1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Linux INET6 implementation 4 * Forwarding Information Database 5 * 6 * Authors: 7 * Pedro Roque <roque@di.fc.ul.pt> 8 * 9 * Changes: 10 * Yuji SEKIYA @USAGI: Support default route on router node; 11 * remove ip6_null_entry from the top of 12 * routing table. 13 * Ville Nuorvala: Fixed routing subtrees. 14 */ 15 16 #define pr_fmt(fmt) "IPv6: " fmt 17 18 #include <linux/bpf.h> 19 #include <linux/errno.h> 20 #include <linux/types.h> 21 #include <linux/net.h> 22 #include <linux/route.h> 23 #include <linux/netdevice.h> 24 #include <linux/in6.h> 25 #include <linux/init.h> 26 #include <linux/list.h> 27 #include <linux/slab.h> 28 29 #include <net/ip.h> 30 #include <net/ipv6.h> 31 #include <net/ndisc.h> 32 #include <net/addrconf.h> 33 #include <net/lwtunnel.h> 34 #include <net/fib_notifier.h> 35 36 #include <net/ip_fib.h> 37 #include <net/ip6_fib.h> 38 #include <net/ip6_route.h> 39 40 static struct kmem_cache *fib6_node_kmem __read_mostly; 41 42 struct fib6_cleaner { 43 struct fib6_walker w; 44 struct net *net; 45 int (*func)(struct fib6_info *, void *arg); 46 int sernum; 47 void *arg; 48 bool skip_notify; 49 }; 50 51 #ifdef CONFIG_IPV6_SUBTREES 52 #define FWS_INIT FWS_S 53 #else 54 #define FWS_INIT FWS_L 55 #endif 56 57 static struct fib6_info *fib6_find_prefix(struct net *net, 58 struct fib6_table *table, 59 struct fib6_node *fn); 60 static struct fib6_node *fib6_repair_tree(struct net *net, 61 struct fib6_table *table, 62 struct fib6_node *fn); 63 static int fib6_walk(struct net *net, struct fib6_walker *w); 64 static int fib6_walk_continue(struct fib6_walker *w); 65 66 /* 67 * A routing update causes an increase of the serial number on the 68 * affected subtree. This allows for cached routes to be asynchronously 69 * tested when modifications are made to the destination cache as a 70 * result of redirects, path MTU changes, etc. 71 */ 72 73 static void fib6_gc_timer_cb(struct timer_list *t); 74 75 #define FOR_WALKERS(net, w) \ 76 list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh) 77 78 static void fib6_walker_link(struct net *net, struct fib6_walker *w) 79 { 80 write_lock_bh(&net->ipv6.fib6_walker_lock); 81 list_add(&w->lh, &net->ipv6.fib6_walkers); 82 write_unlock_bh(&net->ipv6.fib6_walker_lock); 83 } 84 85 static void fib6_walker_unlink(struct net *net, struct fib6_walker *w) 86 { 87 write_lock_bh(&net->ipv6.fib6_walker_lock); 88 list_del(&w->lh); 89 write_unlock_bh(&net->ipv6.fib6_walker_lock); 90 } 91 92 static int fib6_new_sernum(struct net *net) 93 { 94 int new, old = atomic_read(&net->ipv6.fib6_sernum); 95 96 do { 97 new = old < INT_MAX ? old + 1 : 1; 98 } while (!atomic_try_cmpxchg(&net->ipv6.fib6_sernum, &old, new)); 99 100 return new; 101 } 102 103 enum { 104 FIB6_NO_SERNUM_CHANGE = 0, 105 }; 106 107 void fib6_update_sernum(struct net *net, struct fib6_info *f6i) 108 { 109 struct fib6_node *fn; 110 111 fn = rcu_dereference_protected(f6i->fib6_node, 112 lockdep_is_held(&f6i->fib6_table->tb6_lock)); 113 if (fn) 114 WRITE_ONCE(fn->fn_sernum, fib6_new_sernum(net)); 115 } 116 117 /* 118 * Auxiliary address test functions for the radix tree. 119 * 120 * These assume a 32bit processor (although it will work on 121 * 64bit processors) 122 */ 123 124 /* 125 * test bit 126 */ 127 #if defined(__LITTLE_ENDIAN) 128 # define BITOP_BE32_SWIZZLE (0x1F & ~7) 129 #else 130 # define BITOP_BE32_SWIZZLE 0 131 #endif 132 133 static __be32 addr_bit_set(const void *token, int fn_bit) 134 { 135 const __be32 *addr = token; 136 /* 137 * Here, 138 * 1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f) 139 * is optimized version of 140 * htonl(1 << ((~fn_bit)&0x1F)) 141 * See include/asm-generic/bitops/le.h. 142 */ 143 return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) & 144 addr[fn_bit >> 5]; 145 } 146 147 struct fib6_info *fib6_info_alloc(gfp_t gfp_flags, bool with_fib6_nh) 148 { 149 struct fib6_info *f6i; 150 size_t sz = sizeof(*f6i); 151 152 if (with_fib6_nh) 153 sz += sizeof(struct fib6_nh); 154 155 f6i = kzalloc(sz, gfp_flags); 156 if (!f6i) 157 return NULL; 158 159 /* fib6_siblings is a union with nh_list, so this initializes both */ 160 INIT_LIST_HEAD(&f6i->fib6_siblings); 161 refcount_set(&f6i->fib6_ref, 1); 162 163 INIT_HLIST_NODE(&f6i->gc_link); 164 165 return f6i; 166 } 167 168 void fib6_info_destroy_rcu(struct rcu_head *head) 169 { 170 struct fib6_info *f6i = container_of(head, struct fib6_info, rcu); 171 172 WARN_ON(f6i->fib6_node); 173 174 if (f6i->nh) 175 nexthop_put(f6i->nh); 176 else 177 fib6_nh_release(f6i->fib6_nh); 178 179 ip_fib_metrics_put(f6i->fib6_metrics); 180 kfree(f6i); 181 } 182 EXPORT_SYMBOL_GPL(fib6_info_destroy_rcu); 183 184 static struct fib6_node *node_alloc(struct net *net) 185 { 186 struct fib6_node *fn; 187 188 fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC); 189 if (fn) 190 net->ipv6.rt6_stats->fib_nodes++; 191 192 return fn; 193 } 194 195 static void node_free_immediate(struct net *net, struct fib6_node *fn) 196 { 197 kmem_cache_free(fib6_node_kmem, fn); 198 net->ipv6.rt6_stats->fib_nodes--; 199 } 200 201 static void node_free_rcu(struct rcu_head *head) 202 { 203 struct fib6_node *fn = container_of(head, struct fib6_node, rcu); 204 205 kmem_cache_free(fib6_node_kmem, fn); 206 } 207 208 static void node_free(struct net *net, struct fib6_node *fn) 209 { 210 call_rcu(&fn->rcu, node_free_rcu); 211 net->ipv6.rt6_stats->fib_nodes--; 212 } 213 214 static void fib6_free_table(struct fib6_table *table) 215 { 216 inetpeer_invalidate_tree(&table->tb6_peers); 217 kfree(table); 218 } 219 220 static void fib6_link_table(struct net *net, struct fib6_table *tb) 221 { 222 unsigned int h; 223 224 /* 225 * Initialize table lock at a single place to give lockdep a key, 226 * tables aren't visible prior to being linked to the list. 227 */ 228 spin_lock_init(&tb->tb6_lock); 229 h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1); 230 231 /* 232 * No protection necessary, this is the only list mutatation 233 * operation, tables never disappear once they exist. 234 */ 235 hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]); 236 } 237 238 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 239 240 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id) 241 { 242 struct fib6_table *table; 243 244 table = kzalloc(sizeof(*table), GFP_ATOMIC); 245 if (table) { 246 table->tb6_id = id; 247 rcu_assign_pointer(table->tb6_root.leaf, 248 net->ipv6.fib6_null_entry); 249 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO; 250 inet_peer_base_init(&table->tb6_peers); 251 INIT_HLIST_HEAD(&table->tb6_gc_hlist); 252 } 253 254 return table; 255 } 256 257 struct fib6_table *fib6_new_table(struct net *net, u32 id) 258 { 259 struct fib6_table *tb; 260 261 if (id == 0) 262 id = RT6_TABLE_MAIN; 263 tb = fib6_get_table(net, id); 264 if (tb) 265 return tb; 266 267 tb = fib6_alloc_table(net, id); 268 if (tb) 269 fib6_link_table(net, tb); 270 271 return tb; 272 } 273 EXPORT_SYMBOL_GPL(fib6_new_table); 274 275 struct fib6_table *fib6_get_table(struct net *net, u32 id) 276 { 277 struct fib6_table *tb; 278 struct hlist_head *head; 279 unsigned int h; 280 281 if (id == 0) 282 id = RT6_TABLE_MAIN; 283 h = id & (FIB6_TABLE_HASHSZ - 1); 284 rcu_read_lock(); 285 head = &net->ipv6.fib_table_hash[h]; 286 hlist_for_each_entry_rcu(tb, head, tb6_hlist) { 287 if (tb->tb6_id == id) { 288 rcu_read_unlock(); 289 return tb; 290 } 291 } 292 rcu_read_unlock(); 293 294 return NULL; 295 } 296 EXPORT_SYMBOL_GPL(fib6_get_table); 297 298 static void __net_init fib6_tables_init(struct net *net) 299 { 300 fib6_link_table(net, net->ipv6.fib6_main_tbl); 301 fib6_link_table(net, net->ipv6.fib6_local_tbl); 302 } 303 #else 304 305 struct fib6_table *fib6_new_table(struct net *net, u32 id) 306 { 307 return fib6_get_table(net, id); 308 } 309 310 struct fib6_table *fib6_get_table(struct net *net, u32 id) 311 { 312 return net->ipv6.fib6_main_tbl; 313 } 314 315 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6, 316 const struct sk_buff *skb, 317 int flags, pol_lookup_t lookup) 318 { 319 struct rt6_info *rt; 320 321 rt = pol_lookup_func(lookup, 322 net, net->ipv6.fib6_main_tbl, fl6, skb, flags); 323 if (rt->dst.error == -EAGAIN) { 324 ip6_rt_put_flags(rt, flags); 325 rt = net->ipv6.ip6_null_entry; 326 if (!