xref: /linux/net/ipv6/ip6_fib.c (revision 173b0b5b0e865348684c02bd9cb1d22b5d46e458)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Linux INET6 implementation
4  *	Forwarding Information Database
5  *
6  *	Authors:
7  *	Pedro Roque		<roque@di.fc.ul.pt>
8  *
9  *	Changes:
10  *	Yuji SEKIYA @USAGI:	Support default route on router node;
11  *				remove ip6_null_entry from the top of
12  *				routing table.
13  *	Ville Nuorvala:		Fixed routing subtrees.
14  */
15 
16 #define pr_fmt(fmt) "IPv6: " fmt
17 
18 #include <linux/bpf.h>
19 #include <linux/errno.h>
20 #include <linux/types.h>
21 #include <linux/net.h>
22 #include <linux/route.h>
23 #include <linux/netdevice.h>
24 #include <linux/in6.h>
25 #include <linux/init.h>
26 #include <linux/list.h>
27 #include <linux/slab.h>
28 
29 #include <net/ip.h>
30 #include <net/ipv6.h>
31 #include <net/ndisc.h>
32 #include <net/addrconf.h>
33 #include <net/lwtunnel.h>
34 #include <net/fib_notifier.h>
35 
36 #include <net/ip_fib.h>
37 #include <net/ip6_fib.h>
38 #include <net/ip6_route.h>
39 
40 static struct kmem_cache *fib6_node_kmem __read_mostly;
41 
42 struct fib6_cleaner {
43 	struct fib6_walker w;
44 	struct net *net;
45 	int (*func)(struct fib6_info *, void *arg);
46 	int sernum;
47 	void *arg;
48 	bool skip_notify;
49 };
50 
51 #ifdef CONFIG_IPV6_SUBTREES
52 #define FWS_INIT FWS_S
53 #else
54 #define FWS_INIT FWS_L
55 #endif
56 
57 static struct fib6_info *fib6_find_prefix(struct net *net,
58 					 struct fib6_table *table,
59 					 struct fib6_node *fn);
60 static struct fib6_node *fib6_repair_tree(struct net *net,
61 					  struct fib6_table *table,
62 					  struct fib6_node *fn);
63 static int fib6_walk(struct net *net, struct fib6_walker *w);
64 static int fib6_walk_continue(struct fib6_walker *w);
65 
66 /*
67  *	A routing update causes an increase of the serial number on the
68  *	affected subtree. This allows for cached routes to be asynchronously
69  *	tested when modifications are made to the destination cache as a
70  *	result of redirects, path MTU changes, etc.
71  */
72 
73 static void fib6_gc_timer_cb(struct timer_list *t);
74 
75 #define FOR_WALKERS(net, w) \
76 	list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh)
77 
78 static void fib6_walker_link(struct net *net, struct fib6_walker *w)
79 {
80 	write_lock_bh(&net->ipv6.fib6_walker_lock);
81 	list_add(&w->lh, &net->ipv6.fib6_walkers);
82 	write_unlock_bh(&net->ipv6.fib6_walker_lock);
83 }
84 
85 static void fib6_walker_unlink(struct net *net, struct fib6_walker *w)
86 {
87 	write_lock_bh(&net->ipv6.fib6_walker_lock);
88 	list_del(&w->lh);
89 	write_unlock_bh(&net->ipv6.fib6_walker_lock);
90 }
91 
92 static int fib6_new_sernum(struct net *net)
93 {
94 	int new, old = atomic_read(&net->ipv6.fib6_sernum);
95 
96 	do {
97 		new = old < INT_MAX ? old + 1 : 1;
98 	} while (!atomic_try_cmpxchg(&net->ipv6.fib6_sernum, &old, new));
99 
100 	return new;
101 }
102 
103 enum {
104 	FIB6_NO_SERNUM_CHANGE = 0,
105 };
106 
107 void fib6_update_sernum(struct net *net, struct fib6_info *f6i)
108 {
109 	struct fib6_node *fn;
110 
111 	fn = rcu_dereference_protected(f6i->fib6_node,
112 			lockdep_is_held(&f6i->fib6_table->tb6_lock));
113 	if (fn)
114 		WRITE_ONCE(fn->fn_sernum, fib6_new_sernum(net));
115 }
116 
117 /*
118  *	Auxiliary address test functions for the radix tree.
119  *
120  *	These assume a 32bit processor (although it will work on
121  *	64bit processors)
122  */
123 
124 /*
125  *	test bit
126  */
127 #if defined(__LITTLE_ENDIAN)
128 # define BITOP_BE32_SWIZZLE	(0x1F & ~7)
129 #else
130 # define BITOP_BE32_SWIZZLE	0
131 #endif
132 
133 static __be32 addr_bit_set(const void *token, int fn_bit)
134 {
135 	const __be32 *addr = token;
136 	/*
137 	 * Here,
138 	 *	1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
139 	 * is optimized version of
140 	 *	htonl(1 << ((~fn_bit)&0x1F))
141 	 * See include/asm-generic/bitops/le.h.
142 	 */
143 	return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
144 	       addr[fn_bit >> 5];
145 }
146 
147 struct fib6_info *fib6_info_alloc(gfp_t gfp_flags, bool with_fib6_nh)
148 {
149 	struct fib6_info *f6i;
150 	size_t sz = sizeof(*f6i);
151 
152 	if (with_fib6_nh)
153 		sz += sizeof(struct fib6_nh);
154 
155 	f6i = kzalloc(sz, gfp_flags);
156 	if (!f6i)
157 		return NULL;
158 
159 	/* fib6_siblings is a union with nh_list, so this initializes both */
160 	INIT_LIST_HEAD(&f6i->fib6_siblings);
161 	refcount_set(&f6i->fib6_ref, 1);
162 
163 	INIT_HLIST_NODE(&f6i->gc_link);
164 
165 	return f6i;
166 }
167 
168 void fib6_info_destroy_rcu(struct rcu_head *head)
169 {
170 	struct fib6_info *f6i = container_of(head, struct fib6_info, rcu);
171 
172 	WARN_ON(f6i->fib6_node);
173 
174 	if (f6i->nh)
175 		nexthop_put(f6i->nh);
176 	else
177 		fib6_nh_release(f6i->fib6_nh);
178 
179 	ip_fib_metrics_put(f6i->fib6_metrics);
180 	kfree(f6i);
181 }
182 EXPORT_SYMBOL_GPL(fib6_info_destroy_rcu);
183 
184 static struct fib6_node *node_alloc(struct net *net)
185 {
186 	struct fib6_node *fn;
187 
188 	fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
189 	if (fn)
190 		net->ipv6.rt6_stats->fib_nodes++;
191 
192 	return fn;
193 }
194 
195 static void node_free_immediate(struct net *net, struct fib6_node *fn)
196 {
197 	kmem_cache_free(fib6_node_kmem, fn);
198 	net->ipv6.rt6_stats->fib_nodes--;
199 }
200 
201 static void node_free_rcu(struct rcu_head *head)
202 {
203 	struct fib6_node *fn = container_of(head, struct fib6_node, rcu);
204 
205 	kmem_cache_free(fib6_node_kmem, fn);
206 }
207 
208 static void node_free(struct net *net, struct fib6_node *fn)
209 {
210 	call_rcu(&fn->rcu, node_free_rcu);
211 	net->ipv6.rt6_stats->fib_nodes--;
212 }
213 
214 static void fib6_free_table(struct fib6_table *table)
215 {
216 	inetpeer_invalidate_tree(&table->tb6_peers);
217 	kfree(table);
218 }
219 
220 static void fib6_link_table(struct net *net, struct fib6_table *tb)
221 {
222 	unsigned int h;
223 
224 	/*
225 	 * Initialize table lock at a single place to give lockdep a key,
226 	 * tables aren't visible prior to being linked to the list.
227 	 */
228 	spin_lock_init(&tb->tb6_lock);
229 	h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
230 
231 	/*
232 	 * No protection necessary, this is the only list mutatation
233 	 * operation, tables never disappear once they exist.
234 	 */
235 	hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
236 }
237 
238 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
239 
240 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
241 {
242 	struct fib6_table *table;
243 
244 	table = kzalloc(sizeof(*table), GFP_ATOMIC);
245 	if (table) {
246 		table->tb6_id = id;
247 		rcu_assign_pointer(table->tb6_root.leaf,
248 				   net->ipv6.fib6_null_entry);
249 		table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
250 		inet_peer_base_init(&table->tb6_peers);
251 		INIT_HLIST_HEAD(&table->tb6_gc_hlist);
252 	}
253 
254 	return table;
255 }
256 
257 struct fib6_table *fib6_new_table(struct net *net, u32 id)
258 {
259 	struct fib6_table *tb;
260 
261 	if (id == 0)
262 		id = RT6_TABLE_MAIN;
263 	tb = fib6_get_table(net, id);
264 	if (tb)
265 		return tb;
266 
267 	tb = fib6_alloc_table(net, id);
268 	if (tb)
269 		fib6_link_table(net, tb);
270 
271 	return tb;
272 }
273 EXPORT_SYMBOL_GPL(fib6_new_table);
274 
275 struct fib6_table *fib6_get_table(struct net *net, u32 id)
276 {
277 	struct fib6_table *tb;
278 	struct hlist_head *head;
279 	unsigned int h;
280 
281 	if (id == 0)
282 		id = RT6_TABLE_MAIN;
283 	h = id & (FIB6_TABLE_HASHSZ - 1);
284 	rcu_read_lock();
285 	head = &net->ipv6.fib_table_hash[h];
286 	hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
287 		if (tb->tb6_id == id) {
288 			rcu_read_unlock();
289 			return tb;
290 		}
291 	}
292 	rcu_read_unlock();
293 
294 	return NULL;
295 }
296 EXPORT_SYMBOL_GPL(fib6_get_table);
297 
298 static void __net_init fib6_tables_init(struct net *net)
299 {
300 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
301 	fib6_link_table(net, net->ipv6.fib6_local_tbl);
302 }
303 #else
304 
305 struct fib6_table *fib6_new_table(struct net *net, u32 id)
306 {
307 	return fib6_get_table(net, id);
308 }
309 
310 struct fib6_table *fib6_get_table(struct net *net, u32 id)
311 {
312 	  return net->ipv6.fib6_main_tbl;
313 }
314 
315 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
316 				   const struct sk_buff *skb,
317 				   int flags, pol_lookup_t lookup)
318 {
319 	struct rt6_info *rt;
320 
321 	rt = pol_lookup_func(lookup,
322 			net, net->ipv6.fib6_main_tbl, fl6, skb, flags);
323 	if (rt->dst.error == -EAGAIN) {
324 		ip6_rt_put_flags(rt, flags);
325 		rt = net->ipv6.ip6_null_entry;
326 		if (!(flags & RT6_LOOKUP_F_DST_NOREF))
327 			dst_hold(&rt->dst);
328 	}
329 
330 	return &rt->dst;
331 }
332 
333 /* called with rcu lock held; no reference taken on fib6_info */
334 int fib6_lookup(struct net *net, int oif, struct flowi6 *fl6,
335 		struct fib6_result *res, int flags)
336 {
337 	return fib6_table_lookup(net, net->ipv6.fib6_main_tbl, oif, fl6,
338 				 res, flags);
339 }
340 
341 static void __net_init fib6_tables_init(struct net *net)
342 {
343 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
344 }
345 
346 #endif
347 
348 unsigned int fib6_tables_seq_read(struct net *net)
349 {
350 	unsigned int h, fib_seq = 0;
351 
352 	rcu_read_lock();
353 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
354 		struct hlist_head *head = &net->ipv6.fib_table_hash[h];
355 		struct fib6_table *tb;
356 
357 		hlist_for_each_entry_rcu(tb, head, tb6_hlist)
358 			fib_seq += tb->fib_seq;
359 	}
360 	rcu_read_unlock();
