1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * The User Datagram Protocol (UDP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 12 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 13 * Hirokazu Takahashi, <taka@valinux.co.jp> 14 * 15 * Fixes: 16 * Alan Cox : verify_area() calls 17 * Alan Cox : stopped close while in use off icmp 18 * messages. Not a fix but a botch that 19 * for udp at least is 'valid'. 20 * Alan Cox : Fixed icmp handling properly 21 * Alan Cox : Correct error for oversized datagrams 22 * Alan Cox : Tidied select() semantics. 23 * Alan Cox : udp_err() fixed properly, also now 24 * select and read wake correctly on errors 25 * Alan Cox : udp_send verify_area moved to avoid mem leak 26 * Alan Cox : UDP can count its memory 27 * Alan Cox : send to an unknown connection causes 28 * an ECONNREFUSED off the icmp, but 29 * does NOT close. 30 * Alan Cox : Switched to new sk_buff handlers. No more backlog! 31 * Alan Cox : Using generic datagram code. Even smaller and the PEEK 32 * bug no longer crashes it. 33 * Fred Van Kempen : Net2e support for sk->broadcast. 34 * Alan Cox : Uses skb_free_datagram 35 * Alan Cox : Added get/set sockopt support. 36 * Alan Cox : Broadcasting without option set returns EACCES. 37 * Alan Cox : No wakeup calls. Instead we now use the callbacks. 38 * Alan Cox : Use ip_tos and ip_ttl 39 * Alan Cox : SNMP Mibs 40 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support. 41 * Matt Dillon : UDP length checks. 42 * Alan Cox : Smarter af_inet used properly. 43 * Alan Cox : Use new kernel side addressing. 44 * Alan Cox : Incorrect return on truncated datagram receive. 45 * Arnt Gulbrandsen : New udp_send and stuff 46 * Alan Cox : Cache last socket 47 * Alan Cox : Route cache 48 * Jon Peatfield : Minor efficiency fix to sendto(). 49 * Mike Shaver : RFC1122 checks. 50 * Alan Cox : Nonblocking error fix. 51 * Willy Konynenberg : Transparent proxying support. 52 * Mike McLagan : Routing by source 53 * David S. Miller : New socket lookup architecture. 54 * Last socket cache retained as it 55 * does have a high hit rate. 56 * Olaf Kirch : Don't linearise iovec on sendmsg. 57 * Andi Kleen : Some cleanups, cache destination entry 58 * for connect. 59 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 60 * Melvin Smith : Check msg_name not msg_namelen in sendto(), 61 * return ENOTCONN for unconnected sockets (POSIX) 62 * Janos Farkas : don't deliver multi/broadcasts to a different 63 * bound-to-device socket 64 * Hirokazu Takahashi : HW checksumming for outgoing UDP 65 * datagrams. 66 * Hirokazu Takahashi : sendfile() on UDP works now. 67 * Arnaldo C. Melo : convert /proc/net/udp to seq_file 68 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 69 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind 70 * a single port at the same time. 71 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support 72 * James Chapman : Add L2TP encapsulation type. 73 */ 74 75 #define pr_fmt(fmt) "UDP: " fmt 76 77 #include <linux/bpf-cgroup.h> 78 #include <linux/uaccess.h> 79 #include <asm/ioctls.h> 80 #include <linux/memblock.h> 81 #include <linux/highmem.h> 82 #include <linux/types.h> 83 #include <linux/fcntl.h> 84 #include <linux/module.h> 85 #include <linux/socket.h> 86 #include <linux/sockios.h> 87 #include <linux/igmp.h> 88 #include <linux/inetdevice.h> 89 #include <linux/in.h> 90 #include <linux/errno.h> 91 #include <linux/timer.h> 92 #include <linux/mm.h> 93 #include <linux/inet.h> 94 #include <linux/netdevice.h> 95 #include <linux/slab.h> 96 #include <net/tcp_states.h> 97 #include <linux/skbuff.h> 98 #include <linux/proc_fs.h> 99 #include <linux/seq_file.h> 100 #include <net/net_namespace.h> 101 #include <net/icmp.h> 102 #include <net/inet_hashtables.h> 103 #include <net/ip_tunnels.h> 104 #include <net/route.h> 105 #include <net/checksum.h> 106 #include <net/gso.h> 107 #include <net/xfrm.h> 108 #include <trace/events/udp.h> 109 #include <linux/static_key.h> 110 #include <linux/btf_ids.h> 111 #include <trace/events/skb.h> 112 #include <net/busy_poll.h> 113 #include "udp_impl.h" 114 #include <net/sock_reuseport.h> 115 #include <net/addrconf.h> 116 #include <net/udp_tunnel.h> 117 #include <net/gro.h> 118 #if IS_ENABLED(CONFIG_IPV6) 119 #include <net/ipv6_stubs.h> 120 #endif 121 122 struct udp_table udp_table __read_mostly; 123 EXPORT_SYMBOL(udp_table); 124 125 long sysctl_udp_mem[3] __read_mostly; 126 EXPORT_SYMBOL(sysctl_udp_mem); 127 128 atomic_long_t udp_memory_allocated ____cacheline_aligned_in_smp; 129 EXPORT_SYMBOL(udp_memory_allocated); 130 DEFINE_PER_CPU(int, udp_memory_per_cpu_fw_alloc); 131 EXPORT_PER_CPU_SYMBOL_GPL(udp_memory_per_cpu_fw_alloc); 132 133 #define MAX_UDP_PORTS 65536 134 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN_PERNET) 135 136 static struct udp_table *udp_get_table_prot(struct sock *sk) 137 { 138 return sk->sk_prot->h.udp_table ? : sock_net(sk)->ipv4.udp_table; 139 } 140 141 static int udp_lib_lport_inuse(struct net *net, __u16 num, 142 const struct udp_hslot *hslot, 143 unsigned long *bitmap, 144 struct sock *sk, unsigned int log) 145 { 146 struct sock *sk2; 147 kuid_t uid = sock_i_uid(sk); 148 149 sk_for_each(sk2, &hslot->head) { 150 if (net_eq(sock_net(sk2), net) && 151 sk2 != sk && 152 (bitmap || udp_sk(sk2)->udp_port_hash == num) && 153 (!sk2->sk_reuse || !sk->sk_reuse) && 154 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 155 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 156 inet_rcv_saddr_equal(sk, sk2, true)) { 157 if (sk2->sk_reuseport && sk->sk_reuseport && 158 !rcu_access_pointer(sk->sk_reuseport_cb) && 159 uid_eq(uid, sock_i_uid(sk2))) { 160 if (!bitmap) 161 return 0; 162 } else { 163 if (!bitmap) 164 return 1; 165 __set_bit(udp_sk(sk2)->udp_port_hash >> log, 166 bitmap); 167 } 168 } 169 } 170 return 0; 171 } 172 173 /* 174 * Note: we still hold spinlock of primary hash chain, so no other writer 175 * can insert/delete a socket with local_port == num 176 */ 177 static int udp_lib_lport_inuse2(struct net *net, __u16 num, 178 struct udp_hslot *hslot2, 179 struct sock *sk) 180 { 181 struct sock *sk2; 182 kuid_t uid = sock_i_uid(sk); 183 int res = 0; 184 185 spin_lock(&hslot2->lock); 186 udp_portaddr_for_each_entry(sk2, &hslot2->head) { 187 if (net_eq(sock_net(sk2), net) && 188 sk2 != sk && 189 (udp_sk(sk2)->udp_port_hash == num) && 190 (!sk2->sk_reuse || !sk->sk_reuse) && 191 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 192 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 193 inet_rcv_saddr_equal(sk, sk2, true)) { 194 if (sk2->sk_reuseport && sk->sk_reuseport && 195 !rcu_access_pointer(sk->sk_reuseport_cb) && 196 uid_eq(uid, sock_i_uid(sk2))) { 197 res = 0; 198 } else { 199 res = 1; 200 } 201 break; 202 } 203 } 204 spin_unlock(&hslot2->lock); 205 return res; 206 } 207 208 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot) 209 { 210 struct net *net = sock_net(sk); 211 kuid_t uid = sock_i_uid(sk); 212 struct sock *sk2; 213 214 sk_for_each(sk2, &hslot->head) { 215 if (net_eq(sock_net(sk2), net) && 216 sk2 != sk && 217 sk2->sk_family == sk->sk_family && 218 ipv6_only_sock(sk2) == ipv6_only_sock(sk) && 219 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) && 220 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 221 sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) && 222 inet_rcv_saddr_equal(sk, sk2, false)) { 223 return reuseport_add_sock(sk, sk2, 224 inet_rcv_saddr_any(sk)); 225 } 226 } 227 228 return reuseport_alloc(sk, inet_rcv_saddr_any(sk)); 229 } 230 231 /** 232 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6 233 * 234 * @sk: socket struct in question 235 * @snum: port number to look up 236 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains, 237 * with NULL address 238 */ 239 int udp_lib_get_port(struct sock *sk, unsigned short snum, 240 unsigned int hash2_nulladdr) 241 { 242 struct udp_table *udptable = udp_get_table_prot(sk); 243 struct udp_hslot *hslot, *hslot2; 244 struct net *net = sock_net(sk); 245 int error = -EADDRINUSE; 246 247 if (!snum) { 248 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN); 249 unsigned short first, last; 250 int low, high, remaining; 251 unsigned int rand; 252 253 inet_sk_get_local_port_range(sk, &low, &high); 254 remaining = (high - low) + 1; 255 256 rand = get_random_u32(); 257 first = reciprocal_scale(rand, remaining) + low; 258 /* 259 * force rand to be an odd multiple of UDP_HTABLE_SIZE 260 */ 261 rand = (rand | 1) * (udptable->mask + 1); 262 last = first + udptable->mask + 1; 263 do { 264 hslot = udp_hashslot(udptable, net, first); 265 bitmap_zero(bitmap, PORTS_PER_CHAIN); 266 spin_lock_bh(&hslot->lock); 267 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk, 268 udptable->log); 269 270 snum = first; 271 /* 272 * Iterate on all possible values of snum for this hash. 273 * Using steps of an odd multiple of UDP_HTABLE_SIZE 274 * give us randomization and full range coverage. 275 */ 276 do { 277 if (low <= snum && snum <= high && 278 !test_bit(snum >> udptable->log, bitmap) && 279 !inet_is_local_reserved_port(net, snum)) 280 goto found; 281 snum += rand; 282 } while (snum != first); 283 spin_unlock_bh(&hslot->lock); 284 cond_resched(); 285 } while (++first != last); 286 goto fail; 287 } else { 288 hslot = udp_hashslot(udptable, net, snum); 289 spin_lock_bh(&hslot->lock); 290 if (hslot->count > 10) { 291 int exist; 292 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum; 293 294 slot2 &= udptable->mask; 295 hash2_nulladdr &= udptable->mask; 296 297 hslot2 = udp_hashslot2(udptable, slot2); 298 if (hslot->count < hslot2->count) 299 goto scan_primary_hash; 300 301 exist = udp_lib_lport_inuse2(net, snum, hslot2, sk); 302 if (!exist && (hash2_nulladdr != slot2)) { 303 hslot2 = udp_hashslot2(udptable, hash2_nulladdr); 304 exist = udp_lib_lport_inuse2(net, snum, hslot2, 305 sk); 306 } 307 if (exist) 308 goto fail_unlock; 309 else 310 goto found; 311 } 312 scan_primary_hash: 313 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0)) 314 goto fail_unlock; 315 } 316 found: 317 inet_sk(sk)->inet_num = snum; 318 udp_sk(sk)->udp_port_hash = snum; 319 udp_sk(sk)->udp_portaddr_hash ^= snum; 320 if (sk_unhashed(sk)) { 321 if (sk->sk_reuseport && 322 udp_reuseport_add_sock(sk, hslot)) { 323 inet_sk(sk)->inet_num = 0; 324 udp_sk(sk)->udp_port_hash = 0; 325 udp_sk(sk)->udp_portaddr_hash ^= snum; 326 goto fail_unlock; 327 } 328 329 sk_add_node_rcu(sk, &hslot->head); 330 hslot->count++; 331 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 332 333 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 334 spin_lock(&hslot2->lock); 335 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 336 sk->sk_family == AF_INET6) 337 hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node, 338 &hslot2->head); 339 else 340 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 341 &hslot2->head); 342 hslot2->count++; 343 spin_unlock(&hslot2->lock); 344 } 345 sock_set_flag(sk, SOCK_RCU_FREE); 346 error = 0; 347 fail_unlock: 348 spin_unlock_bh(&hslot->lock); 349 fail: 350 return error; 351 } 352 EXPORT_SYMBOL(udp_lib_get_port); 353 354 int udp_v4_get_port(struct sock *sk, unsigned short snum) 355 { 356 unsigned int hash2_nulladdr = 357 ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum); 358 unsigned int hash2_partial = 359 ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0); 360 361 /* precompute partial secondary hash */ 362 udp_sk(sk)->udp_portaddr_hash = hash2_partial; 363 return udp_lib_get_port(sk, snum, hash2_nulladdr); 364 } 365 366 static int compute_score(struct sock *sk, struct net *net, 367 __be32 saddr, __be16 sport, 368 __be32 daddr, unsigned short hnum, 369 int dif, int sdif) 370 { 371 int score; 372 struct inet_sock *inet; 373 bool dev_match; 374 375 if (!net_eq(sock_net(sk), net) || 376 udp_sk(sk)->udp_port_hash != hnum || 377 ipv6_only_sock(sk)) 378 return -1; 379 380 if (sk->sk_rcv_saddr != daddr) 381 return -1; 382 383 score = (sk->sk_family == PF_INET) ? 