xref: /linux/net/ipv4/udp.c (revision f06d977309d09253c744e54e75c5295ecc52b7b4)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The User Datagram Protocol (UDP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
12  *		Hirokazu Takahashi, <taka@valinux.co.jp>
13  *
14  * Fixes:
15  *		Alan Cox	:	verify_area() calls
16  *		Alan Cox	: 	stopped close while in use off icmp
17  *					messages. Not a fix but a botch that
18  *					for udp at least is 'valid'.
19  *		Alan Cox	:	Fixed icmp handling properly
20  *		Alan Cox	: 	Correct error for oversized datagrams
21  *		Alan Cox	:	Tidied select() semantics.
22  *		Alan Cox	:	udp_err() fixed properly, also now
23  *					select and read wake correctly on errors
24  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
25  *		Alan Cox	:	UDP can count its memory
26  *		Alan Cox	:	send to an unknown connection causes
27  *					an ECONNREFUSED off the icmp, but
28  *					does NOT close.
29  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
30  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
31  *					bug no longer crashes it.
32  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
33  *		Alan Cox	:	Uses skb_free_datagram
34  *		Alan Cox	:	Added get/set sockopt support.
35  *		Alan Cox	:	Broadcasting without option set returns EACCES.
36  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
37  *		Alan Cox	:	Use ip_tos and ip_ttl
38  *		Alan Cox	:	SNMP Mibs
39  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
40  *		Matt Dillon	:	UDP length checks.
41  *		Alan Cox	:	Smarter af_inet used properly.
42  *		Alan Cox	:	Use new kernel side addressing.
43  *		Alan Cox	:	Incorrect return on truncated datagram receive.
44  *	Arnt Gulbrandsen 	:	New udp_send and stuff
45  *		Alan Cox	:	Cache last socket
46  *		Alan Cox	:	Route cache
47  *		Jon Peatfield	:	Minor efficiency fix to sendto().
48  *		Mike Shaver	:	RFC1122 checks.
49  *		Alan Cox	:	Nonblocking error fix.
50  *	Willy Konynenberg	:	Transparent proxying support.
51  *		Mike McLagan	:	Routing by source
52  *		David S. Miller	:	New socket lookup architecture.
53  *					Last socket cache retained as it
54  *					does have a high hit rate.
55  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
56  *		Andi Kleen	:	Some cleanups, cache destination entry
57  *					for connect.
58  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
59  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
60  *					return ENOTCONN for unconnected sockets (POSIX)
61  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
62  *					bound-to-device socket
63  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
64  *					datagrams.
65  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
66  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
67  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
68  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
69  *					a single port at the same time.
70  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71  *	James Chapman		:	Add L2TP encapsulation type.
72  *
73  *
74  *		This program is free software; you can redistribute it and/or
75  *		modify it under the terms of the GNU General Public License
76  *		as published by the Free Software Foundation; either version
77  *		2 of the License, or (at your option) any later version.
78  */
79 
80 #define pr_fmt(fmt) "UDP: " fmt
81 
82 #include <linux/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/bootmem.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
93 #include <linux/inetdevice.h>
94 #include <linux/in.h>
95 #include <linux/errno.h>
96 #include <linux/timer.h>
97 #include <linux/mm.h>
98 #include <linux/inet.h>
99 #include <linux/netdevice.h>
100 #include <linux/slab.h>
101 #include <net/tcp_states.h>
102 #include <linux/skbuff.h>
103 #include <linux/proc_fs.h>
104 #include <linux/seq_file.h>
105 #include <net/net_namespace.h>
106 #include <net/icmp.h>
107 #include <net/inet_hashtables.h>
108 #include <net/route.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <trace/events/udp.h>
112 #include <linux/static_key.h>
113 #include <trace/events/skb.h>
114 #include <net/busy_poll.h>
115 #include "udp_impl.h"
116 #include <net/sock_reuseport.h>
117 #include <net/addrconf.h>
118 
119 struct udp_table udp_table __read_mostly;
120 EXPORT_SYMBOL(udp_table);
121 
122 long sysctl_udp_mem[3] __read_mostly;
123 EXPORT_SYMBOL(sysctl_udp_mem);
124 
125 int sysctl_udp_rmem_min __read_mostly;
126 EXPORT_SYMBOL(sysctl_udp_rmem_min);
127 
128 int sysctl_udp_wmem_min __read_mostly;
129 EXPORT_SYMBOL(sysctl_udp_wmem_min);
130 
131 atomic_long_t udp_memory_allocated;
132 EXPORT_SYMBOL(udp_memory_allocated);
133 
134 #define MAX_UDP_PORTS 65536
135 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
136 
137 /* IPCB reference means this can not be used from early demux */
138 static bool udp_lib_exact_dif_match(struct net *net, struct sk_buff *skb)
139 {
140 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
141 	if (!net->ipv4.sysctl_udp_l3mdev_accept &&
142 	    skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
143 		return true;
144 #endif
145 	return false;
146 }
147 
148 static int udp_lib_lport_inuse(struct net *net, __u16 num,
149 			       const struct udp_hslot *hslot,
150 			       unsigned long *bitmap,
151 			       struct sock *sk, unsigned int log)
152 {
153 	struct sock *sk2;
154 	kuid_t uid = sock_i_uid(sk);
155 
156 	sk_for_each(sk2, &hslot->head) {
157 		if (net_eq(sock_net(sk2), net) &&
158 		    sk2 != sk &&
159 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
160 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
161 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
162 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
163 		    inet_rcv_saddr_equal(sk, sk2, true)) {
164 			if (sk2->sk_reuseport && sk->sk_reuseport &&
165 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
166 			    uid_eq(uid, sock_i_uid(sk2))) {
167 				if (!bitmap)
168 					return 0;
169 			} else {
170 				if (!bitmap)
171 					return 1;
172 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
173 					  bitmap);
174 			}
175 		}
176 	}
177 	return 0;
178 }
179 
180 /*
181  * Note: we still hold spinlock of primary hash chain, so no other writer
182  * can insert/delete a socket with local_port == num
183  */
184 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
185 				struct udp_hslot *hslot2,
186 				struct sock *sk)
187 {
188 	struct sock *sk2;
189 	kuid_t uid = sock_i_uid(sk);
190 	int res = 0;
191 
192 	spin_lock(&hslot2->lock);
193 	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
194 		if (net_eq(sock_net(sk2), net) &&
195 		    sk2 != sk &&
196 		    (udp_sk(sk2)->udp_port_hash == num) &&
197 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
198 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
199 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
200 		    inet_rcv_saddr_equal(sk, sk2, true)) {
201 			if (sk2->sk_reuseport && sk->sk_reuseport &&
202 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
203 			    uid_eq(uid, sock_i_uid(sk2))) {
204 				res = 0;
205 			} else {
206 				res = 1;
207 			}
208 			break;
209 		}
210 	}
211 	spin_unlock(&hslot2->lock);
212 	return res;
213 }
214 
215 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
216 {
217 	struct net *net = sock_net(sk);
218 	kuid_t uid = sock_i_uid(sk);
219 	struct sock *sk2;
220 
221 	sk_for_each(sk2, &hslot->head) {
222 		if (net_eq(sock_net(sk2), net) &&
223 		    sk2 != sk &&
224 		    sk2->sk_family == sk->sk_family &&
225 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
226 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
227 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
228 		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
229 		    inet_rcv_saddr_equal(sk, sk2, false)) {
230 			return reuseport_add_sock(sk, sk2);
231 		}
232 	}
233 
234 	/* Initial allocation may have already happened via setsockopt */
235 	if (!rcu_access_pointer(sk->sk_reuseport_cb))
236 		return reuseport_alloc(sk);
237 	return 0;
238 }
239 
240 /**
241  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
242  *
243  *  @sk:          socket struct in question
244  *  @snum:        port number to look up
245  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
246  *                   with NULL address
247  */
248 int udp_lib_get_port(struct sock *sk, unsigned short snum,
249 		     unsigned int hash2_nulladdr)
250 {
251 	struct udp_hslot *hslot, *hslot2;
252 	struct udp_table *udptable = sk->sk_prot->h.udp_table;
253 	int    error = 1;
254 	struct net *net = sock_net(sk);
255 
256 	if (!snum) {
257 		int low, high, remaining;
258 		unsigned int rand;
259 		unsigned short first, last;
260 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
261 
262 		inet_get_local_port_range(net, &low, &high);
263 		remaining = (high - low) + 1;
264 
265 		rand = prandom_u32();
266 		first = reciprocal_scale(rand, remaining) + low;
267 		/*
268 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
269 		 */
270 		rand = (rand | 1) * (udptable->mask + 1);
271 		last = first + udptable->mask + 1;
272 		do {
273 			hslot = udp_hashslot(udptable, net, first);
274 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
275 			spin_lock_bh(&hslot->lock);
276 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
277 					    udptable->log);
278 
279 			snum = first;
280 			/*
281 			 * Iterate on all possible values of snum for this hash.
282 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
283 			 * give us randomization and full range coverage.
