1 /* 2 * Linux INET6 implementation 3 * Forwarding Information Database 4 * 5 * Authors: 6 * Pedro Roque <roque@di.fc.ul.pt> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 * 13 * Changes: 14 * Yuji SEKIYA @USAGI: Support default route on router node; 15 * remove ip6_null_entry from the top of 16 * routing table. 17 * Ville Nuorvala: Fixed routing subtrees. 18 */ 19 20 #define pr_fmt(fmt) "IPv6: " fmt 21 22 #include <linux/errno.h> 23 #include <linux/types.h> 24 #include <linux/net.h> 25 #include <linux/route.h> 26 #include <linux/netdevice.h> 27 #include <linux/in6.h> 28 #include <linux/init.h> 29 #include <linux/list.h> 30 #include <linux/slab.h> 31 32 #include <net/ipv6.h> 33 #include <net/ndisc.h> 34 #include <net/addrconf.h> 35 #include <net/lwtunnel.h> 36 #include <net/fib_notifier.h> 37 38 #include <net/ip6_fib.h> 39 #include <net/ip6_route.h> 40 41 static struct kmem_cache *fib6_node_kmem __read_mostly; 42 43 struct fib6_cleaner { 44 struct fib6_walker w; 45 struct net *net; 46 int (*func)(struct rt6_info *, void *arg); 47 int sernum; 48 void *arg; 49 }; 50 51 #ifdef CONFIG_IPV6_SUBTREES 52 #define FWS_INIT FWS_S 53 #else 54 #define FWS_INIT FWS_L 55 #endif 56 57 static struct rt6_info *fib6_find_prefix(struct net *net, 58 struct fib6_table *table, 59 struct fib6_node *fn); 60 static struct fib6_node *fib6_repair_tree(struct net *net, 61 struct fib6_table *table, 62 struct fib6_node *fn); 63 static int fib6_walk(struct net *net, struct fib6_walker *w); 64 static int fib6_walk_continue(struct fib6_walker *w); 65 66 /* 67 * A routing update causes an increase of the serial number on the 68 * affected subtree. This allows for cached routes to be asynchronously 69 * tested when modifications are made to the destination cache as a 70 * result of redirects, path MTU changes, etc. 71 */ 72 73 static void fib6_gc_timer_cb(struct timer_list *t); 74 75 #define FOR_WALKERS(net, w) \ 76 list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh) 77 78 static void fib6_walker_link(struct net *net, struct fib6_walker *w) 79 { 80 write_lock_bh(&net->ipv6.fib6_walker_lock); 81 list_add(&w->lh, &net->ipv6.fib6_walkers); 82 write_unlock_bh(&net->ipv6.fib6_walker_lock); 83 } 84 85 static void fib6_walker_unlink(struct net *net, struct fib6_walker *w) 86 { 87 write_lock_bh(&net->ipv6.fib6_walker_lock); 88 list_del(&w->lh); 89 write_unlock_bh(&net->ipv6.fib6_walker_lock); 90 } 91 92 static int fib6_new_sernum(struct net *net) 93 { 94 int new, old; 95 96 do { 97 old = atomic_read(&net->ipv6.fib6_sernum); 98 new = old < INT_MAX ? old + 1 : 1; 99 } while (atomic_cmpxchg(&net->ipv6.fib6_sernum, 100 old, new) != old); 101 return new; 102 } 103 104 enum { 105 FIB6_NO_SERNUM_CHANGE = 0, 106 }; 107 108 void fib6_update_sernum(struct rt6_info *rt) 109 { 110 struct fib6_table *table = rt->rt6i_table; 111 struct net *net = dev_net(rt->dst.dev); 112 struct fib6_node *fn; 113 114 spin_lock_bh(&table->tb6_lock); 115 fn = rcu_dereference_protected(rt->rt6i_node, 116 lockdep_is_held(&table->tb6_lock)); 117 if (fn) 118 fn->fn_sernum = fib6_new_sernum(net); 119 spin_unlock_bh(&table->tb6_lock); 120 } 121 122 /* 123 * Auxiliary address test functions for the radix tree. 124 * 125 * These assume a 32bit processor (although it will work on 126 * 64bit processors) 127 */ 128 129 /* 130 * test bit 131 */ 132 #if defined(__LITTLE_ENDIAN) 133 # define BITOP_BE32_SWIZZLE (0x1F & ~7) 134 #else 135 # define BITOP_BE32_SWIZZLE 0 136 #endif 137 138 static __be32 addr_bit_set(const void *token, int fn_bit) 139 { 140 const __be32 *addr = token; 141 /* 142 * Here, 143 * 1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f) 144 * is optimized version of 145 * htonl(1 << ((~fn_bit)&0x1F)) 146 * See include/asm-generic/bitops/le.h. 147 */ 148 return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) & 149 addr[fn_bit >> 5]; 150 } 151 152 static struct fib6_node *node_alloc(struct net *net) 153 { 154 struct fib6_node *fn; 155 156 fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC); 157 if (fn) 158 net->ipv6.rt6_stats->fib_nodes++; 159 160 return fn; 161 } 162 163 static void node_free_immediate(struct net *net, struct fib6_node *fn) 164 { 165 kmem_cache_free(fib6_node_kmem, fn); 166 net->ipv6.rt6_stats->fib_nodes--; 167 } 168 169 static void node_free_rcu(struct rcu_head *head) 170 { 171 struct fib6_node *fn = container_of(head, struct fib6_node, rcu); 172 173 kmem_cache_free(fib6_node_kmem, fn); 174 } 175 176 static void node_free(struct net *net, struct fib6_node *fn) 177 { 178 call_rcu(&fn->rcu, node_free_rcu); 179 net->ipv6.rt6_stats->fib_nodes--; 180 } 181 182 void rt6_free_pcpu(struct rt6_info *non_pcpu_rt) 183 { 184 int cpu; 185 186 if (!non_pcpu_rt->rt6i_pcpu) 187 return; 188 189 for_each_possible_cpu(cpu) { 190 struct rt6_info **ppcpu_rt; 191 struct rt6_info *pcpu_rt; 192 193 ppcpu_rt = per_cpu_ptr(non_pcpu_rt->rt6i_pcpu, cpu); 194 pcpu_rt = *ppcpu_rt; 195 if (pcpu_rt) { 196 dst_dev_put(&pcpu_rt->dst); 197 dst_release(&pcpu_rt->dst); 198 *ppcpu_rt = NULL; 199 } 200 } 201 } 202 EXPORT_SYMBOL_GPL(rt6_free_pcpu); 203 204 static void fib6_free_table(struct fib6_table *table) 205 { 206 inetpeer_invalidate_tree(&table->tb6_peers); 207 kfree(table); 208 } 209 210 static void fib6_link_table(struct net *net, struct fib6_table *tb) 211 { 212 unsigned int h; 213 214 /* 215 * Initialize table lock at a single place to give lockdep a key, 216 * tables aren't visible prior to being linked to the list. 217 */ 218 spin_lock_init(&tb->tb6_lock); 219 h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1); 220 221 /* 222 * No protection necessary, this is the only list mutatation 223 * operation, tables never disappear once they exist. 224 */ 225 hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]); 226 } 227 228 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 229 230 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id) 231 { 232 struct fib6_table *table; 233 234 table = kzalloc(sizeof(*table), GFP_ATOMIC); 235 if (table) { 236 table->tb6_id = id; 237 rcu_assign_pointer(table->tb6_root.leaf, 238 net->ipv6.ip6_null_entry); 239 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO; 240 inet_peer_base_init(&table->tb6_peers); 241 } 242 243 return table; 244 } 245 246 struct fib6_table *fib6_new_table(struct net *net, u32 id) 247 { 248 struct fib6_table *tb; 249 250 if (id == 0) 251 id = RT6_TABLE_MAIN; 252 tb = fib6_get_table(net, id); 253 if (tb) 254 return tb; 255 256 tb = fib6_alloc_table(net, id); 257 if (tb) 258 fib6_link_table(net, tb); 259 260 return tb; 261 } 262 EXPORT_SYMBOL_GPL(fib6_new_table); 263 264 struct fib6_table *fib6_get_table(struct net *net, u32 id) 265 { 266 struct fib6_table *tb; 267 struct hlist_head *head; 268 unsigned int h; 269 270 if (id == 0) 271 id = RT6_TABLE_MAIN; 272 h = id & (FIB6_TABLE_HASHSZ - 1); 273 rcu_read_lock(); 274 head = &net->ipv6.fib_table_hash[h]; 275 hlist_for_each_entry_rcu(tb, head, tb6_hlist) { 276 if (tb->tb6_id == id) { 277 rcu_read_unlock(); 278 return tb; 279 } 280 } 281 rcu_read_unlock(); 282 283 return NULL; 284 } 285 EXPORT_SYMBOL_GPL(fib6_get_table); 286 287 static void __net_init fib6_tables_init(struct net *net) 288 { 289 fib6_link_table(net, net->ipv6.fib6_main_tbl); 290 fib6_link_table(net, net->ipv6.fib6_local_tbl); 291 } 292 #else 293 294 struct fib6_table *fib6_new_table(struct net *net, u32 id) 295 { 296 return fib6_get_table(net, id); 297 } 298 299 struct fib6_table *fib6_get_table(struct net *net, u32 id) 300 { 301 return net->ipv6.fib6_main_tbl; 302 } 303 304 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6, 305 int flags, pol_lookup_t lookup) 306 { 307 struct rt6_info *rt; 308 309 rt = lookup(net, net->ipv6.fib6_main_tbl, fl6, flags); 310 if (rt->dst.error == -EAGAIN) { 311 ip6_rt_put(rt); 312 rt = net->ipv6.ip6_null_entry; 313 dst_hold(&rt->dst); 314 } 315 316 return &rt->dst; 317 } 318 319 static void __net_init fib6_tables_init(struct net *net) 320 { 321 fib6_link_table(net, net->ipv6.fib6_main_tbl); 322 } 323 324 #endif 325 326 unsigned int fib6_tables_seq_read(struct net *net) 327 { 328 unsigned int h, fib_seq = 0; 329 330 rcu_read_lock(); 331 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { 332 struct hlist_head *head = &net->ipv6.fib_table_hash[h]; 333 struct fib6_table *tb; 334 335 hlist_for_each_entry_rcu(tb, head, tb6_hlist) 336 fib_seq += tb->fib_seq; 337 } 338 rcu_read_unlock(); 339 340 return fib_seq; 341 } 342 343 static int call_fib6_entry_notifier(struct notifier_block *nb, struct net *net, 344 enum fib_event_type event_type, 345 struct rt6_info *rt) 346 { 347 struct fib6_entry_notifier_info info = { 348 .rt = rt, 349 }; 350 351 return call_fib6_notifier(nb, net, event_type, &info.info); 352 } 353 354 static int call_fib6_entry_notifiers(struct net *net, 355 enum fib_event_type event_type, 356 struct rt6_info *rt, 357 struct netlink_ext_ack *extack) 358 { 359 struct fib6_entry_notifier_info info = { 360 .info.extack = extack, 361 .rt = rt, 362 }; 363 364 rt->rt6i_table->fib_seq++; 365 return call_fib6_notifiers(net, event_type, &info.info); 366 } 367 368 struct fib6_dump_arg { 369 struct net *net; 370 struct notifier_block *nb; 371 }; 372 373 static void fib6_rt_dump(struct rt6_info *rt, struct fib6_dump_arg *arg) 374 { 375 if (rt == arg->net->ipv6.ip6_null_entry) 376 return; 377 call_fib6_entry_notifier(arg->nb, arg->net, FIB_EVENT_ENTRY_ADD, rt); 378 } 379 380 static int fib6_node_dump(struct fib6_walker *w) 381 { 382 struct rt6_info *rt; 383 384 for_each_fib6_walker_rt(w) 385 fib6_rt_dump(rt, w->args); 386 w->leaf = NULL; 387 return 0; 388 } 389 390 static void fib6_table_dump(struct net *net, struct fib6_table *tb, 391 struct fib6_walker *w) 392 { 393 w->root = &tb->tb6_root; 394 spin_lock_bh(&tb->tb6_lock); 395 fib6_walk(net, w); 396 spin_unlock_bh(&tb->tb6_lock); 397 } 398 399 /* Called with rcu_read_lock() */ 400 int fib6_tables_dump(struct net *net, struct notifier_block *nb) 401 { 402 struct fib6_dump_arg arg; 403 struct fib6_walker *w; 404 unsigned int h; 405 406 w = kzalloc(sizeof(*w), GFP_ATOMIC); 407 if (!w) 408 return -ENOMEM; 409 410 w->func = fib6_node_dump; 411 arg.net = net; 412 arg.nb = nb; 413 w->args = &arg; 414 415 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { 416 struct hlist_head *head = &net->ipv6.fib_table_hash[h]; 417 struct fib6_table *tb; 418 419 hlist_for_each_entry_rcu(tb, head, tb6_hlist) 420 fib6_table_dump(net, tb, w); 421 } 422 423 kfree(w); 424 425 return 0; 426 } 427 428 static int fib6_dump_node(struct fib6_walker *w) 429 { 430 int res; 431 struct rt6_info *rt; 432 433 for_each_fib6_walker_rt(w) { 434 res = rt6_dump_route(rt, w->args); 435 if (res < 0) { 436 /* Frame is full, suspend walking */ 437 w->leaf = rt; 438 return 1; 439 } 440 441 /* Multipath routes are dumped in one route with the 442 * RTA_MULTIPATH attribute. Jump 'rt' to point to the 443 * last sibling of this route (no need to dump the 444 * sibling routes again) 445 */ 446 if (rt->rt6i_nsiblings) 447 rt = list_last_entry(&rt->rt6i_siblings, 448 struct rt6_info, 449 rt6i_siblings); 450 } 451 w->leaf = NULL; 452 return 0; 453 } 454 455 static void fib6_dump_end(struct netlink_callback *cb) 456 { 457 struct net *net = sock_net(cb->skb->sk); 458 struct fib6_walker *w = (void *)cb->args[2]; 459 460 if (w) { 461 if (cb->args[4]) { 462 cb->args[4] = 0; 463 fib6_walker_unlink(net, w); 464 } 465 cb->args[2] = 0; 466 kfree(w); 467 } 468 cb->done = (void *)cb->args[3]; 469 cb->args[1] = 3; 470 } 471 472 static int fib6_dump_done(struct netlink_callback *cb) 473 { 474 fib6_dump_end(cb); 475 return cb->done ? cb->done(cb) : 0; 476 } 477 478 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb, 479 struct netlink_callback *cb) 480 { 481 struct net *net = sock_net(skb->sk); 482 struct fib6_walker *w; 483 int res; 484 485 w = (void *)cb->args[2]; 486 w->root = &table->tb6_root; 487 488 if (cb->args[4] == 0) { 489 w->count = 0; 490 w->skip = 0; 491 492 spin_lock_bh(&table->tb6_lock); 493 res = fib6_walk(net, w); 494 spin_unlock_bh(&table->tb6_lock); 495 if (res > 0) { 496 cb->args[4] = 1; 497 cb->args[5] = w->root->fn_sernum; 498 } 499 } else { 500 if (cb->args[5] != w->root->fn_sernum) { 501 /* Begin at the root if the tree changed */ 502 cb->args[5] = w->root->fn_sernum; 503 w->state = FWS_INIT; 504 w->node = w->root; 505 w->skip = w->count; 506 } else 507 w->skip = 0; 508 509 spin_lock_bh(&table->tb6_lock); 510 res = fib6_walk_continue(w); 511 spin_unlock_bh(&table->tb6_lock); 512 if (res <= 0) { 513 fib6_walker_unlink(net, w); 514 cb->args[4] = 0; 515 } 516 } 517 518 return res; 519 } 520 521 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb) 522 { 523 struct net *net = sock_net(skb->sk); 524 unsigned int h, s_h; 525 unsigned int e = 0, s_e; 526 struct rt6_rtnl_dump_arg arg; 527 struct fib6_walker *w; 528 struct fib6_table *tb; 529 struct hlist_head *head; 530 int res = 0; 531 532 s_h = cb->args[0]; 533 s_e = cb->args[1]; 534 535 w = (void *)cb->args[2]; 536 if (!w) { 537 /* New dump: 538 * 539 * 1. hook callback destructor. 540 */ 541 cb->args[3] = (long)cb->done; 542 cb->done = fib6_dump_done; 543 544 /* 545 * 2. allocate and initialize walker. 546 */ 547 w = kzalloc(sizeof(*w), GFP_ATOMIC); 548 if (!w) 549 return -ENOMEM; 550 w->func = fib6_dump_node; 551 cb->args[2] = (long)w; 552 } 553 554 arg.skb = skb; 555 arg.cb = cb; 556 arg.net = net; 557 w->args = &arg; 558 559 rcu_read_lock(); 560 for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) { 561 e = 0; 562 head = &net->ipv6.fib_table_hash[h]; 563 hlist_for_each_entry_rcu(tb, head, tb6_hlist) { 564 if (e < s_e) 565 goto next; 566 res = fib6_dump_table(tb, skb, cb); 567 if (res != 0) 568 goto out; 569 next: 570 e++; 571 } 572 } 573 out: 574 rcu_read_unlock(); 575 cb->args[1] = e; 576 cb->args[0] = h; 577 578 res = res < 0 ? res : skb->len; 579 if (res <= 0) 580 fib6_dump_end(cb); 581 return res; 582 } 583 584 /* 585 * Routing Table 586 * 587 * return the appropriate node for a routing tree "add" operation 588 * by either creating and inserting or by returning an existing 589 * node. 590 */ 591 592 static struct fib6_node *fib6_add_1(struct net *net, 593 struct fib6_table *table, 594 struct fib6_node *root, 595 struct in6_addr *addr, int plen, 596 int offset, int allow_create, 597 int replace_required, 598 struct netlink_ext_ack *extack) 599 { 600 struct fib6_node *fn, *in, *ln; 601 struct fib6_node *pn = NULL; 602 struct rt6key *key; 603 int bit; 604 __be32 dir = 0; 605 606 RT6_TRACE("fib6_add_1\n"); 607 608 /* insert node in tree */ 609 610 fn = root; 611 612 do { 613 struct rt6_info *leaf = rcu_dereference_protected(fn->leaf, 614 lockdep_is_held(&table->tb6_lock)); 615 key = (struct rt6key *)((u8 *)leaf + offset); 616 617 /* 618 * Prefix match 619 */ 620 if (plen < fn->fn_bit || 621 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) { 622 if (!allow_create) { 623 if (replace_required) { 624 NL_SET_ERR_MSG(extack, 625 "Can not replace route - no match found"); 626 pr_warn("Can't replace route, no match found\n"); 627 return ERR_PTR(-ENOENT); 628 } 629 pr_warn("NLM_F_CREATE should be set when creating new route\n"); 630 } 631 goto insert_above; 632 } 633 634 /* 635 * Exact match ? 636 */ 637 638 if (plen == fn->fn_bit) { 639 /* clean up an intermediate node */ 640 if (!