2 : 1; 384 385 inet = inet_sk(sk); 386 if (inet->inet_daddr) { 387 if (inet->inet_daddr != saddr) 388 return -1; 389 score += 4; 390 } 391 392 if (inet->inet_dport) { 393 if (inet->inet_dport != sport) 394 return -1; 395 score += 4; 396 } 397 398 dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, 399 dif, sdif); 400 if (!dev_match) 401 return -1; 402 if (sk->sk_bound_dev_if) 403 score += 4; 404 405 if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id()) 406 score++; 407 return score; 408 } 409 410 INDIRECT_CALLABLE_SCOPE 411 u32 udp_ehashfn(const struct net *net, const __be32 laddr, const __u16 lport, 412 const __be32 faddr, const __be16 fport) 413 { 414 static u32 udp_ehash_secret __read_mostly; 415 416 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret)); 417 418 return __inet_ehashfn(laddr, lport, faddr, fport, 419 udp_ehash_secret + net_hash_mix(net)); 420 } 421 422 /* called with rcu_read_lock() */ 423 static struct sock *udp4_lib_lookup2(struct net *net, 424 __be32 saddr, __be16 sport, 425 __be32 daddr, unsigned int hnum, 426 int dif, int sdif, 427 struct udp_hslot *hslot2, 428 struct sk_buff *skb) 429 { 430 struct sock *sk, *result; 431 int score, badness; 432 433 result = NULL; 434 badness = 0; 435 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 436 score = compute_score(sk, net, saddr, sport, 437 daddr, hnum, dif, sdif); 438 if (score > badness) { 439 badness = score; 440 441 if (sk->sk_state == TCP_ESTABLISHED) { 442 result = sk; 443 continue; 444 } 445 446 result = inet_lookup_reuseport(net, sk, skb, sizeof(struct udphdr), 447 saddr, sport, daddr, hnum, udp_ehashfn); 448 if (!result) { 449 result = sk; 450 continue; 451 } 452 453 /* Fall back to scoring if group has connections */ 454 if (!reuseport_has_conns(sk)) 455 return result; 456 457 /* Reuseport logic returned an error, keep original score. */ 458 if (IS_ERR(result)) 459 continue; 460 461 badness = compute_score(result, net, saddr, sport, 462 daddr, hnum, dif, sdif); 463 464 } 465 } 466 return result; 467 } 468 469 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try 470 * harder than this. -DaveM 471 */ 472 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr, 473 __be16 sport, __be32 daddr, __be16 dport, int dif, 474 int sdif, struct udp_table *udptable, struct sk_buff *skb) 475 { 476 unsigned short hnum = ntohs(dport); 477 unsigned int hash2, slot2; 478 struct udp_hslot *hslot2; 479 struct sock *result, *sk; 480 481 hash2 = ipv4_portaddr_hash(net, daddr, hnum); 482 slot2 = hash2 & udptable->mask; 483 hslot2 = &udptable->hash2[slot2]; 484 485 /* Lookup connected or non-wildcard socket */ 486 result = udp4_lib_lookup2(net, saddr, sport, 487 daddr, hnum, dif, sdif, 488 hslot2, skb); 489 if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED) 490 goto done; 491 492 /* Lookup redirect from BPF */ 493 if (static_branch_unlikely(&bpf_sk_lookup_enabled) && 494 udptable == net->ipv4.udp_table) { 495 sk = inet_lookup_run_sk_lookup(net, IPPROTO_UDP, skb, sizeof(struct udphdr), 496 saddr, sport, daddr, hnum, dif, 497 udp_ehashfn); 498 if (sk) { 499 result = sk; 500 goto done; 501 } 502 } 503 504 /* Got non-wildcard socket or error on first lookup */ 505 if (result) 506 goto done; 507 508 /* Lookup wildcard sockets */ 509 hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum); 510 slot2 = hash2 & udptable->mask; 511 hslot2 = &udptable->hash2[slot2]; 512 513 result = udp4_lib_lookup2(net, saddr, sport, 514 htonl(INADDR_ANY), hnum, dif, sdif, 515 hslot2, skb); 516 done: 517 if (IS_ERR(result)) 518 return NULL; 519 return result; 520 } 521 EXPORT_SYMBOL_GPL(__udp4_lib_lookup); 522 523 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb, 524 __be16 sport, __be16 dport, 525 struct udp_table *udptable) 526 { 527 const struct iphdr *iph = ip_hdr(skb); 528 529 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport, 530 iph->daddr, dport, inet_iif(skb), 531 inet_sdif(skb), udptable, skb); 532 } 533 534 struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb, 535 __be16 sport, __be16 dport) 536 { 537 const struct iphdr *iph = ip_hdr(skb); 538 struct net *net = dev_net(skb->dev); 539 int iif, sdif; 540 541 inet_get_iif_sdif(skb, &iif, &sdif); 542 543 return __udp4_lib_lookup(net, iph->saddr, sport, 544 iph->daddr, dport, iif, 545 sdif, net->ipv4.udp_table, NULL); 546 } 547 548 /* Must be called under rcu_read_lock(). 549 * Does increment socket refcount. 550 */ 551 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4) 552 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport, 553 __be32 daddr, __be16 dport, int dif) 554 { 555 struct sock *sk; 556 557 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport, 558 dif, 0, net->ipv4.udp_table, NULL); 559 if (sk && !refcount_inc_not_zero(&sk->sk_refcnt)) 560 sk = NULL; 561 return sk; 562 } 563 EXPORT_SYMBOL_GPL(udp4_lib_lookup); 564 #endif 565 566 static inline bool __udp_is_mcast_sock(struct net *net, const struct sock *sk, 567 __be16 loc_port, __be32 loc_addr, 568 __be16 rmt_port, __be32 rmt_addr, 569 int dif, int sdif, unsigned short hnum) 570 { 571 const struct inet_sock *inet = inet_sk(sk); 572 573 if (!net_eq(sock_net(sk), net) || 574 udp_sk(sk)->udp_port_hash != hnum || 575 (inet->inet_daddr && inet->inet_daddr != rmt_addr) || 576 (inet->inet_dport != rmt_port && inet->inet_dport) || 577 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) || 578 ipv6_only_sock(sk) || 579 !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif)) 580 return false; 581 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif)) 582 return false; 583 return true; 584 } 585 586 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key); 587 void udp_encap_enable(void) 588 { 589 static_branch_inc(&udp_encap_needed_key); 590 } 591 EXPORT_SYMBOL(udp_encap_enable); 592 593 void udp_encap_disable(void) 594 { 595 static_branch_dec(&udp_encap_needed_key); 596 } 597 EXPORT_SYMBOL(udp_encap_disable); 598 599 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go 600 * through error handlers in encapsulations looking for a match. 601 */ 602 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info) 603 { 604 int i; 605 606 for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) { 607 int (*handler)(struct sk_buff *skb, u32 info); 608 const struct ip_tunnel_encap_ops *encap; 609 610 encap = rcu_dereference(iptun_encaps[i]); 611 if (!encap) 612 continue; 613 handler = encap->err_handler; 614 if (handler && !handler(skb, info)) 615 return 0; 616 } 617 618 return -ENOENT; 619 } 620 621 /* Try to match ICMP errors to UDP tunnels by looking up a socket without 622 * reversing source and destination port: this will match tunnels that force the 623 * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that 624 * lwtunnels might actually break this assumption by being configured with 625 * different destination ports on endpoints, in this case we won't be able to 626 * trace ICMP messages back to them. 627 * 628 * If this doesn't match any socket, probe tunnels with arbitrary destination 629 * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port 630 * we've sent packets to won't necessarily match the local destination port. 631 * 632 * Then ask the tunnel implementation to match the error against a valid 633 * association. 634 * 635 * Return an error if we can't find a match, the socket if we need further 636 * processing, zero otherwise. 637 */ 638 static struct sock *__udp4_lib_err_encap(struct net *net, 639 const struct iphdr *iph, 640 struct udphdr *uh, 641 struct udp_table *udptable, 642 struct sock *sk, 643 struct sk_buff *skb, u32 info) 644 { 645 int (*lookup)(struct sock *sk, struct sk_buff *skb); 646 int network_offset, transport_offset; 647 struct udp_sock *up; 648 649 network_offset = skb_network_offset(skb); 650 transport_offset = skb_transport_offset(skb); 651 652 /* Network header needs to point to the outer IPv4 header inside ICMP */ 653 skb_reset_network_header(skb); 654 655 /* Transport header needs to point to the UDP header */ 656 skb_set_transport_header(skb, iph->ihl << 2); 657 658 if (sk) { 659 up = udp_sk(sk); 660 661 lookup = READ_ONCE(up->encap_err_lookup); 662 if (lookup && lookup(sk, skb)) 663 sk = NULL; 664 665 goto out; 666 } 667 668 sk = __udp4_lib_lookup(net, iph->daddr, uh->source, 669 iph->saddr, uh->dest, skb->dev->ifindex, 0, 670 udptable, NULL); 671 if (sk) { 672 up = udp_sk(sk); 673 674 lookup = READ_ONCE(up->encap_err_lookup); 675 if (!lookup || lookup(sk, skb)) 676 sk = NULL; 677 } 678 679 out: 680 if (!sk) 681 sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info)); 682 683 skb_set_transport_header(skb, transport_offset); 684 skb_set_network_header(skb, network_offset); 685 686 return sk; 687 } 688 689 /* 690 * This routine is called by the ICMP module when it gets some 691 * sort of error condition. If err < 0 then the socket should 692 * be closed and the error returned to the user. If err > 0 693 * it's just the icmp type << 8 | icmp code. 694 * Header points to the ip header of the error packet. We move 695 * on past this. Then (as it used to claim before adjustment) 696 * header points to the first 8 bytes of the udp header. We need 697 * to find the appropriate port. 698 */ 699 700 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable) 701 { 702 struct inet_sock *inet; 703 const struct iphdr *iph = (const struct iphdr *)skb->data; 704 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2)); 705 const int type = icmp_hdr(skb)->type; 706 const int code = icmp_hdr(skb)->code; 707 bool tunnel = false; 708 struct sock *sk; 709 int harderr; 710 int err; 711 struct net *net = dev_net(skb->dev); 712 713 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest, 714 iph->saddr, uh->source, skb->dev->ifindex, 715 inet_sdif(skb), udptable, NULL); 716 717 if (!sk || udp_sk(sk)->encap_type) { 718 /* No socket for error: try tunnels before discarding */ 719 if (static_branch_unlikely(&udp_encap_needed_key)) { 720 sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb, 721 info); 722 if (!sk) 723 return 0; 724 } else 725 sk = ERR_PTR(-ENOENT); 726 727 if (IS_ERR(sk)) { 728 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); 729 return PTR_ERR(sk); 730 } 731 732 tunnel = true; 733 } 734 735 err = 0; 736 harderr = 0; 737 inet = inet_sk(sk); 738 739 switch (type) { 740 default: 741 case ICMP_TIME_EXCEEDED: 742 err = EHOSTUNREACH; 743 break; 744 case ICMP_SOURCE_QUENCH: 745 goto out; 746 case ICMP_PARAMETERPROB: 747 err = EPROTO; 748 harderr = 1; 749 break; 750 case ICMP_DEST_UNREACH: 751 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */ 752 ipv4_sk_update_pmtu(skb, sk, info); 753 if (inet->pmtudisc != IP_PMTUDISC_DONT) { 754 err = EMSGSIZE; 755 harderr = 1; 756 break; 757 } 758 goto out; 759 } 760 err = EHOSTUNREACH; 761 if (code <= NR_ICMP_UNREACH) { 762 harderr = icmp_err_convert[code].fatal; 763 err = icmp_err_convert[code].errno; 764 } 765 break; 766 case ICMP_REDIRECT: 767 ipv4_sk_redirect(skb, sk); 768 goto out; 769 } 770 771 /* 772 * RFC1122: OK. Passes ICMP errors back to application, as per 773 * 4.1.3.3. 774 */ 775 if (tunnel) { 776 /* ...not for tunnels though: we don't have a sending socket */ 777 if (udp_sk(sk)->encap_err_rcv) 778 udp_sk(sk)->encap_err_rcv(sk, skb, err, uh->dest, info, 779 (u8 *)(uh+1)); 780 goto out; 781 } 782 if (!inet_test_bit(RECVERR, sk)) { 783 if (!harderr || sk->sk_state != TCP_ESTABLISHED) 784 goto out; 785 } else 786 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1)); 787 788 sk->sk_err = err; 789 sk_error_report(sk); 790 out: 791 return 0; 792 } 793 794 int udp_err(struct sk_buff *skb, u32 info) 795 { 796 return __udp4_lib_err(skb, info, dev_net(skb->dev)->ipv4.udp_table); 797 } 798 799 /* 800 * Throw away all pending data and cancel the corking. Socket is locked. 801 */ 802 void udp_flush_pending_frames(struct sock *sk) 803 { 804 struct udp_sock *up = udp_sk(sk); 805 806 if (up->pending) { 807 up->len = 0; 808 up->pending = 0; 809 ip_flush_pending_frames(sk); 810 } 811 } 812 EXPORT_SYMBOL(udp_flush_pending_frames); 813 814 /** 815 * udp4_hwcsum - handle outgoing HW checksumming 816 * @skb: sk_buff containing the filled-in UDP header 817 * (checksum field must be zeroed out) 818 * @src: source IP address 819 * @dst: destination IP address 820 */ 821 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst) 822 { 823 struct udphdr *uh = udp_hdr(skb); 824 int offset = skb_transport_offset(skb); 825 int len = skb->len - offset; 826 int hlen = len; 827 __wsum csum = 0; 828 829 if (!skb_has_frag_list(skb)) { 830 /* 831 * Only one fragment on the socket. 832 */ 833 skb->csum_start = skb_transport_header(skb) - skb->head; 834 skb->csum_offset = offsetof(struct udphdr, check); 835 uh->check = ~csum_tcpudp_magic(src, dst, len, 836 IPPROTO_UDP, 0); 837 } else { 838 struct sk_buff *frags; 839 840 /* 841 * HW-checksum won't work as there are two or more 842 * fragments on the socket so that all csums of sk_buffs 843 * should be together 844 */ 845 skb_walk_frags(skb, frags) { 846 csum = csum_add(csum, frags->csum); 847 hlen -= frags->len; 848 } 849 850 csum = skb_checksum(skb, offset, hlen, csum); 851 skb->ip_summed = CHECKSUM_NONE; 852 853 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum); 854 if (uh->check == 0) 855 uh->check = CSUM_MANGLED_0; 856 } 857 } 858 EXPORT_SYMBOL_GPL(udp4_hwcsum); 859 860 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended 861 * for the simple case like when setting the checksum for a UDP tunnel. 