284 			 */
285 			do {
286 				if (low <= snum && snum <= high &&
287 				    !test_bit(snum >> udptable->log, bitmap) &&
288 				    !inet_is_local_reserved_port(net, snum))
289 					goto found;
290 				snum += rand;
291 			} while (snum != first);
292 			spin_unlock_bh(&hslot->lock);
293 			cond_resched();
294 		} while (++first != last);
295 		goto fail;
296 	} else {
297 		hslot = udp_hashslot(udptable, net, snum);
298 		spin_lock_bh(&hslot->lock);
299 		if (hslot->count > 10) {
300 			int exist;
301 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
302 
303 			slot2          &= udptable->mask;
304 			hash2_nulladdr &= udptable->mask;
305 
306 			hslot2 = udp_hashslot2(udptable, slot2);
307 			if (hslot->count < hslot2->count)
308 				goto scan_primary_hash;
309 
310 			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
311 			if (!exist && (hash2_nulladdr != slot2)) {
312 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
313 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
314 							     sk);
315 			}
316 			if (exist)
317 				goto fail_unlock;
318 			else
319 				goto found;
320 		}
321 scan_primary_hash:
322 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
323 			goto fail_unlock;
324 	}
325 found:
326 	inet_sk(sk)->inet_num = snum;
327 	udp_sk(sk)->udp_port_hash = snum;
328 	udp_sk(sk)->udp_portaddr_hash ^= snum;
329 	if (sk_unhashed(sk)) {
330 		if (sk->sk_reuseport &&
331 		    udp_reuseport_add_sock(sk, hslot)) {
332 			inet_sk(sk)->inet_num = 0;
333 			udp_sk(sk)->udp_port_hash = 0;
334 			udp_sk(sk)->udp_portaddr_hash ^= snum;
335 			goto fail_unlock;
336 		}
337 
338 		sk_add_node_rcu(sk, &hslot->head);
339 		hslot->count++;
340 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
341 
342 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
343 		spin_lock(&hslot2->lock);
344 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
345 		    sk->sk_family == AF_INET6)
346 			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
347 					   &hslot2->head);
348 		else
349 			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
350 					   &hslot2->head);
351 		hslot2->count++;
352 		spin_unlock(&hslot2->lock);
353 	}
354 	sock_set_flag(sk, SOCK_RCU_FREE);
355 	error = 0;
356 fail_unlock:
357 	spin_unlock_bh(&hslot->lock);
358 fail:
359 	return error;
360 }
361 EXPORT_SYMBOL(udp_lib_get_port);
362 
363 static u32 udp4_portaddr_hash(const struct net *net, __be32 saddr,
364 			      unsigned int port)
365 {
366 	return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
367 }
368 
369 int udp_v4_get_port(struct sock *sk, unsigned short snum)
370 {
371 	unsigned int hash2_nulladdr =
372 		udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
373 	unsigned int hash2_partial =
374 		udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
375 
376 	/* precompute partial secondary hash */
377 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
378 	return udp_lib_get_port(sk, snum, hash2_nulladdr);
379 }
380 
381 static int compute_score(struct sock *sk, struct net *net,
382 			 __be32 saddr, __be16 sport,
383 			 __be32 daddr, unsigned short hnum, int dif,
384 			 bool exact_dif)
385 {
386 	int score;
387 	struct inet_sock *inet;
388 
389 	if (!net_eq(sock_net(sk), net) ||
390 	    udp_sk(sk)->udp_port_hash != hnum ||
391 	    ipv6_only_sock(sk))
392 		return -1;
393 
394 	score = (sk->sk_family == PF_INET) ? 2 : 1;
395 	inet = inet_sk(sk);
396 
397 	if (inet->inet_rcv_saddr) {
398 		if (inet->inet_rcv_saddr != daddr)
399 			return -1;
400 		score += 4;
401 	}
402 
403 	if (inet->inet_daddr) {
404 		if (inet->inet_daddr != saddr)
405 			return -1;
406 		score += 4;
407 	}
408 
409 	if (inet->inet_dport) {
410 		if (inet->inet_dport != sport)
411 			return -1;
412 		score += 4;
413 	}
414 
415 	if (sk->sk_bound_dev_if || exact_dif) {
416 		if (sk->sk_bound_dev_if != dif)
417 			return -1;
418 		score += 4;
419 	}
420 	if (sk->sk_incoming_cpu == raw_smp_processor_id())
421 		score++;
422 	return score;
423 }
424 
425 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
426 		       const __u16 lport, const __be32 faddr,
427 		       const __be16 fport)
428 {
429 	static u32 udp_ehash_secret __read_mostly;
430 
431 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
432 
433 	return __inet_ehashfn(laddr, lport, faddr, fport,
434 			      udp_ehash_secret + net_hash_mix(net));
435 }
436 
437 /* called with rcu_read_lock() */
438 static struct sock *udp4_lib_lookup2(struct net *net,
439 		__be32 saddr, __be16 sport,
440 		__be32 daddr, unsigned int hnum, int dif, bool exact_dif,
441 		struct udp_hslot *hslot2,
442 		struct sk_buff *skb)
443 {
444 	struct sock *sk, *result;
445 	int score, badness, matches = 0, reuseport = 0;
446 	u32 hash = 0;
447 
448 	result = NULL;
449 	badness = 0;
450 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
451 		score = compute_score(sk, net, saddr, sport,
452 				      daddr, hnum, dif, exact_dif);
453 		if (score > badness) {
454 			reuseport = sk->sk_reuseport;
455 			if (reuseport) {
456 				hash = udp_ehashfn(net, daddr, hnum,
457 						   saddr, sport);
458 				result = reuseport_select_sock(sk, hash, skb,
459 							sizeof(struct udphdr));
460 				if (result)
461 					return result;
462 				matches = 1;
463 			}
464 			badness = score;
465 			result = sk;
466 		} else if (score == badness && reuseport) {
467 			matches++;
468 			if (reciprocal_scale(hash, matches) == 0)
469 				result = sk;
470 			hash = next_pseudo_random32(hash);
471 		}
472 	}
473 	return result;
474 }
475 
476 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
477  * harder than this. -DaveM
478  */
479 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
480 		__be16 sport, __be32 daddr, __be16 dport,
481 		int dif, struct udp_table *udptable, struct sk_buff *skb)
482 {
483 	struct sock *sk, *result;
484 	unsigned short hnum = ntohs(dport);
485 	unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
486 	struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
487 	bool exact_dif = udp_lib_exact_dif_match(net, skb);
488 	int score, badness, matches = 0, reuseport = 0;
489 	u32 hash = 0;
490 
491 	if (hslot->count > 10) {
492 		hash2 = udp4_portaddr_hash(net, daddr, hnum);
493 		slot2 = hash2 & udptable->mask;
494 		hslot2 = &udptable->hash2[slot2];
495 		if (hslot->count < hslot2->count)
496 			goto begin;
497 
498 		result = udp4_lib_lookup2(net, saddr, sport,
499 					  daddr, hnum, dif,
500 					  exact_dif, hslot2, skb);
501 		if (!result) {
502 			unsigned int old_slot2 = slot2;
503 			hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
504 			slot2 = hash2 & udptable->mask;
505 			/* avoid searching the same slot again. */
506 			if (unlikely(slot2 == old_slot2))
507 				return result;
508 
509 			hslot2 = &udptable->hash2[slot2];
510 			if (hslot->count < hslot2->count)
511 				goto begin;
512 
513 			result = udp4_lib_lookup2(net, saddr, sport,
514 						  daddr, hnum, dif,
515 						  exact_dif, hslot2, skb);
516 		}
517 		return result;
518 	}
519 begin:
520 	result = NULL;
521 	badness = 0;
522 	sk_for_each_rcu(sk, &hslot->head) {
523 		score = compute_score(sk, net, saddr, sport,
524 				      daddr, hnum, dif, exact_dif);
525 		if (score > badness) {
526 			reuseport = sk->sk_reuseport;
527 			if (reuseport) {
528 				hash = udp_ehashfn(net, daddr, hnum,
529 						   saddr, sport);
530 				result = reuseport_select_sock(sk, hash, skb,
531 							sizeof(struct udphdr));
532 				if (result)
533 					return result;
534 				matches = 1;
535 			}
536 			result = sk;
537 			badness = score;
538 		} else if (score == badness && reuseport) {
539 			matches++;
540 			if (reciprocal_scale(hash, matches) == 0)
541 				result = sk;
542 			hash = next_pseudo_random32(hash);
543 		}
544 	}
545 	return result;
546 }
547 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
548 
549 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
550 						 __be16 sport, __be16 dport,
551 						 struct udp_table *udptable)
552 {
553 	const struct iphdr *iph = ip_hdr(skb);
554 
555 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
556 				 iph->daddr, dport, inet_iif(skb),
557 				 udptable, skb);
558 }
559 
560 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb,
561 				 __be16 sport, __be16 dport)
562 {
563 	return __udp4_lib_lookup_skb(skb, sport, dport, &udp_table);
564 }
565 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb);
566 
567 /* Must be called under rcu_read_lock().
568  * Does increment socket refcount.
569  */
570 #if IS_ENABLED(CONFIG_NETFILTER_XT_MATCH_SOCKET) || \
571     IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TPROXY) || \
572     IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
573 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
574 			     __be32 daddr, __be16 dport, int dif)
575 {
576 	struct sock *sk;
577 
578 	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
579 			       dif, &udp_table, NULL);
580 	if (sk && !atomic_inc_not_zero(&sk->sk_refcnt))
581 		sk = NULL;
582 	return sk;
583 }
584 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
585 #endif
586 
587 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
588 				       __be16 loc_port, __be32 loc_addr,
589 				       __be16 rmt_port, __be32 rmt_addr,
590 				       int dif, unsigned short hnum)
591 {
592 	struct inet_sock *inet = inet_sk(sk);
593 
594 	if (!net_eq(sock_net(sk), net) ||
595 	    udp_sk(sk)->udp_port_hash != hnum ||
596 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
597 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
598 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
599 	    ipv6_only_sock(sk) ||
600 	    (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif))
601 		return false;
602 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif))
603 		return false;
604 	return true;
605 }
606 
607 /*
608  * This routine is called by the ICMP module when it gets some
609  * sort of error condition.  If err < 0 then the socket should
610  * be closed and the error returned to the user.  If err > 0
611  * it's just the icmp type << 8 | icmp code.
612  * Header points to the ip header of the error packet. We move
613  * on past this. Then (as it used to claim before adjustment)
614  * header points to the first 8 bytes of the udp header.  We need
615  * to find the appropriate port.
616  */
617 
618 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
619 {
620 	struct inet_sock *inet;
621 	const struct iphdr *iph = (const struct iphdr *)skb->data;
622 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
623 	const int type = icmp_hdr(skb)->type;
624 	const int code = icmp_hdr(skb)->code;
625 	struct sock *sk;
626 	int harderr;
627 	int err;
628 	struct net *net = dev_net(skb->dev);
629 
630 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
631 			iph->saddr, uh->source, skb->dev->ifindex, udptable,
632 			NULL);
633 	if (!sk) {
634 		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
635 		return;	/* No socket for error */
636 	}
637 
638 	err = 0;
639 	harderr = 0;
640 	inet = inet_sk(sk);
641 
642 	switch (type) {
643 	default:
644 	case ICMP_TIME_EXCEEDED:
645 		err = EHOSTUNREACH;
646 		break;
647 	case ICMP_SOURCE_QUENCH:
648 		goto out;
649 	case ICMP_PARAMETERPROB:
650 		err = EPROTO;
651 		harderr = 1;
652 		break;
653 	case ICMP_DEST_UNREACH:
654 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
655 			ipv4_sk_update_pmtu(skb, sk, info);
656 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
657 				err = EMSGSIZE;
658 				harderr = 1;
659 				break;
660 			}
661 			goto out;
662 		}
663 		err = EHOSTUNREACH;
664 		if (code <= NR_ICMP_UNREACH) {
665 			harderr = icmp_err_convert[code].fatal;
666 			err = icmp_err_convert[code].errno;
667 		}
668 		break;
669 	case ICMP_REDIRECT:
670 		ipv4_sk_redirect(skb, sk);
671 		goto out;
672 	}
673 
674 	/*
675 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
676 	 *	4.1.3.3.
677 	 */
678 	if (!inet->recverr) {
679 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
680 			goto out;
681 	} else
682 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
683 
684 	sk->sk_err = err;
685 	sk->sk_error_report(sk);
686 out:
687 	return;
688 }
689 
690 void udp_err(struct sk_buff *skb, u32 info)
691 {
692 	__udp4_lib_err(skb, info, &udp_table);
693 }
694 
695 /*
696  * Throw away all pending data and cancel the corking. Socket is locked.
697  */
698 void udp_flush_pending_frames(struct sock *sk)
699 {
700 	struct udp_sock *up = udp_sk(sk);
701 
702 	if (up->pending) {
703 		up->len = 0;
704 		up->pending = 0;
705 		ip_flush_pending_frames(sk);
706 	}
707 }
708 EXPORT_SYMBOL(udp_flush_pending_frames);
709 
710 /**
711  * 	udp4_hwcsum  -  handle outgoing HW checksumming
712  * 	@skb: 	sk_buff containing the filled-in UDP header
713  * 	        (checksum field must be zeroed out)
714  *	@src:	source IP address
715  *	@dst:	destination IP address
716  */
717 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
718 {
719 	struct udphdr *uh = udp_hdr(skb);
720 	int offset = skb_transport_offset(skb);
721 	int len = skb->len - offset;
722 	int hlen = len;
723 	__wsum csum = 0;
724 
725 	if (!skb_has_frag_list(skb)) {
726 		/*
727 		 * Only one fragment on the socket.
728 		 */
729 		skb->csum_start = skb_transport_header(skb) - skb->head;
730 		skb->csum_offset = offsetof(struct udphdr, check);
731 		uh->check = ~csum_tcpudp_magic(src, dst, len,
732 					       IPPROTO_UDP, 0);
733 	} else {
734 		struct sk_buff *frags;
735 
736 		/*
737 		 * HW-checksum won't work as there are two or more
738 		 * fragments on the socket so that all csums of sk_buffs
739 		 * should be together
740 		 */
741 		skb_walk_frags(skb, frags) {
742 			csum = csum_add(csum, frags->csum);
743 			hlen -= frags->len;
744 		}
745 
746 		csum = skb_checksum(skb, offset, hlen, csum);
747 		skb->ip_summed = CHECKSUM_NONE;
748 
749 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
750 		if (uh->check == 0)
751 			uh->check = CSUM_MANGLED_0;
752 	}
753 }
754 EXPORT_SYMBOL_GPL(udp4_hwcsum);
755 
756 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
757  * for the simple case like when setting the checksum for a UDP tunnel.
