xref: /linux/net/ipv4/xfrm4_input.c (revision 9cf621bd5fcbeadc2804951d13d487e22e95b363)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xfrm4_input.c
4  *
5  * Changes:
6  *	YOSHIFUJI Hideaki @USAGI
7  *		Split up af-specific portion
8  *	Derek Atkins <derek@ihtfp.com>
9  *		Add Encapsulation support
10  *
11  */
12 
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/string.h>
16 #include <linux/netfilter.h>
17 #include <linux/netfilter_ipv4.h>
18 #include <net/ip.h>
19 #include <net/xfrm.h>
20 #include <net/protocol.h>
21 #include <net/gro.h>
22 
23 static int xfrm4_rcv_encap_finish2(struct net *net, struct sock *sk,
24 				   struct sk_buff *skb)
25 {
26 	return dst_input(skb);
27 }
28 
29 static inline int xfrm4_rcv_encap_finish(struct net *net, struct sock *sk,
30 					 struct sk_buff *skb)
31 {
32 	if (!skb_dst(skb)) {
33 		const struct iphdr *iph = ip_hdr(skb);
34 
35 		if (ip_route_input_noref(skb, iph->daddr, iph->saddr,
36 					 iph->tos, skb->dev))
37 			goto drop;
38 	}
39 
40 	if (xfrm_trans_queue(skb, xfrm4_rcv_encap_finish2))
41 		goto drop;
42 
43 	return 0;
44 drop:
45 	kfree_skb(skb);
46 	return NET_RX_DROP;
47 }
48 
49 int xfrm4_transport_finish(struct sk_buff *skb, int async)
50 {
51 	struct xfrm_offload *xo = xfrm_offload(skb);
52 	struct iphdr *iph = ip_hdr(skb);
53 
54 	iph->protocol = XFRM_MODE_SKB_CB(skb)->protocol;
55 
56 #ifndef CONFIG_NETFILTER
57 	if (!async)
58 		return -iph->protocol;
59 #endif
60 
61 	__skb_push(skb, -skb_network_offset(skb));
62 	iph->tot_len = htons(skb->len);
63 	ip_send_check(iph);
64 
65 	if (xo && (xo->flags & XFRM_GRO)) {
66 		skb_mac_header_rebuild(skb);
67 		skb_reset_transport_header(skb);
68 		return 0;
69 	}
70 
71 	NF_HOOK(NFPROTO_IPV4, NF_INET_PRE_ROUTING,
72 		dev_net(skb->dev), NULL, skb, skb->dev, NULL,
73 		xfrm4_rcv_encap_finish);
74 	return 0;
75 }
76 
77 static int __xfrm4_udp_encap_rcv(struct sock *sk, struct sk_buff *skb, bool pull)
78 {
79 	struct udp_sock *up = udp_sk(sk);
80 	struct udphdr *uh;
81 	struct iphdr *iph;
82 	int iphlen, len;
83 	__u8 *udpdata;
84 	__be32 *udpdata32;
85 	u16 encap_type;
86 
87 	encap_type = READ_ONCE(up->encap_type);
88 	/* if this is not encapsulated socket, then just return now */
89 	if (!encap_type)
90 		return 1;
91 
92 	/* If this is a paged skb, make sure we pull up
93 	 * whatever data we need to look at. */
94 	len = skb->len - sizeof(struct udphdr);
95 	if (!pskb_may_pull(skb, sizeof(struct udphdr) + min(len, 8)))
96 		return 1;
97 
98 	/* Now we can get the pointers */
99 	uh = udp_hdr(skb);
100 	udpdata = (__u8 *)uh + sizeof(struct udphdr);
101 	udpdata32 = (__be32 *)udpdata;
102 
103 	switch (encap_type) {
104 	default:
105 	case UDP_ENCAP_ESPINUDP:
106 		/* Check if this is a keepalive packet.  If so, eat it. */
107 		if (len == 1 && udpdata[0] == 0xff) {
108 			return -EINVAL;
109 		} else if (len > sizeof(struct ip_esp_hdr) && udpdata32[0] != 0) {
110 			/* ESP Packet without Non-ESP header */
111 			len = sizeof(struct udphdr);
112 		} else
113 			/* Must be an IKE packet.. pass it through */
114 			return 1;
115 		break;
116 	}
117 
118 	/* At this point we are sure that this is an ESPinUDP packet,
119 	 * so we need to remove 'len' bytes from the packet (the UDP
120 	 * header and optional ESP marker bytes) and then modify the
121 	 * protocol to ESP, and then call into the transform receiver.