(fn->fn_flags & RTN_RTINFO)) { 641 RCU_INIT_POINTER(fn->leaf, NULL); 642 rt6_release(leaf); 643 /* remove null_entry in the root node */ 644 } else if (fn->fn_flags & RTN_TL_ROOT && 645 rcu_access_pointer(fn->leaf) == 646 net->ipv6.ip6_null_entry) { 647 RCU_INIT_POINTER(fn->leaf, NULL); 648 } 649 650 return fn; 651 } 652 653 /* 654 * We have more bits to go 655 */ 656 657 /* Try to walk down on tree. */ 658 dir = addr_bit_set(addr, fn->fn_bit); 659 pn = fn; 660 fn = dir ? 661 rcu_dereference_protected(fn->right, 662 lockdep_is_held(&table->tb6_lock)) : 663 rcu_dereference_protected(fn->left, 664 lockdep_is_held(&table->tb6_lock)); 665 } while (fn); 666 667 if (!allow_create) { 668 /* We should not create new node because 669 * NLM_F_REPLACE was specified without NLM_F_CREATE 670 * I assume it is safe to require NLM_F_CREATE when 671 * REPLACE flag is used! Later we may want to remove the 672 * check for replace_required, because according 673 * to netlink specification, NLM_F_CREATE 674 * MUST be specified if new route is created. 675 * That would keep IPv6 consistent with IPv4 676 */ 677 if (replace_required) { 678 NL_SET_ERR_MSG(extack, 679 "Can not replace route - no match found"); 680 pr_warn("Can't replace route, no match found\n"); 681 return ERR_PTR(-ENOENT); 682 } 683 pr_warn("NLM_F_CREATE should be set when creating new route\n"); 684 } 685 /* 686 * We walked to the bottom of tree. 687 * Create new leaf node without children. 688 */ 689 690 ln = node_alloc(net); 691 692 if (!ln) 693 return ERR_PTR(-ENOMEM); 694 ln->fn_bit = plen; 695 RCU_INIT_POINTER(ln->parent, pn); 696 697 if (dir) 698 rcu_assign_pointer(pn->right, ln); 699 else 700 rcu_assign_pointer(pn->left, ln); 701 702 return ln; 703 704 705 insert_above: 706 /* 707 * split since we don't have a common prefix anymore or 708 * we have a less significant route. 709 * we've to insert an intermediate node on the list 710 * this new node will point to the one we need to create 711 * and the current 712 */ 713 714 pn = rcu_dereference_protected(fn->parent, 715 lockdep_is_held(&table->tb6_lock)); 716 717 /* find 1st bit in difference between the 2 addrs. 718 719 See comment in __ipv6_addr_diff: bit may be an invalid value, 720 but if it is >= plen, the value is ignored in any case. 721 */ 722 723 bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr)); 724 725 /* 726 * (intermediate)[in] 727 * / \ 728 * (new leaf node)[ln] (old node)[fn] 729 */ 730 if (plen > bit) { 731 in = node_alloc(net); 732 ln = node_alloc(net); 733 734 if (!in || !ln) { 735 if (in) 736 node_free_immediate(net, in); 737 if (ln) 738 node_free_immediate(net, ln); 739 return ERR_PTR(-ENOMEM); 740 } 741 742 /* 743 * new intermediate node. 744 * RTN_RTINFO will 745 * be off since that an address that chooses one of 746 * the branches would not match less specific routes 747 * in the other branch 748 */ 749 750 in->fn_bit = bit; 751 752 RCU_INIT_POINTER(in->parent, pn); 753 in->leaf = fn->leaf; 754 atomic_inc(&rcu_dereference_protected(in->leaf, 755 lockdep_is_held(&table->tb6_lock))->rt6i_ref); 756 757 /* update parent pointer */ 758 if (dir) 759 rcu_assign_pointer(pn->right, in); 760 else 761 rcu_assign_pointer(pn->left, in); 762 763 ln->fn_bit = plen; 764 765 RCU_INIT_POINTER(ln->parent, in); 766 rcu_assign_pointer(fn->parent, in); 767 768 if (addr_bit_set(addr, bit)) { 769 rcu_assign_pointer(in->right, ln); 770 rcu_assign_pointer(in->left, fn); 771 } else { 772 rcu_assign_pointer(in->left, ln); 773 rcu_assign_pointer(in->right, fn); 774 } 775 } else { /* plen <= bit */ 776 777 /* 778 * (new leaf node)[ln] 779 * / \ 780 * (old node)[fn] NULL 781 */ 782 783 ln = node_alloc(net); 784 785 if (!ln) 786 return ERR_PTR(-ENOMEM); 787 788 ln->fn_bit = plen; 789 790 RCU_INIT_POINTER(ln->parent, pn); 791 792 if (addr_bit_set(&key->addr, plen)) 793 RCU_INIT_POINTER(ln->right, fn); 794 else 795 RCU_INIT_POINTER(ln->left, fn); 796 797 rcu_assign_pointer(fn->parent, ln); 798 799 if (dir) 800 rcu_assign_pointer(pn->right, ln); 801 else 802 rcu_assign_pointer(pn->left, ln); 803 } 804 return ln; 805 } 806 807 static bool rt6_qualify_for_ecmp(struct rt6_info *rt) 808 { 809 return (rt->rt6i_flags & (RTF_GATEWAY|RTF_ADDRCONF|RTF_DYNAMIC)) == 810 RTF_GATEWAY; 811 } 812 813 static void fib6_copy_metrics(u32 *mp, const struct mx6_config *mxc) 814 { 815 int i; 816 817 for (i = 0; i < RTAX_MAX; i++) { 818 if (test_bit(i, mxc->mx_valid)) 819 mp[i] = mxc->mx[i]; 820 } 821 } 822 823 static int fib6_commit_metrics(struct dst_entry *dst, struct mx6_config *mxc) 824 { 825 if (!mxc->mx) 826 return 0; 827 828 if (dst->flags & DST_HOST) { 829 u32 *mp = dst_metrics_write_ptr(dst); 830 831 if (unlikely(!mp)) 832 return -ENOMEM; 833 834 fib6_copy_metrics(mp, mxc); 835 } else { 836 dst_init_metrics(dst, mxc->mx, false); 837 838 /* We've stolen mx now. */ 839 mxc->mx = NULL; 840 } 841 842 return 0; 843 } 844 845 static void fib6_purge_rt(struct rt6_info *rt, struct fib6_node *fn, 846 struct net *net) 847 { 848 struct fib6_table *table = rt->rt6i_table; 849 850 if (atomic_read(&rt->rt6i_ref) != 1) { 851 /* This route is used as dummy address holder in some split 852 * nodes. It is not leaked, but it still holds other resources, 853 * which must be released in time. So, scan ascendant nodes 854 * and replace dummy references to this route with references 855 * to still alive ones. 856 */ 857 while (fn) { 858 struct rt6_info *leaf = rcu_dereference_protected(fn->leaf, 859 lockdep_is_held(&table->tb6_lock)); 860 struct rt6_info *new_leaf; 861 if (!(fn->fn_flags & RTN_RTINFO) && leaf == rt) { 862 new_leaf = fib6_find_prefix(net, table, fn); 863 atomic_inc(&new_leaf->rt6i_ref); 864 rcu_assign_pointer(fn->leaf, new_leaf); 865 rt6_release(rt); 866 } 867 fn = rcu_dereference_protected(fn->parent, 868 lockdep_is_held(&table->tb6_lock)); 869 } 870 } 871 } 872 873 /* 874 * Insert routing information in a node. 875 */ 876 877 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt, 878 struct nl_info *info, struct mx6_config *mxc, 879 struct netlink_ext_ack *extack) 880 { 881 struct rt6_info *leaf = rcu_dereference_protected(fn->leaf, 882 lockdep_is_held(&rt->rt6i_table->tb6_lock)); 883 struct rt6_info *iter = NULL; 884 struct rt6_info __rcu **ins; 885 struct rt6_info __rcu **fallback_ins = NULL; 886 int replace = (info->nlh && 887 (info->nlh->nlmsg_flags & NLM_F_REPLACE)); 888 int add = (!info->nlh || 889 (info->nlh->nlmsg_flags & NLM_F_CREATE)); 890 int found = 0; 891 bool rt_can_ecmp = rt6_qualify_for_ecmp(rt); 892 u16 nlflags = NLM_F_EXCL; 893 int err; 894 895 if (info->nlh && (info->nlh->nlmsg_flags & NLM_F_APPEND)) 896 nlflags |= NLM_F_APPEND; 897 898 ins = &fn->leaf; 899 900 for (iter = leaf; iter; 901 iter = rcu_dereference_protected(iter->dst.rt6_next, 902 lockdep_is_held(&rt->rt6i_table->tb6_lock))) { 903 /* 904 * Search for duplicates 905 */ 906 907 if (iter->rt6i_metric == rt->rt6i_metric) { 908 /* 909 * Same priority level 910 */ 911 if (info->nlh && 912 (info->nlh->nlmsg_flags & NLM_F_EXCL)) 913 return -EEXIST; 914 915 nlflags &= ~NLM_F_EXCL; 916 if (replace) { 917 if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) { 918 found++; 919 break; 920 } 921 if (rt_can_ecmp) 922 fallback_ins = fallback_ins ?: ins; 923 goto next_iter; 924 } 925 926 if (rt6_duplicate_nexthop(iter, rt)) { 927 if (rt->rt6i_nsiblings) 928 rt->rt6i_nsiblings = 0; 929 if (!(iter->rt6i_flags & RTF_EXPIRES)) 930 return -EEXIST; 931 if (!(rt->rt6i_flags & RTF_EXPIRES)) 932 rt6_clean_expires(iter); 933 else 934 rt6_set_expires(iter, rt->dst.expires); 935 iter->rt6i_pmtu = rt->rt6i_pmtu; 936 return -EEXIST; 937 } 938 /* If we have the same destination and the same metric, 939 * but not the same gateway, then the route we try to 940 * add is sibling to this route, increment our counter 941 * of siblings, and later we will add our route to the 942 * list. 943 * Only static routes (which don't have flag 944 * RTF_EXPIRES) are used for ECMPv6. 