xref: /linux/net/ipv6/ip6_fib.c (revision 140eb5227767c6754742020a16d2691222b9c19b)
1 /*
2  *	Linux INET6 implementation
3  *	Forwarding Information Database
4  *
5  *	Authors:
6  *	Pedro Roque		<roque@di.fc.ul.pt>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *      modify it under the terms of the GNU General Public License
10  *      as published by the Free Software Foundation; either version
11  *      2 of the License, or (at your option) any later version.
12  *
13  *	Changes:
14  *	Yuji SEKIYA @USAGI:	Support default route on router node;
15  *				remove ip6_null_entry from the top of
16  *				routing table.
17  *	Ville Nuorvala:		Fixed routing subtrees.
18  */
19 
20 #define pr_fmt(fmt) "IPv6: " fmt
21 
22 #include <linux/errno.h>
23 #include <linux/types.h>
24 #include <linux/net.h>
25 #include <linux/route.h>
26 #include <linux/netdevice.h>
27 #include <linux/in6.h>
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/slab.h>
31 
32 #include <net/ipv6.h>
33 #include <net/ndisc.h>
34 #include <net/addrconf.h>
35 #include <net/lwtunnel.h>
36 #include <net/fib_notifier.h>
37 
38 #include <net/ip6_fib.h>
39 #include <net/ip6_route.h>
40 
41 static struct kmem_cache *fib6_node_kmem __read_mostly;
42 
43 struct fib6_cleaner {
44 	struct fib6_walker w;
45 	struct net *net;
46 	int (*func)(struct rt6_info *, void *arg);
47 	int sernum;
48 	void *arg;
49 };
50 
51 #ifdef CONFIG_IPV6_SUBTREES
52 #define FWS_INIT FWS_S
53 #else
54 #define FWS_INIT FWS_L
55 #endif
56 
57 static struct rt6_info *fib6_find_prefix(struct net *net,
58 					 struct fib6_table *table,
59 					 struct fib6_node *fn);
60 static struct fib6_node *fib6_repair_tree(struct net *net,
61 					  struct fib6_table *table,
62 					  struct fib6_node *fn);
63 static int fib6_walk(struct net *net, struct fib6_walker *w);
64 static int fib6_walk_continue(struct fib6_walker *w);
65 
66 /*
67  *	A routing update causes an increase of the serial number on the
68  *	affected subtree. This allows for cached routes to be asynchronously
69  *	tested when modifications are made to the destination cache as a
70  *	result of redirects, path MTU changes, etc.
71  */
72 
73 static void fib6_gc_timer_cb(struct timer_list *t);
74 
75 #define FOR_WALKERS(net, w) \
76 	list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh)
77 
78 static void fib6_walker_link(struct net *net, struct fib6_walker *w)
79 {
80 	write_lock_bh(&net->ipv6.fib6_walker_lock);
81 	list_add(&w->lh, &net->ipv6.fib6_walkers);
82 	write_unlock_bh(&net->ipv6.fib6_walker_lock);
83 }
84 
85 static void fib6_walker_unlink(struct net *net, struct fib6_walker *w)
86 {
87 	write_lock_bh(&net->ipv6.fib6_walker_lock);
88 	list_del(&w->lh);
89 	write_unlock_bh(&net->ipv6.fib6_walker_lock);
90 }
91 
92 static int fib6_new_sernum(struct net *net)
93 {
94 	int new, old;
95 
96 	do {
97 		old = atomic_read(&net->ipv6.fib6_sernum);
98 		new = old < INT_MAX ? old + 1 : 1;
99 	} while (atomic_cmpxchg(&net->ipv6.fib6_sernum,
100 				old, new) != old);
101 	return new;
102 }
103 
104 enum {
105 	FIB6_NO_SERNUM_CHANGE = 0,
106 };
107 
108 void fib6_update_sernum(struct rt6_info *rt)
109 {
110 	struct fib6_table *table = rt->rt6i_table;
111 	struct net *net = dev_net(rt->dst.dev);
112 	struct fib6_node *fn;
113 
114 	spin_lock_bh(&table->tb6_lock);
115 	fn = rcu_dereference_protected(rt->rt6i_node,
116 			lockdep_is_held(&table->tb6_lock));
117 	if (fn)
118 		fn->fn_sernum = fib6_new_sernum(net);
119 	spin_unlock_bh(&table->tb6_lock);
120 }
121 
122 /*
123  *	Auxiliary address test functions for the radix tree.
124  *
125  *	These assume a 32bit processor (although it will work on
126  *	64bit processors)
127  */
128 
129 /*
130  *	test bit
131  */
132 #if defined(__LITTLE_ENDIAN)
133 # define BITOP_BE32_SWIZZLE	(0x1F & ~7)
134 #else
135 # define BITOP_BE32_SWIZZLE	0
136 #endif
137 
138 static __be32 addr_bit_set(const void *token, int fn_bit)
139 {
140 	const __be32 *addr = token;
141 	/*
142 	 * Here,
143 	 *	1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
144 	 * is optimized version of
145 	 *	htonl(1 << ((~fn_bit)&0x1F))
146 	 * See include/asm-generic/bitops/le.h.
147 	 */
148 	return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
149 	       addr[fn_bit >> 5];
150 }
151 
152 static struct fib6_node *node_alloc(struct net *net)
153 {
154 	struct fib6_node *fn;
155 
156 	fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
157 	if (fn)
158 		net->ipv6.rt6_stats->fib_nodes++;
159 
160 	return fn;
161 }
162 
163 static void node_free_immediate(struct net *net, struct fib6_node *fn)
164 {
165 	kmem_cache_free(fib6_node_kmem, fn);
166 	net->ipv6.rt6_stats->fib_nodes--;
167 }
168 
169 static void node_free_rcu(struct rcu_head *head)
170 {
171 	struct fib6_node *fn = container_of(head, struct fib6_node, rcu);
172 
173 	kmem_cache_free(fib6_node_kmem, fn);
174 }
175 
176 static void node_free(struct net *net, struct fib6_node *fn)
177 {
178 	call_rcu(&fn->rcu, node_free_rcu);
179 	net->ipv6.rt6_stats->fib_nodes--;
180 }
181 
182 void rt6_free_pcpu(struct rt6_info *non_pcpu_rt)
183 {
184 	int cpu;
185 
186 	if (!non_pcpu_rt->rt6i_pcpu)
187 		return;
188 
189 	for_each_possible_cpu(cpu) {
190 		struct rt6_info **ppcpu_rt;
191 		struct rt6_info *pcpu_rt;
192 
193 		ppcpu_rt = per_cpu_ptr(non_pcpu_rt->rt6i_pcpu, cpu);
194 		pcpu_rt = *ppcpu_rt;
195 		if (pcpu_rt) {
196 			dst_dev_put(&pcpu_rt->dst);
197 			dst_release(&pcpu_rt->dst);
198 			*ppcpu_rt = NULL;
199 		}
200 	}
201 }
202 EXPORT_SYMBOL_GPL(rt6_free_pcpu);
203 
204 static void fib6_free_table(struct fib6_table *table)
205 {
206 	inetpeer_invalidate_tree(&table->tb6_peers);
207 	kfree(table);
208 }
209 
210 static void fib6_link_table(struct net *net, struct fib6_table *tb)
211 {
212 	unsigned int h;
213 
214 	/*
215 	 * Initialize table lock at a single place to give lockdep a key,
216 	 * tables aren't visible prior to being linked to the list.
217 	 */
218 	spin_lock_init(&tb->tb6_lock);
219 	h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
220 
221 	/*
222 	 * No protection necessary, this is the only list mutatation
223 	 * operation, tables never disappear once they exist.