(flags & RT6_LOOKUP_F_DST_NOREF)) 327 dst_hold(&rt->dst); 328 } 329 330 return &rt->dst; 331 } 332 333 /* called with rcu lock held; no reference taken on fib6_info */ 334 int fib6_lookup(struct net *net, int oif, struct flowi6 *fl6, 335 struct fib6_result *res, int flags) 336 { 337 return fib6_table_lookup(net, net->ipv6.fib6_main_tbl, oif, fl6, 338 res, flags); 339 } 340 341 static void __net_init fib6_tables_init(struct net *net) 342 { 343 fib6_link_table(net, net->ipv6.fib6_main_tbl); 344 } 345 346 #endif 347 348 unsigned int fib6_tables_seq_read(struct net *net) 349 { 350 unsigned int h, fib_seq = 0; 351 352 rcu_read_lock(); 353 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { 354 struct hlist_head *head = &net->ipv6.fib_table_hash[h]; 355 struct fib6_table *tb; 356 357 hlist_for_each_entry_rcu(tb, head, tb6_hlist) 358 fib_seq += tb->fib_seq; 359 } 360 rcu_read_unlock(); 361 362 return fib_seq; 363 } 364 365 static int call_fib6_entry_notifier(struct notifier_block *nb, 366 enum fib_event_type event_type, 367 struct fib6_info *rt, 368 struct netlink_ext_ack *extack) 369 { 370 struct fib6_entry_notifier_info info = { 371 .info.extack = extack, 372 .rt = rt, 373 }; 374 375 return call_fib6_notifier(nb, event_type, &info.info); 376 } 377 378 static int call_fib6_multipath_entry_notifier(struct notifier_block *nb, 379 enum fib_event_type event_type, 380 struct fib6_info *rt, 381 unsigned int nsiblings, 382 struct netlink_ext_ack *extack) 383 { 384 struct fib6_entry_notifier_info info = { 385 .info.extack = extack, 386 .rt = rt, 387 .nsiblings = nsiblings, 388 }; 389 390 return call_fib6_notifier(nb, event_type, &info.info); 391 } 392 393 int call_fib6_entry_notifiers(struct net *net, 394 enum fib_event_type event_type, 395 struct fib6_info *rt, 396 struct netlink_ext_ack *extack) 397 { 398 struct fib6_entry_notifier_info info = { 399 .info.extack = extack, 400 .rt = rt, 401 }; 402 403 rt->fib6_table->fib_seq++; 404 return call_fib6_notifiers(net, event_type, &info.info); 405 } 406 407 int call_fib6_multipath_entry_notifiers(struct net *net, 408 enum fib_event_type event_type, 409 struct fib6_info *rt, 410 unsigned int nsiblings, 411 struct netlink_ext_ack *extack) 412 { 413 struct fib6_entry_notifier_info info = { 414 .info.extack = extack, 415 .rt = rt, 416 .nsiblings = nsiblings, 417 }; 418 419 rt->fib6_table->fib_seq++; 420 return call_fib6_notifiers(net, event_type, &info.info); 421 } 422 423 int call_fib6_entry_notifiers_replace(struct net *net, struct fib6_info *rt) 424 { 425 struct fib6_entry_notifier_info info = { 426 .rt = rt, 427 .nsiblings = rt->fib6_nsiblings, 428 }; 429 430 rt->fib6_table->fib_seq++; 431 return call_fib6_notifiers(net, FIB_EVENT_ENTRY_REPLACE, &info.info); 432 } 433 434 struct fib6_dump_arg { 435 struct net *net; 436 struct notifier_block *nb; 437 struct netlink_ext_ack *extack; 438 }; 439 440 static int fib6_rt_dump(struct fib6_info *rt, struct fib6_dump_arg *arg) 441 { 442 enum fib_event_type fib_event = FIB_EVENT_ENTRY_REPLACE; 443 int err; 444 445 if (!rt || rt == arg->net->ipv6.fib6_null_entry) 446 return 0; 447 448 if (rt->fib6_nsiblings) 449 err = call_fib6_multipath_entry_notifier(arg->nb, fib_event, 450 rt, 451 rt->fib6_nsiblings, 452 arg->extack); 453 else 454 err = call_fib6_entry_notifier(arg->nb, fib_event, rt, 455 arg->extack); 456 457 return err; 458 } 459 460 static int fib6_node_dump(struct fib6_walker *w) 461 { 462 int err; 463 464 err = fib6_rt_dump(w->leaf, w->args); 465 w->leaf = NULL; 466 return err; 467 } 468 469 static int fib6_table_dump(struct net *net, struct fib6_table *tb, 470 struct fib6_walker *w) 471 { 472 int err; 473 474 w->root = &tb->tb6_root; 475 spin_lock_bh(&tb->tb6_lock); 476 err = fib6_walk(net, w); 477 spin_unlock_bh(&tb->tb6_lock); 478 return err; 479 } 480 481 /* Called with rcu_read_lock() */ 482 int fib6_tables_dump(struct net *net, struct notifier_block *nb, 483 struct netlink_ext_ack *extack) 484 { 485 struct fib6_dump_arg arg; 486 struct fib6_walker *w; 487 unsigned int h; 488 int err = 0; 489 490 w = kzalloc(sizeof(*w), GFP_ATOMIC); 491 if (!w) 492 return -ENOMEM; 493 494 w->func = fib6_node_dump; 495 arg.net = net; 496 arg.nb = nb; 497 arg.extack = extack; 498 w->args = &arg; 499 500 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { 501 struct hlist_head *head = &net->ipv6.fib_table_hash[h]; 502 struct fib6_table *tb; 503 504 hlist_for_each_entry_rcu(tb, head, tb6_hlist) { 505 err = fib6_table_dump(net, tb, w); 506 if (err) 507 goto out; 508 } 509 } 510 511 out: 512 kfree(w); 513 514 /* The tree traversal function should never return a positive value. */ 515 return err > 0 ? -EINVAL : err; 516 } 517 518 static int fib6_dump_node(struct fib6_walker *w) 519 { 520 int res; 521 struct fib6_info *rt; 522 523 for_each_fib6_walker_rt(w) { 524 res = rt6_dump_route(rt, w->args, w->skip_in_node); 525 if (res >= 0) { 526 /* Frame is full, suspend walking */ 527 w->leaf = rt; 528 529 /* We'll restart from this node, so if some routes were 530 * already dumped, skip them next time. 531 */ 532 w->skip_in_node += res; 533 534 return 1; 535 } 536 w->skip_in_node = 0; 537 538 /* Multipath routes are dumped in one route with the 539 * RTA_MULTIPATH attribute. Jump 'rt' to point to the 540 * last sibling of this route (no need to dump the 541 * sibling routes again) 542 */ 543 if (rt->fib6_nsiblings) 544 rt = list_last_entry(&rt->fib6_siblings, 545 struct fib6_info, 546 fib6_siblings); 547 } 548 w->leaf = NULL; 549 return 0; 550 } 551 552 static void fib6_dump_end(struct netlink_callback *cb) 553 { 554 struct net *net = sock_net(cb->skb->sk); 555 struct fib6_walker *w = (void *)cb->args[2]; 556 557 if (w) { 558 if (cb->args[4]) { 559 cb->args[4] = 0; 560 fib6_walker_unlink(net, w); 561 } 562 cb->args[2] = 0; 563 kfree(w); 564 } 565 cb->done = (void *)cb->args[3]; 566 cb->args[1] = 3; 567 } 568 569 static int fib6_dump_done(struct netlink_callback *cb) 570 { 571 fib6_dump_end(cb); 572 return cb->done ? cb->done(cb) : 0; 573 } 574 575 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb, 576 struct netlink_callback *cb) 577 { 578 struct net *net = sock_net(skb->sk); 579 struct fib6_walker *w; 580 int res; 581 582 w = (void *)cb->args[2]; 583 w->root = &table->tb6_root; 584 585 if (cb->args[4] == 0) { 586 w->count = 0; 587 w->skip = 0; 588 w->skip_in_node = 0; 589 590 spin_lock_bh(&table->tb6_lock); 591 res = fib6_walk(net, w); 592 spin_unlock_bh(&table->tb6_lock); 593 if (res > 0) { 594 cb->args[4] = 1; 595 cb->args[5] = READ_ONCE(w->root->fn_sernum); 596 } 597 } else { 598 int sernum = READ_ONCE(w->root->fn_sernum); 599 if (cb->args[5] != sernum) { 600 /* Begin at the root if the tree changed */ 601 cb->args[5] = sernum; 602 w->state = FWS_INIT; 603 w->node = w->root; 604 w->skip = w->count; 605 w->skip_in_node = 0; 606 } else 607 w->skip = 0; 608 609 spin_lock_bh(&table->tb6_lock); 610 res = fib6_walk_continue(w); 611 spin_unlock_bh(&table->tb6_lock); 612 if (res <= 0) { 613 fib6_walker_unlink(net, w); 614 cb->args[4] = 0; 615 } 616 } 617 618 return res; 619 } 620 621 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb) 622 { 623 struct rt6_rtnl_dump_arg arg = { .filter.dump_exceptions = true, 624 .filter.dump_routes = true }; 625 const struct nlmsghdr *nlh = cb->nlh; 626 struct net *net = sock_net(skb->sk); 627 unsigned int h, s_h; 628 unsigned int e = 0, s_e; 629 struct fib6_walker *w; 630 struct fib6_table *tb; 631 struct hlist_head *head; 632 int res = 0; 633 634 if (cb->strict_check) { 635 int err; 636 637 err = ip_valid_fib_dump_req(net, nlh, &arg.filter, cb); 638 if (err < 0) 639 return err; 640 } else if (nlmsg_len(nlh) >= sizeof(struct rtmsg)) { 641 struct rtmsg *rtm = nlmsg_data(nlh); 642 643 if (rtm->rtm_flags & RTM_F_PREFIX) 644 arg.filter.flags = RTM_F_PREFIX; 645 } 646 647 w = (void *)cb->args[2]; 648 if (!w) { 649 /* New dump: 650 * 651 * 1. hook callback destructor. 652 */ 653 cb->args[3] = (long)cb->done; 654 cb->done = fib6_dump_done; 655 656 /* 657 * 2. allocate and initialize walker. 658 */ 659 w = kzalloc(sizeof(*w), GFP_ATOMIC); 660 if (!w) 661 return -ENOMEM; 662 w->func = fib6_dump_node; 663 cb->args[2] = (long)w; 664 } 665 666 arg.skb = skb; 667 arg.cb = cb; 668 arg.net = net; 669 w->args = &arg; 670 671 if (arg.filter.table_id) { 672 tb = fib6_get_table(net, arg.filter.table_id); 673 if (!tb) { 674 if (rtnl_msg_family(cb->nlh) != PF_INET6) 675 goto out; 676 677 NL_SET_ERR_MSG_MOD(cb->extack, "FIB table does not exist"); 678 return -ENOENT; 679 } 680 681 if (!cb->args[0]) { 682 res = fib6_dump_table(tb, skb, cb); 683 if (!res) 684 cb->args[0] = 1; 685 } 686 goto out; 687 } 688 689 s_h = cb->args[0]; 690 s_e = cb->args[1]; 691 692 rcu_read_lock(); 693 for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) { 694 e = 0; 695 head = &net->ipv6.fib_table_hash[h]; 696 hlist_for_each_entry_rcu(tb, head, tb6_hlist) { 697 if (e < s_e) 698 goto next; 699 res = fib6_dump_table(tb, skb, cb); 700 if (res != 0) 701 goto out_unlock; 702 next: 703 e++; 704 } 705 } 706 out_unlock: 707 rcu_read_unlock(); 708 cb->args[1] = e; 709 cb->args[0] = h; 710 out: 711 res = res < 0 ? res : skb->len; 712 if (res <= 0) 713 fib6_dump_end(cb); 714 return res; 715 } 716 717 void fib6_metric_set(struct fib6_info *f6i, int metric, u32 val) 718 { 719 if (!f6i) 720 return; 721 722 if (f6i->fib6_metrics == &dst_default_metrics) { 723 struct dst_metrics *p = kzalloc(sizeof(*p), GFP_ATOMIC); 724 725 if (!p) 726 return; 727 728 refcount_set(&p->refcnt, 1); 729 f6i->fib6_metrics = p; 730 } 731 732 f6i->fib6_metrics->metrics[metric - 1] = val; 733 } 734 735 /* 736 * Routing Table 737 * 738 * return the appropriate node for a routing tree "add" operation 739 * by either creating and inserting or by returning an existing 740 * node. 741 */ 742 743 static struct fib6_node *fib6_add_1(struct net *net, 744 struct fib6_table *table, 745 struct fib6_node *root, 746 struct in6_addr *addr, int plen, 747 int offset, int allow_create, 748 int replace_required, 749 struct netlink_ext_ack *extack) 750 { 751 struct fib6_node *fn, *in, *ln; 752 struct fib6_node *pn = NULL; 753 struct rt6key *key; 754 int bit; 755 __be32 dir = 0; 756 757 /* insert node in tree */ 758 759 fn = root; 760 761 do { 762 struct fib6_info *leaf = rcu_dereference_protected(fn->leaf, 763 lockdep_is_held(&table->tb6_lock)); 764 key = (struct rt6key *)((u8 *)leaf + offset); 765 766 /* 767 * Prefix match 768 */ 769 if (plen < fn->fn_bit || 770 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) { 771 if (!allow_create) { 772 if (replace_required) { 773 NL_SET_ERR_MSG(extack, 774 "Can not replace route - no match found"); 775 pr_warn("Can't replace route, no match found\n"); 776 return ERR_PTR(-ENOENT); 777 } 778 pr_warn("NLM_F_CREATE should be set when creating new route\n"); 779 } 780 goto insert_above; 781 } 782 783 /* 784 * Exact match ? 