862 */ 863 void udp_set_csum(bool nocheck, struct sk_buff *skb, 864 __be32 saddr, __be32 daddr, int len) 865 { 866 struct udphdr *uh = udp_hdr(skb); 867 868 if (nocheck) { 869 uh->check = 0; 870 } else if (skb_is_gso(skb)) { 871 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 872 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 873 uh->check = 0; 874 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb)); 875 if (uh->check == 0) 876 uh->check = CSUM_MANGLED_0; 877 } else { 878 skb->ip_summed = CHECKSUM_PARTIAL; 879 skb->csum_start = skb_transport_header(skb) - skb->head; 880 skb->csum_offset = offsetof(struct udphdr, check); 881 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 882 } 883 } 884 EXPORT_SYMBOL(udp_set_csum); 885 886 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4, 887 struct inet_cork *cork) 888 { 889 struct sock *sk = skb->sk; 890 struct inet_sock *inet = inet_sk(sk); 891 struct udphdr *uh; 892 int err; 893 int is_udplite = IS_UDPLITE(sk); 894 int offset = skb_transport_offset(skb); 895 int len = skb->len - offset; 896 int datalen = len - sizeof(*uh); 897 __wsum csum = 0; 898 899 /* 900 * Create a UDP header 901 */ 902 uh = udp_hdr(skb); 903 uh->source = inet->inet_sport; 904 uh->dest = fl4->fl4_dport; 905 uh->len = htons(len); 906 uh->check = 0; 907 908 if (cork->gso_size) { 909 const int hlen = skb_network_header_len(skb) + 910 sizeof(struct udphdr); 911 912 if (hlen + cork->gso_size > cork->fragsize) { 913 kfree_skb(skb); 914 return -EINVAL; 915 } 916 if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) { 917 kfree_skb(skb); 918 return -EINVAL; 919 } 920 if (sk->sk_no_check_tx) { 921 kfree_skb(skb); 922 return -EINVAL; 923 } 924 if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite || 925 dst_xfrm(skb_dst(skb))) { 926 kfree_skb(skb); 927 return -EIO; 928 } 929 930 if (datalen > cork->gso_size) { 931 skb_shinfo(skb)->gso_size = cork->gso_size; 932 skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4; 933 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen, 934 cork->gso_size); 935 } 936 goto csum_partial; 937 } 938 939 if (is_udplite) /* UDP-Lite */ 940 csum = udplite_csum(skb); 941 942 else if (sk->sk_no_check_tx) { /* UDP csum off */ 943 944 skb->ip_summed = CHECKSUM_NONE; 945 goto send; 946 947 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */ 948 csum_partial: 949 950 udp4_hwcsum(skb, fl4->saddr, fl4->daddr); 951 goto send; 952 953 } else 954 csum = udp_csum(skb); 955 956 /* add protocol-dependent pseudo-header */ 957 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len, 958 sk->sk_protocol, csum); 959 if (uh->check == 0) 960 uh->check = CSUM_MANGLED_0; 961 962 send: 963 err = ip_send_skb(sock_net(sk), skb); 964 if (err) { 965 if (err == -ENOBUFS && 966 !inet_test_bit(RECVERR, sk)) { 967 UDP_INC_STATS(sock_net(sk), 968 UDP_MIB_SNDBUFERRORS, is_udplite); 969 err = 0; 970 } 971 } else 972 UDP_INC_STATS(sock_net(sk), 973 UDP_MIB_OUTDATAGRAMS, is_udplite); 974 return err; 975 } 976 977 /* 978 * Push out all pending data as one UDP datagram. Socket is locked. 979 */ 980 int udp_push_pending_frames(struct sock *sk) 981 { 982 struct udp_sock *up = udp_sk(sk); 983 struct inet_sock *inet = inet_sk(sk); 984 struct flowi4 *fl4 = &inet->cork.fl.u.ip4; 985 struct sk_buff *skb; 986 int err = 0; 987 988 skb = ip_finish_skb(sk, fl4); 989 if (!skb) 990 goto out; 991 992 err = udp_send_skb(skb, fl4, &inet->cork.base); 993 994 out: 995 up->len = 0; 996 up->pending = 0; 997 return err; 998 } 999 EXPORT_SYMBOL(udp_push_pending_frames); 1000 1001 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size) 1002 { 1003 switch (cmsg->cmsg_type) { 1004 case UDP_SEGMENT: 1005 if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16))) 1006 return -EINVAL; 1007 *gso_size = *(__u16 *)CMSG_DATA(cmsg); 1008 return 0; 1009 default: 1010 return -EINVAL; 1011 } 1012 } 1013 1014 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size) 1015 { 1016 struct cmsghdr *cmsg; 1017 bool need_ip = false; 1018 int err; 1019 1020 for_each_cmsghdr(cmsg, msg) { 1021 if (!CMSG_OK(msg, cmsg)) 1022 return -EINVAL; 1023 1024 if (cmsg->cmsg_level != SOL_UDP) { 1025 need_ip = true; 1026 continue; 1027 } 1028 1029 err = __udp_cmsg_send(cmsg, gso_size); 1030 if (err) 1031 return err; 1032 } 1033 1034 return need_ip; 1035 } 1036 EXPORT_SYMBOL_GPL(udp_cmsg_send); 1037 1038 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1039 { 1040 struct inet_sock *inet = inet_sk(sk); 1041 struct udp_sock *up = udp_sk(sk); 1042 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name); 1043 struct flowi4 fl4_stack; 1044 struct flowi4 *fl4; 1045 int ulen = len; 1046 struct ipcm_cookie ipc; 1047 struct rtable *rt = NULL; 1048 int free = 0; 1049 int connected = 0; 1050 __be32 daddr, faddr, saddr; 1051 u8 tos, scope; 1052 __be16 dport; 1053 int err, is_udplite = IS_UDPLITE(sk); 1054 int corkreq = READ_ONCE(up->corkflag) || msg->msg_flags&MSG_MORE; 1055 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *); 1056 struct sk_buff *skb; 1057 struct ip_options_data opt_copy; 1058 1059 if (len > 0xFFFF) 1060 return -EMSGSIZE; 1061 1062 /* 1063 * Check the flags. 1064 */ 1065 1066 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */ 1067 return -EOPNOTSUPP; 1068 1069 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag; 1070 1071 fl4 = &inet->cork.fl.u.ip4; 1072 if (up->pending) { 1073 /* 1074 * There are pending frames. 1075 * The socket lock must be held while it's corked. 1076 */ 1077 lock_sock(sk); 1078 if (likely(up->pending)) { 1079 if (unlikely(up->pending != AF_INET)) { 1080 release_sock(sk); 1081 return -EINVAL; 1082 } 1083 goto do_append_data; 1084 } 1085 release_sock(sk); 1086 } 1087 ulen += sizeof(struct udphdr); 1088 1089 /* 1090 * Get and verify the address. 1091 */ 1092 if (usin) { 1093 if (msg->msg_namelen < sizeof(*usin)) 1094 return -EINVAL; 1095 if (usin->sin_family != AF_INET) { 1096 if (usin->sin_family != AF_UNSPEC) 1097 return -EAFNOSUPPORT; 1098 } 1099 1100 daddr = usin->sin_addr.s_addr; 1101 dport = usin->sin_port; 1102 if (dport == 0) 1103 return -EINVAL; 1104 } else { 1105 if (sk->sk_state != TCP_ESTABLISHED) 1106 return -EDESTADDRREQ; 1107 daddr = inet->inet_daddr; 1108 dport = inet->inet_dport; 1109 /* Open fast path for connected socket. 1110 Route will not be used, if at least one option is set. 1111 */ 1112 connected = 1; 1113 } 1114 1115 ipcm_init_sk(&ipc, inet); 1116 ipc.gso_size = READ_ONCE(up->gso_size); 1117 1118 if (msg->msg_controllen) { 1119 err = udp_cmsg_send(sk, msg, &ipc.gso_size); 1120 if (err > 0) 1121 err = ip_cmsg_send(sk, msg, &ipc, 1122 sk->sk_family == AF_INET6); 1123 if (unlikely(err < 0)) { 1124 kfree(ipc.opt); 1125 return err; 1126 } 1127 if (ipc.opt) 1128 free = 1; 1129 connected = 0; 1130 } 1131 if (!ipc.opt) { 1132 struct ip_options_rcu *inet_opt; 1133 1134 rcu_read_lock(); 1135 inet_opt = rcu_dereference(inet->inet_opt); 1136 if (inet_opt) { 1137 memcpy(&opt_copy, inet_opt, 1138 sizeof(*inet_opt) + inet_opt->opt.optlen); 1139 ipc.opt = &opt_copy.opt; 1140 } 1141 rcu_read_unlock(); 1142 } 1143 1144 if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) { 1145 err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk, 1146 (struct sockaddr *)usin, &ipc.addr); 1147 if (err) 1148 goto out_free; 1149 if (usin) { 1150 if (usin->sin_port == 0) { 1151 /* BPF program set invalid port. Reject it. */ 1152 err = -EINVAL; 1153 goto out_free; 1154 } 1155 daddr = usin->sin_addr.s_addr; 1156 dport = usin->sin_port; 1157 } 1158 } 1159 1160 saddr = ipc.addr; 1161 ipc.addr = faddr = daddr; 1162 1163 if (ipc.opt && ipc.opt->opt.srr) { 1164 if (!daddr) { 1165 err = -EINVAL; 1166 goto out_free; 1167 } 1168 faddr = ipc.opt->opt.faddr; 1169 connected = 0; 1170 } 1171 tos = get_rttos(&ipc, inet); 1172 scope = ip_sendmsg_scope(inet, &ipc, msg); 1173 if (scope == RT_SCOPE_LINK) 1174 connected = 0; 1175 1176 if (ipv4_is_multicast(daddr)) { 1177 if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif)) 1178 ipc.oif = inet->mc_index; 1179 if (!saddr) 1180 saddr = inet->mc_addr; 1181 connected = 0; 1182 } else if (!ipc.oif) { 1183 ipc.oif = inet->uc_index; 1184 } else if (ipv4_is_lbcast(daddr) && inet->uc_index) { 1185 /* oif is set, packet is to local broadcast and 1186 * uc_index is set. oif is most likely set 1187 * by sk_bound_dev_if. If uc_index != oif check if the 1188 * oif is an L3 master and uc_index is an L3 slave. 1189 * If so, we want to allow the send using the uc_index. 1190 */ 1191 if (ipc.oif != inet->uc_index && 1192 ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk), 1193 inet->uc_index)) { 1194 ipc.oif = inet->uc_index; 1195 } 1196 } 1197 1198 if (connected) 1199 rt = (struct rtable *)sk_dst_check(sk, 0); 1200 1201 if (!rt) { 1202 struct net *net = sock_net(sk); 1203 __u8 flow_flags = inet_sk_flowi_flags(sk); 1204 1205 fl4 = &fl4_stack; 1206 1207 flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos, scope, 1208 sk->sk_protocol, flow_flags, faddr, saddr, 1209 dport, inet->inet_sport, sk->sk_uid); 1210 1211 security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4)); 1212 rt = ip_route_output_flow(net, fl4, sk); 1213 if (IS_ERR(rt)) { 1214 err = PTR_ERR(rt); 1215 rt = NULL; 1216 if (err == -ENETUNREACH) 1217 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 1218 goto out; 1219 } 1220 1221 err = -EACCES; 1222 if ((rt->rt_flags & RTCF_BROADCAST) && 1223 !sock_flag(sk, SOCK_BROADCAST)) 1224 goto out; 1225 if (connected) 1226 sk_dst_set(sk, dst_clone(&rt->dst)); 1227 } 1228 1229 if (msg->msg_flags&MSG_CONFIRM) 1230 goto do_confirm; 1231 back_from_confirm: 1232 1233 saddr = fl4->saddr; 1234 if (!ipc.addr) 1235 daddr = ipc.addr = fl4->daddr; 1236 1237 /* Lockless fast path for the non-corking case. */ 1238 if (!corkreq) { 1239 struct inet_cork cork; 1240 1241 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen, 1242 sizeof(struct udphdr), &ipc, &rt, 1243 &cork, msg->msg_flags); 1244 err = PTR_ERR(skb); 1245 if (!IS_ERR_OR_NULL(skb)) 1246 err = udp_send_skb(skb, fl4, &cork); 1247 goto out; 1248 } 1249 1250 lock_sock(sk); 1251 if (unlikely(up->pending)) { 1252 /* The socket is already corked while preparing it. */ 1253 /* ... which is an evident application bug. --ANK */ 1254 release_sock(sk); 1255 1256 net_dbg_ratelimited("socket already corked\n"); 1257 err = -EINVAL; 1258 goto out; 1259 } 1260 /* 1261 * Now cork the socket to pend data. 1262 */ 1263 fl4 = &inet->cork.fl.u.ip4; 1264 fl4->daddr = daddr; 1265 fl4->saddr = saddr; 1266 fl4->fl4_dport = dport; 1267 fl4->fl4_sport = inet->inet_sport; 1268 up->pending = AF_INET; 1269 1270 do_append_data: 1271 up->len += ulen; 1272 err = ip_append_data(sk, fl4, getfrag, msg, ulen, 1273 sizeof(struct udphdr), &ipc, &rt, 1274 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags); 1275 if (err) 1276 udp_flush_pending_frames(sk); 1277 else if (!corkreq) 1278 err = udp_push_pending_frames(sk); 1279 else if (unlikely(skb_queue_empty(&sk->sk_write_queue))) 1280 up->pending = 0; 1281 release_sock(sk); 1282 1283 out: 1284 ip_rt_put(rt); 1285 out_free: 1286 if (free) 1287 kfree(ipc.opt); 1288 if (!err) 1289 return len; 1290 /* 1291 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting 1292 * ENOBUFS might not be good (it's not tunable per se), but otherwise 1293 * we don't have a good statistic (IpOutDiscards but it can be too many 1294 * things). We could add another new stat but at least for now that 1295 * seems like overkill. 1296 */ 1297 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1298 UDP_INC_STATS(sock_net(sk), 1299 UDP_MIB_SNDBUFERRORS, is_udplite); 1300 } 1301 return err; 1302 1303 do_confirm: 1304 if (msg->msg_flags & MSG_PROBE) 1305 dst_confirm_neigh(&rt->dst, &fl4->daddr); 1306 if (!(msg->msg_flags&MSG_PROBE) || len) 1307 goto back_from_confirm; 1308 err = 0; 1309 goto out; 1310 } 1311 EXPORT_SYMBOL(udp_sendmsg); 1312 1313 void udp_splice_eof(struct socket *sock) 1314 { 1315 struct sock *sk = sock->sk; 1316 struct udp_sock *up = udp_sk(sk); 1317 1318 if (!up->pending || READ_ONCE(up->corkflag)) 1319 return; 1320 1321 lock_sock(sk); 1322 if (up->pending && !READ_ONCE(up->corkflag)) 1323 udp_push_pending_frames(sk); 1324 release_sock(sk); 1325 } 1326 EXPORT_SYMBOL_GPL(udp_splice_eof); 1327 1328 #define UDP_SKB_IS_STATELESS 0x80000000 1329 1330 /* all head states (dst, sk, nf conntrack) except skb extensions are 1331 * cleared by udp_rcv(). 1332 * 1333 * We need to preserve secpath, if present, to eventually process 1334 * IP_CMSG_PASSSEC at recvmsg() time. 1335 * 1336 * Other extensions can be cleared. 1337 */ 1338 static bool udp_try_make_stateless(struct sk_buff *skb) 1339 { 1340 if (!skb_has_extensions(skb)) 1341 return true; 1342 1343 if (!secpath_exists(skb)) { 1344 skb_ext_reset(skb); 1345 return true; 1346 } 1347 1348 return false; 1349 } 1350 1351 static void udp_set_dev_scratch(struct sk_buff *skb) 1352 { 1353 struct udp_dev_scratch *scratch = udp_skb_scratch(skb); 1354 1355 BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long)); 1356 scratch->_tsize_state = skb->truesize; 1357 #if BITS_PER_LONG == 64 1358 scratch->len = skb->len; 1359 scratch->csum_unnecessary = !!skb_csum_unnecessary(skb); 1360 scratch->is_linear = !skb_is_nonlinear(skb); 1361 #endif 1362 if (udp_try_make_stateless(skb)) 1363 scratch->_tsize_state |= UDP_SKB_IS_STATELESS; 1364 } 1365 1366 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb) 1367 { 1368 /* We come here after udp_lib_checksum_complete() returned 0. 