224 	 */
225 	hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
226 }
227 
228 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
229 
230 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
231 {
232 	struct fib6_table *table;
233 
234 	table = kzalloc(sizeof(*table), GFP_ATOMIC);
235 	if (table) {
236 		table->tb6_id = id;
237 		rcu_assign_pointer(table->tb6_root.leaf,
238 				   net->ipv6.ip6_null_entry);
239 		table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
240 		inet_peer_base_init(&table->tb6_peers);
241 	}
242 
243 	return table;
244 }
245 
246 struct fib6_table *fib6_new_table(struct net *net, u32 id)
247 {
248 	struct fib6_table *tb;
249 
250 	if (id == 0)
251 		id = RT6_TABLE_MAIN;
252 	tb = fib6_get_table(net, id);
253 	if (tb)
254 		return tb;
255 
256 	tb = fib6_alloc_table(net, id);
257 	if (tb)
258 		fib6_link_table(net, tb);
259 
260 	return tb;
261 }
262 EXPORT_SYMBOL_GPL(fib6_new_table);
263 
264 struct fib6_table *fib6_get_table(struct net *net, u32 id)
265 {
266 	struct fib6_table *tb;
267 	struct hlist_head *head;
268 	unsigned int h;
269 
270 	if (id == 0)
271 		id = RT6_TABLE_MAIN;
272 	h = id & (FIB6_TABLE_HASHSZ - 1);
273 	rcu_read_lock();
274 	head = &net->ipv6.fib_table_hash[h];
275 	hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
276 		if (tb->tb6_id == id) {
277 			rcu_read_unlock();
278 			return tb;
279 		}
280 	}
281 	rcu_read_unlock();
282 
283 	return NULL;
284 }
285 EXPORT_SYMBOL_GPL(fib6_get_table);
286 
287 static void __net_init fib6_tables_init(struct net *net)
288 {
289 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
290 	fib6_link_table(net, net->ipv6.fib6_local_tbl);
291 }
292 #else
293 
294 struct fib6_table *fib6_new_table(struct net *net, u32 id)
295 {
296 	return fib6_get_table(net, id);
297 }
298 
299 struct fib6_table *fib6_get_table(struct net *net, u32 id)
300 {
301 	  return net->ipv6.fib6_main_tbl;
302 }
303 
304 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
305 				   int flags, pol_lookup_t lookup)
306 {
307 	struct rt6_info *rt;
308 
309 	rt = lookup(net, net->ipv6.fib6_main_tbl, fl6, flags);
310 	if (rt->dst.error == -EAGAIN) {
311 		ip6_rt_put(rt);
312 		rt = net->ipv6.ip6_null_entry;
313 		dst_hold(&rt->dst);
314 	}
315 
316 	return &rt->dst;
317 }
318 
319 static void __net_init fib6_tables_init(struct net *net)
320 {
321 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
322 }
323 
324 #endif
325 
326 unsigned int fib6_tables_seq_read(struct net *net)
327 {
328 	unsigned int h, fib_seq = 0;
329 
330 	rcu_read_lock();
331 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
332 		struct hlist_head *head = &net->ipv6.fib_table_hash[h];
333 		struct fib6_table *tb;
334 
335 		hlist_for_each_entry_rcu(tb, head, tb6_hlist)
336 			fib_seq += tb->fib_seq;
337 	}
338 	rcu_read_unlock();
339 
340 	return fib_seq;
341 }
342 
343 static int call_fib6_entry_notifier(struct notifier_block *nb, struct net *net,
344 				    enum fib_event_type event_type,
345 				    struct rt6_info *rt)
346 {
347 	struct fib6_entry_notifier_info info = {
348 		.rt = rt,
349 	};
350 
351 	return call_fib6_notifier(nb, net, event_type, &info.info);
352 }
353 
354 static int call_fib6_entry_notifiers(struct net *net,
355 				     enum fib_event_type event_type,
356 				     struct rt6_info *rt,
357 				     struct netlink_ext_ack *extack)
358 {
359 	struct fib6_entry_notifier_info info = {
360 		.info.extack = extack,
361 		.rt = rt,
362 	};
363 
364 	rt->rt6i_table->fib_seq++;
365 	return call_fib6_notifiers(net, event_type, &info.info);
366 }
367 
368 struct fib6_dump_arg {
369 	struct net *net;
370 	struct notifier_block *nb;
371 };
372 
373 static void fib6_rt_dump(struct rt6_info *rt, struct fib6_dump_arg *arg)
374 {
375 	if (rt == arg->net->ipv6.ip6_null_entry)
376 		return;
377 	call_fib6_entry_notifier(arg->nb, arg->net, FIB_EVENT_ENTRY_ADD, rt);
378 }
379 
380 static int fib6_node_dump(struct fib6_walker *w)
381 {
382 	struct rt6_info *rt;
383 
384 	for_each_fib6_walker_rt(w)
385 		fib6_rt_dump(rt, w->args);
386 	w->leaf = NULL;
387 	return 0;
388 }
389 
390 static void fib6_table_dump(struct net *net, struct fib6_table *tb,
391 			    struct fib6_walker *w)
392 {
393 	w->root = &tb->tb6_root;
394 	spin_lock_bh(&tb->tb6_lock);
395 	fib6_walk(net, w);
396 	spin_unlock_bh(&tb->tb6_lock);
397 }
398 
399 /* Called with rcu_read_lock() */
400 int fib6_tables_dump(struct net *net, struct notifier_block *nb)
401 {
402 	struct fib6_dump_arg arg;
403 	struct fib6_walker *w;
404 	unsigned int h;
405 
406 	w = kzalloc(sizeof(*w), GFP_ATOMIC);
407 	if (!w)
408 		return -ENOMEM;
409 
410 	w->func = fib6_node_dump;
411 	arg.net = net;
412 	arg.nb = nb;
413 	w->args = &arg;
414 
415 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
416 		struct hlist_head *head = &net->ipv6.fib_table_hash[h];
417 		struct fib6_table *tb;
418 
419 		hlist_for_each_entry_rcu(tb, head, tb6_hlist)
420 			fib6_table_dump(net, tb, w);
421 	}
422 
423 	kfree(w);
424 
425 	return 0;
426 }
427 
428 static int fib6_dump_node(struct fib6_walker *w)
429 {
430 	int res;
431 	struct rt6_info *rt;
432 
433 	for_each_fib6_walker_rt(w) {
434 		res = rt6_dump_route(rt, w->args);
435 		if (res < 0) {
436 			/* Frame is full, suspend walking */
437 			w->leaf = rt;
438 			return 1;
439 		}
440 
441 		/* Multipath routes are dumped in one route with the
442 		 * RTA_MULTIPATH attribute. Jump 'rt' to point to the
443 		 * last sibling of this route (no need to dump the
444 		 * sibling routes again)
445 		 */
446 		if (rt->rt6i_nsiblings)
447 			rt = list_last_entry(&rt->rt6i_siblings,
448 					     struct rt6_info,
449 					     rt6i_siblings);
450 	}
451 	w->leaf = NULL;
452 	return 0;
453 }
454 
455 static void fib6_dump_end(struct netlink_callback *cb)
456 {
457 	struct net *net = sock_net(cb->skb->sk);
458 	struct fib6_walker *w = (void *)cb->args[2];
459 
460 	if (w) {
461 		if (cb->args[4]) {
462 			cb->args[4] = 0;
463 			fib6_walker_unlink(net, w);
464 		}
465 		cb->args[2] = 0;
466 		kfree(w);
467 	}
468 	cb->done = (void *)cb->args[3];
469 	cb->args[1] = 3;
470 }
471 
472 static int fib6_dump_done(struct netlink_callback *cb)
473 {
474 	fib6_dump_end(cb);
475 	return cb->done ? cb->done(cb) : 0;
476 }
477 
478 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
479 			   struct netlink_callback *cb)
480 {
481 	struct net *net = sock_net(skb->sk);
482 	struct fib6_walker *w;
483 	int res;
484 
485 	w = (void *)cb->args[2];
486 	w->root = &table->tb6_root;
487 
488 	if (cb->args[4] == 0) {
489 		w->count = 0;
490 		w->skip = 0;
491 
492 		spin_lock_bh(&table->tb6_lock);
493 		res = fib6_walk(net, w);
494 		spin_unlock_bh(&table->tb6_lock);
495 		if (res > 0) {
496 			cb->args[4] = 1;
497 			cb->args[5] = w->root->fn_sernum;
498 		}
499 	} else {
500 		if (cb->args[5] != w->root->fn_sernum) {
501 			/* Begin at the root if the tree changed */
502 			cb->args[5] = w->root->fn_sernum;
503 			w->state = FWS_INIT;
504 			w->node = w->root;
505 			w->skip = w->count;
506 		} else
507 			w->skip = 0;
508 
509 		spin_lock_bh(&table->tb6_lock);
510 		res = fib6_walk_continue(w);
511 		spin_unlock_bh(&table->tb6_lock);
512 		if (res <= 0) {
513 			fib6_walker_unlink(net, w);
514 			cb->args[4] = 0;
515 		}
516 	}
517 
518 	return res;
519 }
520 
521 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
522 {
523 	struct net *net = sock_net(skb->sk);
524 	unsigned int h, s_h;
525 	unsigned int e = 0, s_e;
526 	struct rt6_rtnl_dump_arg arg;
527 	struct fib6_walker *w;
528 	struct fib6_table *tb;
529 	struct hlist_head *head;
530 	int res = 0;
531 
532 	s_h = cb->args[0];
533 	s_e = cb->args[1];
534 
535 	w = (void *)cb->args[2];
536 	if (!w) {
537 		/* New dump:
538 		 *
539 		 * 1. hook callback destructor.
540 		 */
541 		cb->args[3] = (long)cb->done;
542 		cb->done = fib6_dump_done;
543 
544 		/*
545 		 * 2. allocate and initialize walker.
546 		 */
547 		w = kzalloc(sizeof(*w), GFP_ATOMIC);
548 		if (!w)
549 			return -ENOMEM;
550 		w->func = fib6_dump_node;
551 		cb->args[2] = (long)w;
552 	}
553 
554 	arg.skb = skb;
555 	arg.cb = cb;
556 	arg.net = net;
557 	w->args = &arg;
558 
559 	rcu_read_lock();
560 	for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
561 		e = 0;
562 		head = &net->ipv6.fib_table_hash[h];
563 		hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
564 			if (e < s_e)
565 				goto next;
566 			res = fib6_dump_table(tb, skb, cb);
567 			if (res != 0)
568 				goto out;
569 next:
570 			e++;
571 		}
572 	}
573 out:
574 	rcu_read_unlock();
575 	cb->args[1] = e;
576 	cb->args[0] = h;
577 
578 	res = res < 0 ? res : skb->len;
579 	if (res <= 0)
580 		fib6_dump_end(cb);
581 	return res;
582 }
583 
584 /*
585  *	Routing Table
586  *
587  *	return the appropriate node for a routing tree "add" operation
588  *	by either creating and inserting or by returning an existing
589  *	node.
590  */
591 
592 static struct fib6_node *fib6_add_1(struct net *net,
593 				    struct fib6_table *table,
594 				    struct fib6_node *root,
595 				    struct in6_addr *addr, int plen,
596 				    int offset, int allow_create,
597 				    int replace_required,
598 				    struct netlink_ext_ack *extack)
599 {
600 	struct fib6_node *fn, *in, *ln;
601 	struct fib6_node *pn = NULL;
602 	struct rt6key *key;
603 	int	bit;
604 	__be32	dir = 0;
605 
606 	RT6_TRACE("fib6_add_1\n");
607 
608 	/* insert node in tree */
609 
610 	fn = root;
611 
612 	do {
613 		struct rt6_info *leaf = rcu_dereference_protected(fn->leaf,
614 					    lockdep_is_held(&table->tb6_lock));
615 		key = (struct rt6key *)((u8 *)leaf + offset);
616 
617 		/*
618 		 *	Prefix match
619 		 */
620 		if (plen < fn->fn_bit ||
621 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
622 			if (!allow_create) {
623 				if (replace_required) {
624 					NL_SET_ERR_MSG(extack,
625 						       "Can not replace route - no match found");
626 					pr_warn("Can't replace route, no match found\n");
627 					return ERR_PTR(-ENOENT);
628 				}
629 				pr_warn("NLM_F_CREATE should be set when creating new route\n");
630 			}
631 			goto insert_above;
632 		}
633 
634 		/*
635 		 *	Exact match ?
636 		 */
637 
638 		if (plen == fn->fn_bit) {
639 			/* clean up an intermediate node */
640 			if (!(fn->fn_flags & RTN_RTINFO)) {
641 				RCU_INIT_POINTER(fn->leaf, NULL);
642 				rt6_release(leaf);
643 			/* remove null_entry in the root node */
644 			} else if (fn->fn_flags & RTN_TL_ROOT &&
645 				   rcu_access_pointer(fn->leaf) ==
646 				   net->ipv6.ip6_null_entry) {
647 				RCU_INIT_POINTER(fn->leaf, NULL);
648 			}
649 
650 			return fn;
651 		}
652 
653 		/*
654 		 *	We have more bits to go
655 		 */
656 
657 		/* Try to walk down on tree. */
658 		dir = addr_bit_set(addr, fn->fn_bit);
659 		pn = fn;
660 		fn = dir ?