785 */ 786 787 if (plen == fn->fn_bit) { 788 /* clean up an intermediate node */ 789 if (!(fn->fn_flags & RTN_RTINFO)) { 790 RCU_INIT_POINTER(fn->leaf, NULL); 791 fib6_info_release(leaf); 792 /* remove null_entry in the root node */ 793 } else if (fn->fn_flags & RTN_TL_ROOT && 794 rcu_access_pointer(fn->leaf) == 795 net->ipv6.fib6_null_entry) { 796 RCU_INIT_POINTER(fn->leaf, NULL); 797 } 798 799 return fn; 800 } 801 802 /* 803 * We have more bits to go 804 */ 805 806 /* Try to walk down on tree. */ 807 dir = addr_bit_set(addr, fn->fn_bit); 808 pn = fn; 809 fn = dir ? 810 rcu_dereference_protected(fn->right, 811 lockdep_is_held(&table->tb6_lock)) : 812 rcu_dereference_protected(fn->left, 813 lockdep_is_held(&table->tb6_lock)); 814 } while (fn); 815 816 if (!allow_create) { 817 /* We should not create new node because 818 * NLM_F_REPLACE was specified without NLM_F_CREATE 819 * I assume it is safe to require NLM_F_CREATE when 820 * REPLACE flag is used! Later we may want to remove the 821 * check for replace_required, because according 822 * to netlink specification, NLM_F_CREATE 823 * MUST be specified if new route is created. 824 * That would keep IPv6 consistent with IPv4 825 */ 826 if (replace_required) { 827 NL_SET_ERR_MSG(extack, 828 "Can not replace route - no match found"); 829 pr_warn("Can't replace route, no match found\n"); 830 return ERR_PTR(-ENOENT); 831 } 832 pr_warn("NLM_F_CREATE should be set when creating new route\n"); 833 } 834 /* 835 * We walked to the bottom of tree. 836 * Create new leaf node without children. 837 */ 838 839 ln = node_alloc(net); 840 841 if (!ln) 842 return ERR_PTR(-ENOMEM); 843 ln->fn_bit = plen; 844 RCU_INIT_POINTER(ln->parent, pn); 845 846 if (dir) 847 rcu_assign_pointer(pn->right, ln); 848 else 849 rcu_assign_pointer(pn->left, ln); 850 851 return ln; 852 853 854 insert_above: 855 /* 856 * split since we don't have a common prefix anymore or 857 * we have a less significant route. 858 * we've to insert an intermediate node on the list 859 * this new node will point to the one we need to create 860 * and the current 861 */ 862 863 pn = rcu_dereference_protected(fn->parent, 864 lockdep_is_held(&table->tb6_lock)); 865 866 /* find 1st bit in difference between the 2 addrs. 867 868 See comment in __ipv6_addr_diff: bit may be an invalid value, 869 but if it is >= plen, the value is ignored in any case. 870 */ 871 872 bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr)); 873 874 /* 875 * (intermediate)[in] 876 * / \ 877 * (new leaf node)[ln] (old node)[fn] 878 */ 879 if (plen > bit) { 880 in = node_alloc(net); 881 ln = node_alloc(net); 882 883 if (!in || !ln) { 884 if (in) 885 node_free_immediate(net, in); 886 if (ln) 887 node_free_immediate(net, ln); 888 return ERR_PTR(-ENOMEM); 889 } 890 891 /* 892 * new intermediate node. 893 * RTN_RTINFO will 894 * be off since that an address that chooses one of 895 * the branches would not match less specific routes 896 * in the other branch 897 */ 898 899 in->fn_bit = bit; 900 901 RCU_INIT_POINTER(in->parent, pn); 902 in->leaf = fn->leaf; 903 fib6_info_hold(rcu_dereference_protected(in->leaf, 904 lockdep_is_held(&table->tb6_lock))); 905 906 /* update parent pointer */ 907 if (dir) 908 rcu_assign_pointer(pn->right, in); 909 else 910 rcu_assign_pointer(pn->left, in); 911 912 ln->fn_bit = plen; 913 914 RCU_INIT_POINTER(ln->parent, in); 915 rcu_assign_pointer(fn->parent, in); 916 917 if (addr_bit_set(addr, bit)) { 918 rcu_assign_pointer(in->right, ln); 919 rcu_assign_pointer(in->left, fn); 920 } else { 921 rcu_assign_pointer(in->left, ln); 922 rcu_assign_pointer(in->right, fn); 923 } 924 } else { /* plen <= bit */ 925 926 /* 927 * (new leaf node)[ln] 928 * / \ 929 * (old node)[fn] NULL 930 */ 931 932 ln = node_alloc(net); 933 934 if (!ln) 935 return ERR_PTR(-ENOMEM); 936 937 ln->fn_bit = plen; 938 939 RCU_INIT_POINTER(ln->parent, pn); 940 941 if (addr_bit_set(&key->addr, plen)) 942 RCU_INIT_POINTER(ln->right, fn); 943 else 944 RCU_INIT_POINTER(ln->left, fn); 945 946 rcu_assign_pointer(fn->parent, ln); 947 948 if (dir) 949 rcu_assign_pointer(pn->right, ln); 950 else 951 rcu_assign_pointer(pn->left, ln); 952 } 953 return ln; 954 } 955 956 static void __fib6_drop_pcpu_from(struct fib6_nh *fib6_nh, 957 const struct fib6_info *match, 958 const struct fib6_table *table) 959 { 960 int cpu; 961 962 if (!fib6_nh->rt6i_pcpu) 963 return; 964 965 /* release the reference to this fib entry from 966 * all of its cached pcpu routes 967 */ 968 for_each_possible_cpu(cpu) { 969 struct rt6_info **ppcpu_rt; 970 struct rt6_info *pcpu_rt; 971 972 ppcpu_rt = per_cpu_ptr(fib6_nh->rt6i_pcpu, cpu); 973 pcpu_rt = *ppcpu_rt; 974 975 /* only dropping the 'from' reference if the cached route 976 * is using 'match'. The cached pcpu_rt->from only changes 977 * from a fib6_info to NULL (ip6_dst_destroy); it can never 978 * change from one fib6_info reference to another 979 */ 980 if (pcpu_rt && rcu_access_pointer(pcpu_rt->from) == match) { 981 struct fib6_info *from; 982 983 from = xchg((__force struct fib6_info **)&pcpu_rt->from, NULL); 984 fib6_info_release(from); 985 } 986 } 987 } 988 989 struct fib6_nh_pcpu_arg { 990 struct fib6_info *from; 991 const struct fib6_table *table; 992 }; 993 994 static int fib6_nh_drop_pcpu_from(struct fib6_nh *nh, void *_arg) 995 { 996 struct fib6_nh_pcpu_arg *arg = _arg; 997 998 __fib6_drop_pcpu_from(nh, arg->from, arg->table); 999 return 0; 1000 } 1001 1002 static void fib6_drop_pcpu_from(struct fib6_info *f6i, 1003 const struct fib6_table *table) 1004 { 1005 /* Make sure rt6_make_pcpu_route() wont add other percpu routes 1006 * while we are cleaning them here. 1007 */ 1008 f6i->fib6_destroying = 1; 1009 mb(); /* paired with the cmpxchg() in rt6_make_pcpu_route() */ 1010 1011 if (f6i->nh) { 1012 struct fib6_nh_pcpu_arg arg = { 1013 .from = f6i, 1014 .table = table 1015 }; 1016 1017 nexthop_for_each_fib6_nh(f6i->nh, fib6_nh_drop_pcpu_from, 1018 &arg); 1019 } else { 1020 struct fib6_nh *fib6_nh; 1021 1022 fib6_nh = f6i->fib6_nh; 1023 __fib6_drop_pcpu_from(fib6_nh, f6i, table); 1024 } 1025 } 1026 1027 static void fib6_purge_rt(struct fib6_info *rt, struct fib6_node *fn, 1028 struct net *net) 1029 { 1030 struct fib6_table *table = rt->fib6_table; 1031 1032 /* Flush all cached dst in exception table */ 1033 rt6_flush_exceptions(rt); 1034 fib6_drop_pcpu_from(rt, table); 1035 1036 if (rt->nh && !list_empty(&rt->nh_list)) 1037 list_del_init(&rt->nh_list); 1038 1039 if (refcount_read(&rt->fib6_ref) != 1) { 1040 /* This route is used as dummy address holder in some split 1041 * nodes. It is not leaked, but it still holds other resources, 1042 * which must be released in time. So, scan ascendant nodes 1043 * and replace dummy references to this route with references 1044 * to still alive ones. 1045 */ 1046 while (fn) { 1047 struct fib6_info *leaf = rcu_dereference_protected(fn->leaf, 1048 lockdep_is_held(&table->tb6_lock)); 1049 struct fib6_info *new_leaf; 1050 if (!(fn->fn_flags & RTN_RTINFO) && leaf == rt) { 1051 new_leaf = fib6_find_prefix(net, table, fn); 1052 fib6_info_hold(new_leaf); 1053 1054 rcu_assign_pointer(fn->leaf, new_leaf); 1055 fib6_info_release(rt); 1056 } 1057 fn = rcu_dereference_protected(fn->parent, 1058 lockdep_is_held(&table->tb6_lock)); 1059 } 1060 } 1061 1062 fib6_clean_expires(rt); 1063 fib6_remove_gc_list(rt); 1064 } 1065 1066 /* 1067 * Insert routing information in a node. 1068 */ 1069 1070 static int fib6_add_rt2node(struct fib6_node *fn, struct fib6_info *rt, 1071 struct nl_info *info, 1072 struct netlink_ext_ack *extack) 1073 { 1074 struct fib6_info *leaf = rcu_dereference_protected(fn->leaf, 1075 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1076 struct fib6_info *iter = NULL; 1077 struct fib6_info __rcu **ins; 1078 struct fib6_info __rcu **fallback_ins = NULL; 1079 int replace = (info->nlh && 1080 (info->nlh->nlmsg_flags & NLM_F_REPLACE)); 1081 int add = (!info->nlh || 1082 (info->nlh->nlmsg_flags & NLM_F_CREATE)); 1083 int found = 0; 1084 bool rt_can_ecmp = rt6_qualify_for_ecmp(rt); 1085 bool notify_sibling_rt = false; 1086 u16 nlflags = NLM_F_EXCL; 1087 int err; 1088 1089 if (info->nlh && (info->nlh->nlmsg_flags & NLM_F_APPEND)) 1090 nlflags |= NLM_F_APPEND; 1091 1092 ins = &fn->leaf; 1093 1094 for (iter = leaf; iter; 1095 iter = rcu_dereference_protected(iter->fib6_next, 1096 lockdep_is_held(&rt->fib6_table->tb6_lock))) { 1097 /* 1098 * Search for duplicates 1099 */ 1100 1101 if (iter->fib6_metric == rt->fib6_metric) { 1102 /* 1103 * Same priority level 1104 */ 1105 if (info->nlh && 1106 (info->nlh->nlmsg_flags & NLM_F_EXCL)) 1107 return -EEXIST; 1108 1109 nlflags &= ~NLM_F_EXCL; 1110 if (replace) { 1111 if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) { 1112 found++; 1113 break; 1114 } 1115 fallback_ins = fallback_ins ?: ins; 1116 goto next_iter; 1117 } 1118 1119 if (rt6_duplicate_nexthop(iter, rt)) { 1120 if (rt->fib6_nsiblings) 1121 rt->fib6_nsiblings = 0; 1122 if (!