945 * 946 * To avoid long list, we only had siblings if the 947 * route have a gateway. 948 */ 949 if (rt_can_ecmp && 950 rt6_qualify_for_ecmp(iter)) 951 rt->rt6i_nsiblings++; 952 } 953 954 if (iter->rt6i_metric > rt->rt6i_metric) 955 break; 956 957 next_iter: 958 ins = &iter->dst.rt6_next; 959 } 960 961 if (fallback_ins && !found) { 962 /* No ECMP-able route found, replace first non-ECMP one */ 963 ins = fallback_ins; 964 iter = rcu_dereference_protected(*ins, 965 lockdep_is_held(&rt->rt6i_table->tb6_lock)); 966 found++; 967 } 968 969 /* Reset round-robin state, if necessary */ 970 if (ins == &fn->leaf) 971 fn->rr_ptr = NULL; 972 973 /* Link this route to others same route. */ 974 if (rt->rt6i_nsiblings) { 975 unsigned int rt6i_nsiblings; 976 struct rt6_info *sibling, *temp_sibling; 977 978 /* Find the first route that have the same metric */ 979 sibling = leaf; 980 while (sibling) { 981 if (sibling->rt6i_metric == rt->rt6i_metric && 982 rt6_qualify_for_ecmp(sibling)) { 983 list_add_tail(&rt->rt6i_siblings, 984 &sibling->rt6i_siblings); 985 break; 986 } 987 sibling = rcu_dereference_protected(sibling->dst.rt6_next, 988 lockdep_is_held(&rt->rt6i_table->tb6_lock)); 989 } 990 /* For each sibling in the list, increment the counter of 991 * siblings. BUG() if counters does not match, list of siblings 992 * is broken! 993 */ 994 rt6i_nsiblings = 0; 995 list_for_each_entry_safe(sibling, temp_sibling, 996 &rt->rt6i_siblings, rt6i_siblings) { 997 sibling->rt6i_nsiblings++; 998 BUG_ON(sibling->rt6i_nsiblings != rt->rt6i_nsiblings); 999 rt6i_nsiblings++; 1000 } 1001 BUG_ON(rt6i_nsiblings != rt->rt6i_nsiblings); 1002 } 1003 1004 /* 1005 * insert node 1006 */ 1007 if (!replace) { 1008 if (!add) 1009 pr_warn("NLM_F_CREATE should be set when creating new route\n"); 1010 1011 add: 1012 nlflags |= NLM_F_CREATE; 1013 err = fib6_commit_metrics(&rt->dst, mxc); 1014 if (err) 1015 return err; 1016 1017 rcu_assign_pointer(rt->dst.rt6_next, iter); 1018 atomic_inc(&rt->rt6i_ref); 1019 rcu_assign_pointer(rt->rt6i_node, fn); 1020 rcu_assign_pointer(*ins, rt); 1021 call_fib6_entry_notifiers(info->nl_net, FIB_EVENT_ENTRY_ADD, 1022 rt, extack); 1023 if (!info->skip_notify) 1024 inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags); 1025 info->nl_net->ipv6.rt6_stats->fib_rt_entries++; 1026 1027 if (!(fn->fn_flags & RTN_RTINFO)) { 1028 info->nl_net->ipv6.rt6_stats->fib_route_nodes++; 1029 fn->fn_flags |= RTN_RTINFO; 1030 } 1031 1032 } else { 1033 int nsiblings; 1034 1035 if (!found) { 1036 if (add) 1037 goto add; 1038 pr_warn("NLM_F_REPLACE set, but no existing node found!\n"); 1039 return -ENOENT; 1040 } 1041 1042 err = fib6_commit_metrics(&rt->dst, mxc); 1043 if (err) 1044 return err; 1045 1046 atomic_inc(&rt->rt6i_ref); 1047 rcu_assign_pointer(rt->rt6i_node, fn); 1048 rt->dst.rt6_next = iter->dst.rt6_next; 1049 rcu_assign_pointer(*ins, rt); 1050 call_fib6_entry_notifiers(info->nl_net, FIB_EVENT_ENTRY_REPLACE, 1051 rt, extack); 1052 if (!info->skip_notify) 1053 inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE); 1054 if (!(fn->fn_flags & RTN_RTINFO)) { 1055 info->nl_net->ipv6.rt6_stats->fib_route_nodes++; 1056 fn->fn_flags |= RTN_RTINFO; 1057 } 1058 nsiblings = iter->rt6i_nsiblings; 1059 iter->rt6i_node = NULL; 1060 fib6_purge_rt(iter, fn, info->nl_net); 1061 if (rcu_access_pointer(fn->rr_ptr) == iter) 1062 fn->rr_ptr = NULL; 1063 rt6_release(iter); 1064 1065 if (nsiblings) { 1066 /* Replacing an ECMP route, remove all siblings */ 1067 ins = &rt->dst.rt6_next; 1068 iter = rcu_dereference_protected(*ins, 1069 lockdep_is_held(&rt->rt6i_table->tb6_lock)); 1070 while (iter) { 1071 if (iter->rt6i_metric > rt->rt6i_metric) 1072 break; 1073 if (rt6_qualify_for_ecmp(iter)) { 1074 *ins = iter->dst.rt6_next; 1075 iter->rt6i_node = NULL; 1076 fib6_purge_rt(iter, fn, info->nl_net); 1077 if (rcu_access_pointer(fn->rr_ptr) == iter) 1078 fn->rr_ptr = NULL; 1079 rt6_release(iter); 1080 nsiblings--; 1081 info->nl_net->ipv6.rt6_stats->fib_rt_entries--; 1082 } else { 1083 ins = &iter->dst.rt6_next; 1084 } 1085 iter = rcu_dereference_protected(*ins, 1086 lockdep_is_held(&rt->rt6i_table->tb6_lock)); 1087 } 1088 WARN_ON(nsiblings != 0); 1089 } 1090 } 1091 1092 return 0; 1093 } 1094 1095 static void fib6_start_gc(struct net *net, struct rt6_info *rt) 1096 { 1097 if (!timer_pending(&net->ipv6.ip6_fib_timer) && 1098 (rt->rt6i_flags & (RTF_EXPIRES | RTF_CACHE))) 1099 mod_timer(&net->ipv6.ip6_fib_timer, 1100 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval); 1101 } 1102 1103 void fib6_force_start_gc(struct net *net) 1104 { 1105 if (!timer_pending(&net->ipv6.ip6_fib_timer)) 1106 mod_timer(&net->ipv6.ip6_fib_timer, 1107 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval); 1108 } 1109 1110 static void fib6_update_sernum_upto_root(struct rt6_info *rt, 1111 int sernum) 1112 { 1113 struct fib6_node *fn = rcu_dereference_protected(rt->rt6i_node, 1114 lockdep_is_held(&rt->rt6i_table->tb6_lock)); 1115 1116 /* paired with smp_rmb() in rt6_get_cookie_safe() */ 1117 smp_wmb(); 1118 while (fn) { 1119 fn->fn_sernum = sernum; 1120 fn = rcu_dereference_protected(fn->parent, 1121 lockdep_is_held(&rt->rt6i_table->tb6_lock)); 1122 } 1123 } 1124 1125 /* 1126 * Add routing information to the routing tree. 1127 * <destination addr>/<source addr> 1128 * with source addr info in sub-trees 1129 * Need to own table->tb6_lock 1130 */ 1131 1132 int fib6_add(struct fib6_node *root, struct rt6_info *rt, 1133 struct nl_info *info, struct mx6_config *mxc, 1134 struct netlink_ext_ack *extack) 1135 { 1136 struct fib6_table *table = rt->rt6i_table; 1137 struct fib6_node *fn, *pn = NULL; 1138 int err = -ENOMEM; 1139 int allow_create = 1; 1140 int replace_required = 0; 1141 int sernum = fib6_new_sernum(info->nl_net); 1142 1143 if (WARN_ON_ONCE(!atomic_read(&rt->dst.__refcnt))) 1144 return -EINVAL; 1145 if (WARN_ON_ONCE(rt->rt6i_flags & RTF_CACHE)) 1146 return -EINVAL; 1147 1148 if (info->nlh) { 1149 if (!(info->nlh->nlmsg_flags & NLM_F_CREATE)) 1150 allow_create = 0; 1151 if (info->nlh->nlmsg_flags & NLM_F_REPLACE) 1152 replace_required = 1; 1153 } 1154 if (!allow_create && !replace_required) 1155 pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n"); 1156 1157 fn = fib6_add_1(info->nl_net, table, root, 1158 &rt->rt6i_dst.addr, rt->rt6i_dst.plen, 1159 offsetof(struct rt6_info, rt6i_dst), allow_create, 1160 replace_required, extack); 1161 if (IS_ERR(fn)) { 1162 err = PTR_ERR(fn); 1163 fn = NULL; 1164 goto out; 1165 } 1166 1167 pn = fn; 1168 1169 #ifdef CONFIG_IPV6_SUBTREES 1170 if (rt->rt6i_src.plen) { 1171 struct fib6_node *sn; 1172 1173 if (!rcu_access_pointer(fn->subtree)) { 1174 struct fib6_node *sfn; 1175 1176 /* 1177 * Create subtree. 