661 		     rcu_dereference_protected(fn->right,
662 					lockdep_is_held(&table->tb6_lock)) :
663 		     rcu_dereference_protected(fn->left,
664 					lockdep_is_held(&table->tb6_lock));
665 	} while (fn);
666 
667 	if (!allow_create) {
668 		/* We should not create new node because
669 		 * NLM_F_REPLACE was specified without NLM_F_CREATE
670 		 * I assume it is safe to require NLM_F_CREATE when
671 		 * REPLACE flag is used! Later we may want to remove the
672 		 * check for replace_required, because according
673 		 * to netlink specification, NLM_F_CREATE
674 		 * MUST be specified if new route is created.
675 		 * That would keep IPv6 consistent with IPv4
676 		 */
677 		if (replace_required) {
678 			NL_SET_ERR_MSG(extack,
679 				       "Can not replace route - no match found");
680 			pr_warn("Can't replace route, no match found\n");
681 			return ERR_PTR(-ENOENT);
682 		}
683 		pr_warn("NLM_F_CREATE should be set when creating new route\n");
684 	}
685 	/*
686 	 *	We walked to the bottom of tree.
687 	 *	Create new leaf node without children.
688 	 */
689 
690 	ln = node_alloc(net);
691 
692 	if (!ln)
693 		return ERR_PTR(-ENOMEM);
694 	ln->fn_bit = plen;
695 	RCU_INIT_POINTER(ln->parent, pn);
696 
697 	if (dir)
698 		rcu_assign_pointer(pn->right, ln);
699 	else
700 		rcu_assign_pointer(pn->left, ln);
701 
702 	return ln;
703 
704 
705 insert_above:
706 	/*
707 	 * split since we don't have a common prefix anymore or
708 	 * we have a less significant route.
709 	 * we've to insert an intermediate node on the list
710 	 * this new node will point to the one we need to create
711 	 * and the current
712 	 */
713 
714 	pn = rcu_dereference_protected(fn->parent,
715 				       lockdep_is_held(&table->tb6_lock));
716 
717 	/* find 1st bit in difference between the 2 addrs.
718 
719 	   See comment in __ipv6_addr_diff: bit may be an invalid value,
720 	   but if it is >= plen, the value is ignored in any case.
721 	 */
722 
723 	bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
724 
725 	/*
726 	 *		(intermediate)[in]
727 	 *	          /	   \
728 	 *	(new leaf node)[ln] (old node)[fn]
729 	 */
730 	if (plen > bit) {
731 		in = node_alloc(net);
732 		ln = node_alloc(net);
733 
734 		if (!in || !ln) {
735 			if (in)
736 				node_free_immediate(net, in);
737 			if (ln)
738 				node_free_immediate(net, ln);
739 			return ERR_PTR(-ENOMEM);
740 		}
741 
742 		/*
743 		 * new intermediate node.
744 		 * RTN_RTINFO will
745 		 * be off since that an address that chooses one of
746 		 * the branches would not match less specific routes
747 		 * in the other branch
748 		 */
749 
750 		in->fn_bit = bit;
751 
752 		RCU_INIT_POINTER(in->parent, pn);
753 		in->leaf = fn->leaf;
754 		atomic_inc(&rcu_dereference_protected(in->leaf,
755 				lockdep_is_held(&table->tb6_lock))->rt6i_ref);
756 
757 		/* update parent pointer */
758 		if (dir)
759 			rcu_assign_pointer(pn->right, in);
760 		else
761 			rcu_assign_pointer(pn->left, in);
762 
763 		ln->fn_bit = plen;
764 
765 		RCU_INIT_POINTER(ln->parent, in);
766 		rcu_assign_pointer(fn->parent, in);
767 
768 		if (addr_bit_set(addr, bit)) {
769 			rcu_assign_pointer(in->right, ln);
770 			rcu_assign_pointer(in->left, fn);
771 		} else {
772 			rcu_assign_pointer(in->left, ln);
773 			rcu_assign_pointer(in->right, fn);
774 		}
775 	} else { /* plen <= bit */
776 
777 		/*
778 		 *		(new leaf node)[ln]
779 		 *	          /	   \
780 		 *	     (old node)[fn] NULL
781 		 */
782 
783 		ln = node_alloc(net);
784 
785 		if (!ln)
786 			return ERR_PTR(-ENOMEM);
787 
788 		ln->fn_bit = plen;
789 
790 		RCU_INIT_POINTER(ln->parent, pn);
791 
792 		if (addr_bit_set(&key->addr, plen))
793 			RCU_INIT_POINTER(ln->right, fn);
794 		else
795 			RCU_INIT_POINTER(ln->left, fn);
796 
797 		rcu_assign_pointer(fn->parent, ln);
798 
799 		if (dir)
800 			rcu_assign_pointer(pn->right, ln);
801 		else
802 			rcu_assign_pointer(pn->left, ln);
803 	}
804 	return ln;
805 }
806 
807 static bool rt6_qualify_for_ecmp(struct rt6_info *rt)
808 {
809 	return (rt->rt6i_flags & (RTF_GATEWAY|RTF_ADDRCONF|RTF_DYNAMIC)) ==
810 	       RTF_GATEWAY;
811 }
812 
813 static void fib6_copy_metrics(u32 *mp, const struct mx6_config *mxc)
814 {
815 	int i;
816 
817 	for (i = 0; i < RTAX_MAX; i++) {
818 		if (test_bit(i, mxc->mx_valid))
819 			mp[i] = mxc->mx[i];
820 	}
821 }
822 
823 static int fib6_commit_metrics(struct dst_entry *dst, struct mx6_config *mxc)
824 {
825 	if (!mxc->mx)
826 		return 0;
827 
828 	if (dst->flags & DST_HOST) {
829 		u32 *mp = dst_metrics_write_ptr(dst);
830 
831 		if (unlikely(!mp))
832 			return -ENOMEM;
833 
834 		fib6_copy_metrics(mp, mxc);
835 	} else {
836 		dst_init_metrics(dst, mxc->mx, false);
837 
838 		/* We've stolen mx now. */
839 		mxc->mx = NULL;
840 	}
841 
842 	return 0;
843 }
844 
845 static void fib6_purge_rt(struct rt6_info *rt, struct fib6_node *fn,
846 			  struct net *net)
847 {
848 	struct fib6_table *table = rt->rt6i_table;
849 
850 	if (atomic_read(&rt->rt6i_ref) != 1) {
851 		/* This route is used as dummy address holder in some split
852 		 * nodes. It is not leaked, but it still holds other resources,
853 		 * which must be released in time. So, scan ascendant nodes
854 		 * and replace dummy references to this route with references
855 		 * to still alive ones.
856 		 */
857 		while (fn) {
858 			struct rt6_info *leaf = rcu_dereference_protected(fn->leaf,
859 					    lockdep_is_held(&table->tb6_lock));
860 			struct rt6_info *new_leaf;
861 			if (!(fn->fn_flags & RTN_RTINFO) && leaf == rt) {
862 				new_leaf = fib6_find_prefix(net, table, fn);
863 				atomic_inc(&new_leaf->rt6i_ref);
864 				rcu_assign_pointer(fn->leaf, new_leaf);
865 				rt6_release(rt);
866 			}
867 			fn = rcu_dereference_protected(fn->parent,
868 				    lockdep_is_held(&table->tb6_lock));
869 		}
870 	}
871 }
872 
873 /*
874  *	Insert routing information in a node.
875  */
876 
877 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
878 			    struct nl_info *info, struct mx6_config *mxc,
879 			    struct netlink_ext_ack *extack)
880 {
881 	struct rt6_info *leaf = rcu_dereference_protected(fn->leaf,
882 				    lockdep_is_held(&rt->rt6i_table->tb6_lock));
883 	struct rt6_info *iter = NULL;
884 	struct rt6_info __rcu **ins;
885 	struct rt6_info __rcu **fallback_ins = NULL;
886 	int replace = (info->nlh &&
887 		       (info->nlh->nlmsg_flags & NLM_F_REPLACE));
888 	int add = (!info->nlh ||
889 		   (info->nlh->nlmsg_flags & NLM_F_CREATE));
890 	int found = 0;
891 	bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
892 	u16 nlflags = NLM_F_EXCL;
893 	int err;
894 
895 	if (info->nlh && (info->nlh->nlmsg_flags & NLM_F_APPEND))
896 		nlflags |= NLM_F_APPEND;
897 
898 	ins = &fn->leaf;
899 
900 	for (iter = leaf; iter;
901 	     iter = rcu_dereference_protected(iter->dst.rt6_next,
902 				lockdep_is_held(&rt->rt6i_table->tb6_lock))) {
903 		/*
904 		 *	Search for duplicates
905 		 */
906 
907 		if (iter->rt6i_metric == rt->rt6i_metric) {
908 			/*
909 			 *	Same priority level
910 			 */
911 			if (info->nlh &&
912 			    (info->nlh->nlmsg_flags & NLM_F_EXCL))
913 				return -EEXIST;
914 
915 			nlflags &= ~NLM_F_EXCL;
916 			if (replace) {
917 				if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) {
918 					found++;
919 					break;
920 				}
921 				if (rt_can_ecmp)
922 					fallback_ins = fallback_ins ?: ins;
923 				goto next_iter;
924 			}
925 
926 			if (rt6_duplicate_nexthop(iter, rt)) {
927 				if (rt->rt6i_nsiblings)
928 					rt->rt6i_nsiblings = 0;
929 				if (!(iter->rt6i_flags & RTF_EXPIRES))
930 					return -EEXIST;
931 				if (!(rt->rt6i_flags & RTF_EXPIRES))
932 					rt6_clean_expires(iter);
933 				else
934 					rt6_set_expires(iter, rt->dst.expires);
935 				iter->rt6i_pmtu = rt->rt6i_pmtu;
936 				return -EEXIST;
937 			}
938 			/* If we have the same destination and the same metric,
939 			 * but not the same gateway, then the route we try to
940 			 * add is sibling to this route, increment our counter
941 			 * of siblings, and later we will add our route to the
942 			 * list.
943 			 * Only static routes (which don't have flag
944 			 * RTF_EXPIRES) are used for ECMPv6.
945 			 *
946 			 * To avoid long list, we only had siblings if the
947 			 * route have a gateway.
