xref: /linux/net/ipv4/udp.c (revision eb2bce7f5e7ac1ca6da434461217fadf3c688d2c)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The User Datagram Protocol (UDP).
7  *
8  * Version:	$Id: udp.c,v 1.102 2002/02/01 22:01:04 davem Exp $
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
13  *		Alan Cox, <Alan.Cox@linux.org>
14  *		Hirokazu Takahashi, <taka@valinux.co.jp>
15  *
16  * Fixes:
17  *		Alan Cox	:	verify_area() calls
18  *		Alan Cox	: 	stopped close while in use off icmp
19  *					messages. Not a fix but a botch that
20  *					for udp at least is 'valid'.
21  *		Alan Cox	:	Fixed icmp handling properly
22  *		Alan Cox	: 	Correct error for oversized datagrams
23  *		Alan Cox	:	Tidied select() semantics.
24  *		Alan Cox	:	udp_err() fixed properly, also now
25  *					select and read wake correctly on errors
26  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
27  *		Alan Cox	:	UDP can count its memory
28  *		Alan Cox	:	send to an unknown connection causes
29  *					an ECONNREFUSED off the icmp, but
30  *					does NOT close.
31  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
32  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
33  *					bug no longer crashes it.
34  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
35  *		Alan Cox	:	Uses skb_free_datagram
36  *		Alan Cox	:	Added get/set sockopt support.
37  *		Alan Cox	:	Broadcasting without option set returns EACCES.
38  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
39  *		Alan Cox	:	Use ip_tos and ip_ttl
40  *		Alan Cox	:	SNMP Mibs
41  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
42  *		Matt Dillon	:	UDP length checks.
43  *		Alan Cox	:	Smarter af_inet used properly.
44  *		Alan Cox	:	Use new kernel side addressing.
45  *		Alan Cox	:	Incorrect return on truncated datagram receive.
46  *	Arnt Gulbrandsen 	:	New udp_send and stuff
47  *		Alan Cox	:	Cache last socket
48  *		Alan Cox	:	Route cache
49  *		Jon Peatfield	:	Minor efficiency fix to sendto().
50  *		Mike Shaver	:	RFC1122 checks.
51  *		Alan Cox	:	Nonblocking error fix.
52  *	Willy Konynenberg	:	Transparent proxying support.
53  *		Mike McLagan	:	Routing by source
54  *		David S. Miller	:	New socket lookup architecture.
55  *					Last socket cache retained as it
56  *					does have a high hit rate.
57  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
58  *		Andi Kleen	:	Some cleanups, cache destination entry
59  *					for connect.
60  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
61  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
62  *					return ENOTCONN for unconnected sockets (POSIX)
63  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
64  *					bound-to-device socket
65  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
66  *					datagrams.
67  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
68  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
69  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
70  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
71  *					a single port at the same time.
72  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
73  *
74  *
75  *		This program is free software; you can redistribute it and/or
76  *		modify it under the terms of the GNU General Public License
77  *		as published by the Free Software Foundation; either version
78  *		2 of the License, or (at your option) any later version.
79  */
80 
81 #include <asm/system.h>
82 #include <asm/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/types.h>
85 #include <linux/fcntl.h>
86 #include <linux/module.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/igmp.h>
90 #include <linux/in.h>
91 #include <linux/errno.h>
92 #include <linux/timer.h>
93 #include <linux/mm.h>
94 #include <linux/inet.h>
95 #include <linux/netdevice.h>
96 #include <net/tcp_states.h>
97 #include <linux/skbuff.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <net/icmp.h>
101 #include <net/route.h>
102 #include <net/checksum.h>
103 #include <net/xfrm.h>
104 #include "udp_impl.h"
105 
106 /*
107  *	Snmp MIB for the UDP layer
108  */
109 
110 DEFINE_SNMP_STAT(struct udp_mib, udp_statistics) __read_mostly;
111 
112 struct hlist_head udp_hash[UDP_HTABLE_SIZE];
113 DEFINE_RWLOCK(udp_hash_lock);
114 
115 static int udp_port_rover;
116 
117 /*
118  * Note about this hash function :
119  * Typical use is probably daddr = 0, only dport is going to vary hash
120  */
121 static inline unsigned int hash_port_and_addr(__u16 port, __be32 addr)
122 {
123 	addr ^= addr >> 16;
124 	addr ^= addr >> 8;
125 	return port ^ addr;
126 }
127 
128 static inline int __udp_lib_port_inuse(unsigned int hash, int port,
129 	__be32 daddr, struct hlist_head udptable[])
130 {
131 	struct sock *sk;
132 	struct hlist_node *node;
133 	struct inet_sock *inet;
134 
135 	sk_for_each(sk, node, &udptable[hash & (UDP_HTABLE_SIZE - 1)]) {
136 		if (sk->sk_hash != hash)
137 			continue;
138 		inet = inet_sk(sk);
139 		if (inet->num != port)
140 			continue;
141 		if (inet->rcv_saddr == daddr)
142 			return 1;
143 	}
144 	return 0;
145 }
146 
147 /**
148  *  __udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
149  *
150  *  @sk:          socket struct in question
151  *  @snum:        port number to look up
152  *  @udptable:    hash list table, must be of UDP_HTABLE_SIZE
153  *  @port_rover:  pointer to record of last unallocated port
154  *  @saddr_comp:  AF-dependent comparison of bound local IP addresses
155  */
156 int __udp_lib_get_port(struct sock *sk, unsigned short snum,
157 		       struct hlist_head udptable[], int *port_rover,
158 		       int (*saddr_comp)(const struct sock *sk1,
159 					 const struct sock *sk2 )    )
160 {
161 	struct hlist_node *node;
162 	struct hlist_head *head;
163 	struct sock *sk2;
164 	unsigned int hash;
165 	int    error = 1;
166 
167 	write_lock_bh(&udp_hash_lock);
168 	if (snum == 0) {
169 		int best_size_so_far, best, result, i;
170 
171 		if (*port_rover > sysctl_local_port_range[1] ||
172 		    *port_rover < sysctl_local_port_range[0])
173 			*port_rover = sysctl_local_port_range[0];
174 		best_size_so_far = 32767;
175 		best = result = *port_rover;
176 		for (i = 0; i < UDP_HTABLE_SIZE; i++, result++) {
177 			int size;
178 
179 			hash = hash_port_and_addr(result,
180 					inet_sk(sk)->rcv_saddr);
181 			head = &udptable[hash & (UDP_HTABLE_SIZE - 1)];
182 			if (hlist_empty(head)) {
183 				if (result > sysctl_local_port_range[1])
184 					result = sysctl_local_port_range[0] +
185 						((result - sysctl_local_port_range[0]) &
186 						 (UDP_HTABLE_SIZE - 1));
187 				goto gotit;
188 			}
189 			size = 0;
190 			sk_for_each(sk2, node, head) {
191 				if (++size >= best_size_so_far)
192 					goto next;
193 			}
194 			best_size_so_far = size;
195 			best = result;
196 		next:
197 			;
198 		}
199 		result = best;
200 		for (i = 0; i < (1 << 16) / UDP_HTABLE_SIZE;
201 		     i++, result += UDP_HTABLE_SIZE) {
202 			if (result > sysctl_local_port_range[1])
203 				result = sysctl_local_port_range[0]
