xref: /linux/net/ipv6/ip6_fib.c (revision 14b42963f64b98ab61fa9723c03d71aa5ef4f862)
1 /*
2  *	Linux INET6 implementation
3  *	Forwarding Information Database
4  *
5  *	Authors:
6  *	Pedro Roque		<roque@di.fc.ul.pt>
7  *
8  *	$Id: ip6_fib.c,v 1.25 2001/10/31 21:55:55 davem Exp $
9  *
10  *	This program is free software; you can redistribute it and/or
11  *      modify it under the terms of the GNU General Public License
12  *      as published by the Free Software Foundation; either version
13  *      2 of the License, or (at your option) any later version.
14  */
15 
16 /*
17  * 	Changes:
18  * 	Yuji SEKIYA @USAGI:	Support default route on router node;
19  * 				remove ip6_null_entry from the top of
20  * 				routing table.
21  */
22 #include <linux/errno.h>
23 #include <linux/types.h>
24 #include <linux/net.h>
25 #include <linux/route.h>
26 #include <linux/netdevice.h>
27 #include <linux/in6.h>
28 #include <linux/init.h>
29 
30 #ifdef 	CONFIG_PROC_FS
31 #include <linux/proc_fs.h>
32 #endif
33 
34 #include <net/ipv6.h>
35 #include <net/ndisc.h>
36 #include <net/addrconf.h>
37 
38 #include <net/ip6_fib.h>
39 #include <net/ip6_route.h>
40 
41 #define RT6_DEBUG 2
42 
43 #if RT6_DEBUG >= 3
44 #define RT6_TRACE(x...) printk(KERN_DEBUG x)
45 #else
46 #define RT6_TRACE(x...) do { ; } while (0)
47 #endif
48 
49 struct rt6_statistics	rt6_stats;
50 
51 static kmem_cache_t * fib6_node_kmem __read_mostly;
52 
53 enum fib_walk_state_t
54 {
55 #ifdef CONFIG_IPV6_SUBTREES
56 	FWS_S,
57 #endif
58 	FWS_L,
59 	FWS_R,
60 	FWS_C,
61 	FWS_U
62 };
63 
64 struct fib6_cleaner_t
65 {
66 	struct fib6_walker_t w;
67 	int (*func)(struct rt6_info *, void *arg);
68 	void *arg;
69 };
70 
71 DEFINE_RWLOCK(fib6_walker_lock);
72 
73 
74 #ifdef CONFIG_IPV6_SUBTREES
75 #define FWS_INIT FWS_S
76 #define SUBTREE(fn) ((fn)->subtree)
77 #else
78 #define FWS_INIT FWS_L
79 #define SUBTREE(fn) NULL
80 #endif
81 
82 static void fib6_prune_clones(struct fib6_node *fn, struct rt6_info *rt);
83 static struct fib6_node * fib6_repair_tree(struct fib6_node *fn);
84 
85 /*
86  *	A routing update causes an increase of the serial number on the
87  *	affected subtree. This allows for cached routes to be asynchronously
88  *	tested when modifications are made to the destination cache as a
89  *	result of redirects, path MTU changes, etc.
90  */
91 
92 static __u32 rt_sernum;
93 
94 static DEFINE_TIMER(ip6_fib_timer, fib6_run_gc, 0, 0);
95 
96 struct fib6_walker_t fib6_walker_list = {
97 	.prev	= &fib6_walker_list,
98 	.next	= &fib6_walker_list,
99 };
100 
101 #define FOR_WALKERS(w) for ((w)=fib6_walker_list.next; (w) != &fib6_walker_list; (w)=(w)->next)
102 
103 static __inline__ u32 fib6_new_sernum(void)
104 {
105 	u32 n = ++rt_sernum;
106 	if ((__s32)n <= 0)
107 		rt_sernum = n = 1;
108 	return n;
109 }
110 
111 /*
112  *	Auxiliary address test functions for the radix tree.
113  *
114  *	These assume a 32bit processor (although it will work on
115  *	64bit processors)
116  */
117 
118 /*
119  *	test bit
120  */
121 
122 static __inline__ int addr_bit_set(void *token, int fn_bit)
123 {
124 	__u32 *addr = token;
125 
126 	return htonl(1 << ((~fn_bit)&0x1F)) & addr[fn_bit>>5];
127 }
128 
129 static __inline__ struct fib6_node * node_alloc(void)
130 {
131 	struct fib6_node *fn;
132 
133 	if ((fn = kmem_cache_alloc(fib6_node_kmem, SLAB_ATOMIC)) != NULL)
134 		memset(fn, 0, sizeof(struct fib6_node));
135 
136 	return fn;
137 }
138 
139 static __inline__ void node_free(struct fib6_node * fn)
140 {
141 	kmem_cache_free(fib6_node_kmem, fn);
142 }
143 
144 static __inline__ void rt6_release(struct rt6_info *rt)
145 {
146 	if (atomic_dec_and_test(&rt->rt6i_ref))
147 		dst_free(&rt->u.dst);
148 }
149 
150 
151 /*
152  *	Routing Table
153  *
154  *	return the appropriate node for a routing tree "add" operation
155  *	by either creating and inserting or by returning an existing
156  *	node.