758  */
759 void udp_set_csum(bool nocheck, struct sk_buff *skb,
760 		  __be32 saddr, __be32 daddr, int len)
761 {
762 	struct udphdr *uh = udp_hdr(skb);
763 
764 	if (nocheck) {
765 		uh->check = 0;
766 	} else if (skb_is_gso(skb)) {
767 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
768 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
769 		uh->check = 0;
770 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
771 		if (uh->check == 0)
772 			uh->check = CSUM_MANGLED_0;
773 	} else {
774 		skb->ip_summed = CHECKSUM_PARTIAL;
775 		skb->csum_start = skb_transport_header(skb) - skb->head;
776 		skb->csum_offset = offsetof(struct udphdr, check);
777 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
778 	}
779 }
780 EXPORT_SYMBOL(udp_set_csum);
781 
782 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
783 {
784 	struct sock *sk = skb->sk;
785 	struct inet_sock *inet = inet_sk(sk);
786 	struct udphdr *uh;
787 	int err = 0;
788 	int is_udplite = IS_UDPLITE(sk);
789 	int offset = skb_transport_offset(skb);
790 	int len = skb->len - offset;
791 	__wsum csum = 0;
792 
793 	/*
794 	 * Create a UDP header
795 	 */
796 	uh = udp_hdr(skb);
797 	uh->source = inet->inet_sport;
798 	uh->dest = fl4->fl4_dport;
799 	uh->len = htons(len);
800 	uh->check = 0;
801 
802 	if (is_udplite)  				 /*     UDP-Lite      */
803 		csum = udplite_csum(skb);
804 
805 	else if (sk->sk_no_check_tx) {   /* UDP csum disabled */
806 
807 		skb->ip_summed = CHECKSUM_NONE;
808 		goto send;
809 
810 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
811 
812 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
813 		goto send;
814 
815 	} else
816 		csum = udp_csum(skb);
817 
818 	/* add protocol-dependent pseudo-header */
819 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
820 				      sk->sk_protocol, csum);
821 	if (uh->check == 0)
822 		uh->check = CSUM_MANGLED_0;
823 
824 send:
825 	err = ip_send_skb(sock_net(sk), skb);
826 	if (err) {
827 		if (err == -ENOBUFS && !inet->recverr) {
828 			UDP_INC_STATS(sock_net(sk),
829 				      UDP_MIB_SNDBUFERRORS, is_udplite);
830 			err = 0;
831 		}
832 	} else
833 		UDP_INC_STATS(sock_net(sk),
834 			      UDP_MIB_OUTDATAGRAMS, is_udplite);
835 	return err;
836 }
837 
838 /*
839  * Push out all pending data as one UDP datagram. Socket is locked.
840  */
841 int udp_push_pending_frames(struct sock *sk)
842 {
843 	struct udp_sock  *up = udp_sk(sk);
844 	struct inet_sock *inet = inet_sk(sk);
845 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
846 	struct sk_buff *skb;
847 	int err = 0;
848 
849 	skb = ip_finish_skb(sk, fl4);
850 	if (!skb)
851 		goto out;
852 
853 	err = udp_send_skb(skb, fl4);
854 
855 out:
856 	up->len = 0;
857 	up->pending = 0;
858 	return err;
859 }
860 EXPORT_SYMBOL(udp_push_pending_frames);
861 
862 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
863 {
864 	struct inet_sock *inet = inet_sk(sk);
865 	struct udp_sock *up = udp_sk(sk);
866 	struct flowi4 fl4_stack;
867 	struct flowi4 *fl4;
868 	int ulen = len;
869 	struct ipcm_cookie ipc;
870 	struct rtable *rt = NULL;
871 	int free = 0;
872 	int connected = 0;
873 	__be32 daddr, faddr, saddr;
874 	__be16 dport;
875 	u8  tos;
876 	int err, is_udplite = IS_UDPLITE(sk);
877 	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
878 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
879 	struct sk_buff *skb;
880 	struct ip_options_data opt_copy;
881 
882 	if (len > 0xFFFF)
883 		return -EMSGSIZE;
884 
885 	/*
886 	 *	Check the flags.
887 	 */
888 
889 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
890 		return -EOPNOTSUPP;
891 
892 	ipc.opt = NULL;
893 	ipc.tx_flags = 0;
894 	ipc.ttl = 0;
895 	ipc.tos = -1;
896 
897 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
898 
899 	fl4 = &inet->cork.fl.u.ip4;
900 	if (up->pending) {
901 		/*
902 		 * There are pending frames.
903 		 * The socket lock must be held while it's corked.
904 		 */
905 		lock_sock(sk);
906 		if (likely(up->pending)) {
907 			if (unlikely(up->pending != AF_INET)) {
908 				release_sock(sk);
909 				return -EINVAL;
910 			}
911 			goto do_append_data;
912 		}
913 		release_sock(sk);
914 	}
915 	ulen += sizeof(struct udphdr);
916 
917 	/*
918 	 *	Get and verify the address.
919 	 */
920 	if (msg->msg_name) {
921 		DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
922 		if (msg->msg_namelen < sizeof(*usin))
923 			return -EINVAL;
924 		if (usin->sin_family != AF_INET) {
925 			if (usin->sin_family != AF_UNSPEC)
926 				return -EAFNOSUPPORT;
927 		}
928 
929 		daddr = usin->sin_addr.s_addr;
930 		dport = usin->sin_port;
931 		if (dport == 0)
932 			return -EINVAL;
933 	} else {
934 		if (sk->sk_state != TCP_ESTABLISHED)
935 			return -EDESTADDRREQ;
936 		daddr = inet->inet_daddr;
937 		dport = inet->inet_dport;
938 		/* Open fast path for connected socket.
939 		   Route will not be used, if at least one option is set.
940 		 */
941 		connected = 1;
942 	}
943 
944 	ipc.sockc.tsflags = sk->sk_tsflags;
945 	ipc.addr = inet->inet_saddr;
946 	ipc.oif = sk->sk_bound_dev_if;
947 
948 	if (msg->msg_controllen) {
949 		err = ip_cmsg_send(sk, msg, &ipc, sk->sk_family == AF_INET6);
950 		if (unlikely(err)) {
951 			kfree(ipc.opt);
952 			return err;
953 		}
954 		if (ipc.opt)
955 			free = 1;
956 		connected = 0;
957 	}
958 	if (!ipc.opt) {
959 		struct ip_options_rcu *inet_opt;
960 
961 		rcu_read_lock();
962 		inet_opt = rcu_dereference(inet->inet_opt);
963 		if (inet_opt) {
964 			memcpy(&opt_copy, inet_opt,
965 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
966 			ipc.opt = &opt_copy.opt;
967 		}
968 		rcu_read_unlock();
969 	}
970 
971 	saddr = ipc.addr;
972 	ipc.addr = faddr = daddr;
973 
974 	sock_tx_timestamp(sk, ipc.sockc.tsflags, &ipc.tx_flags);
975 
976 	if (ipc.opt && ipc.opt->opt.srr) {
977 		if (!daddr)
978 			return -EINVAL;
979 		faddr = ipc.opt->opt.faddr;
980 		connected = 0;
981 	}
982 	tos = get_rttos(&ipc, inet);
983 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
984 	    (msg->msg_flags & MSG_DONTROUTE) ||
985 	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
986 		tos |= RTO_ONLINK;
987 		connected = 0;
988 	}
989 
990 	if (ipv4_is_multicast(daddr)) {
991 		if (!ipc.oif)
992 			ipc.oif = inet->mc_index;
993 		if (!saddr)
994 			saddr = inet->mc_addr;
995 		connected = 0;
996 	} else if (!ipc.oif)
997 		ipc.oif = inet->uc_index;
998 
999 	if (connected)
1000 		rt = (struct rtable *)sk_dst_check(sk, 0);
1001 
1002 	if (!rt) {
1003 		struct net *net = sock_net(sk);
1004 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1005 
1006 		fl4 = &fl4_stack;
1007 
1008 		flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
1009 				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
1010 				   flow_flags,
1011 				   faddr, saddr, dport, inet->inet_sport,
1012 				   sk->sk_uid);
1013 
1014 		security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1015 		rt = ip_route_output_flow(net, fl4, sk);
1016 		if (IS_ERR(rt)) {
1017 			err = PTR_ERR(rt);
1018 			rt = NULL;
1019 			if (err == -ENETUNREACH)
1020 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1021 			goto out;
1022 		}
1023 
1024 		err = -EACCES;
1025 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1026 		    !sock_flag(sk, SOCK_BROADCAST))
1027 			goto out;
1028 		if (connected)
1029 			sk_dst_set(sk, dst_clone(&rt->dst));
1030 	}
1031 
1032 	if (msg->msg_flags&MSG_CONFIRM)
1033 		goto do_confirm;
1034 back_from_confirm:
1035 
1036 	saddr = fl4->saddr;
1037 	if (!ipc.addr)
1038 		daddr = ipc.addr = fl4->daddr;
1039 
1040 	/* Lockless fast path for the non-corking case. */
1041 	if (!corkreq) {
1042 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1043 				  sizeof(struct udphdr), &ipc, &rt,
1044 				  msg->msg_flags);
1045 		err = PTR_ERR(skb);
1046 		if (!IS_ERR_OR_NULL(skb))
1047 			err = udp_send_skb(skb, fl4);
1048 		goto out;
1049 	}
1050 
1051 	lock_sock(sk);
1052 	if (unlikely(up->pending)) {
1053 		/* The socket is already corked while preparing it. */
1054 		/* ... which is an evident application bug. --ANK */
1055 		release_sock(sk);
1056 
1057 		net_dbg_ratelimited("cork app bug 2\n");
1058 		err = -EINVAL;
1059 		goto out;
1060 	}
1061 	/*
1062 	 *	Now cork the socket to pend data.
1063 	 */
1064 	fl4 = &inet->cork.fl.u.ip4;
1065 	fl4->daddr = daddr;
1066 	fl4->saddr = saddr;
1067 	fl4->fl4_dport = dport;
1068 	fl4->fl4_sport = inet->inet_sport;
1069 	up->pending = AF_INET;
1070 
1071 do_append_data:
1072 	up->len += ulen;
1073 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1074 			     sizeof(struct udphdr), &ipc, &rt,
1075 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1076 	if (err)
1077 		udp_flush_pending_frames(sk);
1078 	else if (!corkreq)
1079 		err = udp_push_pending_frames(sk);
1080 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1081 		up->pending = 0;
1082 	release_sock(sk);
1083 
1084 out:
1085 	ip_rt_put(rt);
1086 	if (free)
1087 		kfree(ipc.opt);
1088 	if (!err)
1089 		return len;
1090 	/*
1091 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1092 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1093 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1094 	 * things).  We could add another new stat but at least for now that
1095 	 * seems like overkill.
1096 	 */
1097 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1098 		UDP_INC_STATS(sock_net(sk),
1099 			      UDP_MIB_SNDBUFERRORS, is_udplite);
1100 	}
1101 	return err;
1102 
1103 do_confirm:
1104 	if (msg->msg_flags & MSG_PROBE)
1105 		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1106 	if (!(msg->msg_flags&MSG_PROBE) || len)
1107 		goto back_from_confirm;
1108 	err = 0;
1109 	goto out;
1110 }
1111 EXPORT_SYMBOL(udp_sendmsg);
1112 
1113 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1114 		 size_t size, int flags)
1115 {
1116 	struct inet_sock *inet = inet_sk(sk);
1117 	struct udp_sock *up = udp_sk(sk);
1118 	int ret;
1119 
1120 	if (flags & MSG_SENDPAGE_NOTLAST)
1121 		flags |= MSG_MORE;
1122 
1123 	if (!up->pending) {
1124 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1125 
1126 		/* Call udp_sendmsg to specify destination address which
1127 		 * sendpage interface can't pass.