204 					+ ((result - sysctl_local_port_range[0]) &
205 					   (UDP_HTABLE_SIZE - 1));
206 			hash = hash_port_and_addr(result, 0);
207 			if (__udp_lib_port_inuse(hash, result,
208 						 0, udptable))
209 				continue;
210 			if (!inet_sk(sk)->rcv_saddr)
211 				break;
212 
213 			hash = hash_port_and_addr(result,
214 					inet_sk(sk)->rcv_saddr);
215 			if (! __udp_lib_port_inuse(hash, result,
216 				inet_sk(sk)->rcv_saddr, udptable))
217 				break;
218 		}
219 		if (i >= (1 << 16) / UDP_HTABLE_SIZE)
220 			goto fail;
221 gotit:
222 		*port_rover = snum = result;
223 	} else {
224 		hash = hash_port_and_addr(snum, 0);
225 		head = &udptable[hash & (UDP_HTABLE_SIZE - 1)];
226 
227 		sk_for_each(sk2, node, head)
228 			if (sk2->sk_hash == hash &&
229 			    sk2 != sk &&
230 			    inet_sk(sk2)->num == snum &&
231 			    (!sk2->sk_reuse || !sk->sk_reuse) &&
232 			    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
233 			     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
234 			    (*saddr_comp)(sk, sk2))
235 				goto fail;
236 
237 		if (inet_sk(sk)->rcv_saddr) {
238 			hash = hash_port_and_addr(snum,
239 						  inet_sk(sk)->rcv_saddr);
240 			head = &udptable[hash & (UDP_HTABLE_SIZE - 1)];
241 
242 			sk_for_each(sk2, node, head)
243 				if (sk2->sk_hash == hash &&
244 				    sk2 != sk &&
245 				    inet_sk(sk2)->num == snum &&
246 				    (!sk2->sk_reuse || !sk->sk_reuse) &&
247 				    (!sk2->sk_bound_dev_if ||
248 				     !sk->sk_bound_dev_if ||
249 				     sk2->sk_bound_dev_if ==
250 				     sk->sk_bound_dev_if) &&
251 				    (*saddr_comp)(sk, sk2))
252 					goto fail;
253 		}
254 	}
255 	inet_sk(sk)->num = snum;
256 	sk->sk_hash = hash;
257 	if (sk_unhashed(sk)) {
258 		head = &udptable[hash & (UDP_HTABLE_SIZE - 1)];
259 		sk_add_node(sk, head);
260 		sock_prot_inc_use(sk->sk_prot);
261 	}
262 	error = 0;
263 fail:
264 	write_unlock_bh(&udp_hash_lock);
265 	return error;
266 }
267 
268 int udp_get_port(struct sock *sk, unsigned short snum,
269 			int (*scmp)(const struct sock *, const struct sock *))
270 {
271 	return  __udp_lib_get_port(sk, snum, udp_hash, &udp_port_rover, scmp);
272 }
273 
274 int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
275 {
276 	struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
277 
278 	return 	( !ipv6_only_sock(sk2)  &&
279 		  (!inet1->rcv_saddr || !inet2->rcv_saddr ||
280 		   inet1->rcv_saddr == inet2->rcv_saddr      ));
281 }
282 
283 static inline int udp_v4_get_port(struct sock *sk, unsigned short snum)
284 {
285 	return udp_get_port(sk, snum, ipv4_rcv_saddr_equal);
286 }
287 
288 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
289  * harder than this. -DaveM
290  */
291 static struct sock *__udp4_lib_lookup(__be32 saddr, __be16 sport,
292 				      __be32 daddr, __be16 dport,
293 				      int dif, struct hlist_head udptable[])
294 {
295 	struct sock *sk, *result = NULL;
296 	struct hlist_node *node;
297 	unsigned int hash, hashwild;
298 	int score, best = -1, hport = ntohs(dport);
299 
300  	hash = hash_port_and_addr(hport, daddr);
301  	hashwild = hash_port_and_addr(hport, 0);
302 
303 	read_lock(&udp_hash_lock);
304 
305 lookup:
306 
307 	sk_for_each(sk, node, &udptable[hash & (UDP_HTABLE_SIZE - 1)]) {
308 		struct inet_sock *inet = inet_sk(sk);
309 
310 		if (sk->sk_hash != hash || ipv6_only_sock(sk) ||
311 			inet->num != hport)
312 			continue;
313 
314 		score = (sk->sk_family == PF_INET ? 1 : 0);
315 		if (inet->rcv_saddr) {
316 			if (inet->rcv_saddr != daddr)
317 				continue;
318 			score+=2;
319 		}
320 		if (inet->daddr) {
321 			if (inet->daddr != saddr)
322 				continue;
323 			score+=2;
324 		}
325 		if (inet->dport) {
326 			if (inet->dport != sport)
327 				continue;
328 			score+=2;
329 		}
330 		if (sk->sk_bound_dev_if) {
331 			if (sk->sk_bound_dev_if != dif)
332 				continue;
333 			score+=2;
334 		}
335 		if (score == 9) {
336 			result = sk;
337 			goto found;
338 		} else if (score > best) {
339 			result = sk;
340 			best = score;
341 		}
342 	}
343 
344 	if (hash != hashwild) {
345 		hash = hashwild;
346 		goto lookup;
347 	}
348 found:
349 	if (result)
350 		sock_hold(result);
351 	read_unlock(&udp_hash_lock);
352 	return result;
353 }
354 
355 static inline struct sock *udp_v4_mcast_next(struct sock *sk, unsigned int hnum,
356 					     int hport, __be32 loc_addr,
357 					     __be16 rmt_port, __be32 rmt_addr,
358 					     int dif)
359 {
360 	struct hlist_node *node;
361 	struct sock *s = sk;
362 
363 	sk_for_each_from(s, node) {
364 		struct inet_sock *inet = inet_sk(s);
365 
366 		if (s->sk_hash != hnum					||
367 		    inet->num != hport					||
368 		    (inet->daddr && inet->daddr != rmt_addr)		||
369 		    (inet->dport != rmt_port && inet->dport)		||
370 		    (inet->rcv_saddr && inet->rcv_saddr != loc_addr)	||
371 		    ipv6_only_sock(s)					||
372 		    (s->sk_bound_dev_if && s->sk_bound_dev_if != dif))
373 			continue;
374 		if (!ip_mc_sf_allow(s, loc_addr, rmt_addr, dif))
375 			continue;
376 		goto found;
377 	}
378 	s = NULL;
379 found:
380 	return s;
381 }
382 
383 /*
384  * This routine is called by the ICMP module when it gets some
385  * sort of error condition.  If err < 0 then the socket should
386  * be closed and the error returned to the user.  If err > 0
387  * it's just the icmp type << 8 | icmp code.
388  * Header points to the ip header of the error packet. We move
389  * on past this. Then (as it used to claim before adjustment)
390  * header points to the first 8 bytes of the udp header.  We need
391  * to find the appropriate port.
392  */
393 
394 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct hlist_head udptable[])
395 {
396 	struct inet_sock *inet;
397 	struct iphdr *iph = (struct iphdr*)skb->data;
398 	struct udphdr *uh = (struct udphdr*)(skb->data+(iph->ihl<<2));
399 	const int type = icmp_hdr(skb)->type;
400 	const int code = icmp_hdr(skb)->code;
401 	struct sock *sk;
402 	int harderr;
403 	int err;
404 
405 	sk = __udp4_lib_lookup(iph->daddr, uh->dest, iph->saddr, uh->source,
406 			       skb->dev->ifindex, udptable		    );
407 	if (sk == NULL) {
408 		ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
409 		return;	/* No socket for error */
410 	}
411 
412 	err = 0;
413 	harderr = 0;
414 	inet = inet_sk(sk);
415 
416 	switch (type) {
417 	default:
418 	case ICMP_TIME_EXCEEDED:
419 		err = EHOSTUNREACH;
420 		break;
421 	case ICMP_SOURCE_QUENCH:
422 		goto out;
423 	case ICMP_PARAMETERPROB:
424 		err = EPROTO;
425 		harderr = 1;
426 		break;
427 	case ICMP_DEST_UNREACH:
428 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
429 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
430 				err = EMSGSIZE;
431 				harderr = 1;
432 				break;
433 			}
434 			goto out;
435 		}
436 		err = EHOSTUNREACH;
437 		if (code <= NR_ICMP_UNREACH) {
438 			harderr = icmp_err_convert[code].fatal;
439 			err = icmp_err_convert[code].errno;
440 		}
441 		break;
442 	}
443 
444 	/*
445 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
446 	 *	4.1.3.3.