948 			 */
949 			if (rt_can_ecmp &&
950 			    rt6_qualify_for_ecmp(iter))
951 				rt->rt6i_nsiblings++;
952 		}
953 
954 		if (iter->rt6i_metric > rt->rt6i_metric)
955 			break;
956 
957 next_iter:
958 		ins = &iter->dst.rt6_next;
959 	}
960 
961 	if (fallback_ins && !found) {
962 		/* No ECMP-able route found, replace first non-ECMP one */
963 		ins = fallback_ins;
964 		iter = rcu_dereference_protected(*ins,
965 				    lockdep_is_held(&rt->rt6i_table->tb6_lock));
966 		found++;
967 	}
968 
969 	/* Reset round-robin state, if necessary */
970 	if (ins == &fn->leaf)
971 		fn->rr_ptr = NULL;
972 
973 	/* Link this route to others same route. */
974 	if (rt->rt6i_nsiblings) {
975 		unsigned int rt6i_nsiblings;
976 		struct rt6_info *sibling, *temp_sibling;
977 
978 		/* Find the first route that have the same metric */
979 		sibling = leaf;
980 		while (sibling) {
981 			if (sibling->rt6i_metric == rt->rt6i_metric &&
982 			    rt6_qualify_for_ecmp(sibling)) {
983 				list_add_tail(&rt->rt6i_siblings,
984 					      &sibling->rt6i_siblings);
985 				break;
986 			}
987 			sibling = rcu_dereference_protected(sibling->dst.rt6_next,
988 				    lockdep_is_held(&rt->rt6i_table->tb6_lock));
989 		}
990 		/* For each sibling in the list, increment the counter of
991 		 * siblings. BUG() if counters does not match, list of siblings
992 		 * is broken!
993 		 */
994 		rt6i_nsiblings = 0;
995 		list_for_each_entry_safe(sibling, temp_sibling,
996 					 &rt->rt6i_siblings, rt6i_siblings) {
997 			sibling->rt6i_nsiblings++;
998 			BUG_ON(sibling->rt6i_nsiblings != rt->rt6i_nsiblings);
999 			rt6i_nsiblings++;
1000 		}
1001 		BUG_ON(rt6i_nsiblings != rt->rt6i_nsiblings);
1002 	}
1003 
1004 	/*
1005 	 *	insert node
1006 	 */
1007 	if (!replace) {
1008 		if (!add)
1009 			pr_warn("NLM_F_CREATE should be set when creating new route\n");
1010 
1011 add:
1012 		nlflags |= NLM_F_CREATE;
1013 		err = fib6_commit_metrics(&rt->dst, mxc);
1014 		if (err)
1015 			return err;
1016 
1017 		rcu_assign_pointer(rt->dst.rt6_next, iter);
1018 		atomic_inc(&rt->rt6i_ref);
1019 		rcu_assign_pointer(rt->rt6i_node, fn);
1020 		rcu_assign_pointer(*ins, rt);
1021 		call_fib6_entry_notifiers(info->nl_net, FIB_EVENT_ENTRY_ADD,
1022 					  rt, extack);
1023 		if (!info->skip_notify)
1024 			inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags);
1025 		info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
1026 
1027 		if (!(fn->fn_flags & RTN_RTINFO)) {
1028 			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1029 			fn->fn_flags |= RTN_RTINFO;
1030 		}
1031 
1032 	} else {
1033 		int nsiblings;
1034 
1035 		if (!found) {
1036 			if (add)
1037 				goto add;
1038 			pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
1039 			return -ENOENT;
1040 		}
1041 
1042 		err = fib6_commit_metrics(&rt->dst, mxc);
1043 		if (err)
1044 			return err;
1045 
1046 		atomic_inc(&rt->rt6i_ref);
1047 		rcu_assign_pointer(rt->rt6i_node, fn);
1048 		rt->dst.rt6_next = iter->dst.rt6_next;
1049 		rcu_assign_pointer(*ins, rt);
1050 		call_fib6_entry_notifiers(info->nl_net, FIB_EVENT_ENTRY_REPLACE,
1051 					  rt, extack);
1052 		if (!info->skip_notify)
1053 			inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE);
1054 		if (!(fn->fn_flags & RTN_RTINFO)) {
1055 			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1056 			fn->fn_flags |= RTN_RTINFO;
1057 		}
1058 		nsiblings = iter->rt6i_nsiblings;
1059 		iter->rt6i_node = NULL;
1060 		fib6_purge_rt(iter, fn, info->nl_net);
1061 		if (rcu_access_pointer(fn->rr_ptr) == iter)
1062 			fn->rr_ptr = NULL;
1063 		rt6_release(iter);
1064 
1065 		if (nsiblings) {
1066 			/* Replacing an ECMP route, remove all siblings */
1067 			ins = &rt->dst.rt6_next;
1068 			iter = rcu_dereference_protected(*ins,
1069 				    lockdep_is_held(&rt->rt6i_table->tb6_lock));
1070 			while (iter) {
1071 				if (iter->rt6i_metric > rt->rt6i_metric)
1072 					break;
1073 				if (rt6_qualify_for_ecmp(iter)) {
1074 					*ins = iter->dst.rt6_next;
1075 					iter->rt6i_node = NULL;
1076 					fib6_purge_rt(iter, fn, info->nl_net);
1077 					if (rcu_access_pointer(fn->rr_ptr) == iter)
1078 						fn->rr_ptr = NULL;
1079 					rt6_release(iter);
1080 					nsiblings--;
1081 					info->nl_net->ipv6.rt6_stats->fib_rt_entries--;
1082 				} else {
1083 					ins = &iter->dst.rt6_next;
1084 				}
1085 				iter = rcu_dereference_protected(*ins,
1086 					lockdep_is_held(&rt->rt6i_table->tb6_lock));
1087 			}
1088 			WARN_ON(nsiblings != 0);
1089 		}
1090 	}
1091 
1092 	return 0;
1093 }
1094 
1095 static void fib6_start_gc(struct net *net, struct rt6_info *rt)
1096 {
1097 	if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
1098 	    (rt->rt6i_flags & (RTF_EXPIRES | RTF_CACHE)))
1099 		mod_timer(&net->ipv6.ip6_fib_timer,
1100 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1101 }
1102 
1103 void fib6_force_start_gc(struct net *net)
1104 {
1105 	if (!timer_pending(&net->ipv6.ip6_fib_timer))
1106 		mod_timer(&net->ipv6.ip6_fib_timer,
1107 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1108 }
1109 
1110 static void fib6_update_sernum_upto_root(struct rt6_info *rt,
1111 					 int sernum)
1112 {
1113 	struct fib6_node *fn = rcu_dereference_protected(rt->rt6i_node,
1114 				lockdep_is_held(&rt->rt6i_table->tb6_lock));
1115 
1116 	/* paired with smp_rmb() in rt6_get_cookie_safe() */
1117 	smp_wmb();
1118 	while (fn) {
1119 		fn->fn_sernum = sernum;
1120 		fn = rcu_dereference_protected(fn->parent,
1121 				lockdep_is_held(&rt->rt6i_table->tb6_lock));
1122 	}
1123 }
1124 
1125 /*
1126  *	Add routing information to the routing tree.
1127  *	<destination addr>/<source addr>
1128  *	with source addr info in sub-trees
1129  *	Need to own table->tb6_lock
1130  */
1131 
1132 int fib6_add(struct fib6_node *root, struct rt6_info *rt,
1133 	     struct nl_info *info, struct mx6_config *mxc,
1134 	     struct netlink_ext_ack *extack)
1135 {
1136 	struct fib6_table *table = rt->rt6i_table;
1137 	struct fib6_node *fn, *pn = NULL;
1138 	int err = -ENOMEM;
1139 	int allow_create = 1;
1140 	int replace_required = 0;
1141 	int sernum = fib6_new_sernum(info->nl_net);
1142 
1143 	if (WARN_ON_ONCE(!atomic_read(&rt->dst.__refcnt)))
1144 		return -EINVAL;
1145 	if (WARN_ON_ONCE(rt->rt6i_flags & RTF_CACHE))
1146 		return -EINVAL;
1147 
1148 	if (info->nlh) {
1149 		if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
1150 			allow_create = 0;
1151 		if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
1152 			replace_required = 1;
1153 	}
1154 	if (!allow_create && !replace_required)
1155 		pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
1156 
1157 	fn = fib6_add_1(info->nl_net, table, root,
1158 			&rt->rt6i_dst.addr, rt->rt6i_dst.plen,
1159 			offsetof(struct rt6_info, rt6i_dst), allow_create,
1160 			replace_required, extack);
1161 	if (IS_ERR(fn)) {
1162 		err = PTR_ERR(fn);
1163 		fn = NULL;
1164 		goto out;
1165 	}
1166 
1167 	pn = fn;
1168 
1169 #ifdef CONFIG_IPV6_SUBTREES
1170 	if (rt->rt6i_src.plen) {
1171 		struct fib6_node *sn;
1172 
1173 		if (!rcu_access_pointer(fn->subtree)) {
1174 			struct fib6_node *sfn;
1175 
1176 			/*
1177 			 * Create subtree.
1178 			 *
1179 			 *		fn[main tree]
1180 			 *		|
1181 			 *		sfn[subtree root]
1182 			 *		   \
1183 			 *		    sn[new leaf node]
1184 			 */
1185 
1186 			/* Create subtree root node */
1187 			sfn = node_alloc(info->nl_net);
1188 			if (!sfn)
1189 				goto failure;
1190 
1191 			atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
1192 			rcu_assign_pointer(sfn->leaf,
1193 					   info->nl_net->ipv6.ip6_null_entry);
1194 			sfn->fn_flags = RTN_ROOT;
1195 
1196 			/* Now add the first leaf node to new subtree */
1197 
1198 			sn = fib6_add_1(info->nl_net, table, sfn,
1199 					&rt->rt6i_src.addr, rt->rt6i_src.plen,
1200 					offsetof(struct rt6_info, rt6i_src),
1201 					allow_create, replace_required, extack);
1202 
1203 			if (IS_ERR(sn)) {
1204 				/* If it is failed, discard just allocated
1205 				   root, and then (in failure) stale node
1206 				   in main tree.