122 	 */
123 	if (skb_unclone(skb, GFP_ATOMIC))
124 		return -EINVAL;
125 
126 	/* Now we can update and verify the packet length... */
127 	iph = ip_hdr(skb);
128 	iphlen = iph->ihl << 2;
129 	iph->tot_len = htons(ntohs(iph->tot_len) - len);
130 	if (skb->len < iphlen + len) {
131 		/* packet is too small!?! */
132 		return -EINVAL;
133 	}
134 
135 	/* pull the data buffer up to the ESP header and set the
136 	 * transport header to point to ESP.  Keep UDP on the stack
137 	 * for later.
138 	 */
139 	if (pull) {
140 		__skb_pull(skb, len);
141 		skb_reset_transport_header(skb);
142 	} else {
143 		skb_set_transport_header(skb, len);
144 	}
145 
146 	/* process ESP */
147 	return 0;
148 }
149 
150 /* If it's a keepalive packet, then just eat it.
151  * If it's an encapsulated packet, then pass it to the
152  * IPsec xfrm input.
153  * Returns 0 if skb passed to xfrm or was dropped.
154  * Returns >0 if skb should be passed to UDP.
155  * Returns <0 if skb should be resubmitted (-ret is protocol)
156  */
157 int xfrm4_udp_encap_rcv(struct sock *sk, struct sk_buff *skb)
158 {
159 	int ret;
160 
161 	ret = __xfrm4_udp_encap_rcv(sk, skb, true);
162 	if (!ret)
163 		return xfrm4_rcv_encap(skb, IPPROTO_ESP, 0,
164 				       udp_sk(sk)->encap_type);
165 
166 	if (ret < 0) {
167 		kfree_skb(skb);
168 		return 0;
169 	}
170 
171 	return ret;
172 }
173 EXPORT_SYMBOL(xfrm4_udp_encap_rcv);
174 
175 struct sk_buff *xfrm4_gro_udp_encap_rcv(struct sock *sk, struct list_head *head,
176 					struct sk_buff *skb)
177 {
178 	int offset = skb_gro_offset(skb);
179 	const struct net_offload *ops;
180 	struct sk_buff *pp = NULL;
181 	int ret;
182 
183 	offset = offset - sizeof(struct udphdr);
184 
185 	if (!pskb_pull(skb, offset))
186 		return NULL;
187 
188 	rcu_read_lock();
189 	ops = rcu_dereference(inet_offloads[IPPROTO_ESP]);
190 	if (!ops || !ops->callbacks.gro_receive)
191 		goto out;
192 
193 	ret = __xfrm4_udp_encap_rcv(sk, skb, false);
194 	if (ret)
195 		goto out;
196 
197 	skb_push(skb, offset);
198 	NAPI_GRO_CB(skb)->proto = IPPROTO_UDP;
199 
200 	pp = call_gro_receive(ops->callbacks.gro_receive, head, skb);
201 	rcu_read_unlock();
202 
203 	return pp;
204 
205 out:
206 	rcu_read_unlock();
207 	skb_push(skb, offset);
208 	NAPI_GRO_CB(skb)->same_flow = 0;
209 	NAPI_GRO_CB(skb)->flush = 1;
210 
211 	return NULL;
212 }
213 EXPORT_SYMBOL(xfrm4_gro_udp_encap_rcv);
214 
215 int xfrm4_rcv(struct sk_buff *skb)
216 {
217 	return xfrm4_rcv_spi(skb, ip_hdr(skb)->protocol, 0);
218 }
219 EXPORT_SYMBOL(xfrm4_rcv);
220