447 	 */
448 	if (!inet->recverr) {
449 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
450 			goto out;
451 	} else {
452 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8*)(uh+1));
453 	}
454 	sk->sk_err = err;
455 	sk->sk_error_report(sk);
456 out:
457 	sock_put(sk);
458 }
459 
460 void udp_err(struct sk_buff *skb, u32 info)
461 {
462 	return __udp4_lib_err(skb, info, udp_hash);
463 }
464 
465 /*
466  * Throw away all pending data and cancel the corking. Socket is locked.
467  */
468 static void udp_flush_pending_frames(struct sock *sk)
469 {
470 	struct udp_sock *up = udp_sk(sk);
471 
472 	if (up->pending) {
473 		up->len = 0;
474 		up->pending = 0;
475 		ip_flush_pending_frames(sk);
476 	}
477 }
478 
479 /**
480  * 	udp4_hwcsum_outgoing  -  handle outgoing HW checksumming
481  * 	@sk: 	socket we are sending on
482  * 	@skb: 	sk_buff containing the filled-in UDP header
483  * 	        (checksum field must be zeroed out)
484  */
485 static void udp4_hwcsum_outgoing(struct sock *sk, struct sk_buff *skb,
486 				 __be32 src, __be32 dst, int len      )
487 {
488 	unsigned int offset;
489 	struct udphdr *uh = udp_hdr(skb);
490 	__wsum csum = 0;
491 
492 	if (skb_queue_len(&sk->sk_write_queue) == 1) {
493 		/*
494 		 * Only one fragment on the socket.
495 		 */
496 		skb->csum_start = skb_transport_header(skb) - skb->head;
497 		skb->csum_offset = offsetof(struct udphdr, check);
498 		uh->check = ~csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, 0);
499 	} else {
500 		/*
501 		 * HW-checksum won't work as there are two or more
502 		 * fragments on the socket so that all csums of sk_buffs
503 		 * should be together
504 		 */
505 		offset = skb_transport_offset(skb);
506 		skb->csum = skb_checksum(skb, offset, skb->len - offset, 0);
507 
508 		skb->ip_summed = CHECKSUM_NONE;
509 
510 		skb_queue_walk(&sk->sk_write_queue, skb) {
511 			csum = csum_add(csum, skb->csum);
512 		}
513 
514 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
515 		if (uh->check == 0)
516 			uh->check = CSUM_MANGLED_0;
517 	}
518 }
519 
520 /*
521  * Push out all pending data as one UDP datagram. Socket is locked.
522  */
523 static int udp_push_pending_frames(struct sock *sk)
524 {
525 	struct udp_sock  *up = udp_sk(sk);
526 	struct inet_sock *inet = inet_sk(sk);
527 	struct flowi *fl = &inet->cork.fl;
528 	struct sk_buff *skb;
529 	struct udphdr *uh;
530 	int err = 0;
531 	__wsum csum = 0;
532 
533 	/* Grab the skbuff where UDP header space exists. */
534 	if ((skb = skb_peek(&sk->sk_write_queue)) == NULL)
535 		goto out;
536 
537 	/*
538 	 * Create a UDP header
539 	 */
540 	uh = udp_hdr(skb);
541 	uh->source = fl->fl_ip_sport;
542 	uh->dest = fl->fl_ip_dport;
543 	uh->len = htons(up->len);
544 	uh->check = 0;
545 
546 	if (up->pcflag)  				 /*     UDP-Lite      */
547 		csum  = udplite_csum_outgoing(sk, skb);
548 
549 	else if (sk->sk_no_check == UDP_CSUM_NOXMIT) {   /* UDP csum disabled */
550 
551 		skb->ip_summed = CHECKSUM_NONE;
552 		goto send;
553 
554 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
555 
556 		udp4_hwcsum_outgoing(sk, skb, fl->fl4_src,fl->fl4_dst, up->len);
557 		goto send;
558 
559 	} else						 /*   `normal' UDP    */
560 		csum = udp_csum_outgoing(sk, skb);
561 
562 	/* add protocol-dependent pseudo-header */
563 	uh->check = csum_tcpudp_magic(fl->fl4_src, fl->fl4_dst, up->len,
564 				      sk->sk_protocol, csum             );
565 	if (uh->check == 0)
566 		uh->check = CSUM_MANGLED_0;
567 
568 send:
569 	err = ip_push_pending_frames(sk);
570 out:
571 	up->len = 0;
572 	up->pending = 0;
573 	return err;
574 }
575 
576 int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
577 		size_t len)
578 {
579 	struct inet_sock *inet = inet_sk(sk);
580 	struct udp_sock *up = udp_sk(sk);
581 	int ulen = len;
582 	struct ipcm_cookie ipc;
583 	struct rtable *rt = NULL;
584 	int free = 0;
585 	int connected = 0;
586 	__be32 daddr, faddr, saddr;
587 	__be16 dport;
588 	u8  tos;
589 	int err, is_udplite = up->pcflag;
590 	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
591 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
592 
593 	if (len > 0xFFFF)
594 		return -EMSGSIZE;
595 
596 	/*
597 	 *	Check the flags.
598 	 */
599 
600 	if (msg->msg_flags&MSG_OOB)	/* Mirror BSD error message compatibility */
601 		return -EOPNOTSUPP;
602 
603 	ipc.opt = NULL;
604 
605 	if (up->pending) {
606 		/*
607 		 * There are pending frames.
608 		 * The socket lock must be held while it's corked.
609 		 */
610 		lock_sock(sk);
611 		if (likely(up->pending)) {
612 			if (unlikely(up->pending != AF_INET)) {
613 				release_sock(sk);
614 				return -EINVAL;
615 			}
616 			goto do_append_data;
617 		}
618 		release_sock(sk);
619 	}
620 	ulen += sizeof(struct udphdr);
621 
622 	/*
623 	 *	Get and verify the address.
624 	 */
625 	if (msg->msg_name) {
626 		struct sockaddr_in * usin = (struct sockaddr_in*)msg->msg_name;
627 		if (msg->msg_namelen < sizeof(*usin))
628 			return -EINVAL;
629 		if (usin->sin_family != AF_INET) {
630 			if (usin->sin_family != AF_UNSPEC)
631 				return -EAFNOSUPPORT;
632 		}
633 
634 		daddr = usin->sin_addr.s_addr;
635 		dport = usin->sin_port;
636 		if (dport == 0)
637 			return -EINVAL;
638 	} else {
639 		if (sk->sk_state != TCP_ESTABLISHED)
640 			return -EDESTADDRREQ;
641 		daddr = inet->daddr;
642 		dport = inet->dport;
643 		/* Open fast path for connected socket.
644 		   Route will not be used, if at least one option is set.
645 		 */
646 		connected = 1;
647 	}
648 	ipc.addr = inet->saddr;
649 
650 	ipc.oif = sk->sk_bound_dev_if;
651 	if (msg->msg_controllen) {
652 		err = ip_cmsg_send(msg, &ipc);
653 		if (err)
654 			return err;
655 		if (ipc.opt)
656 			free = 1;
657 		connected = 0;
658 	}
659 	if (!ipc.opt)
660 		ipc.opt = inet->opt;
661 
662 	saddr = ipc.addr;
663 	ipc.addr = faddr = daddr;
664 
665 	if (ipc.opt && ipc.opt->srr) {
666 		if (!daddr)
667 			return -EINVAL;
668 		faddr = ipc.opt->faddr;
669 		connected = 0;
670 	}
671 	tos = RT_TOS(inet->tos);
672 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
673 	    (msg->msg_flags & MSG_DONTROUTE) ||
674 	    (ipc.opt && ipc.opt->is_strictroute)) {
675 		tos |= RTO_ONLINK;
676 		connected = 0;
677 	}
678 
679 	if (MULTICAST(daddr)) {
680 		if (!ipc.oif)
681 			ipc.oif = inet->mc_index;
682 		if (!saddr)
683 			saddr = inet->mc_addr;
684 		connected = 0;
685 	}
686 
687 	if (connected)
688 		rt = (struct rtable*)sk_dst_check(sk, 0);
689 
690 	if (rt == NULL) {
691 		struct flowi fl = { .oif = ipc.oif,
692 				    .nl_u = { .ip4_u =
693 					      { .daddr = faddr,
694 						.saddr = saddr,
695 						.tos = tos } },
696 				    .proto = sk->sk_protocol,
697 				    .uli_u = { .ports =
698 					       { .sport = inet->sport,
699 						 .dport = dport } } };
700 		security_sk_classify_flow(sk, &fl);
701 		err = ip_route_output_flow(&rt, &fl, sk, 1);
702 		if (err)
703 			goto out;
704 
705 		err = -EACCES;
706 		if ((rt->rt_flags & RTCF_BROADCAST) &&
707 		    !sock_flag(sk, SOCK_BROADCAST))
708 			goto out;
709 		if (connected)
710 			sk_dst_set(sk, dst_clone(&rt->u.dst));
711 	}
712 
713 	if (msg->msg_flags&MSG_CONFIRM)
714 		goto do_confirm;
715 back_from_confirm:
716 
717 	saddr = rt->rt_src;
718 	if (!ipc.addr)
719 		daddr = ipc.addr = rt->rt_dst;
720 
721 	lock_sock(sk);
722 	if (unlikely(up->pending)) {
723 		/* The socket is already corked while preparing it. */
724 		/* ... which is an evident application bug. --ANK */
725 		release_sock(sk);
726 
727 		LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 2\n");
728 		err = -EINVAL;
729 		goto out;
730 	}
731 	/*
732 	 *	Now cork the socket to pend data.