1207 				 */
1208 				node_free_immediate(info->nl_net, sfn);
1209 				err = PTR_ERR(sn);
1210 				goto failure;
1211 			}
1212 
1213 			/* Now link new subtree to main tree */
1214 			rcu_assign_pointer(sfn->parent, fn);
1215 			rcu_assign_pointer(fn->subtree, sfn);
1216 		} else {
1217 			sn = fib6_add_1(info->nl_net, table, FIB6_SUBTREE(fn),
1218 					&rt->rt6i_src.addr, rt->rt6i_src.plen,
1219 					offsetof(struct rt6_info, rt6i_src),
1220 					allow_create, replace_required, extack);
1221 
1222 			if (IS_ERR(sn)) {
1223 				err = PTR_ERR(sn);
1224 				goto failure;
1225 			}
1226 		}
1227 
1228 		if (!rcu_access_pointer(fn->leaf)) {
1229 			if (fn->fn_flags & RTN_TL_ROOT) {
1230 				/* put back null_entry for root node */
1231 				rcu_assign_pointer(fn->leaf,
1232 					    info->nl_net->ipv6.ip6_null_entry);
1233 			} else {
1234 				atomic_inc(&rt->rt6i_ref);
1235 				rcu_assign_pointer(fn->leaf, rt);
1236 			}
1237 		}
1238 		fn = sn;
1239 	}
1240 #endif
1241 
1242 	err = fib6_add_rt2node(fn, rt, info, mxc, extack);
1243 	if (!err) {
1244 		fib6_update_sernum_upto_root(rt, sernum);
1245 		fib6_start_gc(info->nl_net, rt);
1246 	}
1247 
1248 out:
1249 	if (err) {
1250 #ifdef CONFIG_IPV6_SUBTREES
1251 		/*
1252 		 * If fib6_add_1 has cleared the old leaf pointer in the
1253 		 * super-tree leaf node we have to find a new one for it.
1254 		 */
1255 		if (pn != fn) {
1256 			struct rt6_info *pn_leaf =
1257 				rcu_dereference_protected(pn->leaf,
1258 				    lockdep_is_held(&table->tb6_lock));
1259 			if (pn_leaf == rt) {
1260 				pn_leaf = NULL;
1261 				RCU_INIT_POINTER(pn->leaf, NULL);
1262 				atomic_dec(&rt->rt6i_ref);
1263 			}
1264 			if (!pn_leaf && !(pn->fn_flags & RTN_RTINFO)) {
1265 				pn_leaf = fib6_find_prefix(info->nl_net, table,
1266 							   pn);
1267 #if RT6_DEBUG >= 2
1268 				if (!pn_leaf) {
1269 					WARN_ON(!pn_leaf);
1270 					pn_leaf =
1271 					    info->nl_net->ipv6.ip6_null_entry;
1272 				}
1273 #endif
1274 				atomic_inc(&pn_leaf->rt6i_ref);
1275 				rcu_assign_pointer(pn->leaf, pn_leaf);
1276 			}
1277 		}
1278 #endif
1279 		goto failure;
1280 	}
1281 	return err;
1282 
1283 failure:
1284 	/* fn->leaf could be NULL and fib6_repair_tree() needs to be called if:
1285 	 * 1. fn is an intermediate node and we failed to add the new
1286 	 * route to it in both subtree creation failure and fib6_add_rt2node()
1287 	 * failure case.
1288 	 * 2. fn is the root node in the table and we fail to add the first
1289 	 * default route to it.
1290 	 */
1291 	if (fn &&
1292 	    (!(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)) ||
1293 	     (fn->fn_flags & RTN_TL_ROOT &&
1294 	      !rcu_access_pointer(fn->leaf))))
1295 		fib6_repair_tree(info->nl_net, table, fn);
1296 	/* Always release dst as dst->__refcnt is guaranteed
1297 	 * to be taken before entering this function
1298 	 */
1299 	dst_release_immediate(&rt->dst);
1300 	return err;
1301 }
1302 
1303 /*
1304  *	Routing tree lookup
1305  *
1306  */
1307 
1308 struct lookup_args {
1309 	int			offset;		/* key offset on rt6_info	*/
1310 	const struct in6_addr	*addr;		/* search key			*/
1311 };
1312 
1313 static struct fib6_node *fib6_lookup_1(struct fib6_node *root,
1314 				       struct lookup_args *args)
1315 {
1316 	struct fib6_node *fn;
1317 	__be32 dir;
1318 
1319 	if (unlikely(args->offset == 0))
1320 		return NULL;
1321 
1322 	/*
1323 	 *	Descend on a tree
1324 	 */
1325 
1326 	fn = root;
1327 
1328 	for (;;) {
1329 		struct fib6_node *next;
1330 
1331 		dir = addr_bit_set(args->addr, fn->fn_bit);
1332 
1333 		next = dir ? rcu_dereference(fn->right) :
1334 			     rcu_dereference(fn->left);
1335 
1336 		if (next) {
1337 			fn = next;
1338 			continue;
1339 		}
1340 		break;
1341 	}
1342 
1343 	while (fn) {
1344 		struct fib6_node *subtree = FIB6_SUBTREE(fn);
1345 
1346 		if (subtree || fn->fn_flags & RTN_RTINFO) {
1347 			struct rt6_info *leaf = rcu_dereference(fn->leaf);
1348 			struct rt6key *key;
1349 
1350 			if (!leaf)
1351 				goto backtrack;
1352 
1353 			key = (struct rt6key *) ((u8 *)leaf + args->offset);
1354 
1355 			if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1356 #ifdef CONFIG_IPV6_SUBTREES
1357 				if (subtree) {
1358 					struct fib6_node *sfn;
1359 					sfn = fib6_lookup_1(subtree, args + 1);
1360 					if (!sfn)
1361 						goto backtrack;
1362 					fn = sfn;
1363 				}
1364 #endif
1365 				if (fn->fn_flags & RTN_RTINFO)
1366 					return fn;
1367 			}
1368 		}
1369 backtrack:
1370 		if (fn->fn_flags & RTN_ROOT)
1371 			break;
1372 
1373 		fn = rcu_dereference(fn->parent);
1374 	}
1375 
1376 	return NULL;
1377 }
1378 
1379 /* called with rcu_read_lock() held
1380  */
1381 struct fib6_node *fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr,
1382 			      const struct in6_addr *saddr)
1383 {
1384 	struct fib6_node *fn;
1385 	struct lookup_args args[] = {
1386 		{
1387 			.offset = offsetof(struct rt6_info, rt6i_dst),
1388 			.addr = daddr,
1389 		},
1390 #ifdef CONFIG_IPV6_SUBTREES
1391 		{
1392 			.offset = offsetof(struct rt6_info, rt6i_src),
1393 			.addr = saddr,
1394 		},
1395 #endif
1396 		{
1397 			.offset = 0,	/* sentinel */
1398 		}
1399 	};
1400 
1401 	fn = fib6_lookup_1(root, daddr ? args : args + 1);
1402 	if (!fn || fn->fn_flags & RTN_TL_ROOT)
1403 		fn = root;
1404 
1405 	return fn;
1406 }
1407 
1408 /*
1409  *	Get node with specified destination prefix (and source prefix,
1410  *	if subtrees are used)
1411  *	exact_match == true means we try to find fn with exact match of
1412  *	the passed in prefix addr
1413  *	exact_match == false means we try to find fn with longest prefix
1414  *	match of the passed in prefix addr. This is useful for finding fn
1415  *	for cached route as it will be stored in the exception table under
1416  *	the node with longest prefix length.
1417  */
1418 
1419 
1420 static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1421 				       const struct in6_addr *addr,
1422 				       int plen, int offset,
1423 				       bool exact_match)
1424 {
1425 	struct fib6_node *fn, *prev = NULL;
1426 
1427 	for (fn = root; fn ; ) {
1428 		struct rt6_info *leaf = rcu_dereference(fn->leaf);
1429 		struct rt6key *key;
1430 
1431 		/* This node is being deleted */
1432 		if (!leaf) {
1433 			if (plen <= fn->fn_bit)
1434 				goto out;
1435 			else
1436 				goto next;
1437 		}
1438 
1439 		key = (struct rt6key *)((u8 *)leaf + offset);
1440 
1441 		/*
1442 		 *	Prefix match
1443 		 */
1444 		if (plen < fn->fn_bit ||
1445 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1446 			goto out;
1447 
1448 		if (plen == fn->fn_bit)
1449 			return fn;
1450 
1451 		prev = fn;
1452 
1453 next:
1454 		/*
1455 		 *	We have more bits to go
1456 		 */
1457 		if (addr_bit_set(addr, fn->fn_bit))
1458 			fn = rcu_dereference(fn->right);
1459 		else
1460 			fn = rcu_dereference(fn->left);
1461 	}
1462 out:
1463 	if (exact_match)
1464 		return NULL;
1465 	else
1466 		return prev;
1467 }
1468 
1469 struct fib6_node *fib6_locate(struct fib6_node *root,
1470 			      const struct in6_addr *daddr, int dst_len,
1471 			      const struct in6_addr *saddr, int src_len,
1472 			      bool exact_match)
1473 {
1474 	struct fib6_node *fn;
1475 
1476 	fn = fib6_locate_1(root, daddr, dst_len,
1477 			   offsetof(struct rt6_info, rt6i_dst),
1478 			   exact_match);
1479 
1480 #ifdef CONFIG_IPV6_SUBTREES
1481 	if (src_len) {
1482 		WARN_ON(saddr == NULL);
1483 		if (fn) {
1484 			struct fib6_node *subtree = FIB6_SUBTREE(fn);
1485 
1486 			if (subtree) {
1487 				fn = fib6_locate_1(subtree, saddr, src_len,
1488 					   offsetof(struct rt6_info, rt6i_src),
1489 					   exact_match);
1490 			}
1491 		}
1492 	}
1493 #endif
1494 
1495 	if (fn && fn->fn_flags & RTN_RTINFO)
1496 		return fn;
1497 
1498 	return NULL;
1499 }
1500 
1501 
1502 /*
1503  *	Deletion
1504  *
1505  */
1506 
1507 static struct rt6_info *fib6_find_prefix(struct net *net,
1508 					 struct fib6_table *table,
1509 					 struct fib6_node *fn)
1510 {
1511 	struct fib6_node *child_left, *child_right;
1512 
1513 	if (fn->fn_flags & RTN_ROOT)
1514 		return net->ipv6.ip6_null_entry;
1515 
1516 	while (fn) {
1517 		child_left = rcu_dereference_protected(fn->left,
1518 				    lockdep_is_held(&table->tb6_lock));
1519 		child_right = rcu_dereference_protected(fn->right,
1520 				    lockdep_is_held(&table->tb6_lock));
1521 		if (child_left)
1522 			return rcu_dereference_protected(child_left->leaf,
1523 					lockdep_is_held(&table->tb6_lock));
1524 		if (child_right)
1525 			return rcu_dereference_protected(child_right->leaf,
1526 					lockdep_is_held(&table->tb6_lock));
1527 
1528 		fn = FIB6_SUBTREE(fn);
1529 	}
1530 	return NULL;
1531 }
1532 
1533 /*
1534  *	Called to trim the tree of intermediate nodes when possible. "fn"
1535  *	is the node we want to try and remove.