157  */
158 
159 static struct fib6_node * fib6_add_1(struct fib6_node *root, void *addr,
160 				     int addrlen, int plen,
161 				     int offset)
162 {
163 	struct fib6_node *fn, *in, *ln;
164 	struct fib6_node *pn = NULL;
165 	struct rt6key *key;
166 	int	bit;
167        	int	dir = 0;
168 	__u32	sernum = fib6_new_sernum();
169 
170 	RT6_TRACE("fib6_add_1\n");
171 
172 	/* insert node in tree */
173 
174 	fn = root;
175 
176 	do {
177 		key = (struct rt6key *)((u8 *)fn->leaf + offset);
178 
179 		/*
180 		 *	Prefix match
181 		 */
182 		if (plen < fn->fn_bit ||
183 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
184 			goto insert_above;
185 
186 		/*
187 		 *	Exact match ?
188 		 */
189 
190 		if (plen == fn->fn_bit) {
191 			/* clean up an intermediate node */
192 			if ((fn->fn_flags & RTN_RTINFO) == 0) {
193 				rt6_release(fn->leaf);
194 				fn->leaf = NULL;
195 			}
196 
197 			fn->fn_sernum = sernum;
198 
199 			return fn;
200 		}
201 
202 		/*
203 		 *	We have more bits to go
204 		 */
205 
206 		/* Try to walk down on tree. */
207 		fn->fn_sernum = sernum;
208 		dir = addr_bit_set(addr, fn->fn_bit);
209 		pn = fn;
210 		fn = dir ? fn->right: fn->left;
211 	} while (fn);
212 
213 	/*
214 	 *	We walked to the bottom of tree.
215 	 *	Create new leaf node without children.
216 	 */
217 
218 	ln = node_alloc();
219 
220 	if (ln == NULL)
221 		return NULL;
222 	ln->fn_bit = plen;
223 
224 	ln->parent = pn;
225 	ln->fn_sernum = sernum;
226 
227 	if (dir)
228 		pn->right = ln;
229 	else
230 		pn->left  = ln;
231 
232 	return ln;
233 
234 
235 insert_above:
236 	/*
237 	 * split since we don't have a common prefix anymore or
238 	 * we have a less significant route.
239 	 * we've to insert an intermediate node on the list
240 	 * this new node will point to the one we need to create
241 	 * and the current
242 	 */
243 
244 	pn = fn->parent;
245 
246 	/* find 1st bit in difference between the 2 addrs.
247 
248 	   See comment in __ipv6_addr_diff: bit may be an invalid value,
249 	   but if it is >= plen, the value is ignored in any case.
250 	 */
251 
252 	bit = __ipv6_addr_diff(addr, &key->addr, addrlen);
253 
254 	/*
255 	 *		(intermediate)[in]
256 	 *	          /	   \
257 	 *	(new leaf node)[ln] (old node)[fn]
258 	 */
259 	if (plen > bit) {
260 		in = node_alloc();
261 		ln = node_alloc();
262 
263 		if (in == NULL || ln == NULL) {
264 			if (in)
265 				node_free(in);
266 			if (ln)
267 				node_free(ln);
268 			return NULL;
269 		}
270 
271 		/*
272 		 * new intermediate node.
273 		 * RTN_RTINFO will
274 		 * be off since that an address that chooses one of
275 		 * the branches would not match less specific routes
276 		 * in the other branch
277 		 */
278 
279 		in->fn_bit = bit;
280 
281 		in->parent = pn;
282 		in->leaf = fn->leaf;
283 		atomic_inc(&in->leaf->rt6i_ref);
284 
285 		in->fn_sernum = sernum;
286 
287 		/* update parent pointer */
288 		if (dir)
289 			pn->right = in;
290 		else
291 			pn->left  = in;
292 
293 		ln->fn_bit = plen;
294 
295 		ln->parent = in;
296 		fn->parent = in;
297 
298 		ln->fn_sernum = sernum;
299 
300 		if (addr_bit_set(addr, bit)) {
301 			in->right = ln;
302 			in->left  = fn;
303 		} else {
304 			in->left  = ln;
305 			in->right = fn;
306 		}
307 	} else { /* plen <= bit */
308 
309 		/*
310 		 *		(new leaf node)[ln]
311 		 *	          /	   \
312 		 *	     (old node)[fn] NULL
313 		 */
314 
315 		ln = node_alloc();
316 
317 		if (ln == NULL)
318 			return NULL;
319 
320 		ln->fn_bit = plen;
321 
322 		ln->parent = pn;
323 
324 		ln->fn_sernum = sernum;
325 
326 		if (dir)
327 			pn->right = ln;
328 		else
329 			pn->left  = ln;
330 
331 		if (addr_bit_set(&key->addr, plen))
332 			ln->right = fn;
333 		else
334 			ln->left  = fn;
335 
336 		fn->parent = ln;
337 	}
338 	return ln;
339 }
340 
341 /*
342  *	Insert routing information in a node.
