1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * The User Datagram Protocol (UDP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 11 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 12 * Hirokazu Takahashi, <taka@valinux.co.jp> 13 * 14 * Fixes: 15 * Alan Cox : verify_area() calls 16 * Alan Cox : stopped close while in use off icmp 17 * messages. Not a fix but a botch that 18 * for udp at least is 'valid'. 19 * Alan Cox : Fixed icmp handling properly 20 * Alan Cox : Correct error for oversized datagrams 21 * Alan Cox : Tidied select() semantics. 22 * Alan Cox : udp_err() fixed properly, also now 23 * select and read wake correctly on errors 24 * Alan Cox : udp_send verify_area moved to avoid mem leak 25 * Alan Cox : UDP can count its memory 26 * Alan Cox : send to an unknown connection causes 27 * an ECONNREFUSED off the icmp, but 28 * does NOT close. 29 * Alan Cox : Switched to new sk_buff handlers. No more backlog! 30 * Alan Cox : Using generic datagram code. Even smaller and the PEEK 31 * bug no longer crashes it. 32 * Fred Van Kempen : Net2e support for sk->broadcast. 33 * Alan Cox : Uses skb_free_datagram 34 * Alan Cox : Added get/set sockopt support. 35 * Alan Cox : Broadcasting without option set returns EACCES. 36 * Alan Cox : No wakeup calls. Instead we now use the callbacks. 37 * Alan Cox : Use ip_tos and ip_ttl 38 * Alan Cox : SNMP Mibs 39 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support. 40 * Matt Dillon : UDP length checks. 41 * Alan Cox : Smarter af_inet used properly. 42 * Alan Cox : Use new kernel side addressing. 43 * Alan Cox : Incorrect return on truncated datagram receive. 44 * Arnt Gulbrandsen : New udp_send and stuff 45 * Alan Cox : Cache last socket 46 * Alan Cox : Route cache 47 * Jon Peatfield : Minor efficiency fix to sendto(). 48 * Mike Shaver : RFC1122 checks. 49 * Alan Cox : Nonblocking error fix. 50 * Willy Konynenberg : Transparent proxying support. 51 * Mike McLagan : Routing by source 52 * David S. Miller : New socket lookup architecture. 53 * Last socket cache retained as it 54 * does have a high hit rate. 55 * Olaf Kirch : Don't linearise iovec on sendmsg. 56 * Andi Kleen : Some cleanups, cache destination entry 57 * for connect. 58 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 59 * Melvin Smith : Check msg_name not msg_namelen in sendto(), 60 * return ENOTCONN for unconnected sockets (POSIX) 61 * Janos Farkas : don't deliver multi/broadcasts to a different 62 * bound-to-device socket 63 * Hirokazu Takahashi : HW checksumming for outgoing UDP 64 * datagrams. 65 * Hirokazu Takahashi : sendfile() on UDP works now. 66 * Arnaldo C. Melo : convert /proc/net/udp to seq_file 67 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 68 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind 69 * a single port at the same time. 70 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support 71 * James Chapman : Add L2TP encapsulation type. 72 * 73 * 74 * This program is free software; you can redistribute it and/or 75 * modify it under the terms of the GNU General Public License 76 * as published by the Free Software Foundation; either version 77 * 2 of the License, or (at your option) any later version. 78 */ 79 80 #define pr_fmt(fmt) "UDP: " fmt 81 82 #include <linux/uaccess.h> 83 #include <asm/ioctls.h> 84 #include <linux/bootmem.h> 85 #include <linux/highmem.h> 86 #include <linux/swap.h> 87 #include <linux/types.h> 88 #include <linux/fcntl.h> 89 #include <linux/module.h> 90 #include <linux/socket.h> 91 #include <linux/sockios.h> 92 #include <linux/igmp.h> 93 #include <linux/inetdevice.h> 94 #include <linux/in.h> 95 #include <linux/errno.h> 96 #include <linux/timer.h> 97 #include <linux/mm.h> 98 #include <linux/inet.h> 99 #include <linux/netdevice.h> 100 #include <linux/slab.h> 101 #include <net/tcp_states.h> 102 #include <linux/skbuff.h> 103 #include <linux/proc_fs.h> 104 #include <linux/seq_file.h> 105 #include <net/net_namespace.h> 106 #include <net/icmp.h> 107 #include <net/inet_hashtables.h> 108 #include <net/route.h> 109 #include <net/checksum.h> 110 #include <net/xfrm.h> 111 #include <trace/events/udp.h> 112 #include <linux/static_key.h> 113 #include <trace/events/skb.h> 114 #include <net/busy_poll.h> 115 #include "udp_impl.h" 116 #include <net/sock_reuseport.h> 117 #include <net/addrconf.h> 118 119 struct udp_table udp_table __read_mostly; 120 EXPORT_SYMBOL(udp_table); 121 122 long sysctl_udp_mem[3] __read_mostly; 123 EXPORT_SYMBOL(sysctl_udp_mem); 124 125 atomic_long_t udp_memory_allocated; 126 EXPORT_SYMBOL(udp_memory_allocated); 127 128 #define MAX_UDP_PORTS 65536 129 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN) 130 131 /* IPCB reference means this can not be used from early demux */ 132 static bool udp_lib_exact_dif_match(struct net *net, struct sk_buff *skb) 133 { 134 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) 135 if (!net->ipv4.sysctl_udp_l3mdev_accept && 136 skb && ipv4_l3mdev_skb(IPCB(skb)->flags)) 137 return true; 138 #endif 139 return false; 140 } 141 142 static int udp_lib_lport_inuse(struct net *net, __u16 num, 143 const struct udp_hslot *hslot, 144 unsigned long *bitmap, 145 struct sock *sk, unsigned int log) 146 { 147 struct sock *sk2; 148 kuid_t uid = sock_i_uid(sk); 149 150 sk_for_each(sk2, &hslot->head) { 151 if (net_eq(sock_net(sk2), net) && 152 sk2 != sk && 153 (bitmap || udp_sk(sk2)->udp_port_hash == num) && 154 (!sk2->sk_reuse || !sk->sk_reuse) && 155 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 156 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 157 inet_rcv_saddr_equal(sk, sk2, true)) { 158 if (sk2->sk_reuseport && sk->sk_reuseport && 159 !rcu_access_pointer(sk->sk_reuseport_cb) && 160 uid_eq(uid, sock_i_uid(sk2))) { 161 if (!bitmap) 162 return 0; 163 } else { 164 if (!bitmap) 165 return 1; 166 __set_bit(udp_sk(sk2)->udp_port_hash >> log, 167 bitmap); 168 } 169 } 170 } 171 return 0; 172 } 173 174 /* 175 * Note: we still hold spinlock of primary hash chain, so no other writer 176 * can insert/delete a socket with local_port == num 177 */ 178 static int udp_lib_lport_inuse2(struct net *net, __u16 num, 179 struct udp_hslot *hslot2, 180 struct sock *sk) 181 { 182 struct sock *sk2; 183 kuid_t uid = sock_i_uid(sk); 184 int res = 0; 185 186 spin_lock(&hslot2->lock); 187 udp_portaddr_for_each_entry(sk2, &hslot2->head) { 188 if (net_eq(sock_net(sk2), net) && 189 sk2 != sk && 190 (udp_sk(sk2)->udp_port_hash == num) && 191 (!sk2->sk_reuse || !sk->sk_reuse) && 192 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 193 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 194 inet_rcv_saddr_equal(sk, sk2, true)) { 195 if (sk2->sk_reuseport && sk->sk_reuseport && 196 !rcu_access_pointer(sk->sk_reuseport_cb) && 197 uid_eq(uid, sock_i_uid(sk2))) { 198 res = 0; 199 } else { 200 res = 1; 201 } 202 break; 203 } 204 } 205 spin_unlock(&hslot2->lock); 206 return res; 207 } 208 209 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot) 210 { 211 struct net *net = sock_net(sk); 212 kuid_t uid = sock_i_uid(sk); 213 struct sock *sk2; 214 215 sk_for_each(sk2, &hslot->head) { 216 if (net_eq(sock_net(sk2), net) && 217 sk2 != sk && 218 sk2->sk_family == sk->sk_family && 219 ipv6_only_sock(sk2) == ipv6_only_sock(sk) && 220 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) && 221 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 222 sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) && 223 inet_rcv_saddr_equal(sk, sk2, false)) { 224 return reuseport_add_sock(sk, sk2); 225 } 226 } 227 228 return reuseport_alloc(sk); 229 } 230 231 /** 232 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6 233 * 234 * @sk: socket struct in question 235 * @snum: port number to look up 236 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains, 237 * with NULL address 238 */ 239 int udp_lib_get_port(struct sock *sk, unsigned short snum, 240 unsigned int hash2_nulladdr) 241 { 242 struct udp_hslot *hslot, *hslot2; 243 struct udp_table *udptable = sk->sk_prot->h.udp_table; 244 int error = 1; 245 struct net *net = sock_net(sk); 246 247 if (!snum) { 248 int low, high, remaining; 249 unsigned int rand; 250 unsigned short first, last; 251 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN); 252 253 inet_get_local_port_range(net, &low, &high); 254 remaining = (high - low) + 1; 255 256 rand = prandom_u32(); 257 first = reciprocal_scale(rand, remaining) + low; 258 /* 259 * force rand to be an odd multiple of UDP_HTABLE_SIZE 260 */ 261 rand = (rand | 1) * (udptable->mask + 1); 262 last = first + udptable->mask + 1; 263 do { 264 hslot = udp_hashslot(udptable, net, first); 265 bitmap_zero(bitmap, PORTS_PER_CHAIN); 266 spin_lock_bh(&hslot->lock); 267 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk, 268 udptable->log); 269 270 snum = first; 271 /* 272 * Iterate on all possible values of snum for this hash. 273 * Using steps of an odd multiple of UDP_HTABLE_SIZE 274 * give us randomization and full range coverage. 