729 	}
1730 
1731 	return 0;
1732 }
1733 
1734 static void fib6_prune_clones(struct net *net, struct fib6_node *fn)
1735 {
1736 	fib6_clean_tree(net, fn, fib6_prune_clone, true,
1737 			FIB6_NO_SERNUM_CHANGE, NULL);
1738 }
1739 
1740 static void fib6_flush_trees(struct net *net)
1741 {
1742 	int new_sernum = fib6_new_sernum(net);
1743 
1744 	__fib6_clean_all(net, NULL, new_sernum, NULL);
1745 }
1746 
1747 /*
1748  *	Garbage collection
1749  */
1750 
1751 struct fib6_gc_args
1752 {
1753 	int			timeout;
1754 	int			more;
1755 };
1756 
1757 static int fib6_age(struct rt6_info *rt, void *arg)
1758 {
1759 	struct fib6_gc_args *gc_args = arg;
1760 	unsigned long now = jiffies;
1761 
1762 	/*
1763 	 *	check addrconf expiration here.
1764 	 *	Routes are expired even if they are in use.
1765 	 *
1766 	 *	Also age clones. Note, that clones are aged out
1767 	 *	only if they are not in use now.
1768 	 */
1769 
1770 	if (rt->rt6i_flags & RTF_EXPIRES && rt->dst.expires) {
1771 		if (time_after(now, rt->dst.expires)) {
1772 			RT6_TRACE("expiring %p\n", rt);
1773 			return -1;
1774 		}
1775 		gc_args->more++;
1776 	} else if (rt->rt6i_flags & RTF_CACHE) {
1777 		if (atomic_read(&rt->dst.__refcnt) == 0 &&
1778 		    time_after_eq(now, rt->dst.lastuse + gc_args->timeout)) {
1779 			RT6_TRACE("aging clone %p\n", rt);
1780 			return -1;
1781 		} else if (rt->rt6i_flags & RTF_GATEWAY) {
1782 			struct neighbour *neigh;
1783 			__u8 neigh_flags = 0;
1784 
1785 			neigh = dst_neigh_lookup(&rt->dst, &rt->rt6i_gateway);
1786 			if (neigh) {
1787 				neigh_flags = neigh->flags;
1788 				neigh_release(neigh);
1789 			}
1790 			if (!(neigh_flags & NTF_ROUTER)) {
1791 				RT6_TRACE("purging route %p via non-router but gateway\n",
1792 					  rt);
1793 				return -1;
1794 			}
1795 		}
1796 		gc_args->more++;
1797 	}
1798 
1799 	return 0;
1800 }
1801 
1802 void fib6_run_gc(unsigned long expires, struct net *net, bool force)
1803 {
1804 	struct fib6_gc_args gc_args;
1805 	unsigned long now;
1806 
1807 	if (force) {
1808 		spin_lock_bh(&net->ipv6.fib6_gc_lock);
1809 	} else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) {
1810 		mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
1811 		return;
1812 	}
1813 	gc_args.timeout = expires ? (int)expires :
1814 			  net->ipv6.sysctl.ip6_rt_gc_interval;
1815 
1816 	gc_args.more = icmp6_dst_gc();
1817 
1818 	fib6_clean_all(net, fib6_age, &gc_args);
1819 	now = jiffies;
1820 	net->ipv6.ip6_rt_last_gc = now;
1821 
1822 	if (gc_args.more)
1823 		mod_timer(&net->ipv6.ip6_fib_timer,
1824 			  round_jiffies(now
1825 					+ net->ipv6.sysctl.ip6_rt_gc_interval));
1826 	else
1827 		del_timer(&net->ipv6.ip6_fib_timer);
1828 	spin_unlock_bh(&net->ipv6.fib6_gc_lock);
1829 }
1830 
1831 static void fib6_gc_timer_cb(unsigned long arg)
1832 {
1833 	fib6_run_gc(0, (struct net *)arg, true);
1834 }
1835 
1836 static int __net_init fib6_net_init(struct net *net)
1837 {
1838 	size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
1839 
1840 	spin_lock_init(&net->ipv6.fib6_gc_lock);
1841 	rwlock_init(&net->ipv6.fib6_walker_lock);
1842 	INIT_LIST_HEAD(&net->ipv6.fib6_walkers);
1843 	setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
1844 
1845 	net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
1846 	if (!net->ipv6.rt6_stats)
1847 		goto out_timer;
1848 
1849 	/* Avoid false sharing : Use at least a full cache line */
1850 	size = max_t(size_t, size, L1_CACHE_BYTES);
1851 
1852 	net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
1853 	if (!net->ipv6.fib_table_hash)
1854 		goto out_rt6_stats;
1855 
1856 	net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1857 					  GFP_KERNEL);
1858 	if (!net->ipv6.fib6_main_tbl)
1859 		goto out_fib_table_hash;
1860 