1369 * This means that __skb_checksum_complete() might have 1370 * set skb->csum_valid to 1. 1371 * On 64bit platforms, we can set csum_unnecessary 1372 * to true, but only if the skb is not shared. 1373 */ 1374 #if BITS_PER_LONG == 64 1375 if (!skb_shared(skb)) 1376 udp_skb_scratch(skb)->csum_unnecessary = true; 1377 #endif 1378 } 1379 1380 static int udp_skb_truesize(struct sk_buff *skb) 1381 { 1382 return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS; 1383 } 1384 1385 static bool udp_skb_has_head_state(struct sk_buff *skb) 1386 { 1387 return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS); 1388 } 1389 1390 /* fully reclaim rmem/fwd memory allocated for skb */ 1391 static void udp_rmem_release(struct sock *sk, int size, int partial, 1392 bool rx_queue_lock_held) 1393 { 1394 struct udp_sock *up = udp_sk(sk); 1395 struct sk_buff_head *sk_queue; 1396 int amt; 1397 1398 if (likely(partial)) { 1399 up->forward_deficit += size; 1400 size = up->forward_deficit; 1401 if (size < READ_ONCE(up->forward_threshold) && 1402 !skb_queue_empty(&up->reader_queue)) 1403 return; 1404 } else { 1405 size += up->forward_deficit; 1406 } 1407 up->forward_deficit = 0; 1408 1409 /* acquire the sk_receive_queue for fwd allocated memory scheduling, 1410 * if the called don't held it already 1411 */ 1412 sk_queue = &sk->sk_receive_queue; 1413 if (!rx_queue_lock_held) 1414 spin_lock(&sk_queue->lock); 1415 1416 1417 sk_forward_alloc_add(sk, size); 1418 amt = (sk->sk_forward_alloc - partial) & ~(PAGE_SIZE - 1); 1419 sk_forward_alloc_add(sk, -amt); 1420 1421 if (amt) 1422 __sk_mem_reduce_allocated(sk, amt >> PAGE_SHIFT); 1423 1424 atomic_sub(size, &sk->sk_rmem_alloc); 1425 1426 /* this can save us from acquiring the rx queue lock on next receive */ 1427 skb_queue_splice_tail_init(sk_queue, &up->reader_queue); 1428 1429 if (!rx_queue_lock_held) 1430 spin_unlock(&sk_queue->lock); 1431 } 1432 1433 /* Note: called with reader_queue.lock held. 1434 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch 1435 * This avoids a cache line miss while receive_queue lock is held. 1436 * Look at __udp_enqueue_schedule_skb() to find where this copy is done. 1437 */ 1438 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb) 1439 { 1440 prefetch(&skb->data); 1441 udp_rmem_release(sk, udp_skb_truesize(skb), 1, false); 1442 } 1443 EXPORT_SYMBOL(udp_skb_destructor); 1444 1445 /* as above, but the caller held the rx queue lock, too */ 1446 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb) 1447 { 1448 prefetch(&skb->data); 1449 udp_rmem_release(sk, udp_skb_truesize(skb), 1, true); 1450 } 1451 1452 /* Idea of busylocks is to let producers grab an extra spinlock 1453 * to relieve pressure on the receive_queue spinlock shared by consumer. 1454 * Under flood, this means that only one producer can be in line 1455 * trying to acquire the receive_queue spinlock. 1456 * These busylock can be allocated on a per cpu manner, instead of a 1457 * per socket one (that would consume a cache line per socket) 1458 */ 1459 static int udp_busylocks_log __read_mostly; 1460 static spinlock_t *udp_busylocks __read_mostly; 1461 1462 static spinlock_t *busylock_acquire(void *ptr) 1463 { 1464 spinlock_t *busy; 1465 1466 busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log); 1467 spin_lock(busy); 1468 return busy; 1469 } 1470 1471 static void busylock_release(spinlock_t *busy) 1472 { 1473 if (busy) 1474 spin_unlock(busy); 1475 } 1476 1477 static int udp_rmem_schedule(struct sock *sk, int size) 1478 { 1479 int delta; 1480 1481 delta = size - sk->sk_forward_alloc; 1482 if (delta > 0 && !__sk_mem_schedule(sk, delta, SK_MEM_RECV)) 1483 return -ENOBUFS; 1484 1485 return 0; 1486 } 1487 1488 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb) 1489 { 1490 struct sk_buff_head *list = &sk->sk_receive_queue; 1491 int rmem, err = -ENOMEM; 1492 spinlock_t *busy = NULL; 1493 int size; 1494 1495 /* try to avoid the costly atomic add/sub pair when the receive 1496 * queue is full; always allow at least a packet 1497 */ 1498 rmem = atomic_read(&sk->sk_rmem_alloc); 1499 if (rmem > sk->sk_rcvbuf) 1500 goto drop; 1501 1502 /* Under mem pressure, it might be helpful to help udp_recvmsg() 1503 * having linear skbs : 1504 * - Reduce memory overhead and thus increase receive queue capacity 1505 * - Less cache line misses at copyout() time 1506 * - Less work at consume_skb() (less alien page frag freeing) 1507 */ 1508 if (rmem > (sk->sk_rcvbuf >> 1)) { 1509 skb_condense(skb); 1510 1511 busy = busylock_acquire(sk); 1512 } 1513 size = skb->truesize; 1514 udp_set_dev_scratch(skb); 1515 1516 /* we drop only if the receive buf is full and the receive 1517 * queue contains some other skb 1518 */ 1519 rmem = atomic_add_return(size, &sk->sk_rmem_alloc); 1520 if (rmem > (size + (unsigned int)sk->sk_rcvbuf)) 1521 goto uncharge_drop; 1522 1523 spin_lock(&list->lock); 1524 err = udp_rmem_schedule(sk, size); 1525 if (err) { 1526 spin_unlock(&list->lock); 1527 goto uncharge_drop; 1528 } 1529 1530 sk_forward_alloc_add(sk, -size); 1531 1532 /* no need to setup a destructor, we will explicitly release the 1533 * forward allocated memory on dequeue 1534 */ 1535 sock_skb_set_dropcount(sk, skb); 1536 1537 __skb_queue_tail(list, skb); 1538 spin_unlock(&list->lock); 1539 1540 if (!sock_flag(sk, SOCK_DEAD)) 1541 INDIRECT_CALL_1(sk->sk_data_ready, sock_def_readable, sk); 1542 1543 busylock_release(busy); 1544 return 0; 1545 1546 uncharge_drop: 1547 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 1548 1549 drop: 1550 atomic_inc(&sk->sk_drops); 1551 busylock_release(busy); 1552 return err; 1553 } 1554 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb); 1555 1556 void udp_destruct_common(struct sock *sk) 1557 { 1558 /* reclaim completely the forward allocated memory */ 1559 struct udp_sock *up = udp_sk(sk); 1560 unsigned int total = 0; 1561 struct sk_buff *skb; 1562 1563 skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue); 1564 while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) { 1565 total += skb->truesize; 1566 kfree_skb(skb); 1567 } 1568 udp_rmem_release(sk, total, 0, true); 1569 } 1570 EXPORT_SYMBOL_GPL(udp_destruct_common); 1571 1572 static void udp_destruct_sock(struct sock *sk) 1573 { 1574 udp_destruct_common(sk); 1575 inet_sock_destruct(sk); 1576 } 1577 1578 int udp_init_sock(struct sock *sk) 1579 { 1580 udp_lib_init_sock(sk); 1581 sk->sk_destruct = udp_destruct_sock; 1582 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); 1583 return 0; 1584 } 1585 1586 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len) 1587 { 1588 if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) { 1589 bool slow = lock_sock_fast(sk); 1590 1591 sk_peek_offset_bwd(sk, len); 1592 unlock_sock_fast(sk, slow); 1593 } 1594 1595 if (!skb_unref(skb)) 1596 return; 1597 1598 /* In the more common cases we cleared the head states previously, 1599 * see __udp_queue_rcv_skb(). 1600 */ 1601 if (unlikely(udp_skb_has_head_state(skb))) 1602 skb_release_head_state(skb); 1603 __consume_stateless_skb(skb); 1604 } 1605 EXPORT_SYMBOL_GPL(skb_consume_udp); 1606 1607 static struct sk_buff *__first_packet_length(struct sock *sk, 1608 struct sk_buff_head *rcvq, 1609 int *total) 1610 { 1611 struct sk_buff *skb; 1612 1613 while ((skb = skb_peek(rcvq)) != NULL) { 1614 if (udp_lib_checksum_complete(skb)) { 1615 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, 1616 IS_UDPLITE(sk)); 1617 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, 1618 IS_UDPLITE(sk)); 1619 atomic_inc(&sk->sk_drops); 1620 __skb_unlink(skb, rcvq); 1621 *total += skb->truesize; 1622 kfree_skb(skb); 1623 } else { 1624 udp_skb_csum_unnecessary_set(skb); 1625 break; 1626 } 1627 } 1628 return skb; 1629 } 1630 1631 /** 1632 * first_packet_length - return length of first packet in receive queue 1633 * @sk: socket 1634 * 1635 * Drops all bad checksum frames, until a valid one is found. 1636 * Returns the length of found skb, or -1 if none is found. 1637 */ 1638 static int first_packet_length(struct sock *sk) 1639 { 1640 struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue; 1641 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1642 struct sk_buff *skb; 1643 int total = 0; 1644 int res; 1645 1646 spin_lock_bh(&rcvq->lock); 1647 skb = __first_packet_length(sk, rcvq, &total); 1648 if (!skb && !skb_queue_empty_lockless(sk_queue)) { 1649 spin_lock(&sk_queue->lock); 1650 skb_queue_splice_tail_init(sk_queue, rcvq); 1651 spin_unlock(&sk_queue->lock); 1652 1653 skb = __first_packet_length(sk, rcvq, &total); 1654 } 1655 res = skb ? skb->len : -1; 1656 if (total) 1657 udp_rmem_release(sk, total, 1, false); 1658 spin_unlock_bh(&rcvq->lock); 1659 return res; 1660 } 1661 1662 /* 1663 * IOCTL requests applicable to the UDP protocol 1664 */ 1665 1666 int udp_ioctl(struct sock *sk, int cmd, int *karg) 1667 { 1668 switch (cmd) { 1669 case SIOCOUTQ: 1670 { 1671 *karg = sk_wmem_alloc_get(sk); 1672 return 0; 1673 } 1674 1675 case SIOCINQ: 1676 { 1677 *karg = max_t(int, 0, first_packet_length(sk)); 1678 return 0; 1679 } 1680 1681 default: 1682 return -ENOIOCTLCMD; 1683 } 1684 1685 return 0; 1686 } 1687 EXPORT_SYMBOL(udp_ioctl); 1688 1689 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags, 1690 int *off, int *err) 1691 { 1692 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1693 struct sk_buff_head *queue; 1694 struct sk_buff *last; 1695 long timeo; 1696 int error; 1697 1698 queue = &udp_sk(sk)->reader_queue; 1699 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1700 do { 1701 struct sk_buff *skb; 1702 1703 error = sock_error(sk); 1704 if (error) 1705 break; 1706 1707 error = -EAGAIN; 1708 do { 1709 spin_lock_bh(&queue->lock); 1710 skb = __skb_try_recv_from_queue(sk, queue, flags, off, 1711 err, &last); 1712 if (skb) { 1713 if (!(flags & MSG_PEEK)) 1714 udp_skb_destructor(sk, skb); 1715 spin_unlock_bh(&queue->lock); 1716 return skb; 1717 } 1718 1719 if (skb_queue_empty_lockless(sk_queue)) { 1720 spin_unlock_bh(&queue->lock); 1721 goto busy_check; 1722 } 1723 1724 /* refill the reader queue and walk it again 1725 * keep both queues locked to avoid re-acquiring 1726 * the sk_receive_queue lock if fwd memory scheduling 1727 * is needed. 1728 */ 1729 spin_lock(&sk_queue->lock); 1730 skb_queue_splice_tail_init(sk_queue, queue); 1731 1732 skb = __skb_try_recv_from_queue(sk, queue, flags, off, 1733 err, &last); 1734 if (skb && !(flags & MSG_PEEK)) 1735 udp_skb_dtor_locked(sk, skb); 1736 spin_unlock(&sk_queue->lock); 1737 spin_unlock_bh(&queue->lock); 1738 if (skb) 1739 return skb; 1740 1741 busy_check: 1742 if (!sk_can_busy_loop(sk)) 1743 break; 1744 1745 sk_busy_loop(sk, flags & MSG_DONTWAIT); 1746 } while (!skb_queue_empty_lockless(sk_queue)); 1747 1748 /* sk_queue is empty, reader_queue may contain peeked packets */ 1749 } while (timeo && 1750 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue, 1751 &error, &timeo, 1752 (struct sk_buff *)sk_queue)); 1753 1754 *err = error; 1755 return NULL; 1756 } 1757 EXPORT_SYMBOL(__skb_recv_udp); 1758 1759 int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor) 1760 { 1761 struct sk_buff *skb; 1762 int err; 1763 1764 try_again: 1765 skb = skb_recv_udp(sk, MSG_DONTWAIT, &err); 1766 if (!skb) 1767 return err; 1768 1769 if (udp_lib_checksum_complete(skb)) { 1770 int is_udplite = IS_UDPLITE(sk); 1771 struct net *net = sock_net(sk); 1772 1773 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, is_udplite); 1774 __UDP_INC_STATS(net, UDP_MIB_INERRORS, is_udplite); 1775 atomic_inc(&sk->sk_drops); 1776 kfree_skb(skb); 1777 goto try_again; 1778 } 1779 1780 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk)); 1781 return recv_actor(sk, skb); 1782 } 1783 EXPORT_SYMBOL(udp_read_skb); 1784 1785 /* 1786 * This should be easy, if there is something there we 1787 * return it, otherwise we block. 1788 */ 1789 1790 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, 1791 int *addr_len) 1792 { 1793 struct inet_sock *inet = inet_sk(sk); 1794 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name); 1795 struct sk_buff *skb; 1796 unsigned int ulen, copied; 1797 int off, err, peeking = flags & MSG_PEEK; 1798 int is_udplite = IS_UDPLITE(sk); 1799 bool checksum_valid = false; 1800 1801 if (flags & MSG_ERRQUEUE) 1802 return ip_recv_error(sk, msg, len, addr_len); 1803 1804 try_again: 1805 off = sk_peek_offset(sk, flags); 1806 skb = __skb_recv_udp(sk, flags, &off, &err); 1807 if (!skb) 1808 return err; 1809 1810 ulen = udp_skb_len(skb); 1811 copied = len; 1812 if (copied > ulen - off) 1813 copied = ulen - off; 1814 else if (copied < ulen) 1815 msg->msg_flags |= MSG_TRUNC; 1816 1817 /* 1818 * If checksum is needed at all, try to do it while copying the 1819 * data. If the data is truncated, or if we only want a partial 1820 * coverage checksum (UDP-Lite), do it before the copy. 1821 */ 1822 1823 if (copied < ulen || peeking || 1824 (is_udplite && UDP_SKB_CB(skb)->partial_cov)) { 1825 checksum_valid = udp_skb_csum_unnecessary(skb) || 1826 !