343  */
344 
345 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
346 		struct nlmsghdr *nlh,  struct netlink_skb_parms *req)
347 {
348 	struct rt6_info *iter = NULL;
349 	struct rt6_info **ins;
350 
351 	ins = &fn->leaf;
352 
353 	if (fn->fn_flags&RTN_TL_ROOT &&
354 	    fn->leaf == &ip6_null_entry &&
355 	    !(rt->rt6i_flags & (RTF_DEFAULT | RTF_ADDRCONF)) ){
356 		fn->leaf = rt;
357 		rt->u.next = NULL;
358 		goto out;
359 	}
360 
361 	for (iter = fn->leaf; iter; iter=iter->u.next) {
362 		/*
363 		 *	Search for duplicates
364 		 */
365 
366 		if (iter->rt6i_metric == rt->rt6i_metric) {
367 			/*
368 			 *	Same priority level
369 			 */
370 
371 			if (iter->rt6i_dev == rt->rt6i_dev &&
372 			    iter->rt6i_idev == rt->rt6i_idev &&
373 			    ipv6_addr_equal(&iter->rt6i_gateway,
374 					    &rt->rt6i_gateway)) {
375 				if (!(iter->rt6i_flags&RTF_EXPIRES))
376 					return -EEXIST;
377 				iter->rt6i_expires = rt->rt6i_expires;
378 				if (!(rt->rt6i_flags&RTF_EXPIRES)) {
379 					iter->rt6i_flags &= ~RTF_EXPIRES;
380 					iter->rt6i_expires = 0;
381 				}
382 				return -EEXIST;
383 			}
384 		}
385 
386 		if (iter->rt6i_metric > rt->rt6i_metric)
387 			break;
388 
389 		ins = &iter->u.next;
390 	}
391 
392 	/*
393 	 *	insert node
394 	 */
395 
396 out:
397 	rt->u.next = iter;
398 	*ins = rt;
399 	rt->rt6i_node = fn;
400 	atomic_inc(&rt->rt6i_ref);
401 	inet6_rt_notify(RTM_NEWROUTE, rt, nlh, req);
402 	rt6_stats.fib_rt_entries++;
403 
404 	if ((fn->fn_flags & RTN_RTINFO) == 0) {
405 		rt6_stats.fib_route_nodes++;
406 		fn->fn_flags |= RTN_RTINFO;
407 	}
408 
409 	return 0;
410 }
411 
412 static __inline__ void fib6_start_gc(struct rt6_info *rt)
413 {
414 	if (ip6_fib_timer.expires == 0 &&
415 	    (rt->rt6i_flags & (RTF_EXPIRES|RTF_CACHE)))
416 		mod_timer(&ip6_fib_timer, jiffies + ip6_rt_gc_interval);
417 }
418 
419 void fib6_force_start_gc(void)
420 {
421 	if (ip6_fib_timer.expires == 0)
422 		mod_timer(&ip6_fib_timer, jiffies + ip6_rt_gc_interval);
423 }
424 
425 /*
426  *	Add routing information to the routing tree.
427  *	<destination addr>/<source addr>
428  *	with source addr info in sub-trees
429  */
430 
431 int fib6_add(struct fib6_node *root, struct rt6_info *rt,
432 		struct nlmsghdr *nlh, void *_rtattr, struct netlink_skb_parms *req)
433 {
434 	struct fib6_node *fn;
435 	int err = -ENOMEM;
436 
437 	fn = fib6_add_1(root, &rt->rt6i_dst.addr, sizeof(struct in6_addr),
438 			rt->rt6i_dst.plen, offsetof(struct rt6_info, rt6i_dst));
439 
440 	if (fn == NULL)
441 		goto out;
442 
443 #ifdef CONFIG_IPV6_SUBTREES
444 	if (rt->rt6i_src.plen) {
445 		struct fib6_node *sn;
446 
447 		if (fn->subtree == NULL) {
448 			struct fib6_node *sfn;
449 
450 			/*
451 			 * Create subtree.