275 */ 276 do { 277 if (low <= snum && snum <= high && 278 !test_bit(snum >> udptable->log, bitmap) && 279 !inet_is_local_reserved_port(net, snum)) 280 goto found; 281 snum += rand; 282 } while (snum != first); 283 spin_unlock_bh(&hslot->lock); 284 cond_resched(); 285 } while (++first != last); 286 goto fail; 287 } else { 288 hslot = udp_hashslot(udptable, net, snum); 289 spin_lock_bh(&hslot->lock); 290 if (hslot->count > 10) { 291 int exist; 292 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum; 293 294 slot2 &= udptable->mask; 295 hash2_nulladdr &= udptable->mask; 296 297 hslot2 = udp_hashslot2(udptable, slot2); 298 if (hslot->count < hslot2->count) 299 goto scan_primary_hash; 300 301 exist = udp_lib_lport_inuse2(net, snum, hslot2, sk); 302 if (!exist && (hash2_nulladdr != slot2)) { 303 hslot2 = udp_hashslot2(udptable, hash2_nulladdr); 304 exist = udp_lib_lport_inuse2(net, snum, hslot2, 305 sk); 306 } 307 if (exist) 308 goto fail_unlock; 309 else 310 goto found; 311 } 312 scan_primary_hash: 313 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0)) 314 goto fail_unlock; 315 } 316 found: 317 inet_sk(sk)->inet_num = snum; 318 udp_sk(sk)->udp_port_hash = snum; 319 udp_sk(sk)->udp_portaddr_hash ^= snum; 320 if (sk_unhashed(sk)) { 321 if (sk->sk_reuseport && 322 udp_reuseport_add_sock(sk, hslot)) { 323 inet_sk(sk)->inet_num = 0; 324 udp_sk(sk)->udp_port_hash = 0; 325 udp_sk(sk)->udp_portaddr_hash ^= snum; 326 goto fail_unlock; 327 } 328 329 sk_add_node_rcu(sk, &hslot->head); 330 hslot->count++; 331 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 332 333 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 334 spin_lock(&hslot2->lock); 335 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 336 sk->sk_family == AF_INET6) 337 hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node, 338 &hslot2->head); 339 else 340 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 341 &hslot2->head); 342 hslot2->count++; 343 spin_unlock(&hslot2->lock); 344 } 345 sock_set_flag(sk, SOCK_RCU_FREE); 346 error = 0; 347 fail_unlock: 348 spin_unlock_bh(&hslot->lock); 349 fail: 350 return error; 351 } 352 EXPORT_SYMBOL(udp_lib_get_port); 353 354 int udp_v4_get_port(struct sock *sk, unsigned short snum) 355 { 356 unsigned int hash2_nulladdr = 357 ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum); 358 unsigned int hash2_partial = 359 ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0); 360 361 /* precompute partial secondary hash */ 362 udp_sk(sk)->udp_portaddr_hash = hash2_partial; 363 return udp_lib_get_port(sk, snum, hash2_nulladdr); 364 } 365 366 static int compute_score(struct sock *sk, struct net *net, 367 __be32 saddr, __be16 sport, 368 __be32 daddr, unsigned short hnum, 369 int dif, int sdif, bool exact_dif) 370 { 371 int score; 372 struct inet_sock *inet; 373 374 if (!net_eq(sock_net(sk), net) || 375 udp_sk(sk)->udp_port_hash != hnum || 376 ipv6_only_sock(sk)) 377 return -1; 378 379 score = (sk->sk_family == PF_INET) ? 2 : 1; 380 inet = inet_sk(sk); 381 382 if (inet->inet_rcv_saddr) { 383 if (inet->inet_rcv_saddr != daddr) 384 return -1; 385 score += 4; 386 } 387 388 if (inet->inet_daddr) { 389 if (inet->inet_daddr != saddr) 390 return -1; 391 score += 4; 392 } 393 394 if (inet->inet_dport) { 395 if (inet->inet_dport != sport) 396 return -1; 397 score += 4; 398 } 399 400 if (sk->sk_bound_dev_if || exact_dif) { 401 bool dev_match = (sk->sk_bound_dev_if == dif || 402 sk->sk_bound_dev_if == sdif); 403 404 if (exact_dif && !dev_match) 405 return -1; 406 if (sk->sk_bound_dev_if && dev_match) 407 score += 4; 408 } 409 410 if (sk->sk_incoming_cpu == raw_smp_processor_id()) 411 score++; 412 return score; 413 } 414 415 static u32 udp_ehashfn(const struct net *net, const __be32 laddr, 416 const __u16 lport, const __be32 faddr, 417 const __be16 fport) 418 { 419 static u32 udp_ehash_secret __read_mostly; 420 421 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret)); 422 423 return __inet_ehashfn(laddr, lport, faddr, fport, 424 udp_ehash_secret + net_hash_mix(net)); 425 } 426 427 /* called with rcu_read_lock() */ 428 static struct sock *udp4_lib_lookup2(struct net *net, 429 __be32 saddr, __be16 sport, 430 __be32 daddr, unsigned int hnum, 431 int dif, int sdif, bool exact_dif, 432 struct udp_hslot *hslot2, 433 struct sk_buff *skb) 434 { 435 struct sock *sk, *result; 436 int score, badness; 437 u32 hash = 0; 438 439 result = NULL; 440 badness = 0; 441 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 442 score = compute_score(sk, net, saddr, sport, 443 daddr, hnum, dif, sdif, exact_dif); 444 if (score > badness) { 445 if (sk->sk_reuseport) { 446 hash = udp_ehashfn(net, daddr, hnum, 447 saddr, sport); 448 result = reuseport_select_sock(sk, hash, skb, 449 sizeof(struct udphdr)); 450 if (result) 451 return result; 452 } 453 badness = score; 454 result = sk; 455 } 456 } 457 return result; 458 } 459 460 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try 461 * harder than this. -DaveM 462 */ 463 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr, 464 __be16 sport, __be32 daddr, __be16 dport, int dif, 465 int sdif, struct udp_table *udptable, struct sk_buff *skb) 466 { 467 struct sock *sk, *result; 468 unsigned short hnum = ntohs(dport); 469 unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask); 470 struct udp_hslot *hslot2, *hslot = &udptable->hash[slot]; 471 bool exact_dif = udp_lib_exact_dif_match(net, skb); 472 int score, badness; 473 u32 hash = 0; 474 475 if (hslot->count > 10) { 476 hash2 = ipv4_portaddr_hash(net, daddr, hnum); 477 slot2 = hash2 & udptable->mask; 478 hslot2 = &udptable->hash2[slot2]; 479 if (hslot->count < hslot2->count) 480 goto begin; 481 482 result = udp4_lib_lookup2(net, saddr, sport, 483 daddr, hnum, dif, sdif, 484 exact_dif, hslot2, skb); 485 if (!result) { 486 unsigned int old_slot2 = slot2; 487 hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum); 488 slot2 = hash2 & udptable->mask; 489 /* avoid searching the same slot again. */ 490 if (unlikely(slot2 == old_slot2)) 491 return result; 492 493 hslot2 = &udptable->hash2[slot2]; 494 if (hslot->count < hslot2->count) 495 goto begin; 496 497 result = udp4_lib_lookup2(net, saddr, sport, 498 daddr, hnum, dif, sdif, 499 exact_dif, hslot2, skb); 500 } 501 return result; 502 } 503 begin: 504 result = NULL; 505 badness = 0; 506 sk_for_each_rcu(sk, &hslot->head) { 507 score = compute_score(sk, net, saddr, sport, 508 daddr, hnum, dif, sdif, exact_dif); 509 if (score > badness) { 510 if (sk->sk_reuseport) { 511 hash = udp_ehashfn(net, daddr, hnum, 512 saddr, sport); 513 result = reuseport_select_sock(sk, hash, skb, 514 sizeof(struct udphdr)); 515 if (result) 516 return result; 517 } 518 result = sk; 519 badness = score; 520 } 521 } 522 return result; 523 } 524 EXPORT_SYMBOL_GPL(__udp4_lib_lookup); 525 526 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb, 527 __be16 sport, __be16 dport, 528 struct udp_table *udptable) 529 { 530 const struct iphdr *iph = ip_hdr(skb); 531 532 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport, 533 iph->daddr, dport, inet_iif(skb), 534 inet_sdif(skb), udptable, skb); 535 } 536 537 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb, 538 __be16 sport, __be16 dport) 539 { 540 return __udp4_lib_lookup_skb(skb, sport, dport, &udp_table); 541 } 542 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb); 543 544 /* Must be called under rcu_read_lock(). 545 * Does increment socket refcount. 546 */ 547 #if IS_ENABLED(CONFIG_NETFILTER_XT_MATCH_SOCKET) || \ 548 IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TPROXY) || \ 549 IS_ENABLED(CONFIG_NF_SOCKET_IPV4) 550 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport, 551 __be32 daddr, __be16 dport, int dif) 552 { 553 struct sock *sk; 554 555 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport, 556 dif, 0, &udp_table, NULL); 557 if (sk && !refcount_inc_not_zero(&sk->sk_refcnt)) 558 sk = NULL; 559 return sk; 560 } 561 EXPORT_SYMBOL_GPL(udp4_lib_lookup); 562 #endif 563 564 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk, 565 __be16 loc_port, __be32 loc_addr, 566 __be16 rmt_port, __be32 rmt_addr, 567 int dif, int sdif, unsigned short hnum) 568 { 569 struct inet_sock *inet = inet_sk(sk); 570 571 if (!net_eq(sock_net(sk), net) || 572 udp_sk(sk)->udp_port_hash != hnum || 573 (inet->inet_daddr && inet->inet_daddr != rmt_addr) || 574 (inet->inet_dport != rmt_port && inet->inet_dport) || 575 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) || 576 ipv6_only_sock(sk) || 577 (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif && 578 sk->sk_bound_dev_if != sdif)) 579 return false; 580 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif)) 581 return false; 582 return true; 583 } 584 585 /* 586 * This routine is called by the ICMP module when it gets some 587 * sort of error condition. If err < 0 then the socket should 588 * be closed and the error returned to the user. If err > 0 589 * it's just the icmp type << 8 | icmp code. 590 * Header points to the ip header of the error packet. We move 591 * on past this. Then (as it used to claim before adjustment) 592 * header points to the first 8 bytes of the udp header. We need 593 * to find the appropriate port. 594 */ 595 596 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable) 597 { 598 struct inet_sock *inet; 599 const struct iphdr *iph = (const struct iphdr *)skb->data; 600 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2)); 601 const int type = icmp_hdr(skb)->type; 602 const int code = icmp_hdr(skb)->code; 603 struct sock *sk; 604 int harderr; 605 int err; 606 struct net *net = dev_net(skb->dev); 607 608 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest, 609 iph->saddr, uh->source, skb->dev->ifindex, 0, 610 udptable, NULL); 611 if (!sk) { 612 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); 613 return; /* No socket for error */ 614 } 615 616 err = 0; 617 harderr = 0; 618 inet = inet_sk(sk); 619 620 switch (type) { 621 default: 622 case ICMP_TIME_EXCEEDED: 623 err = EHOSTUNREACH; 624 break; 625 case ICMP_SOURCE_QUENCH: 626 goto out; 627 case ICMP_PARAMETERPROB: 628 err = EPROTO; 629 harderr = 1; 630 break; 631 case ICMP_DEST_UNREACH: 632 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */ 633 ipv4_sk_update_pmtu(skb, sk, info); 634 if (inet->pmtudisc != IP_PMTUDISC_DONT) { 635 err = EMSGSIZE; 636 harderr = 1; 637 break; 638 } 639 goto out; 640 } 641 err = EHOSTUNREACH; 642 if (code <= NR_ICMP_UNREACH) { 643 harderr = icmp_err_convert[code].fatal; 644 err = icmp_err_convert[code].errno; 645 } 646 break; 647 case ICMP_REDIRECT: 648 ipv4_sk_redirect(skb, sk); 649 goto out; 650 } 651 652 /* 653 * RFC1122: OK. Passes ICMP errors back to application, as per 654 * 4.1.3.3. 655 */ 656 if (!inet->recverr) { 657 if (!harderr || sk->sk_state != TCP_ESTABLISHED) 658 goto out; 659 } else 660 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1)); 661 662 sk->sk_err = err; 663 sk->sk_error_report(sk); 664 out: 665 return; 666 } 667 668 void udp_err(struct sk_buff *skb, u32 info) 669 { 670 __udp4_lib_err(skb, info, &udp_table); 671 } 672 673 /* 674 * Throw away all pending data and cancel the corking. Socket is locked. 675 */ 676 void udp_flush_pending_frames(struct sock *sk) 677 { 678 struct udp_sock *up = udp_sk(sk); 679 680 if (up->pending) { 681 up->len = 0; 682 up->pending = 0; 683 ip_flush_pending_frames(sk); 684 } 685 } 686 EXPORT_SYMBOL(udp_flush_pending_frames); 687 688 /** 689 * udp4_hwcsum - handle outgoing HW checksumming 690 * @skb: sk_buff containing the filled-in UDP header 691 * (checksum field must be zeroed out) 692 * @src: source IP address 693 * @dst: destination IP address 694 */ 695 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst) 696 { 697 struct udphdr *uh = udp_hdr(skb); 698 int offset = skb_transport_offset(skb); 699 int len = skb->len - offset; 700 int hlen = len; 701 __wsum csum = 0; 702 703 if (!skb_has_frag_list(skb)) { 704 /* 705 * Only one fragment on the socket. 