__udp_lib_checksum_complete(skb); 1827 if (!checksum_valid) 1828 goto csum_copy_err; 1829 } 1830 1831 if (checksum_valid || udp_skb_csum_unnecessary(skb)) { 1832 if (udp_skb_is_linear(skb)) 1833 err = copy_linear_skb(skb, copied, off, &msg->msg_iter); 1834 else 1835 err = skb_copy_datagram_msg(skb, off, msg, copied); 1836 } else { 1837 err = skb_copy_and_csum_datagram_msg(skb, off, msg); 1838 1839 if (err == -EINVAL) 1840 goto csum_copy_err; 1841 } 1842 1843 if (unlikely(err)) { 1844 if (!peeking) { 1845 atomic_inc(&sk->sk_drops); 1846 UDP_INC_STATS(sock_net(sk), 1847 UDP_MIB_INERRORS, is_udplite); 1848 } 1849 kfree_skb(skb); 1850 return err; 1851 } 1852 1853 if (!peeking) 1854 UDP_INC_STATS(sock_net(sk), 1855 UDP_MIB_INDATAGRAMS, is_udplite); 1856 1857 sock_recv_cmsgs(msg, sk, skb); 1858 1859 /* Copy the address. */ 1860 if (sin) { 1861 sin->sin_family = AF_INET; 1862 sin->sin_port = udp_hdr(skb)->source; 1863 sin->sin_addr.s_addr = ip_hdr(skb)->saddr; 1864 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 1865 *addr_len = sizeof(*sin); 1866 1867 BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk, 1868 (struct sockaddr *)sin); 1869 } 1870 1871 if (udp_sk(sk)->gro_enabled) 1872 udp_cmsg_recv(msg, sk, skb); 1873 1874 if (inet_cmsg_flags(inet)) 1875 ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off); 1876 1877 err = copied; 1878 if (flags & MSG_TRUNC) 1879 err = ulen; 1880 1881 skb_consume_udp(sk, skb, peeking ? -err : err); 1882 return err; 1883 1884 csum_copy_err: 1885 if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags, 1886 udp_skb_destructor)) { 1887 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 1888 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1889 } 1890 kfree_skb(skb); 1891 1892 /* starting over for a new packet, but check if we need to yield */ 1893 cond_resched(); 1894 msg->msg_flags &= ~MSG_TRUNC; 1895 goto try_again; 1896 } 1897 1898 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 1899 { 1900 /* This check is replicated from __ip4_datagram_connect() and 1901 * intended to prevent BPF program called below from accessing bytes 1902 * that are out of the bound specified by user in addr_len. 1903 */ 1904 if (addr_len < sizeof(struct sockaddr_in)) 1905 return -EINVAL; 1906 1907 return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr); 1908 } 1909 EXPORT_SYMBOL(udp_pre_connect); 1910 1911 int __udp_disconnect(struct sock *sk, int flags) 1912 { 1913 struct inet_sock *inet = inet_sk(sk); 1914 /* 1915 * 1003.1g - break association. 1916 */ 1917 1918 sk->sk_state = TCP_CLOSE; 1919 inet->inet_daddr = 0; 1920 inet->inet_dport = 0; 1921 sock_rps_reset_rxhash(sk); 1922 sk->sk_bound_dev_if = 0; 1923 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) { 1924 inet_reset_saddr(sk); 1925 if (sk->sk_prot->rehash && 1926 (sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 1927 sk->sk_prot->rehash(sk); 1928 } 1929 1930 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) { 1931 sk->sk_prot->unhash(sk); 1932 inet->inet_sport = 0; 1933 } 1934 sk_dst_reset(sk); 1935 return 0; 1936 } 1937 EXPORT_SYMBOL(__udp_disconnect); 1938 1939 int udp_disconnect(struct sock *sk, int flags) 1940 { 1941 lock_sock(sk); 1942 __udp_disconnect(sk, flags); 1943 release_sock(sk); 1944 return 0; 1945 } 1946 EXPORT_SYMBOL(udp_disconnect); 1947 1948 void udp_lib_unhash(struct sock *sk) 1949 { 1950 if (sk_hashed(sk)) { 1951 struct udp_table *udptable = udp_get_table_prot(sk); 1952 struct udp_hslot *hslot, *hslot2; 1953 1954 hslot = udp_hashslot(udptable, sock_net(sk), 1955 udp_sk(sk)->udp_port_hash); 1956 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1957 1958 spin_lock_bh(&hslot->lock); 1959 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1960 reuseport_detach_sock(sk); 1961 if (sk_del_node_init_rcu(sk)) { 1962 hslot->count--; 1963 inet_sk(sk)->inet_num = 0; 1964 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 1965 1966 spin_lock(&hslot2->lock); 1967 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 1968 hslot2->count--; 1969 spin_unlock(&hslot2->lock); 1970 } 1971 spin_unlock_bh(&hslot->lock); 1972 } 1973 } 1974 EXPORT_SYMBOL(udp_lib_unhash); 1975 1976 /* 1977 * inet_rcv_saddr was changed, we must rehash secondary hash 1978 */ 1979 void udp_lib_rehash(struct sock *sk, u16 newhash) 1980 { 1981 if (sk_hashed(sk)) { 1982 struct udp_table *udptable = udp_get_table_prot(sk); 1983 struct udp_hslot *hslot, *hslot2, *nhslot2; 1984 1985 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1986 nhslot2 = udp_hashslot2(udptable, newhash); 1987 udp_sk(sk)->udp_portaddr_hash = newhash; 1988 1989 if (hslot2 != nhslot2 || 1990 rcu_access_pointer(sk->sk_reuseport_cb)) { 1991 hslot = udp_hashslot(udptable, sock_net(sk), 1992 udp_sk(sk)->udp_port_hash); 1993 /* we must lock primary chain too */ 1994 spin_lock_bh(&hslot->lock); 1995 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1996 reuseport_detach_sock(sk); 1997 1998 if (hslot2 != nhslot2) { 1999 spin_lock(&hslot2->lock); 2000 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 2001 hslot2->count--; 2002 spin_unlock(&hslot2->lock); 2003 2004 spin_lock(&nhslot2->lock); 2005 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 2006 &nhslot2->head); 2007 nhslot2->count++; 2008 spin_unlock(&nhslot2->lock); 2009 } 2010 2011 spin_unlock_bh(&hslot->lock); 2012 } 2013 } 2014 } 2015 EXPORT_SYMBOL(udp_lib_rehash); 2016 2017 void udp_v4_rehash(struct sock *sk) 2018 { 2019 u16 new_hash = ipv4_portaddr_hash(sock_net(sk), 2020 inet_sk(sk)->inet_rcv_saddr, 2021 inet_sk(sk)->inet_num); 2022 udp_lib_rehash(sk, new_hash); 2023 } 2024 2025 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 2026 { 2027 int rc; 2028 2029 if (inet_sk(sk)->inet_daddr) { 2030 sock_rps_save_rxhash(sk, skb); 2031 sk_mark_napi_id(sk, skb); 2032 sk_incoming_cpu_update(sk); 2033 } else { 2034 sk_mark_napi_id_once(sk, skb); 2035 } 2036 2037 rc = __udp_enqueue_schedule_skb(sk, skb); 2038 if (rc < 0) { 2039 int is_udplite = IS_UDPLITE(sk); 2040 int drop_reason; 2041 2042 /* Note that an ENOMEM error is charged twice */ 2043 if (rc == -ENOMEM) { 2044 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS, 2045 is_udplite); 2046 drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF; 2047 } else { 2048 UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS, 2049 is_udplite); 2050 drop_reason = SKB_DROP_REASON_PROTO_MEM; 2051 } 2052 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 2053 kfree_skb_reason(skb, drop_reason); 2054 trace_udp_fail_queue_rcv_skb(rc, sk); 2055 return -1; 2056 } 2057 2058 return 0; 2059 } 2060 2061 /* returns: 2062 * -1: error 2063 * 0: success 2064 * >0: "udp encap" protocol resubmission 2065 * 2066 * Note that in the success and error cases, the skb is assumed to 2067 * have either been requeued or freed. 2068 */ 2069 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb) 2070 { 2071 int drop_reason = SKB_DROP_REASON_NOT_SPECIFIED; 2072 struct udp_sock *up = udp_sk(sk); 2073 int is_udplite = IS_UDPLITE(sk); 2074 2075 /* 2076 * Charge it to the socket, dropping if the queue is full. 2077 */ 2078 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) { 2079 drop_reason = SKB_DROP_REASON_XFRM_POLICY; 2080 goto drop; 2081 } 2082 nf_reset_ct(skb); 2083 2084 if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) { 2085 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb); 2086 2087 /* 2088 * This is an encapsulation socket so pass the skb to 2089 * the socket's udp_encap_rcv() hook. Otherwise, just 2090 * fall through and pass this up the UDP socket. 2091 * up->encap_rcv() returns the following value: 2092 * =0 if skb was successfully passed to the encap 2093 * handler or was discarded by it. 2094 * >0 if skb should be passed on to UDP. 2095 * <0 if skb should be resubmitted as proto -N 2096 */ 2097 2098 /* if we're overly short, let UDP handle it */ 2099 encap_rcv = READ_ONCE(up->encap_rcv); 2100 if (encap_rcv) { 2101 int ret; 2102 2103 /* Verify checksum before giving to encap */ 2104 if (udp_lib_checksum_complete(skb)) 2105 goto csum_error; 2106 2107 ret = encap_rcv(sk, skb); 2108 if (ret <= 0) { 2109 __UDP_INC_STATS(sock_net(sk), 2110 UDP_MIB_INDATAGRAMS, 2111 is_udplite); 2112 return -ret; 2113 } 2114 } 2115 2116 /* FALLTHROUGH -- it's a UDP Packet */ 2117 } 2118 2119 /* 2120 * UDP-Lite specific tests, ignored on UDP sockets 2121 */ 2122 if ((up->pcflag & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) { 2123 2124 /* 2125 * MIB statistics other than incrementing the error count are 2126 * disabled for the following two types of errors: these depend 2127 * on the application settings, not on the functioning of the 2128 * protocol stack as such. 2129 * 2130 * RFC 3828 here recommends (sec 3.3): "There should also be a 2131 * way ... to ... at least let the receiving application block 2132 * delivery of packets with coverage values less than a value 2133 * provided by the application." 2134 */ 2135 if (up->pcrlen == 0) { /* full coverage was set */ 2136 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n", 2137 UDP_SKB_CB(skb)->cscov, skb->len); 2138 goto drop; 2139 } 2140 /* The next case involves violating the min. coverage requested 2141 * by the receiver. This is subtle: if receiver wants x and x is 2142 * greater than the buffersize/MTU then receiver will complain 2143 * that it wants x while sender emits packets of smaller size y. 2144 * Therefore the above ...()->partial_cov statement is essential. 2145 */ 2146 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) { 2147 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n", 2148 UDP_SKB_CB(skb)->cscov, up->pcrlen); 2149 goto drop; 2150 } 2151 } 2152 2153 prefetch(&sk->sk_rmem_alloc); 2154 if (rcu_access_pointer(sk->sk_filter) && 2155 udp_lib_checksum_complete(skb)) 2156 goto csum_error; 2157 2158 if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) { 2159 drop_reason = SKB_DROP_REASON_SOCKET_FILTER; 2160 goto drop; 2161 } 2162 2163 udp_csum_pull_header(skb); 2164 2165 ipv4_pktinfo_prepare(sk, skb); 2166 return __udp_queue_rcv_skb(sk, skb); 2167 2168 csum_error: 2169 drop_reason = SKB_DROP_REASON_UDP_CSUM; 2170 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 2171 drop: 2172 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 2173 atomic_inc(&sk->sk_drops); 2174 kfree_skb_reason(skb, drop_reason); 2175 return -1; 2176 } 2177 2178 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 2179 { 2180 struct sk_buff *next, *segs; 2181 int ret; 2182 2183 if (likely(!udp_unexpected_gso(sk, skb))) 2184 return udp_queue_rcv_one_skb(sk, skb); 2185 2186 BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET); 2187 __skb_push(skb, -skb_mac_offset(skb)); 2188 segs = udp_rcv_segment(sk, skb, true); 2189 skb_list_walk_safe(segs, skb, next) { 2190 __skb_pull(skb, skb_transport_offset(skb)); 2191 2192 udp_post_segment_fix_csum(skb); 2193 ret = udp_queue_rcv_one_skb(sk, skb); 2194 if (ret > 0) 2195 ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret); 2196 } 2197 return 0; 2198 } 2199 2200 /* For TCP sockets, sk_rx_dst is protected by socket lock 2201 * For UDP, we use xchg() to guard against concurrent changes. 2202 */ 2203 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst) 2204 { 2205 struct dst_entry *old; 2206 2207 if (dst_hold_safe(dst)) { 2208 old = xchg((__force struct dst_entry **)&sk->sk_rx_dst, dst); 2209 dst_release(old); 2210 return old != dst; 2211 } 2212 return false; 2213 } 2214 EXPORT_SYMBOL(udp_sk_rx_dst_set); 2215 2216 /* 2217 * Multicasts and broadcasts go to each listener. 2218 * 2219 * Note: called only from the BH handler context. 