xref: /linux/net/ipv4/udp.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		The User Datagram Protocol (UDP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
12  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
13  *		Hirokazu Takahashi, <taka@valinux.co.jp>
14  *
15  * Fixes:
16  *		Alan Cox	:	verify_area() calls
17  *		Alan Cox	: 	stopped close while in use off icmp
18  *					messages. Not a fix but a botch that
19  *					for udp at least is 'valid'.
20  *		Alan Cox	:	Fixed icmp handling properly
21  *		Alan Cox	: 	Correct error for oversized datagrams
22  *		Alan Cox	:	Tidied select() semantics.
23  *		Alan Cox	:	udp_err() fixed properly, also now
24  *					select and read wake correctly on errors
25  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
26  *		Alan Cox	:	UDP can count its memory
27  *		Alan Cox	:	send to an unknown connection causes
28  *					an ECONNREFUSED off the icmp, but
29  *					does NOT close.
30  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
31  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
32  *					bug no longer crashes it.
33  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
34  *		Alan Cox	:	Uses skb_free_datagram
35  *		Alan Cox	:	Added get/set sockopt support.
36  *		Alan Cox	:	Broadcasting without option set returns EACCES.
37  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
38  *		Alan Cox	:	Use ip_tos and ip_ttl
39  *		Alan Cox	:	SNMP Mibs
40  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
41  *		Matt Dillon	:	UDP length checks.
42  *		Alan Cox	:	Smarter af_inet used properly.
43  *		Alan Cox	:	Use new kernel side addressing.
44  *		Alan Cox	:	Incorrect return on truncated datagram receive.
45  *	Arnt Gulbrandsen 	:	New udp_send and stuff
46  *		Alan Cox	:	Cache last socket
47  *		Alan Cox	:	Route cache
48  *		Jon Peatfield	:	Minor efficiency fix to sendto().
49  *		Mike Shaver	:	RFC1122 checks.
50  *		Alan Cox	:	Nonblocking error fix.
51  *	Willy Konynenberg	:	Transparent proxying support.
52  *		Mike McLagan	:	Routing by source
53  *		David S. Miller	:	New socket lookup architecture.
54  *					Last socket cache retained as it
55  *					does have a high hit rate.
56  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
57  *		Andi Kleen	:	Some cleanups, cache destination entry
58  *					for connect.
59  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
60  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
61  *					return ENOTCONN for unconnected sockets (POSIX)
62  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
63  *					bound-to-device socket
64  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
65  *					datagrams.
66  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
67  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
68  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
69  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
70  *					a single port at the same time.
71  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
72  *	James Chapman		:	Add L2TP encapsulation type.
73  */
74 
75 #define pr_fmt(fmt) "UDP: " fmt
76 
77 #include <linux/bpf-cgroup.h>
78 #include <linux/uaccess.h>
79 #include <asm/ioctls.h>
80 #include <linux/memblock.h>
81 #include <linux/highmem.h>
82 #include <linux/types.h>
83 #include <linux/fcntl.h>
84 #include <linux/module.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/igmp.h>
88 #include <linux/inetdevice.h>
89 #include <linux/in.h>
90 #include <linux/errno.h>
91 #include <linux/timer.h>
92 #include <linux/mm.h>
93 #include <linux/inet.h>
94 #include <linux/netdevice.h>
95 #include <linux/slab.h>
96 #include <net/tcp_states.h>
97 #include <linux/skbuff.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <net/net_namespace.h>
101 #include <net/icmp.h>
102 #include <net/inet_hashtables.h>
103 #include <net/ip_tunnels.h>
104 #include <net/route.h>
105 #include <net/checksum.h>
106 #include <net/gso.h>
107 #include <net/xfrm.h>
108 #include <trace/events/udp.h>
109 #include <linux/static_key.h>
110 #include <linux/btf_ids.h>
111 #include <trace/events/skb.h>
112 #include <net/busy_poll.h>
113 #include "udp_impl.h"
114 #include <net/sock_reuseport.h>