1128 		 * This will succeed only when the socket is connected.
1129 		 */
1130 		ret = udp_sendmsg(sk, &msg, 0);
1131 		if (ret < 0)
1132 			return ret;
1133 	}
1134 
1135 	lock_sock(sk);
1136 
1137 	if (unlikely(!up->pending)) {
1138 		release_sock(sk);
1139 
1140 		net_dbg_ratelimited("udp cork app bug 3\n");
1141 		return -EINVAL;
1142 	}
1143 
1144 	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1145 			     page, offset, size, flags);
1146 	if (ret == -EOPNOTSUPP) {
1147 		release_sock(sk);
1148 		return sock_no_sendpage(sk->sk_socket, page, offset,
1149 					size, flags);
1150 	}
1151 	if (ret < 0) {
1152 		udp_flush_pending_frames(sk);
1153 		goto out;
1154 	}
1155 
1156 	up->len += size;
1157 	if (!(up->corkflag || (flags&MSG_MORE)))
1158 		ret = udp_push_pending_frames(sk);
1159 	if (!ret)
1160 		ret = size;
1161 out:
1162 	release_sock(sk);
1163 	return ret;
1164 }
1165 
1166 /* Copy as much information as possible into skb->dev_scratch to avoid
1167  * possibly multiple cache miss on dequeue();
1168  */
1169 #if BITS_PER_LONG == 64
1170 
1171 /* we can store multiple info here: truesize, len and the bit needed to
1172  * compute skb_csum_unnecessary will be on cold cache lines at recvmsg
1173  * time.
1174  * skb->len can be stored on 16 bits since the udp header has been already
1175  * validated and pulled.
1176  */
1177 struct udp_dev_scratch {
1178 	u32 truesize;
1179 	u16 len;
1180 	bool is_linear;
1181 	bool csum_unnecessary;
1182 };
1183 
1184 static void udp_set_dev_scratch(struct sk_buff *skb)
1185 {
1186 	struct udp_dev_scratch *scratch;
1187 
1188 	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1189 	scratch = (struct udp_dev_scratch *)&skb->dev_scratch;
1190 	scratch->truesize = skb->truesize;
1191 	scratch->len = skb->len;
1192 	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1193 	scratch->is_linear = !skb_is_nonlinear(skb);
1194 }
1195 
1196 static int udp_skb_truesize(struct sk_buff *skb)
1197 {
1198 	return ((struct udp_dev_scratch *)&skb->dev_scratch)->truesize;
1199 }
1200 
1201 static unsigned int udp_skb_len(struct sk_buff *skb)
1202 {
1203 	return ((struct udp_dev_scratch *)&skb->dev_scratch)->len;
1204 }
1205 
1206 static bool udp_skb_csum_unnecessary(struct sk_buff *skb)
1207 {
1208 	return ((struct udp_dev_scratch *)&skb->dev_scratch)->csum_unnecessary;
1209 }
1210 
1211 static bool udp_skb_is_linear(struct sk_buff *skb)
1212 {
1213 	return ((struct udp_dev_scratch *)&skb->dev_scratch)->is_linear;
1214 }
1215 
1216 #else
1217 static void udp_set_dev_scratch(struct sk_buff *skb)
1218 {
1219 	skb->dev_scratch = skb->truesize;
1220 }
1221 
1222 static int udp_skb_truesize(struct sk_buff *skb)
1223 {
1224 	return skb->dev_scratch;
1225 }
1226 
1227 static unsigned int udp_skb_len(struct sk_buff *skb)
1228 {
1229 	return skb->len;
1230 }
1231 
1232 static bool udp_skb_csum_unnecessary(struct sk_buff *skb)
1233 {
1234 	return skb_csum_unnecessary(skb);
1235 }
1236 
1237 static bool udp_skb_is_linear(struct sk_buff *skb)
1238 {
1239 	return !skb_is_nonlinear(skb);
1240 }
1241 #endif
1242 
1243 /* fully reclaim rmem/fwd memory allocated for skb */
1244 static void udp_rmem_release(struct sock *sk, int size, int partial,
1245 			     bool rx_queue_lock_held)
1246 {
1247 	struct udp_sock *up = udp_sk(sk);
1248 	struct sk_buff_head *sk_queue;
1249 	int amt;
1250 
1251 	if (likely(partial)) {
1252 		up->forward_deficit += size;
1253 		size = up->forward_deficit;
1254 		if (size < (sk->sk_rcvbuf >> 2) &&
1255 		    !skb_queue_empty(&up->reader_queue))
1256 			return;
1257 	} else {
1258 		size += up->forward_deficit;
1259 	}
1260 	up->forward_deficit = 0;
1261 
1262 	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1263 	 * if the called don't held it already
1264 	 */
1265 	sk_queue = &sk->sk_receive_queue;
1266 	if (!rx_queue_lock_held)
1267 		spin_lock(&sk_queue->lock);
1268 
1269 
1270 	sk->sk_forward_alloc += size;
1271 	amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1);
1272 	sk->sk_forward_alloc -= amt;
1273 
1274 	if (amt)
1275 		__sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT);
1276 
1277 	atomic_sub(size, &sk->sk_rmem_alloc);
1278 
1279 	/* this can save us from acquiring the rx queue lock on next receive */
1280 	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1281 
1282 	if (!rx_queue_lock_held)
1283 		spin_unlock(&sk_queue->lock);
1284 }
1285 
1286 /* Note: called with reader_queue.lock held.
1287  * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1288  * This avoids a cache line miss while receive_queue lock is held.
1289  * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1290  */
1291 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1292 {
1293 	prefetch(&skb->data);
1294 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1295 }
1296 EXPORT_SYMBOL(udp_skb_destructor);
1297 
1298 /* as above, but the caller held the rx queue lock, too */
1299 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1300 {
1301 	prefetch(&skb->data);
1302 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1303 }
1304 
1305 /* Idea of busylocks is to let producers grab an extra spinlock
1306  * to relieve pressure on the receive_queue spinlock shared by consumer.
1307  * Under flood, this means that only one producer can be in line
1308  * trying to acquire the receive_queue spinlock.
1309  * These busylock can be allocated on a per cpu manner, instead of a
1310  * per socket one (that would consume a cache line per socket)
1311  */
1312 static int udp_busylocks_log __read_mostly;
1313 static spinlock_t *udp_busylocks __read_mostly;
1314 
1315 static spinlock_t *busylock_acquire(void *ptr)
1316 {
1317 	spinlock_t *busy;
1318 
1319 	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1320 	spin_lock(busy);
1321 	return busy;
1322 }
1323 
1324 static void busylock_release(spinlock_t *busy)
1325 {
1326 	if (busy)
1327 		spin_unlock(busy);
1328 }
1329 
1330 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1331 {
1332 	struct sk_buff_head *list = &sk->sk_receive_queue;
1333 	int rmem, delta, amt, err = -ENOMEM;
1334 	spinlock_t *busy = NULL;
1335 	int size;
1336 
1337 	/* try to avoid the costly atomic add/sub pair when the receive
1338 	 * queue is full; always allow at least a packet
1339 	 */
1340 	rmem = atomic_read(&sk->sk_rmem_alloc);
1341 	if (rmem > sk->sk_rcvbuf)
1342 		goto drop;
1343 
1344 	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1345 	 * having linear skbs :
1346 	 * - Reduce memory overhead and thus increase receive queue capacity
1347 	 * - Less cache line misses at copyout() time
1348 	 * - Less work at consume_skb() (less alien page frag freeing)
1349 	 */
1350 	if (rmem > (sk->sk_rcvbuf >> 1)) {
1351 		skb_condense(skb);
1352 
1353 		busy = busylock_acquire(sk);
1354 	}
1355 	size = skb->truesize;
1356 	udp_set_dev_scratch(skb);
1357 
1358 	/* we drop only if the receive buf is full and the receive
1359 	 * queue contains some other skb
1360 	 */
1361 	rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1362 	if (rmem > (size + sk->sk_rcvbuf))
1363 		goto uncharge_drop;
1364 
1365 	spin_lock(&list->lock);
1366 	if (size >= sk->sk_forward_alloc) {
1367 		amt = sk_mem_pages(size);
1368 		delta = amt << SK_MEM_QUANTUM_SHIFT;
1369 		if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) {
1370 			err = -ENOBUFS;
1371 			spin_unlock(&list->lock);
1372 			goto uncharge_drop;
1373 		}
1374 
1375 		sk->sk_forward_alloc += delta;
1376 	}
1377 
1378 	sk->sk_forward_alloc -= size;
1379 
1380 	/* no need to setup a destructor, we will explicitly release the
1381 	 * forward allocated memory on dequeue
1382 	 */
1383 	sock_skb_set_dropcount(sk, skb);
1384 
1385 	__skb_queue_tail(list, skb);
1386 	spin_unlock(&list->lock);
1387 
1388 	if (!sock_flag(sk, SOCK_DEAD))
1389 		sk->sk_data_ready(sk);
1390 
1391 	busylock_release(busy);
1392 	return 0;
1393 
1394 uncharge_drop:
1395 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1396 
1397 drop:
1398 	atomic_inc(&sk->sk_drops);
1399 	busylock_release(busy);
1400 	return err;
1401 }
1402 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1403 
1404 void udp_destruct_sock(struct sock *sk)
1405 {
1406 	/* reclaim completely the forward allocated memory */
1407 	struct udp_sock *up = udp_sk(sk);
1408 	unsigned int total = 0;
1409 	struct sk_buff *skb;
1410 
1411 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1412 	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1413 		total += skb->truesize;
1414 		kfree_skb(skb);
1415 	}
1416 	udp_rmem_release(sk, total, 0, true);
1417 
1418 	inet_sock_destruct(sk);
1419 }
1420 EXPORT_SYMBOL_GPL(udp_destruct_sock);
1421 
1422 int udp_init_sock(struct sock *sk)
1423 {
1424 	skb_queue_head_init(&udp_sk(sk)->reader_queue);
1425 	sk->sk_destruct = udp_destruct_sock;
1426 	return 0;
1427 }
1428 EXPORT_SYMBOL_GPL(udp_init_sock);
1429 
1430 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1431 {
1432 	if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1433 		bool slow = lock_sock_fast(sk);
1434 
1435 		sk_peek_offset_bwd(sk, len);
1436 		unlock_sock_fast(sk, slow);
1437 	}
1438 
1439 	consume_stateless_skb(skb);
1440 }
1441 EXPORT_SYMBOL_GPL(skb_consume_udp);
1442 
1443 static struct sk_buff *__first_packet_length(struct sock *sk,
1444 					     struct sk_buff_head *rcvq,
1445 					     int *total)
1446 {
1447 	struct sk_buff *skb;
1448 
1449 	while ((skb = skb_peek(rcvq)) != NULL &&
1450 	       udp_lib_checksum_complete(skb)) {
1451 		__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1452 				IS_UDPLITE(sk));
1453 		__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1454 				IS_UDPLITE(sk));
1455 		atomic_inc(&sk->sk_drops);
1456 		__skb_unlink(skb, rcvq);
1457 		*total += skb->truesize;
1458 		kfree_skb(skb);
1459 	}
1460 	return skb;
1461 }
1462 
1463 /**
1464  *	first_packet_length	- return length of first packet in receive queue
1465  *	@sk: socket
1466  *
1467  *	Drops all bad checksum frames, until a valid one is found.