2220 */ 2221 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb, 2222 struct udphdr *uh, 2223 __be32 saddr, __be32 daddr, 2224 struct udp_table *udptable, 2225 int proto) 2226 { 2227 struct sock *sk, *first = NULL; 2228 unsigned short hnum = ntohs(uh->dest); 2229 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum); 2230 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10); 2231 unsigned int offset = offsetof(typeof(*sk), sk_node); 2232 int dif = skb->dev->ifindex; 2233 int sdif = inet_sdif(skb); 2234 struct hlist_node *node; 2235 struct sk_buff *nskb; 2236 2237 if (use_hash2) { 2238 hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) & 2239 udptable->mask; 2240 hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask; 2241 start_lookup: 2242 hslot = &udptable->hash2[hash2]; 2243 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node); 2244 } 2245 2246 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) { 2247 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr, 2248 uh->source, saddr, dif, sdif, hnum)) 2249 continue; 2250 2251 if (!first) { 2252 first = sk; 2253 continue; 2254 } 2255 nskb = skb_clone(skb, GFP_ATOMIC); 2256 2257 if (unlikely(!nskb)) { 2258 atomic_inc(&sk->sk_drops); 2259 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS, 2260 IS_UDPLITE(sk)); 2261 __UDP_INC_STATS(net, UDP_MIB_INERRORS, 2262 IS_UDPLITE(sk)); 2263 continue; 2264 } 2265 if (udp_queue_rcv_skb(sk, nskb) > 0) 2266 consume_skb(nskb); 2267 } 2268 2269 /* Also lookup *:port if we are using hash2 and haven't done so yet. */ 2270 if (use_hash2 && hash2 != hash2_any) { 2271 hash2 = hash2_any; 2272 goto start_lookup; 2273 } 2274 2275 if (first) { 2276 if (udp_queue_rcv_skb(first, skb) > 0) 2277 consume_skb(skb); 2278 } else { 2279 kfree_skb(skb); 2280 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI, 2281 proto == IPPROTO_UDPLITE); 2282 } 2283 return 0; 2284 } 2285 2286 /* Initialize UDP checksum. If exited with zero value (success), 2287 * CHECKSUM_UNNECESSARY means, that no more checks are required. 2288 * Otherwise, csum completion requires checksumming packet body, 2289 * including udp header and folding it to skb->csum. 2290 */ 2291 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh, 2292 int proto) 2293 { 2294 int err; 2295 2296 UDP_SKB_CB(skb)->partial_cov = 0; 2297 UDP_SKB_CB(skb)->cscov = skb->len; 2298 2299 if (proto == IPPROTO_UDPLITE) { 2300 err = udplite_checksum_init(skb, uh); 2301 if (err) 2302 return err; 2303 2304 if (UDP_SKB_CB(skb)->partial_cov) { 2305 skb->csum = inet_compute_pseudo(skb, proto); 2306 return 0; 2307 } 2308 } 2309 2310 /* Note, we are only interested in != 0 or == 0, thus the 2311 * force to int. 2312 */ 2313 err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check, 2314 inet_compute_pseudo); 2315 if (err) 2316 return err; 2317 2318 if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) { 2319 /* If SW calculated the value, we know it's bad */ 2320 if (skb->csum_complete_sw) 2321 return 1; 2322 2323 /* HW says the value is bad. Let's validate that. 2324 * skb->csum is no longer the full packet checksum, 2325 * so don't treat it as such. 2326 */ 2327 skb_checksum_complete_unset(skb); 2328 } 2329 2330 return 0; 2331 } 2332 2333 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and 2334 * return code conversion for ip layer consumption 2335 */ 2336 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb, 2337 struct udphdr *uh) 2338 { 2339 int ret; 2340 2341 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk)) 2342 skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo); 2343 2344 ret = udp_queue_rcv_skb(sk, skb); 2345 2346 /* a return value > 0 means to resubmit the input, but 2347 * it wants the return to be -protocol, or 0 2348 */ 2349 if (ret > 0) 2350 return -ret; 2351 return 0; 2352 } 2353 2354 /* 2355 * All we need to do is get the socket, and then do a checksum. 2356 */ 2357 2358 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable, 2359 int proto) 2360 { 2361 struct sock *sk; 2362 struct udphdr *uh; 2363 unsigned short ulen; 2364 struct rtable *rt = skb_rtable(skb); 2365 __be32 saddr, daddr; 2366 struct net *net = dev_net(skb->dev); 2367 bool refcounted; 2368 int drop_reason; 2369 2370 drop_reason = SKB_DROP_REASON_NOT_SPECIFIED; 2371 2372 /* 2373 * Validate the packet. 2374 */ 2375 if (!pskb_may_pull(skb, sizeof(struct udphdr))) 2376 goto drop; /* No space for header. */ 2377 2378 uh = udp_hdr(skb); 2379 ulen = ntohs(uh->len); 2380 saddr = ip_hdr(skb)->saddr; 2381 daddr = ip_hdr(skb)->daddr; 2382 2383 if (ulen > skb->len) 2384 goto short_packet; 2385 2386 if (proto == IPPROTO_UDP) { 2387 /* UDP validates ulen. */ 2388 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen)) 2389 goto short_packet; 2390 uh = udp_hdr(skb); 2391 } 2392 2393 if (udp4_csum_init(skb, uh, proto)) 2394 goto csum_error; 2395 2396 sk = inet_steal_sock(net, skb, sizeof(struct udphdr), saddr, uh->source, daddr, uh->dest, 2397 &refcounted, udp_ehashfn); 2398 if (IS_ERR(sk)) 2399 goto no_sk; 2400 2401 if (sk) { 2402 struct dst_entry *dst = skb_dst(skb); 2403 int ret; 2404 2405 if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst)) 2406 udp_sk_rx_dst_set(sk, dst); 2407 2408 ret = udp_unicast_rcv_skb(sk, skb, uh); 2409 if (refcounted) 2410 sock_put(sk); 2411 return ret; 2412 } 2413 2414 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST)) 2415 return __udp4_lib_mcast_deliver(net, skb, uh, 2416 saddr, daddr, udptable, proto); 2417 2418 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable); 2419 if (sk) 2420 return udp_unicast_rcv_skb(sk, skb, uh); 2421 no_sk: 2422 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 2423 goto drop; 2424 nf_reset_ct(skb); 2425 2426 /* No socket. Drop packet silently, if checksum is wrong */ 2427 if (udp_lib_checksum_complete(skb)) 2428 goto csum_error; 2429 2430 drop_reason = SKB_DROP_REASON_NO_SOCKET; 2431 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE); 2432 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0); 2433 2434 /* 2435 * Hmm. We got an UDP packet to a port to which we 2436 * don't wanna listen. Ignore it. 2437 */ 2438 kfree_skb_reason(skb, drop_reason); 2439 return 0; 2440 2441 short_packet: 2442 drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL; 2443 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n", 2444 proto == IPPROTO_UDPLITE ? "Lite" : "", 2445 &saddr, ntohs(uh->source), 2446 ulen, skb->len, 2447 &daddr, ntohs(uh->dest)); 2448 goto drop; 2449 2450 csum_error: 2451 /* 2452 * RFC1122: OK. Discards the bad packet silently (as far as 2453 * the network is concerned, anyway) as per 4.1.3.4 (MUST). 2454 */ 2455 drop_reason = SKB_DROP_REASON_UDP_CSUM; 2456 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n", 2457 proto == IPPROTO_UDPLITE ? "Lite" : "", 2458 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest), 2459 ulen); 2460 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE); 2461 drop: 2462 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE); 2463 kfree_skb_reason(skb, drop_reason); 2464 return 0; 2465 } 2466 2467 /* We can only early demux multicast if there is a single matching socket. 2468 * If more than one socket found returns NULL 2469 */ 2470 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net, 2471 __be16 loc_port, __be32 loc_addr, 2472 __be16 rmt_port, __be32 rmt_addr, 2473 int dif, int sdif) 2474 { 2475 struct udp_table *udptable = net->ipv4.udp_table; 2476 unsigned short hnum = ntohs(loc_port); 2477 struct sock *sk, *result; 2478 struct udp_hslot *hslot; 2479 unsigned int slot; 2480 2481 slot = udp_hashfn(net, hnum, udptable->mask); 2482 hslot = &udptable->hash[slot]; 2483 2484 /* Do not bother scanning a too big list */ 2485 if (hslot->count > 10) 2486 return NULL; 2487 2488 result = NULL; 2489 sk_for_each_rcu(sk, &hslot->head) { 2490 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr, 2491 rmt_port, rmt_addr, dif, sdif, hnum)) { 2492 if (result) 2493 return NULL; 2494 result = sk; 2495 } 2496 } 2497 2498 return result; 2499 } 2500 2501 /* For unicast we should only early demux connected sockets or we can 2502 * break forwarding setups. The chains here can be long so only check 2503 * if the first socket is an exact match and if not move on. 2504 */ 2505 static struct sock *__udp4_lib_demux_lookup(struct net *net, 2506 __be16 loc_port, __be32 loc_addr, 2507 __be16 rmt_port, __be32 rmt_addr, 2508 int dif, int sdif) 2509 { 2510 struct udp_table *udptable = net->ipv4.udp_table; 2511 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr); 2512 unsigned short hnum = ntohs(loc_port); 2513 unsigned int hash2, slot2; 2514 struct udp_hslot *hslot2; 2515 __portpair ports; 2516 struct sock *sk; 2517 2518 hash2 = ipv4_portaddr_hash(net, loc_addr, hnum); 2519 slot2 = hash2 & udptable->mask; 2520 hslot2 = &udptable->hash2[slot2]; 2521 ports = INET_COMBINED_PORTS(rmt_port, hnum); 2522 2523 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 2524 if (inet_match(net, sk, acookie, ports, dif, sdif)) 2525 return sk; 2526 /* Only check first socket in chain */ 2527 break; 2528 } 2529 return NULL; 2530 } 2531 2532 int udp_v4_early_demux(struct sk_buff *skb) 2533 { 2534 struct net *net = dev_net(skb->dev); 2535 struct in_device *in_dev = NULL; 2536 const struct iphdr *iph; 2537 const struct udphdr *uh; 2538 struct sock *sk = NULL; 2539 struct dst_entry *dst; 2540 int dif = skb->dev->ifindex; 2541 int sdif = inet_sdif(skb); 2542 int ours; 2543 2544 /* validate the packet */ 2545 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr))) 2546 return 0; 2547 2548 iph = ip_hdr(skb); 2549 uh = udp_hdr(skb); 2550 2551 if (skb->pkt_type == PACKET_MULTICAST) { 2552 in_dev = __in_dev_get_rcu(skb->dev); 2553 2554 if (!in_dev) 2555 return 0; 2556 2557 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr, 2558 iph->protocol); 2559 if (!ours) 2560 return 0; 2561 2562 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr, 2563 uh->source, iph->saddr, 2564 dif, sdif); 2565 } else if (skb->pkt_type == PACKET_HOST) { 2566 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr, 2567 uh->source, iph->saddr, dif, sdif); 2568 } 2569 2570 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 2571 return 0; 2572 2573 skb->sk = sk; 2574 skb->destructor = sock_efree; 2575 dst = rcu_dereference(sk->sk_rx_dst); 2576 2577 if (dst) 2578 dst = dst_check(dst, 0); 2579 if (dst) { 2580 u32 itag = 0; 2581 2582 /* set noref for now. 2583 * any place which wants to hold dst has to call 2584 * dst_hold_safe() 2585 */ 2586 skb_dst_set_noref(skb, dst); 2587 2588 /* for unconnected multicast sockets we need to validate 2589 * the source on each packet 2590 */ 2591 if (!inet_sk(sk)->inet_daddr && in_dev) 2592 return ip_mc_validate_source(skb, iph->daddr, 2593 iph->saddr, 2594 iph->tos & IPTOS_RT_MASK, 2595 skb->dev, in_dev, &itag); 2596 } 2597 return 0; 2598 } 2599 2600 int udp_rcv(struct sk_buff *skb) 2601 { 2602 return __udp4_lib_rcv(skb, dev_net(skb->dev)->ipv4.udp_table, IPPROTO_UDP); 2603 } 2604 2605 void udp_destroy_sock(struct sock *sk) 2606 { 2607 struct udp_sock *up = udp_sk(sk); 2608 bool slow = lock_sock_fast(sk); 2609 2610 /* protects from races with udp_abort() */ 2611 sock_set_flag(sk, SOCK_DEAD); 2612 udp_flush_pending_frames(sk); 2613 unlock_sock_fast(sk, slow); 2614 if (static_branch_unlikely(&udp_encap_needed_key)) { 2615 if (up->encap_type) { 2616 void (*encap_destroy)(struct sock *sk); 2617 encap_destroy = READ_ONCE(up->encap_destroy); 2618 if (encap_destroy) 2619 encap_destroy(sk); 2620 } 2621 if (up->encap_enabled) 2622 static_branch_dec(&udp_encap_needed_key); 2623 } 2624 } 2625 2626 /* 2627 * Socket option code for UDP 2628 */ 2629 int udp_lib_setsockopt(struct sock *sk, int level, int optname, 2630 sockptr_t optval, unsigned int optlen, 2631 int (*push_pending_frames)(struct sock *)) 2632 { 2633 struct udp_sock *up = udp_sk(sk); 2634 int val, valbool; 2635 int err = 0; 2636 int is_udplite = IS_UDPLITE(sk); 2637 2638 if (level == SOL_SOCKET) { 2639 err = sk_setsockopt(sk, level, optname, optval, optlen); 2640 2641 if (optname == SO_RCVBUF || optname == SO_RCVBUFFORCE) { 2642 sockopt_lock_sock(sk); 2643 /* paired with READ_ONCE in udp_rmem_release() */ 2644 WRITE_ONCE(up->forward_threshold, sk->sk_rcvbuf >> 2); 2645 sockopt_release_sock(sk); 2646 } 2647 return err; 2648 } 2649 2650 if (optlen < sizeof(int)) 2651 return -EINVAL; 2652 2653 if (copy_from_sockptr(&val, optval, sizeof(val))) 2654 return -EFAULT; 2655 2656 valbool = val ? 1 : 0; 2657 2658 switch (optname) { 2659 case UDP_CORK: 2660 if (val != 0) { 2661 WRITE_ONCE(up->corkflag, 1); 2662 } else { 2663 WRITE_ONCE(up->corkflag, 0); 2664 lock_sock(sk); 2665 push_pending_frames(sk); 2666 release_sock(sk); 2667 } 2668 break; 2669 2670 case UDP_ENCAP: 2671 switch (val) { 2672 case 0: 2673 #ifdef CONFIG_XFRM 2674 case UDP_ENCAP_ESPINUDP: 2675 case UDP_ENCAP_ESPINUDP_NON_IKE: 2676 #if IS_ENABLED(CONFIG_IPV6) 2677 if (sk->sk_family == AF_INET6) 2678 up->encap_rcv = ipv6_stub->xfrm6_udp_encap_rcv; 2679 else 2680 #endif 2681 up->encap_rcv = xfrm4_udp_encap_rcv; 2682 #endif 2683 fallthrough; 2684 case UDP_ENCAP_L2TPINUDP: 2685 up->encap_type = val; 2686 lock_sock(sk); 2687 udp_tunnel_encap_enable(sk->sk_socket); 2688 release_sock(sk); 2689 break; 2690 default: 2691 err = -ENOPROTOOPT; 2692 break; 2693 } 2694 break; 2695 2696 case UDP_NO_CHECK6_TX: 2697 up->no_check6_tx = valbool; 2698 break; 2699 2700 case UDP_NO_CHECK6_RX: 2701 up->no_check6_rx = valbool; 2702 break; 2703 2704 case UDP_SEGMENT: 2705 if (val < 0 || val > USHRT_MAX) 2706 return -EINVAL; 2707 WRITE_ONCE(up->gso_size, val); 2708 break; 2709 2710 case UDP_GRO: 2711 lock_sock(sk); 2712 2713 /* when enabling GRO, accept the related GSO packet type */ 2714 if (valbool) 2715 udp_tunnel_encap_enable(sk->sk_socket); 2716 up->gro_enabled = valbool; 2717 up->accept_udp_l4 = valbool; 2718 release_sock(sk); 2719 break; 2720 2721 /* 2722 * UDP-Lite's partial checksum coverage (RFC 3828). 