706 */ 707 skb->csum_start = skb_transport_header(skb) - skb->head; 708 skb->csum_offset = offsetof(struct udphdr, check); 709 uh->check = ~csum_tcpudp_magic(src, dst, len, 710 IPPROTO_UDP, 0); 711 } else { 712 struct sk_buff *frags; 713 714 /* 715 * HW-checksum won't work as there are two or more 716 * fragments on the socket so that all csums of sk_buffs 717 * should be together 718 */ 719 skb_walk_frags(skb, frags) { 720 csum = csum_add(csum, frags->csum); 721 hlen -= frags->len; 722 } 723 724 csum = skb_checksum(skb, offset, hlen, csum); 725 skb->ip_summed = CHECKSUM_NONE; 726 727 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum); 728 if (uh->check == 0) 729 uh->check = CSUM_MANGLED_0; 730 } 731 } 732 EXPORT_SYMBOL_GPL(udp4_hwcsum); 733 734 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended 735 * for the simple case like when setting the checksum for a UDP tunnel. 736 */ 737 void udp_set_csum(bool nocheck, struct sk_buff *skb, 738 __be32 saddr, __be32 daddr, int len) 739 { 740 struct udphdr *uh = udp_hdr(skb); 741 742 if (nocheck) { 743 uh->check = 0; 744 } else if (skb_is_gso(skb)) { 745 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 746 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 747 uh->check = 0; 748 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb)); 749 if (uh->check == 0) 750 uh->check = CSUM_MANGLED_0; 751 } else { 752 skb->ip_summed = CHECKSUM_PARTIAL; 753 skb->csum_start = skb_transport_header(skb) - skb->head; 754 skb->csum_offset = offsetof(struct udphdr, check); 755 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 756 } 757 } 758 EXPORT_SYMBOL(udp_set_csum); 759 760 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4, 761 struct inet_cork *cork) 762 { 763 struct sock *sk = skb->sk; 764 struct inet_sock *inet = inet_sk(sk); 765 struct udphdr *uh; 766 int err = 0; 767 int is_udplite = IS_UDPLITE(sk); 768 int offset = skb_transport_offset(skb); 769 int len = skb->len - offset; 770 __wsum csum = 0; 771 772 /* 773 * Create a UDP header 774 */ 775 uh = udp_hdr(skb); 776 uh->source = inet->inet_sport; 777 uh->dest = fl4->fl4_dport; 778 uh->len = htons(len); 779 uh->check = 0; 780 781 if (cork->gso_size) { 782 const int hlen = skb_network_header_len(skb) + 783 sizeof(struct udphdr); 784 785 if (hlen + cork->gso_size > cork->fragsize) 786 return -EINVAL; 787 if (skb->len > cork->gso_size * UDP_MAX_SEGMENTS) 788 return -EINVAL; 789 if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite) 790 return -EIO; 791 792 skb_shinfo(skb)->gso_size = cork->gso_size; 793 skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4; 794 } 795 796 if (is_udplite) /* UDP-Lite */ 797 csum = udplite_csum(skb); 798 799 else if (sk->sk_no_check_tx) { /* UDP csum off */ 800 801 skb->ip_summed = CHECKSUM_NONE; 802 goto send; 803 804 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */ 805 806 udp4_hwcsum(skb, fl4->saddr, fl4->daddr); 807 goto send; 808 809 } else 810 csum = udp_csum(skb); 811 812 /* add protocol-dependent pseudo-header */ 813 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len, 814 sk->sk_protocol, csum); 815 if (uh->check == 0) 816 uh->check = CSUM_MANGLED_0; 817 818 send: 819 err = ip_send_skb(sock_net(sk), skb); 820 if (err) { 821 if (err == -ENOBUFS && !inet->recverr) { 822 UDP_INC_STATS(sock_net(sk), 823 UDP_MIB_SNDBUFERRORS, is_udplite); 824 err = 0; 825 } 826 } else 827 UDP_INC_STATS(sock_net(sk), 828 UDP_MIB_OUTDATAGRAMS, is_udplite); 829 return err; 830 } 831 832 /* 833 * Push out all pending data as one UDP datagram. Socket is locked. 834 */ 835 int udp_push_pending_frames(struct sock *sk) 836 { 837 struct udp_sock *up = udp_sk(sk); 838 struct inet_sock *inet = inet_sk(sk); 839 struct flowi4 *fl4 = &inet->cork.fl.u.ip4; 840 struct sk_buff *skb; 841 int err = 0; 842 843 skb = ip_finish_skb(sk, fl4); 844 if (!skb) 845 goto out; 846 847 err = udp_send_skb(skb, fl4, &inet->cork.base); 848 849 out: 850 up->len = 0; 851 up->pending = 0; 852 return err; 853 } 854 EXPORT_SYMBOL(udp_push_pending_frames); 855 856 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size) 857 { 858 switch (cmsg->cmsg_type) { 859 case UDP_SEGMENT: 860 if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16))) 861 return -EINVAL; 862 *gso_size = *(__u16 *)CMSG_DATA(cmsg); 863 return 0; 864 default: 865 return -EINVAL; 866 } 867 } 868 869 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size) 870 { 871 struct cmsghdr *cmsg; 872 bool need_ip = false; 873 int err; 874 875 for_each_cmsghdr(cmsg, msg) { 876 if (!CMSG_OK(msg, cmsg)) 877 return -EINVAL; 878 879 if (cmsg->cmsg_level != SOL_UDP) { 880 need_ip = true; 881 continue; 882 } 883 884 err = __udp_cmsg_send(cmsg, gso_size); 885 if (err) 886 return err; 887 } 888 889 return need_ip; 890 } 891 EXPORT_SYMBOL_GPL(udp_cmsg_send); 892 893 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 894 { 895 struct inet_sock *inet = inet_sk(sk); 896 struct udp_sock *up = udp_sk(sk); 897 struct flowi4 fl4_stack; 898 struct flowi4 *fl4; 899 int ulen = len; 900 struct ipcm_cookie ipc; 901 struct rtable *rt = NULL; 902 int free = 0; 903 int connected = 0; 904 __be32 daddr, faddr, saddr; 905 __be16 dport; 906 u8 tos; 907 int err, is_udplite = IS_UDPLITE(sk); 908 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE; 909 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *); 910 struct sk_buff *skb; 911 struct ip_options_data opt_copy; 912 913 if (len > 0xFFFF) 914 return -EMSGSIZE; 915 916 /* 917 * Check the flags. 918 */ 919 920 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */ 921 return -EOPNOTSUPP; 922 923 ipc.opt = NULL; 924 ipc.tx_flags = 0; 925 ipc.ttl = 0; 926 ipc.tos = -1; 927 928 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag; 929 930 fl4 = &inet->cork.fl.u.ip4; 931 if (up->pending) { 932 /* 933 * There are pending frames. 934 * The socket lock must be held while it's corked. 935 */ 936 lock_sock(sk); 937 if (likely(up->pending)) { 938 if (unlikely(up->pending != AF_INET)) { 939 release_sock(sk); 940 return -EINVAL; 941 } 942 goto do_append_data; 943 } 944 release_sock(sk); 945 } 946 ulen += sizeof(struct udphdr); 947 948 /* 949 * Get and verify the address. 950 */ 951 if (msg->msg_name) { 952 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name); 953 if (msg->msg_namelen < sizeof(*usin)) 954 return -EINVAL; 955 if (usin->sin_family != AF_INET) { 956 if (usin->sin_family != AF_UNSPEC) 957 return -EAFNOSUPPORT; 958 } 959 960 daddr = usin->sin_addr.s_addr; 961 dport = usin->sin_port; 962 if (dport == 0) 963 return -EINVAL; 964 } else { 965 if (sk->sk_state != TCP_ESTABLISHED) 966 return -EDESTADDRREQ; 967 daddr = inet->inet_daddr; 968 dport = inet->inet_dport; 969 /* Open fast path for connected socket. 970 Route will not be used, if at least one option is set. 971 */ 972 connected = 1; 973 } 974 975 ipc.sockc.tsflags = sk->sk_tsflags; 976 ipc.addr = inet->inet_saddr; 977 ipc.oif = sk->sk_bound_dev_if; 978 ipc.gso_size = up->gso_size; 979 980 if (msg->msg_controllen) { 981 err = udp_cmsg_send(sk, msg, &ipc.gso_size); 982 if (err > 0) 983 err = ip_cmsg_send(sk, msg, &ipc, 984 sk->sk_family == AF_INET6); 985 if (unlikely(err < 0)) { 986 kfree(ipc.opt); 987 return err; 988 } 989 if (ipc.opt) 990 free = 1; 991 connected = 0; 992 } 993 if (!ipc.opt) { 994 struct ip_options_rcu *inet_opt; 995 996 rcu_read_lock(); 997 inet_opt = rcu_dereference(inet->inet_opt); 998 if (inet_opt) { 999 memcpy(&opt_copy, inet_opt, 1000 sizeof(*inet_opt) + inet_opt->opt.optlen); 1001 ipc.opt = &opt_copy.opt; 1002 } 1003 rcu_read_unlock(); 1004 } 1005 1006 saddr = ipc.addr; 1007 ipc.addr = faddr = daddr; 1008 1009 sock_tx_timestamp(sk, ipc.sockc.tsflags, &ipc.tx_flags); 1010 1011 if (ipc.opt && ipc.opt->opt.srr) { 1012 if (!daddr) 1013 return -EINVAL; 1014 faddr = ipc.opt->opt.faddr; 1015 connected = 0; 1016 } 1017 tos = get_rttos(&ipc, inet); 1018 if (sock_flag(sk, SOCK_LOCALROUTE) || 1019 (msg->msg_flags & MSG_DONTROUTE) || 1020 (ipc.opt && ipc.opt->opt.is_strictroute)) { 1021 tos |= RTO_ONLINK; 1022 connected = 0; 1023 } 1024 1025 if (ipv4_is_multicast(daddr)) { 1026 if (!ipc.oif) 1027 ipc.oif = inet->mc_index; 1028 if (!saddr) 1029 saddr = inet->mc_addr; 1030 connected = 0; 1031 } else if (!ipc.oif) { 1032 ipc.oif = inet->uc_index; 1033 } else if (ipv4_is_lbcast(daddr) && inet->uc_index) { 1034 /* oif is set, packet is to local broadcast and 1035 * and uc_index is set. oif is most likely set 1036 * by sk_bound_dev_if. If uc_index != oif check if the 1037 * oif is an L3 master and uc_index is an L3 slave. 1038 * If so, we want to allow the send using the uc_index. 1039 */ 1040 if (ipc.oif != inet->uc_index && 1041 ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk), 1042 inet->uc_index)) { 1043 ipc.oif = inet->uc_index; 1044 } 1045 } 1046 1047 if (connected) 1048 rt = (struct rtable *)sk_dst_check(sk, 0); 1049 1050 if (!rt) { 1051 struct net *net = sock_net(sk); 1052 __u8 flow_flags = inet_sk_flowi_flags(sk); 1053 1054 fl4 = &fl4_stack; 1055 1056 flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos, 1057 RT_SCOPE_UNIVERSE, sk->sk_protocol, 1058 flow_flags, 1059 faddr, saddr, dport, inet->inet_sport, 1060 sk->sk_uid); 1061 1062 security_sk_classify_flow(sk, flowi4_to_flowi(fl4)); 1063 rt = ip_route_output_flow(net, fl4, sk); 1064 if (IS_ERR(rt)) { 1065 err = PTR_ERR(rt); 1066 rt = NULL; 1067 if (err == -ENETUNREACH) 1068 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 1069 goto out; 1070 } 1071 1072 err = -EACCES; 1073 if ((rt->rt_flags & RTCF_BROADCAST) && 1074 !sock_flag(sk, SOCK_BROADCAST)) 1075 goto out; 1076 if (connected) 1077 sk_dst_set(sk, dst_clone(&rt->dst)); 1078 } 1079 1080 if (msg->msg_flags&MSG_CONFIRM) 1081 goto do_confirm; 1082 back_from_confirm: 1083 1084 saddr = fl4->saddr; 1085 if (!ipc.addr) 1086 daddr = ipc.addr = fl4->daddr; 1087 1088 /* Lockless fast path for the non-corking case. */ 1089 if (!corkreq) { 1090 struct inet_cork cork; 1091 1092 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen, 1093 sizeof(struct udphdr), &ipc, &rt, 1094 &cork, msg->msg_flags); 1095 err = PTR_ERR(skb); 1096 if (!IS_ERR_OR_NULL(skb)) 1097 err = udp_send_skb(skb, fl4, &cork); 1098 goto out; 1099 } 1100 1101 lock_sock(sk); 1102 if (unlikely(up->pending)) { 1103 /* The socket is already corked while preparing it. */ 1104 /* ... which is an evident application bug. --ANK */ 1105 release_sock(sk); 1106 1107 net_dbg_ratelimited("socket already corked\n"); 1108 err = -EINVAL; 1109 goto out; 1110 } 1111 /* 1112 * Now cork the socket to pend data. 1113 */ 1114 fl4 = &inet->cork.fl.u.ip4; 1115 fl4->daddr = daddr; 1116 fl4->saddr = saddr; 1117 fl4->fl4_dport = dport; 1118 fl4->fl4_sport = inet->inet_sport; 1119 up->pending = AF_INET; 1120 1121 do_append_data: 1122 up->len += ulen; 1123 err = ip_append_data(sk, fl4, getfrag, msg, ulen, 1124 sizeof(struct udphdr), &ipc, &rt, 1125 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags); 1126 if (err) 1127 udp_flush_pending_frames(sk); 1128 else if (!corkreq) 1129 err = udp_push_pending_frames(sk); 1130 else if (unlikely(skb_queue_empty(&sk->sk_write_queue))) 1131 up->pending = 0; 1132 release_sock(sk); 1133 1134 out: 1135 ip_rt_put(rt); 1136 if (free) 1137 kfree(ipc.opt); 1138 if (!err) 1139 return len; 1140 /* 1141 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting 1142 * ENOBUFS might not be good (it's not tunable per se), but otherwise 1143 * we don't have a good statistic (IpOutDiscards but it can be too many 1144 * things). We could add another new stat but at least for now that 1145 * seems like overkill. 