361 
362 	return fib_seq;
363 }
364 
365 static int call_fib6_entry_notifier(struct notifier_block *nb,
366 				    enum fib_event_type event_type,
367 				    struct fib6_info *rt,
368 				    struct netlink_ext_ack *extack)
369 {
370 	struct fib6_entry_notifier_info info = {
371 		.info.extack = extack,
372 		.rt = rt,
373 	};
374 
375 	return call_fib6_notifier(nb, event_type, &info.info);
376 }
377 
378 static int call_fib6_multipath_entry_notifier(struct notifier_block *nb,
379 					      enum fib_event_type event_type,
380 					      struct fib6_info *rt,
381 					      unsigned int nsiblings,
382 					      struct netlink_ext_ack *extack)
383 {
384 	struct fib6_entry_notifier_info info = {
385 		.info.extack = extack,
386 		.rt = rt,
387 		.nsiblings = nsiblings,
388 	};
389 
390 	return call_fib6_notifier(nb, event_type, &info.info);
391 }
392 
393 int call_fib6_entry_notifiers(struct net *net,
394 			      enum fib_event_type event_type,
395 			      struct fib6_info *rt,
396 			      struct netlink_ext_ack *extack)
397 {
398 	struct fib6_entry_notifier_info info = {
399 		.info.extack = extack,
400 		.rt = rt,
401 	};
402 
403 	rt->fib6_table->fib_seq++;
404 	return call_fib6_notifiers(net, event_type, &info.info);
405 }
406 
407 int call_fib6_multipath_entry_notifiers(struct net *net,
408 					enum fib_event_type event_type,
409 					struct fib6_info *rt,
410 					unsigned int nsiblings,
411 					struct netlink_ext_ack *extack)
412 {
413 	struct fib6_entry_notifier_info info = {
414 		.info.extack = extack,
415 		.rt = rt,
416 		.nsiblings = nsiblings,
417 	};
418 
419 	rt->fib6_table->fib_seq++;
420 	return call_fib6_notifiers(net, event_type, &info.info);
421 }
422 
423 int call_fib6_entry_notifiers_replace(struct net *net, struct fib6_info *rt)
424 {
425 	struct fib6_entry_notifier_info info = {
426 		.rt = rt,
427 		.nsiblings = rt->fib6_nsiblings,
428 	};
429 
430 	rt->fib6_table->fib_seq++;
431 	return call_fib6_notifiers(net, FIB_EVENT_ENTRY_REPLACE, &info.info);
432 }
433 
434 struct fib6_dump_arg {
435 	struct net *net;
436 	struct notifier_block *nb;
437 	struct netlink_ext_ack *extack;
438 };
439 
440 static int fib6_rt_dump(struct fib6_info *rt, struct fib6_dump_arg *arg)
441 {
442 	enum fib_event_type fib_event = FIB_EVENT_ENTRY_REPLACE;
443 	int err;
444 
445 	if (!rt || rt == arg->net->ipv6.fib6_null_entry)
446 		return 0;
447 
448 	if (rt->fib6_nsiblings)
449 		err = call_fib6_multipath_entry_notifier(arg->nb, fib_event,
450 							 rt,
451 							 rt->fib6_nsiblings,
452 							 arg->extack);
453 	else
454 		err = call_fib6_entry_notifier(arg->nb, fib_event, rt,
455 					       arg->extack);
456 
457 	return err;
458 }
459 
460 static int fib6_node_dump(struct fib6_walker *w)
461 {
462 	int err;
463 
464 	err = fib6_rt_dump(w->leaf, w->args);
465 	w->leaf = NULL;
466 	return err;
467 }
468 
469 static int fib6_table_dump(struct net *net, struct fib6_table *tb,
470 			   struct fib6_walker *w)
471 {
472 	int err;
473 
474 	w->root = &tb->tb6_root;
475 	spin_lock_bh(&tb->tb6_lock);
476 	err = fib6_walk(net, w);
477 	spin_unlock_bh(&tb->tb6_lock);
478 	return err;
479 }
480 
481 /* Called with rcu_read_lock() */
482 int fib6_tables_dump(struct net *net, struct notifier_block *nb,
483 		     struct netlink_ext_ack *extack)
484 {
485 	struct fib6_dump_arg arg;
486 	struct fib6_walker *w;
487 	unsigned int h;
488 	int err = 0;
489 
490 	w = kzalloc(sizeof(*w), GFP_ATOMIC);
491 	if (!w)
492 		return -ENOMEM;
493 
494 	w->func = fib6_node_dump;
495 	arg.net = net;
496 	arg.nb = nb;
497 	arg.extack = extack;
498 	w->args = &arg;
499 
500 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
501 		struct hlist_head *head = &net->ipv6.fib_table_hash[h];
502 		struct fib6_table *tb;
503 
504 		hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
505 			err = fib6_table_dump(net, tb, w);
506 			if (err)
507 				goto out;
508 		}
509 	}
510 
511 out:
512 	kfree(w);
513 
514 	/* The tree traversal function should never return a positive value. */
515 	return err > 0 ? -EINVAL : err;
516 }
517 
518 static int fib6_dump_node(struct fib6_walker *w)
519 {
520 	int res;
521 	struct fib6_info *rt;
522 
523 	for_each_fib6_walker_rt(w) {
524 		res = rt6_dump_route(rt, w->args, w->skip_in_node);
525 		if (res >= 0) {
526 			/* Frame is full, suspend walking */
527 			w->leaf = rt;
528 
529 			/* We'll restart from this node, so if some routes were
530 			 * already dumped, skip them next time.
531 			 */
532 			w->skip_in_node += res;
533 
534 			return 1;
535 		}
536 		w->skip_in_node = 0;
537 
538 		/* Multipath routes are dumped in one route with the
539 		 * RTA_MULTIPATH attribute. Jump 'rt' to point to the
540 		 * last sibling of this route (no need to dump the
541 		 * sibling routes again)
542 		 */
543 		if (rt->fib6_nsiblings)
544 			rt = list_last_entry(&rt->fib6_siblings,
545 					     struct fib6_info,
546 					     fib6_siblings);
547 	}
548 	w->leaf = NULL;
549 	return 0;
550 }
551 
552 static void fib6_dump_end(struct netlink_callback *cb)
553 {
554 	struct net *net = sock_net(cb->skb->sk);
555 	struct fib6_walker *w = (void *)cb->args[2];
556 
557 	if (w) {
558 		if (cb->args[4]) {
559 			cb->args[4] = 0;
560 			fib6_walker_unlink(net, w);
561 		}
562 		cb->args[2] = 0;
563 		kfree(w);
564 	}
565 	cb->done = (void *)cb->args[3];
566 	cb->args[1] = 3;
567 }
568 
569 static int fib6_dump_done(struct netlink_callback *cb)
570 {
571 	fib6_dump_end(cb);
572 	return cb->done ? cb->done(cb) : 0;
573 }
574 
575 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
576 			   struct netlink_callback *cb)
577 {
578 	struct net *net = sock_net(skb->sk);
579 	struct fib6_walker *w;
580 	int res;
581 
582 	w = (void *)cb->args[2];
583 	w->root = &table->tb6_root;
584 
585 	if (cb->args[4] == 0) {
586 		w->count = 0;
587 		w->skip = 0;
588 		w->skip_in_node = 0;
589 
590 		spin_lock_bh(&table->tb6_lock);
591 		res = fib6_walk(net, w);
592 		spin_unlock_bh(&table->tb6_lock);
593 		if (res > 0) {
594 			cb->args[4] = 1;
595 			cb->args[5] = READ_ONCE(w->root->fn_sernum);
596 		}
597 	} else {
598 		int sernum = READ_ONCE(w->root->fn_sernum);
599 		if (cb->args[5] != sernum) {
600 			/* Begin at the root if the tree changed */
601 			cb->args[5] = sernum;
602 			w->state = FWS_INIT;
603 			w->node = w->root;
604 			w->skip = w->count;
605 			w->skip_in_node = 0;
606 		} else
607 			w->skip = 0;
608 
609 		spin_lock_bh(&table->tb6_lock);
610 		res = fib6_walk_continue(w);
611 		spin_unlock_bh(&table->tb6_lock);
612 		if (res <= 0) {
613 			fib6_walker_unlink(net, w);
614 			cb->args[4] = 0;
615 		}
616 	}
617 
618 	return res;
619 }
620 
621 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
622 {
623 	struct rt6_rtnl_dump_arg arg = {
624 		.filter.dump_exceptions = true,
625 		.filter.dump_routes = true,
626 		.filter.rtnl_held = true,
627 	};
628 	const struct nlmsghdr *nlh = cb->nlh;
629 	struct net *net = sock_net(skb->sk);
630 	unsigned int h, s_h;
631 	unsigned int e = 0, s_e;
632 	struct fib6_walker *w;
633 	struct fib6_table *tb;
634 	struct hlist_head *head;
635 	int res = 0;
636 
637 	if (cb->strict_check) {
638 		int err;
639 
640 		err = ip_valid_fib_dump_req(net, nlh, &arg.filter, cb);
641 		if (err < 0)
642 			return err;
643 	} else if (nlmsg_len(nlh) >= sizeof(struct rtmsg)) {
644 		struct rtmsg *rtm = nlmsg_data(nlh);
645 
646 		if (rtm->rtm_flags & RTM_F_PREFIX)
647 			arg.filter.flags = RTM_F_PREFIX;
648 	}
649 
650 	w = (void *)cb->args[2];
651 	if (!w) {
652 		/* New dump:
653 		 *
654 		 * 1. allocate and initialize walker.
655 		 */
656 		w = kzalloc(sizeof(*w), GFP_ATOMIC);
657 		if (!w)
658 			return -ENOMEM;
659 		w->func = fib6_dump_node;
660 		cb->args[2] = (long)w;
661 
662 		/* 2. hook callback destructor.
663 		 */
664 		cb->args[3] = (long)cb->done;
665 		cb->done = fib6_dump_done;
666 
667 	}
668 
669 	arg.skb = skb;
670 	arg.cb = cb;
671 	arg.net = net;
672 	w->args = &arg;
673 
674 	if (arg.filter.table_id) {
675 		tb = fib6_get_table(net, arg.filter.table_id);
676 		if (!tb) {
677 			if (rtnl_msg_family(cb->nlh) != PF_INET6)
678 				goto out;
679 
680 			NL_SET_ERR_MSG_MOD(cb->extack, "FIB table does not exist");
681 			return -ENOENT;
682 		}
683 
684 		if (!cb->args[0]) {
685 			res = fib6_dump_table(tb, skb, cb);
686 			if (!res)
687 				cb->args[0] = 1;
688 		}
689 		goto out;
690 	}
691 
692 	s_h = cb->args[0];
693 	s_e = cb->args[1];
694 
695 	rcu_read_lock();
696 	for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
697 		e = 0;
698 		head = &net->ipv6.fib_table_hash[h];
699 		hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
700 			if (e < s_e)
701 				goto next;
702 			res = fib6_dump_table(tb, skb, cb);
703 			if (res != 0)
704 				goto out_unlock;
705 next:
706 			e++;
707 		}
708 	}
709 out_unlock:
710 	rcu_read_unlock();
711 	cb->args[1] = e;
712 	cb->args[0] = h;
713 out:
714 	res = res < 0 ? res : skb->len;
715 	if (res <= 0)
716 		fib6_dump_end(cb);
717 	return res;
718 }
719 
720 void fib6_metric_set(struct fib6_info *f6i, int metric, u32 val)
721 {
722 	if (!f6i)
723 		return;
724 
725 	if (f6i->fib6_metrics == &dst_default_metrics) {
726 		struct dst_metrics *p = kzalloc(sizeof(*p), GFP_ATOMIC);
727 
728 		if (!p)
729 			return;
730 
731 		refcount_set(&p->refcnt, 1);
732 		f6i->fib6_metrics = p;
733 	}
734 
735 	f6i->fib6_metrics->metrics[metric - 1] = val;
736 }
737 
738 /*
739  *	Routing Table
740  *
741  *	return the appropriate node for a routing tree "add" operation
742  *	by either creating and inserting or by returning an existing
743  *	node.