(iter->fib6_flags & RTF_EXPIRES)) 1123 return -EEXIST; 1124 if (!(rt->fib6_flags & RTF_EXPIRES)) { 1125 fib6_clean_expires(iter); 1126 fib6_remove_gc_list(iter); 1127 } else { 1128 fib6_set_expires(iter, rt->expires); 1129 fib6_add_gc_list(iter); 1130 } 1131 1132 if (rt->fib6_pmtu) 1133 fib6_metric_set(iter, RTAX_MTU, 1134 rt->fib6_pmtu); 1135 return -EEXIST; 1136 } 1137 /* If we have the same destination and the same metric, 1138 * but not the same gateway, then the route we try to 1139 * add is sibling to this route, increment our counter 1140 * of siblings, and later we will add our route to the 1141 * list. 1142 * Only static routes (which don't have flag 1143 * RTF_EXPIRES) are used for ECMPv6. 1144 * 1145 * To avoid long list, we only had siblings if the 1146 * route have a gateway. 1147 */ 1148 if (rt_can_ecmp && 1149 rt6_qualify_for_ecmp(iter)) 1150 rt->fib6_nsiblings++; 1151 } 1152 1153 if (iter->fib6_metric > rt->fib6_metric) 1154 break; 1155 1156 next_iter: 1157 ins = &iter->fib6_next; 1158 } 1159 1160 if (fallback_ins && !found) { 1161 /* No matching route with same ecmp-able-ness found, replace 1162 * first matching route 1163 */ 1164 ins = fallback_ins; 1165 iter = rcu_dereference_protected(*ins, 1166 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1167 found++; 1168 } 1169 1170 /* Reset round-robin state, if necessary */ 1171 if (ins == &fn->leaf) 1172 fn->rr_ptr = NULL; 1173 1174 /* Link this route to others same route. */ 1175 if (rt->fib6_nsiblings) { 1176 unsigned int fib6_nsiblings; 1177 struct fib6_info *sibling, *temp_sibling; 1178 1179 /* Find the first route that have the same metric */ 1180 sibling = leaf; 1181 notify_sibling_rt = true; 1182 while (sibling) { 1183 if (sibling->fib6_metric == rt->fib6_metric && 1184 rt6_qualify_for_ecmp(sibling)) { 1185 list_add_tail(&rt->fib6_siblings, 1186 &sibling->fib6_siblings); 1187 break; 1188 } 1189 sibling = rcu_dereference_protected(sibling->fib6_next, 1190 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1191 notify_sibling_rt = false; 1192 } 1193 /* For each sibling in the list, increment the counter of 1194 * siblings. BUG() if counters does not match, list of siblings 1195 * is broken! 1196 */ 1197 fib6_nsiblings = 0; 1198 list_for_each_entry_safe(sibling, temp_sibling, 1199 &rt->fib6_siblings, fib6_siblings) { 1200 sibling->fib6_nsiblings++; 1201 BUG_ON(sibling->fib6_nsiblings != rt->fib6_nsiblings); 1202 fib6_nsiblings++; 1203 } 1204 BUG_ON(fib6_nsiblings != rt->fib6_nsiblings); 1205 rt6_multipath_rebalance(temp_sibling); 1206 } 1207 1208 /* 1209 * insert node 1210 */ 1211 if (!replace) { 1212 if (!add) 1213 pr_warn("NLM_F_CREATE should be set when creating new route\n"); 1214 1215 add: 1216 nlflags |= NLM_F_CREATE; 1217 1218 /* The route should only be notified if it is the first 1219 * route in the node or if it is added as a sibling 1220 * route to the first route in the node. 1221 */ 1222 if (!info->skip_notify_kernel && 1223 (notify_sibling_rt || ins == &fn->leaf)) { 1224 enum fib_event_type fib_event; 1225 1226 if (notify_sibling_rt) 1227 fib_event = FIB_EVENT_ENTRY_APPEND; 1228 else 1229 fib_event = FIB_EVENT_ENTRY_REPLACE; 1230 err = call_fib6_entry_notifiers(info->nl_net, 1231 fib_event, rt, 1232 extack); 1233 if (err) { 1234 struct fib6_info *sibling, *next_sibling; 1235 1236 /* If the route has siblings, then it first 1237 * needs to be unlinked from them. 1238 */ 1239 if (!rt->fib6_nsiblings) 1240 return err; 1241 1242 list_for_each_entry_safe(sibling, next_sibling, 1243 &rt->fib6_siblings, 1244 fib6_siblings) 1245 sibling->fib6_nsiblings--; 1246 rt->fib6_nsiblings = 0; 1247 list_del_init(&rt->fib6_siblings); 1248 rt6_multipath_rebalance(next_sibling); 1249 return err; 1250 } 1251 } 1252 1253 rcu_assign_pointer(rt->fib6_next, iter); 1254 fib6_info_hold(rt); 1255 rcu_assign_pointer(rt->fib6_node, fn); 1256 rcu_assign_pointer(*ins, rt); 1257 if (!info->skip_notify) 1258 inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags); 1259 info->nl_net->ipv6.rt6_stats->fib_rt_entries++; 1260 1261 if (!(fn->fn_flags & RTN_RTINFO)) { 1262 info->nl_net->ipv6.rt6_stats->fib_route_nodes++; 1263 fn->fn_flags |= RTN_RTINFO; 1264 } 1265 1266 } else { 1267 int nsiblings; 1268 1269 if (!found) { 1270 if (add) 1271 goto add; 1272 pr_warn("NLM_F_REPLACE set, but no existing node found!\n"); 1273 return -ENOENT; 1274 } 1275 1276 if (!info->skip_notify_kernel && ins == &fn->leaf) { 1277 err = call_fib6_entry_notifiers(info->nl_net, 1278 FIB_EVENT_ENTRY_REPLACE, 1279 rt, extack); 1280 if (err) 1281 return err; 1282 } 1283 1284 fib6_info_hold(rt); 1285 rcu_assign_pointer(rt->fib6_node, fn); 1286 rt->fib6_next = iter->fib6_next; 1287 rcu_assign_pointer(*ins, rt); 1288 if (!info->skip_notify) 1289 inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE); 1290 if (!(fn->fn_flags & RTN_RTINFO)) { 1291 info->nl_net->ipv6.rt6_stats->fib_route_nodes++; 1292 fn->fn_flags |= RTN_RTINFO; 1293 } 1294 nsiblings = iter->fib6_nsiblings; 1295 iter->fib6_node = NULL; 1296 fib6_purge_rt(iter, fn, info->nl_net); 1297 if (rcu_access_pointer(fn->rr_ptr) == iter) 1298 fn->rr_ptr = NULL; 1299 fib6_info_release(iter); 1300 1301 if (nsiblings) { 1302 /* Replacing an ECMP route, remove all siblings */ 1303 ins = &rt->fib6_next; 1304 iter = rcu_dereference_protected(*ins, 1305 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1306 while (iter) { 1307 if (iter->fib6_metric > rt->fib6_metric) 1308 break; 1309 if (rt6_qualify_for_ecmp(iter)) { 1310 *ins = iter->fib6_next; 1311 iter->fib6_node = NULL; 1312 fib6_purge_rt(iter, fn, info->nl_net); 1313 if (rcu_access_pointer(fn->rr_ptr) == iter) 1314 fn->rr_ptr = NULL; 1315 fib6_info_release(iter); 1316 nsiblings--; 1317 info->nl_net->ipv6.rt6_stats->fib_rt_entries--; 1318 } else { 1319 ins = &iter->fib6_next; 1320 } 1321 iter = rcu_dereference_protected(*ins, 1322 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1323 } 1324 WARN_ON(nsiblings != 0); 1325 } 1326 } 1327 1328 return 0; 1329 } 1330 1331 static void fib6_start_gc(struct net *net, struct fib6_info *rt) 1332 { 1333 if (!timer_pending(&net->ipv6.ip6_fib_timer) && 1334 (rt->fib6_flags & RTF_EXPIRES)) 1335 mod_timer(&net->ipv6.ip6_fib_timer, 1336 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval); 1337 } 1338 1339 void fib6_force_start_gc(struct net *net) 1340 { 1341 if (!timer_pending(&net->ipv6.ip6_fib_timer)) 1342 mod_timer(&net->ipv6.ip6_fib_timer, 1343 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval); 1344 } 1345 1346 static void __fib6_update_sernum_upto_root(struct fib6_info *rt, 1347 int sernum) 1348 { 1349 struct fib6_node *fn = rcu_dereference_protected(rt->fib6_node, 1350 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1351 1352 /* paired with smp_rmb() in fib6_get_cookie_safe() */ 1353 smp_wmb(); 1354 while (fn) { 1355 WRITE_ONCE(fn->fn_sernum, sernum); 1356 fn = rcu_dereference_protected(fn->parent, 1357 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1358 } 1359 } 1360 1361 void fib6_update_sernum_upto_root(struct net *net, struct fib6_info *rt) 1362 { 1363 __fib6_update_sernum_upto_root(rt, fib6_new_sernum(net)); 1364 } 1365 1366 /* allow ipv4 to update sernum via ipv6_stub */ 1367 void fib6_update_sernum_stub(struct net *net, struct fib6_info *f6i) 1368 { 1369 spin_lock_bh(&f6i->fib6_table->tb6_lock); 1370 fib6_update_sernum_upto_root(net, f6i); 1371 spin_unlock_bh(&f6i->fib6_table->tb6_lock); 1372 } 1373 1374 /* 1375 * Add routing information to the routing tree. 1376 * <destination addr>/<source addr> 1377 * with source addr info in sub-trees 1378 * Need to own table->tb6_lock 1379 */ 1380 1381 int fib6_add(struct fib6_node *root, struct fib6_info *rt, 1382 struct nl_info *info, struct netlink_ext_ack *extack) 1383 { 1384 struct fib6_table *table = rt->fib6_table; 1385 struct fib6_node *fn, *pn = NULL; 1386 int err = -ENOMEM; 1387 int allow_create = 1; 1388 int replace_required = 0; 1389 1390 if (info->nlh) { 1391 if (!