1146 */ 1147 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1148 UDP_INC_STATS(sock_net(sk), 1149 UDP_MIB_SNDBUFERRORS, is_udplite); 1150 } 1151 return err; 1152 1153 do_confirm: 1154 if (msg->msg_flags & MSG_PROBE) 1155 dst_confirm_neigh(&rt->dst, &fl4->daddr); 1156 if (!(msg->msg_flags&MSG_PROBE) || len) 1157 goto back_from_confirm; 1158 err = 0; 1159 goto out; 1160 } 1161 EXPORT_SYMBOL(udp_sendmsg); 1162 1163 int udp_sendpage(struct sock *sk, struct page *page, int offset, 1164 size_t size, int flags) 1165 { 1166 struct inet_sock *inet = inet_sk(sk); 1167 struct udp_sock *up = udp_sk(sk); 1168 int ret; 1169 1170 if (flags & MSG_SENDPAGE_NOTLAST) 1171 flags |= MSG_MORE; 1172 1173 if (!up->pending) { 1174 struct msghdr msg = { .msg_flags = flags|MSG_MORE }; 1175 1176 /* Call udp_sendmsg to specify destination address which 1177 * sendpage interface can't pass. 1178 * This will succeed only when the socket is connected. 1179 */ 1180 ret = udp_sendmsg(sk, &msg, 0); 1181 if (ret < 0) 1182 return ret; 1183 } 1184 1185 lock_sock(sk); 1186 1187 if (unlikely(!up->pending)) { 1188 release_sock(sk); 1189 1190 net_dbg_ratelimited("cork failed\n"); 1191 return -EINVAL; 1192 } 1193 1194 ret = ip_append_page(sk, &inet->cork.fl.u.ip4, 1195 page, offset, size, flags); 1196 if (ret == -EOPNOTSUPP) { 1197 release_sock(sk); 1198 return sock_no_sendpage(sk->sk_socket, page, offset, 1199 size, flags); 1200 } 1201 if (ret < 0) { 1202 udp_flush_pending_frames(sk); 1203 goto out; 1204 } 1205 1206 up->len += size; 1207 if (!(up->corkflag || (flags&MSG_MORE))) 1208 ret = udp_push_pending_frames(sk); 1209 if (!ret) 1210 ret = size; 1211 out: 1212 release_sock(sk); 1213 return ret; 1214 } 1215 1216 #define UDP_SKB_IS_STATELESS 0x80000000 1217 1218 static void udp_set_dev_scratch(struct sk_buff *skb) 1219 { 1220 struct udp_dev_scratch *scratch = udp_skb_scratch(skb); 1221 1222 BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long)); 1223 scratch->_tsize_state = skb->truesize; 1224 #if BITS_PER_LONG == 64 1225 scratch->len = skb->len; 1226 scratch->csum_unnecessary = !!skb_csum_unnecessary(skb); 1227 scratch->is_linear = !skb_is_nonlinear(skb); 1228 #endif 1229 /* all head states execept sp (dst, sk, nf) are always cleared by 1230 * udp_rcv() and we need to preserve secpath, if present, to eventually 1231 * process IP_CMSG_PASSSEC at recvmsg() time 1232 */ 1233 if (likely(!skb_sec_path(skb))) 1234 scratch->_tsize_state |= UDP_SKB_IS_STATELESS; 1235 } 1236 1237 static int udp_skb_truesize(struct sk_buff *skb) 1238 { 1239 return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS; 1240 } 1241 1242 static bool udp_skb_has_head_state(struct sk_buff *skb) 1243 { 1244 return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS); 1245 } 1246 1247 /* fully reclaim rmem/fwd memory allocated for skb */ 1248 static void udp_rmem_release(struct sock *sk, int size, int partial, 1249 bool rx_queue_lock_held) 1250 { 1251 struct udp_sock *up = udp_sk(sk); 1252 struct sk_buff_head *sk_queue; 1253 int amt; 1254 1255 if (likely(partial)) { 1256 up->forward_deficit += size; 1257 size = up->forward_deficit; 1258 if (size < (sk->sk_rcvbuf >> 2)) 1259 return; 1260 } else { 1261 size += up->forward_deficit; 1262 } 1263 up->forward_deficit = 0; 1264 1265 /* acquire the sk_receive_queue for fwd allocated memory scheduling, 1266 * if the called don't held it already 1267 */ 1268 sk_queue = &sk->sk_receive_queue; 1269 if (!rx_queue_lock_held) 1270 spin_lock(&sk_queue->lock); 1271 1272 1273 sk->sk_forward_alloc += size; 1274 amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1); 1275 sk->sk_forward_alloc -= amt; 1276 1277 if (amt) 1278 __sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT); 1279 1280 atomic_sub(size, &sk->sk_rmem_alloc); 1281 1282 /* this can save us from acquiring the rx queue lock on next receive */ 1283 skb_queue_splice_tail_init(sk_queue, &up->reader_queue); 1284 1285 if (!rx_queue_lock_held) 1286 spin_unlock(&sk_queue->lock); 1287 } 1288 1289 /* Note: called with reader_queue.lock held. 1290 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch 1291 * This avoids a cache line miss while receive_queue lock is held. 1292 * Look at __udp_enqueue_schedule_skb() to find where this copy is done. 1293 */ 1294 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb) 1295 { 1296 prefetch(&skb->data); 1297 udp_rmem_release(sk, udp_skb_truesize(skb), 1, false); 1298 } 1299 EXPORT_SYMBOL(udp_skb_destructor); 1300 1301 /* as above, but the caller held the rx queue lock, too */ 1302 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb) 1303 { 1304 prefetch(&skb->data); 1305 udp_rmem_release(sk, udp_skb_truesize(skb), 1, true); 1306 } 1307 1308 /* Idea of busylocks is to let producers grab an extra spinlock 1309 * to relieve pressure on the receive_queue spinlock shared by consumer. 1310 * Under flood, this means that only one producer can be in line 1311 * trying to acquire the receive_queue spinlock. 1312 * These busylock can be allocated on a per cpu manner, instead of a 1313 * per socket one (that would consume a cache line per socket) 1314 */ 1315 static int udp_busylocks_log __read_mostly; 1316 static spinlock_t *udp_busylocks __read_mostly; 1317 1318 static spinlock_t *busylock_acquire(void *ptr) 1319 { 1320 spinlock_t *busy; 1321 1322 busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log); 1323 spin_lock(busy); 1324 return busy; 1325 } 1326 1327 static void busylock_release(spinlock_t *busy) 1328 { 1329 if (busy) 1330 spin_unlock(busy); 1331 } 1332 1333 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb) 1334 { 1335 struct sk_buff_head *list = &sk->sk_receive_queue; 1336 int rmem, delta, amt, err = -ENOMEM; 1337 spinlock_t *busy = NULL; 1338 int size; 1339 1340 /* try to avoid the costly atomic add/sub pair when the receive 1341 * queue is full; always allow at least a packet 1342 */ 1343 rmem = atomic_read(&sk->sk_rmem_alloc); 1344 if (rmem > sk->sk_rcvbuf) 1345 goto drop; 1346 1347 /* Under mem pressure, it might be helpful to help udp_recvmsg() 1348 * having linear skbs : 1349 * - Reduce memory overhead and thus increase receive queue capacity 1350 * - Less cache line misses at copyout() time 1351 * - Less work at consume_skb() (less alien page frag freeing) 1352 */ 1353 if (rmem > (sk->sk_rcvbuf >> 1)) { 1354 skb_condense(skb); 1355 1356 busy = busylock_acquire(sk); 1357 } 1358 size = skb->truesize; 1359 udp_set_dev_scratch(skb); 1360 1361 /* we drop only if the receive buf is full and the receive 1362 * queue contains some other skb 1363 */ 1364 rmem = atomic_add_return(size, &sk->sk_rmem_alloc); 1365 if (rmem > (size + sk->sk_rcvbuf)) 1366 goto uncharge_drop; 1367 1368 spin_lock(&list->lock); 1369 if (size >= sk->sk_forward_alloc) { 1370 amt = sk_mem_pages(size); 1371 delta = amt << SK_MEM_QUANTUM_SHIFT; 1372 if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) { 1373 err = -ENOBUFS; 1374 spin_unlock(&list->lock); 1375 goto uncharge_drop; 1376 } 1377 1378 sk->sk_forward_alloc += delta; 1379 } 1380 1381 sk->sk_forward_alloc -= size; 1382 1383 /* no need to setup a destructor, we will explicitly release the 1384 * forward allocated memory on dequeue 1385 */ 1386 sock_skb_set_dropcount(sk, skb); 1387 1388 __skb_queue_tail(list, skb); 1389 spin_unlock(&list->lock); 1390 1391 if (!sock_flag(sk, SOCK_DEAD)) 1392 sk->sk_data_ready(sk); 1393 1394 busylock_release(busy); 1395 return 0; 1396 1397 uncharge_drop: 1398 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 1399 1400 drop: 1401 atomic_inc(&sk->sk_drops); 1402 busylock_release(busy); 1403 return err; 1404 } 1405 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb); 1406 1407 void udp_destruct_sock(struct sock *sk) 1408 { 1409 /* reclaim completely the forward allocated memory */ 1410 struct udp_sock *up = udp_sk(sk); 1411 unsigned int total = 0; 1412 struct sk_buff *skb; 1413 1414 skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue); 1415 while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) { 1416 total += skb->truesize; 1417 kfree_skb(skb); 1418 } 1419 udp_rmem_release(sk, total, 0, true); 1420 1421 inet_sock_destruct(sk); 1422 } 1423 EXPORT_SYMBOL_GPL(udp_destruct_sock); 1424 1425 int udp_init_sock(struct sock *sk) 1426 { 1427 skb_queue_head_init(&udp_sk(sk)->reader_queue); 1428 sk->sk_destruct = udp_destruct_sock; 1429 return 0; 1430 } 1431 EXPORT_SYMBOL_GPL(udp_init_sock); 1432 1433 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len) 1434 { 1435 if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) { 1436 bool slow = lock_sock_fast(sk); 1437 1438 sk_peek_offset_bwd(sk, len); 1439 unlock_sock_fast(sk, slow); 1440 } 1441 1442 if (!skb_unref(skb)) 1443 return; 1444 1445 /* In the more common cases we cleared the head states previously, 1446 * see __udp_queue_rcv_skb(). 