1536  *	Need to own table->tb6_lock
1537  */
1538 
1539 static struct fib6_node *fib6_repair_tree(struct net *net,
1540 					  struct fib6_table *table,
1541 					  struct fib6_node *fn)
1542 {
1543 	int children;
1544 	int nstate;
1545 	struct fib6_node *child;
1546 	struct fib6_walker *w;
1547 	int iter = 0;
1548 
1549 	/* Set fn->leaf to null_entry for root node. */
1550 	if (fn->fn_flags & RTN_TL_ROOT) {
1551 		rcu_assign_pointer(fn->leaf, net->ipv6.ip6_null_entry);
1552 		return fn;
1553 	}
1554 
1555 	for (;;) {
1556 		struct fib6_node *fn_r = rcu_dereference_protected(fn->right,
1557 					    lockdep_is_held(&table->tb6_lock));
1558 		struct fib6_node *fn_l = rcu_dereference_protected(fn->left,
1559 					    lockdep_is_held(&table->tb6_lock));
1560 		struct fib6_node *pn = rcu_dereference_protected(fn->parent,
1561 					    lockdep_is_held(&table->tb6_lock));
1562 		struct fib6_node *pn_r = rcu_dereference_protected(pn->right,
1563 					    lockdep_is_held(&table->tb6_lock));
1564 		struct fib6_node *pn_l = rcu_dereference_protected(pn->left,
1565 					    lockdep_is_held(&table->tb6_lock));
1566 		struct rt6_info *fn_leaf = rcu_dereference_protected(fn->leaf,
1567 					    lockdep_is_held(&table->tb6_lock));
1568 		struct rt6_info *pn_leaf = rcu_dereference_protected(pn->leaf,
1569 					    lockdep_is_held(&table->tb6_lock));
1570 		struct rt6_info *new_fn_leaf;
1571 
1572 		RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1573 		iter++;
1574 
1575 		WARN_ON(fn->fn_flags & RTN_RTINFO);
1576 		WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1577 		WARN_ON(fn_leaf);
1578 
1579 		children = 0;
1580 		child = NULL;
1581 		if (fn_r)
1582 			child = fn_r, children |= 1;
1583 		if (fn_l)
1584 			child = fn_l, children |= 2;
1585 
1586 		if (children == 3 || FIB6_SUBTREE(fn)
1587 #ifdef CONFIG_IPV6_SUBTREES
1588 		    /* Subtree root (i.e. fn) may have one child */
1589 		    || (children && fn->fn_flags & RTN_ROOT)
1590 #endif
1591 		    ) {
1592 			new_fn_leaf = fib6_find_prefix(net, table, fn);
1593 #if RT6_DEBUG >= 2
1594 			if (!new_fn_leaf) {
1595 				WARN_ON(!new_fn_leaf);
1596 				new_fn_leaf = net->ipv6.ip6_null_entry;
1597 			}
1598 #endif
1599 			atomic_inc(&new_fn_leaf->rt6i_ref);
1600 			rcu_assign_pointer(fn->leaf, new_fn_leaf);
1601 			return pn;
1602 		}
1603 
1604 #ifdef CONFIG_IPV6_SUBTREES
1605 		if (FIB6_SUBTREE(pn) == fn) {
1606 			WARN_ON(!(fn->fn_flags & RTN_ROOT));
1607 			RCU_INIT_POINTER(pn->subtree, NULL);
1608 			nstate = FWS_L;
1609 		} else {
1610 			WARN_ON(fn->fn_flags & RTN_ROOT);
1611 #endif
1612 			if (pn_r == fn)
1613 				rcu_assign_pointer(pn->right, child);
1614 			else if (pn_l == fn)
1615 				rcu_assign_pointer(pn->left, child);
1616 #if RT6_DEBUG >= 2
1617 			else
1618 				WARN_ON(1);
1619 #endif
1620 			if (child)
1621 				rcu_assign_pointer(child->parent, pn);
1622 			nstate = FWS_R;
1623 #ifdef CONFIG_IPV6_SUBTREES
1624 		}
1625 #endif
1626 
1627 		read_lock(&net->ipv6.fib6_walker_lock);
1628 		FOR_WALKERS(net, w) {
1629 			if (!child) {
1630 				if (w->node == fn) {
1631 					RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1632 					w->node = pn;
1633 					w->state = nstate;
1634 				}
1635 			} else {
1636 				if (w->node == fn) {
1637 					w->node = child;
1638 					if (children&2) {
1639 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1640 						w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1641 					} else {
1642 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1643 						w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1644 					}
1645 				}
1646 			}
1647 		}
1648 		read_unlock(&net->ipv6.fib6_walker_lock);
1649 
1650 		node_free(net, fn);
1651 		if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1652 			return pn;
1653 
1654 		RCU_INIT_POINTER(pn->leaf, NULL);
1655 		rt6_release(pn_leaf);
1656 		fn = pn;
1657 	}
1658 }
1659 
1660 static void fib6_del_route(struct fib6_table *table, struct fib6_node *fn,
1661 			   struct rt6_info __rcu **rtp, struct nl_info *info)
1662 {
1663 	struct fib6_walker *w;
1664 	struct rt6_info *rt = rcu_dereference_protected(*rtp,
1665 				    lockdep_is_held(&table->tb6_lock));
1666 	struct net *net = info->nl_net;
1667 
1668 	RT6_TRACE("fib6_del_route\n");
1669 
1670 	WARN_ON_ONCE(rt->rt6i_flags & RTF_CACHE);
1671 
1672 	/* Unlink it */
1673 	*rtp = rt->dst.rt6_next;
1674 	rt->rt6i_node = NULL;
1675 	net->ipv6.rt6_stats->fib_rt_entries--;
1676 	net->ipv6.rt6_stats->fib_discarded_routes++;
1677 
1678 	/* Flush all cached dst in exception table */
1679 	rt6_flush_exceptions(rt);
1680 
1681 	/* Reset round-robin state, if necessary */
1682 	if (rcu_access_pointer(fn->rr_ptr) == rt)
1683 		fn->rr_ptr = NULL;
1684 
1685 	/* Remove this entry from other siblings */
1686 	if (rt->rt6i_nsiblings) {
1687 		struct rt6_info *sibling, *next_sibling;
1688 
1689 		list_for_each_entry_safe(sibling, next_sibling,
1690 					 &rt->rt6i_siblings, rt6i_siblings)
1691 			sibling->rt6i_nsiblings--;
1692 		rt->rt6i_nsiblings = 0;
1693 		list_del_init(&rt->rt6i_siblings);
1694 	}
1695 
1696 	/* Adjust walkers */
1697 	read_lock(&net->ipv6.fib6_walker_lock);
1698 	FOR_WALKERS(net, w) {
1699 		if (w->state == FWS_C && w->leaf == rt) {
1700 			RT6_TRACE("walker %p adjusted by delroute\n", w);
1701 			w->leaf = rcu_dereference_protected(rt->dst.rt6_next,
1702 					    lockdep_is_held(&table->tb6_lock));
1703 			if (!w->leaf)
1704 				w->state = FWS_U;
1705 		}
1706 	}
1707 	read_unlock(&net->ipv6.fib6_walker_lock);
1708 
1709 	/* If it was last route, call fib6_repair_tree() to:
1710 	 * 1. For root node, put back null_entry as how the table was created.
1711 	 * 2. For other nodes, expunge its radix tree node.
1712 	 */
1713 	if (!rcu_access_pointer(fn->leaf)) {
1714 		if (!(fn->fn_flags & RTN_TL_ROOT)) {
1715 			fn->fn_flags &= ~RTN_RTINFO;
1716 			net->ipv6.rt6_stats->fib_route_nodes--;
1717 		}
1718 		fn = fib6_repair_tree(net, table, fn);
1719 	}
1720 
1721 	fib6_purge_rt(rt, fn, net);
1722 
1723 	call_fib6_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, rt, NULL);
1724 	if (!info->skip_notify)
1725 		inet6_rt_notify(RTM_DELROUTE, rt, info, 0);
1726 	rt6_release(rt);
1727 }
1728 
1729 /* Need to own table->tb6_lock */
1730 int fib6_del(struct rt6_info *rt, struct nl_info *info)
1731 {
1732 	struct fib6_node *fn = rcu_dereference_protected(rt->rt6i_node,
1733 				    lockdep_is_held(&rt->rt6i_table->tb6_lock));
1734 	struct fib6_table *table = rt->rt6i_table;
1735 	struct net *net = info->nl_net;
1736 	struct rt6_info __rcu **rtp;
1737 	struct rt6_info __rcu **rtp_next;
1738 
1739 #if RT6_DEBUG >= 2
1740 	if (rt->dst.obsolete > 0) {
1741 		WARN_ON(fn);
1742 		return -ENOENT;
1743 	}
1744 #endif
1745 	if (!fn || rt == net->ipv6.ip6_null_entry)
1746 		return -ENOENT;
1747 
1748 	WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1749 
1750 	/* remove cached dst from exception table */
1751 	if (rt->rt6i_flags & RTF_CACHE)
1752 		return rt6_remove_exception_rt(rt);
1753 
1754 	/*
1755 	 *	Walk the leaf entries looking for ourself
1756 	 */
1757 
1758 	for (rtp = &fn->leaf; *rtp; rtp = rtp_next) {
1759 		struct rt6_info *cur = rcu_dereference_protected(*rtp,
1760 					lockdep_is_held(&table->tb6_lock));
1761 		if (rt == cur) {
1762 			fib6_del_route(table, fn, rtp, info);
1763 			return 0;
1764 		}
1765 		rtp_next = &cur->dst.rt6_next;
1766 	}
1767 	return -ENOENT;
1768 }
1769 
1770 /*
1771  *	Tree traversal function.
1772  *
1773  *	Certainly, it is not interrupt safe.