733 	 */
734 	inet->cork.fl.fl4_dst = daddr;
735 	inet->cork.fl.fl_ip_dport = dport;
736 	inet->cork.fl.fl4_src = saddr;
737 	inet->cork.fl.fl_ip_sport = inet->sport;
738 	up->pending = AF_INET;
739 
740 do_append_data:
741 	up->len += ulen;
742 	getfrag  =  is_udplite ?  udplite_getfrag : ip_generic_getfrag;
743 	err = ip_append_data(sk, getfrag, msg->msg_iov, ulen,
744 			sizeof(struct udphdr), &ipc, rt,
745 			corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
746 	if (err)
747 		udp_flush_pending_frames(sk);
748 	else if (!corkreq)
749 		err = udp_push_pending_frames(sk);
750 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
751 		up->pending = 0;
752 	release_sock(sk);
753 
754 out:
755 	ip_rt_put(rt);
756 	if (free)
757 		kfree(ipc.opt);
758 	if (!err) {
759 		UDP_INC_STATS_USER(UDP_MIB_OUTDATAGRAMS, is_udplite);
760 		return len;
761 	}
762 	/*
763 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
764 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
765 	 * we don't have a good statistic (IpOutDiscards but it can be too many
766 	 * things).  We could add another new stat but at least for now that
767 	 * seems like overkill.
768 	 */
769 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
770 		UDP_INC_STATS_USER(UDP_MIB_SNDBUFERRORS, is_udplite);
771 	}
772 	return err;
773 
774 do_confirm:
775 	dst_confirm(&rt->u.dst);
776 	if (!(msg->msg_flags&MSG_PROBE) || len)
777 		goto back_from_confirm;
778 	err = 0;
779 	goto out;
780 }
781 
782 int udp_sendpage(struct sock *sk, struct page *page, int offset,
783 		 size_t size, int flags)
784 {
785 	struct udp_sock *up = udp_sk(sk);
786 	int ret;
787 
788 	if (!up->pending) {
789 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
790 
791 		/* Call udp_sendmsg to specify destination address which
792 		 * sendpage interface can't pass.
793 		 * This will succeed only when the socket is connected.
794 		 */
795 		ret = udp_sendmsg(NULL, sk, &msg, 0);
796 		if (ret < 0)
797 			return ret;
798 	}
799 
800 	lock_sock(sk);
801 
802 	if (unlikely(!up->pending)) {
803 		release_sock(sk);
804 
805 		LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 3\n");
806 		return -EINVAL;
807 	}
808 
809 	ret = ip_append_page(sk, page, offset, size, flags);
810 	if (ret == -EOPNOTSUPP) {
811 		release_sock(sk);
812 		return sock_no_sendpage(sk->sk_socket, page, offset,
813 					size, flags);
814 	}
815 	if (ret < 0) {
816 		udp_flush_pending_frames(sk);
817 		goto out;
818 	}
819 
820 	up->len += size;
821 	if (!(up->corkflag || (flags&MSG_MORE)))
822 		ret = udp_push_pending_frames(sk);
823 	if (!ret)
824 		ret = size;
825 out:
826 	release_sock(sk);
827 	return ret;
828 }
829 
830 /*
831  *	IOCTL requests applicable to the UDP protocol
832  */
833 
834 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
835 {
836 	switch (cmd) {
837 	case SIOCOUTQ:
838 	{
839 		int amount = atomic_read(&sk->sk_wmem_alloc);
840 		return put_user(amount, (int __user *)arg);
841 	}
842 
843 	case SIOCINQ:
844 	{
845 		struct sk_buff *skb;
846 		unsigned long amount;
847 
848 		amount = 0;
849 		spin_lock_bh(&sk->sk_receive_queue.lock);
850 		skb = skb_peek(&sk->sk_receive_queue);
851 		if (skb != NULL) {
852 			/*
853 			 * We will only return the amount
854 			 * of this packet since that is all
855 			 * that will be read.
856 			 */
857 			amount = skb->len - sizeof(struct udphdr);
858 		}
859 		spin_unlock_bh(&sk->sk_receive_queue.lock);
860 		return put_user(amount, (int __user *)arg);
861 	}
862 
863 	default:
864 		return -ENOIOCTLCMD;
865 	}
866 
867 	return 0;
868 }
869 
870 /*
871  * 	This should be easy, if there is something there we
872  * 	return it, otherwise we block.
873  */
874 
875 int udp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
876 		size_t len, int noblock, int flags, int *addr_len)
877 {
878 	struct inet_sock *inet = inet_sk(sk);
879 	struct sockaddr_in *sin = (struct sockaddr_in *)msg->msg_name;
880 	struct sk_buff *skb;
881 	unsigned int ulen, copied;
882 	int err;
883 	int is_udplite = IS_UDPLITE(sk);
884 
885 	/*
886 	 *	Check any passed addresses
887 	 */
888 	if (addr_len)
889 		*addr_len=sizeof(*sin);
890 
891 	if (flags & MSG_ERRQUEUE)
892 		return ip_recv_error(sk, msg, len);
893 
894 try_again:
895 	skb = skb_recv_datagram(sk, flags, noblock, &err);
896 	if (!skb)
897 		goto out;
898 
899 	ulen = skb->len - sizeof(struct udphdr);
900 	copied = len;
901 	if (copied > ulen)
902 		copied = ulen;
903 	else if (copied < ulen)
904 		msg->msg_flags |= MSG_TRUNC;
905 
906 	/*
907 	 * If checksum is needed at all, try to do it while copying the
908 	 * data.  If the data is truncated, or if we only want a partial
909 	 * coverage checksum (UDP-Lite), do it before the copy.
910 	 */
911 
912 	if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) {
913 		if (udp_lib_checksum_complete(skb))
914 			goto csum_copy_err;
915 	}
916 
917 	if (skb_csum_unnecessary(skb))
918 		err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr),
919 					      msg->msg_iov, copied       );
920 	else {
921 		err = skb_copy_and_csum_datagram_iovec(skb, sizeof(struct udphdr), msg->msg_iov);
922 
923 		if (err == -EINVAL)
924 			goto csum_copy_err;
925 	}
926 
927 	if (err)
928 		goto out_free;
929 
930 	sock_recv_timestamp(msg, sk, skb);
931 
932 	/* Copy the address. */
933 	if (sin)
934 	{
935 		sin->sin_family = AF_INET;
936 		sin->sin_port = udp_hdr(skb)->source;
937 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
938 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
939 	}
940 	if (inet->cmsg_flags)
941 		ip_cmsg_recv(msg, skb);
942 
943 	err = copied;
944 	if (flags & MSG_TRUNC)
945 		err = ulen;
946 
947 out_free:
948 	skb_free_datagram(sk, skb);
949 out:
950 	return err;
951 
952 csum_copy_err:
953 	UDP_INC_STATS_BH(UDP_MIB_INERRORS, is_udplite);
954 
955 	skb_kill_datagram(sk, skb, flags);
956 
957 	if (noblock)
958 		return -EAGAIN;
959 	goto try_again;
960 }
961 
962 
963 int udp_disconnect(struct sock *sk, int flags)
964 {
965 	struct inet_sock *inet = inet_sk(sk);
966 	/*
967 	 *	1003.1g - break association.