1468  *	Returns the length of found skb, or -1 if none is found.
1469  */
1470 static int first_packet_length(struct sock *sk)
1471 {
1472 	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1473 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1474 	struct sk_buff *skb;
1475 	int total = 0;
1476 	int res;
1477 
1478 	spin_lock_bh(&rcvq->lock);
1479 	skb = __first_packet_length(sk, rcvq, &total);
1480 	if (!skb && !skb_queue_empty(sk_queue)) {
1481 		spin_lock(&sk_queue->lock);
1482 		skb_queue_splice_tail_init(sk_queue, rcvq);
1483 		spin_unlock(&sk_queue->lock);
1484 
1485 		skb = __first_packet_length(sk, rcvq, &total);
1486 	}
1487 	res = skb ? skb->len : -1;
1488 	if (total)
1489 		udp_rmem_release(sk, total, 1, false);
1490 	spin_unlock_bh(&rcvq->lock);
1491 	return res;
1492 }
1493 
1494 /*
1495  *	IOCTL requests applicable to the UDP protocol
1496  */
1497 
1498 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1499 {
1500 	switch (cmd) {
1501 	case SIOCOUTQ:
1502 	{
1503 		int amount = sk_wmem_alloc_get(sk);
1504 
1505 		return put_user(amount, (int __user *)arg);
1506 	}
1507 
1508 	case SIOCINQ:
1509 	{
1510 		int amount = max_t(int, 0, first_packet_length(sk));
1511 
1512 		return put_user(amount, (int __user *)arg);
1513 	}
1514 
1515 	default:
1516 		return -ENOIOCTLCMD;
1517 	}
1518 
1519 	return 0;
1520 }
1521 EXPORT_SYMBOL(udp_ioctl);
1522 
1523 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1524 			       int noblock, int *peeked, int *off, int *err)
1525 {
1526 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1527 	struct sk_buff_head *queue;
1528 	struct sk_buff *last;
1529 	long timeo;
1530 	int error;
1531 
1532 	queue = &udp_sk(sk)->reader_queue;
1533 	flags |= noblock ? MSG_DONTWAIT : 0;
1534 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1535 	do {
1536 		struct sk_buff *skb;
1537 
1538 		error = sock_error(sk);
1539 		if (error)
1540 			break;
1541 
1542 		error = -EAGAIN;
1543 		*peeked = 0;
1544 		do {
1545 			spin_lock_bh(&queue->lock);
1546 			skb = __skb_try_recv_from_queue(sk, queue, flags,
1547 							udp_skb_destructor,
1548 							peeked, off, err,
1549 							&last);
1550 			if (skb) {
1551 				spin_unlock_bh(&queue->lock);
1552 				return skb;
1553 			}
1554 
1555 			if (skb_queue_empty(sk_queue)) {
1556 				spin_unlock_bh(&queue->lock);
1557 				goto busy_check;
1558 			}
1559 
1560 			/* refill the reader queue and walk it again
1561 			 * keep both queues locked to avoid re-acquiring
1562 			 * the sk_receive_queue lock if fwd memory scheduling
1563 			 * is needed.
1564 			 */
1565 			spin_lock(&sk_queue->lock);
1566 			skb_queue_splice_tail_init(sk_queue, queue);
1567 
1568 			skb = __skb_try_recv_from_queue(sk, queue, flags,
1569 							udp_skb_dtor_locked,
1570 							peeked, off, err,
1571 							&last);
1572 			spin_unlock(&sk_queue->lock);
1573 			spin_unlock_bh(&queue->lock);
1574 			if (skb)
1575 				return skb;
1576 
1577 busy_check:
1578 			if (!sk_can_busy_loop(sk))
1579 				break;
1580 
1581 			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1582 		} while (!skb_queue_empty(sk_queue));
1583 
1584 		/* sk_queue is empty, reader_queue may contain peeked packets */
1585 	} while (timeo &&
1586 		 !__skb_wait_for_more_packets(sk, &error, &timeo,
1587 					      (struct sk_buff *)sk_queue));
1588 
1589 	*err = error;
1590 	return NULL;
1591 }
1592 EXPORT_SYMBOL_GPL(__skb_recv_udp);
1593 
1594 static int copy_linear_skb(struct sk_buff *skb, int len, int off,
1595 			   struct iov_iter *to)
1596 {
1597 	int n, copy = len - off;
1598 
1599 	n = copy_to_iter(skb->data + off, copy, to);
1600 	if (n == copy)
1601 		return 0;
1602 
1603 	return -EFAULT;
1604 }
1605 
1606 /*
1607  * 	This should be easy, if there is something there we
1608  * 	return it, otherwise we block.
1609  */
1610 
1611 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1612 		int flags, int *addr_len)
1613 {
1614 	struct inet_sock *inet = inet_sk(sk);
1615 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1616 	struct sk_buff *skb;
1617 	unsigned int ulen, copied;
1618 	int peeked, peeking, off;
1619 	int err;
1620 	int is_udplite = IS_UDPLITE(sk);
1621 	bool checksum_valid = false;
1622 
1623 	if (flags & MSG_ERRQUEUE)
1624 		return ip_recv_error(sk, msg, len, addr_len);
1625 
1626 try_again:
1627 	peeking = off = sk_peek_offset(sk, flags);
1628 	skb = __skb_recv_udp(sk, flags, noblock, &peeked, &off, &err);
1629 	if (!skb)
1630 		return err;
1631 
1632 	ulen = udp_skb_len(skb);
1633 	copied = len;
1634 	if (copied > ulen - off)
1635 		copied = ulen - off;
1636 	else if (copied < ulen)
1637 		msg->msg_flags |= MSG_TRUNC;
1638 
1639 	/*
1640 	 * If checksum is needed at all, try to do it while copying the
1641 	 * data.  If the data is truncated, or if we only want a partial
1642 	 * coverage checksum (UDP-Lite), do it before the copy.
1643 	 */
1644 
1645 	if (copied < ulen || peeking ||
1646 	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1647 		checksum_valid = udp_skb_csum_unnecessary(skb) ||
1648 				!__udp_lib_checksum_complete(skb);
1649 		if (!checksum_valid)
1650 			goto csum_copy_err;
1651 	}
1652 
1653 	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1654 		if (udp_skb_is_linear(skb))
1655 			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1656 		else
1657 			err = skb_copy_datagram_msg(skb, off, msg, copied);
1658 	} else {
1659 		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1660 
1661 		if (err == -EINVAL)
1662 			goto csum_copy_err;
1663 	}
1664 
1665 	if (unlikely(err)) {
1666 		if (!peeked) {
1667 			atomic_inc(&sk->sk_drops);
1668 			UDP_INC_STATS(sock_net(sk),
1669 				      UDP_MIB_INERRORS, is_udplite);
1670 		}
1671 		kfree_skb(skb);
1672 		return err;
1673 	}
1674 
1675 	if (!peeked)
1676 		UDP_INC_STATS(sock_net(sk),
1677 			      UDP_MIB_INDATAGRAMS, is_udplite);
1678 
1679 	sock_recv_ts_and_drops(msg, sk, skb);
1680 
1681 	/* Copy the address. */
1682 	if (sin) {
1683 		sin->sin_family = AF_INET;
1684 		sin->sin_port = udp_hdr(skb)->source;
1685 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1686 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1687 		*addr_len = sizeof(*sin);
1688 	}
1689 	if (inet->cmsg_flags)
1690 		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1691 
1692 	err = copied;
1693 	if (flags & MSG_TRUNC)
1694 		err = ulen;
1695 
1696 	skb_consume_udp(sk, skb, peeking ? -err : err);
1697 	return err;
1698 
1699 csum_copy_err:
1700 	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1701 				 udp_skb_destructor)) {
1702 		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1703 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1704 	}
1705 	kfree_skb(skb);
1706 
1707 	/* starting over for a new packet, but check if we need to yield */
1708 	cond_resched();
1709 	msg->msg_flags &= ~MSG_TRUNC;
1710 	goto try_again;
1711 }
1712 
1713 int __udp_disconnect(struct sock *sk, int flags)
1714 {
1715 	struct inet_sock *inet = inet_sk(sk);
1716 	/*
1717 	 *	1003.1g - break association.
1718 	 */
1719 
1720 	sk->sk_state = TCP_CLOSE;
1721 	inet->inet_daddr = 0;
1722 	inet->inet_dport = 0;
1723 	sock_rps_reset_rxhash(sk);
1724 	sk->sk_bound_dev_if = 0;
1725 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1726 		inet_reset_saddr(sk);
1727 
1728 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1729 		sk->sk_prot->unhash(sk);
1730 		inet->inet_sport = 0;
1731 	}
1732 	sk_dst_reset(sk);
1733 	return 0;
1734 }
1735 EXPORT_SYMBOL(__udp_disconnect);
1736 
1737 int udp_disconnect(struct sock *sk, int flags)
1738 {
1739 	lock_sock(sk);
1740 	__udp_disconnect(sk, flags);
1741 	release_sock(sk);
1742 	return 0;
1743 }
1744 EXPORT_SYMBOL(udp_disconnect);
1745 
1746 void udp_lib_unhash(struct sock *sk)
1747 {
1748 	if (sk_hashed(sk)) {
1749 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1750 		struct udp_hslot *hslot, *hslot2;
1751 
1752 		hslot  = udp_hashslot(udptable, sock_net(sk),
1753 				      udp_sk(sk)->udp_port_hash);
1754 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1755 
1756 		spin_lock_bh(&hslot->lock);
1757 		if (rcu_access_pointer(sk->sk_reuseport_cb))
1758 			reuseport_detach_sock(sk);
1759 		if (sk_del_node_init_rcu(sk)) {
1760 			hslot->count--;
1761 			inet_sk(sk)->inet_num = 0;
1762 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1763 
1764 			spin_lock(&hslot2->lock);
1765 			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1766 			hslot2->count--;
1767 			spin_unlock(&hslot2->lock);
1768 		}
1769 		spin_unlock_bh(&hslot->lock);
1770 	}
1771 }
1772 EXPORT_SYMBOL(udp_lib_unhash);
1773 
1774 /*
1775  * inet_rcv_saddr was changed, we must rehash secondary hash
1776  */
1777 void udp_lib_rehash(struct sock *sk, u16 newhash)
1778 {
1779 	if (sk_hashed(sk)) {
1780 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1781 		struct udp_hslot *hslot, *hslot2, *nhslot2;
1782 
1783 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1784 		nhslot2 = udp_hashslot2(udptable, newhash);
1785 		udp_sk(sk)->udp_portaddr_hash = newhash;
1786 
1787 		if (hslot2 != nhslot2 ||
1788 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
1789 			hslot = udp_hashslot(udptable, sock_net(sk),
1790 					     udp_sk(sk)->udp_port_hash);
1791 			/* we must lock primary chain too */
1792 			spin_lock_bh(&hslot->lock);
1793 			if (rcu_access_pointer(sk->sk_reuseport_cb))
1794 				reuseport_detach_sock(sk);
1795 
1796 			if (hslot2 != nhslot2) {
1797 				spin_lock(&hslot2->lock);
1798 				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1799 				hslot2->count--;
1800 				spin_unlock(&hslot2->lock);
1801 
1802 				spin_lock(&nhslot2->lock);
1803 				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1804 							 &nhslot2->head);
1805 				nhslot2->count++;
1806 				spin_unlock(&nhslot2->lock);
1807 			}
1808 
1809 			spin_unlock_bh(&hslot->lock);
1810 		}
1811 	}
1812 }
1813 EXPORT_SYMBOL(udp_lib_rehash);
1814 
1815 static void udp_v4_rehash(struct sock *sk)
1816 {
1817 	u16 new_hash = udp4_portaddr_hash(sock_net(sk),
1818 					  inet_sk(sk)->inet_rcv_saddr,
1819 					  inet_sk(sk)->inet_num);
1820 	udp_lib_rehash(sk, new_hash);
1821 }
1822 
1823 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1824 {
1825 	int rc;
1826 
1827 	if (inet_sk(sk)->inet_daddr) {
1828 		sock_rps_save_rxhash(sk, skb);
1829 		sk_mark_napi_id(sk, skb);
1830 		sk_incoming_cpu_update(sk);
1831 	} else {
1832 		sk_mark_napi_id_once(sk, skb);
1833 	}
1834 
1835 	/* clear all pending head states while they are hot in the cache */
1836 	skb_release_head_state(skb);
1837 
1838 	rc = __udp_enqueue_schedule_skb(sk, skb);
1839 	if (rc < 0) {
1840 		int is_udplite = IS_UDPLITE(sk);
1841 
1842 		/* Note that an ENOMEM error is charged twice */
1843 		if (rc == -ENOMEM)
1844 			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1845 					is_udplite);
1846 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1847 		kfree_skb(skb);
1848 		trace_udp_fail_queue_rcv_skb(rc, sk);
1849 		return -1;
1850 	}
1851 
1852 	return 0;
1853 }
1854 
1855 static struct static_key udp_encap_needed __read_mostly;
1856 void udp_encap_enable(void)
1857 {
1858 	if (!static_key_enabled(&udp_encap_needed))
1859 		static_key_slow_inc(&udp_encap_needed);
1860 }
1861 EXPORT_SYMBOL(udp_encap_enable);
1862 
1863 /* returns:
1864  *  -1: error
1865  *   0: success
1866  *  >0: "udp encap" protocol resubmission
1867  *
1868  * Note that in the success and error cases, the skb is assumed to
1869  * have either been requeued or freed.