(info->nlh->nlmsg_flags & NLM_F_CREATE)) 1392 allow_create = 0; 1393 if (info->nlh->nlmsg_flags & NLM_F_REPLACE) 1394 replace_required = 1; 1395 } 1396 if (!allow_create && !replace_required) 1397 pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n"); 1398 1399 fn = fib6_add_1(info->nl_net, table, root, 1400 &rt->fib6_dst.addr, rt->fib6_dst.plen, 1401 offsetof(struct fib6_info, fib6_dst), allow_create, 1402 replace_required, extack); 1403 if (IS_ERR(fn)) { 1404 err = PTR_ERR(fn); 1405 fn = NULL; 1406 goto out; 1407 } 1408 1409 pn = fn; 1410 1411 #ifdef CONFIG_IPV6_SUBTREES 1412 if (rt->fib6_src.plen) { 1413 struct fib6_node *sn; 1414 1415 if (!rcu_access_pointer(fn->subtree)) { 1416 struct fib6_node *sfn; 1417 1418 /* 1419 * Create subtree. 1420 * 1421 * fn[main tree] 1422 * | 1423 * sfn[subtree root] 1424 * \ 1425 * sn[new leaf node] 1426 */ 1427 1428 /* Create subtree root node */ 1429 sfn = node_alloc(info->nl_net); 1430 if (!sfn) 1431 goto failure; 1432 1433 fib6_info_hold(info->nl_net->ipv6.fib6_null_entry); 1434 rcu_assign_pointer(sfn->leaf, 1435 info->nl_net->ipv6.fib6_null_entry); 1436 sfn->fn_flags = RTN_ROOT; 1437 1438 /* Now add the first leaf node to new subtree */ 1439 1440 sn = fib6_add_1(info->nl_net, table, sfn, 1441 &rt->fib6_src.addr, rt->fib6_src.plen, 1442 offsetof(struct fib6_info, fib6_src), 1443 allow_create, replace_required, extack); 1444 1445 if (IS_ERR(sn)) { 1446 /* If it is failed, discard just allocated 1447 root, and then (in failure) stale node 1448 in main tree. 1449 */ 1450 node_free_immediate(info->nl_net, sfn); 1451 err = PTR_ERR(sn); 1452 goto failure; 1453 } 1454 1455 /* Now link new subtree to main tree */ 1456 rcu_assign_pointer(sfn->parent, fn); 1457 rcu_assign_pointer(fn->subtree, sfn); 1458 } else { 1459 sn = fib6_add_1(info->nl_net, table, FIB6_SUBTREE(fn), 1460 &rt->fib6_src.addr, rt->fib6_src.plen, 1461 offsetof(struct fib6_info, fib6_src), 1462 allow_create, replace_required, extack); 1463 1464 if (IS_ERR(sn)) { 1465 err = PTR_ERR(sn); 1466 goto failure; 1467 } 1468 } 1469 1470 if (!rcu_access_pointer(fn->leaf)) { 1471 if (fn->fn_flags & RTN_TL_ROOT) { 1472 /* put back null_entry for root node */ 1473 rcu_assign_pointer(fn->leaf, 1474 info->nl_net->ipv6.fib6_null_entry); 1475 } else { 1476 fib6_info_hold(rt); 1477 rcu_assign_pointer(fn->leaf, rt); 1478 } 1479 } 1480 fn = sn; 1481 } 1482 #endif 1483 1484 err = fib6_add_rt2node(fn, rt, info, extack); 1485 if (!err) { 1486 if (rt->nh) 1487 list_add(&rt->nh_list, &rt->nh->f6i_list); 1488 __fib6_update_sernum_upto_root(rt, fib6_new_sernum(info->nl_net)); 1489 1490 if (rt->fib6_flags & RTF_EXPIRES) 1491 fib6_add_gc_list(rt); 1492 1493 fib6_start_gc(info->nl_net, rt); 1494 } 1495 1496 out: 1497 if (err) { 1498 #ifdef CONFIG_IPV6_SUBTREES 1499 /* 1500 * If fib6_add_1 has cleared the old leaf pointer in the 1501 * super-tree leaf node we have to find a new one for it. 1502 */ 1503 if (pn != fn) { 1504 struct fib6_info *pn_leaf = 1505 rcu_dereference_protected(pn->leaf, 1506 lockdep_is_held(&table->tb6_lock)); 1507 if (pn_leaf == rt) { 1508 pn_leaf = NULL; 1509 RCU_INIT_POINTER(pn->leaf, NULL); 1510 fib6_info_release(rt); 1511 } 1512 if (!pn_leaf && !(pn->fn_flags & RTN_RTINFO)) { 1513 pn_leaf = fib6_find_prefix(info->nl_net, table, 1514 pn); 1515 if (!pn_leaf) 1516 pn_leaf = 1517 info->nl_net->ipv6.fib6_null_entry; 1518 fib6_info_hold(pn_leaf); 1519 rcu_assign_pointer(pn->leaf, pn_leaf); 1520 } 1521 } 1522 #endif 1523 goto failure; 1524 } else if (fib6_requires_src(rt)) { 1525 fib6_routes_require_src_inc(info->nl_net); 1526 } 1527 return err; 1528 1529 failure: 1530 /* fn->leaf could be NULL and fib6_repair_tree() needs to be called if: 1531 * 1. fn is an intermediate node and we failed to add the new 1532 * route to it in both subtree creation failure and fib6_add_rt2node() 1533 * failure case. 1534 * 2. fn is the root node in the table and we fail to add the first 1535 * default route to it. 1536 */ 1537 if (fn && 1538 (!(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)) || 1539 (fn->fn_flags & RTN_TL_ROOT && 1540 !rcu_access_pointer(fn->leaf)))) 1541 fib6_repair_tree(info->nl_net, table, fn); 1542 return err; 1543 } 1544 1545 /* 1546 * Routing tree lookup 1547 * 1548 */ 1549 1550 struct lookup_args { 1551 int offset; /* key offset on fib6_info */ 1552 const struct in6_addr *addr; /* search key */ 1553 }; 1554 1555 static struct fib6_node *fib6_node_lookup_1(struct fib6_node *root, 1556 struct lookup_args *args) 1557 { 1558 struct fib6_node *fn; 1559 __be32 dir; 1560 1561 if (unlikely(args->offset == 0)) 1562 return NULL; 1563 1564 /* 1565 * Descend on a tree 1566 */ 1567 1568 fn = root; 1569 1570 for (;;) { 1571 struct fib6_node *next; 1572 1573 dir = addr_bit_set(args->addr, fn->fn_bit); 1574 1575 next = dir ? rcu_dereference(fn->right) : 1576 rcu_dereference(fn->left); 1577 1578 if (next) { 1579 fn = next; 1580 continue; 1581 } 1582 break; 1583 } 1584 1585 while (fn) { 1586 struct fib6_node *subtree = FIB6_SUBTREE(fn); 1587 1588 if (subtree || fn->fn_flags & RTN_RTINFO) { 1589 struct fib6_info *leaf = rcu_dereference(fn->leaf); 1590 struct rt6key *key; 1591 1592 if (!leaf) 1593 goto backtrack; 1594 1595 key = (struct rt6key *) ((u8 *)leaf + args->offset); 1596 1597 if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) { 1598 #ifdef CONFIG_IPV6_SUBTREES 1599 if (subtree) { 1600 struct fib6_node *sfn; 1601 sfn = fib6_node_lookup_1(subtree, 1602 args + 1); 1603 if (!sfn) 1604 goto backtrack; 1605 fn = sfn; 1606 } 1607 #endif 1608 if (fn->fn_flags & RTN_RTINFO) 1609 return fn; 1610 } 1611 } 1612 backtrack: 1613 if (fn->fn_flags & RTN_ROOT) 1614 break; 1615 1616 fn = rcu_dereference(fn->parent); 1617 } 1618 1619 return NULL; 1620 } 1621 1622 /* called with rcu_read_lock() held 1623 */ 1624 struct fib6_node *fib6_node_lookup(struct fib6_node *root, 1625 const struct in6_addr *daddr, 1626 const struct in6_addr *saddr) 1627 { 1628 struct fib6_node *fn; 1629 struct lookup_args args[] = { 1630 { 1631 .offset = offsetof(struct fib6_info, fib6_dst), 1632 .addr = daddr, 1633 }, 1634 #ifdef CONFIG_IPV6_SUBTREES 1635 { 1636 .offset = offsetof(struct fib6_info, fib6_src), 1637 .addr = saddr, 1638 }, 1639 #endif 1640 { 1641 .offset = 0, /* sentinel */ 1642 } 1643 }; 1644 1645 fn = fib6_node_lookup_1(root, daddr ? args : args + 1); 1646 if (!fn || fn->fn_flags & RTN_TL_ROOT) 1647 fn = root; 1648 1649 return fn; 1650 } 1651 1652 /* 1653 * Get node with specified destination prefix (and source prefix, 1654 * if subtrees are used) 1655 * exact_match == true means we try to find fn with exact match of 1656 * the passed in prefix addr 1657 * exact_match == false means we try to find fn with longest prefix 1658 * match of the passed in prefix addr. This is useful for finding fn 1659 * for cached route as it will be stored in the exception table under 1660 * the node with longest prefix length. 1661 */ 1662 1663 1664 static struct fib6_node *fib6_locate_1(struct fib6_node *root, 1665 const struct in6_addr *addr, 1666 int plen, int offset, 1667 bool exact_match) 1668 { 1669 struct fib6_node *fn, *prev = NULL; 1670 1671 for (fn = root; fn ; ) { 1672 struct fib6_info *leaf = rcu_dereference(fn->leaf); 1673 struct rt6key *key; 1674 1675 /* This node is being deleted */ 1676 if (!leaf) { 1677 if (plen <= fn->fn_bit) 1678 goto out; 1679 else 1680 goto next; 1681 } 1682 1683 key = (struct rt6key *)((u8 *)leaf + offset); 1684 1685 /* 1686 * Prefix match 1687 */ 1688 if (plen < fn->fn_bit || 1689 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) 1690 goto out; 1691 1692 if (plen == fn->fn_bit) 1693 return fn; 1694 1695 if (fn->fn_flags & RTN_RTINFO) 1696 prev = fn; 1697 1698 next: 1699 /* 1700 * We have more bits to go 1701 */ 1702 if (addr_bit_set(addr, fn->fn_bit)) 1703 fn = rcu_dereference(fn->right); 1704 else 1705 fn = rcu_dereference(fn->left); 1706 } 1707 out: 1708 if (exact_match) 1709 return NULL; 1710 else 1711 return prev; 1712 } 1713 1714 struct fib6_node *fib6_locate(struct fib6_node *root, 1715 const struct in6_addr *daddr, int dst_len, 1716 const struct in6_addr *saddr, int src_len, 1717 bool exact_match) 1718 { 1719 struct fib6_node *fn; 1720 1721 fn = fib6_locate_1(root, daddr, dst_len, 1722 offsetof(struct fib6_info, fib6_dst), 1723 exact_match); 1724 1725 #ifdef CONFIG_IPV6_SUBTREES 1726 if (src_len) { 1727 WARN_ON(saddr == NULL); 1728 if (fn) { 1729 struct fib6_node *subtree = FIB6_SUBTREE(fn); 1730 1731 if (subtree) { 1732 fn = fib6_locate_1(subtree, saddr, src_len, 1733 offsetof(struct fib6_info, fib6_src), 1734 exact_match); 1735 } 1736 } 1737 } 1738 #endif 1739 1740 if (fn && fn->fn_flags & RTN_RTINFO) 1741 return fn; 1742 1743 return NULL; 1744 } 1745 1746 1747 /* 1748 * Deletion 1749 * 1750 */ 1751 1752 static struct fib6_info *fib6_find_prefix(struct net *net, 1753 struct fib6_table *table, 1754 struct fib6_node *fn) 1755 { 1756 struct fib6_node *child_left, *child_right; 1757 1758 if (fn->fn_flags & RTN_ROOT) 1759 return net->ipv6.fib6_null_entry; 1760 1761 while (fn) { 1762 child_left = rcu_dereference_protected(fn->left, 1763 lockdep_is_held(&table->tb6_lock)); 1764 child_right = rcu_dereference_protected(fn->right, 1765 lockdep_is_held(&table->tb6_lock)); 1766 if (child_left) 1767 return rcu_dereference_protected(child_left->leaf, 1768 lockdep_is_held(&table->tb6_lock)); 1769 if (child_right) 1770 return rcu_dereference_protected(child_right->leaf, 1771 lockdep_is_held(&table->tb6_lock)); 1772 1773 fn = FIB6_SUBTREE(fn); 1774 } 1775 return NULL; 1776 } 1777 1778 /* 1779 * Called to trim the tree of intermediate nodes when possible. "fn" 1780 * is the node we want to try and remove. 