2723 */ 2724 /* The sender sets actual checksum coverage length via this option. 2725 * The case coverage > packet length is handled by send module. */ 2726 case UDPLITE_SEND_CSCOV: 2727 if (!is_udplite) /* Disable the option on UDP sockets */ 2728 return -ENOPROTOOPT; 2729 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */ 2730 val = 8; 2731 else if (val > USHRT_MAX) 2732 val = USHRT_MAX; 2733 up->pcslen = val; 2734 up->pcflag |= UDPLITE_SEND_CC; 2735 break; 2736 2737 /* The receiver specifies a minimum checksum coverage value. To make 2738 * sense, this should be set to at least 8 (as done below). If zero is 2739 * used, this again means full checksum coverage. */ 2740 case UDPLITE_RECV_CSCOV: 2741 if (!is_udplite) /* Disable the option on UDP sockets */ 2742 return -ENOPROTOOPT; 2743 if (val != 0 && val < 8) /* Avoid silly minimal values. */ 2744 val = 8; 2745 else if (val > USHRT_MAX) 2746 val = USHRT_MAX; 2747 up->pcrlen = val; 2748 up->pcflag |= UDPLITE_RECV_CC; 2749 break; 2750 2751 default: 2752 err = -ENOPROTOOPT; 2753 break; 2754 } 2755 2756 return err; 2757 } 2758 EXPORT_SYMBOL(udp_lib_setsockopt); 2759 2760 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 2761 unsigned int optlen) 2762 { 2763 if (level == SOL_UDP || level == SOL_UDPLITE || level == SOL_SOCKET) 2764 return udp_lib_setsockopt(sk, level, optname, 2765 optval, optlen, 2766 udp_push_pending_frames); 2767 return ip_setsockopt(sk, level, optname, optval, optlen); 2768 } 2769 2770 int udp_lib_getsockopt(struct sock *sk, int level, int optname, 2771 char __user *optval, int __user *optlen) 2772 { 2773 struct udp_sock *up = udp_sk(sk); 2774 int val, len; 2775 2776 if (get_user(len, optlen)) 2777 return -EFAULT; 2778 2779 len = min_t(unsigned int, len, sizeof(int)); 2780 2781 if (len < 0) 2782 return -EINVAL; 2783 2784 switch (optname) { 2785 case UDP_CORK: 2786 val = READ_ONCE(up->corkflag); 2787 break; 2788 2789 case UDP_ENCAP: 2790 val = up->encap_type; 2791 break; 2792 2793 case UDP_NO_CHECK6_TX: 2794 val = up->no_check6_tx; 2795 break; 2796 2797 case UDP_NO_CHECK6_RX: 2798 val = up->no_check6_rx; 2799 break; 2800 2801 case UDP_SEGMENT: 2802 val = READ_ONCE(up->gso_size); 2803 break; 2804 2805 case UDP_GRO: 2806 val = up->gro_enabled; 2807 break; 2808 2809 /* The following two cannot be changed on UDP sockets, the return is 2810 * always 0 (which corresponds to the full checksum coverage of UDP). */ 2811 case UDPLITE_SEND_CSCOV: 2812 val = up->pcslen; 2813 break; 2814 2815 case UDPLITE_RECV_CSCOV: 2816 val = up->pcrlen; 2817 break; 2818 2819 default: 2820 return -ENOPROTOOPT; 2821 } 2822 2823 if (put_user(len, optlen)) 2824 return -EFAULT; 2825 if (copy_to_user(optval, &val, len)) 2826 return -EFAULT; 2827 return 0; 2828 } 2829 EXPORT_SYMBOL(udp_lib_getsockopt); 2830 2831 int udp_getsockopt(struct sock *sk, int level, int optname, 2832 char __user *optval, int __user *optlen) 2833 { 2834 if (level == SOL_UDP || level == SOL_UDPLITE) 2835 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 2836 return ip_getsockopt(sk, level, optname, optval, optlen); 2837 } 2838 2839 /** 2840 * udp_poll - wait for a UDP event. 2841 * @file: - file struct 2842 * @sock: - socket 2843 * @wait: - poll table 2844 * 2845 * This is same as datagram poll, except for the special case of 2846 * blocking sockets. If application is using a blocking fd 2847 * and a packet with checksum error is in the queue; 2848 * then it could get return from select indicating data available 2849 * but then block when reading it. Add special case code 2850 * to work around these arguably broken applications. 2851 */ 2852 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait) 2853 { 2854 __poll_t mask = datagram_poll(file, sock, wait); 2855 struct sock *sk = sock->sk; 2856 2857 if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue)) 2858 mask |= EPOLLIN | EPOLLRDNORM; 2859 2860 /* Check for false positives due to checksum errors */ 2861 if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) && 2862 !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1) 2863 mask &= ~(EPOLLIN | EPOLLRDNORM); 2864 2865 /* psock ingress_msg queue should not contain any bad checksum frames */ 2866 if (sk_is_readable(sk)) 2867 mask |= EPOLLIN | EPOLLRDNORM; 2868 return mask; 2869 2870 } 2871 EXPORT_SYMBOL(udp_poll); 2872 2873 int udp_abort(struct sock *sk, int err) 2874 { 2875 if (!has_current_bpf_ctx()) 2876 lock_sock(sk); 2877 2878 /* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing 2879 * with close() 2880 */ 2881 if (sock_flag(sk, SOCK_DEAD)) 2882 goto out; 2883 2884 sk->sk_err = err; 2885 sk_error_report(sk); 2886 __udp_disconnect(sk, 0); 2887 2888 out: 2889 if (!has_current_bpf_ctx()) 2890 release_sock(sk); 2891 2892 return 0; 2893 } 2894 EXPORT_SYMBOL_GPL(udp_abort); 2895 2896 struct proto udp_prot = { 2897 .name = "UDP", 2898 .owner = THIS_MODULE, 2899 .close = udp_lib_close, 2900 .pre_connect = udp_pre_connect, 2901 .connect = ip4_datagram_connect, 2902 .disconnect = udp_disconnect, 2903 .ioctl = udp_ioctl, 2904 .init = udp_init_sock, 2905 .destroy = udp_destroy_sock, 2906 .setsockopt = udp_setsockopt, 2907 .getsockopt = udp_getsockopt, 2908 .sendmsg = udp_sendmsg, 2909 .recvmsg = udp_recvmsg, 2910 .splice_eof = udp_splice_eof, 2911 .release_cb = ip4_datagram_release_cb, 2912 .hash = udp_lib_hash, 2913 .unhash = udp_lib_unhash, 2914 .rehash = udp_v4_rehash, 2915 .get_port = udp_v4_get_port, 2916 .put_port = udp_lib_unhash, 2917 #ifdef CONFIG_BPF_SYSCALL 2918 .psock_update_sk_prot = udp_bpf_update_proto, 2919 #endif 2920 .memory_allocated = &udp_memory_allocated, 2921 .per_cpu_fw_alloc = &udp_memory_per_cpu_fw_alloc, 2922 2923 .sysctl_mem = sysctl_udp_mem, 2924 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_udp_wmem_min), 2925 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_udp_rmem_min), 2926 .obj_size = sizeof(struct udp_sock), 2927 .h.udp_table = NULL, 2928 .diag_destroy = udp_abort, 2929 }; 2930 EXPORT_SYMBOL(udp_prot); 2931 2932 /* ------------------------------------------------------------------------ */ 2933 #ifdef CONFIG_PROC_FS 2934 2935 static unsigned short seq_file_family(const struct seq_file *seq); 2936 static bool seq_sk_match(struct seq_file *seq, const struct sock *sk) 2937 { 2938 unsigned short family = seq_file_family(seq); 2939 2940 /* AF_UNSPEC is used as a match all */ 2941 return ((family == AF_UNSPEC || family == sk->sk_family) && 2942 net_eq(sock_net(sk), seq_file_net(seq))); 2943 } 2944 2945 #ifdef CONFIG_BPF_SYSCALL 2946 static const struct seq_operations bpf_iter_udp_seq_ops; 2947 #endif 2948 static struct udp_table *udp_get_table_seq(struct seq_file *seq, 2949 struct net *net) 2950 { 2951 const struct udp_seq_afinfo *afinfo; 2952 2953 #ifdef CONFIG_BPF_SYSCALL 2954 if (seq->op == &bpf_iter_udp_seq_ops) 2955 return net->ipv4.udp_table; 2956 #endif 2957 2958 afinfo = pde_data(file_inode(seq->file)); 2959 return afinfo->udp_table ? : net->ipv4.udp_table; 2960 } 2961 2962 static struct sock *udp_get_first(struct seq_file *seq, int start) 2963 { 2964 struct udp_iter_state *state = seq->private; 2965 struct net *net = seq_file_net(seq); 2966 struct udp_table *udptable; 2967 struct sock *sk; 2968 2969 udptable = udp_get_table_seq(seq, net); 2970 2971 for (state->bucket = start; state->bucket <= udptable->mask; 2972 ++state->bucket) { 2973 struct udp_hslot *hslot = &udptable->hash[state->bucket]; 2974 2975 if (hlist_empty(&hslot->head)) 2976 continue; 2977 2978 spin_lock_bh(&hslot->lock); 2979 sk_for_each(sk, &hslot->head) { 2980 if (seq_sk_match(seq, sk)) 2981 goto found; 2982 } 2983 spin_unlock_bh(&hslot->lock); 2984 } 2985 sk = NULL; 2986 found: 2987 return sk; 2988 } 2989 2990 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk) 2991 { 2992 struct udp_iter_state *state = seq->private; 2993 struct net *net = seq_file_net(seq); 2994 struct udp_table *udptable; 2995 2996 do { 2997 sk = sk_next(sk); 2998 } while (sk && !seq_sk_match(seq, sk)); 2999 3000 if (!sk) { 3001 udptable = udp_get_table_seq(seq, net); 3002 3003 if (state->bucket <= udptable->mask) 3004 spin_unlock_bh(&udptable->hash[state->bucket].lock); 3005 3006 return udp_get_first(seq, state->bucket + 1); 3007 } 3008 return sk; 3009 } 3010 3011 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos) 3012 { 3013 struct sock *sk = udp_get_first(seq, 0); 3014 3015 if (sk) 3016 while (pos && (sk = udp_get_next(seq, sk)) != NULL) 3017 --pos; 3018 return pos ? NULL : sk; 3019 } 3020 3021 void *udp_seq_start(struct seq_file *seq, loff_t *pos) 3022 { 3023 struct udp_iter_state *state = seq->private; 3024 state->bucket = MAX_UDP_PORTS; 3025 3026 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN; 3027 } 3028 EXPORT_SYMBOL(udp_seq_start); 3029 3030 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3031 { 3032 struct sock *sk; 3033 3034 if (v == SEQ_START_TOKEN) 3035 sk = udp_get_idx(seq, 0); 3036 else 3037 sk = udp_get_next(seq, v); 3038 3039 ++*pos; 3040 return sk; 3041 } 3042 EXPORT_SYMBOL(udp_seq_next); 3043 3044 void udp_seq_stop(struct seq_file *seq, void *v) 3045 { 3046 struct udp_iter_state *state = seq->private; 3047 struct udp_table *udptable; 3048 3049 udptable = udp_get_table_seq(seq, seq_file_net(seq)); 3050 3051 if (state->bucket <= udptable->mask) 3052 spin_unlock_bh(&udptable->hash[state->bucket].lock); 3053 } 3054 EXPORT_SYMBOL(udp_seq_stop); 3055 3056 /* ------------------------------------------------------------------------ */ 3057 static void udp4_format_sock(struct sock *sp, struct seq_file *f, 3058 int bucket) 3059 { 3060 struct inet_sock *inet = inet_sk(sp); 3061 __be32 dest = inet->inet_daddr; 3062 __be32 src = inet->inet_rcv_saddr; 3063 __u16 destp = ntohs(inet->inet_dport); 3064 __u16 srcp = ntohs(inet->inet_sport); 3065 3066 seq_printf(f, "%5d: %08X:%04X %08X:%04X" 3067 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u", 3068 bucket, src, srcp, dest, destp, sp->sk_state, 3069 sk_wmem_alloc_get(sp), 3070 udp_rqueue_get(sp), 3071 0, 0L, 0, 3072 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)), 3073 0, sock_i_ino(sp), 3074 refcount_read(&sp->sk_refcnt), sp, 3075 atomic_read(&sp->sk_drops)); 3076 } 3077 3078 int udp4_seq_show(struct seq_file *seq, void *v) 3079 { 3080 seq_setwidth(seq, 127); 3081 if (v == SEQ_START_TOKEN) 3082 seq_puts(seq, " sl local_address rem_address st tx_queue " 3083 "rx_queue tr tm->when retrnsmt uid timeout " 3084 "inode ref pointer drops"); 3085 else { 3086 struct udp_iter_state *state = seq->private; 3087 3088 udp4_format_sock(v, seq, state->bucket); 3089 } 3090 seq_pad(seq, '\n'); 3091 return 0; 3092 } 3093 3094 #ifdef CONFIG_BPF_SYSCALL 3095 struct bpf_iter__udp { 3096 __bpf_md_ptr(struct bpf_iter_meta *, meta); 3097 __bpf_md_ptr(struct udp_sock *, udp_sk); 3098 uid_t uid __aligned(8); 3099 int bucket __aligned(8); 3100 }; 3101 3102 struct bpf_udp_iter_state { 3103 struct udp_iter_state state; 3104 unsigned int cur_sk; 3105 unsigned int end_sk; 3106 unsigned int max_sk; 3107 int offset; 3108 struct sock **batch; 3109 bool st_bucket_done; 3110 }; 3111 3112 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter, 3113 unsigned int new_batch_sz); 3114 static struct sock *bpf_iter_udp_batch(struct seq_file *seq) 3115 { 3116 struct bpf_udp_iter_state *iter = seq->private; 3117 struct udp_iter_state *state = &iter->state; 3118 struct net *net = seq_file_net(seq); 3119 struct udp_table *udptable; 3120 unsigned int batch_sks = 0; 3121 bool resized = false; 3122 struct sock *sk; 3123 3124 /* The current batch is done, so advance the bucket. */ 3125 if (iter->st_bucket_done) { 3126 state->bucket++; 3127 iter->offset = 0; 3128 } 3129 3130 udptable = udp_get_table_seq(seq, net); 3131 3132 again: 3133 /* New batch for the next bucket. 3134 * Iterate over the hash table to find a bucket with sockets matching 3135 * the iterator attributes, and return the first matching socket from 3136 * the bucket. The remaining matched sockets from the bucket are batched 3137 * before releasing the bucket lock. This allows BPF programs that are 3138 * called in seq_show to acquire the bucket lock if needed. 