452 			 *
453 			 *		fn[main tree]
454 			 *		|
455 			 *		sfn[subtree root]
456 			 *		   \
457 			 *		    sn[new leaf node]
458 			 */
459 
460 			/* Create subtree root node */
461 			sfn = node_alloc();
462 			if (sfn == NULL)
463 				goto st_failure;
464 
465 			sfn->leaf = &ip6_null_entry;
466 			atomic_inc(&ip6_null_entry.rt6i_ref);
467 			sfn->fn_flags = RTN_ROOT;
468 			sfn->fn_sernum = fib6_new_sernum();
469 
470 			/* Now add the first leaf node to new subtree */
471 
472 			sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
473 					sizeof(struct in6_addr), rt->rt6i_src.plen,
474 					offsetof(struct rt6_info, rt6i_src));
475 
476 			if (sn == NULL) {
477 				/* If it is failed, discard just allocated
478 				   root, and then (in st_failure) stale node
479 				   in main tree.
480 				 */
481 				node_free(sfn);
482 				goto st_failure;
483 			}
484 
485 			/* Now link new subtree to main tree */
486 			sfn->parent = fn;
487 			fn->subtree = sfn;
488 			if (fn->leaf == NULL) {
489 				fn->leaf = rt;
490 				atomic_inc(&rt->rt6i_ref);
491 			}
492 		} else {
493 			sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
494 					sizeof(struct in6_addr), rt->rt6i_src.plen,
495 					offsetof(struct rt6_info, rt6i_src));
496 
497 			if (sn == NULL)
498 				goto st_failure;
499 		}
500 
501 		fn = sn;
502 	}
503 #endif
504 
505 	err = fib6_add_rt2node(fn, rt, nlh, req);
506 
507 	if (err == 0) {
508 		fib6_start_gc(rt);
509 		if (!(rt->rt6i_flags&RTF_CACHE))
510 			fib6_prune_clones(fn, rt);
511 	}
512 
513 out:
514 	if (err)
515 		dst_free(&rt->u.dst);
516 	return err;
517 
518 #ifdef CONFIG_IPV6_SUBTREES
519 	/* Subtree creation failed, probably main tree node
520 	   is orphan. If it is, shoot it.
521 	 */
522 st_failure:
523 	if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
524 		fib6_repair_tree(fn);
525 	dst_free(&rt->u.dst);
526 	return err;
527 #endif
528 }
529 
530 /*
531  *	Routing tree lookup
532  *
533  */
534 
535 struct lookup_args {
536 	int		offset;		/* key offset on rt6_info	*/
537 	struct in6_addr	*addr;		/* search key			*/
538 };
539 
540 static struct fib6_node * fib6_lookup_1(struct fib6_node *root,
541 					struct lookup_args *args)
542 {
543 	struct fib6_node *fn;
544 	int dir;
545 
546 	/*
547 	 *	Descend on a tree
548 	 */
549 
550 	fn = root;
551 
552 	for (;;) {
553 		struct fib6_node *next;
554 
555 		dir = addr_bit_set(args->addr, fn->fn_bit);
556 
557 		next = dir ? fn->right : fn->left;
558 
559 		if (next) {
560 			fn = next;
561 			continue;
562 		}
563 
564 		break;
565 	}
566 
567 	while ((fn->fn_flags & RTN_ROOT) == 0) {
568 #ifdef CONFIG_IPV6_SUBTREES
569 		if (fn->subtree) {
570 			struct fib6_node *st;
571 			struct lookup_args *narg;
572 
573 			narg = args + 1;
574 
575 			if (narg->addr) {
576 				st = fib6_lookup_1(fn->subtree, narg);
577 
578 				if (st && !(st->fn_flags & RTN_ROOT))
579 					return st;
580 			}
581 		}
582 #endif
583 
584 		if (fn->fn_flags & RTN_RTINFO) {
585 			struct rt6key *key;
586 
587 			key = (struct rt6key *) ((u8 *) fn->leaf +
588 						 args->offset);
589 
590 			if (ipv6_prefix_equal(&key->addr, args->addr, key->plen))
591 				return fn;
592 		}
593 
594 		fn = fn->parent;
595 	}
596 
597 	return NULL;
598 }
599 
600 struct fib6_node * fib6_lookup(struct fib6_node *root, struct in6_addr *daddr,
601 			       struct in6_addr *saddr)
602 {
603 	struct lookup_args args[2];
604 	struct fib6_node *fn;
605 
606 	args[0].offset = offsetof(struct rt6_info, rt6i_dst);
607 	args[0].addr = daddr;
608 
609 #ifdef CONFIG_IPV6_SUBTREES
610 	args[1].offset = offsetof(struct rt6_info, rt6i_src);
611 	args[1].addr = saddr;
612 #endif
613 
614 	fn = fib6_lookup_1(root, args);