744  */
745 
746 static struct fib6_node *fib6_add_1(struct net *net,
747 				    struct fib6_table *table,
748 				    struct fib6_node *root,
749 				    struct in6_addr *addr, int plen,
750 				    int offset, int allow_create,
751 				    int replace_required,
752 				    struct netlink_ext_ack *extack)
753 {
754 	struct fib6_node *fn, *in, *ln;
755 	struct fib6_node *pn = NULL;
756 	struct rt6key *key;
757 	int	bit;
758 	__be32	dir = 0;
759 
760 	/* insert node in tree */
761 
762 	fn = root;
763 
764 	do {
765 		struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
766 					    lockdep_is_held(&table->tb6_lock));
767 		key = (struct rt6key *)((u8 *)leaf + offset);
768 
769 		/*
770 		 *	Prefix match
771 		 */
772 		if (plen < fn->fn_bit ||
773 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
774 			if (!allow_create) {
775 				if (replace_required) {
776 					NL_SET_ERR_MSG(extack,
777 						       "Can not replace route - no match found");
778 					pr_warn("Can't replace route, no match found\n");
779 					return ERR_PTR(-ENOENT);
780 				}
781 				pr_warn("NLM_F_CREATE should be set when creating new route\n");
782 			}
783 			goto insert_above;
784 		}
785 
786 		/*
787 		 *	Exact match ?
788 		 */
789 
790 		if (plen == fn->fn_bit) {
791 			/* clean up an intermediate node */
792 			if (!(fn->fn_flags & RTN_RTINFO)) {
793 				RCU_INIT_POINTER(fn->leaf, NULL);
794 				fib6_info_release(leaf);
795 			/* remove null_entry in the root node */
796 			} else if (fn->fn_flags & RTN_TL_ROOT &&
797 				   rcu_access_pointer(fn->leaf) ==
798 				   net->ipv6.fib6_null_entry) {
799 				RCU_INIT_POINTER(fn->leaf, NULL);
800 			}
801 
802 			return fn;
803 		}
804 
805 		/*
806 		 *	We have more bits to go
807 		 */
808 
809 		/* Try to walk down on tree. */
810 		dir = addr_bit_set(addr, fn->fn_bit);
811 		pn = fn;
812 		fn = dir ?
813 		     rcu_dereference_protected(fn->right,
814 					lockdep_is_held(&table->tb6_lock)) :
815 		     rcu_dereference_protected(fn->left,
816 					lockdep_is_held(&table->tb6_lock));
817 	} while (fn);
818 
819 	if (!allow_create) {
820 		/* We should not create new node because
821 		 * NLM_F_REPLACE was specified without NLM_F_CREATE
822 		 * I assume it is safe to require NLM_F_CREATE when
823 		 * REPLACE flag is used! Later we may want to remove the
824 		 * check for replace_required, because according
825 		 * to netlink specification, NLM_F_CREATE
826 		 * MUST be specified if new route is created.
827 		 * That would keep IPv6 consistent with IPv4
828 		 */
829 		if (replace_required) {
830 			NL_SET_ERR_MSG(extack,
831 				       "Can not replace route - no match found");
832 			pr_warn("Can't replace route, no match found\n");
833 			return ERR_PTR(-ENOENT);
834 		}
835 		pr_warn("NLM_F_CREATE should be set when creating new route\n");
836 	}
837 	/*
838 	 *	We walked to the bottom of tree.
839 	 *	Create new leaf node without children.
840 	 */
841 
842 	ln = node_alloc(net);
843 
844 	if (!ln)
845 		return ERR_PTR(-ENOMEM);
846 	ln->fn_bit = plen;
847 	RCU_INIT_POINTER(ln->parent, pn);
848 
849 	if (dir)
850 		rcu_assign_pointer(pn->right, ln);
851 	else
852 		rcu_assign_pointer(pn->left, ln);
853 
854 	return ln;
855 
856 
857 insert_above:
858 	/*
859 	 * split since we don't have a common prefix anymore or
860 	 * we have a less significant route.
861 	 * we've to insert an intermediate node on the list
862 	 * this new node will point to the one we need to create
863 	 * and the current
864 	 */
865 
866 	pn = rcu_dereference_protected(fn->parent,
867 				       lockdep_is_held(&table->tb6_lock));
868 
869 	/* find 1st bit in difference between the 2 addrs.
870 
871 	   See comment in __ipv6_addr_diff: bit may be an invalid value,
872 	   but if it is >= plen, the value is ignored in any case.
873 	 */
874 
875 	bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
876 
877 	/*
878 	 *		(intermediate)[in]
879 	 *	          /	   \
880 	 *	(new leaf node)[ln] (old node)[fn]
881 	 */
882 	if (plen > bit) {
883 		in = node_alloc(net);
884 		ln = node_alloc(net);
885 
886 		if (!in || !ln) {
887 			if (in)
888 				node_free_immediate(net, in);
889 			if (ln)
890 				node_free_immediate(net, ln);
891 			return ERR_PTR(-ENOMEM);
892 		}
893 
894 		/*
895 		 * new intermediate node.
896 		 * RTN_RTINFO will
897 		 * be off since that an address that chooses one of
898 		 * the branches would not match less specific routes
899 		 * in the other branch
900 		 */
901 
902 		in->fn_bit = bit;
903 
904 		RCU_INIT_POINTER(in->parent, pn);
905 		in->leaf = fn->leaf;
906 		fib6_info_hold(rcu_dereference_protected(in->leaf,
907 				lockdep_is_held(&table->tb6_lock)));
908 
909 		/* update parent pointer */
910 		if (dir)
911 			rcu_assign_pointer(pn->right, in);
912 		else
913 			rcu_assign_pointer(pn->left, in);
914 
915 		ln->fn_bit = plen;
916 
917 		RCU_INIT_POINTER(ln->parent, in);
918 		rcu_assign_pointer(fn->parent, in);
919 
920 		if (addr_bit_set(addr, bit)) {
921 			rcu_assign_pointer(in->right, ln);
922 			rcu_assign_pointer(in->left, fn);
923 		} else {
924 			rcu_assign_pointer(in->left, ln);
925 			rcu_assign_pointer(in->right, fn);
926 		}
927 	} else { /* plen <= bit */
928 
929 		/*
930 		 *		(new leaf node)[ln]
931 		 *	          /	   \
932 		 *	     (old node)[fn] NULL
933 		 */
934 
935 		ln = node_alloc(net);
936 
937 		if (!ln)
938 			return ERR_PTR(-ENOMEM);
939 
940 		ln->fn_bit = plen;
941 
942 		RCU_INIT_POINTER(ln->parent, pn);
943 
944 		if (addr_bit_set(&key->addr, plen))
945 			RCU_INIT_POINTER(ln->right, fn);
946 		else
947 			RCU_INIT_POINTER(ln->left, fn);
948 
949 		rcu_assign_pointer(fn->parent, ln);
950 
951 		if (dir)
952 			rcu_assign_pointer(pn->right, ln);
953 		else
954 			rcu_assign_pointer(pn->left, ln);
955 	}
956 	return ln;
957 }
958 
959 static void __fib6_drop_pcpu_from(struct fib6_nh *fib6_nh,
960 				  const struct fib6_info *match,
961 				  const struct fib6_table *table)
962 {
963 	int cpu;
964 
965 	if (!fib6_nh->rt6i_pcpu)
966 		return;
967 
968 	/* release the reference to this fib entry from
969 	 * all of its cached pcpu routes
970 	 */
971 	for_each_possible_cpu(cpu) {
972 		struct rt6_info **ppcpu_rt;
973 		struct rt6_info *pcpu_rt;
974 
975 		ppcpu_rt = per_cpu_ptr(fib6_nh->rt6i_pcpu, cpu);
976 		pcpu_rt = *ppcpu_rt;
977 
978 		/* only dropping the 'from' reference if the cached route
979 		 * is using 'match'. The cached pcpu_rt->from only changes
980 		 * from a fib6_info to NULL (ip6_dst_destroy); it can never
981 		 * change from one fib6_info reference to another
982 		 */
983 		if (pcpu_rt && rcu_access_pointer(pcpu_rt->from) == match) {
984 			struct fib6_info *from;
985 
986 			from = xchg((__force struct fib6_info **)&pcpu_rt->from, NULL);
987 			fib6_info_release(from);
988 		}
989 	}
990 }
991 
992 struct fib6_nh_pcpu_arg {
993 	struct fib6_info	*from;
994 	const struct fib6_table *table;
995 };
996 
997 static int fib6_nh_drop_pcpu_from(struct fib6_nh *nh, void *_arg)
998 {
999 	struct fib6_nh_pcpu_arg *arg = _arg;
1000 
1001 	__fib6_drop_pcpu_from(nh, arg->from, arg->table);
1002 	return 0;
1003 }
1004 
1005 static void fib6_drop_pcpu_from(struct fib6_info *f6i,
1006 				const struct fib6_table *table)
1007 {
1008 	/* Make sure rt6_make_pcpu_route() wont add other percpu routes
1009 	 * while we are cleaning them here.
1010 	 */
1011 	f6i->fib6_destroying = 1;
1012 	mb(); /* paired with the cmpxchg() in rt6_make_pcpu_route() */
1013 
1014 	if (f6i->nh) {
1015 		struct fib6_nh_pcpu_arg arg = {
1016 			.from = f6i,
1017 			.table = table
1018 		};
1019 
1020 		nexthop_for_each_fib6_nh(f6i->nh, fib6_nh_drop_pcpu_from,
1021 					 &arg);
1022 	} else {
1023 		struct fib6_nh *fib6_nh;
1024 
1025 		fib6_nh = f6i->fib6_nh;
1026 		__fib6_drop_pcpu_from(fib6_nh, f6i, table);
1027 	}
1028 }
1029 
1030 static void fib6_purge_rt(struct fib6_info *rt, struct fib6_node *fn,
1031 			  struct net *net)
1032 {
1033 	struct fib6_table *table = rt->fib6_table;
1034 
1035 	/* Flush all cached dst in exception table */
1036 	rt6_flush_exceptions(rt);
1037 	fib6_drop_pcpu_from(rt, table);
1038 
1039 	if (rt->nh && !list_empty(&rt->nh_list))
1040 		list_del_init(&rt->nh_list);
1041 
1042 	if (refcount_read(&rt->fib6_ref) != 1) {
1043 		/* This route is used as dummy address holder in some split
1044 		 * nodes. It is not leaked, but it still holds other resources,
1045 		 * which must be released in time. So, scan ascendant nodes
1046 		 * and replace dummy references to this route with references
1047 		 * to still alive ones.
1048 		 */
1049 		while (fn) {
1050 			struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
1051 					    lockdep_is_held(&table->tb6_lock));
1052 			struct fib6_info *new_leaf;
1053 			if (!(fn->fn_flags & RTN_RTINFO) && leaf == rt) {
1054 				new_leaf = fib6_find_prefix(net, table, fn);
1055 				fib6_info_hold(new_leaf);
1056 
1057 				rcu_assign_pointer(fn->leaf, new_leaf);
1058 				fib6_info_release(rt);
1059 			}
1060 			fn = rcu_dereference_protected(fn->parent,
1061 				    lockdep_is_held(&table->tb6_lock));
1062 		}
1063 	}
1064 
1065 	fib6_clean_expires(rt);
1066 	fib6_remove_gc_list(rt);
1067 }
1068 
1069 /*
1070  *	Insert routing information in a node.