1178 * 1179 * fn[main tree] 1180 * | 1181 * sfn[subtree root] 1182 * \ 1183 * sn[new leaf node] 1184 */ 1185 1186 /* Create subtree root node */ 1187 sfn = node_alloc(info->nl_net); 1188 if (!sfn) 1189 goto failure; 1190 1191 atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref); 1192 rcu_assign_pointer(sfn->leaf, 1193 info->nl_net->ipv6.ip6_null_entry); 1194 sfn->fn_flags = RTN_ROOT; 1195 1196 /* Now add the first leaf node to new subtree */ 1197 1198 sn = fib6_add_1(info->nl_net, table, sfn, 1199 &rt->rt6i_src.addr, rt->rt6i_src.plen, 1200 offsetof(struct rt6_info, rt6i_src), 1201 allow_create, replace_required, extack); 1202 1203 if (IS_ERR(sn)) { 1204 /* If it is failed, discard just allocated 1205 root, and then (in failure) stale node 1206 in main tree. 1207 */ 1208 node_free_immediate(info->nl_net, sfn); 1209 err = PTR_ERR(sn); 1210 goto failure; 1211 } 1212 1213 /* Now link new subtree to main tree */ 1214 rcu_assign_pointer(sfn->parent, fn); 1215 rcu_assign_pointer(fn->subtree, sfn); 1216 } else { 1217 sn = fib6_add_1(info->nl_net, table, FIB6_SUBTREE(fn), 1218 &rt->rt6i_src.addr, rt->rt6i_src.plen, 1219 offsetof(struct rt6_info, rt6i_src), 1220 allow_create, replace_required, extack); 1221 1222 if (IS_ERR(sn)) { 1223 err = PTR_ERR(sn); 1224 goto failure; 1225 } 1226 } 1227 1228 if (!rcu_access_pointer(fn->leaf)) { 1229 if (fn->fn_flags & RTN_TL_ROOT) { 1230 /* put back null_entry for root node */ 1231 rcu_assign_pointer(fn->leaf, 1232 info->nl_net->ipv6.ip6_null_entry); 1233 } else { 1234 atomic_inc(&rt->rt6i_ref); 1235 rcu_assign_pointer(fn->leaf, rt); 1236 } 1237 } 1238 fn = sn; 1239 } 1240 #endif 1241 1242 err = fib6_add_rt2node(fn, rt, info, mxc, extack); 1243 if (!err) { 1244 fib6_update_sernum_upto_root(rt, sernum); 1245 fib6_start_gc(info->nl_net, rt); 1246 } 1247 1248 out: 1249 if (err) { 1250 #ifdef CONFIG_IPV6_SUBTREES 1251 /* 1252 * If fib6_add_1 has cleared the old leaf pointer in the 1253 * super-tree leaf node we have to find a new one for it. 1254 */ 1255 if (pn != fn) { 1256 struct rt6_info *pn_leaf = 1257 rcu_dereference_protected(pn->leaf, 1258 lockdep_is_held(&table->tb6_lock)); 1259 if (pn_leaf == rt) { 1260 pn_leaf = NULL; 1261 RCU_INIT_POINTER(pn->leaf, NULL); 1262 atomic_dec(&rt->rt6i_ref); 1263 } 1264 if (!pn_leaf && !(pn->fn_flags & RTN_RTINFO)) { 1265 pn_leaf = fib6_find_prefix(info->nl_net, table, 1266 pn); 1267 #if RT6_DEBUG >= 2 1268 if (!pn_leaf) { 1269 WARN_ON(!pn_leaf); 1270 pn_leaf = 1271 info->nl_net->ipv6.ip6_null_entry; 1272 } 1273 #endif 1274 atomic_inc(&pn_leaf->rt6i_ref); 1275 rcu_assign_pointer(pn->leaf, pn_leaf); 1276 } 1277 } 1278 #endif 1279 goto failure; 1280 } 1281 return err; 1282 1283 failure: 1284 /* fn->leaf could be NULL and fib6_repair_tree() needs to be called if: 1285 * 1. fn is an intermediate node and we failed to add the new 1286 * route to it in both subtree creation failure and fib6_add_rt2node() 1287 * failure case. 1288 * 2. fn is the root node in the table and we fail to add the first 1289 * default route to it. 1290 */ 1291 if (fn && 1292 (!(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)) || 1293 (fn->fn_flags & RTN_TL_ROOT && 1294 !rcu_access_pointer(fn->leaf)))) 1295 fib6_repair_tree(info->nl_net, table, fn); 1296 /* Always release dst as dst->__refcnt is guaranteed 1297 * to be taken before entering this function 1298 */ 1299 dst_release_immediate(&rt->dst); 1300 return err; 1301 } 1302 1303 /* 1304 * Routing tree lookup 1305 * 1306 */ 1307 1308 struct lookup_args { 1309 int offset; /* key offset on rt6_info */ 1310 const struct in6_addr *addr; /* search key */ 1311 }; 1312 1313 static struct fib6_node *fib6_lookup_1(struct fib6_node *root, 1314 struct lookup_args *args) 1315 { 1316 struct fib6_node *fn; 1317 __be32 dir; 1318 1319 if (unlikely(args->offset == 0)) 1320 return NULL; 1321 1322 /* 1323 * Descend on a tree 1324 */ 1325 1326 fn = root; 1327 1328 for (;;) { 1329 struct fib6_node *next; 1330 1331 dir = addr_bit_set(args->addr, fn->fn_bit); 1332 1333 next = dir ? rcu_dereference(fn->right) : 1334 rcu_dereference(fn->left); 1335 1336 if (next) { 1337 fn = next; 1338 continue; 1339 } 1340 break; 1341 } 1342 1343 while (fn) { 1344 struct fib6_node *subtree = FIB6_SUBTREE(fn); 1345 1346 if (subtree || fn->fn_flags & RTN_RTINFO) { 1347 struct rt6_info *leaf = rcu_dereference(fn->leaf); 1348 struct rt6key *key; 1349 1350 if (!leaf) 1351 goto backtrack; 1352 1353 key = (struct rt6key *) ((u8 *)leaf + args->offset); 1354 1355 if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) { 1356 #ifdef CONFIG_IPV6_SUBTREES 1357 if (subtree) { 1358 struct fib6_node *sfn; 1359 sfn = fib6_lookup_1(subtree, args + 1); 1360 if (!sfn) 1361 goto backtrack; 1362 fn = sfn; 1363 } 1364 #endif 1365 if (fn->fn_flags & RTN_RTINFO) 1366 return fn; 1367 } 1368 } 1369 backtrack: 1370 if (fn->fn_flags & RTN_ROOT) 1371 break; 1372 1373 fn = rcu_dereference(fn->parent); 1374 } 1375 1376 return NULL; 1377 } 1378 1379 /* called with rcu_read_lock() held 1380 */ 1381 struct fib6_node *fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr, 1382 const struct in6_addr *saddr) 1383 { 1384 struct fib6_node *fn; 1385 struct lookup_args args[] = { 1386 { 1387 .offset = offsetof(struct rt6_info, rt6i_dst), 1388 .addr = daddr, 1389 }, 1390 #ifdef CONFIG_IPV6_SUBTREES 1391 { 1392 .offset = offsetof(struct rt6_info, rt6i_src), 1393 .addr = saddr, 1394 }, 1395 #endif 1396 { 1397 .offset = 0, /* sentinel */ 1398 } 1399 }; 1400 1401 fn = fib6_lookup_1(root, daddr ? args : args + 1); 1402 if (!fn || fn->fn_flags & RTN_TL_ROOT) 1403 fn = root; 1404 1405 return fn; 1406 } 1407 1408 /* 1409 * Get node with specified destination prefix (and source prefix, 1410 * if subtrees are used) 1411 * exact_match == true means we try to find fn with exact match of 1412 * the passed in prefix addr 1413 * exact_match == false means we try to find fn with longest prefix 1414 * match of the passed in prefix addr. This is useful for finding fn 1415 * for cached route as it will be stored in the exception table under 1416 * the node with longest prefix length. 1417 */ 1418 1419 1420 static struct fib6_node *fib6_locate_1(struct fib6_node *root, 1421 const struct in6_addr *addr, 1422 int plen, int offset, 1423 bool exact_match) 1424 { 1425 struct fib6_node *fn, *prev = NULL; 1426 1427 for (fn = root; fn ; ) { 1428 struct rt6_info *leaf = rcu_dereference(fn->leaf); 1429 struct rt6key *key; 1430 1431 /* This node is being deleted */ 1432 if (!leaf) { 1433 if (plen <= fn->fn_bit) 1434 goto out; 1435 else 1436 goto next; 1437 } 1438 1439 key = (struct rt6key *)((u8 *)leaf + offset); 1440 1441 /* 1442 * Prefix match 1443 */ 1444 if (plen < fn->fn_bit || 1445 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) 1446 goto out; 1447 1448 if (plen == fn->fn_bit) 1449 return fn; 1450 1451 prev = fn; 1452 1453 next: 1454 /* 1455 * We have more bits to go 1456 */ 1457 if (addr_bit_set(addr, fn->fn_bit)) 1458 fn = rcu_dereference(fn->right); 1459 else 1460 fn = rcu_dereference(fn->left); 1461 } 1462 out: 1463 if (exact_match) 1464 return NULL; 1465 else 1466 return prev; 1467 } 1468 1469 struct fib6_node *fib6_locate(struct fib6_node *root, 1470 const struct in6_addr *daddr, int dst_len, 1471 const struct in6_addr *saddr, int src_len, 1472 bool exact_match) 1473 { 1474 struct fib6_node *fn; 1475 1476 fn = fib6_locate_1(root, daddr, dst_len, 1477 offsetof(struct rt6_info, rt6i_dst), 1478 exact_match); 1479 1480 #ifdef CONFIG_IPV6_SUBTREES 1481 if (src_len) { 1482 WARN_ON(saddr == NULL); 1483 if (fn) { 1484 struct fib6_node *subtree = FIB6_SUBTREE(fn); 1485 1486 if (subtree) { 1487 fn = fib6_locate_1(subtree, saddr, src_len, 1488 offsetof(struct rt6_info, rt6i_src), 1489 exact_match); 1490 } 1491 } 1492 } 1493 #endif 1494 1495 if (fn && fn->fn_flags & RTN_RTINFO) 1496 return fn; 1497 1498 return NULL; 1499 } 1500 1501 1502 /* 1503 * Deletion 1504 * 1505 */ 1506 1507 static struct rt6_info *fib6_find_prefix(struct net *net, 1508 struct fib6_table *table, 1509 struct fib6_node *fn) 1510 { 1511 struct fib6_node *child_left, *child_right; 1512 1513 if (fn->fn_flags & RTN_ROOT) 1514 return net->ipv6.ip6_null_entry; 1515 1516 while (fn) { 1517 child_left = rcu_dereference_protected(fn->left, 1518 lockdep_is_held(&table->tb6_lock)); 1519 child_right = rcu_dereference_protected(fn->right, 1520 lockdep_is_held(&table->tb6_lock)); 1521 if (child_left) 1522 return rcu_dereference_protected(child_left->leaf, 1523 lockdep_is_held(&table->tb6_lock)); 1524 if (child_right) 1525 return rcu_dereference_protected(child_right->leaf, 1526 lockdep_is_held(&table->tb6_lock)); 1527 1528 fn = FIB6_SUBTREE(fn); 1529 } 1530 return NULL; 1531 } 1532 1533 /* 1534 * Called to trim the tree of intermediate nodes when possible. "fn" 1535 * is the node we want to try and remove. 