615 
616 	if (fn == NULL || fn->fn_flags & RTN_TL_ROOT)
617 		fn = root;
618 
619 	return fn;
620 }
621 
622 /*
623  *	Get node with specified destination prefix (and source prefix,
624  *	if subtrees are used)
625  */
626 
627 
628 static struct fib6_node * fib6_locate_1(struct fib6_node *root,
629 					struct in6_addr *addr,
630 					int plen, int offset)
631 {
632 	struct fib6_node *fn;
633 
634 	for (fn = root; fn ; ) {
635 		struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
636 
637 		/*
638 		 *	Prefix match
639 		 */
640 		if (plen < fn->fn_bit ||
641 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
642 			return NULL;
643 
644 		if (plen == fn->fn_bit)
645 			return fn;
646 
647 		/*
648 		 *	We have more bits to go
649 		 */
650 		if (addr_bit_set(addr, fn->fn_bit))
651 			fn = fn->right;
652 		else
653 			fn = fn->left;
654 	}
655 	return NULL;
656 }
657 
658 struct fib6_node * fib6_locate(struct fib6_node *root,
659 			       struct in6_addr *daddr, int dst_len,
660 			       struct in6_addr *saddr, int src_len)
661 {
662 	struct fib6_node *fn;
663 
664 	fn = fib6_locate_1(root, daddr, dst_len,
665 			   offsetof(struct rt6_info, rt6i_dst));
666 
667 #ifdef CONFIG_IPV6_SUBTREES
668 	if (src_len) {
669 		BUG_TRAP(saddr!=NULL);
670 		if (fn == NULL)
671 			fn = fn->subtree;
672 		if (fn)
673 			fn = fib6_locate_1(fn, saddr, src_len,
674 					   offsetof(struct rt6_info, rt6i_src));
675 	}
676 #endif
677 
678 	if (fn && fn->fn_flags&RTN_RTINFO)
679 		return fn;
680 
681 	return NULL;
682 }
683 
684 
685 /*
686  *	Deletion
687  *
688  */
689 
690 static struct rt6_info * fib6_find_prefix(struct fib6_node *fn)
691 {
692 	if (fn->fn_flags&RTN_ROOT)
693 		return &ip6_null_entry;
694 
695 	while(fn) {
696 		if(fn->left)
697 			return fn->left->leaf;
698 
699 		if(fn->right)
700 			return fn->right->leaf;
701 
702 		fn = SUBTREE(fn);
703 	}
704 	return NULL;
705 }
706 
707 /*
708  *	Called to trim the tree of intermediate nodes when possible. "fn"
709  *	is the node we want to try and remove.
710  */
711 
712 static struct fib6_node * fib6_repair_tree(struct fib6_node *fn)
713 {
714 	int children;
715 	int nstate;
716 	struct fib6_node *child, *pn;
717 	struct fib6_walker_t *w;
718 	int iter = 0;
719 
720 	for (;;) {
721 		RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
722 		iter++;
723 
724 		BUG_TRAP(!(fn->fn_flags&RTN_RTINFO));
725 		BUG_TRAP(!(fn->fn_flags&RTN_TL_ROOT));
726 		BUG_TRAP(fn->leaf==NULL);
727 
728 		children = 0;
729 		child = NULL;
730 		if (fn->right) child = fn->right, children |= 1;
731 		if (fn->left) child = fn->left, children |= 2;
732 
733 		if (children == 3 || SUBTREE(fn)
734 #ifdef CONFIG_IPV6_SUBTREES
735 		    /* Subtree root (i.e. fn) may have one child */
736 		    || (children && fn->fn_flags&RTN_ROOT)
737 #endif
738 		    ) {
739 			fn->leaf = fib6_find_prefix(fn);
740 #if RT6_DEBUG >= 2
741 			if (fn->leaf==NULL) {
742 				BUG_TRAP(fn->leaf);
743 				fn->leaf = &ip6_null_entry;
744 			}
745 #endif
746 			atomic_inc(&fn->leaf->rt6i_ref);
747 			return fn->parent;
748 		}
749 
750 		pn = fn->parent;
751 #ifdef CONFIG_IPV6_SUBTREES
752 		if (SUBTREE(pn) == fn) {
753 			BUG_TRAP(fn->fn_flags&RTN_ROOT);
754 			SUBTREE(pn) = NULL;
755 			nstate = FWS_L;
756 		} else {
757 			BUG_TRAP(!(fn->fn_flags&RTN_ROOT));
758 #endif
759 			if (pn->right == fn) pn->right = child;
760 			else if (pn->left == fn) pn->left = child;
761 #if RT6_DEBUG >= 2
762 			else BUG_TRAP(0);
763 #endif
764 			if (child)
765 				child->parent = pn;
766 			nstate = FWS_R;
767 #ifdef CONFIG_IPV6_SUBTREES
768 		}
769 #endif
770 
771 		read_lock(&fib6_walker_lock);
772 		FOR_WALKERS(w) {