1870  */
1871 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1872 {
1873 	struct udp_sock *up = udp_sk(sk);
1874 	int is_udplite = IS_UDPLITE(sk);
1875 
1876 	/*
1877 	 *	Charge it to the socket, dropping if the queue is full.
1878 	 */
1879 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1880 		goto drop;
1881 	nf_reset(skb);
1882 
1883 	if (static_key_false(&udp_encap_needed) && up->encap_type) {
1884 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1885 
1886 		/*
1887 		 * This is an encapsulation socket so pass the skb to
1888 		 * the socket's udp_encap_rcv() hook. Otherwise, just
1889 		 * fall through and pass this up the UDP socket.
1890 		 * up->encap_rcv() returns the following value:
1891 		 * =0 if skb was successfully passed to the encap
1892 		 *    handler or was discarded by it.
1893 		 * >0 if skb should be passed on to UDP.
1894 		 * <0 if skb should be resubmitted as proto -N
1895 		 */
1896 
1897 		/* if we're overly short, let UDP handle it */
1898 		encap_rcv = ACCESS_ONCE(up->encap_rcv);
1899 		if (encap_rcv) {
1900 			int ret;
1901 
1902 			/* Verify checksum before giving to encap */
1903 			if (udp_lib_checksum_complete(skb))
1904 				goto csum_error;
1905 
1906 			ret = encap_rcv(sk, skb);
1907 			if (ret <= 0) {
1908 				__UDP_INC_STATS(sock_net(sk),
1909 						UDP_MIB_INDATAGRAMS,
1910 						is_udplite);
1911 				return -ret;
1912 			}
1913 		}
1914 
1915 		/* FALLTHROUGH -- it's a UDP Packet */
1916 	}
1917 
1918 	/*
1919 	 * 	UDP-Lite specific tests, ignored on UDP sockets
1920 	 */
1921 	if ((is_udplite & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
1922 
1923 		/*
1924 		 * MIB statistics other than incrementing the error count are
1925 		 * disabled for the following two types of errors: these depend
1926 		 * on the application settings, not on the functioning of the
1927 		 * protocol stack as such.
1928 		 *
1929 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
1930 		 * way ... to ... at least let the receiving application block
1931 		 * delivery of packets with coverage values less than a value
1932 		 * provided by the application."
1933 		 */
1934 		if (up->pcrlen == 0) {          /* full coverage was set  */
1935 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
1936 					    UDP_SKB_CB(skb)->cscov, skb->len);
1937 			goto drop;
1938 		}
1939 		/* The next case involves violating the min. coverage requested
1940 		 * by the receiver. This is subtle: if receiver wants x and x is
1941 		 * greater than the buffersize/MTU then receiver will complain
1942 		 * that it wants x while sender emits packets of smaller size y.
1943 		 * Therefore the above ...()->partial_cov statement is essential.
1944 		 */
1945 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
1946 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
1947 					    UDP_SKB_CB(skb)->cscov, up->pcrlen);
1948 			goto drop;
1949 		}
1950 	}
1951 
1952 	prefetch(&sk->sk_rmem_alloc);
1953 	if (rcu_access_pointer(sk->sk_filter) &&
1954 	    udp_lib_checksum_complete(skb))
1955 			goto csum_error;
1956 
1957 	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr)))
1958 		goto drop;
1959 
1960 	udp_csum_pull_header(skb);
1961 
1962 	ipv4_pktinfo_prepare(sk, skb);
1963 	return __udp_queue_rcv_skb(sk, skb);
1964 
1965 csum_error:
1966 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1967 drop:
1968 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1969 	atomic_inc(&sk->sk_drops);
1970 	kfree_skb(skb);
1971 	return -1;
1972 }
1973 
1974 /* For TCP sockets, sk_rx_dst is protected by socket lock
1975  * For UDP, we use xchg() to guard against concurrent changes.
1976  */
1977 static void udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
1978 {
1979 	struct dst_entry *old;
1980 
1981 	if (dst_hold_safe(dst)) {
1982 		old = xchg(&sk->sk_rx_dst, dst);
1983 		dst_release(old);
1984 	}
1985 }
1986 
1987 /*
1988  *	Multicasts and broadcasts go to each listener.
1989  *
1990  *	Note: called only from the BH handler context.
1991  */
1992 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1993 				    struct udphdr  *uh,
1994 				    __be32 saddr, __be32 daddr,
1995 				    struct udp_table *udptable,
1996 				    int proto)
1997 {
1998 	struct sock *sk, *first = NULL;
1999 	unsigned short hnum = ntohs(uh->dest);
2000 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2001 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2002 	unsigned int offset = offsetof(typeof(*sk), sk_node);
2003 	int dif = skb->dev->ifindex;
2004 	struct hlist_node *node;
2005 	struct sk_buff *nskb;
2006 
2007 	if (use_hash2) {
2008 		hash2_any = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2009 			    udptable->mask;
2010 		hash2 = udp4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2011 start_lookup:
2012 		hslot = &udptable->hash2[hash2];
2013 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2014 	}
2015 
2016 	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2017 		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2018 					 uh->source, saddr, dif, hnum))
2019 			continue;
2020 
2021 		if (!first) {
2022 			first = sk;
2023 			continue;
2024 		}
2025 		nskb = skb_clone(skb, GFP_ATOMIC);
2026 
2027 		if (unlikely(!nskb)) {
2028 			atomic_inc(&sk->sk_drops);
2029 			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2030 					IS_UDPLITE(sk));
2031 			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
2032 					IS_UDPLITE(sk));
2033 			continue;
2034 		}
2035 		if (udp_queue_rcv_skb(sk, nskb) > 0)
2036 			consume_skb(nskb);
2037 	}
2038 
2039 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2040 	if (use_hash2 && hash2 != hash2_any) {
2041 		hash2 = hash2_any;
2042 		goto start_lookup;
2043 	}
2044 
2045 	if (first) {
2046 		if (udp_queue_rcv_skb(first, skb) > 0)
2047 			consume_skb(skb);
2048 	} else {
2049 		kfree_skb(skb);
2050 		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2051 				proto == IPPROTO_UDPLITE);
2052 	}
2053 	return 0;
2054 }
2055 
2056 /* Initialize UDP checksum. If exited with zero value (success),
2057  * CHECKSUM_UNNECESSARY means, that no more checks are required.
2058  * Otherwise, csum completion requires chacksumming packet body,
2059  * including udp header and folding it to skb->csum.
2060  */
2061 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2062 				 int proto)
2063 {
2064 	int err;
2065 
2066 	UDP_SKB_CB(skb)->partial_cov = 0;
2067 	UDP_SKB_CB(skb)->cscov = skb->len;
2068 
2069 	if (proto == IPPROTO_UDPLITE) {
2070 		err = udplite_checksum_init(skb, uh);
2071 		if (err)
2072 			return err;
2073 	}
2074 
2075 	/* Note, we are only interested in != 0 or == 0, thus the
2076 	 * force to int.
2077 	 */
2078 	return (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2079 							 inet_compute_pseudo);
2080 }
2081 
2082 /*
2083  *	All we need to do is get the socket, and then do a checksum.
2084  */
2085 
2086 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2087 		   int proto)
2088 {
2089 	struct sock *sk;
2090 	struct udphdr *uh;
2091 	unsigned short ulen;
2092 	struct rtable *rt = skb_rtable(skb);
2093 	__be32 saddr, daddr;
2094 	struct net *net = dev_net(skb->dev);
2095 
2096 	/*
2097 	 *  Validate the packet.
2098 	 */
2099 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2100 		goto drop;		/* No space for header. */
2101 
2102 	uh   = udp_hdr(skb);
2103 	ulen = ntohs(uh->len);
2104 	saddr = ip_hdr(skb)->saddr;
2105 	daddr = ip_hdr(skb)->daddr;
2106 
2107 	if (ulen > skb->len)
2108 		goto short_packet;
2109 
2110 	if (proto == IPPROTO_UDP) {
2111 		/* UDP validates ulen. */
2112 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2113 			goto short_packet;
2114 		uh = udp_hdr(skb);
2115 	}
2116 
2117 	if (udp4_csum_init(skb, uh, proto))
2118 		goto csum_error;
2119 
2120 	sk = skb_steal_sock(skb);
2121 	if (sk) {
2122 		struct dst_entry *dst = skb_dst(skb);
2123 		int ret;
2124 
2125 		if (unlikely(sk->sk_rx_dst != dst))
2126 			udp_sk_rx_dst_set(sk, dst);
2127 
2128 		ret = udp_queue_rcv_skb(sk, skb);
2129 		sock_put(sk);
2130 		/* a return value > 0 means to resubmit the input, but
2131 		 * it wants the return to be -protocol, or 0
2132 		 */
2133 		if (ret > 0)
2134 			return -ret;
2135 		return 0;
2136 	}
2137 
2138 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2139 		return __udp4_lib_mcast_deliver(net, skb, uh,
2140 						saddr, daddr, udptable, proto);
2141 
2142 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2143 	if (sk) {
2144 		int ret;
2145 
2146 		if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2147 			skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check,
2148 						 inet_compute_pseudo);
2149 
2150 		ret = udp_queue_rcv_skb(sk, skb);
2151 
2152 		/* a return value > 0 means to resubmit the input, but
2153 		 * it wants the return to be -protocol, or 0
2154 		 */
2155 		if (ret > 0)
2156 			return -ret;
2157 		return 0;
2158 	}
2159 
2160 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2161 		goto drop;
2162 	nf_reset(skb);
2163 
2164 	/* No socket. Drop packet silently, if checksum is wrong */
2165 	if (udp_lib_checksum_complete(skb))
2166 		goto csum_error;
2167 
2168 	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2169 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2170 
2171 	/*
2172 	 * Hmm.  We got an UDP packet to a port to which we
2173 	 * don't wanna listen.  Ignore it.