1781 * Need to own table->tb6_lock 1782 */ 1783 1784 static struct fib6_node *fib6_repair_tree(struct net *net, 1785 struct fib6_table *table, 1786 struct fib6_node *fn) 1787 { 1788 int children; 1789 int nstate; 1790 struct fib6_node *child; 1791 struct fib6_walker *w; 1792 int iter = 0; 1793 1794 /* Set fn->leaf to null_entry for root node. */ 1795 if (fn->fn_flags & RTN_TL_ROOT) { 1796 rcu_assign_pointer(fn->leaf, net->ipv6.fib6_null_entry); 1797 return fn; 1798 } 1799 1800 for (;;) { 1801 struct fib6_node *fn_r = rcu_dereference_protected(fn->right, 1802 lockdep_is_held(&table->tb6_lock)); 1803 struct fib6_node *fn_l = rcu_dereference_protected(fn->left, 1804 lockdep_is_held(&table->tb6_lock)); 1805 struct fib6_node *pn = rcu_dereference_protected(fn->parent, 1806 lockdep_is_held(&table->tb6_lock)); 1807 struct fib6_node *pn_r = rcu_dereference_protected(pn->right, 1808 lockdep_is_held(&table->tb6_lock)); 1809 struct fib6_node *pn_l = rcu_dereference_protected(pn->left, 1810 lockdep_is_held(&table->tb6_lock)); 1811 struct fib6_info *fn_leaf = rcu_dereference_protected(fn->leaf, 1812 lockdep_is_held(&table->tb6_lock)); 1813 struct fib6_info *pn_leaf = rcu_dereference_protected(pn->leaf, 1814 lockdep_is_held(&table->tb6_lock)); 1815 struct fib6_info *new_fn_leaf; 1816 1817 pr_debug("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter); 1818 iter++; 1819 1820 WARN_ON(fn->fn_flags & RTN_RTINFO); 1821 WARN_ON(fn->fn_flags & RTN_TL_ROOT); 1822 WARN_ON(fn_leaf); 1823 1824 children = 0; 1825 child = NULL; 1826 if (fn_r) { 1827 child = fn_r; 1828 children |= 1; 1829 } 1830 if (fn_l) { 1831 child = fn_l; 1832 children |= 2; 1833 } 1834 1835 if (children == 3 || FIB6_SUBTREE(fn) 1836 #ifdef CONFIG_IPV6_SUBTREES 1837 /* Subtree root (i.e. fn) may have one child */ 1838 || (children && fn->fn_flags & RTN_ROOT) 1839 #endif 1840 ) { 1841 new_fn_leaf = fib6_find_prefix(net, table, fn); 1842 #if RT6_DEBUG >= 2 1843 if (!new_fn_leaf) { 1844 WARN_ON(!new_fn_leaf); 1845 new_fn_leaf = net->ipv6.fib6_null_entry; 1846 } 1847 #endif 1848 fib6_info_hold(new_fn_leaf); 1849 rcu_assign_pointer(fn->leaf, new_fn_leaf); 1850 return pn; 1851 } 1852 1853 #ifdef CONFIG_IPV6_SUBTREES 1854 if (FIB6_SUBTREE(pn) == fn) { 1855 WARN_ON(!(fn->fn_flags & RTN_ROOT)); 1856 RCU_INIT_POINTER(pn->subtree, NULL); 1857 nstate = FWS_L; 1858 } else { 1859 WARN_ON(fn->fn_flags & RTN_ROOT); 1860 #endif 1861 if (pn_r == fn) 1862 rcu_assign_pointer(pn->right, child); 1863 else if (pn_l == fn) 1864 rcu_assign_pointer(pn->left, child); 1865 #if RT6_DEBUG >= 2 1866 else 1867 WARN_ON(1); 1868 #endif 1869 if (child) 1870 rcu_assign_pointer(child->parent, pn); 1871 nstate = FWS_R; 1872 #ifdef CONFIG_IPV6_SUBTREES 1873 } 1874 #endif 1875 1876 read_lock(&net->ipv6.fib6_walker_lock); 1877 FOR_WALKERS(net, w) { 1878 if (!child) { 1879 if (w->node == fn) { 1880 pr_debug("W %p adjusted by delnode 1, s=%d/%d\n", 1881 w, w->state, nstate); 1882 w->node = pn; 1883 w->state = nstate; 1884 } 1885 } else { 1886 if (w->node == fn) { 1887 w->node = child; 1888 if (children&2) { 1889 pr_debug("W %p adjusted by delnode 2, s=%d\n", 1890 w, w->state); 1891 w->state = w->state >= FWS_R ? FWS_U : FWS_INIT; 1892 } else { 1893 pr_debug("W %p adjusted by delnode 2, s=%d\n", 1894 w, w->state); 1895 w->state = w->state >= FWS_C ? FWS_U : FWS_INIT; 1896 } 1897 } 1898 } 1899 } 1900 read_unlock(&net->ipv6.fib6_walker_lock); 1901 1902 node_free(net, fn); 1903 if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn)) 1904 return pn; 1905 1906 RCU_INIT_POINTER(pn->leaf, NULL); 1907 fib6_info_release(pn_leaf); 1908 fn = pn; 1909 } 1910 } 1911 1912 static void fib6_del_route(struct fib6_table *table, struct fib6_node *fn, 1913 struct fib6_info __rcu **rtp, struct nl_info *info) 1914 { 1915 struct fib6_info *leaf, *replace_rt = NULL; 1916 struct fib6_walker *w; 1917 struct fib6_info *rt = rcu_dereference_protected(*rtp, 1918 lockdep_is_held(&table->tb6_lock)); 1919 struct net *net = info->nl_net; 1920 bool notify_del = false; 1921 1922 /* If the deleted route is the first in the node and it is not part of 1923 * a multipath route, then we need to replace it with the next route 1924 * in the node, if exists. 1925 */ 1926 leaf = rcu_dereference_protected(fn->leaf, 1927 lockdep_is_held(&table->tb6_lock)); 1928 if (leaf == rt && !rt->fib6_nsiblings) { 1929 if (rcu_access_pointer(rt->fib6_next)) 1930 replace_rt = rcu_dereference_protected(rt->fib6_next, 1931 lockdep_is_held(&table->tb6_lock)); 1932 else 1933 notify_del = true; 1934 } 1935 1936 /* Unlink it */ 1937 *rtp = rt->fib6_next; 1938 rt->fib6_node = NULL; 1939 net->ipv6.rt6_stats->fib_rt_entries--; 1940 net->ipv6.rt6_stats->fib_discarded_routes++; 1941 1942 /* Reset round-robin state, if necessary */ 1943 if (rcu_access_pointer(fn->rr_ptr) == rt) 1944 fn->rr_ptr = NULL; 1945 1946 /* Remove this entry from other siblings */ 1947 if (rt->fib6_nsiblings) { 1948 struct fib6_info *sibling, *next_sibling; 1949 1950 /* The route is deleted from a multipath route. If this 1951 * multipath route is the first route in the node, then we need 1952 * to emit a delete notification. Otherwise, we need to skip 1953 * the notification. 1954 */ 1955 if (rt->fib6_metric == leaf->fib6_metric && 1956 rt6_qualify_for_ecmp(leaf)) 1957 notify_del = true; 1958 list_for_each_entry_safe(sibling, next_sibling, 1959 &rt->fib6_siblings, fib6_siblings) 1960 sibling->fib6_nsiblings--; 1961 rt->fib6_nsiblings = 0; 1962 list_del_init(&rt->fib6_siblings); 1963 rt6_multipath_rebalance(next_sibling); 1964 } 1965 1966 /* Adjust walkers */ 1967 read_lock(&net->ipv6.fib6_walker_lock); 1968 FOR_WALKERS(net, w) { 1969 if (w->state == FWS_C && w->leaf == rt) { 1970 pr_debug("walker %p adjusted by delroute\n", w); 1971 w->leaf = rcu_dereference_protected(rt->fib6_next, 1972 lockdep_is_held(&table->tb6_lock)); 1973 if (!w->leaf) 1974 w->state = FWS_U; 1975 } 1976 } 1977 read_unlock(&net->ipv6.fib6_walker_lock); 1978 1979 /* If it was last route, call fib6_repair_tree() to: 1980 * 1. For root node, put back null_entry as how the table was created. 1981 * 2. For other nodes, expunge its radix tree node. 1982 */ 1983 if (!rcu_access_pointer(fn->leaf)) { 1984 if (!(fn->fn_flags & RTN_TL_ROOT)) { 1985 fn->fn_flags &= ~RTN_RTINFO; 1986 net->ipv6.rt6_stats->fib_route_nodes--; 1987 } 1988 fn = fib6_repair_tree(net, table, fn); 1989 } 1990 1991 fib6_purge_rt(rt, fn, net); 1992 1993 if (!info->skip_notify_kernel) { 1994 if (notify_del) 1995 call_fib6_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, 1996 rt, NULL); 1997 else if (replace_rt) 1998 call_fib6_entry_notifiers_replace(net, replace_rt); 1999 } 2000 if (!info->skip_notify) 2001 inet6_rt_notify(RTM_DELROUTE, rt, info, 0); 2002 2003 fib6_info_release(rt); 2004 } 2005 2006 /* Need to own table->tb6_lock */ 2007 int fib6_del(struct fib6_info *rt, struct nl_info *info) 2008 { 2009 struct net *net = info->nl_net; 2010 struct fib6_info __rcu **rtp; 2011 struct fib6_info __rcu **rtp_next; 2012 struct fib6_table *table; 2013 struct fib6_node *fn; 2014 2015 if (rt == net->ipv6.fib6_null_entry) 2016 return -ENOENT; 2017 2018 table = rt->fib6_table; 2019 fn = rcu_dereference_protected(rt->fib6_node, 2020 lockdep_is_held(&table->tb6_lock)); 2021 if (!fn) 2022 return -ENOENT; 2023 2024 WARN_ON(!(fn->fn_flags & RTN_RTINFO)); 2025 2026 /* 2027 * Walk the leaf entries looking for ourself 2028 */ 2029 2030 for (rtp = &fn->leaf; *rtp; rtp = rtp_next) { 2031 struct fib6_info *cur = rcu_dereference_protected(*rtp, 2032 lockdep_is_held(&table->tb6_lock)); 2033 if (rt == cur) { 2034 if (fib6_requires_src(cur)) 2035 fib6_routes_require_src_dec(info->nl_net); 2036 fib6_del_route(table, fn, rtp, info); 2037 return 0; 2038 } 2039 rtp_next = &cur->fib6_next; 2040 } 2041 return -ENOENT; 2042 } 2043 2044 /* 2045 * Tree traversal function. 2046 * 2047 * Certainly, it is not interrupt safe. 2048 * However, it is internally reenterable wrt itself and fib6_add/fib6_del. 2049 * It means, that we can modify tree during walking 2050 * and use this function for garbage collection, clone pruning, 2051 * cleaning tree when a device goes down etc. etc. 2052 * 2053 * It guarantees that every node will be traversed, 2054 * and that it will be traversed only once. 2055 * 2056 * Callback function w->func may return: 2057 * 0 -> continue walking. 2058 * positive value -> walking is suspended (used by tree dumps, 2059 * and probably by gc, if it will be split to several slices) 2060 * negative value -> terminate walking. 2061 * 2062 * The function itself returns: 2063 * 0 -> walk is complete. 2064 * >0 -> walk is incomplete (i.e. suspended) 2065 * <0 -> walk is terminated by an error. 2066 * 2067 * This function is called with tb6_lock held. 2068 */ 2069 2070 static int fib6_walk_continue(struct fib6_walker *w) 2071 { 2072 struct fib6_node *fn, *pn, *left, *right; 2073 2074 /* w->root should always be table->tb6_root */ 2075 WARN_ON_ONCE(!