773 			if (child == NULL) {
774 				if (w->root == fn) {
775 					w->root = w->node = NULL;
776 					RT6_TRACE("W %p adjusted by delroot 1\n", w);
777 				} else if (w->node == fn) {
778 					RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
779 					w->node = pn;
780 					w->state = nstate;
781 				}
782 			} else {
783 				if (w->root == fn) {
784 					w->root = child;
785 					RT6_TRACE("W %p adjusted by delroot 2\n", w);
786 				}
787 				if (w->node == fn) {
788 					w->node = child;
789 					if (children&2) {
790 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
791 						w->state = w->state>=FWS_R ? FWS_U : FWS_INIT;
792 					} else {
793 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
794 						w->state = w->state>=FWS_C ? FWS_U : FWS_INIT;
795 					}
796 				}
797 			}
798 		}
799 		read_unlock(&fib6_walker_lock);
800 
801 		node_free(fn);
802 		if (pn->fn_flags&RTN_RTINFO || SUBTREE(pn))
803 			return pn;
804 
805 		rt6_release(pn->leaf);
806 		pn->leaf = NULL;
807 		fn = pn;
808 	}
809 }
810 
811 static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
812     struct nlmsghdr *nlh, void *_rtattr, struct netlink_skb_parms *req)
813 {
814 	struct fib6_walker_t *w;
815 	struct rt6_info *rt = *rtp;
816 
817 	RT6_TRACE("fib6_del_route\n");
818 
819 	/* Unlink it */
820 	*rtp = rt->u.next;
821 	rt->rt6i_node = NULL;
822 	rt6_stats.fib_rt_entries--;
823 	rt6_stats.fib_discarded_routes++;
824 
825 	/* Adjust walkers */
826 	read_lock(&fib6_walker_lock);
827 	FOR_WALKERS(w) {
828 		if (w->state == FWS_C && w->leaf == rt) {
829 			RT6_TRACE("walker %p adjusted by delroute\n", w);
830 			w->leaf = rt->u.next;
831 			if (w->leaf == NULL)
832 				w->state = FWS_U;
833 		}
834 	}
835 	read_unlock(&fib6_walker_lock);
836 
837 	rt->u.next = NULL;
838 
839 	if (fn->leaf == NULL && fn->fn_flags&RTN_TL_ROOT)
840 		fn->leaf = &ip6_null_entry;
841 
842 	/* If it was last route, expunge its radix tree node */
843 	if (fn->leaf == NULL) {
844 		fn->fn_flags &= ~RTN_RTINFO;
845 		rt6_stats.fib_route_nodes--;
846 		fn = fib6_repair_tree(fn);
847 	}
848 
849 	if (atomic_read(&rt->rt6i_ref) != 1) {
850 		/* This route is used as dummy address holder in some split
851 		 * nodes. It is not leaked, but it still holds other resources,
852 		 * which must be released in time. So, scan ascendant nodes
853 		 * and replace dummy references to this route with references
854 		 * to still alive ones.
855 		 */
856 		while (fn) {
857 			if (!(fn->fn_flags&RTN_RTINFO) && fn->leaf == rt) {
858 				fn->leaf = fib6_find_prefix(fn);
859 				atomic_inc(&fn->leaf->rt6i_ref);
860 				rt6_release(rt);
861 			}
862 			fn = fn->parent;
863 		}
864 		/* No more references are possible at this point. */
865 		if (atomic_read(&rt->rt6i_ref) != 1) BUG();
866 	}
867 
868 	inet6_rt_notify(RTM_DELROUTE, rt, nlh, req);
869 	rt6_release(rt);
870 }
871 
872 int fib6_del(struct rt6_info *rt, struct nlmsghdr *nlh, void *_rtattr, struct netlink_skb_parms *req)
873 {
874 	struct fib6_node *fn = rt->rt6i_node;
875 	struct rt6_info **rtp;
876 
877 #if RT6_DEBUG >= 2
878 	if (rt->u.dst.obsolete>0) {
879 		BUG_TRAP(fn==NULL);
880 		return -ENOENT;
881 	}
882 #endif
883 	if (fn == NULL || rt == &ip6_null_entry)
884 		return -ENOENT;
885 
886 	BUG_TRAP(fn->fn_flags&RTN_RTINFO);
887 
888 	if (!(rt->rt6i_flags&RTF_CACHE))
889 		fib6_prune_clones(fn, rt);
890 
891 	/*
892 	 *	Walk the leaf entries looking for ourself
893 	 */
894 
895 	for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->u.next) {
896 		if (*rtp == rt) {
897 			fib6_del_route(fn, rtp, nlh, _rtattr, req);
898 			return 0;
899 		}
900 	}
901 	return -ENOENT;
902 }
903 
904 /*
905  *	Tree traversal function.