2174 	 */
2175 	kfree_skb(skb);
2176 	return 0;
2177 
2178 short_packet:
2179 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2180 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2181 			    &saddr, ntohs(uh->source),
2182 			    ulen, skb->len,
2183 			    &daddr, ntohs(uh->dest));
2184 	goto drop;
2185 
2186 csum_error:
2187 	/*
2188 	 * RFC1122: OK.  Discards the bad packet silently (as far as
2189 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2190 	 */
2191 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2192 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2193 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2194 			    ulen);
2195 	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2196 drop:
2197 	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2198 	kfree_skb(skb);
2199 	return 0;
2200 }
2201 
2202 /* We can only early demux multicast if there is a single matching socket.
2203  * If more than one socket found returns NULL
2204  */
2205 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2206 						  __be16 loc_port, __be32 loc_addr,
2207 						  __be16 rmt_port, __be32 rmt_addr,
2208 						  int dif)
2209 {
2210 	struct sock *sk, *result;
2211 	unsigned short hnum = ntohs(loc_port);
2212 	unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
2213 	struct udp_hslot *hslot = &udp_table.hash[slot];
2214 
2215 	/* Do not bother scanning a too big list */
2216 	if (hslot->count > 10)
2217 		return NULL;
2218 
2219 	result = NULL;
2220 	sk_for_each_rcu(sk, &hslot->head) {
2221 		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2222 					rmt_port, rmt_addr, dif, hnum)) {
2223 			if (result)
2224 				return NULL;
2225 			result = sk;
2226 		}
2227 	}
2228 
2229 	return result;
2230 }
2231 
2232 /* For unicast we should only early demux connected sockets or we can
2233  * break forwarding setups.  The chains here can be long so only check
2234  * if the first socket is an exact match and if not move on.
2235  */
2236 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2237 					    __be16 loc_port, __be32 loc_addr,
2238 					    __be16 rmt_port, __be32 rmt_addr,
2239 					    int dif)
2240 {
2241 	unsigned short hnum = ntohs(loc_port);
2242 	unsigned int hash2 = udp4_portaddr_hash(net, loc_addr, hnum);
2243 	unsigned int slot2 = hash2 & udp_table.mask;
2244 	struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
2245 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2246 	const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
2247 	struct sock *sk;
2248 
2249 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2250 		if (INET_MATCH(sk, net, acookie, rmt_addr,
2251 			       loc_addr, ports, dif))
2252 			return sk;
2253 		/* Only check first socket in chain */
2254 		break;
2255 	}
2256 	return NULL;
2257 }
2258 
2259 void udp_v4_early_demux(struct sk_buff *skb)
2260 {
2261 	struct net *net = dev_net(skb->dev);
2262 	const struct iphdr *iph;
2263 	const struct udphdr *uh;
2264 	struct sock *sk = NULL;
2265 	struct dst_entry *dst;
2266 	int dif = skb->dev->ifindex;
2267 	int ours;
2268 
2269 	/* validate the packet */
2270 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2271 		return;
2272 
2273 	iph = ip_hdr(skb);
2274 	uh = udp_hdr(skb);
2275 
2276 	if (skb->pkt_type == PACKET_BROADCAST ||
2277 	    skb->pkt_type == PACKET_MULTICAST) {
2278 		struct in_device *in_dev = __in_dev_get_rcu(skb->dev);
2279 
2280 		if (!in_dev)
2281 			return;
2282 
2283 		/* we are supposed to accept bcast packets */
2284 		if (skb->pkt_type == PACKET_MULTICAST) {
2285 			ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2286 					       iph->protocol);
2287 			if (!ours)
2288 				return;
2289 		}
2290 
2291 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2292 						   uh->source, iph->saddr, dif);
2293 	} else if (skb->pkt_type == PACKET_HOST) {
2294 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2295 					     uh->source, iph->saddr, dif);
2296 	}
2297 
2298 	if (!sk || !atomic_inc_not_zero_hint(&sk->sk_refcnt, 2))
2299 		return;
2300 
2301 	skb->sk = sk;
2302 	skb->destructor = sock_efree;
2303 	dst = READ_ONCE(sk->sk_rx_dst);
2304 
2305 	if (dst)
2306 		dst = dst_check(dst, 0);
2307 	if (dst) {
2308 		/* set noref for now.
2309 		 * any place which wants to hold dst has to call
2310 		 * dst_hold_safe()
2311 		 */
2312 		skb_dst_set_noref(skb, dst);
2313 	}
2314 }
2315 
2316 int udp_rcv(struct sk_buff *skb)
2317 {
2318 	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2319 }
2320 
2321 void udp_destroy_sock(struct sock *sk)
2322 {
2323 	struct udp_sock *up = udp_sk(sk);
2324 	bool slow = lock_sock_fast(sk);
2325 	udp_flush_pending_frames(sk);
2326 	unlock_sock_fast(sk, slow);
2327 	if (static_key_false(&udp_encap_needed) && up->encap_type) {
2328 		void (*encap_destroy)(struct sock *sk);
2329 		encap_destroy = ACCESS_ONCE(up->encap_destroy);
2330 		if (encap_destroy)
2331 			encap_destroy(sk);
2332 	}
2333 }
2334 
2335 /*
2336  *	Socket option code for UDP
2337  */
2338 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2339 		       char __user *optval, unsigned int optlen,
2340 		       int (*push_pending_frames)(struct sock *))
2341 {
2342 	struct udp_sock *up = udp_sk(sk);
2343 	int val, valbool;
2344 	int err = 0;
2345 	int is_udplite = IS_UDPLITE(sk);
2346 
2347 	if (optlen < sizeof(int))
2348 		return -EINVAL;
2349 
2350 	if (get_user(val, (int __user *)optval))
2351 		return -EFAULT;
2352 
2353 	valbool = val ? 1 : 0;
2354 
2355 	switch (optname) {
2356 	case UDP_CORK:
2357 		if (val != 0) {
2358 			up->corkflag = 1;
2359 		} else {
2360 			up->corkflag = 0;
2361 			lock_sock(sk);
2362 			push_pending_frames(sk);
2363 			release_sock(sk);
2364 		}
2365 		break;
2366 
2367 	case UDP_ENCAP:
2368 		switch (val) {
2369 		case 0:
2370 		case UDP_ENCAP_ESPINUDP:
2371 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2372 			up->encap_rcv = xfrm4_udp_encap_rcv;
2373 			/* FALLTHROUGH */
2374 		case UDP_ENCAP_L2TPINUDP:
2375 			up->encap_type = val;
2376 			udp_encap_enable();
2377 			break;
2378 		default:
2379 			err = -ENOPROTOOPT;
2380 			break;
2381 		}
2382 		break;
2383 
2384 	case UDP_NO_CHECK6_TX:
2385 		up->no_check6_tx = valbool;
2386 		break;
2387 
2388 	case UDP_NO_CHECK6_RX:
2389 		up->no_check6_rx = valbool;
2390 		break;
2391 
2392 	/*
2393 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2394 	 */
2395 	/* The sender sets actual checksum coverage length via this option.
2396 	 * The case coverage > packet length is handled by send module. */
2397 	case UDPLITE_SEND_CSCOV:
2398 		if (!is_udplite)         /* Disable the option on UDP sockets */
2399 			return -ENOPROTOOPT;
2400 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2401 			val = 8;
2402 		else if (val > USHRT_MAX)
2403 			val = USHRT_MAX;
2404 		up->pcslen = val;
2405 		up->pcflag |= UDPLITE_SEND_CC;
2406 		break;
2407 
2408 	/* The receiver specifies a minimum checksum coverage value. To make
2409 	 * sense, this should be set to at least 8 (as done below). If zero is
2410 	 * used, this again means full checksum coverage.                     */
2411 	case UDPLITE_RECV_CSCOV:
2412 		if (!is_udplite)         /* Disable the option on UDP sockets */
2413 			return -ENOPROTOOPT;
2414 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2415 			val = 8;
2416 		else if (val > USHRT_MAX)
2417 			val = USHRT_MAX;
2418 		up->pcrlen = val;
2419 		up->pcflag |= UDPLITE_RECV_CC;
2420 		break;
2421 
2422 	default:
2423 		err = -ENOPROTOOPT;
2424 		break;
2425 	}
2426 
2427 	return err;
2428 }
2429 EXPORT_SYMBOL(udp_lib_setsockopt);
2430 
2431 int udp_setsockopt(struct sock *sk, int level, int optname,
2432 		   char __user *optval, unsigned int optlen)
2433 {
2434 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2435 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2436 					  udp_push_pending_frames);
2437 	return ip_setsockopt(sk, level, optname, optval, optlen);
2438 }
2439 
2440 #ifdef CONFIG_COMPAT
2441 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2442 			  char __user *optval, unsigned int optlen)
2443 {
2444 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2445 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2446 					  udp_push_pending_frames);
2447 	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2448 }
2449 #endif
2450 
2451 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2452 		       char __user *optval, int __user *optlen)
2453 {
2454 	struct udp_sock *up = udp_sk(sk);
2455 	int val, len;
2456 
2457 	if (get_user(len, optlen))
2458 		return -EFAULT;
2459 
2460 	len = min_t(unsigned int, len, sizeof(int));
2461 
2462 	if (len < 0)
2463 		return -EINVAL;
2464 
2465 	switch (optname) {
2466 	case UDP_CORK:
2467 		val = up->corkflag;
2468 		break;
2469 
2470 	case UDP_ENCAP:
2471 		val = up->encap_type;
2472 		break;
2473 
2474 	case UDP_NO_CHECK6_TX:
2475 		val = up->no_check6_tx;
2476 		break;
2477 
2478 	case UDP_NO_CHECK6_RX:
2479 		val = up->no_check6_rx;
2480 		break;
2481 
2482 	/* The following two cannot be changed on UDP sockets, the return is
2483 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2484 	case UDPLITE_SEND_CSCOV:
2485 		val = up->pcslen;
2486 		break;
2487 
2488 	case UDPLITE_RECV_CSCOV:
2489 		val = up->pcrlen;
2490 		break;
2491 
2492 	default:
2493 		return -ENOPROTOOPT;
2494 	}
2495 
2496 	if (put_user(len, optlen))
2497 		return -EFAULT;
2498 	if (copy_to_user(optval, &val, len))
2499 		return -EFAULT;
2500 	return 0;
2501 }
2502 EXPORT_SYMBOL(udp_lib_getsockopt);
2503 
2504 int udp_getsockopt(struct sock *sk, int level, int optname,
2505 		   char __user *optval, int __user *optlen)
2506 {
2507 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2508 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2509 	return ip_getsockopt(sk, level, optname, optval, optlen);
2510 }
2511 
2512 #ifdef CONFIG_COMPAT
2513 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2514 				 char __user *optval, int __user *optlen)
2515 {
2516 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2517 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2518 	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2519 }
2520 #endif
2521 /**
2522  * 	udp_poll - wait for a UDP event.
2523  *	@file - file struct
2524  *	@sock - socket
2525  *	@wait - poll table
2526  *
2527  *	This is same as datagram poll, except for the special case of
2528  *	blocking sockets. If application is using a blocking fd
2529  *	and a packet with checksum error is in the queue;
2530  *	then it could get return from select indicating data available
2531  *	but then block when reading it. Add special case code
2532  *	to work around these arguably broken applications.