(w->root->fn_flags & RTN_TL_ROOT)); 2076 2077 for (;;) { 2078 fn = w->node; 2079 if (!fn) 2080 return 0; 2081 2082 switch (w->state) { 2083 #ifdef CONFIG_IPV6_SUBTREES 2084 case FWS_S: 2085 if (FIB6_SUBTREE(fn)) { 2086 w->node = FIB6_SUBTREE(fn); 2087 continue; 2088 } 2089 w->state = FWS_L; 2090 fallthrough; 2091 #endif 2092 case FWS_L: 2093 left = rcu_dereference_protected(fn->left, 1); 2094 if (left) { 2095 w->node = left; 2096 w->state = FWS_INIT; 2097 continue; 2098 } 2099 w->state = FWS_R; 2100 fallthrough; 2101 case FWS_R: 2102 right = rcu_dereference_protected(fn->right, 1); 2103 if (right) { 2104 w->node = right; 2105 w->state = FWS_INIT; 2106 continue; 2107 } 2108 w->state = FWS_C; 2109 w->leaf = rcu_dereference_protected(fn->leaf, 1); 2110 fallthrough; 2111 case FWS_C: 2112 if (w->leaf && fn->fn_flags & RTN_RTINFO) { 2113 int err; 2114 2115 if (w->skip) { 2116 w->skip--; 2117 goto skip; 2118 } 2119 2120 err = w->func(w); 2121 if (err) 2122 return err; 2123 2124 w->count++; 2125 continue; 2126 } 2127 skip: 2128 w->state = FWS_U; 2129 fallthrough; 2130 case FWS_U: 2131 if (fn == w->root) 2132 return 0; 2133 pn = rcu_dereference_protected(fn->parent, 1); 2134 left = rcu_dereference_protected(pn->left, 1); 2135 right = rcu_dereference_protected(pn->right, 1); 2136 w->node = pn; 2137 #ifdef CONFIG_IPV6_SUBTREES 2138 if (FIB6_SUBTREE(pn) == fn) { 2139 WARN_ON(!(fn->fn_flags & RTN_ROOT)); 2140 w->state = FWS_L; 2141 continue; 2142 } 2143 #endif 2144 if (left == fn) { 2145 w->state = FWS_R; 2146 continue; 2147 } 2148 if (right == fn) { 2149 w->state = FWS_C; 2150 w->leaf = rcu_dereference_protected(w->node->leaf, 1); 2151 continue; 2152 } 2153 #if RT6_DEBUG >= 2 2154 WARN_ON(1); 2155 #endif 2156 } 2157 } 2158 } 2159 2160 static int fib6_walk(struct net *net, struct fib6_walker *w) 2161 { 2162 int res; 2163 2164 w->state = FWS_INIT; 2165 w->node = w->root; 2166 2167 fib6_walker_link(net, w); 2168 res = fib6_walk_continue(w); 2169 if (res <= 0) 2170 fib6_walker_unlink(net, w); 2171 return res; 2172 } 2173 2174 static int fib6_clean_node(struct fib6_walker *w) 2175 { 2176 int res; 2177 struct fib6_info *rt; 2178 struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w); 2179 struct nl_info info = { 2180 .nl_net = c->net, 2181 .skip_notify = c->skip_notify, 2182 }; 2183 2184 if (c->sernum != FIB6_NO_SERNUM_CHANGE && 2185 READ_ONCE(w->node->fn_sernum) != c->sernum) 2186 WRITE_ONCE(w->node->fn_sernum, c->sernum); 2187 2188 if (!c->func) { 2189 WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE); 2190 w->leaf = NULL; 2191 return 0; 2192 } 2193 2194 for_each_fib6_walker_rt(w) { 2195 res = c->func(rt, c->arg); 2196 if (res == -1) { 2197 w->leaf = rt; 2198 res = fib6_del(rt, &info); 2199 if (res) { 2200 #if RT6_DEBUG >= 2 2201 pr_debug("%s: del failed: rt=%p@%p err=%d\n", 2202 __func__, rt, 2203 rcu_access_pointer(rt->fib6_node), 2204 res); 2205 #endif 2206 continue; 2207 } 2208 return 0; 2209 } else if (res == -2) { 2210 if (WARN_ON(!rt->fib6_nsiblings)) 2211 continue; 2212 rt = list_last_entry(&rt->fib6_siblings, 2213 struct fib6_info, fib6_siblings); 2214 continue; 2215 } 2216 WARN_ON(res != 0); 2217 } 2218 w->leaf = rt; 2219 return 0; 2220 } 2221 2222 /* 2223 * Convenient frontend to tree walker. 2224 * 2225 * func is called on each route. 2226 * It may return -2 -> skip multipath route. 2227 * -1 -> delete this route. 2228 * 0 -> continue walking 2229 */ 2230 2231 static void fib6_clean_tree(struct net *net, struct fib6_node *root, 2232 int (*func)(struct fib6_info *, void *arg), 2233 int sernum, void *arg, bool skip_notify) 2234 { 2235 struct fib6_cleaner c; 2236 2237 c.w.root = root; 2238 c.w.func = fib6_clean_node; 2239 c.w.count = 0; 2240 c.w.skip = 0; 2241 c.w.skip_in_node = 0; 2242 c.func = func; 2243 c.sernum = sernum; 2244 c.arg = arg; 2245 c.net = net; 2246 c.skip_notify = skip_notify; 2247 2248 fib6_walk(net, &c.w); 2249 } 2250 2251 static void __fib6_clean_all(struct net *net, 2252 int (*func)(struct fib6_info *, void *), 2253 int sernum, void *arg, bool skip_notify) 2254 { 2255 struct fib6_table *table; 2256 struct hlist_head *head; 2257 unsigned int h; 2258 2259 rcu_read_lock(); 2260 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { 2261 head = &net->ipv6.fib_table_hash[h]; 2262 hlist_for_each_entry_rcu(table, head, tb6_hlist) { 2263 spin_lock_bh(&table->tb6_lock); 2264 fib6_clean_tree(net, &table->tb6_root, 2265 func, sernum, arg, skip_notify); 2266 spin_unlock_bh(&table->tb6_lock); 2267 } 2268 } 2269 rcu_read_unlock(); 2270 } 2271 2272 void fib6_clean_all(struct net *net, int (*func)(struct fib6_info *, void *), 2273 void *arg) 2274 { 2275 __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, false); 2276 } 2277 2278 void fib6_clean_all_skip_notify(struct net *net, 2279 int (*func)(struct fib6_info *, void *), 2280 void *arg) 2281 { 2282 __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, true); 2283 } 2284 2285 static void fib6_flush_trees(struct net *net) 2286 { 2287 int new_sernum = fib6_new_sernum(net); 2288 2289 __fib6_clean_all(net, NULL, new_sernum, NULL, false); 2290 } 2291 2292 /* 2293 * Garbage collection 2294 */ 2295 2296 static int fib6_age(struct fib6_info *rt, struct fib6_gc_args *gc_args) 2297 { 2298 unsigned long now = jiffies; 2299 2300 /* 2301 * check addrconf expiration here. 2302 * Routes are expired even if they are in use. 2303 */ 2304 2305 if (rt->fib6_flags & RTF_EXPIRES && rt->expires) { 2306 if (time_after(now, rt->expires)) { 2307 pr_debug("expiring %p\n", rt); 2308 return -1; 2309 } 2310 gc_args->more++; 2311 } 2312 2313 /* Also age clones in the exception table. 2314 * Note, that clones are aged out 2315 * only if they are not in use now. 2316 */ 2317 rt6_age_exceptions(rt, gc_args, now); 2318 2319 return 0; 2320 } 2321 2322 static void fib6_gc_table(struct net *net, 2323 struct fib6_table *tb6, 2324 struct fib6_gc_args *gc_args) 2325 { 2326 struct fib6_info *rt; 2327 struct hlist_node *n; 2328 struct nl_info info = { 2329 .nl_net = net, 2330 .skip_notify = false, 2331 }; 2332 2333 hlist_for_each_entry_safe(rt, n, &tb6->tb6_gc_hlist, gc_link) 2334 if (fib6_age(rt, gc_args) == -1) 2335 fib6_del(rt, &info); 2336 } 2337 2338 static void fib6_gc_all(struct net *net, struct fib6_gc_args *gc_args) 2339 { 2340 struct fib6_table *table; 2341 struct hlist_head *head; 2342 unsigned int h; 2343 2344 rcu_read_lock(); 2345 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { 2346 head = &net->ipv6.fib_table_hash[h]; 2347 hlist_for_each_entry_rcu(table, head, tb6_hlist) { 2348 spin_lock_bh(&table->tb6_lock); 2349 2350 fib6_gc_table(net, table, gc_args); 2351 2352 spin_unlock_bh(&table->tb6_lock); 2353 } 2354 } 2355 rcu_read_unlock(); 2356 } 2357 2358 void fib6_run_gc(unsigned long expires, struct net *net, bool force) 2359 { 2360 struct fib6_gc_args gc_args; 2361 unsigned long now; 2362 2363 if (force) { 2364 spin_lock_bh(&net->ipv6.fib6_gc_lock); 2365 } else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) { 2366 mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ); 2367 return; 2368 } 2369 gc_args.timeout = expires ? (int)expires : 2370 net->ipv6.sysctl.ip6_rt_gc_interval; 2371 gc_args.more = 0; 2372 2373 fib6_gc_all(net, &gc_args); 2374 now = jiffies; 2375 net->ipv6.ip6_rt_last_gc = now; 2376 2377 if (gc_args.more) 2378 mod_timer(&net->ipv6.ip6_fib_timer, 2379 round_jiffies(now 2380 + net->ipv6.sysctl.ip6_rt_gc_interval)); 2381 else 2382 del_timer(&net->ipv6.ip6_fib_timer); 2383 spin_unlock_bh(&net->ipv6.fib6_gc_lock); 2384 } 2385 2386 static void fib6_gc_timer_cb(struct timer_list *t) 2387 { 2388 struct net *arg = from_timer(arg, t, ipv6.ip6_fib_timer); 2389 2390 fib6_run_gc(0, arg, true); 2391 } 2392 2393 static int __net_init fib6_net_init(struct net *net) 2394 { 2395 size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ; 2396 int err; 2397 2398 err = fib6_notifier_init(net); 2399 if (err) 2400 return err; 2401 2402 /* Default to 3-tuple */ 2403 net->ipv6.sysctl.multipath_hash_fields = 2404 FIB_MULTIPATH_HASH_FIELD_DEFAULT_MASK; 2405 2406 spin_lock_init(&net->ipv6.fib6_gc_lock); 2407 rwlock_init(&net->ipv6.fib6_walker_lock); 2408 INIT_LIST_HEAD(&net->ipv6.fib6_walkers); 2409 timer_setup(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, 0); 2410 2411 net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL); 2412 if (!net->ipv6.rt6_stats) 2413 goto out_notifier; 2414 2415 /* Avoid false sharing : Use at least a full cache line */ 2416 size = max_t(size_t, size, L1_CACHE_BYTES); 2417 2418 net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL); 2419 if (!net->ipv6.fib_table_hash) 2420 goto out_rt6_stats; 2421 2422 net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl), 2423 GFP_KERNEL); 2424 if (!net->ipv6.fib6_main_tbl) 2425 goto out_fib_table_hash; 2426 2427 net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN; 2428 rcu_assign_pointer(net->ipv6.fib6_main_tbl->tb6_root.leaf, 2429 net->ipv6.fib6_null_entry); 2430 net->ipv6.fib6_main_tbl->tb6_root.fn_flags = 2431 