1071  */
1072 
1073 static int fib6_add_rt2node(struct fib6_node *fn, struct fib6_info *rt,
1074 			    struct nl_info *info,
1075 			    struct netlink_ext_ack *extack)
1076 {
1077 	struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
1078 				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1079 	struct fib6_info *iter = NULL;
1080 	struct fib6_info __rcu **ins;
1081 	struct fib6_info __rcu **fallback_ins = NULL;
1082 	int replace = (info->nlh &&
1083 		       (info->nlh->nlmsg_flags & NLM_F_REPLACE));
1084 	int add = (!info->nlh ||
1085 		   (info->nlh->nlmsg_flags & NLM_F_CREATE));
1086 	int found = 0;
1087 	bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
1088 	bool notify_sibling_rt = false;
1089 	u16 nlflags = NLM_F_EXCL;
1090 	int err;
1091 
1092 	if (info->nlh && (info->nlh->nlmsg_flags & NLM_F_APPEND))
1093 		nlflags |= NLM_F_APPEND;
1094 
1095 	ins = &fn->leaf;
1096 
1097 	for (iter = leaf; iter;
1098 	     iter = rcu_dereference_protected(iter->fib6_next,
1099 				lockdep_is_held(&rt->fib6_table->tb6_lock))) {
1100 		/*
1101 		 *	Search for duplicates
1102 		 */
1103 
1104 		if (iter->fib6_metric == rt->fib6_metric) {
1105 			/*
1106 			 *	Same priority level
1107 			 */
1108 			if (info->nlh &&
1109 			    (info->nlh->nlmsg_flags & NLM_F_EXCL))
1110 				return -EEXIST;
1111 
1112 			nlflags &= ~NLM_F_EXCL;
1113 			if (replace) {
1114 				if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) {
1115 					found++;
1116 					break;
1117 				}
1118 				fallback_ins = fallback_ins ?: ins;
1119 				goto next_iter;
1120 			}
1121 
1122 			if (rt6_duplicate_nexthop(iter, rt)) {
1123 				if (rt->fib6_nsiblings)
1124 					rt->fib6_nsiblings = 0;
1125 				if (!(iter->fib6_flags & RTF_EXPIRES))
1126 					return -EEXIST;
1127 				if (!(rt->fib6_flags & RTF_EXPIRES)) {
1128 					fib6_clean_expires(iter);
1129 					fib6_remove_gc_list(iter);
1130 				} else {
1131 					fib6_set_expires(iter, rt->expires);
1132 					fib6_add_gc_list(iter);
1133 				}
1134 
1135 				if (rt->fib6_pmtu)
1136 					fib6_metric_set(iter, RTAX_MTU,
1137 							rt->fib6_pmtu);
1138 				return -EEXIST;
1139 			}
1140 			/* If we have the same destination and the same metric,
1141 			 * but not the same gateway, then the route we try to
1142 			 * add is sibling to this route, increment our counter
1143 			 * of siblings, and later we will add our route to the
1144 			 * list.
1145 			 * Only static routes (which don't have flag
1146 			 * RTF_EXPIRES) are used for ECMPv6.
1147 			 *
1148 			 * To avoid long list, we only had siblings if the
1149 			 * route have a gateway.
1150 			 */
1151 			if (rt_can_ecmp &&
1152 			    rt6_qualify_for_ecmp(iter))
1153 				rt->fib6_nsiblings++;
1154 		}
1155 
1156 		if (iter->fib6_metric > rt->fib6_metric)
1157 			break;
1158 
1159 next_iter:
1160 		ins = &iter->fib6_next;
1161 	}
1162 
1163 	if (fallback_ins && !found) {
1164 		/* No matching route with same ecmp-able-ness found, replace
1165 		 * first matching route
1166 		 */
1167 		ins = fallback_ins;
1168 		iter = rcu_dereference_protected(*ins,
1169 				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1170 		found++;
1171 	}
1172 
1173 	/* Reset round-robin state, if necessary */
1174 	if (ins == &fn->leaf)
1175 		fn->rr_ptr = NULL;
1176 
1177 	/* Link this route to others same route. */
1178 	if (rt->fib6_nsiblings) {
1179 		unsigned int fib6_nsiblings;
1180 		struct fib6_info *sibling, *temp_sibling;
1181 
1182 		/* Find the first route that have the same metric */
1183 		sibling = leaf;
1184 		notify_sibling_rt = true;
1185 		while (sibling) {
1186 			if (sibling->fib6_metric == rt->fib6_metric &&
1187 			    rt6_qualify_for_ecmp(sibling)) {
1188 				list_add_tail(&rt->fib6_siblings,
1189 					      &sibling->fib6_siblings);
1190 				break;
1191 			}
1192 			sibling = rcu_dereference_protected(sibling->fib6_next,
1193 				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1194 			notify_sibling_rt = false;
1195 		}
1196 		/* For each sibling in the list, increment the counter of
1197 		 * siblings. BUG() if counters does not match, list of siblings
1198 		 * is broken!
1199 		 */
1200 		fib6_nsiblings = 0;
1201 		list_for_each_entry_safe(sibling, temp_sibling,
1202 					 &rt->fib6_siblings, fib6_siblings) {
1203 			sibling->fib6_nsiblings++;
1204 			BUG_ON(sibling->fib6_nsiblings != rt->fib6_nsiblings);
1205 			fib6_nsiblings++;
1206 		}
1207 		BUG_ON(fib6_nsiblings != rt->fib6_nsiblings);
1208 		rt6_multipath_rebalance(temp_sibling);
1209 	}
1210 
1211 	/*
1212 	 *	insert node
1213 	 */
1214 	if (!replace) {
1215 		if (!add)
1216 			pr_warn("NLM_F_CREATE should be set when creating new route\n");
1217 
1218 add:
1219 		nlflags |= NLM_F_CREATE;
1220 
1221 		/* The route should only be notified if it is the first
1222 		 * route in the node or if it is added as a sibling
1223 		 * route to the first route in the node.
1224 		 */
1225 		if (!info->skip_notify_kernel &&
1226 		    (notify_sibling_rt || ins == &fn->leaf)) {
1227 			enum fib_event_type fib_event;
1228 
1229 			if (notify_sibling_rt)
1230 				fib_event = FIB_EVENT_ENTRY_APPEND;
1231 			else
1232 				fib_event = FIB_EVENT_ENTRY_REPLACE;
1233 			err = call_fib6_entry_notifiers(info->nl_net,
1234 							fib_event, rt,
1235 							extack);
1236 			if (err) {
1237 				struct fib6_info *sibling, *next_sibling;
1238 
1239 				/* If the route has siblings, then it first
1240 				 * needs to be unlinked from them.
1241 				 */
1242 				if (!rt->fib6_nsiblings)
1243 					return err;
1244 
1245 				list_for_each_entry_safe(sibling, next_sibling,
1246 							 &rt->fib6_siblings,
1247 							 fib6_siblings)
1248 					sibling->fib6_nsiblings--;
1249 				rt->fib6_nsiblings = 0;
1250 				list_del_init(&rt->fib6_siblings);
1251 				rt6_multipath_rebalance(next_sibling);
1252 				return err;
1253 			}
1254 		}
1255 
1256 		rcu_assign_pointer(rt->fib6_next, iter);
1257 		fib6_info_hold(rt);
1258 		rcu_assign_pointer(rt->fib6_node, fn);
1259 		rcu_assign_pointer(*ins, rt);
1260 		if (!info->skip_notify)
1261 			inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags);
1262 		info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
1263 
1264 		if (!(fn->fn_flags & RTN_RTINFO)) {
1265 			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1266 			fn->fn_flags |= RTN_RTINFO;
1267 		}
1268 
1269 	} else {
1270 		int nsiblings;
1271 
1272 		if (!found) {
1273 			if (add)
1274 				goto add;
1275 			pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
1276 			return -ENOENT;
1277 		}
1278 
1279 		if (!info->skip_notify_kernel && ins == &fn->leaf) {
1280 			err = call_fib6_entry_notifiers(info->nl_net,
1281 							FIB_EVENT_ENTRY_REPLACE,
1282 							rt, extack);
1283 			if (err)
1284 				return err;
1285 		}
1286 
1287 		fib6_info_hold(rt);
1288 		rcu_assign_pointer(rt->fib6_node, fn);
1289 		rt->fib6_next = iter->fib6_next;
1290 		rcu_assign_pointer(*ins, rt);
1291 		if (!info->skip_notify)
1292 			inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE);
1293 		if (!(fn->fn_flags & RTN_RTINFO)) {
1294 			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1295 			fn->fn_flags |= RTN_RTINFO;
1296 		}
1297 		nsiblings = iter->fib6_nsiblings;
1298 		iter->fib6_node = NULL;
1299 		fib6_purge_rt(iter, fn, info->nl_net);
1300 		if (rcu_access_pointer(fn->rr_ptr) == iter)
1301 			fn->rr_ptr = NULL;
1302 		fib6_info_release(iter);
1303 
1304 		if (nsiblings) {
1305 			/* Replacing an ECMP route, remove all siblings */
1306 			ins = &rt->fib6_next;
1307 			iter = rcu_dereference_protected(*ins,
1308 				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1309 			while (iter) {
1310 				if (iter->fib6_metric > rt->fib6_metric)
1311 					break;
1312 				if (rt6_qualify_for_ecmp(iter)) {
1313 					*ins = iter->fib6_next;
1314 					iter->fib6_node = NULL;
1315 					fib6_purge_rt(iter, fn, info->nl_net);
1316 					if (rcu_access_pointer(fn->rr_ptr) == iter)
1317 						fn->rr_ptr = NULL;
1318 					fib6_info_release(iter);
1319 					nsiblings--;
1320 					info->nl_net->ipv6.rt6_stats->fib_rt_entries--;
1321 				} else {
1322 					ins = &iter->fib6_next;
1323 				}
1324 				iter = rcu_dereference_protected(*ins,
1325 					lockdep_is_held(&rt->fib6_table->tb6_lock));
1326 			}
1327 			WARN_ON(nsiblings != 0);
1328 		}
1329 	}
1330 
1331 	return 0;
1332 }
1333 
1334 static void fib6_start_gc(struct net *net, struct fib6_info *rt)
1335 {
1336 	if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
1337 	    (rt->fib6_flags & RTF_EXPIRES))
1338 		mod_timer(&net->ipv6.ip6_fib_timer,
1339 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1340 }
1341 
1342 void fib6_force_start_gc(struct net *net)
1343 {
1344 	if (!timer_pending(&net->ipv6.ip6_fib_timer))
1345 		mod_timer(&net->ipv6.ip6_fib_timer,
1346 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1347 }
1348 
1349 static void __fib6_update_sernum_upto_root(struct fib6_info *rt,
1350 					   int sernum)
1351 {
1352 	struct fib6_node *fn = rcu_dereference_protected(rt->fib6_node,
1353 				lockdep_is_held(&rt->fib6_table->tb6_lock));
1354 
1355 	/* paired with smp_rmb() in fib6_get_cookie_safe() */
1356 	smp_wmb();
1357 	while (fn) {
1358 		WRITE_ONCE(fn->fn_sernum, sernum);
1359 		fn = rcu_dereference_protected(fn->parent,
1360 				lockdep_is_held(&rt->fib6_table->tb6_lock));
1361 	}
1362 }
1363 
1364 void fib6_update_sernum_upto_root(struct net *net, struct fib6_info *rt)
1365 {
1366 	__fib6_update_sernum_upto_root(rt, fib6_new_sernum(net));
1367 }
1368 
1369 /* allow ipv4 to update sernum via ipv6_stub */
1370 void fib6_update_sernum_stub(struct net *net, struct fib6_info *f6i)
1371 {
1372 	spin_lock_bh(&f6i->fib6_table->tb6_lock);
1373 	fib6_update_sernum_upto_root(net, f6i);
1374 	spin_unlock_bh(&f6i->fib6_table->tb6_lock);
1375 }
1376 
1377 /*
1378  *	Add routing information to the routing tree.
1379  *	<destination addr>/<source addr>
1380  *	with source addr info in sub-trees
1381  *	Need to own table->tb6_lock
1382  */
1383 
1384 int fib6_add(struct fib6_node *root, struct fib6_info *rt,
1385 	     struct nl_info *info, struct netlink_ext_ack *extack)
1386 {
1387 	struct fib6_table *table = rt->fib6_table;
1388 	struct fib6_node *fn;
1389 #ifdef CONFIG_IPV6_SUBTREES
1390 	struct fib6_node *pn = NULL;
1391 #endif
1392 	int err = -ENOMEM;
1393 	int allow_create = 1;
1394 	int replace_required = 0;
1395 
1396 	if (info->nlh) {
1397 		if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
1398 			allow_create = 0;
1399 		if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
1400 			replace_required = 1;
1401 	}
1402 	if (!allow_create && !replace_required)
1403 		pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
1404 
1405 	fn = fib6_add_1(info->nl_net, table, root,
1406 			&rt->fib6_dst.addr, rt->fib6_dst.plen,
1407 			offsetof(struct fib6_info, fib6_dst), allow_create,
1408 			replace_required, extack);
1409 	if (IS_ERR(fn)) {
1410 		err = PTR_ERR(fn);
1411 		fn = NULL;
1412 		goto out;
1413 	}
1414 
1415 #ifdef CONFIG_IPV6_SUBTREES
1416 	pn = fn;
1417 
1418 	if (rt->fib6_src.plen) {
1419 		struct fib6_node *sn;
1420 
1421 		if (!rcu_access_pointer(fn->subtree)) {
1422 			struct fib6_node *sfn;
1423 
1424 			/*
1425 			 * Create subtree.