1447 */ 1448 if (unlikely(udp_skb_has_head_state(skb))) 1449 skb_release_head_state(skb); 1450 __consume_stateless_skb(skb); 1451 } 1452 EXPORT_SYMBOL_GPL(skb_consume_udp); 1453 1454 static struct sk_buff *__first_packet_length(struct sock *sk, 1455 struct sk_buff_head *rcvq, 1456 int *total) 1457 { 1458 struct sk_buff *skb; 1459 1460 while ((skb = skb_peek(rcvq)) != NULL) { 1461 if (udp_lib_checksum_complete(skb)) { 1462 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, 1463 IS_UDPLITE(sk)); 1464 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, 1465 IS_UDPLITE(sk)); 1466 atomic_inc(&sk->sk_drops); 1467 __skb_unlink(skb, rcvq); 1468 *total += skb->truesize; 1469 kfree_skb(skb); 1470 } else { 1471 /* the csum related bits could be changed, refresh 1472 * the scratch area 1473 */ 1474 udp_set_dev_scratch(skb); 1475 break; 1476 } 1477 } 1478 return skb; 1479 } 1480 1481 /** 1482 * first_packet_length - return length of first packet in receive queue 1483 * @sk: socket 1484 * 1485 * Drops all bad checksum frames, until a valid one is found. 1486 * Returns the length of found skb, or -1 if none is found. 1487 */ 1488 static int first_packet_length(struct sock *sk) 1489 { 1490 struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue; 1491 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1492 struct sk_buff *skb; 1493 int total = 0; 1494 int res; 1495 1496 spin_lock_bh(&rcvq->lock); 1497 skb = __first_packet_length(sk, rcvq, &total); 1498 if (!skb && !skb_queue_empty(sk_queue)) { 1499 spin_lock(&sk_queue->lock); 1500 skb_queue_splice_tail_init(sk_queue, rcvq); 1501 spin_unlock(&sk_queue->lock); 1502 1503 skb = __first_packet_length(sk, rcvq, &total); 1504 } 1505 res = skb ? skb->len : -1; 1506 if (total) 1507 udp_rmem_release(sk, total, 1, false); 1508 spin_unlock_bh(&rcvq->lock); 1509 return res; 1510 } 1511 1512 /* 1513 * IOCTL requests applicable to the UDP protocol 1514 */ 1515 1516 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg) 1517 { 1518 switch (cmd) { 1519 case SIOCOUTQ: 1520 { 1521 int amount = sk_wmem_alloc_get(sk); 1522 1523 return put_user(amount, (int __user *)arg); 1524 } 1525 1526 case SIOCINQ: 1527 { 1528 int amount = max_t(int, 0, first_packet_length(sk)); 1529 1530 return put_user(amount, (int __user *)arg); 1531 } 1532 1533 default: 1534 return -ENOIOCTLCMD; 1535 } 1536 1537 return 0; 1538 } 1539 EXPORT_SYMBOL(udp_ioctl); 1540 1541 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags, 1542 int noblock, int *peeked, int *off, int *err) 1543 { 1544 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1545 struct sk_buff_head *queue; 1546 struct sk_buff *last; 1547 long timeo; 1548 int error; 1549 1550 queue = &udp_sk(sk)->reader_queue; 1551 flags |= noblock ? MSG_DONTWAIT : 0; 1552 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1553 do { 1554 struct sk_buff *skb; 1555 1556 error = sock_error(sk); 1557 if (error) 1558 break; 1559 1560 error = -EAGAIN; 1561 *peeked = 0; 1562 do { 1563 spin_lock_bh(&queue->lock); 1564 skb = __skb_try_recv_from_queue(sk, queue, flags, 1565 udp_skb_destructor, 1566 peeked, off, err, 1567 &last); 1568 if (skb) { 1569 spin_unlock_bh(&queue->lock); 1570 return skb; 1571 } 1572 1573 if (skb_queue_empty(sk_queue)) { 1574 spin_unlock_bh(&queue->lock); 1575 goto busy_check; 1576 } 1577 1578 /* refill the reader queue and walk it again 1579 * keep both queues locked to avoid re-acquiring 1580 * the sk_receive_queue lock if fwd memory scheduling 1581 * is needed. 1582 */ 1583 spin_lock(&sk_queue->lock); 1584 skb_queue_splice_tail_init(sk_queue, queue); 1585 1586 skb = __skb_try_recv_from_queue(sk, queue, flags, 1587 udp_skb_dtor_locked, 1588 peeked, off, err, 1589 &last); 1590 spin_unlock(&sk_queue->lock); 1591 spin_unlock_bh(&queue->lock); 1592 if (skb) 1593 return skb; 1594 1595 busy_check: 1596 if (!sk_can_busy_loop(sk)) 1597 break; 1598 1599 sk_busy_loop(sk, flags & MSG_DONTWAIT); 1600 } while (!skb_queue_empty(sk_queue)); 1601 1602 /* sk_queue is empty, reader_queue may contain peeked packets */ 1603 } while (timeo && 1604 !__skb_wait_for_more_packets(sk, &error, &timeo, 1605 (struct sk_buff *)sk_queue)); 1606 1607 *err = error; 1608 return NULL; 1609 } 1610 EXPORT_SYMBOL_GPL(__skb_recv_udp); 1611 1612 /* 1613 * This should be easy, if there is something there we 1614 * return it, otherwise we block. 1615 */ 1616 1617 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock, 1618 int flags, int *addr_len) 1619 { 1620 struct inet_sock *inet = inet_sk(sk); 1621 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name); 1622 struct sk_buff *skb; 1623 unsigned int ulen, copied; 1624 int peeked, peeking, off; 1625 int err; 1626 int is_udplite = IS_UDPLITE(sk); 1627 bool checksum_valid = false; 1628 1629 if (flags & MSG_ERRQUEUE) 1630 return ip_recv_error(sk, msg, len, addr_len); 1631 1632 try_again: 1633 peeking = flags & MSG_PEEK; 1634 off = sk_peek_offset(sk, flags); 1635 skb = __skb_recv_udp(sk, flags, noblock, &peeked, &off, &err); 1636 if (!skb) 1637 return err; 1638 1639 ulen = udp_skb_len(skb); 1640 copied = len; 1641 if (copied > ulen - off) 1642 copied = ulen - off; 1643 else if (copied < ulen) 1644 msg->msg_flags |= MSG_TRUNC; 1645 1646 /* 1647 * If checksum is needed at all, try to do it while copying the 1648 * data. If the data is truncated, or if we only want a partial 1649 * coverage checksum (UDP-Lite), do it before the copy. 1650 */ 1651 1652 if (copied < ulen || peeking || 1653 (is_udplite && UDP_SKB_CB(skb)->partial_cov)) { 1654 checksum_valid = udp_skb_csum_unnecessary(skb) || 1655 !__udp_lib_checksum_complete(skb); 1656 if (!checksum_valid) 1657 goto csum_copy_err; 1658 } 1659 1660 if (checksum_valid || udp_skb_csum_unnecessary(skb)) { 1661 if (udp_skb_is_linear(skb)) 1662 err = copy_linear_skb(skb, copied, off, &msg->msg_iter); 1663 else 1664 err = skb_copy_datagram_msg(skb, off, msg, copied); 1665 } else { 1666 err = skb_copy_and_csum_datagram_msg(skb, off, msg); 1667 1668 if (err == -EINVAL) 1669 goto csum_copy_err; 1670 } 1671 1672 if (unlikely(err)) { 1673 if (!peeked) { 1674 atomic_inc(&sk->sk_drops); 1675 UDP_INC_STATS(sock_net(sk), 1676 UDP_MIB_INERRORS, is_udplite); 1677 } 1678 kfree_skb(skb); 1679 return err; 1680 } 1681 1682 if (!peeked) 1683 UDP_INC_STATS(sock_net(sk), 1684 UDP_MIB_INDATAGRAMS, is_udplite); 1685 1686 sock_recv_ts_and_drops(msg, sk, skb); 1687 1688 /* Copy the address. */ 1689 if (sin) { 1690 sin->sin_family = AF_INET; 1691 sin->sin_port = udp_hdr(skb)->source; 1692 sin->sin_addr.s_addr = ip_hdr(skb)->saddr; 1693 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 1694 *addr_len = sizeof(*sin); 1695 } 1696 if (inet->cmsg_flags) 1697 ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off); 1698 1699 err = copied; 1700 if (flags & MSG_TRUNC) 1701 err = ulen; 1702 1703 skb_consume_udp(sk, skb, peeking ? -err : err); 1704 return err; 1705 1706 csum_copy_err: 1707 if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags, 1708 udp_skb_destructor)) { 1709 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 1710 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1711 } 1712 kfree_skb(skb); 1713 1714 /* starting over for a new packet, but check if we need to yield */ 1715 cond_resched(); 1716 msg->msg_flags &= ~MSG_TRUNC; 1717 goto try_again; 1718 } 1719 1720 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 1721 { 1722 /* This check is replicated from __ip4_datagram_connect() and 1723 * intended to prevent BPF program called below from accessing bytes 1724 * that are out of the bound specified by user in addr_len. 1725 */ 1726 if (addr_len < sizeof(struct sockaddr_in)) 1727 return -EINVAL; 1728 1729 return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr); 1730 } 1731 EXPORT_SYMBOL(udp_pre_connect); 1732 1733 int __udp_disconnect(struct sock *sk, int flags) 1734 { 1735 struct inet_sock *inet = inet_sk(sk); 1736 /* 1737 * 1003.1g - break association. 1738 */ 1739 1740 sk->sk_state = TCP_CLOSE; 1741 inet->inet_daddr = 0; 1742 inet->inet_dport = 0; 1743 sock_rps_reset_rxhash(sk); 1744 sk->sk_bound_dev_if = 0; 1745 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 1746 inet_reset_saddr(sk); 1747 1748 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) { 1749 sk->sk_prot->unhash(sk); 1750 inet->inet_sport = 0; 1751 } 1752 sk_dst_reset(sk); 1753 return 0; 1754 } 1755 EXPORT_SYMBOL(__udp_disconnect); 1756 1757 int udp_disconnect(struct sock *sk, int flags) 1758 { 1759 lock_sock(sk); 1760 __udp_disconnect(sk, flags); 1761 release_sock(sk); 1762 return 0; 1763 } 1764 EXPORT_SYMBOL(udp_disconnect); 1765 1766 void udp_lib_unhash(struct sock *sk) 1767 { 1768 if (sk_hashed(sk)) { 1769 struct udp_table *udptable = sk->sk_prot->h.udp_table; 1770 struct udp_hslot *hslot, *hslot2; 1771 1772 hslot = udp_hashslot(udptable, sock_net(sk), 1773 udp_sk(sk)->udp_port_hash); 1774 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1775 1776 spin_lock_bh(&hslot->lock); 1777 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1778 reuseport_detach_sock(sk); 1779 if (sk_del_node_init_rcu(sk)) { 1780 hslot->count--; 1781 inet_sk(sk)->inet_num = 0; 1782 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 1783 1784 spin_lock(&hslot2->lock); 1785 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 1786 hslot2->count--; 1787 spin_unlock(&hslot2->lock); 1788 } 1789 spin_unlock_bh(&hslot->lock); 1790 } 1791 } 1792 EXPORT_SYMBOL(udp_lib_unhash); 1793 1794 /* 1795 * inet_rcv_saddr was changed, we must rehash secondary hash 1796 */ 1797 void udp_lib_rehash(struct sock *sk, u16 newhash) 1798 { 1799 if (sk_hashed(sk)) { 1800 struct udp_table *udptable = sk->sk_prot->h.udp_table; 1801 struct udp_hslot *hslot, *hslot2, *nhslot2; 1802 1803 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1804 nhslot2 = udp_hashslot2(udptable, newhash); 1805 udp_sk(sk)->udp_portaddr_hash = newhash; 1806 1807 if (hslot2 != nhslot2 || 1808 rcu_access_pointer(sk->sk_reuseport_cb)) { 1809 hslot = udp_hashslot(udptable, sock_net(sk), 1810 udp_sk(sk)->udp_port_hash); 1811 /* we must lock primary chain too */ 1812 spin_lock_bh(&hslot->lock); 1813 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1814 reuseport_detach_sock(sk); 1815 1816 if (hslot2 != nhslot2) { 1817 spin_lock(&hslot2->lock); 1818 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 1819 hslot2->count--; 1820 spin_unlock(&hslot2->lock); 1821 1822 spin_lock(&nhslot2->lock); 1823 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 1824 &nhslot2->head); 1825 nhslot2->count++; 1826 spin_unlock(&nhslot2->lock); 1827 } 1828 1829 spin_unlock_bh(&hslot->lock); 1830 } 1831 } 1832 } 1833 EXPORT_SYMBOL(udp_lib_rehash); 1834 1835 static void udp_v4_rehash(struct sock *sk) 1836 { 1837 u16 new_hash = ipv4_portaddr_hash(sock_net(sk), 1838 inet_sk(sk)->inet_rcv_saddr, 1839 inet_sk(sk)->inet_num); 1840 udp_lib_rehash(sk, new_hash); 1841 } 1842 1843 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 1844 { 1845 int rc; 1846 1847 if (inet_sk(sk)->inet_daddr) { 1848 sock_rps_save_rxhash(sk, skb); 1849 sk_mark_napi_id(sk, skb); 1850 sk_incoming_cpu_update(sk); 1851 } else { 1852 sk_mark_napi_id_once(sk, skb); 1853 } 1854 1855 rc = __udp_enqueue_schedule_skb(sk, skb); 1856 if (rc < 0) { 1857 int is_udplite = IS_UDPLITE(sk); 1858 1859 /* Note that an ENOMEM error is charged twice */ 1860 if (rc == -ENOMEM) 1861 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS, 1862 is_udplite); 1863 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1864 kfree_skb(skb); 1865 trace_udp_fail_queue_rcv_skb(rc, sk); 1866 return -1; 1867 } 1868 1869 return 0; 1870 } 1871 1872 static struct static_key udp_encap_needed __read_mostly; 1873 void udp_encap_enable(void) 1874 { 1875 static_key_enable(&udp_encap_needed); 1876 } 1877 EXPORT_SYMBOL(udp_encap_enable); 1878 1879 /* returns: 1880 * -1: error 1881 * 0: success 1882 * >0: "udp encap" protocol resubmission 1883 * 1884 * Note that in the success and error cases, the skb is assumed to 1885 * have either been requeued or freed. 