1536 * Need to own table->tb6_lock 1537 */ 1538 1539 static struct fib6_node *fib6_repair_tree(struct net *net, 1540 struct fib6_table *table, 1541 struct fib6_node *fn) 1542 { 1543 int children; 1544 int nstate; 1545 struct fib6_node *child; 1546 struct fib6_walker *w; 1547 int iter = 0; 1548 1549 /* Set fn->leaf to null_entry for root node. */ 1550 if (fn->fn_flags & RTN_TL_ROOT) { 1551 rcu_assign_pointer(fn->leaf, net->ipv6.ip6_null_entry); 1552 return fn; 1553 } 1554 1555 for (;;) { 1556 struct fib6_node *fn_r = rcu_dereference_protected(fn->right, 1557 lockdep_is_held(&table->tb6_lock)); 1558 struct fib6_node *fn_l = rcu_dereference_protected(fn->left, 1559 lockdep_is_held(&table->tb6_lock)); 1560 struct fib6_node *pn = rcu_dereference_protected(fn->parent, 1561 lockdep_is_held(&table->tb6_lock)); 1562 struct fib6_node *pn_r = rcu_dereference_protected(pn->right, 1563 lockdep_is_held(&table->tb6_lock)); 1564 struct fib6_node *pn_l = rcu_dereference_protected(pn->left, 1565 lockdep_is_held(&table->tb6_lock)); 1566 struct rt6_info *fn_leaf = rcu_dereference_protected(fn->leaf, 1567 lockdep_is_held(&table->tb6_lock)); 1568 struct rt6_info *pn_leaf = rcu_dereference_protected(pn->leaf, 1569 lockdep_is_held(&table->tb6_lock)); 1570 struct rt6_info *new_fn_leaf; 1571 1572 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter); 1573 iter++; 1574 1575 WARN_ON(fn->fn_flags & RTN_RTINFO); 1576 WARN_ON(fn->fn_flags & RTN_TL_ROOT); 1577 WARN_ON(fn_leaf); 1578 1579 children = 0; 1580 child = NULL; 1581 if (fn_r) 1582 child = fn_r, children |= 1; 1583 if (fn_l) 1584 child = fn_l, children |= 2; 1585 1586 if (children == 3 || FIB6_SUBTREE(fn) 1587 #ifdef CONFIG_IPV6_SUBTREES 1588 /* Subtree root (i.e. fn) may have one child */ 1589 || (children && fn->fn_flags & RTN_ROOT) 1590 #endif 1591 ) { 1592 new_fn_leaf = fib6_find_prefix(net, table, fn); 1593 #if RT6_DEBUG >= 2 1594 if (!new_fn_leaf) { 1595 WARN_ON(!new_fn_leaf); 1596 new_fn_leaf = net->ipv6.ip6_null_entry; 1597 } 1598 #endif 1599 atomic_inc(&new_fn_leaf->rt6i_ref); 1600 rcu_assign_pointer(fn->leaf, new_fn_leaf); 1601 return pn; 1602 } 1603 1604 #ifdef CONFIG_IPV6_SUBTREES 1605 if (FIB6_SUBTREE(pn) == fn) { 1606 WARN_ON(!(fn->fn_flags & RTN_ROOT)); 1607 RCU_INIT_POINTER(pn->subtree, NULL); 1608 nstate = FWS_L; 1609 } else { 1610 WARN_ON(fn->fn_flags & RTN_ROOT); 1611 #endif 1612 if (pn_r == fn) 1613 rcu_assign_pointer(pn->right, child); 1614 else if (pn_l == fn) 1615 rcu_assign_pointer(pn->left, child); 1616 #if RT6_DEBUG >= 2 1617 else 1618 WARN_ON(1); 1619 #endif 1620 if (child) 1621 rcu_assign_pointer(child->parent, pn); 1622 nstate = FWS_R; 1623 #ifdef CONFIG_IPV6_SUBTREES 1624 } 1625 #endif 1626 1627 read_lock(&net->ipv6.fib6_walker_lock); 1628 FOR_WALKERS(net, w) { 1629 if (!child) { 1630 if (w->node == fn) { 1631 RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate); 1632 w->node = pn; 1633 w->state = nstate; 1634 } 1635 } else { 1636 if (w->node == fn) { 1637 w->node = child; 1638 if (children&2) { 1639 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state); 1640 w->state = w->state >= FWS_R ? FWS_U : FWS_INIT; 1641 } else { 1642 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state); 1643 w->state = w->state >= FWS_C ? FWS_U : FWS_INIT; 1644 } 1645 } 1646 } 1647 } 1648 read_unlock(&net->ipv6.fib6_walker_lock); 1649 1650 node_free(net, fn); 1651 if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn)) 1652 return pn; 1653 1654 RCU_INIT_POINTER(pn->leaf, NULL); 1655 rt6_release(pn_leaf); 1656 fn = pn; 1657 } 1658 } 1659 1660 static void fib6_del_route(struct fib6_table *table, struct fib6_node *fn, 1661 struct rt6_info __rcu **rtp, struct nl_info *info) 1662 { 1663 struct fib6_walker *w; 1664 struct rt6_info *rt = rcu_dereference_protected(*rtp, 1665 lockdep_is_held(&table->tb6_lock)); 1666 struct net *net = info->nl_net; 1667 1668 RT6_TRACE("fib6_del_route\n"); 1669 1670 WARN_ON_ONCE(rt->rt6i_flags & RTF_CACHE); 1671 1672 /* Unlink it */ 1673 *rtp = rt->dst.rt6_next; 1674 rt->rt6i_node = NULL; 1675 net->ipv6.rt6_stats->fib_rt_entries--; 1676 net->ipv6.rt6_stats->fib_discarded_routes++; 1677 1678 /* Flush all cached dst in exception table */ 1679 rt6_flush_exceptions(rt); 1680 1681 /* Reset round-robin state, if necessary */ 1682 if (rcu_access_pointer(fn->rr_ptr) == rt) 1683 fn->rr_ptr = NULL; 1684 1685 /* Remove this entry from other siblings */ 1686 if (rt->rt6i_nsiblings) { 1687 struct rt6_info *sibling, *next_sibling; 1688 1689 list_for_each_entry_safe(sibling, next_sibling, 1690 &rt->rt6i_siblings, rt6i_siblings) 1691 sibling->rt6i_nsiblings--; 1692 rt->rt6i_nsiblings = 0; 1693 list_del_init(&rt->rt6i_siblings); 1694 } 1695 1696 /* Adjust walkers */ 1697 read_lock(&net->ipv6.fib6_walker_lock); 1698 FOR_WALKERS(net, w) { 1699 if (w->state == FWS_C && w->leaf == rt) { 1700 RT6_TRACE("walker %p adjusted by delroute\n", w); 1701 w->leaf = rcu_dereference_protected(rt->dst.rt6_next, 1702 lockdep_is_held(&table->tb6_lock)); 1703 if (!w->leaf) 1704 w->state = FWS_U; 1705 } 1706 } 1707 read_unlock(&net->ipv6.fib6_walker_lock); 1708 1709 /* If it was last route, call fib6_repair_tree() to: 1710 * 1. For root node, put back null_entry as how the table was created. 1711 * 2. For other nodes, expunge its radix tree node. 1712 */ 1713 if (!rcu_access_pointer(fn->leaf)) { 1714 if (!(fn->fn_flags & RTN_TL_ROOT)) { 1715 fn->fn_flags &= ~RTN_RTINFO; 1716 net->ipv6.rt6_stats->fib_route_nodes--; 1717 } 1718 fn = fib6_repair_tree(net, table, fn); 1719 } 1720 1721 fib6_purge_rt(rt, fn, net); 1722 1723 call_fib6_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, rt, NULL); 1724 if (!info->skip_notify) 1725 inet6_rt_notify(RTM_DELROUTE, rt, info, 0); 1726 rt6_release(rt); 1727 } 1728 1729 /* Need to own table->tb6_lock */ 1730 int fib6_del(struct rt6_info *rt, struct nl_info *info) 1731 { 1732 struct fib6_node *fn = rcu_dereference_protected(rt->rt6i_node, 1733 lockdep_is_held(&rt->rt6i_table->tb6_lock)); 1734 struct fib6_table *table = rt->rt6i_table; 1735 struct net *net = info->nl_net; 1736 struct rt6_info __rcu **rtp; 1737 struct rt6_info __rcu **rtp_next; 1738 1739 #if RT6_DEBUG >= 2 1740 if (rt->dst.obsolete > 0) { 1741 WARN_ON(fn); 1742 return -ENOENT; 1743 } 1744 #endif 1745 if (!fn || rt == net->ipv6.ip6_null_entry) 1746 return -ENOENT; 1747 1748 WARN_ON(!(fn->fn_flags & RTN_RTINFO)); 1749 1750 /* remove cached dst from exception table */ 1751 if (rt->rt6i_flags & RTF_CACHE) 1752 return rt6_remove_exception_rt(rt); 1753 1754 /* 1755 * Walk the leaf entries looking for ourself 1756 */ 1757 1758 for (rtp = &fn->leaf; *rtp; rtp = rtp_next) { 1759 struct rt6_info *cur = rcu_dereference_protected(*rtp, 1760 lockdep_is_held(&table->tb6_lock)); 1761 if (rt == cur) { 1762 fib6_del_route(table, fn, rtp, info); 1763 return 0; 1764 } 1765 rtp_next = &cur->dst.rt6_next; 1766 } 1767 return -ENOENT; 1768 } 1769 1770 /* 1771 * Tree traversal function. 1772 * 1773 * Certainly, it is not interrupt safe. 1774 * However, it is internally reenterable wrt itself and fib6_add/fib6_del. 1775 * It means, that we can modify tree during walking 1776 * and use this function for garbage collection, clone pruning, 1777 * cleaning tree when a device goes down etc. etc. 1778 * 1779 * It guarantees that every node will be traversed, 1780 * and that it will be traversed only once. 1781 * 1782 * Callback function w->func may return: 1783 * 0 -> continue walking. 1784 * positive value -> walking is suspended (used by tree dumps, 1785 * and probably by gc, if it will be split to several slices) 1786 * negative value -> terminate walking. 1787 * 1788 * The function itself returns: 1789 * 0 -> walk is complete. 