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO; 2432 inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers); 2433 INIT_HLIST_HEAD(&net->ipv6.fib6_main_tbl->tb6_gc_hlist); 2434 2435 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 2436 net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl), 2437 GFP_KERNEL); 2438 if (!net->ipv6.fib6_local_tbl) 2439 goto out_fib6_main_tbl; 2440 net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL; 2441 rcu_assign_pointer(net->ipv6.fib6_local_tbl->tb6_root.leaf, 2442 net->ipv6.fib6_null_entry); 2443 net->ipv6.fib6_local_tbl->tb6_root.fn_flags = 2444 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO; 2445 inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers); 2446 INIT_HLIST_HEAD(&net->ipv6.fib6_local_tbl->tb6_gc_hlist); 2447 #endif 2448 fib6_tables_init(net); 2449 2450 return 0; 2451 2452 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 2453 out_fib6_main_tbl: 2454 kfree(net->ipv6.fib6_main_tbl); 2455 #endif 2456 out_fib_table_hash: 2457 kfree(net->ipv6.fib_table_hash); 2458 out_rt6_stats: 2459 kfree(net->ipv6.rt6_stats); 2460 out_notifier: 2461 fib6_notifier_exit(net); 2462 return -ENOMEM; 2463 } 2464 2465 static void fib6_net_exit(struct net *net) 2466 { 2467 unsigned int i; 2468 2469 del_timer_sync(&net->ipv6.ip6_fib_timer); 2470 2471 for (i = 0; i < FIB6_TABLE_HASHSZ; i++) { 2472 struct hlist_head *head = &net->ipv6.fib_table_hash[i]; 2473 struct hlist_node *tmp; 2474 struct fib6_table *tb; 2475 2476 hlist_for_each_entry_safe(tb, tmp, head, tb6_hlist) { 2477 hlist_del(&tb->tb6_hlist); 2478 fib6_free_table(tb); 2479 } 2480 } 2481 2482 kfree(net->ipv6.fib_table_hash); 2483 kfree(net->ipv6.rt6_stats); 2484 fib6_notifier_exit(net); 2485 } 2486 2487 static struct pernet_operations fib6_net_ops = { 2488 .init = fib6_net_init, 2489 .exit = fib6_net_exit, 2490 }; 2491 2492 int __init fib6_init(void) 2493 { 2494 int ret = -ENOMEM; 2495 2496 fib6_node_kmem = kmem_cache_create("fib6_nodes", 2497 sizeof(struct fib6_node), 0, 2498 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT, 2499 NULL); 2500 if (!fib6_node_kmem) 2501 goto out; 2502 2503 ret = register_pernet_subsys(&fib6_net_ops); 2504 if (ret) 2505 goto out_kmem_cache_create; 2506 2507 ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_GETROUTE, NULL, 2508 inet6_dump_fib, 0); 2509 if (ret) 2510 goto out_unregister_subsys; 2511 2512 __fib6_flush_trees = fib6_flush_trees; 2513 out: 2514 return ret; 2515 2516 out_unregister_subsys: 2517 unregister_pernet_subsys(&fib6_net_ops); 2518 out_kmem_cache_create: 2519 kmem_cache_destroy(fib6_node_kmem); 2520 goto out; 2521 } 2522 2523 void fib6_gc_cleanup(void) 2524 { 2525 unregister_pernet_subsys(&fib6_net_ops); 2526 kmem_cache_destroy(fib6_node_kmem); 2527 } 2528 2529 #ifdef CONFIG_PROC_FS 2530 static int ipv6_route_native_seq_show(struct seq_file *seq, void *v) 2531 { 2532 struct fib6_info *rt = v; 2533 struct ipv6_route_iter *iter = seq->private; 2534 struct fib6_nh *fib6_nh = rt->fib6_nh; 2535 unsigned int flags = rt->fib6_flags; 2536 const struct net_device *dev; 2537 2538 if (rt->nh) 2539 fib6_nh = nexthop_fib6_nh(rt->nh); 2540 2541 seq_printf(seq, "%pi6 %02x ", &rt->fib6_dst.addr, rt->fib6_dst.plen); 2542 2543 #ifdef CONFIG_IPV6_SUBTREES 2544 seq_printf(seq, "%pi6 %02x ", &rt->fib6_src.addr, rt->fib6_src.plen); 2545 #else 2546 seq_puts(seq, "00000000000000000000000000000000 00 "); 2547 #endif 2548 if (fib6_nh->fib_nh_gw_family) { 2549 flags |= RTF_GATEWAY; 2550 seq_printf(seq, "%pi6", &fib6_nh->fib_nh_gw6); 2551 } else { 2552 seq_puts(seq, "00000000000000000000000000000000"); 2553 } 2554 2555 dev = fib6_nh->fib_nh_dev; 2556 seq_printf(seq, " %08x %08x %08x %08x %8s\n", 2557 rt->fib6_metric, refcount_read(&rt->fib6_ref), 0, 2558 flags, dev ? dev->name : ""); 2559 iter->w.leaf = NULL; 2560 return 0; 2561 } 2562 2563 static int ipv6_route_yield(struct fib6_walker *w) 2564 { 2565 struct ipv6_route_iter *iter = w->args; 2566 2567 if (!iter->skip) 2568 return 1; 2569 2570 do { 2571 iter->w.leaf = rcu_dereference_protected( 2572 iter->w.leaf->fib6_next, 2573 lockdep_is_held(&iter->tbl->tb6_lock)); 2574 iter->skip--; 2575 if (!iter->skip && iter->w.leaf) 2576 return 1; 2577 } while (iter->w.leaf); 2578 2579 return 0; 2580 } 2581 2582 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter, 2583 struct net *net) 2584 { 2585 memset(&iter->w, 0, sizeof(iter->w)); 2586 iter->w.func = ipv6_route_yield; 2587 iter->w.root = &iter->tbl->tb6_root; 2588 iter->w.state = FWS_INIT; 2589 iter->w.node = iter->w.root; 2590 iter->w.args = iter; 2591 iter->sernum = READ_ONCE(iter->w.root->fn_sernum); 2592 INIT_LIST_HEAD(&iter->w.lh); 2593 fib6_walker_link(net, &iter->w); 2594 } 2595 2596 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl, 2597 struct net *net) 2598 { 2599 unsigned int h; 2600 struct hlist_node *node; 2601 2602 if (tbl) { 2603 h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1; 2604 node = rcu_dereference(hlist_next_rcu(&tbl->tb6_hlist)); 2605 } else { 2606 h = 0; 2607 node = NULL; 2608 } 2609 2610 while (!node && h < FIB6_TABLE_HASHSZ) { 2611 node = rcu_dereference( 2612 hlist_first_rcu(&net->ipv6.fib_table_hash[h++])); 2613 } 2614 return hlist_entry_safe(node, struct fib6_table, tb6_hlist); 2615 } 2616 2617 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter) 2618 { 2619 int sernum = READ_ONCE(iter->w.root->fn_sernum); 2620 2621 if (iter->sernum != sernum) { 2622 iter->sernum = sernum; 2623 iter->w.state = FWS_INIT; 2624 iter->w.node = iter->w.root; 2625 WARN_ON(iter->w.skip); 2626 iter->w.skip = iter->w.count; 2627 } 2628 } 2629 2630 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2631 { 2632 int r; 2633 struct fib6_info *n; 2634 struct net *net = seq_file_net(seq); 2635 struct ipv6_route_iter *iter = seq->private; 2636 2637 ++(*pos); 2638 if (!v) 2639 goto iter_table; 2640 2641 n = rcu_dereference(((struct fib6_info *)v)->fib6_next); 2642 if (n) 2643 return n; 2644 2645 iter_table: 2646 ipv6_route_check_sernum(iter); 2647 spin_lock_bh(&iter->tbl->tb6_lock); 2648 r = fib6_walk_continue(&iter->w); 2649 spin_unlock_bh(&iter->tbl->tb6_lock); 2650 if (r > 0) { 2651 return iter->w.leaf; 2652 } else if (r < 0) { 2653 fib6_walker_unlink(net, &iter->w); 2654 return NULL; 2655 } 2656 fib6_walker_unlink(net, &iter->w); 2657 2658 iter->tbl = ipv6_route_seq_next_table(iter->tbl, net); 2659 if (!iter->tbl) 2660 return NULL; 2661 2662 ipv6_route_seq_setup_walk(iter, net); 2663 goto iter_table; 2664 } 2665 2666 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos) 2667 __acquires(RCU) 2668 { 2669 struct net *net = seq_file_net(seq); 2670 struct ipv6_route_iter *iter = seq->private; 2671 2672 rcu_read_lock(); 2673 iter->tbl = ipv6_route_seq_next_table(NULL, net); 2674 iter->skip = *pos; 2675 2676 if (iter->tbl) { 2677 loff_t p = 0; 2678 2679 ipv6_route_seq_setup_walk(iter, net); 2680 return ipv6_route_seq_next(seq, NULL, &p); 2681 } else { 2682 return NULL; 2683 } 2684 } 2685 2686 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter) 2687 { 2688 struct fib6_walker *w = &iter->w; 2689 return w->node && !(w->state == FWS_U && w->node == w->root); 2690 } 2691 2692 static void ipv6_route_native_seq_stop(struct seq_file *seq, void *v) 2693 __releases(RCU) 2694 { 2695 struct net *net = seq_file_net(seq); 2696 struct ipv6_route_iter *iter = seq->private; 2697 2698 if (ipv6_route_iter_active(iter)) 2699 fib6_walker_unlink(net, &iter->w); 2700 2701 rcu_read_unlock(); 2702 } 2703 2704 #if IS_BUILTIN(CONFIG_IPV6) && defined(CONFIG_BPF_SYSCALL) 2705 static int ipv6_route_prog_seq_show(struct bpf_prog *prog, 2706 struct bpf_iter_meta *meta, 2707 void *v) 2708 { 2709 struct bpf_iter__ipv6_route ctx; 2710 2711 ctx.meta = meta; 2712 ctx.rt = v; 2713 return bpf_iter_run_prog(prog, &ctx); 2714 } 2715 2716 static int ipv6_route_seq_show(struct seq_file *seq, void *v) 2717 { 2718 struct ipv6_route_iter *iter = seq->private; 2719 struct bpf_iter_meta meta; 2720 struct bpf_prog *prog; 2721 int ret; 2722 2723 meta.seq = seq; 2724 prog = bpf_iter_get_info(&meta, false); 2725 if (!prog) 2726 return ipv6_route_native_seq_show(seq, v); 2727 2728 ret = ipv6_route_prog_seq_show(prog, &meta, v); 2729 iter->w.leaf = NULL; 2730 2731 return ret; 2732 } 2733 2734 static void ipv6_route_seq_stop(struct seq_file *seq, void *v) 2735 { 2736 struct bpf_iter_meta meta; 2737 struct bpf_prog *prog; 2738 2739 if (!v) { 2740 meta.seq = seq; 2741 prog = bpf_iter_get_info(&meta, true); 2742 if (prog) 2743 (void)ipv6_route_prog_seq_show(prog, &meta, v); 2744 } 2745 2746 ipv6_route_native_seq_stop(seq, v); 2747 } 2748 #else 2749 static int ipv6_route_seq_show(struct seq_file *seq, void *v) 2750 { 2751 return ipv6_route_native_seq_show(seq, v); 2752 } 2753 2754 static void ipv6_route_seq_stop(struct seq_file *seq, void *v) 2755 { 2756 ipv6_route_native_seq_stop(seq, v); 2757 } 2758 #endif 2759 2760 const struct seq_operations ipv6_route_seq_ops = { 2761 .start = ipv6_route_seq_start, 2762 .next = ipv6_route_seq_next, 2763 .stop = ipv6_route_seq_stop, 2764 .show = ipv6_route_seq_show 2765 }; 2766 #endif /* CONFIG_PROC_FS */ 2767