1426 			 *
1427 			 *		fn[main tree]
1428 			 *		|
1429 			 *		sfn[subtree root]
1430 			 *		   \
1431 			 *		    sn[new leaf node]
1432 			 */
1433 
1434 			/* Create subtree root node */
1435 			sfn = node_alloc(info->nl_net);
1436 			if (!sfn)
1437 				goto failure;
1438 
1439 			fib6_info_hold(info->nl_net->ipv6.fib6_null_entry);
1440 			rcu_assign_pointer(sfn->leaf,
1441 					   info->nl_net->ipv6.fib6_null_entry);
1442 			sfn->fn_flags = RTN_ROOT;
1443 
1444 			/* Now add the first leaf node to new subtree */
1445 
1446 			sn = fib6_add_1(info->nl_net, table, sfn,
1447 					&rt->fib6_src.addr, rt->fib6_src.plen,
1448 					offsetof(struct fib6_info, fib6_src),
1449 					allow_create, replace_required, extack);
1450 
1451 			if (IS_ERR(sn)) {
1452 				/* If it is failed, discard just allocated
1453 				   root, and then (in failure) stale node
1454 				   in main tree.
1455 				 */
1456 				node_free_immediate(info->nl_net, sfn);
1457 				err = PTR_ERR(sn);
1458 				goto failure;
1459 			}
1460 
1461 			/* Now link new subtree to main tree */
1462 			rcu_assign_pointer(sfn->parent, fn);
1463 			rcu_assign_pointer(fn->subtree, sfn);
1464 		} else {
1465 			sn = fib6_add_1(info->nl_net, table, FIB6_SUBTREE(fn),
1466 					&rt->fib6_src.addr, rt->fib6_src.plen,
1467 					offsetof(struct fib6_info, fib6_src),
1468 					allow_create, replace_required, extack);
1469 
1470 			if (IS_ERR(sn)) {
1471 				err = PTR_ERR(sn);
1472 				goto failure;
1473 			}
1474 		}
1475 
1476 		if (!rcu_access_pointer(fn->leaf)) {
1477 			if (fn->fn_flags & RTN_TL_ROOT) {
1478 				/* put back null_entry for root node */
1479 				rcu_assign_pointer(fn->leaf,
1480 					    info->nl_net->ipv6.fib6_null_entry);
1481 			} else {
1482 				fib6_info_hold(rt);
1483 				rcu_assign_pointer(fn->leaf, rt);
1484 			}
1485 		}
1486 		fn = sn;
1487 	}
1488 #endif
1489 
1490 	err = fib6_add_rt2node(fn, rt, info, extack);
1491 	if (!err) {
1492 		if (rt->nh)
1493 			list_add(&rt->nh_list, &rt->nh->f6i_list);
1494 		__fib6_update_sernum_upto_root(rt, fib6_new_sernum(info->nl_net));
1495 
1496 		if (rt->fib6_flags & RTF_EXPIRES)
1497 			fib6_add_gc_list(rt);
1498 
1499 		fib6_start_gc(info->nl_net, rt);
1500 	}
1501 
1502 out:
1503 	if (err) {
1504 #ifdef CONFIG_IPV6_SUBTREES
1505 		/*
1506 		 * If fib6_add_1 has cleared the old leaf pointer in the
1507 		 * super-tree leaf node we have to find a new one for it.
1508 		 */
1509 		if (pn != fn) {
1510 			struct fib6_info *pn_leaf =
1511 				rcu_dereference_protected(pn->leaf,
1512 				    lockdep_is_held(&table->tb6_lock));
1513 			if (pn_leaf == rt) {
1514 				pn_leaf = NULL;
1515 				RCU_INIT_POINTER(pn->leaf, NULL);
1516 				fib6_info_release(rt);
1517 			}
1518 			if (!pn_leaf && !(pn->fn_flags & RTN_RTINFO)) {
1519 				pn_leaf = fib6_find_prefix(info->nl_net, table,
1520 							   pn);
1521 				if (!pn_leaf)
1522 					pn_leaf =
1523 					    info->nl_net->ipv6.fib6_null_entry;
1524 				fib6_info_hold(pn_leaf);
1525 				rcu_assign_pointer(pn->leaf, pn_leaf);
1526 			}
1527 		}
1528 #endif
1529 		goto failure;
1530 	} else if (fib6_requires_src(rt)) {
1531 		fib6_routes_require_src_inc(info->nl_net);
1532 	}
1533 	return err;
1534 
1535 failure:
1536 	/* fn->leaf could be NULL and fib6_repair_tree() needs to be called if:
1537 	 * 1. fn is an intermediate node and we failed to add the new
1538 	 * route to it in both subtree creation failure and fib6_add_rt2node()
1539 	 * failure case.
1540 	 * 2. fn is the root node in the table and we fail to add the first
1541 	 * default route to it.
1542 	 */
1543 	if (fn &&
1544 	    (!(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)) ||
1545 	     (fn->fn_flags & RTN_TL_ROOT &&
1546 	      !rcu_access_pointer(fn->leaf))))
1547 		fib6_repair_tree(info->nl_net, table, fn);
1548 	return err;
1549 }
1550 
1551 /*
1552  *	Routing tree lookup
1553  *
1554  */
1555 
1556 struct lookup_args {
1557 	int			offset;		/* key offset on fib6_info */
1558 	const struct in6_addr	*addr;		/* search key			*/
1559 };
1560 
1561 static struct fib6_node *fib6_node_lookup_1(struct fib6_node *root,
1562 					    struct lookup_args *args)
1563 {
1564 	struct fib6_node *fn;
1565 	__be32 dir;
1566 
1567 	if (unlikely(args->offset == 0))
1568 		return NULL;
1569 
1570 	/*
1571 	 *	Descend on a tree
1572 	 */
1573 
1574 	fn = root;
1575 
1576 	for (;;) {
1577 		struct fib6_node *next;
1578 
1579 		dir = addr_bit_set(args->addr, fn->fn_bit);
1580 
1581 		next = dir ? rcu_dereference(fn->right) :
1582 			     rcu_dereference(fn->left);
1583 
1584 		if (next) {
1585 			fn = next;
1586 			continue;
1587 		}
1588 		break;
1589 	}
1590 
1591 	while (fn) {
1592 		struct fib6_node *subtree = FIB6_SUBTREE(fn);
1593 
1594 		if (subtree || fn->fn_flags & RTN_RTINFO) {
1595 			struct fib6_info *leaf = rcu_dereference(fn->leaf);
1596 			struct rt6key *key;
1597 
1598 			if (!leaf)
1599 				goto backtrack;
1600 
1601 			key = (struct rt6key *) ((u8 *)leaf + args->offset);
1602 
1603 			if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1604 #ifdef CONFIG_IPV6_SUBTREES
1605 				if (subtree) {
1606 					struct fib6_node *sfn;
1607 					sfn = fib6_node_lookup_1(subtree,
1608 								 args + 1);
1609 					if (!sfn)
1610 						goto backtrack;
1611 					fn = sfn;
1612 				}
1613 #endif
1614 				if (fn->fn_flags & RTN_RTINFO)
1615 					return fn;
1616 			}
1617 		}
1618 backtrack:
1619 		if (fn->fn_flags & RTN_ROOT)
1620 			break;
1621 
1622 		fn = rcu_dereference(fn->parent);
1623 	}
1624 
1625 	return NULL;
1626 }
1627 
1628 /* called with rcu_read_lock() held
1629  */
1630 struct fib6_node *fib6_node_lookup(struct fib6_node *root,
1631 				   const struct in6_addr *daddr,
1632 				   const struct in6_addr *saddr)
1633 {
1634 	struct fib6_node *fn;
1635 	struct lookup_args args[] = {
1636 		{
1637 			.offset = offsetof(struct fib6_info, fib6_dst),
1638 			.addr = daddr,
1639 		},
1640 #ifdef CONFIG_IPV6_SUBTREES
1641 		{
1642 			.offset = offsetof(struct fib6_info, fib6_src),
1643 			.addr = saddr,
1644 		},
1645 #endif
1646 		{
1647 			.offset = 0,	/* sentinel */
1648 		}
1649 	};
1650 
1651 	fn = fib6_node_lookup_1(root, daddr ? args : args + 1);
1652 	if (!fn || fn->fn_flags & RTN_TL_ROOT)
1653 		fn = root;
1654 
1655 	return fn;
1656 }
1657 
1658 /*
1659  *	Get node with specified destination prefix (and source prefix,
1660  *	if subtrees are used)
1661  *	exact_match == true means we try to find fn with exact match of
1662  *	the passed in prefix addr
1663  *	exact_match == false means we try to find fn with longest prefix
1664  *	match of the passed in prefix addr. This is useful for finding fn
1665  *	for cached route as it will be stored in the exception table under
1666  *	the node with longest prefix length.
1667  */
1668 
1669 
1670 static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1671 				       const struct in6_addr *addr,
1672 				       int plen, int offset,
1673 				       bool exact_match)
1674 {
1675 	struct fib6_node *fn, *prev = NULL;
1676 
1677 	for (fn = root; fn ; ) {
1678 		struct fib6_info *leaf = rcu_dereference(fn->leaf);
1679 		struct rt6key *key;
1680 
1681 		/* This node is being deleted */
1682 		if (!leaf) {
1683 			if (plen <= fn->fn_bit)
1684 				goto out;
1685 			else
1686 				goto next;
1687 		}
1688 
1689 		key = (struct rt6key *)((u8 *)leaf + offset);
1690 
1691 		/*
1692 		 *	Prefix match
1693 		 */
1694 		if (plen < fn->fn_bit ||
1695 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1696 			goto out;
1697 
1698 		if (plen == fn->fn_bit)
1699 			return fn;
1700 
1701 		if (fn->fn_flags & RTN_RTINFO)
1702 			prev = fn;
1703 
1704 next:
1705 		/*
1706 		 *	We have more bits to go
1707 		 */
1708 		if (addr_bit_set(addr, fn->fn_bit))
1709 			fn = rcu_dereference(fn->right);
1710 		else
1711 			fn = rcu_dereference(fn->left);
1712 	}
1713 out:
1714 	if (exact_match)
1715 		return NULL;
1716 	else
1717 		return prev;
1718 }
1719 
1720 struct fib6_node *fib6_locate(struct fib6_node *root,
1721 			      const struct in6_addr *daddr, int dst_len,
1722 			      const struct in6_addr *saddr, int src_len,
1723 			      bool exact_match)
1724 {
1725 	struct fib6_node *fn;
1726 
1727 	fn = fib6_locate_1(root, daddr, dst_len,
1728 			   offsetof(struct fib6_info, fib6_dst),
1729 			   exact_match);
1730 
1731 #ifdef CONFIG_IPV6_SUBTREES
1732 	if (src_len) {
1733 		WARN_ON(saddr == NULL);
1734 		if (fn) {
1735 			struct fib6_node *subtree = FIB6_SUBTREE(fn);
1736 
1737 			if (subtree) {
1738 				fn = fib6_locate_1(subtree, saddr, src_len,
1739 					   offsetof(struct fib6_info, fib6_src),
1740 					   exact_match);
1741 			}
1742 		}
1743 	}
1744 #endif
1745 
1746 	if (fn && fn->fn_flags & RTN_RTINFO)
1747 		return fn;
1748 
1749 	return NULL;
1750 }
1751 
1752 
1753 /*
1754  *	Deletion
1755  *
1756  */
1757 
1758 static struct fib6_info *fib6_find_prefix(struct net *net,
1759 					 struct fib6_table *table,
1760 					 struct fib6_node *fn)
1761 {
1762 	struct fib6_node *child_left, *child_right;
1763 
1764 	if (fn->fn_flags & RTN_ROOT)
1765 		return net->ipv6.fib6_null_entry;
1766 
1767 	while (fn) {
1768 		child_left = rcu_dereference_protected(fn->left,
1769 				    lockdep_is_held(&table->tb6_lock));
1770 		child_right = rcu_dereference_protected(fn->right,
1771 				    lockdep_is_held(&table->tb6_lock));
1772 		if (child_left)
1773 			return rcu_dereference_protected(child_left->leaf,
1774 					lockdep_is_held(&table->tb6_lock));
1775 		if (child_right)
1776 			return rcu_dereference_protected(child_right->leaf,
1777 					lockdep_is_held(&table->tb6_lock));
1778 
1779 		fn = FIB6_SUBTREE(fn);
1780 	}
1781 	return NULL;
1782 }
1783 
1784 /*
1785  *	Called to trim the tree of intermediate nodes when possible. "fn"
1786  *	is the node we want to try and remove.