968 	 */
969 
970 	sk->sk_state = TCP_CLOSE;
971 	inet->daddr = 0;
972 	inet->dport = 0;
973 	sk->sk_bound_dev_if = 0;
974 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
975 		inet_reset_saddr(sk);
976 
977 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
978 		sk->sk_prot->unhash(sk);
979 		inet->sport = 0;
980 	}
981 	sk_dst_reset(sk);
982 	return 0;
983 }
984 
985 /* return:
986  * 	1  if the the UDP system should process it
987  *	0  if we should drop this packet
988  * 	-1 if it should get processed by xfrm4_rcv_encap
989  */
990 static int udp_encap_rcv(struct sock * sk, struct sk_buff *skb)
991 {
992 #ifndef CONFIG_XFRM
993 	return 1;
994 #else
995 	struct udp_sock *up = udp_sk(sk);
996 	struct udphdr *uh;
997 	struct iphdr *iph;
998 	int iphlen, len;
999 
1000 	__u8 *udpdata;
1001 	__be32 *udpdata32;
1002 	__u16 encap_type = up->encap_type;
1003 
1004 	/* if we're overly short, let UDP handle it */
1005 	len = skb->len - sizeof(struct udphdr);
1006 	if (len <= 0)
1007 		return 1;
1008 
1009 	/* if this is not encapsulated socket, then just return now */
1010 	if (!encap_type)
1011 		return 1;
1012 
1013 	/* If this is a paged skb, make sure we pull up
1014 	 * whatever data we need to look at. */
1015 	if (!pskb_may_pull(skb, sizeof(struct udphdr) + min(len, 8)))
1016 		return 1;
1017 
1018 	/* Now we can get the pointers */
1019 	uh = udp_hdr(skb);
1020 	udpdata = (__u8 *)uh + sizeof(struct udphdr);
1021 	udpdata32 = (__be32 *)udpdata;
1022 
1023 	switch (encap_type) {
1024 	default:
1025 	case UDP_ENCAP_ESPINUDP:
1026 		/* Check if this is a keepalive packet.  If so, eat it. */
1027 		if (len == 1 && udpdata[0] == 0xff) {
1028 			return 0;
1029 		} else if (len > sizeof(struct ip_esp_hdr) && udpdata32[0] != 0) {
1030 			/* ESP Packet without Non-ESP header */
1031 			len = sizeof(struct udphdr);
1032 		} else
1033 			/* Must be an IKE packet.. pass it through */
1034 			return 1;
1035 		break;
1036 	case UDP_ENCAP_ESPINUDP_NON_IKE:
1037 		/* Check if this is a keepalive packet.  If so, eat it. */
1038 		if (len == 1 && udpdata[0] == 0xff) {
1039 			return 0;
1040 		} else if (len > 2 * sizeof(u32) + sizeof(struct ip_esp_hdr) &&
1041 			   udpdata32[0] == 0 && udpdata32[1] == 0) {
1042 
1043 			/* ESP Packet with Non-IKE marker */
1044 			len = sizeof(struct udphdr) + 2 * sizeof(u32);
1045 		} else
1046 			/* Must be an IKE packet.. pass it through */
1047 			return 1;
1048 		break;
1049 	}
1050 
1051 	/* At this point we are sure that this is an ESPinUDP packet,
1052 	 * so we need to remove 'len' bytes from the packet (the UDP
1053 	 * header and optional ESP marker bytes) and then modify the
1054 	 * protocol to ESP, and then call into the transform receiver.
1055 	 */
1056 	if (skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
1057 		return 0;
1058 
1059 	/* Now we can update and verify the packet length... */
1060 	iph = ip_hdr(skb);
1061 	iphlen = iph->ihl << 2;
1062 	iph->tot_len = htons(ntohs(iph->tot_len) - len);
1063 	if (skb->len < iphlen + len) {
1064 		/* packet is too small!?! */
1065 		return 0;
1066 	}
1067 
1068 	/* pull the data buffer up to the ESP header and set the
1069 	 * transport header to point to ESP.  Keep UDP on the stack
1070 	 * for later.
1071 	 */
1072 	__skb_pull(skb, len);
1073 	skb_reset_transport_header(skb);
1074 
1075 	/* modify the protocol (it's ESP!) */
1076 	iph->protocol = IPPROTO_ESP;
1077 
1078 	/* and let the caller know to send this into the ESP processor... */
1079 	return -1;
1080 #endif
1081 }
1082 
1083 /* returns:
1084  *  -1: error
1085  *   0: success
1086  *  >0: "udp encap" protocol resubmission
1087  *
1088  * Note that in the success and error cases, the skb is assumed to
1089  * have either been requeued or freed.
1090  */
1091 int udp_queue_rcv_skb(struct sock * sk, struct sk_buff *skb)
1092 {
1093 	struct udp_sock *up = udp_sk(sk);
1094 	int rc;
1095 
1096 	/*
1097 	 *	Charge it to the socket, dropping if the queue is full.
1098 	 */
1099 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1100 		goto drop;
1101 	nf_reset(skb);
1102 
1103 	if (up->encap_type) {
1104 		/*
1105 		 * This is an encapsulation socket, so let's see if this is
1106 		 * an encapsulated packet.
1107 		 * If it's a keepalive packet, then just eat it.
1108 		 * If it's an encapsulateed packet, then pass it to the
1109 		 * IPsec xfrm input and return the response
1110 		 * appropriately.  Otherwise, just fall through and
1111 		 * pass this up the UDP socket.
1112 		 */
1113 		int ret;
1114 
1115 		ret = udp_encap_rcv(sk, skb);
1116 		if (ret == 0) {
1117 			/* Eat the packet .. */
1118 			kfree_skb(skb);
1119 			return 0;
1120 		}
1121 		if (ret < 0) {
1122 			/* process the ESP packet */
1123 			ret = xfrm4_rcv_encap(skb, up->encap_type);
1124 			UDP_INC_STATS_BH(UDP_MIB_INDATAGRAMS, up->pcflag);
1125 			return -ret;
1126 		}
1127 		/* FALLTHROUGH -- it's a UDP Packet */
1128 	}
1129 
1130 	/*
1131 	 * 	UDP-Lite specific tests, ignored on UDP sockets
1132 	 */
1133 	if ((up->pcflag & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
1134 
1135 		/*
1136 		 * MIB statistics other than incrementing the error count are
1137 		 * disabled for the following two types of errors: these depend
1138 		 * on the application settings, not on the functioning of the
1139 		 * protocol stack as such.
1140 		 *
1141 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
1142 		 * way ... to ... at least let the receiving application block
1143 		 * delivery of packets with coverage values less than a value
1144 		 * provided by the application."
1145 		 */
1146 		if (up->pcrlen == 0) {          /* full coverage was set  */
1147 			LIMIT_NETDEBUG(KERN_WARNING "UDPLITE: partial coverage "
1148 				"%d while full coverage %d requested\n",
1149 				UDP_SKB_CB(skb)->cscov, skb->len);
1150 			goto drop;
1151 		}
1152 		/* The next case involves violating the min. coverage requested
1153 		 * by the receiver. This is subtle: if receiver wants x and x is
1154 		 * greater than the buffersize/MTU then receiver will complain
1155 		 * that it wants x while sender emits packets of smaller size y.
1156 		 * Therefore the above ...()->partial_cov statement is essential.