1790 * >0 -> walk is incomplete (i.e. suspended) 1791 * <0 -> walk is terminated by an error. 1792 * 1793 * This function is called with tb6_lock held. 1794 */ 1795 1796 static int fib6_walk_continue(struct fib6_walker *w) 1797 { 1798 struct fib6_node *fn, *pn, *left, *right; 1799 1800 /* w->root should always be table->tb6_root */ 1801 WARN_ON_ONCE(!(w->root->fn_flags & RTN_TL_ROOT)); 1802 1803 for (;;) { 1804 fn = w->node; 1805 if (!fn) 1806 return 0; 1807 1808 switch (w->state) { 1809 #ifdef CONFIG_IPV6_SUBTREES 1810 case FWS_S: 1811 if (FIB6_SUBTREE(fn)) { 1812 w->node = FIB6_SUBTREE(fn); 1813 continue; 1814 } 1815 w->state = FWS_L; 1816 #endif 1817 /* fall through */ 1818 case FWS_L: 1819 left = rcu_dereference_protected(fn->left, 1); 1820 if (left) { 1821 w->node = left; 1822 w->state = FWS_INIT; 1823 continue; 1824 } 1825 w->state = FWS_R; 1826 /* fall through */ 1827 case FWS_R: 1828 right = rcu_dereference_protected(fn->right, 1); 1829 if (right) { 1830 w->node = right; 1831 w->state = FWS_INIT; 1832 continue; 1833 } 1834 w->state = FWS_C; 1835 w->leaf = rcu_dereference_protected(fn->leaf, 1); 1836 /* fall through */ 1837 case FWS_C: 1838 if (w->leaf && fn->fn_flags & RTN_RTINFO) { 1839 int err; 1840 1841 if (w->skip) { 1842 w->skip--; 1843 goto skip; 1844 } 1845 1846 err = w->func(w); 1847 if (err) 1848 return err; 1849 1850 w->count++; 1851 continue; 1852 } 1853 skip: 1854 w->state = FWS_U; 1855 /* fall through */ 1856 case FWS_U: 1857 if (fn == w->root) 1858 return 0; 1859 pn = rcu_dereference_protected(fn->parent, 1); 1860 left = rcu_dereference_protected(pn->left, 1); 1861 right = rcu_dereference_protected(pn->right, 1); 1862 w->node = pn; 1863 #ifdef CONFIG_IPV6_SUBTREES 1864 if (FIB6_SUBTREE(pn) == fn) { 1865 WARN_ON(!(fn->fn_flags & RTN_ROOT)); 1866 w->state = FWS_L; 1867 continue; 1868 } 1869 #endif 1870 if (left == fn) { 1871 w->state = FWS_R; 1872 continue; 1873 } 1874 if (right == fn) { 1875 w->state = FWS_C; 1876 w->leaf = rcu_dereference_protected(w->node->leaf, 1); 1877 continue; 1878 } 1879 #if RT6_DEBUG >= 2 1880 WARN_ON(1); 1881 #endif 1882 } 1883 } 1884 } 1885 1886 static int fib6_walk(struct net *net, struct fib6_walker *w) 1887 { 1888 int res; 1889 1890 w->state = FWS_INIT; 1891 w->node = w->root; 1892 1893 fib6_walker_link(net, w); 1894 res = fib6_walk_continue(w); 1895 if (res <= 0) 1896 fib6_walker_unlink(net, w); 1897 return res; 1898 } 1899 1900 static int fib6_clean_node(struct fib6_walker *w) 1901 { 1902 int res; 1903 struct rt6_info *rt; 1904 struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w); 1905 struct nl_info info = { 1906 .nl_net = c->net, 1907 }; 1908 1909 if (c->sernum != FIB6_NO_SERNUM_CHANGE && 1910 w->node->fn_sernum != c->sernum) 1911 w->node->fn_sernum = c->sernum; 1912 1913 if (!c->func) { 1914 WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE); 1915 w->leaf = NULL; 1916 return 0; 1917 } 1918 1919 for_each_fib6_walker_rt(w) { 1920 res = c->func(rt, c->arg); 1921 if (res < 0) { 1922 w->leaf = rt; 1923 res = fib6_del(rt, &info); 1924 if (res) { 1925 #if RT6_DEBUG >= 2 1926 pr_debug("%s: del failed: rt=%p@%p err=%d\n", 1927 __func__, rt, 1928 rcu_access_pointer(rt->rt6i_node), 1929 res); 1930 #endif 1931 continue; 1932 } 1933 return 0; 1934 } 1935 WARN_ON(res != 0); 1936 } 1937 w->leaf = rt; 1938 return 0; 1939 } 1940 1941 /* 1942 * Convenient frontend to tree walker. 1943 * 1944 * func is called on each route. 1945 * It may return -1 -> delete this route. 1946 * 0 -> continue walking 1947 */ 1948 1949 static void fib6_clean_tree(struct net *net, struct fib6_node *root, 1950 int (*func)(struct rt6_info *, void *arg), 1951 int sernum, void *arg) 1952 { 1953 struct fib6_cleaner c; 1954 1955 c.w.root = root; 1956 c.w.func = fib6_clean_node; 1957 c.w.count = 0; 1958 c.w.skip = 0; 1959 c.func = func; 1960 c.sernum = sernum; 1961 c.arg = arg; 1962 c.net = net; 1963 1964 fib6_walk(net, &c.w); 1965 } 1966 1967 static void __fib6_clean_all(struct net *net, 1968 int (*func)(struct rt6_info *, void *), 1969 int sernum, void *arg) 1970 { 1971 struct fib6_table *table; 1972 struct hlist_head *head; 1973 unsigned int h; 1974 1975 rcu_read_lock(); 1976 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { 1977 head = &net->ipv6.fib_table_hash[h]; 1978 hlist_for_each_entry_rcu(table, head, tb6_hlist) { 1979 spin_lock_bh(&table->tb6_lock); 1980 fib6_clean_tree(net, &table->tb6_root, 1981 func, sernum, arg); 1982 spin_unlock_bh(&table->tb6_lock); 1983 } 1984 } 1985 rcu_read_unlock(); 1986 } 1987 1988 void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *), 1989 void *arg) 1990 { 1991 __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg); 1992 } 1993 1994 static void fib6_flush_trees(struct net *net) 1995 { 1996 int new_sernum = fib6_new_sernum(net); 1997 1998 __fib6_clean_all(net, NULL, new_sernum, NULL); 1999 } 2000 2001 /* 2002 * Garbage collection 2003 */ 2004 2005 static int fib6_age(struct rt6_info *rt, void *arg) 2006 { 2007 struct fib6_gc_args *gc_args = arg; 2008 unsigned long now = jiffies; 2009 2010 /* 2011 * check addrconf expiration here. 2012 * Routes are expired even if they are in use. 2013 */ 2014 2015 if (rt->rt6i_flags & RTF_EXPIRES && rt->dst.expires) { 2016 if (time_after(now, rt->dst.expires)) { 2017 RT6_TRACE("expiring %p\n", rt); 2018 return -1; 2019 } 2020 gc_args->more++; 2021 } 2022 2023 /* Also age clones in the exception table. 2024 * Note, that clones are aged out 2025 * only if they are not in use now. 2026 */ 2027 rt6_age_exceptions(rt, gc_args, now); 2028 2029 return 0; 2030 } 2031 2032 void fib6_run_gc(unsigned long expires, struct net *net, bool force) 2033 { 2034 struct fib6_gc_args gc_args; 2035 unsigned long now; 2036 2037 if (force) { 2038 spin_lock_bh(&net->ipv6.fib6_gc_lock); 2039 } else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) { 2040 mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ); 2041 return; 2042 } 2043 gc_args.timeout = expires ? (int)expires : 2044 net->ipv6.sysctl.ip6_rt_gc_interval; 2045 gc_args.more = 0; 2046 2047 fib6_clean_all(net, fib6_age, &gc_args); 2048 now = jiffies; 2049 net->ipv6.ip6_rt_last_gc = now; 2050 2051 if (gc_args.more) 2052 mod_timer(&net->ipv6.ip6_fib_timer, 2053 round_jiffies(now 2054 + net->ipv6.sysctl.ip6_rt_gc_interval)); 2055 else 2056 del_timer(&net->ipv6.ip6_fib_timer); 2057 spin_unlock_bh(&net->ipv6.fib6_gc_lock); 2058 } 2059 2060 static void fib6_gc_timer_cb(struct timer_list *t) 2061 { 2062 struct net *arg = from_timer(arg, t, ipv6.ip6_fib_timer); 2063 2064 fib6_run_gc(0, arg, true); 2065 } 2066 2067 static int __net_init fib6_net_init(struct net *net) 2068 { 2069 size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ; 2070 int err; 2071 2072 err = fib6_notifier_init(net); 2073 if (err) 2074 return err; 2075 2076 spin_lock_init(&net->ipv6.fib6_gc_lock); 2077 rwlock_init(&net->ipv6.fib6_walker_lock); 2078 INIT_LIST_HEAD(&net->ipv6.fib6_walkers); 2079 timer_setup(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, 0); 2080 2081 net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL); 2082 if (!net->ipv6.rt6_stats) 2083 goto out_timer; 2084 2085 /* Avoid false sharing : Use at least a full cache line */ 2086 size = max_t(size_t, size, L1_CACHE_BYTES); 2087 2088 net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL); 2089 if (!net->ipv6.fib_table_hash) 2090 goto out_rt6_stats; 2091 2092 net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl), 2093 GFP_KERNEL); 2094 if (!net->ipv6.fib6_main_tbl) 2095 goto out_fib_table_hash; 2096 2097 net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN; 2098 rcu_assign_pointer(net->ipv6.fib6_main_tbl->tb6_root.leaf, 2099 net->ipv6.ip6_null_entry); 2100 