1861 	net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1862 	net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1863 	net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1864 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1865 	inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
1866 
1867 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1868 	net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
1869 					   GFP_KERNEL);
1870 	if (!net->ipv6.fib6_local_tbl)
1871 		goto out_fib6_main_tbl;
1872 	net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
1873 	net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1874 	net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
1875 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1876 	inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
1877 #endif
1878 	fib6_tables_init(net);
1879 
1880 	return 0;
1881 
1882 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1883 out_fib6_main_tbl:
1884 	kfree(net->ipv6.fib6_main_tbl);
1885 #endif
1886 out_fib_table_hash:
1887 	kfree(net->ipv6.fib_table_hash);
1888 out_rt6_stats:
1889 	kfree(net->ipv6.rt6_stats);
1890 out_timer:
1891 	return -ENOMEM;
1892 }
1893 
1894 static void fib6_net_exit(struct net *net)
1895 {
1896 	rt6_ifdown(net, NULL);
1897 	del_timer_sync(&net->ipv6.ip6_fib_timer);
1898 
1899 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1900 	inetpeer_invalidate_tree(&net->ipv6.fib6_local_tbl->tb6_peers);
1901 	kfree(net->ipv6.fib6_local_tbl);
1902 #endif
1903 	inetpeer_invalidate_tree(&net->ipv6.fib6_main_tbl->tb6_peers);
1904 	kfree(net->ipv6.fib6_main_tbl);
1905 	kfree(net->ipv6.fib_table_hash);
1906 	kfree(net->ipv6.rt6_stats);
1907 }
1908 
1909 static struct pernet_operations fib6_net_ops = {
1910 	.init = fib6_net_init,
1911 	.exit = fib6_net_exit,
1912 };
1913 
1914 int __init fib6_init(void)
1915 {
1916 	int ret = -ENOMEM;
1917 
1918 	fib6_node_kmem = kmem_cache_create("fib6_nodes",
1919 					   sizeof(struct fib6_node),
1920 					   0, SLAB_HWCACHE_ALIGN,
1921 					   NULL);
1922 	if (!fib6_node_kmem)
1923 		goto out;
1924 
1925 	ret = register_pernet_subsys(&fib6_net_ops);
1926 	if (ret)
1927 		goto out_kmem_cache_create;
1928 
1929 	ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib,
1930 			      NULL);
1931 	if (ret)
1932 		goto out_unregister_subsys;
1933 
1934 	__fib6_flush_trees = fib6_flush_trees;
1935 out:
1936 	return ret;
1937 
1938 out_unregister_subsys:
1939 	unregister_pernet_subsys(&fib6_net_ops);
1940 out_kmem_cache_create:
1941 	kmem_cache_destroy(fib6_node_kmem);
1942 	goto out;
1943 }
1944 
1945 void fib6_gc_cleanup(void)
1946 {
1947 	unregister_pernet_subsys(&fib6_net_ops);
1948 	kmem_cache_destroy(fib6_node_kmem);
1949 }
1950 
1951 #ifdef CONFIG_PROC_FS
1952 
1953 struct ipv6_route_iter {
1954 	struct seq_net_private p;
1955 	struct fib6_walker w;
1956 	loff_t skip;
1957 	struct fib6_table *tbl;
1958 	int sernum;
1959 };
1960 
1961 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
1962 {
1963 	struct rt6_info *rt = v;
1964 	struct ipv6_route_iter *iter = seq->private;
1965 
1966 	seq_printf(seq, "%pi6 %02x ", &rt->rt6i_dst.addr, rt->rt6i_dst.plen);
1967 
1968 #ifdef CONFIG_IPV6_SUBTREES
1969 	seq_printf(seq, "%pi6 %02x ", &rt->rt6i_src.addr, rt->rt6i_src.plen);
1970 #else
1971 	seq_puts(seq, "00000000000000000000000000000000 00 ");
1972 #endif
1973 	if (rt->rt6i_flags & RTF_GATEWAY)
1974 		seq_printf(seq, "%pi6", &rt->rt6i_gateway);
1975 	else
1976 		seq_puts(seq, "00000000000000000000000000000000");
1977 
1978 	seq_printf(seq, " %08x %08x %08x %08x %8s\n",
1979 		   rt->rt6i_metric, atomic_read(&rt->dst.__refcnt),
1980 		   rt->dst.__use, rt->rt6i_flags,
1981 		   rt->dst.dev ? rt->dst.dev->name : "");
1982 	iter->w.leaf = NULL;
1983 	return 0;
1984 }
1985 
1986 static int ipv6_route_yield(struct fib6_walker *w)
1987 {
1988 	struct ipv6_route_iter *iter = w->args;
1989 
1990 	if (!iter->skip)
1991 		return 1;
1992 
1993 	do {
1994 		iter->w.leaf = iter->w.leaf->dst.rt6_next;