1787  *	Need to own table->tb6_lock
1788  */
1789 
1790 static struct fib6_node *fib6_repair_tree(struct net *net,
1791 					  struct fib6_table *table,
1792 					  struct fib6_node *fn)
1793 {
1794 	int children;
1795 	int nstate;
1796 	struct fib6_node *child;
1797 	struct fib6_walker *w;
1798 	int iter = 0;
1799 
1800 	/* Set fn->leaf to null_entry for root node. */
1801 	if (fn->fn_flags & RTN_TL_ROOT) {
1802 		rcu_assign_pointer(fn->leaf, net->ipv6.fib6_null_entry);
1803 		return fn;
1804 	}
1805 
1806 	for (;;) {
1807 		struct fib6_node *fn_r = rcu_dereference_protected(fn->right,
1808 					    lockdep_is_held(&table->tb6_lock));
1809 		struct fib6_node *fn_l = rcu_dereference_protected(fn->left,
1810 					    lockdep_is_held(&table->tb6_lock));
1811 		struct fib6_node *pn = rcu_dereference_protected(fn->parent,
1812 					    lockdep_is_held(&table->tb6_lock));
1813 		struct fib6_node *pn_r = rcu_dereference_protected(pn->right,
1814 					    lockdep_is_held(&table->tb6_lock));
1815 		struct fib6_node *pn_l = rcu_dereference_protected(pn->left,
1816 					    lockdep_is_held(&table->tb6_lock));
1817 		struct fib6_info *fn_leaf = rcu_dereference_protected(fn->leaf,
1818 					    lockdep_is_held(&table->tb6_lock));
1819 		struct fib6_info *pn_leaf = rcu_dereference_protected(pn->leaf,
1820 					    lockdep_is_held(&table->tb6_lock));
1821 		struct fib6_info *new_fn_leaf;
1822 
1823 		pr_debug("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1824 		iter++;
1825 
1826 		WARN_ON(fn->fn_flags & RTN_RTINFO);
1827 		WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1828 		WARN_ON(fn_leaf);
1829 
1830 		children = 0;
1831 		child = NULL;
1832 		if (fn_r) {
1833 			child = fn_r;
1834 			children |= 1;
1835 		}
1836 		if (fn_l) {
1837 			child = fn_l;
1838 			children |= 2;
1839 		}
1840 
1841 		if (children == 3 || FIB6_SUBTREE(fn)
1842 #ifdef CONFIG_IPV6_SUBTREES
1843 		    /* Subtree root (i.e. fn) may have one child */
1844 		    || (children && fn->fn_flags & RTN_ROOT)
1845 #endif
1846 		    ) {
1847 			new_fn_leaf = fib6_find_prefix(net, table, fn);
1848 #if RT6_DEBUG >= 2
1849 			if (!new_fn_leaf) {
1850 				WARN_ON(!new_fn_leaf);
1851 				new_fn_leaf = net->ipv6.fib6_null_entry;
1852 			}
1853 #endif
1854 			fib6_info_hold(new_fn_leaf);
1855 			rcu_assign_pointer(fn->leaf, new_fn_leaf);
1856 			return pn;
1857 		}
1858 
1859 #ifdef CONFIG_IPV6_SUBTREES
1860 		if (FIB6_SUBTREE(pn) == fn) {
1861 			WARN_ON(!(fn->fn_flags & RTN_ROOT));
1862 			RCU_INIT_POINTER(pn->subtree, NULL);
1863 			nstate = FWS_L;
1864 		} else {
1865 			WARN_ON(fn->fn_flags & RTN_ROOT);
1866 #endif
1867 			if (pn_r == fn)
1868 				rcu_assign_pointer(pn->right, child);
1869 			else if (pn_l == fn)
1870 				rcu_assign_pointer(pn->left, child);
1871 #if RT6_DEBUG >= 2
1872 			else
1873 				WARN_ON(1);
1874 #endif
1875 			if (child)
1876 				rcu_assign_pointer(child->parent, pn);
1877 			nstate = FWS_R;
1878 #ifdef CONFIG_IPV6_SUBTREES
1879 		}
1880 #endif
1881 
1882 		read_lock(&net->ipv6.fib6_walker_lock);
1883 		FOR_WALKERS(net, w) {
1884 			if (!child) {
1885 				if (w->node == fn) {
1886 					pr_debug("W %p adjusted by delnode 1, s=%d/%d\n",
1887 						 w, w->state, nstate);
1888 					w->node = pn;
1889 					w->state = nstate;
1890 				}
1891 			} else {
1892 				if (w->node == fn) {
1893 					w->node = child;
1894 					if (children&2) {
1895 						pr_debug("W %p adjusted by delnode 2, s=%d\n",
1896 							 w, w->state);
1897 						w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1898 					} else {
1899 						pr_debug("W %p adjusted by delnode 2, s=%d\n",
1900 							 w, w->state);
1901 						w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1902 					}
1903 				}
1904 			}
1905 		}
1906 		read_unlock(&net->ipv6.fib6_walker_lock);
1907 
1908 		node_free(net, fn);
1909 		if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1910 			return pn;
1911 
1912 		RCU_INIT_POINTER(pn->leaf, NULL);
1913 		fib6_info_release(pn_leaf);
1914 		fn = pn;
1915 	}
1916 }
1917 
1918 static void fib6_del_route(struct fib6_table *table, struct fib6_node *fn,
1919 			   struct fib6_info __rcu **rtp, struct nl_info *info)
1920 {
1921 	struct fib6_info *leaf, *replace_rt = NULL;
1922 	struct fib6_walker *w;
1923 	struct fib6_info *rt = rcu_dereference_protected(*rtp,
1924 				    lockdep_is_held(&table->tb6_lock));
1925 	struct net *net = info->nl_net;
1926 	bool notify_del = false;
1927 
1928 	/* If the deleted route is the first in the node and it is not part of
1929 	 * a multipath route, then we need to replace it with the next route
1930 	 * in the node, if exists.
1931 	 */
1932 	leaf = rcu_dereference_protected(fn->leaf,
1933 					 lockdep_is_held(&table->tb6_lock));
1934 	if (leaf == rt && !rt->fib6_nsiblings) {
1935 		if (rcu_access_pointer(rt->fib6_next))
1936 			replace_rt = rcu_dereference_protected(rt->fib6_next,
1937 					    lockdep_is_held(&table->tb6_lock));
1938 		else
1939 			notify_del = true;
1940 	}
1941 
1942 	/* Unlink it */
1943 	*rtp = rt->fib6_next;
1944 	rt->fib6_node = NULL;
1945 	net->ipv6.rt6_stats->fib_rt_entries--;
1946 	net->ipv6.rt6_stats->fib_discarded_routes++;
1947 
1948 	/* Reset round-robin state, if necessary */
1949 	if (rcu_access_pointer(fn->rr_ptr) == rt)
1950 		fn->rr_ptr = NULL;
1951 
1952 	/* Remove this entry from other siblings */
1953 	if (rt->fib6_nsiblings) {
1954 		struct fib6_info *sibling, *next_sibling;
1955 
1956 		/* The route is deleted from a multipath route. If this
1957 		 * multipath route is the first route in the node, then we need
1958 		 * to emit a delete notification. Otherwise, we need to skip
1959 		 * the notification.
1960 		 */
1961 		if (rt->fib6_metric == leaf->fib6_metric &&
1962 		    rt6_qualify_for_ecmp(leaf))
1963 			notify_del = true;
1964 		list_for_each_entry_safe(sibling, next_sibling,
1965 					 &rt->fib6_siblings, fib6_siblings)
1966 			sibling->fib6_nsiblings--;
1967 		rt->fib6_nsiblings = 0;
1968 		list_del_init(&rt->fib6_siblings);
1969 		rt6_multipath_rebalance(next_sibling);
1970 	}
1971 
1972 	/* Adjust walkers */
1973 	read_lock(&net->ipv6.fib6_walker_lock);
1974 	FOR_WALKERS(net, w) {
1975 		if (w->state == FWS_C && w->leaf == rt) {
1976 			pr_debug("walker %p adjusted by delroute\n", w);
1977 			w->leaf = rcu_dereference_protected(rt->fib6_next,
1978 					    lockdep_is_held(&table->tb6_lock));
1979 			if (!w->leaf)
1980 				w->state = FWS_U;
1981 		}
1982 	}
1983 	read_unlock(&net->ipv6.fib6_walker_lock);
1984 
1985 	/* If it was last route, call fib6_repair_tree() to:
1986 	 * 1. For root node, put back null_entry as how the table was created.
1987 	 * 2. For other nodes, expunge its radix tree node.
1988 	 */
1989 	if (!rcu_access_pointer(fn->leaf)) {
1990 		if (!(fn->fn_flags & RTN_TL_ROOT)) {
1991 			fn->fn_flags &= ~RTN_RTINFO;
1992 			net->ipv6.rt6_stats->fib_route_nodes--;
1993 		}
1994 		fn = fib6_repair_tree(net, table, fn);
1995 	}
1996 
1997 	fib6_purge_rt(rt, fn, net);
1998 
1999 	if (!info->skip_notify_kernel) {
2000 		if (notify_del)
2001 			call_fib6_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
2002 						  rt, NULL);
2003 		else if (replace_rt)
2004 			call_fib6_entry_notifiers_replace(net, replace_rt);
2005 	}
2006 	if (!info->skip_notify)
2007 		inet6_rt_notify(RTM_DELROUTE, rt, info, 0);
2008 
2009 	fib6_info_release(rt);
2010 }
2011 
2012 /* Need to own table->tb6_lock */
2013 int fib6_del(struct fib6_info *rt, struct nl_info *info)
2014 {
2015 	struct net *net = info->nl_net;
2016 	struct fib6_info __rcu **rtp;
2017 	struct fib6_info __rcu **rtp_next;
2018 	struct fib6_table *table;
2019 	struct fib6_node *fn;
2020 
2021 	if (rt == net->ipv6.fib6_null_entry)
2022 		return -ENOENT;
2023 
2024 	table = rt->fib6_table;
2025 	fn = rcu_dereference_protected(rt->fib6_node,
2026 				       lockdep_is_held(&table->tb6_lock));
2027 	if (!fn)
2028 		return -ENOENT;
2029 
2030 	WARN_ON(!(fn->fn_flags & RTN_RTINFO));
2031 
2032 	/*
2033 	 *	Walk the leaf entries looking for ourself
2034 	 */
2035 
2036 	for (rtp = &fn->leaf; *rtp; rtp = rtp_next) {
2037 		struct fib6_info *cur = rcu_dereference_protected(*rtp,
2038 					lockdep_is_held(&table->tb6_lock));
2039 		if (rt == cur) {
2040 			if (fib6_requires_src(cur))
2041 				fib6_routes_require_src_dec(info->nl_net);
2042 			fib6_del_route(table, fn, rtp, info);
2043 			return 0;
2044 		}
2045 		rtp_next = &cur->fib6_next;
2046 	}
2047 	return -ENOENT;
2048 }
2049 
2050 /*
2051  *	Tree traversal function.
2052  *
2053  *	Certainly, it is not interrupt safe.
2054  *	However, it is internally reenterable wrt itself and fib6_add/fib6_del.
2055  *	It means, that we can modify tree during walking
2056  *	and use this function for garbage collection, clone pruning,
2057  *	cleaning tree when a device goes down etc. etc.
2058  *
2059  *	It guarantees that every node will be traversed,
2060  *	and that it will be traversed only once.
2061  *
2062  *	Callback function w->func may return:
2063  *	0 -> continue walking.
2064  *	positive value -> walking is suspended (used by tree dumps,
2065  *	and probably by gc, if it will be split to several slices)
2066  *	negative value -> terminate walking.
2067  *
2068  *	The function itself returns:
2069  *	0   -> walk is complete.