1886 */ 1887 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 1888 { 1889 struct udp_sock *up = udp_sk(sk); 1890 int is_udplite = IS_UDPLITE(sk); 1891 1892 /* 1893 * Charge it to the socket, dropping if the queue is full. 1894 */ 1895 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) 1896 goto drop; 1897 nf_reset(skb); 1898 1899 if (static_key_false(&udp_encap_needed) && up->encap_type) { 1900 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb); 1901 1902 /* 1903 * This is an encapsulation socket so pass the skb to 1904 * the socket's udp_encap_rcv() hook. Otherwise, just 1905 * fall through and pass this up the UDP socket. 1906 * up->encap_rcv() returns the following value: 1907 * =0 if skb was successfully passed to the encap 1908 * handler or was discarded by it. 1909 * >0 if skb should be passed on to UDP. 1910 * <0 if skb should be resubmitted as proto -N 1911 */ 1912 1913 /* if we're overly short, let UDP handle it */ 1914 encap_rcv = READ_ONCE(up->encap_rcv); 1915 if (encap_rcv) { 1916 int ret; 1917 1918 /* Verify checksum before giving to encap */ 1919 if (udp_lib_checksum_complete(skb)) 1920 goto csum_error; 1921 1922 ret = encap_rcv(sk, skb); 1923 if (ret <= 0) { 1924 __UDP_INC_STATS(sock_net(sk), 1925 UDP_MIB_INDATAGRAMS, 1926 is_udplite); 1927 return -ret; 1928 } 1929 } 1930 1931 /* FALLTHROUGH -- it's a UDP Packet */ 1932 } 1933 1934 /* 1935 * UDP-Lite specific tests, ignored on UDP sockets 1936 */ 1937 if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) { 1938 1939 /* 1940 * MIB statistics other than incrementing the error count are 1941 * disabled for the following two types of errors: these depend 1942 * on the application settings, not on the functioning of the 1943 * protocol stack as such. 1944 * 1945 * RFC 3828 here recommends (sec 3.3): "There should also be a 1946 * way ... to ... at least let the receiving application block 1947 * delivery of packets with coverage values less than a value 1948 * provided by the application." 1949 */ 1950 if (up->pcrlen == 0) { /* full coverage was set */ 1951 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n", 1952 UDP_SKB_CB(skb)->cscov, skb->len); 1953 goto drop; 1954 } 1955 /* The next case involves violating the min. coverage requested 1956 * by the receiver. This is subtle: if receiver wants x and x is 1957 * greater than the buffersize/MTU then receiver will complain 1958 * that it wants x while sender emits packets of smaller size y. 1959 * Therefore the above ...()->partial_cov statement is essential. 1960 */ 1961 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) { 1962 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n", 1963 UDP_SKB_CB(skb)->cscov, up->pcrlen); 1964 goto drop; 1965 } 1966 } 1967 1968 prefetch(&sk->sk_rmem_alloc); 1969 if (rcu_access_pointer(sk->sk_filter) && 1970 udp_lib_checksum_complete(skb)) 1971 goto csum_error; 1972 1973 if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) 1974 goto drop; 1975 1976 udp_csum_pull_header(skb); 1977 1978 ipv4_pktinfo_prepare(sk, skb); 1979 return __udp_queue_rcv_skb(sk, skb); 1980 1981 csum_error: 1982 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 1983 drop: 1984 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1985 atomic_inc(&sk->sk_drops); 1986 kfree_skb(skb); 1987 return -1; 1988 } 1989 1990 /* For TCP sockets, sk_rx_dst is protected by socket lock 1991 * For UDP, we use xchg() to guard against concurrent changes. 1992 */ 1993 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst) 1994 { 1995 struct dst_entry *old; 1996 1997 if (dst_hold_safe(dst)) { 1998 old = xchg(&sk->sk_rx_dst, dst); 1999 dst_release(old); 2000 return old != dst; 2001 } 2002 return false; 2003 } 2004 EXPORT_SYMBOL(udp_sk_rx_dst_set); 2005 2006 /* 2007 * Multicasts and broadcasts go to each listener. 2008 * 2009 * Note: called only from the BH handler context. 2010 */ 2011 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb, 2012 struct udphdr *uh, 2013 __be32 saddr, __be32 daddr, 2014 struct udp_table *udptable, 2015 int proto) 2016 { 2017 struct sock *sk, *first = NULL; 2018 unsigned short hnum = ntohs(uh->dest); 2019 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum); 2020 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10); 2021 unsigned int offset = offsetof(typeof(*sk), sk_node); 2022 int dif = skb->dev->ifindex; 2023 int sdif = inet_sdif(skb); 2024 struct hlist_node *node; 2025 struct sk_buff *nskb; 2026 2027 if (use_hash2) { 2028 hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) & 2029 udptable->mask; 2030 hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask; 2031 start_lookup: 2032 hslot = &udptable->hash2[hash2]; 2033 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node); 2034 } 2035 2036 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) { 2037 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr, 2038 uh->source, saddr, dif, sdif, hnum)) 2039 continue; 2040 2041 if (!first) { 2042 first = sk; 2043 continue; 2044 } 2045 nskb = skb_clone(skb, GFP_ATOMIC); 2046 2047 if (unlikely(!nskb)) { 2048 atomic_inc(&sk->sk_drops); 2049 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS, 2050 IS_UDPLITE(sk)); 2051 __UDP_INC_STATS(net, UDP_MIB_INERRORS, 2052 IS_UDPLITE(sk)); 2053 continue; 2054 } 2055 if (udp_queue_rcv_skb(sk, nskb) > 0) 2056 consume_skb(nskb); 2057 } 2058 2059 /* Also lookup *:port if we are using hash2 and haven't done so yet. */ 2060 if (use_hash2 && hash2 != hash2_any) { 2061 hash2 = hash2_any; 2062 goto start_lookup; 2063 } 2064 2065 if (first) { 2066 if (udp_queue_rcv_skb(first, skb) > 0) 2067 consume_skb(skb); 2068 } else { 2069 kfree_skb(skb); 2070 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI, 2071 proto == IPPROTO_UDPLITE); 2072 } 2073 return 0; 2074 } 2075 2076 /* Initialize UDP checksum. If exited with zero value (success), 2077 * CHECKSUM_UNNECESSARY means, that no more checks are required. 2078 * Otherwise, csum completion requires chacksumming packet body, 2079 * including udp header and folding it to skb->csum. 2080 */ 2081 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh, 2082 int proto) 2083 { 2084 int err; 2085 2086 UDP_SKB_CB(skb)->partial_cov = 0; 2087 UDP_SKB_CB(skb)->cscov = skb->len; 2088 2089 if (proto == IPPROTO_UDPLITE) { 2090 err = udplite_checksum_init(skb, uh); 2091 if (err) 2092 return err; 2093 2094 if (UDP_SKB_CB(skb)->partial_cov) { 2095 skb->csum = inet_compute_pseudo(skb, proto); 2096 return 0; 2097 } 2098 } 2099 2100 /* Note, we are only interested in != 0 or == 0, thus the 2101 * force to int. 2102 */ 2103 return (__force int)skb_checksum_init_zero_check(skb, proto, uh->check, 2104 inet_compute_pseudo); 2105 } 2106 2107 /* 2108 * All we need to do is get the socket, and then do a checksum. 2109 */ 2110 2111 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable, 2112 int proto) 2113 { 2114 struct sock *sk; 2115 struct udphdr *uh; 2116 unsigned short ulen; 2117 struct rtable *rt = skb_rtable(skb); 2118 __be32 saddr, daddr; 2119 struct net *net = dev_net(skb->dev); 2120 2121 /* 2122 * Validate the packet. 2123 */ 2124 if (!pskb_may_pull(skb, sizeof(struct udphdr))) 2125 goto drop; /* No space for header. */ 2126 2127 uh = udp_hdr(skb); 2128 ulen = ntohs(uh->len); 2129 saddr = ip_hdr(skb)->saddr; 2130 daddr = ip_hdr(skb)->daddr; 2131 2132 if (ulen > skb->len) 2133 goto short_packet; 2134 2135 if (proto == IPPROTO_UDP) { 2136 /* UDP validates ulen. */ 2137 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen)) 2138 goto short_packet; 2139 uh = udp_hdr(skb); 2140 } 2141 2142 if (udp4_csum_init(skb, uh, proto)) 2143 goto csum_error; 2144 2145 sk = skb_steal_sock(skb); 2146 if (sk) { 2147 struct dst_entry *dst = skb_dst(skb); 2148 int ret; 2149 2150 if (unlikely(sk->sk_rx_dst != dst)) 2151 udp_sk_rx_dst_set(sk, dst); 2152 2153 ret = udp_queue_rcv_skb(sk, skb); 2154 sock_put(sk); 2155 /* a return value > 0 means to resubmit the input, but 2156 * it wants the return to be -protocol, or 0 2157 */ 2158 if (ret > 0) 2159 return -ret; 2160 return 0; 2161 } 2162 2163 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST)) 2164 return __udp4_lib_mcast_deliver(net, skb, uh, 2165 saddr, daddr, udptable, proto); 2166 2167 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable); 2168 if (sk) { 2169 int ret; 2170 2171 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk)) 2172 skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check, 2173 inet_compute_pseudo); 2174 2175 ret = udp_queue_rcv_skb(sk, skb); 2176 2177 /* a return value > 0 means to resubmit the input, but 2178 * it wants the return to be -protocol, or 0 2179 */ 2180 if (ret > 0) 2181 return -ret; 2182 return 0; 2183 } 2184 2185 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 2186 goto drop; 2187 nf_reset(skb); 2188 2189 /* No socket. Drop packet silently, if checksum is wrong */ 2190 if (udp_lib_checksum_complete(skb)) 2191 goto csum_error; 2192 2193 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE); 2194 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0); 2195 2196 /* 2197 * Hmm. We got an UDP packet to a port to which we 2198 * don't wanna listen. Ignore it. 2199 */ 2200 kfree_skb(skb); 2201 return 0; 2202 2203 short_packet: 2204 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n", 2205 proto == IPPROTO_UDPLITE ? "Lite" : "", 2206 &saddr, ntohs(uh->source), 2207 ulen, skb->len, 2208 &daddr, ntohs(uh->dest)); 2209 goto drop; 2210 2211 csum_error: 2212 /* 2213 * RFC1122: OK. Discards the bad packet silently (as far as 2214 * the network is concerned, anyway) as per 4.1.3.4 (MUST). 