906  *
907  *	Certainly, it is not interrupt safe.
908  *	However, it is internally reenterable wrt itself and fib6_add/fib6_del.
909  *	It means, that we can modify tree during walking
910  *	and use this function for garbage collection, clone pruning,
911  *	cleaning tree when a device goes down etc. etc.
912  *
913  *	It guarantees that every node will be traversed,
914  *	and that it will be traversed only once.
915  *
916  *	Callback function w->func may return:
917  *	0 -> continue walking.
918  *	positive value -> walking is suspended (used by tree dumps,
919  *	and probably by gc, if it will be split to several slices)
920  *	negative value -> terminate walking.
921  *
922  *	The function itself returns:
923  *	0   -> walk is complete.
924  *	>0  -> walk is incomplete (i.e. suspended)
925  *	<0  -> walk is terminated by an error.
926  */
927 
928 int fib6_walk_continue(struct fib6_walker_t *w)
929 {
930 	struct fib6_node *fn, *pn;
931 
932 	for (;;) {
933 		fn = w->node;
934 		if (fn == NULL)
935 			return 0;
936 
937 		if (w->prune && fn != w->root &&
938 		    fn->fn_flags&RTN_RTINFO && w->state < FWS_C) {
939 			w->state = FWS_C;
940 			w->leaf = fn->leaf;
941 		}
942 		switch (w->state) {
943 #ifdef CONFIG_IPV6_SUBTREES
944 		case FWS_S:
945 			if (SUBTREE(fn)) {
946 				w->node = SUBTREE(fn);
947 				continue;
948 			}
949 			w->state = FWS_L;
950 #endif
951 		case FWS_L:
952 			if (fn->left) {
953 				w->node = fn->left;
954 				w->state = FWS_INIT;
955 				continue;
956 			}
957 			w->state = FWS_R;
958 		case FWS_R:
959 			if (fn->right) {
960 				w->node = fn->right;
961 				w->state = FWS_INIT;
962 				continue;
963 			}
964 			w->state = FWS_C;
965 			w->leaf = fn->leaf;
966 		case FWS_C:
967 			if (w->leaf && fn->fn_flags&RTN_RTINFO) {
968 				int err = w->func(w);
969 				if (err)
970 					return err;
971 				continue;
972 			}
973 			w->state = FWS_U;
974 		case FWS_U:
975 			if (fn == w->root)
976 				return 0;
977 			pn = fn->parent;
978 			w->node = pn;
979 #ifdef CONFIG_IPV6_SUBTREES
980 			if (SUBTREE(pn) == fn) {
981 				BUG_TRAP(fn->fn_flags&RTN_ROOT);
982 				w->state = FWS_L;
983 				continue;
984 			}
985 #endif
986 			if (pn->left == fn) {
987 				w->state = FWS_R;
988 				continue;
989 			}
990 			if (pn->right == fn) {
991 				w->state = FWS_C;
992 				w->leaf = w->node->leaf;
993 				continue;
994 			}
995 #if RT6_DEBUG >= 2
996 			BUG_TRAP(0);
997 #endif
998 		}
999 	}
1000 }
1001 
1002 int fib6_walk(struct fib6_walker_t *w)
1003 {
1004 	int res;
1005 
1006 	w->state = FWS_INIT;
1007 	w->node = w->root;
1008 
1009 	fib6_walker_link(w);
1010 	res = fib6_walk_continue(w);
1011 	if (res <= 0)
1012 		fib6_walker_unlink(w);
1013 	return res;
1014 }
1015 
1016 static int fib6_clean_node(struct fib6_walker_t *w)
1017 {
1018 	int res;
1019 	struct rt6_info *rt;
1020 	struct fib6_cleaner_t *c = (struct fib6_cleaner_t*)w;
1021 
1022 	for (rt = w->leaf; rt; rt = rt->u.next) {
1023 		res = c->func(rt, c->arg);
1024 		if (res < 0) {
1025 			w->leaf = rt;
1026 			res = fib6_del(rt, NULL, NULL, NULL);
1027 			if (res) {
1028 #if RT6_DEBUG >= 2
1029 				printk(KERN_DEBUG "fib6_clean_node: del failed: rt=%p@%p err=%d\n", rt, rt->rt6i_node, res);
1030 #endif
1031 				continue;
1032 			}
1033 			return 0;
1034 		}
1035 		BUG_TRAP(res==0);
1036 	}
1037 	w->leaf = rt;
1038 	return 0;
1039 }
1040 
1041 /*
1042  *	Convenient frontend to tree walker.
1043  *
1044  *	func is called on each route.
1045  *		It may return -1 -> delete this route.