2070  *	>0  -> walk is incomplete (i.e. suspended)
2071  *	<0  -> walk is terminated by an error.
2072  *
2073  *	This function is called with tb6_lock held.
2074  */
2075 
2076 static int fib6_walk_continue(struct fib6_walker *w)
2077 {
2078 	struct fib6_node *fn, *pn, *left, *right;
2079 
2080 	/* w->root should always be table->tb6_root */
2081 	WARN_ON_ONCE(!(w->root->fn_flags & RTN_TL_ROOT));
2082 
2083 	for (;;) {
2084 		fn = w->node;
2085 		if (!fn)
2086 			return 0;
2087 
2088 		switch (w->state) {
2089 #ifdef CONFIG_IPV6_SUBTREES
2090 		case FWS_S:
2091 			if (FIB6_SUBTREE(fn)) {
2092 				w->node = FIB6_SUBTREE(fn);
2093 				continue;
2094 			}
2095 			w->state = FWS_L;
2096 			fallthrough;
2097 #endif
2098 		case FWS_L:
2099 			left = rcu_dereference_protected(fn->left, 1);
2100 			if (left) {
2101 				w->node = left;
2102 				w->state = FWS_INIT;
2103 				continue;
2104 			}
2105 			w->state = FWS_R;
2106 			fallthrough;
2107 		case FWS_R:
2108 			right = rcu_dereference_protected(fn->right, 1);
2109 			if (right) {
2110 				w->node = right;
2111 				w->state = FWS_INIT;
2112 				continue;
2113 			}
2114 			w->state = FWS_C;
2115 			w->leaf = rcu_dereference_protected(fn->leaf, 1);
2116 			fallthrough;
2117 		case FWS_C:
2118 			if (w->leaf && fn->fn_flags & RTN_RTINFO) {
2119 				int err;
2120 
2121 				if (w->skip) {
2122 					w->skip--;
2123 					goto skip;
2124 				}
2125 
2126 				err = w->func(w);
2127 				if (err)
2128 					return err;
2129 
2130 				w->count++;
2131 				continue;
2132 			}
2133 skip:
2134 			w->state = FWS_U;
2135 			fallthrough;
2136 		case FWS_U:
2137 			if (fn == w->root)
2138 				return 0;
2139 			pn = rcu_dereference_protected(fn->parent, 1);
2140 			left = rcu_dereference_protected(pn->left, 1);
2141 			right = rcu_dereference_protected(pn->right, 1);
2142 			w->node = pn;
2143 #ifdef CONFIG_IPV6_SUBTREES
2144 			if (FIB6_SUBTREE(pn) == fn) {
2145 				WARN_ON(!(fn->fn_flags & RTN_ROOT));
2146 				w->state = FWS_L;
2147 				continue;
2148 			}
2149 #endif
2150 			if (left == fn) {
2151 				w->state = FWS_R;
2152 				continue;
2153 			}
2154 			if (right == fn) {
2155 				w->state = FWS_C;
2156 				w->leaf = rcu_dereference_protected(w->node->leaf, 1);
2157 				continue;
2158 			}
2159 #if RT6_DEBUG >= 2
2160 			WARN_ON(1);
2161 #endif
2162 		}
2163 	}
2164 }
2165 
2166 static int fib6_walk(struct net *net, struct fib6_walker *w)
2167 {
2168 	int res;
2169 
2170 	w->state = FWS_INIT;
2171 	w->node = w->root;
2172 
2173 	fib6_walker_link(net, w);
2174 	res = fib6_walk_continue(w);
2175 	if (res <= 0)
2176 		fib6_walker_unlink(net, w);
2177 	return res;
2178 }
2179 
2180 static int fib6_clean_node(struct fib6_walker *w)
2181 {
2182 	int res;
2183 	struct fib6_info *rt;
2184 	struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w);
2185 	struct nl_info info = {
2186 		.nl_net = c->net,
2187 		.skip_notify = c->skip_notify,
2188 	};
2189 
2190 	if (c->sernum != FIB6_NO_SERNUM_CHANGE &&
2191 	    READ_ONCE(w->node->fn_sernum) != c->sernum)
2192 		WRITE_ONCE(w->node->fn_sernum, c->sernum);
2193 
2194 	if (!c->func) {
2195 		WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE);
2196 		w->leaf = NULL;
2197 		return 0;
2198 	}
2199 
2200 	for_each_fib6_walker_rt(w) {
2201 		res = c->func(rt, c->arg);
2202 		if (res == -1) {
2203 			w->leaf = rt;
2204 			res = fib6_del(rt, &info);
2205 			if (res) {
2206 #if RT6_DEBUG >= 2
2207 				pr_debug("%s: del failed: rt=%p@%p err=%d\n",
2208 					 __func__, rt,
2209 					 rcu_access_pointer(rt->fib6_node),
2210 					 res);
2211 #endif
2212 				continue;
2213 			}
2214 			return 0;
2215 		} else if (res == -2) {
2216 			if (WARN_ON(!rt->fib6_nsiblings))
2217 				continue;
2218 			rt = list_last_entry(&rt->fib6_siblings,
2219 					     struct fib6_info, fib6_siblings);
2220 			continue;
2221 		}
2222 		WARN_ON(res != 0);
2223 	}
2224 	w->leaf = rt;
2225 	return 0;
2226 }
2227 
2228 /*
2229  *	Convenient frontend to tree walker.
2230  *
2231  *	func is called on each route.
2232  *		It may return -2 -> skip multipath route.
2233  *			      -1 -> delete this route.
2234  *		              0  -> continue walking
2235  */
2236 
2237 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
2238 			    int (*func)(struct fib6_info *, void *arg),
2239 			    int sernum, void *arg, bool skip_notify)
2240 {
2241 	struct fib6_cleaner c;
2242 
2243 	c.w.root = root;
2244 	c.w.func = fib6_clean_node;
2245 	c.w.count = 0;
2246 	c.w.skip = 0;
2247 	c.w.skip_in_node = 0;
2248 	c.func = func;
2249 	c.sernum = sernum;
2250 	c.arg = arg;
2251 	c.net = net;
2252 	c.skip_notify = skip_notify;
2253 
2254 	fib6_walk(net, &c.w);
2255 }
2256 
2257 static void __fib6_clean_all(struct net *net,
2258 			     int (*func)(struct fib6_info *, void *),
2259 			     int sernum, void *arg, bool skip_notify)
2260 {
2261 	struct fib6_table *table;
2262 	struct hlist_head *head;
2263 	unsigned int h;
2264 
2265 	rcu_read_lock();
2266 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
2267 		head = &net->ipv6.fib_table_hash[h];
2268 		hlist_for_each_entry_rcu(table, head, tb6_hlist) {
2269 			spin_lock_bh(&table->tb6_lock);
2270 			fib6_clean_tree(net, &table->tb6_root,
2271 					func, sernum, arg, skip_notify);
2272 			spin_unlock_bh(&table->tb6_lock);
2273 		}
2274 	}
2275 	rcu_read_unlock();
2276 }
2277 
2278 void fib6_clean_all(struct net *net, int (*func)(struct fib6_info *, void *),
2279 		    void *arg)
2280 {
2281 	__fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, false);
2282 }
2283 
2284 void fib6_clean_all_skip_notify(struct net *net,
2285 				int (*func)(struct fib6_info *, void *),
2286 				void *arg)
2287 {
2288 	__fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, true);
2289 }
2290 
2291 static void fib6_flush_trees(struct net *net)
2292 {
2293 	int new_sernum = fib6_new_sernum(net);
2294 
2295 	__fib6_clean_all(net, NULL, new_sernum, NULL, false);
2296 }
2297 
2298 /*
2299  *	Garbage collection
2300  */
2301 
2302 static int fib6_age(struct fib6_info *rt, struct fib6_gc_args *gc_args)
2303 {
2304 	unsigned long now = jiffies;
2305 
2306 	/*
2307 	 *	check addrconf expiration here.
2308 	 *	Routes are expired even if they are in use.
2309 	 */
2310 
2311 	if (rt->fib6_flags & RTF_EXPIRES && rt->expires) {
2312 		if (time_after(now, rt->expires)) {
2313 			pr_debug("expiring %p\n", rt);
2314 			return -1;
2315 		}
2316 		gc_args->more++;
2317 	}
2318 
2319 	/*	Also age clones in the exception table.
2320 	 *	Note, that clones are aged out
2321 	 *	only if they are not in use now.
2322 	 */
2323 	rt6_age_exceptions(rt, gc_args, now);
2324 
2325 	return 0;
2326 }
2327 
2328 static void fib6_gc_table(struct net *net,
2329 			  struct fib6_table *tb6,
2330 			  struct fib6_gc_args *gc_args)
2331 {
2332 	struct fib6_info *rt;
2333 	struct hlist_node *n;
2334 	struct nl_info info = {
2335 		.nl_net = net,
2336 		.skip_notify = false,
2337 	};
2338 
2339 	hlist_for_each_entry_safe(rt, n, &tb6->tb6_gc_hlist, gc_link)
2340 		if (fib6_age(rt, gc_args) == -1)
2341 			fib6_del(rt, &info);
2342 }
2343 
2344 static void fib6_gc_all(struct net *net, struct fib6_gc_args *gc_args)
2345 {
2346 	struct fib6_table *table;
2347 	struct hlist_head *head;
2348 	unsigned int h;
2349 
2350 	rcu_read_lock();
2351 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
2352 		head = &net->ipv6.fib_table_hash[h];
2353 		hlist_for_each_entry_rcu(table, head, tb6_hlist) {
2354 			spin_lock_bh(&table->tb6_lock);
2355 
2356 			fib6_gc_table(net, table, gc_args);
2357 
2358 			spin_unlock_bh(&table->tb6_lock);
2359 		}
2360 	}
2361 	rcu_read_unlock();
2362 }
2363 
2364 void fib6_run_gc(unsigned long expires, struct net *net, bool force)
2365 {
2366 	struct fib6_gc_args gc_args;
2367 	unsigned long now;
2368 
2369 	if (force) {
2370 		spin_lock_bh(&net->ipv6.fib6_gc_lock);
2371 	} else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) {
2372 		mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
2373 		return;
2374 	}
2375 	gc_args.timeout = expires ? (int)expires :
2376 			  net->ipv6.sysctl.ip6_rt_gc_interval;
2377 	gc_args.more = 0;
2378 
2379 	fib6_gc_all(net, &gc_args);
2380 	now = jiffies;
2381 	net->ipv6.ip6_rt_last_gc = now;
2382 
2383 	if (gc_args.more)
2384 		mod_timer(&net->ipv6.ip6_fib_timer,
2385 			  round_jiffies(now
2386 					+ net->ipv6.sysctl.ip6_rt_gc_interval));
2387 	else
2388 		del_timer(&net->ipv6.ip6_fib_timer);
2389 	spin_unlock_bh(&net->ipv6.fib6_gc_lock);
2390 }
2391 
2392 static void fib6_gc_timer_cb(struct timer_list *t)
2393 {
2394 	struct net *arg = from_timer(arg, t, ipv6.ip6_fib_timer);
2395 
2396 	fib6_run_gc(0, arg, true);
2397 }
2398 
2399 static int __net_init fib6_net_init(struct net *net)
2400 {
2401 	size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
2402 	int err;
2403 
2404 	err = fib6_notifier_init(net);
2405 	if (err)
2406 		return err;
2407 
2408 	/* Default to 3-tuple */
2409 	net->ipv6.sysctl.multipath_hash_fields =
2410 		FIB_MULTIPATH_HASH_FIELD_DEFAULT_MASK;
2411 
2412 	spin_lock_init(&net->ipv6.fib6_gc_lock);
2413 	rwlock_init(&net->ipv6.fib6_walker_lock);
2414 	INIT_LIST_HEAD(&net->ipv6.fib6_walkers);
2415 	timer_setup(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, 0);
2416 
2417 	net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
2418 	if (!net->ipv6.rt6_stats)
2419 		goto out_notifier;
2420 
2421 	/* Avoid false sharing : Use at least a full cache line */
2422 	size = max_t(size_t, size, L1_CACHE_BYTES);
2423 
2424 	net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
2425 	if (!net->ipv6.fib_table_hash)
2426 		goto out_rt6_stats;
2427 
2428 	net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
2429 					  GFP_KERNEL);