1995 		iter->skip--;
1996 		if (!iter->skip && iter->w.leaf)
1997 			return 1;
1998 	} while (iter->w.leaf);
1999 
2000 	return 0;
2001 }
2002 
2003 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter,
2004 				      struct net *net)
2005 {
2006 	memset(&iter->w, 0, sizeof(iter->w));
2007 	iter->w.func = ipv6_route_yield;
2008 	iter->w.root = &iter->tbl->tb6_root;
2009 	iter->w.state = FWS_INIT;
2010 	iter->w.node = iter->w.root;
2011 	iter->w.args = iter;
2012 	iter->sernum = iter->w.root->fn_sernum;
2013 	INIT_LIST_HEAD(&iter->w.lh);
2014 	fib6_walker_link(net, &iter->w);
2015 }
2016 
2017 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
2018 						    struct net *net)
2019 {
2020 	unsigned int h;
2021 	struct hlist_node *node;
2022 
2023 	if (tbl) {
2024 		h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
2025 		node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist));
2026 	} else {
2027 		h = 0;
2028 		node = NULL;
2029 	}
2030 
2031 	while (!node && h < FIB6_TABLE_HASHSZ) {
2032 		node = rcu_dereference_bh(
2033 			hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
2034 	}
2035 	return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
2036 }
2037 
2038 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
2039 {
2040 	if (iter->sernum != iter->w.root->fn_sernum) {
2041 		iter->sernum = iter->w.root->fn_sernum;
2042 		iter->w.state = FWS_INIT;
2043 		iter->w.node = iter->w.root;
2044 		WARN_ON(iter->w.skip);
2045 		iter->w.skip = iter->w.count;
2046 	}
2047 }
2048 
2049 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2050 {
2051 	int r;
2052 	struct rt6_info *n;
2053 	struct net *net = seq_file_net(seq);
2054 	struct ipv6_route_iter *iter = seq->private;
2055 
2056 	if (!v)
2057 		goto iter_table;
2058 
2059 	n = ((struct rt6_info *)v)->dst.rt6_next;
2060 	if (n) {
2061 		++*pos;
2062 		return n;
2063 	}
2064 
2065 iter_table:
2066 	ipv6_route_check_sernum(iter);
2067 	read_lock(&iter->tbl->tb6_lock);
2068 	r = fib6_walk_continue(&iter->w);
2069 	read_unlock(&iter->tbl->tb6_lock);
2070 	if (r > 0) {
2071 		if (v)
2072 			++*pos;
2073 		return iter->w.leaf;
2074 	} else if (r < 0) {
2075 		fib6_walker_unlink(net, &iter->w);
2076 		return NULL;
2077 	}
2078 	fib6_walker_unlink(net, &iter->w);
2079 
2080 	iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
2081 	if (!iter->tbl)
2082 		return NULL;
2083 
2084 	ipv6_route_seq_setup_walk(iter, net);
2085 	goto iter_table;
2086 }
2087 
2088 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
2089 	__acquires(RCU_BH)
2090 {
2091 	struct net *net = seq_file_net(seq);
2092 	struct ipv6_route_iter *iter = seq->private;
2093 
2094 	rcu_read_lock_bh();
2095 	iter->tbl = ipv6_route_seq_next_table(NULL, net);
2096 	iter->skip = *pos;
2097 
2098 	if (iter->tbl) {
2099 		ipv6_route_seq_setup_walk(iter, net);
2100 		return ipv6_route_seq_next(seq, NULL, pos);
2101 	} else {
2102 		return NULL;
2103 	}
2104 }
2105 
2106 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
2107 {
2108 	struct fib6_walker *w = &iter->w;
2109 	return w->node && !(w->state == FWS_U && w->node == w->root);
2110 }
2111 
2112 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2113 	__releases(RCU_BH)
2114 {
2115 	struct net *net = seq_file_net(seq);
2116 	struct ipv6_route_iter *iter = seq->private;
2117 
2118 	if (ipv6_route_iter_active(iter))
2119 		fib6_walker_unlink(net, &iter->w);
2120 
2121 	rcu_read_unlock_bh();
2122 }
2123 
2124 static const struct seq_operations ipv6_route_seq_ops = {
2125 	.start	= ipv6_route_seq_start,
2126 	.next	= ipv6_route_seq_next,
2127 	.stop	= ipv6_route_seq_stop,
2128 	.show	= ipv6_route_seq_show
2129 };
2130 
2131 int ipv6_route_open(struct inode *inode, struct file *file)
2132 {
2133 	return seq_open_net(inode, file, &ipv6_route_seq_ops,
2134 			    sizeof(struct ipv6_route_iter));
2135 }
2136 
2137 #endif /* CONFIG_PROC_FS */
2138