2215 */ 2216 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n", 2217 proto == IPPROTO_UDPLITE ? "Lite" : "", 2218 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest), 2219 ulen); 2220 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE); 2221 drop: 2222 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE); 2223 kfree_skb(skb); 2224 return 0; 2225 } 2226 2227 /* We can only early demux multicast if there is a single matching socket. 2228 * If more than one socket found returns NULL 2229 */ 2230 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net, 2231 __be16 loc_port, __be32 loc_addr, 2232 __be16 rmt_port, __be32 rmt_addr, 2233 int dif, int sdif) 2234 { 2235 struct sock *sk, *result; 2236 unsigned short hnum = ntohs(loc_port); 2237 unsigned int slot = udp_hashfn(net, hnum, udp_table.mask); 2238 struct udp_hslot *hslot = &udp_table.hash[slot]; 2239 2240 /* Do not bother scanning a too big list */ 2241 if (hslot->count > 10) 2242 return NULL; 2243 2244 result = NULL; 2245 sk_for_each_rcu(sk, &hslot->head) { 2246 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr, 2247 rmt_port, rmt_addr, dif, sdif, hnum)) { 2248 if (result) 2249 return NULL; 2250 result = sk; 2251 } 2252 } 2253 2254 return result; 2255 } 2256 2257 /* For unicast we should only early demux connected sockets or we can 2258 * break forwarding setups. The chains here can be long so only check 2259 * if the first socket is an exact match and if not move on. 2260 */ 2261 static struct sock *__udp4_lib_demux_lookup(struct net *net, 2262 __be16 loc_port, __be32 loc_addr, 2263 __be16 rmt_port, __be32 rmt_addr, 2264 int dif, int sdif) 2265 { 2266 unsigned short hnum = ntohs(loc_port); 2267 unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum); 2268 unsigned int slot2 = hash2 & udp_table.mask; 2269 struct udp_hslot *hslot2 = &udp_table.hash2[slot2]; 2270 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr); 2271 const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum); 2272 struct sock *sk; 2273 2274 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 2275 if (INET_MATCH(sk, net, acookie, rmt_addr, 2276 loc_addr, ports, dif, sdif)) 2277 return sk; 2278 /* Only check first socket in chain */ 2279 break; 2280 } 2281 return NULL; 2282 } 2283 2284 int udp_v4_early_demux(struct sk_buff *skb) 2285 { 2286 struct net *net = dev_net(skb->dev); 2287 struct in_device *in_dev = NULL; 2288 const struct iphdr *iph; 2289 const struct udphdr *uh; 2290 struct sock *sk = NULL; 2291 struct dst_entry *dst; 2292 int dif = skb->dev->ifindex; 2293 int sdif = inet_sdif(skb); 2294 int ours; 2295 2296 /* validate the packet */ 2297 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr))) 2298 return 0; 2299 2300 iph = ip_hdr(skb); 2301 uh = udp_hdr(skb); 2302 2303 if (skb->pkt_type == PACKET_MULTICAST) { 2304 in_dev = __in_dev_get_rcu(skb->dev); 2305 2306 if (!in_dev) 2307 return 0; 2308 2309 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr, 2310 iph->protocol); 2311 if (!ours) 2312 return 0; 2313 2314 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr, 2315 uh->source, iph->saddr, 2316 dif, sdif); 2317 } else if (skb->pkt_type == PACKET_HOST) { 2318 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr, 2319 uh->source, iph->saddr, dif, sdif); 2320 } 2321 2322 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 2323 return 0; 2324 2325 skb->sk = sk; 2326 skb->destructor = sock_efree; 2327 dst = READ_ONCE(sk->sk_rx_dst); 2328 2329 if (dst) 2330 dst = dst_check(dst, 0); 2331 if (dst) { 2332 u32 itag = 0; 2333 2334 /* set noref for now. 2335 * any place which wants to hold dst has to call 2336 * dst_hold_safe() 2337 */ 2338 skb_dst_set_noref(skb, dst); 2339 2340 /* for unconnected multicast sockets we need to validate 2341 * the source on each packet 2342 */ 2343 if (!inet_sk(sk)->inet_daddr && in_dev) 2344 return ip_mc_validate_source(skb, iph->daddr, 2345 iph->saddr, iph->tos, 2346 skb->dev, in_dev, &itag); 2347 } 2348 return 0; 2349 } 2350 2351 int udp_rcv(struct sk_buff *skb) 2352 { 2353 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP); 2354 } 2355 2356 void udp_destroy_sock(struct sock *sk) 2357 { 2358 struct udp_sock *up = udp_sk(sk); 2359 bool slow = lock_sock_fast(sk); 2360 udp_flush_pending_frames(sk); 2361 unlock_sock_fast(sk, slow); 2362 if (static_key_false(&udp_encap_needed) && up->encap_type) { 2363 void (*encap_destroy)(struct sock *sk); 2364 encap_destroy = READ_ONCE(up->encap_destroy); 2365 if (encap_destroy) 2366 encap_destroy(sk); 2367 } 2368 } 2369 2370 /* 2371 * Socket option code for UDP 2372 */ 2373 int udp_lib_setsockopt(struct sock *sk, int level, int optname, 2374 char __user *optval, unsigned int optlen, 2375 int (*push_pending_frames)(struct sock *)) 2376 { 2377 struct udp_sock *up = udp_sk(sk); 2378 int val, valbool; 2379 int err = 0; 2380 int is_udplite = IS_UDPLITE(sk); 2381 2382 if (optlen < sizeof(int)) 2383 return -EINVAL; 2384 2385 if (get_user(val, (int __user *)optval)) 2386 return -EFAULT; 2387 2388 valbool = val ? 1 : 0; 2389 2390 switch (optname) { 2391 case UDP_CORK: 2392 if (val != 0) { 2393 up->corkflag = 1; 2394 } else { 2395 up->corkflag = 0; 2396 lock_sock(sk); 2397 push_pending_frames(sk); 2398 release_sock(sk); 2399 } 2400 break; 2401 2402 case UDP_ENCAP: 2403 switch (val) { 2404 case 0: 2405 case UDP_ENCAP_ESPINUDP: 2406 case UDP_ENCAP_ESPINUDP_NON_IKE: 2407 up->encap_rcv = xfrm4_udp_encap_rcv; 2408 /* FALLTHROUGH */ 2409 case UDP_ENCAP_L2TPINUDP: 2410 up->encap_type = val; 2411 udp_encap_enable(); 2412 break; 2413 default: 2414 err = -ENOPROTOOPT; 2415 break; 2416 } 2417 break; 2418 2419 case UDP_NO_CHECK6_TX: 2420 up->no_check6_tx = valbool; 2421 break; 2422 2423 case UDP_NO_CHECK6_RX: 2424 up->no_check6_rx = valbool; 2425 break; 2426 2427 case UDP_SEGMENT: 2428 if (val < 0 || val > USHRT_MAX) 2429 return -EINVAL; 2430 up->gso_size = val; 2431 break; 2432 2433 /* 2434 * UDP-Lite's partial checksum coverage (RFC 3828). 2435 */ 2436 /* The sender sets actual checksum coverage length via this option. 2437 * The case coverage > packet length is handled by send module. */ 2438 case UDPLITE_SEND_CSCOV: 2439 if (!is_udplite) /* Disable the option on UDP sockets */ 2440 return -ENOPROTOOPT; 2441 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */ 2442 val = 8; 2443 else if (val > USHRT_MAX) 2444 val = USHRT_MAX; 2445 up->pcslen = val; 2446 up->pcflag |= UDPLITE_SEND_CC; 2447 break; 2448 2449 /* The receiver specifies a minimum checksum coverage value. To make 2450 * sense, this should be set to at least 8 (as done below). If zero is 2451 * used, this again means full checksum coverage. */ 2452 case UDPLITE_RECV_CSCOV: 2453 if (!is_udplite) /* Disable the option on UDP sockets */ 2454 return -ENOPROTOOPT; 2455 if (val != 0 && val < 8) /* Avoid silly minimal values. */ 2456 val = 8; 2457 else if (val > USHRT_MAX) 2458 val = USHRT_MAX; 2459 up->pcrlen = val; 2460 up->pcflag |= UDPLITE_RECV_CC; 2461 break; 2462 2463 default: 2464 err = -ENOPROTOOPT; 2465 break; 2466 } 2467 2468 return err; 2469 } 2470 EXPORT_SYMBOL(udp_lib_setsockopt); 2471 2472 int udp_setsockopt(struct sock *sk, int level, int optname, 2473 char __user *optval, unsigned int optlen) 2474 { 2475 if (level == SOL_UDP || level == SOL_UDPLITE) 2476 return udp_lib_setsockopt(sk, level, optname, optval, optlen, 2477 udp_push_pending_frames); 2478 return ip_setsockopt(sk, level, optname, optval, optlen); 2479 } 2480 2481 #ifdef CONFIG_COMPAT 2482 int compat_udp_setsockopt(struct sock *sk, int level, int optname, 2483 char __user *optval, unsigned int optlen) 2484 { 2485 if (level == SOL_UDP || level == SOL_UDPLITE) 2486 return udp_lib_setsockopt(sk, level, optname, optval, optlen, 2487 udp_push_pending_frames); 2488 return compat_ip_setsockopt(sk, level, optname, optval, optlen); 2489 } 2490 #endif 2491 2492 int udp_lib_getsockopt(struct sock *sk, int level, int optname, 2493 char __user *optval, int __user *optlen) 2494 { 2495 struct udp_sock *up = udp_sk(sk); 2496 int val, len; 2497 2498 if (get_user(len, optlen)) 2499 return -EFAULT; 2500 2501 len = min_t(unsigned int, len, sizeof(int)); 2502 2503 if (len < 0) 2504 return -EINVAL; 2505 2506 switch (optname) { 2507 case UDP_CORK: 2508 val = up->corkflag; 2509 break; 2510 2511 case UDP_ENCAP: 2512 val = up->encap_type; 2513 break; 2514 2515 case UDP_NO_CHECK6_TX: 2516 val = up->no_check6_tx; 2517 break; 2518 2519 case UDP_NO_CHECK6_RX: 2520 val = up->no_check6_rx; 2521 break; 2522 2523 case UDP_SEGMENT: 2524 val = up->gso_size; 2525 break; 2526 2527 /* The following two cannot be changed on UDP sockets, the return is 2528 * always 0 (which corresponds to the full checksum coverage of UDP). */ 2529 case UDPLITE_SEND_CSCOV: 2530 val = up->pcslen; 2531 break; 2532 2533 case UDPLITE_RECV_CSCOV: 2534 val = up->pcrlen; 2535 break; 2536 2537 default: 2538 return -ENOPROTOOPT; 2539 } 2540 2541 if (put_user(len, optlen)) 2542 return -EFAULT; 2543 if (copy_to_user(optval, &val, len)) 2544 return -EFAULT; 2545 return 0; 2546 } 2547 EXPORT_SYMBOL(udp_lib_getsockopt); 2548 2549 int udp_getsockopt(struct sock *sk, int level, int optname, 2550 char __user *optval, int __user *optlen) 2551 { 2552 if (level == SOL_UDP || level == SOL_UDPLITE) 2553 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 2554 return ip_getsockopt(sk, level, optname, optval, optlen); 2555 } 2556 2557 #ifdef CONFIG_COMPAT 2558 int compat_udp_getsockopt(struct sock *sk, int level, int optname, 2559 char __user *optval, int __user *optlen) 2560 { 2561 if (level == SOL_UDP || level == SOL_UDPLITE) 2562 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 2563 return compat_ip_getsockopt(sk, level, optname, optval, optlen); 2564 } 2565 #endif 2566 /** 2567 * udp_poll - wait for a UDP event. 2568 * @file - file struct 2569 * @sock - socket 2570 * @wait - poll table 2571 * 2572 * This is same as datagram poll, except for the special case of 2573 * blocking sockets. If application is using a blocking fd 2574 * and a packet with checksum error is in the queue; 2575 * then it could get return from select indicating data available 2576 * but then block when reading it. Add special case code 2577 * to work around these arguably broken applications. 