3139 */ 3140 iter->cur_sk = 0; 3141 iter->end_sk = 0; 3142 iter->st_bucket_done = false; 3143 batch_sks = 0; 3144 3145 for (; state->bucket <= udptable->mask; state->bucket++) { 3146 struct udp_hslot *hslot2 = &udptable->hash2[state->bucket]; 3147 3148 if (hlist_empty(&hslot2->head)) { 3149 iter->offset = 0; 3150 continue; 3151 } 3152 3153 spin_lock_bh(&hslot2->lock); 3154 udp_portaddr_for_each_entry(sk, &hslot2->head) { 3155 if (seq_sk_match(seq, sk)) { 3156 /* Resume from the last iterated socket at the 3157 * offset in the bucket before iterator was stopped. 3158 */ 3159 if (iter->offset) { 3160 --iter->offset; 3161 continue; 3162 } 3163 if (iter->end_sk < iter->max_sk) { 3164 sock_hold(sk); 3165 iter->batch[iter->end_sk++] = sk; 3166 } 3167 batch_sks++; 3168 } 3169 } 3170 spin_unlock_bh(&hslot2->lock); 3171 3172 if (iter->end_sk) 3173 break; 3174 3175 /* Reset the current bucket's offset before moving to the next bucket. */ 3176 iter->offset = 0; 3177 } 3178 3179 /* All done: no batch made. */ 3180 if (!iter->end_sk) 3181 return NULL; 3182 3183 if (iter->end_sk == batch_sks) { 3184 /* Batching is done for the current bucket; return the first 3185 * socket to be iterated from the batch. 3186 */ 3187 iter->st_bucket_done = true; 3188 goto done; 3189 } 3190 if (!resized && !bpf_iter_udp_realloc_batch(iter, batch_sks * 3 / 2)) { 3191 resized = true; 3192 /* After allocating a larger batch, retry one more time to grab 3193 * the whole bucket. 3194 */ 3195 state->bucket--; 3196 goto again; 3197 } 3198 done: 3199 return iter->batch[0]; 3200 } 3201 3202 static void *bpf_iter_udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3203 { 3204 struct bpf_udp_iter_state *iter = seq->private; 3205 struct sock *sk; 3206 3207 /* Whenever seq_next() is called, the iter->cur_sk is 3208 * done with seq_show(), so unref the iter->cur_sk. 3209 */ 3210 if (iter->cur_sk < iter->end_sk) { 3211 sock_put(iter->batch[iter->cur_sk++]); 3212 ++iter->offset; 3213 } 3214 3215 /* After updating iter->cur_sk, check if there are more sockets 3216 * available in the current bucket batch. 3217 */ 3218 if (iter->cur_sk < iter->end_sk) 3219 sk = iter->batch[iter->cur_sk]; 3220 else 3221 /* Prepare a new batch. */ 3222 sk = bpf_iter_udp_batch(seq); 3223 3224 ++*pos; 3225 return sk; 3226 } 3227 3228 static void *bpf_iter_udp_seq_start(struct seq_file *seq, loff_t *pos) 3229 { 3230 /* bpf iter does not support lseek, so it always 3231 * continue from where it was stop()-ped. 3232 */ 3233 if (*pos) 3234 return bpf_iter_udp_batch(seq); 3235 3236 return SEQ_START_TOKEN; 3237 } 3238 3239 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta, 3240 struct udp_sock *udp_sk, uid_t uid, int bucket) 3241 { 3242 struct bpf_iter__udp ctx; 3243 3244 meta->seq_num--; /* skip SEQ_START_TOKEN */ 3245 ctx.meta = meta; 3246 ctx.udp_sk = udp_sk; 3247 ctx.uid = uid; 3248 ctx.bucket = bucket; 3249 return bpf_iter_run_prog(prog, &ctx); 3250 } 3251 3252 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v) 3253 { 3254 struct udp_iter_state *state = seq->private; 3255 struct bpf_iter_meta meta; 3256 struct bpf_prog *prog; 3257 struct sock *sk = v; 3258 uid_t uid; 3259 int ret; 3260 3261 if (v == SEQ_START_TOKEN) 3262 return 0; 3263 3264 lock_sock(sk); 3265 3266 if (unlikely(sk_unhashed(sk))) { 3267 ret = SEQ_SKIP; 3268 goto unlock; 3269 } 3270 3271 uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk)); 3272 meta.seq = seq; 3273 prog = bpf_iter_get_info(&meta, false); 3274 ret = udp_prog_seq_show(prog, &meta, v, uid, state->bucket); 3275 3276 unlock: 3277 release_sock(sk); 3278 return ret; 3279 } 3280 3281 static void bpf_iter_udp_put_batch(struct bpf_udp_iter_state *iter) 3282 { 3283 while (iter->cur_sk < iter->end_sk) 3284 sock_put(iter->batch[iter->cur_sk++]); 3285 } 3286 3287 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v) 3288 { 3289 struct bpf_udp_iter_state *iter = seq->private; 3290 struct bpf_iter_meta meta; 3291 struct bpf_prog *prog; 3292 3293 if (!v) { 3294 meta.seq = seq; 3295 prog = bpf_iter_get_info(&meta, true); 3296 if (prog) 3297 (void)udp_prog_seq_show(prog, &meta, v, 0, 0); 3298 } 3299 3300 if (iter->cur_sk < iter->end_sk) { 3301 bpf_iter_udp_put_batch(iter); 3302 iter->st_bucket_done = false; 3303 } 3304 } 3305 3306 static const struct seq_operations bpf_iter_udp_seq_ops = { 3307 .start = bpf_iter_udp_seq_start, 3308 .next = bpf_iter_udp_seq_next, 3309 .stop = bpf_iter_udp_seq_stop, 3310 .show = bpf_iter_udp_seq_show, 3311 }; 3312 #endif 3313 3314 static unsigned short seq_file_family(const struct seq_file *seq) 3315 { 3316 const struct udp_seq_afinfo *afinfo; 3317 3318 #ifdef CONFIG_BPF_SYSCALL 3319 /* BPF iterator: bpf programs to filter sockets. */ 3320 if (seq->op == &bpf_iter_udp_seq_ops) 3321 return AF_UNSPEC; 3322 #endif 3323 3324 /* Proc fs iterator */ 3325 afinfo = pde_data(file_inode(seq->file)); 3326 return afinfo->family; 3327 } 3328 3329 const struct seq_operations udp_seq_ops = { 3330 .start = udp_seq_start, 3331 .next = udp_seq_next, 3332 .stop = udp_seq_stop, 3333 .show = udp4_seq_show, 3334 }; 3335 EXPORT_SYMBOL(udp_seq_ops); 3336 3337 static struct udp_seq_afinfo udp4_seq_afinfo = { 3338 .family = AF_INET, 3339 .udp_table = NULL, 3340 }; 3341 3342 static int __net_init udp4_proc_init_net(struct net *net) 3343 { 3344 if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops, 3345 sizeof(struct udp_iter_state), &udp4_seq_afinfo)) 3346 return -ENOMEM; 3347 return 0; 3348 } 3349 3350 static void __net_exit udp4_proc_exit_net(struct net *net) 3351 { 3352 remove_proc_entry("udp", net->proc_net); 3353 } 3354 3355 static struct pernet_operations udp4_net_ops = { 3356 .init = udp4_proc_init_net, 3357 .exit = udp4_proc_exit_net, 3358 }; 3359 3360 int __init udp4_proc_init(void) 3361 { 3362 return register_pernet_subsys(&udp4_net_ops); 3363 } 3364 3365 void udp4_proc_exit(void) 3366 { 3367 unregister_pernet_subsys(&udp4_net_ops); 3368 } 3369 #endif /* CONFIG_PROC_FS */ 3370 3371 static __initdata unsigned long uhash_entries; 3372 static int __init set_uhash_entries(char *str) 3373 { 3374 ssize_t ret; 3375 3376 if (!str) 3377 return 0; 3378 3379 ret = kstrtoul(str, 0, &uhash_entries); 3380 if (ret) 3381 return 0; 3382 3383 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN) 3384 uhash_entries = UDP_HTABLE_SIZE_MIN; 3385 return 1; 3386 } 3387 __setup("uhash_entries=", set_uhash_entries); 3388 3389 void __init udp_table_init(struct udp_table *table, const char *name) 3390 { 3391 unsigned int i; 3392 3393 table->hash = alloc_large_system_hash(name, 3394 2 * sizeof(struct udp_hslot), 3395 uhash_entries, 3396 21, /* one slot per 2 MB */ 3397 0, 3398 &table->log, 3399 &table->mask, 3400 UDP_HTABLE_SIZE_MIN, 3401 UDP_HTABLE_SIZE_MAX); 3402 3403 table->hash2 = table->hash + (table->mask + 1); 3404 for (i = 0; i <= table->mask; i++) { 3405 INIT_HLIST_HEAD(&table->hash[i].head); 3406 table->hash[i].count = 0; 3407 spin_lock_init(&table->hash[i].lock); 3408 } 3409 for (i = 0; i <= table->mask; i++) { 3410 INIT_HLIST_HEAD(&table->hash2[i].head); 3411 table->hash2[i].count = 0; 3412 spin_lock_init(&table->hash2[i].lock); 3413 } 3414 } 3415 3416 u32 udp_flow_hashrnd(void) 3417 { 3418 static u32 hashrnd __read_mostly; 3419 3420 net_get_random_once(&hashrnd, sizeof(hashrnd)); 3421 3422 return hashrnd; 3423 } 3424 EXPORT_SYMBOL(udp_flow_hashrnd); 3425 3426 static void __net_init udp_sysctl_init(struct net *net) 3427 { 3428 net->ipv4.sysctl_udp_rmem_min = PAGE_SIZE; 3429 net->ipv4.sysctl_udp_wmem_min = PAGE_SIZE; 3430 3431 #ifdef CONFIG_NET_L3_MASTER_DEV 3432 net->ipv4.sysctl_udp_l3mdev_accept = 0; 3433 #endif 3434 } 3435 3436 static struct udp_table __net_init *udp_pernet_table_alloc(unsigned int hash_entries) 3437 { 3438 struct udp_table *udptable; 3439 int i; 3440 3441 udptable = kmalloc(sizeof(*udptable), GFP_KERNEL); 3442 if (!udptable) 3443 goto out; 3444 3445 udptable->hash = vmalloc_huge(hash_entries * 2 * sizeof(struct udp_hslot), 3446 GFP_KERNEL_ACCOUNT); 3447 if (!udptable->hash) 3448 goto free_table; 3449 3450 udptable->hash2 = udptable->hash + hash_entries; 3451 udptable->mask = hash_entries - 1; 3452 udptable->log = ilog2(hash_entries); 3453 3454 for (i = 0; i < hash_entries; i++) { 3455 INIT_HLIST_HEAD(&udptable->hash[i].head); 3456 udptable->hash[i].count = 0; 3457 spin_lock_init(&udptable->hash[i].lock); 3458 3459 INIT_HLIST_HEAD(&udptable->hash2[i].head); 3460 udptable->hash2[i].count = 0; 3461 spin_lock_init(&udptable->hash2[i].lock); 3462 } 3463 3464 return udptable; 3465 3466 free_table: 3467 kfree(udptable); 3468 out: 3469 return NULL; 3470 } 3471 3472 static void __net_exit udp_pernet_table_free(struct net *net) 3473 { 3474 struct udp_table *udptable = net->ipv4.udp_table; 3475 3476 if (udptable == &udp_table) 3477 return; 3478 3479 kvfree(udptable->hash); 3480 kfree(udptable); 3481 } 3482 3483 static void __net_init udp_set_table(struct net *net) 3484 { 3485 struct udp_table *udptable; 3486 unsigned int hash_entries; 3487 struct net *old_net; 3488 3489 if (net_eq(net, &init_net)) 3490 goto fallback; 3491 3492 old_net = current->nsproxy->net_ns; 3493 hash_entries = READ_ONCE(old_net->ipv4.sysctl_udp_child_hash_entries); 3494 if (!hash_entries) 3495 goto fallback; 3496 3497 /* Set min to keep the bitmap on stack in udp_lib_get_port() */ 3498 if (hash_entries < UDP_HTABLE_SIZE_MIN_PERNET) 3499 hash_entries = UDP_HTABLE_SIZE_MIN_PERNET; 3500 else 3501 hash_entries = roundup_pow_of_two(hash_entries); 3502 3503 udptable = udp_pernet_table_alloc(hash_entries); 3504 if (udptable) { 3505 net->ipv4.udp_table = udptable; 3506 } else { 3507 pr_warn("Failed to allocate UDP hash table (entries: %u) " 3508 "for a netns, fallback to the global one\n", 3509 hash_entries); 3510 fallback: 3511 net->ipv4.udp_table = &udp_table; 3512 } 3513 } 3514 3515 static int __net_init udp_pernet_init(struct net *net) 3516 { 3517 udp_sysctl_init(net); 3518 udp_set_table(net); 3519 3520 return 0; 3521 } 3522 3523 static void __net_exit udp_pernet_exit(struct net *net) 3524 { 3525 udp_pernet_table_free(net); 3526 } 3527 3528 static struct pernet_operations __net_initdata udp_sysctl_ops = { 3529 .init = udp_pernet_init, 3530 .exit = udp_pernet_exit, 3531 }; 3532 3533 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3534 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta, 3535 struct udp_sock *udp_sk, uid_t uid, int bucket) 3536 3537 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter, 3538 unsigned int new_batch_sz) 3539 { 3540 struct sock **new_batch; 3541 3542 new_batch = kvmalloc_array(new_batch_sz, sizeof(*new_batch), 3543 GFP_USER | __GFP_NOWARN); 3544 if (!new_batch) 3545 return -ENOMEM; 3546 3547 bpf_iter_udp_put_batch(iter); 3548 kvfree(iter->batch); 3549 iter->batch = new_batch; 3550 iter->max_sk = new_batch_sz; 3551 3552 return 0; 3553 } 3554 3555 #define INIT_BATCH_SZ 16 3556 3557 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux) 3558 { 3559 struct bpf_udp_iter_state *iter = priv_data; 3560 int ret; 3561 3562 ret = bpf_iter_init_seq_net(priv_data, aux); 3563 if (ret) 3564 return ret; 3565 3566 ret = bpf_iter_udp_realloc_batch(iter, INIT_BATCH_SZ); 3567 if (ret) 3568 bpf_iter_fini_seq_net(priv_data); 3569 3570 return ret; 3571 } 3572 3573 static void bpf_iter_fini_udp(void *priv_data) 3574 { 3575 struct bpf_udp_iter_state *iter = priv_data; 3576 3577 bpf_iter_fini_seq_net(priv_data); 3578 kvfree(iter->batch); 3579 } 3580 3581 static const struct bpf_iter_seq_info udp_seq_info = { 3582 .seq_ops = &bpf_iter_udp_seq_ops, 3583 .init_seq_private = bpf_iter_init_udp, 3584 .fini_seq_private = bpf_iter_fini_udp, 3585 .seq_priv_size = sizeof(struct bpf_udp_iter_state), 3586 }; 3587 3588 static struct bpf_iter_reg udp_reg_info = { 3589 .target = "udp", 3590 .ctx_arg_info_size = 1, 3591 .ctx_arg_info = { 3592 { offsetof(struct bpf_iter__udp, udp_sk), 3593 PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED }, 3594 }, 3595 .seq_info = &udp_seq_info, 3596 }; 3597 3598 static void __init bpf_iter_register(void) 3599 { 3600 udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP]; 3601 if (bpf_iter_reg_target(&udp_reg_info)) 3602 pr_warn("Warning: could not register bpf iterator udp\n"); 3603 } 3604 #endif 3605 3606 void __init udp_init(void) 3607 { 3608 unsigned long limit; 3609 unsigned int i; 3610 3611 udp_table_init(&udp_table, "UDP"); 3612 limit = nr_free_buffer_pages() / 8; 3613 limit = max(limit, 128UL); 3614 sysctl_udp_mem[0] = limit / 4 * 3; 3615 sysctl_udp_mem[1] = limit; 3616 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2; 3617 3618 /* 16 spinlocks per cpu */ 3619 udp_busylocks_log = ilog2(nr_cpu_ids) + 4; 3620 udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log, 3621 GFP_KERNEL); 3622 if (!udp_busylocks) 3623 panic("UDP: failed to alloc udp_busylocks\n"); 3624 for (i = 0; i < (1U << udp_busylocks_log); i++) 3625 spin_lock_init(udp_busylocks + i); 3626 3627 if (register_pernet_subsys(&udp_sysctl_ops)) 3628 panic("UDP: failed to init sysctl parameters.\n"); 3629 3630 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3631 bpf_iter_register(); 3632 #endif 3633 } 3634