1157 		 */
1158 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
1159 			LIMIT_NETDEBUG(KERN_WARNING
1160 				"UDPLITE: coverage %d too small, need min %d\n",
1161 				UDP_SKB_CB(skb)->cscov, up->pcrlen);
1162 			goto drop;
1163 		}
1164 	}
1165 
1166 	if (sk->sk_filter) {
1167 		if (udp_lib_checksum_complete(skb))
1168 			goto drop;
1169 	}
1170 
1171 	if ((rc = sock_queue_rcv_skb(sk,skb)) < 0) {
1172 		/* Note that an ENOMEM error is charged twice */
1173 		if (rc == -ENOMEM)
1174 			UDP_INC_STATS_BH(UDP_MIB_RCVBUFERRORS, up->pcflag);
1175 		goto drop;
1176 	}
1177 
1178 	UDP_INC_STATS_BH(UDP_MIB_INDATAGRAMS, up->pcflag);
1179 	return 0;
1180 
1181 drop:
1182 	UDP_INC_STATS_BH(UDP_MIB_INERRORS, up->pcflag);
1183 	kfree_skb(skb);
1184 	return -1;
1185 }
1186 
1187 /*
1188  *	Multicasts and broadcasts go to each listener.
1189  *
1190  *	Note: called only from the BH handler context,
1191  *	so we don't need to lock the hashes.
1192  */
1193 static int __udp4_lib_mcast_deliver(struct sk_buff *skb,
1194 				    struct udphdr  *uh,
1195 				    __be32 saddr, __be32 daddr,
1196 				    struct hlist_head udptable[])
1197 {
1198 	struct sock *sk, *skw, *sknext;
1199 	int dif;
1200 	int hport = ntohs(uh->dest);
1201 	unsigned int hash = hash_port_and_addr(hport, daddr);
1202 	unsigned int hashwild = hash_port_and_addr(hport, 0);
1203 
1204 	dif = skb->dev->ifindex;
1205 
1206 	read_lock(&udp_hash_lock);
1207 
1208 	sk = sk_head(&udptable[hash & (UDP_HTABLE_SIZE - 1)]);
1209 	skw = sk_head(&udptable[hashwild & (UDP_HTABLE_SIZE - 1)]);
1210 
1211 	sk = udp_v4_mcast_next(sk, hash, hport, daddr, uh->source, saddr, dif);
1212 	if (!sk) {
1213 		hash = hashwild;
1214 		sk = udp_v4_mcast_next(skw, hash, hport, daddr, uh->source,
1215 			saddr, dif);
1216 	}
1217 	if (sk) {
1218 		do {
1219 			struct sk_buff *skb1 = skb;
1220 			sknext = udp_v4_mcast_next(sk_next(sk), hash, hport,
1221 						daddr, uh->source, saddr, dif);
1222 			if (!sknext && hash != hashwild) {
1223 				hash = hashwild;
1224 				sknext = udp_v4_mcast_next(skw, hash, hport,
1225 					daddr, uh->source, saddr, dif);
1226 			}
1227 			if (sknext)
1228 				skb1 = skb_clone(skb, GFP_ATOMIC);
1229 
1230 			if (skb1) {
1231 				int ret = udp_queue_rcv_skb(sk, skb1);
1232 				if (ret > 0)
1233 					/*
1234 					 * we should probably re-process
1235 					 * instead of dropping packets here.
1236 					 */
1237 					kfree_skb(skb1);
1238 			}
1239 			sk = sknext;
1240 		} while (sknext);
1241 	} else
1242 		kfree_skb(skb);
1243 	read_unlock(&udp_hash_lock);
1244 	return 0;
1245 }
1246 
1247 /* Initialize UDP checksum. If exited with zero value (success),
1248  * CHECKSUM_UNNECESSARY means, that no more checks are required.
1249  * Otherwise, csum completion requires chacksumming packet body,
1250  * including udp header and folding it to skb->csum.
1251  */
1252 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1253 				 int proto)
1254 {
1255 	const struct iphdr *iph;
1256 	int err;
1257 
1258 	UDP_SKB_CB(skb)->partial_cov = 0;
1259 	UDP_SKB_CB(skb)->cscov = skb->len;
1260 
1261 	if (proto == IPPROTO_UDPLITE) {
1262 		err = udplite_checksum_init(skb, uh);
1263 		if (err)
1264 			return err;
1265 	}
1266 
1267 	iph = ip_hdr(skb);
1268 	if (uh->check == 0) {
1269 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1270 	} else if (skb->ip_summed == CHECKSUM_COMPLETE) {
1271 	       if (!csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
1272 				      proto, skb->csum))
1273 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1274 	}
1275 	if (!skb_csum_unnecessary(skb))
1276 		skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1277 					       skb->len, proto, 0);
1278 	/* Probably, we should checksum udp header (it should be in cache
1279 	 * in any case) and data in tiny packets (< rx copybreak).
1280 	 */
1281 
1282 	return 0;
1283 }
1284 
1285 /*
1286  *	All we need to do is get the socket, and then do a checksum.
1287  */
1288 
1289 int __udp4_lib_rcv(struct sk_buff *skb, struct hlist_head udptable[],
1290 		   int proto)
1291 {
1292 	struct sock *sk;
1293 	struct udphdr *uh = udp_hdr(skb);
1294 	unsigned short ulen;
1295 	struct rtable *rt = (struct rtable*)skb->dst;
1296 	__be32 saddr = ip_hdr(skb)->saddr;
1297 	__be32 daddr = ip_hdr(skb)->daddr;
1298 
1299 	/*
1300 	 *  Validate the packet.
1301 	 */
1302 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1303 		goto drop;		/* No space for header. */
1304 
1305 	ulen = ntohs(uh->len);
1306 	if (ulen > skb->len)
1307 		goto short_packet;
1308 
1309 	if (proto == IPPROTO_UDP) {
1310 		/* UDP validates ulen. */
1311 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1312 			goto short_packet;
1313 		uh = udp_hdr(skb);
1314 	}
1315 
1316 	if (udp4_csum_init(skb, uh, proto))
1317 		goto csum_error;
1318 
1319 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1320 		return __udp4_lib_mcast_deliver(skb, uh, saddr, daddr, udptable);
1321 
1322 	sk = __udp4_lib_lookup(saddr, uh->source, daddr, uh->dest,
1323 			       skb->dev->ifindex, udptable);
1324 
1325 	if (sk != NULL) {
1326 		int ret = udp_queue_rcv_skb(sk, skb);
1327 		sock_put(sk);
1328 
1329 		/* a return value > 0 means to resubmit the input, but
1330 		 * it wants the return to be -protocol, or 0
1331 		 */
1332 		if (ret > 0)
1333 			return -ret;
1334 		return 0;
1335 	}
1336 
1337 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1338 		goto drop;
1339 	nf_reset(skb);
1340 
1341 	/* No socket. Drop packet silently, if checksum is wrong */
1342 	if (udp_lib_checksum_complete(skb))
1343 		goto csum_error;
1344 
1345 	UDP_INC_STATS_BH(UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1346 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1347 
1348 	/*
1349 	 * Hmm.  We got an UDP packet to a port to which we
1350 	 * don't wanna listen.  Ignore it.