net->ipv6.fib6_main_tbl->tb6_root.fn_flags = 2101 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO; 2102 inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers); 2103 2104 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 2105 net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl), 2106 GFP_KERNEL); 2107 if (!net->ipv6.fib6_local_tbl) 2108 goto out_fib6_main_tbl; 2109 net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL; 2110 rcu_assign_pointer(net->ipv6.fib6_local_tbl->tb6_root.leaf, 2111 net->ipv6.ip6_null_entry); 2112 net->ipv6.fib6_local_tbl->tb6_root.fn_flags = 2113 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO; 2114 inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers); 2115 #endif 2116 fib6_tables_init(net); 2117 2118 return 0; 2119 2120 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 2121 out_fib6_main_tbl: 2122 kfree(net->ipv6.fib6_main_tbl); 2123 #endif 2124 out_fib_table_hash: 2125 kfree(net->ipv6.fib_table_hash); 2126 out_rt6_stats: 2127 kfree(net->ipv6.rt6_stats); 2128 out_timer: 2129 fib6_notifier_exit(net); 2130 return -ENOMEM; 2131 } 2132 2133 static void fib6_net_exit(struct net *net) 2134 { 2135 unsigned int i; 2136 2137 rt6_ifdown(net, NULL); 2138 del_timer_sync(&net->ipv6.ip6_fib_timer); 2139 2140 for (i = 0; i < FIB6_TABLE_HASHSZ; i++) { 2141 struct hlist_head *head = &net->ipv6.fib_table_hash[i]; 2142 struct hlist_node *tmp; 2143 struct fib6_table *tb; 2144 2145 hlist_for_each_entry_safe(tb, tmp, head, tb6_hlist) { 2146 hlist_del(&tb->tb6_hlist); 2147 fib6_free_table(tb); 2148 } 2149 } 2150 2151 kfree(net->ipv6.fib_table_hash); 2152 kfree(net->ipv6.rt6_stats); 2153 fib6_notifier_exit(net); 2154 } 2155 2156 static struct pernet_operations fib6_net_ops = { 2157 .init = fib6_net_init, 2158 .exit = fib6_net_exit, 2159 }; 2160 2161 int __init fib6_init(void) 2162 { 2163 int ret = -ENOMEM; 2164 2165 fib6_node_kmem = kmem_cache_create("fib6_nodes", 2166 sizeof(struct fib6_node), 2167 0, SLAB_HWCACHE_ALIGN, 2168 NULL); 2169 if (!fib6_node_kmem) 2170 goto out; 2171 2172 ret = register_pernet_subsys(&fib6_net_ops); 2173 if (ret) 2174 goto out_kmem_cache_create; 2175 2176 ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib, 2177 0); 2178 if (ret) 2179 goto out_unregister_subsys; 2180 2181 __fib6_flush_trees = fib6_flush_trees; 2182 out: 2183 return ret; 2184 2185 out_unregister_subsys: 2186 unregister_pernet_subsys(&fib6_net_ops); 2187 out_kmem_cache_create: 2188 kmem_cache_destroy(fib6_node_kmem); 2189 goto out; 2190 } 2191 2192 void fib6_gc_cleanup(void) 2193 { 2194 unregister_pernet_subsys(&fib6_net_ops); 2195 kmem_cache_destroy(fib6_node_kmem); 2196 } 2197 2198 #ifdef CONFIG_PROC_FS 2199 2200 struct ipv6_route_iter { 2201 struct seq_net_private p; 2202 struct fib6_walker w; 2203 loff_t skip; 2204 struct fib6_table *tbl; 2205 int sernum; 2206 }; 2207 2208 static int ipv6_route_seq_show(struct seq_file *seq, void *v) 2209 { 2210 struct rt6_info *rt = v; 2211 struct ipv6_route_iter *iter = seq->private; 2212 2213 seq_printf(seq, "%pi6 %02x ", &rt->rt6i_dst.addr, rt->rt6i_dst.plen); 2214 2215 #ifdef CONFIG_IPV6_SUBTREES 2216 seq_printf(seq, "%pi6 %02x ", &rt->rt6i_src.addr, rt->rt6i_src.plen); 2217 #else 2218 seq_puts(seq, "00000000000000000000000000000000 00 "); 2219 #endif 2220 if (rt->rt6i_flags & RTF_GATEWAY) 2221 seq_printf(seq, "%pi6", &rt->rt6i_gateway); 2222 else 2223 seq_puts(seq, "00000000000000000000000000000000"); 2224 2225 seq_printf(seq, " %08x %08x %08x %08x %8s\n", 2226 rt->rt6i_metric, atomic_read(&rt->dst.__refcnt), 2227 rt->dst.__use, rt->rt6i_flags, 2228 rt->dst.dev ? rt->dst.dev->name : ""); 2229 iter->w.leaf = NULL; 2230 return 0; 2231 } 2232 2233 static int ipv6_route_yield(struct fib6_walker *w) 2234 { 2235 struct ipv6_route_iter *iter = w->args; 2236 2237 if (!iter->skip) 2238 return 1; 2239 2240 do { 2241 iter->w.leaf = rcu_dereference_protected( 2242 iter->w.leaf->dst.rt6_next, 2243 lockdep_is_held(&iter->tbl->tb6_lock)); 2244 iter->skip--; 2245 if (!iter->skip && iter->w.leaf) 2246 return 1; 2247 } while (iter->w.leaf); 2248 2249 return 0; 2250 } 2251 2252 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter, 2253 struct net *net) 2254 { 2255 memset(&iter->w, 0, sizeof(iter->w)); 2256 iter->w.func = ipv6_route_yield; 2257 iter->w.root = &iter->tbl->tb6_root; 2258 iter->w.state = FWS_INIT; 2259 iter->w.node = iter->w.root; 2260 iter->w.args = iter; 2261 iter->sernum = iter->w.root->fn_sernum; 2262 INIT_LIST_HEAD(&iter->w.lh); 2263 fib6_walker_link(net, &iter->w); 2264 } 2265 2266 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl, 2267 struct net *net) 2268 { 2269 unsigned int h; 2270 struct hlist_node *node; 2271 2272 if (tbl) { 2273 h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1; 2274 node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist)); 2275 } else { 2276 h = 0; 2277 node = NULL; 2278 } 2279 2280 while (!node && h < FIB6_TABLE_HASHSZ) { 2281 node = rcu_dereference_bh( 2282 hlist_first_rcu(&net->ipv6.fib_table_hash[h++])); 2283 } 2284 return hlist_entry_safe(node, struct fib6_table, tb6_hlist); 2285 } 2286 2287 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter) 2288 { 2289 if (iter->sernum != iter->w.root->fn_sernum) { 2290 iter->sernum = iter->w.root->fn_sernum; 2291 iter->w.state = FWS_INIT; 2292 iter->w.node = iter->w.root; 2293 WARN_ON(iter->w.skip); 2294 iter->w.skip = iter->w.count; 2295 } 2296 } 2297 2298 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2299 { 2300 int r; 2301 struct rt6_info *n; 2302 struct net *net = seq_file_net(seq); 2303 struct ipv6_route_iter *iter = seq->private; 2304 2305 if (!v) 2306 goto iter_table; 2307 2308 n = rcu_dereference_bh(((struct rt6_info *)v)->dst.rt6_next); 2309 if (n) { 2310 ++*pos; 2311 return n; 2312 } 2313 2314 iter_table: 2315 ipv6_route_check_sernum(iter); 2316 spin_lock_bh(&iter->tbl->tb6_lock); 2317 r = fib6_walk_continue(&iter->w); 2318 spin_unlock_bh(&iter->tbl->tb6_lock); 2319 if (r > 0) { 2320 if (v) 2321 ++*pos; 2322 return iter->w.leaf; 2323 } else if (r < 0) { 2324 fib6_walker_unlink(net, &iter->w); 2325 return NULL; 2326 } 2327 fib6_walker_unlink(net, &iter->w); 2328 2329 iter->tbl = ipv6_route_seq_next_table(iter->tbl, net); 2330 if (!iter->tbl) 2331 return NULL; 2332 2333 ipv6_route_seq_setup_walk(iter, net); 2334 goto iter_table; 2335 } 2336 2337 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos) 2338 __acquires(RCU_BH) 2339 { 2340 struct net *net = seq_file_net(seq); 2341 struct ipv6_route_iter *iter = seq->private; 2342 2343 rcu_read_lock_bh(); 2344 iter->tbl = ipv6_route_seq_next_table(NULL, net); 2345 iter->skip = *pos; 2346 2347 if (iter->tbl) { 2348 ipv6_route_seq_setup_walk(iter, net); 2349 return ipv6_route_seq_next(seq, NULL, pos); 2350 } else { 2351 return NULL; 2352 } 2353 } 2354 2355 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter) 2356 { 2357 struct fib6_walker *w = &iter->w; 2358 return w->node && !(w->state == FWS_U && w->node == w->root); 2359 } 2360 2361 static void ipv6_route_seq_stop(struct seq_file *seq, void *v) 2362 __releases(RCU_BH) 2363 { 2364 struct net *net = seq_file_net(seq); 2365 struct ipv6_route_iter *iter = seq->private; 2366 2367 if (ipv6_route_iter_active(iter)) 2368 fib6_walker_unlink(net, &iter->w); 2369 2370 rcu_read_unlock_bh(); 2371 } 2372 2373 static const struct seq_operations ipv6_route_seq_ops = { 2374 .start = ipv6_route_seq_start, 2375 .next = ipv6_route_seq_next, 2376 .stop = ipv6_route_seq_stop, 2377 .show = ipv6_route_seq_show 2378 }; 2379 2380 int ipv6_route_open(struct inode *inode, struct file *file) 2381 { 2382 return seq_open_net(inode, file, &ipv6_route_seq_ops, 2383 sizeof(struct ipv6_route_iter)); 2384 } 2385 2386 #endif /* CONFIG_PROC_FS */ 2387