2578 */ 2579 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait) 2580 { 2581 __poll_t mask = datagram_poll(file, sock, wait); 2582 struct sock *sk = sock->sk; 2583 2584 if (!skb_queue_empty(&udp_sk(sk)->reader_queue)) 2585 mask |= EPOLLIN | EPOLLRDNORM; 2586 2587 /* Check for false positives due to checksum errors */ 2588 if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) && 2589 !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1) 2590 mask &= ~(EPOLLIN | EPOLLRDNORM); 2591 2592 return mask; 2593 2594 } 2595 EXPORT_SYMBOL(udp_poll); 2596 2597 int udp_abort(struct sock *sk, int err) 2598 { 2599 lock_sock(sk); 2600 2601 sk->sk_err = err; 2602 sk->sk_error_report(sk); 2603 __udp_disconnect(sk, 0); 2604 2605 release_sock(sk); 2606 2607 return 0; 2608 } 2609 EXPORT_SYMBOL_GPL(udp_abort); 2610 2611 struct proto udp_prot = { 2612 .name = "UDP", 2613 .owner = THIS_MODULE, 2614 .close = udp_lib_close, 2615 .pre_connect = udp_pre_connect, 2616 .connect = ip4_datagram_connect, 2617 .disconnect = udp_disconnect, 2618 .ioctl = udp_ioctl, 2619 .init = udp_init_sock, 2620 .destroy = udp_destroy_sock, 2621 .setsockopt = udp_setsockopt, 2622 .getsockopt = udp_getsockopt, 2623 .sendmsg = udp_sendmsg, 2624 .recvmsg = udp_recvmsg, 2625 .sendpage = udp_sendpage, 2626 .release_cb = ip4_datagram_release_cb, 2627 .hash = udp_lib_hash, 2628 .unhash = udp_lib_unhash, 2629 .rehash = udp_v4_rehash, 2630 .get_port = udp_v4_get_port, 2631 .memory_allocated = &udp_memory_allocated, 2632 .sysctl_mem = sysctl_udp_mem, 2633 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_udp_wmem_min), 2634 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_udp_rmem_min), 2635 .obj_size = sizeof(struct udp_sock), 2636 .h.udp_table = &udp_table, 2637 #ifdef CONFIG_COMPAT 2638 .compat_setsockopt = compat_udp_setsockopt, 2639 .compat_getsockopt = compat_udp_getsockopt, 2640 #endif 2641 .diag_destroy = udp_abort, 2642 }; 2643 EXPORT_SYMBOL(udp_prot); 2644 2645 /* ------------------------------------------------------------------------ */ 2646 #ifdef CONFIG_PROC_FS 2647 2648 static struct sock *udp_get_first(struct seq_file *seq, int start) 2649 { 2650 struct sock *sk; 2651 struct udp_iter_state *state = seq->private; 2652 struct net *net = seq_file_net(seq); 2653 2654 for (state->bucket = start; state->bucket <= state->udp_table->mask; 2655 ++state->bucket) { 2656 struct udp_hslot *hslot = &state->udp_table->hash[state->bucket]; 2657 2658 if (hlist_empty(&hslot->head)) 2659 continue; 2660 2661 spin_lock_bh(&hslot->lock); 2662 sk_for_each(sk, &hslot->head) { 2663 if (!net_eq(sock_net(sk), net)) 2664 continue; 2665 if (sk->sk_family == state->family) 2666 goto found; 2667 } 2668 spin_unlock_bh(&hslot->lock); 2669 } 2670 sk = NULL; 2671 found: 2672 return sk; 2673 } 2674 2675 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk) 2676 { 2677 struct udp_iter_state *state = seq->private; 2678 struct net *net = seq_file_net(seq); 2679 2680 do { 2681 sk = sk_next(sk); 2682 } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family)); 2683 2684 if (!sk) { 2685 if (state->bucket <= state->udp_table->mask) 2686 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock); 2687 return udp_get_first(seq, state->bucket + 1); 2688 } 2689 return sk; 2690 } 2691 2692 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos) 2693 { 2694 struct sock *sk = udp_get_first(seq, 0); 2695 2696 if (sk) 2697 while (pos && (sk = udp_get_next(seq, sk)) != NULL) 2698 --pos; 2699 return pos ? NULL : sk; 2700 } 2701 2702 static void *udp_seq_start(struct seq_file *seq, loff_t *pos) 2703 { 2704 struct udp_iter_state *state = seq->private; 2705 state->bucket = MAX_UDP_PORTS; 2706 2707 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN; 2708 } 2709 2710 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2711 { 2712 struct sock *sk; 2713 2714 if (v == SEQ_START_TOKEN) 2715 sk = udp_get_idx(seq, 0); 2716 else 2717 sk = udp_get_next(seq, v); 2718 2719 ++*pos; 2720 return sk; 2721 } 2722 2723 static void udp_seq_stop(struct seq_file *seq, void *v) 2724 { 2725 struct udp_iter_state *state = seq->private; 2726 2727 if (state->bucket <= state->udp_table->mask) 2728 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock); 2729 } 2730 2731 int udp_seq_open(struct inode *inode, struct file *file) 2732 { 2733 struct udp_seq_afinfo *afinfo = PDE_DATA(inode); 2734 struct udp_iter_state *s; 2735 int err; 2736 2737 err = seq_open_net(inode, file, &afinfo->seq_ops, 2738 sizeof(struct udp_iter_state)); 2739 if (err < 0) 2740 return err; 2741 2742 s = ((struct seq_file *)file->private_data)->private; 2743 s->family = afinfo->family; 2744 s->udp_table = afinfo->udp_table; 2745 return err; 2746 } 2747 EXPORT_SYMBOL(udp_seq_open); 2748 2749 /* ------------------------------------------------------------------------ */ 2750 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo) 2751 { 2752 struct proc_dir_entry *p; 2753 int rc = 0; 2754 2755 afinfo->seq_ops.start = udp_seq_start; 2756 afinfo->seq_ops.next = udp_seq_next; 2757 afinfo->seq_ops.stop = udp_seq_stop; 2758 2759 p = proc_create_data(afinfo->name, 0444, net->proc_net, 2760 afinfo->seq_fops, afinfo); 2761 if (!p) 2762 rc = -ENOMEM; 2763 return rc; 2764 } 2765 EXPORT_SYMBOL(udp_proc_register); 2766 2767 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo) 2768 { 2769 remove_proc_entry(afinfo->name, net->proc_net); 2770 } 2771 EXPORT_SYMBOL(udp_proc_unregister); 2772 2773 /* ------------------------------------------------------------------------ */ 2774 static void udp4_format_sock(struct sock *sp, struct seq_file *f, 2775 int bucket) 2776 { 2777 struct inet_sock *inet = inet_sk(sp); 2778 __be32 dest = inet->inet_daddr; 2779 __be32 src = inet->inet_rcv_saddr; 2780 __u16 destp = ntohs(inet->inet_dport); 2781 __u16 srcp = ntohs(inet->inet_sport); 2782 2783 seq_printf(f, "%5d: %08X:%04X %08X:%04X" 2784 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d", 2785 bucket, src, srcp, dest, destp, sp->sk_state, 2786 sk_wmem_alloc_get(sp), 2787 sk_rmem_alloc_get(sp), 2788 0, 0L, 0, 2789 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)), 2790 0, sock_i_ino(sp), 2791 refcount_read(&sp->sk_refcnt), sp, 2792 atomic_read(&sp->sk_drops)); 2793 } 2794 2795 int udp4_seq_show(struct seq_file *seq, void *v) 2796 { 2797 seq_setwidth(seq, 127); 2798 if (v == SEQ_START_TOKEN) 2799 seq_puts(seq, " sl local_address rem_address st tx_queue " 2800 "rx_queue tr tm->when retrnsmt uid timeout " 2801 "inode ref pointer drops"); 2802 else { 2803 struct udp_iter_state *state = seq->private; 2804 2805 udp4_format_sock(v, seq, state->bucket); 2806 } 2807 seq_pad(seq, '\n'); 2808 return 0; 2809 } 2810 2811 static const struct file_operations udp_afinfo_seq_fops = { 2812 .open = udp_seq_open, 2813 .read = seq_read, 2814 .llseek = seq_lseek, 2815 .release = seq_release_net 2816 }; 2817 2818 /* ------------------------------------------------------------------------ */ 2819 static struct udp_seq_afinfo udp4_seq_afinfo = { 2820 .name = "udp", 2821 .family = AF_INET, 2822 .udp_table = &udp_table, 2823 .seq_fops = &udp_afinfo_seq_fops, 2824 .seq_ops = { 2825 .show = udp4_seq_show, 2826 }, 2827 }; 2828 2829 static int __net_init udp4_proc_init_net(struct net *net) 2830 { 2831 return udp_proc_register(net, &udp4_seq_afinfo); 2832 } 2833 2834 static void __net_exit udp4_proc_exit_net(struct net *net) 2835 { 2836 udp_proc_unregister(net, &udp4_seq_afinfo); 2837 } 2838 2839 static struct pernet_operations udp4_net_ops = { 2840 .init = udp4_proc_init_net, 2841 .exit = udp4_proc_exit_net, 2842 }; 2843 2844 int __init udp4_proc_init(void) 2845 { 2846 return register_pernet_subsys(&udp4_net_ops); 2847 } 2848 2849 void udp4_proc_exit(void) 2850 { 2851 unregister_pernet_subsys(&udp4_net_ops); 2852 } 2853 #endif /* CONFIG_PROC_FS */ 2854 2855 static __initdata unsigned long uhash_entries; 2856 static int __init set_uhash_entries(char *str) 2857 { 2858 ssize_t ret; 2859 2860 if (!str) 2861 return 0; 2862 2863 ret = kstrtoul(str, 0, &uhash_entries); 2864 if (ret) 2865 return 0; 2866 2867 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN) 2868 uhash_entries = UDP_HTABLE_SIZE_MIN; 2869 return 1; 2870 } 2871 __setup("uhash_entries=", set_uhash_entries); 2872 2873 void __init udp_table_init(struct udp_table *table, const char *name) 2874 { 2875 unsigned int i; 2876 2877 table->hash = alloc_large_system_hash(name, 2878 2 * sizeof(struct udp_hslot), 2879 uhash_entries, 2880 21, /* one slot per 2 MB */ 2881 0, 2882 &table->log, 2883 &table->mask, 2884 UDP_HTABLE_SIZE_MIN, 2885 64 * 1024); 2886 2887 table->hash2 = table->hash + (table->mask + 1); 2888 for (i = 0; i <= table->mask; i++) { 2889 INIT_HLIST_HEAD(&table->hash[i].head); 2890 table->hash[i].count = 0; 2891 spin_lock_init(&table->hash[i].lock); 2892 } 2893 for (i = 0; i <= table->mask; i++) { 2894 INIT_HLIST_HEAD(&table->hash2[i].head); 2895 table->hash2[i].count = 0; 2896 spin_lock_init(&table->hash2[i].lock); 2897 } 2898 } 2899 2900 u32 udp_flow_hashrnd(void) 2901 { 2902 static u32 hashrnd __read_mostly; 2903 2904 net_get_random_once(&hashrnd, sizeof(hashrnd)); 2905 2906 return hashrnd; 2907 } 2908 EXPORT_SYMBOL(udp_flow_hashrnd); 2909 2910 static void __udp_sysctl_init(struct net *net) 2911 { 2912 net->ipv4.sysctl_udp_rmem_min = SK_MEM_QUANTUM; 2913 net->ipv4.sysctl_udp_wmem_min = SK_MEM_QUANTUM; 2914 2915 #ifdef CONFIG_NET_L3_MASTER_DEV 2916 net->ipv4.sysctl_udp_l3mdev_accept = 0; 2917 #endif 2918 } 2919 2920 static int __net_init udp_sysctl_init(struct net *net) 2921 { 2922 __udp_sysctl_init(net); 2923 return 0; 2924 } 2925 2926 static struct pernet_operations __net_initdata udp_sysctl_ops = { 2927 .init = udp_sysctl_init, 2928 }; 2929 2930 void __init udp_init(void) 2931 { 2932 unsigned long limit; 2933 unsigned int i; 2934 2935 udp_table_init(&udp_table, "UDP"); 2936 limit = nr_free_buffer_pages() / 8; 2937 limit = max(limit, 128UL); 2938 sysctl_udp_mem[0] = limit / 4 * 3; 2939 sysctl_udp_mem[1] = limit; 2940 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2; 2941 2942 __udp_sysctl_init(&init_net); 2943 2944 /* 16 spinlocks per cpu */ 2945 udp_busylocks_log = ilog2(nr_cpu_ids) + 4; 2946 udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log, 2947 GFP_KERNEL); 2948 if (!udp_busylocks) 2949 panic("UDP: failed to alloc udp_busylocks\n"); 2950 for (i = 0; i < (1U << udp_busylocks_log); i++) 2951 spin_lock_init(udp_busylocks + i); 2952 2953 if (register_pernet_subsys(&udp_sysctl_ops)) 2954 panic("UDP: failed to init sysctl parameters.\n"); 2955 } 2956