1351 	 */
1352 	kfree_skb(skb);
1353 	return 0;
1354 
1355 short_packet:
1356 	LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: short packet: From %u.%u.%u.%u:%u %d/%d to %u.%u.%u.%u:%u\n",
1357 		       proto == IPPROTO_UDPLITE ? "-Lite" : "",
1358 		       NIPQUAD(saddr),
1359 		       ntohs(uh->source),
1360 		       ulen,
1361 		       skb->len,
1362 		       NIPQUAD(daddr),
1363 		       ntohs(uh->dest));
1364 	goto drop;
1365 
1366 csum_error:
1367 	/*
1368 	 * RFC1122: OK.  Discards the bad packet silently (as far as
1369 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1370 	 */
1371 	LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: bad checksum. From %d.%d.%d.%d:%d to %d.%d.%d.%d:%d ulen %d\n",
1372 		       proto == IPPROTO_UDPLITE ? "-Lite" : "",
1373 		       NIPQUAD(saddr),
1374 		       ntohs(uh->source),
1375 		       NIPQUAD(daddr),
1376 		       ntohs(uh->dest),
1377 		       ulen);
1378 drop:
1379 	UDP_INC_STATS_BH(UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1380 	kfree_skb(skb);
1381 	return 0;
1382 }
1383 
1384 int udp_rcv(struct sk_buff *skb)
1385 {
1386 	return __udp4_lib_rcv(skb, udp_hash, IPPROTO_UDP);
1387 }
1388 
1389 int udp_destroy_sock(struct sock *sk)
1390 {
1391 	lock_sock(sk);
1392 	udp_flush_pending_frames(sk);
1393 	release_sock(sk);
1394 	return 0;
1395 }
1396 
1397 /*
1398  *	Socket option code for UDP
1399  */
1400 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
1401 		       char __user *optval, int optlen,
1402 		       int (*push_pending_frames)(struct sock *))
1403 {
1404 	struct udp_sock *up = udp_sk(sk);
1405 	int val;
1406 	int err = 0;
1407 
1408 	if (optlen<sizeof(int))
1409 		return -EINVAL;
1410 
1411 	if (get_user(val, (int __user *)optval))
1412 		return -EFAULT;
1413 
1414 	switch (optname) {
1415 	case UDP_CORK:
1416 		if (val != 0) {
1417 			up->corkflag = 1;
1418 		} else {
1419 			up->corkflag = 0;
1420 			lock_sock(sk);
1421 			(*push_pending_frames)(sk);
1422 			release_sock(sk);
1423 		}
1424 		break;
1425 
1426 	case UDP_ENCAP:
1427 		switch (val) {
1428 		case 0:
1429 		case UDP_ENCAP_ESPINUDP:
1430 		case UDP_ENCAP_ESPINUDP_NON_IKE:
1431 			up->encap_type = val;
1432 			break;
1433 		default:
1434 			err = -ENOPROTOOPT;
1435 			break;
1436 		}
1437 		break;
1438 
1439 	/*
1440 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
1441 	 */
1442 	/* The sender sets actual checksum coverage length via this option.
1443 	 * The case coverage > packet length is handled by send module. */
1444 	case UDPLITE_SEND_CSCOV:
1445 		if (!up->pcflag)         /* Disable the option on UDP sockets */
1446 			return -ENOPROTOOPT;
1447 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
1448 			val = 8;
1449 		up->pcslen = val;
1450 		up->pcflag |= UDPLITE_SEND_CC;
1451 		break;
1452 
1453 	/* The receiver specifies a minimum checksum coverage value. To make
1454 	 * sense, this should be set to at least 8 (as done below). If zero is
1455 	 * used, this again means full checksum coverage.                     */
1456 	case UDPLITE_RECV_CSCOV:
1457 		if (!up->pcflag)         /* Disable the option on UDP sockets */
1458 			return -ENOPROTOOPT;
1459 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
1460 			val = 8;
1461 		up->pcrlen = val;
1462 		up->pcflag |= UDPLITE_RECV_CC;
1463 		break;
1464 
1465 	default:
1466 		err = -ENOPROTOOPT;
1467 		break;
1468 	}
1469 
1470 	return err;
1471 }
1472 
1473 int udp_setsockopt(struct sock *sk, int level, int optname,
1474 		   char __user *optval, int optlen)
1475 {
1476 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1477 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1478 					  udp_push_pending_frames);
1479 	return ip_setsockopt(sk, level, optname, optval, optlen);
1480 }
1481 
1482 #ifdef CONFIG_COMPAT
1483 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
1484 			  char __user *optval, int optlen)
1485 {
1486 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1487 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1488 					  udp_push_pending_frames);
1489 	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
1490 }
1491 #endif
1492 
1493 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
1494 		       char __user *optval, int __user *optlen)
1495 {
1496 	struct udp_sock *up = udp_sk(sk);
1497 	int val, len;
1498 
1499 	if (get_user(len,optlen))
1500 		return -EFAULT;
1501 
1502 	len = min_t(unsigned int, len, sizeof(int));
1503 
1504 	if (len < 0)
1505 		return -EINVAL;
1506 
1507 	switch (optname) {
1508 	case UDP_CORK:
1509 		val = up->corkflag;
1510 		break;
1511 
1512 	case UDP_ENCAP:
1513 		val = up->encap_type;
1514 		break;
1515 
1516 	/* The following two cannot be changed on UDP sockets, the return is
1517 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
1518 	case UDPLITE_SEND_CSCOV:
1519 		val = up->pcslen;
1520 		break;
1521 
1522 	case UDPLITE_RECV_CSCOV:
1523 		val = up->pcrlen;
1524 		break;
1525 
1526 	default:
1527 		return -ENOPROTOOPT;
1528 	}
1529 
1530 	if (put_user(len, optlen))
1531 		return -EFAULT;
1532 	if (copy_to_user(optval, &val,len))
1533 		return -EFAULT;
1534 	return 0;
1535 }
1536 
1537 int udp_getsockopt(struct sock *sk, int level, int optname,
1538 		   char __user *optval, int __user *optlen)
1539 {
1540 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1541 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1542 	return ip_getsockopt(sk, level, optname, optval, optlen);
1543 }
1544 
1545 #ifdef CONFIG_COMPAT
1546 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
1547 				 char __user *optval, int __user *optlen)
1548 {
1549 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1550 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1551 	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
1552 }
1553 #endif
1554 /**
1555  * 	udp_poll - wait for a UDP event.
1556  *	@file - file struct
1557  *	@sock - socket
1558  *	@wait - poll table
1559  *
1560  *	This is same as datagram poll, except for the special case of
1561  *	blocking sockets. If application is using a blocking fd
1562  *	and a packet with checksum error is in the queue;
1563  *	then it could get return from select indicating data available
1564  *	but then block when reading it. Add special case code
1565  *	to work around these arguably broken applications.