1046  *		              0  -> continue walking
1047  *
1048  *	prune==1 -> only immediate children of node (certainly,
1049  *	ignoring pure split nodes) will be scanned.
1050  */
1051 
1052 void fib6_clean_tree(struct fib6_node *root,
1053 		     int (*func)(struct rt6_info *, void *arg),
1054 		     int prune, void *arg)
1055 {
1056 	struct fib6_cleaner_t c;
1057 
1058 	c.w.root = root;
1059 	c.w.func = fib6_clean_node;
1060 	c.w.prune = prune;
1061 	c.func = func;
1062 	c.arg = arg;
1063 
1064 	fib6_walk(&c.w);
1065 }
1066 
1067 static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1068 {
1069 	if (rt->rt6i_flags & RTF_CACHE) {
1070 		RT6_TRACE("pruning clone %p\n", rt);
1071 		return -1;
1072 	}
1073 
1074 	return 0;
1075 }
1076 
1077 static void fib6_prune_clones(struct fib6_node *fn, struct rt6_info *rt)
1078 {
1079 	fib6_clean_tree(fn, fib6_prune_clone, 1, rt);
1080 }
1081 
1082 /*
1083  *	Garbage collection
1084  */
1085 
1086 static struct fib6_gc_args
1087 {
1088 	int			timeout;
1089 	int			more;
1090 } gc_args;
1091 
1092 static int fib6_age(struct rt6_info *rt, void *arg)
1093 {
1094 	unsigned long now = jiffies;
1095 
1096 	/*
1097 	 *	check addrconf expiration here.
1098 	 *	Routes are expired even if they are in use.
1099 	 *
1100 	 *	Also age clones. Note, that clones are aged out
1101 	 *	only if they are not in use now.
1102 	 */
1103 
1104 	if (rt->rt6i_flags&RTF_EXPIRES && rt->rt6i_expires) {
1105 		if (time_after(now, rt->rt6i_expires)) {
1106 			RT6_TRACE("expiring %p\n", rt);
1107 			return -1;
1108 		}
1109 		gc_args.more++;
1110 	} else if (rt->rt6i_flags & RTF_CACHE) {
1111 		if (atomic_read(&rt->u.dst.__refcnt) == 0 &&
1112 		    time_after_eq(now, rt->u.dst.lastuse + gc_args.timeout)) {
1113 			RT6_TRACE("aging clone %p\n", rt);
1114 			return -1;
1115 		} else if ((rt->rt6i_flags & RTF_GATEWAY) &&
1116 			   (!(rt->rt6i_nexthop->flags & NTF_ROUTER))) {
1117 			RT6_TRACE("purging route %p via non-router but gateway\n",
1118 				  rt);
1119 			return -1;
1120 		}
1121 		gc_args.more++;
1122 	}
1123 
1124 	return 0;
1125 }
1126 
1127 static DEFINE_SPINLOCK(fib6_gc_lock);
1128 
1129 void fib6_run_gc(unsigned long dummy)
1130 {
1131 	if (dummy != ~0UL) {
1132 		spin_lock_bh(&fib6_gc_lock);
1133 		gc_args.timeout = dummy ? (int)dummy : ip6_rt_gc_interval;
1134 	} else {
1135 		local_bh_disable();
1136 		if (!spin_trylock(&fib6_gc_lock)) {
1137 			mod_timer(&ip6_fib_timer, jiffies + HZ);
1138 			local_bh_enable();
1139 			return;
1140 		}
1141 		gc_args.timeout = ip6_rt_gc_interval;
1142 	}
1143 	gc_args.more = 0;
1144 
1145 
1146 	write_lock_bh(&rt6_lock);
1147 	ndisc_dst_gc(&gc_args.more);
1148 	fib6_clean_tree(&ip6_routing_table, fib6_age, 0, NULL);
1149 	write_unlock_bh(&rt6_lock);
1150 
1151 	if (gc_args.more)
1152 		mod_timer(&ip6_fib_timer, jiffies + ip6_rt_gc_interval);
1153 	else {
1154 		del_timer(&ip6_fib_timer);
1155 		ip6_fib_timer.expires = 0;
1156 	}
1157 	spin_unlock_bh(&fib6_gc_lock);
1158 }
1159 
1160 void __init fib6_init(void)
1161 {
1162 	fib6_node_kmem = kmem_cache_create("fib6_nodes",
1163 					   sizeof(struct fib6_node),
1164 					   0, SLAB_HWCACHE_ALIGN,
1165 					   NULL, NULL);
1166 	if (!fib6_node_kmem)
1167 		panic("cannot create fib6_nodes cache");
1168 }
1169 
1170 void fib6_gc_cleanup(void)
1171 {
1172 	del_timer(&ip6_fib_timer);
1173 	kmem_cache_destroy(fib6_node_kmem);
1174 }
1175