1774  *	However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1775  *	It means, that we can modify tree during walking
1776  *	and use this function for garbage collection, clone pruning,
1777  *	cleaning tree when a device goes down etc. etc.
1778  *
1779  *	It guarantees that every node will be traversed,
1780  *	and that it will be traversed only once.
1781  *
1782  *	Callback function w->func may return:
1783  *	0 -> continue walking.
1784  *	positive value -> walking is suspended (used by tree dumps,
1785  *	and probably by gc, if it will be split to several slices)
1786  *	negative value -> terminate walking.
1787  *
1788  *	The function itself returns:
1789  *	0   -> walk is complete.
1790  *	>0  -> walk is incomplete (i.e. suspended)
1791  *	<0  -> walk is terminated by an error.
1792  *
1793  *	This function is called with tb6_lock held.
1794  */
1795 
1796 static int fib6_walk_continue(struct fib6_walker *w)
1797 {
1798 	struct fib6_node *fn, *pn, *left, *right;
1799 
1800 	/* w->root should always be table->tb6_root */
1801 	WARN_ON_ONCE(!(w->root->fn_flags & RTN_TL_ROOT));
1802 
1803 	for (;;) {
1804 		fn = w->node;
1805 		if (!fn)
1806 			return 0;
1807 
1808 		switch (w->state) {
1809 #ifdef CONFIG_IPV6_SUBTREES
1810 		case FWS_S:
1811 			if (FIB6_SUBTREE(fn)) {
1812 				w->node = FIB6_SUBTREE(fn);
1813 				continue;
1814 			}
1815 			w->state = FWS_L;
1816 #endif
1817 			/* fall through */
1818 		case FWS_L:
1819 			left = rcu_dereference_protected(fn->left, 1);
1820 			if (left) {
1821 				w->node = left;
1822 				w->state = FWS_INIT;
1823 				continue;
1824 			}
1825 			w->state = FWS_R;
1826 			/* fall through */
1827 		case FWS_R:
1828 			right = rcu_dereference_protected(fn->right, 1);
1829 			if (right) {
1830 				w->node = right;
1831 				w->state = FWS_INIT;
1832 				continue;
1833 			}
1834 			w->state = FWS_C;
1835 			w->leaf = rcu_dereference_protected(fn->leaf, 1);
1836 			/* fall through */
1837 		case FWS_C:
1838 			if (w->leaf && fn->fn_flags & RTN_RTINFO) {
1839 				int err;
1840 
1841 				if (w->skip) {
1842 					w->skip--;
1843 					goto skip;
1844 				}
1845 
1846 				err = w->func(w);
1847 				if (err)
1848 					return err;
1849 
1850 				w->count++;
1851 				continue;
1852 			}
1853 skip:
1854 			w->state = FWS_U;
1855 			/* fall through */
1856 		case FWS_U:
1857 			if (fn == w->root)
1858 				return 0;
1859 			pn = rcu_dereference_protected(fn->parent, 1);
1860 			left = rcu_dereference_protected(pn->left, 1);
1861 			right = rcu_dereference_protected(pn->right, 1);
1862 			w->node = pn;
1863 #ifdef CONFIG_IPV6_SUBTREES
1864 			if (FIB6_SUBTREE(pn) == fn) {
1865 				WARN_ON(!(fn->fn_flags & RTN_ROOT));
1866 				w->state = FWS_L;
1867 				continue;
1868 			}
1869 #endif
1870 			if (left == fn) {
1871 				w->state = FWS_R;
1872 				continue;
1873 			}
1874 			if (right == fn) {
1875 				w->state = FWS_C;
1876 				w->leaf = rcu_dereference_protected(w->node->leaf, 1);
1877 				continue;
1878 			}
1879 #if RT6_DEBUG >= 2
1880 			WARN_ON(1);
1881 #endif
1882 		}
1883 	}
1884 }
1885 
1886 static int fib6_walk(struct net *net, struct fib6_walker *w)
1887 {
1888 	int res;
1889 
1890 	w->state = FWS_INIT;
1891 	w->node = w->root;
1892 
1893 	fib6_walker_link(net, w);
1894 	res = fib6_walk_continue(w);
1895 	if (res <= 0)
1896 		fib6_walker_unlink(net, w);
1897 	return res;
1898 }
1899 
1900 static int fib6_clean_node(struct fib6_walker *w)
1901 {
1902 	int res;
1903 	struct rt6_info *rt;
1904 	struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w);
1905 	struct nl_info info = {
1906 		.nl_net = c->net,
1907 	};
1908 
1909 	if (c->sernum != FIB6_NO_SERNUM_CHANGE &&
1910 	    w->node->fn_sernum != c->sernum)
1911 		w->node->fn_sernum = c->sernum;
1912 
1913 	if (!c->func) {
1914 		WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE);
1915 		w->leaf = NULL;
1916 		return 0;
1917 	}
1918 
1919 	for_each_fib6_walker_rt(w) {
1920 		res = c->func(rt, c->arg);
1921 		if (res < 0) {
1922 			w->leaf = rt;
1923 			res = fib6_del(rt, &info);
1924 			if (res) {
1925 #if RT6_DEBUG >= 2
1926 				pr_debug("%s: del failed: rt=%p@%p err=%d\n",
1927 					 __func__, rt,
1928 					 rcu_access_pointer(rt->rt6i_node),
1929 					 res);
1930 #endif
1931 				continue;
1932 			}
1933 			return 0;
1934 		}
1935 		WARN_ON(res != 0);
1936 	}
1937 	w->leaf = rt;
1938 	return 0;
1939 }
1940 
1941 /*
1942  *	Convenient frontend to tree walker.
1943  *
1944  *	func is called on each route.
1945  *		It may return -1 -> delete this route.
1946  *		              0  -> continue walking
1947  */
1948 
1949 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1950 			    int (*func)(struct rt6_info *, void *arg),
1951 			    int sernum, void *arg)
1952 {
1953 	struct fib6_cleaner c;
1954 
1955 	c.w.root = root;
1956 	c.w.func = fib6_clean_node;
1957 	c.w.count = 0;
1958 	c.w.skip = 0;
1959 	c.func = func;
1960 	c.sernum = sernum;
1961 	c.arg = arg;
1962 	c.net = net;
1963 
1964 	fib6_walk(net, &c.w);
1965 }
1966 
1967 static void __fib6_clean_all(struct net *net,
1968 			     int (*func)(struct rt6_info *, void *),
1969 			     int sernum, void *arg)
1970 {
1971 	struct fib6_table *table;
1972 	struct hlist_head *head;
1973 	unsigned int h;
1974 
1975 	rcu_read_lock();
1976 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1977 		head = &net->ipv6.fib_table_hash[h];
1978 		hlist_for_each_entry_rcu(table, head, tb6_hlist) {
1979 			spin_lock_bh(&table->tb6_lock);
1980 			fib6_clean_tree(net, &table->tb6_root,
1981 					func, sernum, arg);
1982 			spin_unlock_bh(&table->tb6_lock);
1983 		}
1984 	}
1985 	rcu_read_unlock();
1986 }
1987 
1988 void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *),
1989 		    void *arg)
1990 {
1991 	__fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg);
1992 }
1993 
1994 static void fib6_flush_trees(struct net *net)
1995 {
1996 	int new_sernum = fib6_new_sernum(net);
1997 
1998 	__fib6_clean_all(net, NULL, new_sernum, NULL);
1999 }
2000 
2001 /*
2002  *	Garbage collection
2003  */
2004 
2005 static int fib6_age(struct rt6_info *rt, void *arg)
2006 {
2007 	struct fib6_gc_args *gc_args = arg;
2008 	unsigned long now = jiffies;
2009 
2010 	/*
2011 	 *	check addrconf expiration here.
2012 	 *	Routes are expired even if they are in use.
2013 	 */
2014 
2015 	if (rt->rt6i_flags & RTF_EXPIRES && rt->dst.expires) {
2016 		if (time_after(now, rt->dst.expires)) {
2017 			RT6_TRACE("expiring %p\n", rt);
2018 			return -1;
2019 		}
2020 		gc_args->more++;
2021 	}
2022 
2023 	/*	Also age clones in the exception table.
2024 	 *	Note, that clones are aged out
2025 	 *	only if they are not in use now.