2430 	if (!net->ipv6.fib6_main_tbl)
2431 		goto out_fib_table_hash;
2432 
2433 	net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
2434 	rcu_assign_pointer(net->ipv6.fib6_main_tbl->tb6_root.leaf,
2435 			   net->ipv6.fib6_null_entry);
2436 	net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
2437 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2438 	inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
2439 	INIT_HLIST_HEAD(&net->ipv6.fib6_main_tbl->tb6_gc_hlist);
2440 
2441 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2442 	net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
2443 					   GFP_KERNEL);
2444 	if (!net->ipv6.fib6_local_tbl)
2445 		goto out_fib6_main_tbl;
2446 	net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
2447 	rcu_assign_pointer(net->ipv6.fib6_local_tbl->tb6_root.leaf,
2448 			   net->ipv6.fib6_null_entry);
2449 	net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
2450 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2451 	inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
2452 	INIT_HLIST_HEAD(&net->ipv6.fib6_local_tbl->tb6_gc_hlist);
2453 #endif
2454 	fib6_tables_init(net);
2455 
2456 	return 0;
2457 
2458 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2459 out_fib6_main_tbl:
2460 	kfree(net->ipv6.fib6_main_tbl);
2461 #endif
2462 out_fib_table_hash:
2463 	kfree(net->ipv6.fib_table_hash);
2464 out_rt6_stats:
2465 	kfree(net->ipv6.rt6_stats);
2466 out_notifier:
2467 	fib6_notifier_exit(net);
2468 	return -ENOMEM;
2469 }
2470 
2471 static void fib6_net_exit(struct net *net)
2472 {
2473 	unsigned int i;
2474 
2475 	del_timer_sync(&net->ipv6.ip6_fib_timer);
2476 
2477 	for (i = 0; i < FIB6_TABLE_HASHSZ; i++) {
2478 		struct hlist_head *head = &net->ipv6.fib_table_hash[i];
2479 		struct hlist_node *tmp;
2480 		struct fib6_table *tb;
2481 
2482 		hlist_for_each_entry_safe(tb, tmp, head, tb6_hlist) {
2483 			hlist_del(&tb->tb6_hlist);
2484 			fib6_free_table(tb);
2485 		}
2486 	}
2487 
2488 	kfree(net->ipv6.fib_table_hash);
2489 	kfree(net->ipv6.rt6_stats);
2490 	fib6_notifier_exit(net);
2491 }
2492 
2493 static struct pernet_operations fib6_net_ops = {
2494 	.init = fib6_net_init,
2495 	.exit = fib6_net_exit,
2496 };
2497 
2498 int __init fib6_init(void)
2499 {
2500 	int ret = -ENOMEM;
2501 
2502 	fib6_node_kmem = KMEM_CACHE(fib6_node,
2503 				    SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT);
2504 	if (!fib6_node_kmem)
2505 		goto out;
2506 
2507 	ret = register_pernet_subsys(&fib6_net_ops);
2508 	if (ret)
2509 		goto out_kmem_cache_create;
2510 
2511 	ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_GETROUTE, NULL,
2512 				   inet6_dump_fib, 0);
2513 	if (ret)
2514 		goto out_unregister_subsys;
2515 
2516 	__fib6_flush_trees = fib6_flush_trees;
2517 out:
2518 	return ret;
2519 
2520 out_unregister_subsys:
2521 	unregister_pernet_subsys(&fib6_net_ops);
2522 out_kmem_cache_create:
2523 	kmem_cache_destroy(fib6_node_kmem);
2524 	goto out;
2525 }
2526 
2527 void fib6_gc_cleanup(void)
2528 {
2529 	unregister_pernet_subsys(&fib6_net_ops);
2530 	kmem_cache_destroy(fib6_node_kmem);
2531 }
2532 
2533 #ifdef CONFIG_PROC_FS
2534 static int ipv6_route_native_seq_show(struct seq_file *seq, void *v)
2535 {
2536 	struct fib6_info *rt = v;
2537 	struct ipv6_route_iter *iter = seq->private;
2538 	struct fib6_nh *fib6_nh = rt->fib6_nh;
2539 	unsigned int flags = rt->fib6_flags;
2540 	const struct net_device *dev;
2541 
2542 	if (rt->nh)
2543 		fib6_nh = nexthop_fib6_nh(rt->nh);
2544 
2545 	seq_printf(seq, "%pi6 %02x ", &rt->fib6_dst.addr, rt->fib6_dst.plen);
2546 
2547 #ifdef CONFIG_IPV6_SUBTREES
2548 	seq_printf(seq, "%pi6 %02x ", &rt->fib6_src.addr, rt->fib6_src.plen);
2549 #else
2550 	seq_puts(seq, "00000000000000000000000000000000 00 ");
2551 #endif
2552 	if (fib6_nh->fib_nh_gw_family) {
2553 		flags |= RTF_GATEWAY;
2554 		seq_printf(seq, "%pi6", &fib6_nh->fib_nh_gw6);
2555 	} else {
2556 		seq_puts(seq, "00000000000000000000000000000000");
2557 	}
2558 
2559 	dev = fib6_nh->fib_nh_dev;
2560 	seq_printf(seq, " %08x %08x %08x %08x %8s\n",
2561 		   rt->fib6_metric, refcount_read(&rt->fib6_ref), 0,
2562 		   flags, dev ? dev->name : "");
2563 	iter->w.leaf = NULL;
2564 	return 0;
2565 }
2566 
2567 static int ipv6_route_yield(struct fib6_walker *w)
2568 {
2569 	struct ipv6_route_iter *iter = w->args;
2570 
2571 	if (!iter->skip)
2572 		return 1;
2573 
2574 	do {
2575 		iter->w.leaf = rcu_dereference_protected(
2576 				iter->w.leaf->fib6_next,
2577 				lockdep_is_held(&iter->tbl->tb6_lock));
2578 		iter->skip--;
2579 		if (!iter->skip && iter->w.leaf)
2580 			return 1;
2581 	} while (iter->w.leaf);
2582 
2583 	return 0;
2584 }
2585 
2586 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter,
2587 				      struct net *net)
2588 {
2589 	memset(&iter->w, 0, sizeof(iter->w));
2590 	iter->w.func = ipv6_route_yield;
2591 	iter->w.root = &iter->tbl->tb6_root;
2592 	iter->w.state = FWS_INIT;
2593 	iter->w.node = iter->w.root;
2594 	iter->w.args = iter;
2595 	iter->sernum = READ_ONCE(iter->w.root->fn_sernum);
2596 	INIT_LIST_HEAD(&iter->w.lh);
2597 	fib6_walker_link(net, &iter->w);
2598 }
2599 
2600 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
2601 						    struct net *net)
2602 {
2603 	unsigned int h;
2604 	struct hlist_node *node;
2605 
2606 	if (tbl) {
2607 		h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
2608 		node = rcu_dereference(hlist_next_rcu(&tbl->tb6_hlist));
2609 	} else {
2610 		h = 0;
2611 		node = NULL;
2612 	}
2613 
2614 	while (!node && h < FIB6_TABLE_HASHSZ) {
2615 		node = rcu_dereference(
2616 			hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
2617 	}
2618 	return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
2619 }
2620 
2621 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
2622 {
2623 	int sernum = READ_ONCE(iter->w.root->fn_sernum);
2624 
2625 	if (iter->sernum != sernum) {
2626 		iter->sernum = sernum;
2627 		iter->w.state = FWS_INIT;
2628 		iter->w.node = iter->w.root;
2629 		WARN_ON(iter->w.skip);
2630 		iter->w.skip = iter->w.count;
2631 	}
2632 }
2633 
2634 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2635 {
2636 	int r;
2637 	struct fib6_info *n;
2638 	struct net *net = seq_file_net(seq);
2639 	struct ipv6_route_iter *iter = seq->private;
2640 
2641 	++(*pos);
2642 	if (!v)
2643 		goto iter_table;
2644 
2645 	n = rcu_dereference(((struct fib6_info *)v)->fib6_next);
2646 	if (n)
2647 		return n;
2648 
2649 iter_table:
2650 	ipv6_route_check_sernum(iter);
2651 	spin_lock_bh(&iter->tbl->tb6_lock);
2652 	r = fib6_walk_continue(&iter->w);
2653 	spin_unlock_bh(&iter->tbl->tb6_lock);
2654 	if (r > 0) {
2655 		return iter->w.leaf;
2656 	} else if (r < 0) {
2657 		fib6_walker_unlink(net, &iter->w);
2658 		return NULL;
2659 	}
2660 	fib6_walker_unlink(net, &iter->w);
2661 
2662 	iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
2663 	if (!iter->tbl)
2664 		return NULL;
2665 
2666 	ipv6_route_seq_setup_walk(iter, net);
2667 	goto iter_table;
2668 }
2669 
2670 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
2671 	__acquires(RCU)
2672 {
2673 	struct net *net = seq_file_net(seq);
2674 	struct ipv6_route_iter *iter = seq->private;
2675 
2676 	rcu_read_lock();
2677 	iter->tbl = ipv6_route_seq_next_table(NULL, net);
2678 	iter->skip = *pos;
2679 
2680 	if (iter->tbl) {
2681 		loff_t p = 0;
2682 
2683 		ipv6_route_seq_setup_walk(iter, net);
2684 		return ipv6_route_seq_next(seq, NULL, &p);
2685 	} else {
2686 		return NULL;
2687 	}
2688 }
2689 
2690 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
2691 {
2692 	struct fib6_walker *w = &iter->w;
2693 	return w->node && !(w->state == FWS_U && w->node == w->root);
2694 }
2695 
2696 static void ipv6_route_native_seq_stop(struct seq_file *seq, void *v)
2697 	__releases(RCU)
2698 {
2699 	struct net *net = seq_file_net(seq);
2700 	struct ipv6_route_iter *iter = seq->private;
2701 
2702 	if (ipv6_route_iter_active(iter))
2703 		fib6_walker_unlink(net, &iter->w);
2704 
2705 	rcu_read_unlock();
2706 }
2707 
2708 #if IS_BUILTIN(CONFIG_IPV6) && defined(CONFIG_BPF_SYSCALL)
2709 static int ipv6_route_prog_seq_show(struct bpf_prog *prog,
2710 				    struct bpf_iter_meta *meta,
2711 				    void *v)
2712 {
2713 	struct bpf_iter__ipv6_route ctx;
2714 
2715 	ctx.meta = meta;
2716 	ctx.rt = v;
2717 	return bpf_iter_run_prog(prog, &ctx);
2718 }
2719 
2720 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
2721 {
2722 	struct ipv6_route_iter *iter = seq->private;
2723 	struct bpf_iter_meta meta;
2724 	struct bpf_prog *prog;
2725 	int ret;
2726 
2727 	meta.seq = seq;
2728 	prog = bpf_iter_get_info(&meta, false);
2729 	if (!prog)
2730 		return ipv6_route_native_seq_show(seq, v);
2731 
2732 	ret = ipv6_route_prog_seq_show(prog, &meta, v);
2733 	iter->w.leaf = NULL;
2734 
2735 	return ret;
2736 }
2737 
2738 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2739 {
2740 	struct bpf_iter_meta meta;
2741 	struct bpf_prog *prog;
2742 
2743 	if (!v) {
2744 		meta.seq = seq;
2745 		prog = bpf_iter_get_info(&meta, true);
2746 		if (prog)
2747 			(void)ipv6_route_prog_seq_show(prog, &meta, v);
2748 	}
2749 
2750 	ipv6_route_native_seq_stop(seq, v);
2751 }
2752 #else
2753 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
2754 {
2755 	return ipv6_route_native_seq_show(seq, v);
2756 }
2757 
2758 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2759 {
2760 	ipv6_route_native_seq_stop(seq, v);
2761 }
2762 #endif
2763 
2764 const struct seq_operations ipv6_route_seq_ops = {
2765 	.start	= ipv6_route_seq_start,
2766 	.next	= ipv6_route_seq_next,
2767 	.stop	= ipv6_route_seq_stop,
2768 	.show	= ipv6_route_seq_show
2769 };
2770 #endif /* CONFIG_PROC_FS */
2771