1566  */
1567 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
1568 {
1569 	unsigned int mask = datagram_poll(file, sock, wait);
1570 	struct sock *sk = sock->sk;
1571 	int 	is_lite = IS_UDPLITE(sk);
1572 
1573 	/* Check for false positives due to checksum errors */
1574 	if ( (mask & POLLRDNORM) &&
1575 	     !(file->f_flags & O_NONBLOCK) &&
1576 	     !(sk->sk_shutdown & RCV_SHUTDOWN)){
1577 		struct sk_buff_head *rcvq = &sk->sk_receive_queue;
1578 		struct sk_buff *skb;
1579 
1580 		spin_lock_bh(&rcvq->lock);
1581 		while ((skb = skb_peek(rcvq)) != NULL &&
1582 		       udp_lib_checksum_complete(skb)) {
1583 			UDP_INC_STATS_BH(UDP_MIB_INERRORS, is_lite);
1584 			__skb_unlink(skb, rcvq);
1585 			kfree_skb(skb);
1586 		}
1587 		spin_unlock_bh(&rcvq->lock);
1588 
1589 		/* nothing to see, move along */
1590 		if (skb == NULL)
1591 			mask &= ~(POLLIN | POLLRDNORM);
1592 	}
1593 
1594 	return mask;
1595 
1596 }
1597 
1598 struct proto udp_prot = {
1599 	.name		   = "UDP",
1600 	.owner		   = THIS_MODULE,
1601 	.close		   = udp_lib_close,
1602 	.connect	   = ip4_datagram_connect,
1603 	.disconnect	   = udp_disconnect,
1604 	.ioctl		   = udp_ioctl,
1605 	.destroy	   = udp_destroy_sock,
1606 	.setsockopt	   = udp_setsockopt,
1607 	.getsockopt	   = udp_getsockopt,
1608 	.sendmsg	   = udp_sendmsg,
1609 	.recvmsg	   = udp_recvmsg,
1610 	.sendpage	   = udp_sendpage,
1611 	.backlog_rcv	   = udp_queue_rcv_skb,
1612 	.hash		   = udp_lib_hash,
1613 	.unhash		   = udp_lib_unhash,
1614 	.get_port	   = udp_v4_get_port,
1615 	.obj_size	   = sizeof(struct udp_sock),
1616 #ifdef CONFIG_COMPAT
1617 	.compat_setsockopt = compat_udp_setsockopt,
1618 	.compat_getsockopt = compat_udp_getsockopt,
1619 #endif
1620 };
1621 
1622 /* ------------------------------------------------------------------------ */
1623 #ifdef CONFIG_PROC_FS
1624 
1625 static struct sock *udp_get_first(struct seq_file *seq)
1626 {
1627 	struct sock *sk;
1628 	struct udp_iter_state *state = seq->private;
1629 
1630 	for (state->bucket = 0; state->bucket < UDP_HTABLE_SIZE; ++state->bucket) {
1631 		struct hlist_node *node;
1632 		sk_for_each(sk, node, state->hashtable + state->bucket) {
1633 			if (sk->sk_family == state->family)
1634 				goto found;
1635 		}
1636 	}
1637 	sk = NULL;
1638 found:
1639 	return sk;
1640 }
1641 
1642 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
1643 {
1644 	struct udp_iter_state *state = seq->private;
1645 
1646 	do {
1647 		sk = sk_next(sk);
1648 try_again:
1649 		;
1650 	} while (sk && sk->sk_family != state->family);
1651 
1652 	if (!sk && ++state->bucket < UDP_HTABLE_SIZE) {
1653 		sk = sk_head(state->hashtable + state->bucket);
1654 		goto try_again;
1655 	}
1656 	return sk;
1657 }
1658 
1659 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
1660 {
1661 	struct sock *sk = udp_get_first(seq);
1662 
1663 	if (sk)
1664 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
1665 			--pos;
1666 	return pos ? NULL : sk;
1667 }
1668 
1669 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
1670 {
1671 	read_lock(&udp_hash_lock);
1672 	return *pos ? udp_get_idx(seq, *pos-1) : (void *)1;
1673 }
1674 
1675 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1676 {
1677 	struct sock *sk;
1678 
1679 	if (v == (void *)1)
1680 		sk = udp_get_idx(seq, 0);
1681 	else
1682 		sk = udp_get_next(seq, v);
1683 
1684 	++*pos;
1685 	return sk;
1686 }
1687 
1688 static void udp_seq_stop(struct seq_file *seq, void *v)
1689 {
1690 	read_unlock(&udp_hash_lock);
1691 }
1692 
1693 static int udp_seq_open(struct inode *inode, struct file *file)
1694 {
1695 	struct udp_seq_afinfo *afinfo = PDE(inode)->data;
1696 	struct seq_file *seq;
1697 	int rc = -ENOMEM;
1698 	struct udp_iter_state *s = kzalloc(sizeof(*s), GFP_KERNEL);
1699 
1700 	if (!s)
1701 		goto out;
1702 	s->family		= afinfo->family;
1703 	s->hashtable		= afinfo->hashtable;
1704 	s->seq_ops.start	= udp_seq_start;
1705 	s->seq_ops.next		= udp_seq_next;
1706 	s->seq_ops.show		= afinfo->seq_show;
1707 	s->seq_ops.stop		= udp_seq_stop;
1708 
1709 	rc = seq_open(file, &s->seq_ops);
1710 	if (rc)
1711 		goto out_kfree;
1712 
1713 	seq	     = file->private_data;
1714 	seq->private = s;
1715 out:
1716 	return rc;
1717 out_kfree:
1718 	kfree(s);
1719 	goto out;
1720 }
1721 
1722 /* ------------------------------------------------------------------------ */
1723 int udp_proc_register(struct udp_seq_afinfo *afinfo)
1724 {
1725 	struct proc_dir_entry *p;
1726 	int rc = 0;
1727 
1728 	if (!afinfo)
1729 		return -EINVAL;
1730 	afinfo->seq_fops->owner		= afinfo->owner;
1731 	afinfo->seq_fops->open		= udp_seq_open;
1732 	afinfo->seq_fops->read		= seq_read;
1733 	afinfo->seq_fops->llseek	= seq_lseek;
1734 	afinfo->seq_fops->release	= seq_release_private;
1735 
1736 	p = proc_net_fops_create(afinfo->name, S_IRUGO, afinfo->seq_fops);
1737 	if (p)
1738 		p->data = afinfo;
1739 	else
1740 		rc = -ENOMEM;
1741 	return rc;
1742 }
1743 
1744 void udp_proc_unregister(struct udp_seq_afinfo *afinfo)
1745 {
1746 	if (!afinfo)
1747 		return;
1748 	proc_net_remove(afinfo->name);
1749 	memset(afinfo->seq_fops, 0, sizeof(*afinfo->seq_fops));
1750 }
1751 
1752 /* ------------------------------------------------------------------------ */
1753 static void udp4_format_sock(struct sock *sp, char *tmpbuf, int bucket)
1754 {
1755 	struct inet_sock *inet = inet_sk(sp);
1756 	__be32 dest = inet->daddr;
1757 	__be32 src  = inet->rcv_saddr;
1758 	__u16 destp	  = ntohs(inet->dport);
1759 	__u16 srcp	  = ntohs(inet->sport);
1760 
1761 	sprintf(tmpbuf, "%4d: %08X:%04X %08X:%04X"
1762 		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %lu %d %p",
1763 		bucket, src, srcp, dest, destp, sp->sk_state,
1764 		atomic_read(&sp->sk_wmem_alloc),
1765 		atomic_read(&sp->sk_rmem_alloc),
1766 		0, 0L, 0, sock_i_uid(sp), 0, sock_i_ino(sp),
1767 		atomic_read(&sp->sk_refcnt), sp);
1768 }
1769 
1770 int udp4_seq_show(struct seq_file *seq, void *v)
1771 {
1772 	if (v == SEQ_START_TOKEN)
1773 		seq_printf(seq, "%-127s\n",
1774 			   "  sl  local_address rem_address   st tx_queue "
1775 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
1776 			   "inode");
1777 	else {
1778 		char tmpbuf[129];
1779 		struct udp_iter_state *state = seq->private;
1780 
1781 		udp4_format_sock(v, tmpbuf, state->bucket);
1782 		seq_printf(seq, "%-127s\n", tmpbuf);
1783 	}
1784 	return 0;
1785 }
1786 
1787 /* ------------------------------------------------------------------------ */
1788 static struct file_operations udp4_seq_fops;
1789 static struct udp_seq_afinfo udp4_seq_afinfo = {
1790 	.owner		= THIS_MODULE,
1791 	.name		= "udp",
1792 	.family		= AF_INET,
1793 	.hashtable	= udp_hash,
1794 	.seq_show	= udp4_seq_show,
1795 	.seq_fops	= &udp4_seq_fops,
1796 };
1797 
1798 int __init udp4_proc_init(void)
1799 {
1800 	return udp_proc_register(&udp4_seq_afinfo);
1801 }
1802 
1803 void udp4_proc_exit(void)
1804 {
1805 	udp_proc_unregister(&udp4_seq_afinfo);
1806 }
1807 #endif /* CONFIG_PROC_FS */
1808 
1809 EXPORT_SYMBOL(udp_disconnect);
1810 EXPORT_SYMBOL(udp_hash);
1811 EXPORT_SYMBOL(udp_hash_lock);
1812 EXPORT_SYMBOL(udp_ioctl);
1813 EXPORT_SYMBOL(udp_get_port);
1814 EXPORT_SYMBOL(udp_prot);
1815 EXPORT_SYMBOL(udp_sendmsg);
1816 EXPORT_SYMBOL(udp_lib_getsockopt);
1817 EXPORT_SYMBOL(udp_lib_setsockopt);
1818 EXPORT_SYMBOL(udp_poll);
1819 
1820 #ifdef CONFIG_PROC_FS
1821 EXPORT_SYMBOL(udp_proc_register);
1822 EXPORT_SYMBOL(udp_proc_unregister);
1823 #endif
1824