2026 	 */
2027 	rt6_age_exceptions(rt, gc_args, now);
2028 
2029 	return 0;
2030 }
2031 
2032 void fib6_run_gc(unsigned long expires, struct net *net, bool force)
2033 {
2034 	struct fib6_gc_args gc_args;
2035 	unsigned long now;
2036 
2037 	if (force) {
2038 		spin_lock_bh(&net->ipv6.fib6_gc_lock);
2039 	} else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) {
2040 		mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
2041 		return;
2042 	}
2043 	gc_args.timeout = expires ? (int)expires :
2044 			  net->ipv6.sysctl.ip6_rt_gc_interval;
2045 	gc_args.more = 0;
2046 
2047 	fib6_clean_all(net, fib6_age, &gc_args);
2048 	now = jiffies;
2049 	net->ipv6.ip6_rt_last_gc = now;
2050 
2051 	if (gc_args.more)
2052 		mod_timer(&net->ipv6.ip6_fib_timer,
2053 			  round_jiffies(now
2054 					+ net->ipv6.sysctl.ip6_rt_gc_interval));
2055 	else
2056 		del_timer(&net->ipv6.ip6_fib_timer);
2057 	spin_unlock_bh(&net->ipv6.fib6_gc_lock);
2058 }
2059 
2060 static void fib6_gc_timer_cb(struct timer_list *t)
2061 {
2062 	struct net *arg = from_timer(arg, t, ipv6.ip6_fib_timer);
2063 
2064 	fib6_run_gc(0, arg, true);
2065 }
2066 
2067 static int __net_init fib6_net_init(struct net *net)
2068 {
2069 	size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
2070 	int err;
2071 
2072 	err = fib6_notifier_init(net);
2073 	if (err)
2074 		return err;
2075 
2076 	spin_lock_init(&net->ipv6.fib6_gc_lock);
2077 	rwlock_init(&net->ipv6.fib6_walker_lock);
2078 	INIT_LIST_HEAD(&net->ipv6.fib6_walkers);
2079 	timer_setup(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, 0);
2080 
2081 	net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
2082 	if (!net->ipv6.rt6_stats)
2083 		goto out_timer;
2084 
2085 	/* Avoid false sharing : Use at least a full cache line */
2086 	size = max_t(size_t, size, L1_CACHE_BYTES);
2087 
2088 	net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
2089 	if (!net->ipv6.fib_table_hash)
2090 		goto out_rt6_stats;
2091 
2092 	net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
2093 					  GFP_KERNEL);
2094 	if (!net->ipv6.fib6_main_tbl)
2095 		goto out_fib_table_hash;
2096 
2097 	net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
2098 	rcu_assign_pointer(net->ipv6.fib6_main_tbl->tb6_root.leaf,
2099 			   net->ipv6.ip6_null_entry);
2100 	net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
2101 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2102 	inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
2103 
2104 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2105 	net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
2106 					   GFP_KERNEL);
2107 	if (!net->ipv6.fib6_local_tbl)
2108 		goto out_fib6_main_tbl;
2109 	net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
2110 	rcu_assign_pointer(net->ipv6.fib6_local_tbl->tb6_root.leaf,
2111 			   net->ipv6.ip6_null_entry);
2112 	net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
2113 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2114 	inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
2115 #endif
2116 	fib6_tables_init(net);
2117 
2118 	return 0;
2119 
2120 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2121 out_fib6_main_tbl:
2122 	kfree(net->ipv6.fib6_main_tbl);
2123 #endif
2124 out_fib_table_hash:
2125 	kfree(net->ipv6.fib_table_hash);
2126 out_rt6_stats:
2127 	kfree(net->ipv6.rt6_stats);
2128 out_timer:
2129 	fib6_notifier_exit(net);
2130 	return -ENOMEM;
2131 }
2132 
2133 static void fib6_net_exit(struct net *net)
2134 {
2135 	unsigned int i;
2136 
2137 	rt6_ifdown(net, NULL);
2138 	del_timer_sync(&net->ipv6.ip6_fib_timer);
2139 
2140 	for (i = 0; i < FIB6_TABLE_HASHSZ; i++) {
2141 		struct hlist_head *head = &net->ipv6.fib_table_hash[i];
2142 		struct hlist_node *tmp;
2143 		struct fib6_table *tb;
2144 
2145 		hlist_for_each_entry_safe(tb, tmp, head, tb6_hlist) {
2146 			hlist_del(&tb->tb6_hlist);
2147 			fib6_free_table(tb);
2148 		}
2149 	}
2150 
2151 	kfree(net->ipv6.fib_table_hash);
2152 	kfree(net->ipv6.rt6_stats);
2153 	fib6_notifier_exit(net);
2154 }
2155 
2156 static struct pernet_operations fib6_net_ops = {
2157 	.init = fib6_net_init,
2158 	.exit = fib6_net_exit,
2159 };
2160 
2161 int __init fib6_init(void)
2162 {
2163 	int ret = -ENOMEM;
2164 
2165 	fib6_node_kmem = kmem_cache_create("fib6_nodes",
2166 					   sizeof(struct fib6_node),
2167 					   0, SLAB_HWCACHE_ALIGN,
2168 					   NULL);
2169 	if (!fib6_node_kmem)
2170 		goto out;
2171 
2172 	ret = register_pernet_subsys(&fib6_net_ops);
2173 	if (ret)
2174 		goto out_kmem_cache_create;
2175 
2176 	ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib,
2177 			      0);
2178 	if (ret)
2179 		goto out_unregister_subsys;
2180 
2181 	__fib6_flush_trees = fib6_flush_trees;
2182 out:
2183 	return ret;
2184 
2185 out_unregister_subsys:
2186 	unregister_pernet_subsys(&fib6_net_ops);
2187 out_kmem_cache_create:
2188 	kmem_cache_destroy(fib6_node_kmem);
2189 	goto out;
2190 }
2191 
2192 void fib6_gc_cleanup(void)
2193 {
2194 	unregister_pernet_subsys(&fib6_net_ops);
2195 	kmem_cache_destroy(fib6_node_kmem);
2196 }
2197 
2198 #ifdef CONFIG_PROC_FS
2199 
2200 struct ipv6_route_iter {
2201 	struct seq_net_private p;
2202 	struct fib6_walker w;
2203 	loff_t skip;
2204 	struct fib6_table *tbl;
2205 	int sernum;
2206 };
2207 
2208 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
2209 {
2210 	struct rt6_info *rt = v;
2211 	struct ipv6_route_iter *iter = seq->private;
2212 
2213 	seq_printf(seq, "%pi6 %02x ", &rt->rt6i_dst.addr, rt->rt6i_dst.plen);
2214 
2215 #ifdef CONFIG_IPV6_SUBTREES
2216 	seq_printf(seq, "%pi6 %02x ", &rt->rt6i_src.addr, rt->rt6i_src.plen);
2217 #else
2218 	seq_puts(seq, "00000000000000000000000000000000 00 ");
2219 #endif
2220 	if (rt->rt6i_flags & RTF_GATEWAY)
2221 		seq_printf(seq, "%pi6", &rt->rt6i_gateway);
2222 	else
2223 		seq_puts(seq, "00000000000000000000000000000000");
2224 
2225 	seq_printf(seq, " %08x %08x %08x %08x %8s\n",
2226 		   rt->rt6i_metric, atomic_read(&rt->dst.__refcnt),
2227 		   rt->dst.__use, rt->rt6i_flags,
2228 		   rt->dst.dev ? rt->dst.dev->name : "");
2229 	iter->w.leaf = NULL;
2230 	return 0;
2231 }
2232 
2233 static int ipv6_route_yield(struct fib6_walker *w)
2234 {
2235 	struct ipv6_route_iter *iter = w->args;
2236 
2237 	if (!iter->skip)
2238 		return 1;
2239 
2240 	do {
2241 		iter->w.leaf = rcu_dereference_protected(
2242 				iter->w.leaf->dst.rt6_next,
2243 				lockdep_is_held(&iter->tbl->tb6_lock));
2244 		iter->skip--;
2245 		if (!iter->skip && iter->w.leaf)
2246 			return 1;
2247 	} while (iter->w.leaf);
2248 
2249 	return 0;
2250 }
2251 
2252 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter,
2253 				      struct net *net)
2254 {
2255 	memset(&iter->w, 0, sizeof(iter->w));
2256 	iter->w.func = ipv6_route_yield;
2257 	iter->w.root = &iter->tbl->tb6_root;
2258 	iter->w.state = FWS_INIT;
2259 	iter->w.node = iter->w.root;
2260 	iter->w.args = iter;
2261 	iter->sernum = iter->w.root->fn_sernum;
2262 	INIT_LIST_HEAD(&iter->w.lh);
2263 	fib6_walker_link(net, &iter->w);
2264 }
2265 
2266 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
2267 						    struct net *net)
2268 {
2269 	unsigned int h;
2270 	struct hlist_node *node;
2271 
2272 	if (tbl) {
2273 		h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
2274 		node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist));
2275 	} else {
2276 		h = 0;
2277 		node = NULL;
2278 	}
2279 
2280 	while (!node && h < FIB6_TABLE_HASHSZ) {
2281 		node = rcu_dereference_bh(
2282 			hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
2283 	}
2284 	return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
2285 }
2286 
2287 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
2288 {
2289 	if (iter->sernum != iter->w.root->fn_sernum) {
2290 		iter->sernum = iter->w.root->fn_sernum;
2291 		iter->w.state = FWS_INIT;
2292 		iter->w.node = iter->w.root;
2293 		WARN_ON(iter->w.skip);
2294 		iter->w.skip = iter->w.count;
2295 	}
2296 }
2297 
2298 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2299 {
2300 	int r;
2301 	struct rt6_info *n;
2302 	struct net *net = seq_file_net(seq);
2303 	struct ipv6_route_iter *iter = seq->private;
2304 
2305 	if (!v)
2306 		goto iter_table;
2307 
2308 	n = rcu_dereference_bh(((struct rt6_info *)v)->dst.rt6_next);
2309 	if (n) {
2310 		++*pos;
2311 		return n;
2312 	}
2313 
2314 iter_table:
2315 	ipv6_route_check_sernum(iter);
2316 	spin_lock_bh(&iter->tbl->tb6_lock);
2317 	r = fib6_walk_continue(&iter->w);
2318 	spin_unlock_bh(&iter->tbl->tb6_lock);
2319 	if (r > 0) {
2320 		if (v)
2321 			++*pos;
2322 		return iter->w.leaf;
2323 	} else if (r < 0) {
2324 		fib6_walker_unlink(net, &iter->w);
2325 		return NULL;
2326 	}
2327 	fib6_walker_unlink(net, &iter->w);
2328 
2329 	iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
2330 	if (!iter->tbl)
2331 		return NULL;
2332 
2333 	ipv6_route_seq_setup_walk(iter, net);
2334 	goto iter_table;
2335 }
2336 
2337 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
2338 	__acquires(RCU_BH)
2339 {
2340 	struct net *net = seq_file_net(seq);
2341 	struct ipv6_route_iter *iter = seq->private;
2342 
2343 	rcu_read_lock_bh();
2344 	iter->tbl = ipv6_route_seq_next_table(NULL, net);
2345 	iter->skip = *pos;
2346 
2347 	if (iter->tbl) {
2348 		ipv6_route_seq_setup_walk(iter, net);
2349 		return ipv6_route_seq_next(seq, NULL, pos);
2350 	} else {
2351 		return NULL;
2352 	}
2353 }
2354 
2355 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
2356 {
2357 	struct fib6_walker *w = &iter->w;
2358 	return w->node && !(w->state == FWS_U && w->node == w->root);
2359 }
2360 
2361 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2362 	__releases(RCU_BH)
2363 {
2364 	struct net *net = seq_file_net(seq);
2365 	struct ipv6_route_iter *iter = seq->private;
2366 
2367 	if (ipv6_route_iter_active(iter))
2368 		fib6_walker_unlink(net, &iter->w);
2369 
2370 	rcu_read_unlock_bh();
2371 }
2372 
2373 static const struct seq_operations ipv6_route_seq_ops = {
2374 	.start	= ipv6_route_seq_start,
2375 	.next	= ipv6_route_seq_next,
2376 	.stop	= ipv6_route_seq_stop,
2377 	.show	= ipv6_route_seq_show
2378 };
2379 
2380 int ipv6_route_open(struct inode *inode, struct file *file)
2381 {
2382 	return seq_open_net(inode, file, &ipv6_route_seq_ops,
2383 			    sizeof(struct ipv6_route_iter));
2384 }
2385 
2386 #endif /* CONFIG_PROC_FS */
2387