2533  */
2534 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2535 {
2536 	unsigned int mask = datagram_poll(file, sock, wait);
2537 	struct sock *sk = sock->sk;
2538 
2539 	if (!skb_queue_empty(&udp_sk(sk)->reader_queue))
2540 		mask |= POLLIN | POLLRDNORM;
2541 
2542 	sock_rps_record_flow(sk);
2543 
2544 	/* Check for false positives due to checksum errors */
2545 	if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2546 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2547 		mask &= ~(POLLIN | POLLRDNORM);
2548 
2549 	return mask;
2550 
2551 }
2552 EXPORT_SYMBOL(udp_poll);
2553 
2554 int udp_abort(struct sock *sk, int err)
2555 {
2556 	lock_sock(sk);
2557 
2558 	sk->sk_err = err;
2559 	sk->sk_error_report(sk);
2560 	__udp_disconnect(sk, 0);
2561 
2562 	release_sock(sk);
2563 
2564 	return 0;
2565 }
2566 EXPORT_SYMBOL_GPL(udp_abort);
2567 
2568 struct proto udp_prot = {
2569 	.name		   = "UDP",
2570 	.owner		   = THIS_MODULE,
2571 	.close		   = udp_lib_close,
2572 	.connect	   = ip4_datagram_connect,
2573 	.disconnect	   = udp_disconnect,
2574 	.ioctl		   = udp_ioctl,
2575 	.init		   = udp_init_sock,
2576 	.destroy	   = udp_destroy_sock,
2577 	.setsockopt	   = udp_setsockopt,
2578 	.getsockopt	   = udp_getsockopt,
2579 	.sendmsg	   = udp_sendmsg,
2580 	.recvmsg	   = udp_recvmsg,
2581 	.sendpage	   = udp_sendpage,
2582 	.release_cb	   = ip4_datagram_release_cb,
2583 	.hash		   = udp_lib_hash,
2584 	.unhash		   = udp_lib_unhash,
2585 	.rehash		   = udp_v4_rehash,
2586 	.get_port	   = udp_v4_get_port,
2587 	.memory_allocated  = &udp_memory_allocated,
2588 	.sysctl_mem	   = sysctl_udp_mem,
2589 	.sysctl_wmem	   = &sysctl_udp_wmem_min,
2590 	.sysctl_rmem	   = &sysctl_udp_rmem_min,
2591 	.obj_size	   = sizeof(struct udp_sock),
2592 	.h.udp_table	   = &udp_table,
2593 #ifdef CONFIG_COMPAT
2594 	.compat_setsockopt = compat_udp_setsockopt,
2595 	.compat_getsockopt = compat_udp_getsockopt,
2596 #endif
2597 	.diag_destroy	   = udp_abort,
2598 };
2599 EXPORT_SYMBOL(udp_prot);
2600 
2601 /* ------------------------------------------------------------------------ */
2602 #ifdef CONFIG_PROC_FS
2603 
2604 static struct sock *udp_get_first(struct seq_file *seq, int start)
2605 {
2606 	struct sock *sk;
2607 	struct udp_iter_state *state = seq->private;
2608 	struct net *net = seq_file_net(seq);
2609 
2610 	for (state->bucket = start; state->bucket <= state->udp_table->mask;
2611 	     ++state->bucket) {
2612 		struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
2613 
2614 		if (hlist_empty(&hslot->head))
2615 			continue;
2616 
2617 		spin_lock_bh(&hslot->lock);
2618 		sk_for_each(sk, &hslot->head) {
2619 			if (!net_eq(sock_net(sk), net))
2620 				continue;
2621 			if (sk->sk_family == state->family)
2622 				goto found;
2623 		}
2624 		spin_unlock_bh(&hslot->lock);
2625 	}
2626 	sk = NULL;
2627 found:
2628 	return sk;
2629 }
2630 
2631 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2632 {
2633 	struct udp_iter_state *state = seq->private;
2634 	struct net *net = seq_file_net(seq);
2635 
2636 	do {
2637 		sk = sk_next(sk);
2638 	} while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
2639 
2640 	if (!sk) {
2641 		if (state->bucket <= state->udp_table->mask)
2642 			spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2643 		return udp_get_first(seq, state->bucket + 1);
2644 	}
2645 	return sk;
2646 }
2647 
2648 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2649 {
2650 	struct sock *sk = udp_get_first(seq, 0);
2651 
2652 	if (sk)
2653 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2654 			--pos;
2655 	return pos ? NULL : sk;
2656 }
2657 
2658 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2659 {
2660 	struct udp_iter_state *state = seq->private;
2661 	state->bucket = MAX_UDP_PORTS;
2662 
2663 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2664 }
2665 
2666 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2667 {
2668 	struct sock *sk;
2669 
2670 	if (v == SEQ_START_TOKEN)
2671 		sk = udp_get_idx(seq, 0);
2672 	else
2673 		sk = udp_get_next(seq, v);
2674 
2675 	++*pos;
2676 	return sk;
2677 }
2678 
2679 static void udp_seq_stop(struct seq_file *seq, void *v)
2680 {
2681 	struct udp_iter_state *state = seq->private;
2682 
2683 	if (state->bucket <= state->udp_table->mask)
2684 		spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2685 }
2686 
2687 int udp_seq_open(struct inode *inode, struct file *file)
2688 {
2689 	struct udp_seq_afinfo *afinfo = PDE_DATA(inode);
2690 	struct udp_iter_state *s;
2691 	int err;
2692 
2693 	err = seq_open_net(inode, file, &afinfo->seq_ops,
2694 			   sizeof(struct udp_iter_state));
2695 	if (err < 0)
2696 		return err;
2697 
2698 	s = ((struct seq_file *)file->private_data)->private;
2699 	s->family		= afinfo->family;
2700 	s->udp_table		= afinfo->udp_table;
2701 	return err;
2702 }
2703 EXPORT_SYMBOL(udp_seq_open);
2704 
2705 /* ------------------------------------------------------------------------ */
2706 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2707 {
2708 	struct proc_dir_entry *p;
2709 	int rc = 0;
2710 
2711 	afinfo->seq_ops.start		= udp_seq_start;
2712 	afinfo->seq_ops.next		= udp_seq_next;
2713 	afinfo->seq_ops.stop		= udp_seq_stop;
2714 
2715 	p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2716 			     afinfo->seq_fops, afinfo);
2717 	if (!p)
2718 		rc = -ENOMEM;
2719 	return rc;
2720 }
2721 EXPORT_SYMBOL(udp_proc_register);
2722 
2723 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2724 {
2725 	remove_proc_entry(afinfo->name, net->proc_net);
2726 }
2727 EXPORT_SYMBOL(udp_proc_unregister);
2728 
2729 /* ------------------------------------------------------------------------ */
2730 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2731 		int bucket)
2732 {
2733 	struct inet_sock *inet = inet_sk(sp);
2734 	__be32 dest = inet->inet_daddr;
2735 	__be32 src  = inet->inet_rcv_saddr;
2736 	__u16 destp	  = ntohs(inet->inet_dport);
2737 	__u16 srcp	  = ntohs(inet->inet_sport);
2738 
2739 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2740 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d",
2741 		bucket, src, srcp, dest, destp, sp->sk_state,
2742 		sk_wmem_alloc_get(sp),
2743 		sk_rmem_alloc_get(sp),
2744 		0, 0L, 0,
2745 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2746 		0, sock_i_ino(sp),
2747 		atomic_read(&sp->sk_refcnt), sp,
2748 		atomic_read(&sp->sk_drops));
2749 }
2750 
2751 int udp4_seq_show(struct seq_file *seq, void *v)
2752 {
2753 	seq_setwidth(seq, 127);
2754 	if (v == SEQ_START_TOKEN)
2755 		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2756 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2757 			   "inode ref pointer drops");
2758 	else {
2759 		struct udp_iter_state *state = seq->private;
2760 
2761 		udp4_format_sock(v, seq, state->bucket);
2762 	}
2763 	seq_pad(seq, '\n');
2764 	return 0;
2765 }
2766 
2767 static const struct file_operations udp_afinfo_seq_fops = {
2768 	.owner    = THIS_MODULE,
2769 	.open     = udp_seq_open,
2770 	.read     = seq_read,
2771 	.llseek   = seq_lseek,
2772 	.release  = seq_release_net
2773 };
2774 
2775 /* ------------------------------------------------------------------------ */
2776 static struct udp_seq_afinfo udp4_seq_afinfo = {
2777 	.name		= "udp",
2778 	.family		= AF_INET,
2779 	.udp_table	= &udp_table,
2780 	.seq_fops	= &udp_afinfo_seq_fops,
2781 	.seq_ops	= {
2782 		.show		= udp4_seq_show,
2783 	},
2784 };
2785 
2786 static int __net_init udp4_proc_init_net(struct net *net)
2787 {
2788 	return udp_proc_register(net, &udp4_seq_afinfo);
2789 }
2790 
2791 static void __net_exit udp4_proc_exit_net(struct net *net)
2792 {
2793 	udp_proc_unregister(net, &udp4_seq_afinfo);
2794 }
2795 
2796 static struct pernet_operations udp4_net_ops = {
2797 	.init = udp4_proc_init_net,
2798 	.exit = udp4_proc_exit_net,
2799 };
2800 
2801 int __init udp4_proc_init(void)
2802 {
2803 	return register_pernet_subsys(&udp4_net_ops);
2804 }
2805 
2806 void udp4_proc_exit(void)
2807 {
2808 	unregister_pernet_subsys(&udp4_net_ops);
2809 }
2810 #endif /* CONFIG_PROC_FS */
2811 
2812 static __initdata unsigned long uhash_entries;
2813 static int __init set_uhash_entries(char *str)
2814 {
2815 	ssize_t ret;
2816 
2817 	if (!str)
2818 		return 0;
2819 
2820 	ret = kstrtoul(str, 0, &uhash_entries);
2821 	if (ret)
2822 		return 0;
2823 
2824 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2825 		uhash_entries = UDP_HTABLE_SIZE_MIN;
2826 	return 1;
2827 }
2828 __setup("uhash_entries=", set_uhash_entries);
2829 
2830 void __init udp_table_init(struct udp_table *table, const char *name)
2831 {
2832 	unsigned int i;
2833 
2834 	table->hash = alloc_large_system_hash(name,
2835 					      2 * sizeof(struct udp_hslot),
2836 					      uhash_entries,
2837 					      21, /* one slot per 2 MB */
2838 					      0,
2839 					      &table->log,
2840 					      &table->mask,
2841 					      UDP_HTABLE_SIZE_MIN,
2842 					      64 * 1024);
2843 
2844 	table->hash2 = table->hash + (table->mask + 1);
2845 	for (i = 0; i <= table->mask; i++) {
2846 		INIT_HLIST_HEAD(&table->hash[i].head);
2847 		table->hash[i].count = 0;
2848 		spin_lock_init(&table->hash[i].lock);
2849 	}
2850 	for (i = 0; i <= table->mask; i++) {
2851 		INIT_HLIST_HEAD(&table->hash2[i].head);
2852 		table->hash2[i].count = 0;
2853 		spin_lock_init(&table->hash2[i].lock);
2854 	}
2855 }
2856 
2857 u32 udp_flow_hashrnd(void)
2858 {
2859 	static u32 hashrnd __read_mostly;
2860 
2861 	net_get_random_once(&hashrnd, sizeof(hashrnd));
2862 
2863 	return hashrnd;
2864 }
2865 EXPORT_SYMBOL(udp_flow_hashrnd);
2866 
2867 void __init udp_init(void)
2868 {
2869 	unsigned long limit;
2870 	unsigned int i;
2871 
2872 	udp_table_init(&udp_table, "UDP");
2873 	limit = nr_free_buffer_pages() / 8;
2874 	limit = max(limit, 128UL);
2875 	sysctl_udp_mem[0] = limit / 4 * 3;
2876 	sysctl_udp_mem[1] = limit;
2877 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2878 
2879 	sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2880 	sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2881 
2882 	/* 16 spinlocks per cpu */
2883 	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
2884 	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
2885 				GFP_KERNEL);
2886 	if (!udp_busylocks)
2887 		panic("UDP: failed to alloc udp_busylocks\n");
2888 	for (i = 0; i < (1U << udp_busylocks_log); i++)
2889 		spin_lock_init(udp_busylocks + i);
2890 }
2891