115 #include <net/addrconf.h>
116 #include <net/udp_tunnel.h>
117 #include <net/gro.h>
118 #if IS_ENABLED(CONFIG_IPV6)
119 #include <net/ipv6_stubs.h>
120 #endif
121 
122 struct udp_table udp_table __read_mostly;
123 EXPORT_SYMBOL(udp_table);
124 
125 long sysctl_udp_mem[3] __read_mostly;
126 EXPORT_SYMBOL(sysctl_udp_mem);
127 
128 atomic_long_t udp_memory_allocated ____cacheline_aligned_in_smp;
129 EXPORT_SYMBOL(udp_memory_allocated);
130 DEFINE_PER_CPU(int, udp_memory_per_cpu_fw_alloc);
131 EXPORT_PER_CPU_SYMBOL_GPL(udp_memory_per_cpu_fw_alloc);
132 
133 #define MAX_UDP_PORTS 65536
134 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN_PERNET)
135 
136 static struct udp_table *udp_get_table_prot(struct sock *sk)
137 {
138 	return sk->sk_prot->h.udp_table ? : sock_net(sk)->ipv4.udp_table;
139 }
140 
141 static int udp_lib_lport_inuse(struct net *net, __u16 num,
142 			       const struct udp_hslot *hslot,
143 			       unsigned long *bitmap,
144 			       struct sock *sk, unsigned int log)
145 {
146 	struct sock *sk2;
147 	kuid_t uid = sock_i_uid(sk);
148 
149 	sk_for_each(sk2, &hslot->head) {
150 		if (net_eq(sock_net(sk2), net) &&
151 		    sk2 != sk &&
152 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
153 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
154 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
155 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
156 		    inet_rcv_saddr_equal(sk, sk2, true)) {
157 			if (sk2->sk_reuseport && sk->sk_reuseport &&
158 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
159 			    uid_eq(uid, sock_i_uid(sk2))) {
160 				if (!bitmap)
161 					return 0;
162 			} else {
163 				if (!bitmap)
164 					return 1;
165 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
166 					  bitmap);
167 			}
168 		}
169 	}
170 	return 0;
171 }
172 
173 /*
174  * Note: we still hold spinlock of primary hash chain, so no other writer
175  * can insert/delete a socket with local_port == num
176  */
177 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
178 				struct udp_hslot *hslot2,
179 				struct sock *sk)
180 {
181 	struct sock *sk2;
182 	kuid_t uid = sock_i_uid(sk);
183 	int res = 0;
184 
185 	spin_lock(&hslot2->lock);
186 	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
187 		if (net_eq(sock_net(sk2), net) &&
188 		    sk2 != sk &&
189 		    (udp_sk(sk2)->udp_port_hash == num) &&
190 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
191 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
192 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
193 		    inet_rcv_saddr_equal(sk, sk2, true)) {
194 			if (sk2->sk_reuseport && sk->sk_reuseport &&
195 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
196 			    uid_eq(uid, sock_i_uid(sk2))) {
197 				res = 0;
198 			} else {
199 				res = 1;
200 			}
201 			break;
202 		}
203 	}
204 	spin_unlock(&hslot2->lock);
205 	return res;
206 }
207 
208 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
209 {
210 	struct net *net = sock_net(sk);
211 	kuid_t uid = sock_i_uid(sk);
212 	struct sock *sk2;
213 
214 	sk_for_each(sk2, &hslot->head) {
215 		if (net_eq(sock_net(sk2), net) &&
216 		    sk2 != sk &&
217 		    sk2->sk_family == sk->sk_family &&
218 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
219 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
220 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
221 		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
222 		    inet_rcv_saddr_equal(sk, sk2, false)) {
223 			return reuseport_add_sock(sk, sk2,
224 						  inet_rcv_saddr_any(sk));
225 		}
226 	}
227 
228 	return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
229 }
230 
231 /**
232  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
233  *
234  *  @sk:          socket struct in question
235  *  @snum:        port number to look up
236  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
237  *                   with NULL address
238  */
239 int udp_lib_get_port(struct sock *sk, unsigned short snum,
240 		     unsigned int hash2_nulladdr)
241 {
242 	struct udp_table *udptable = udp_get_table_prot(sk);
243 	struct udp_hslot *hslot, *hslot2;
244 	struct net *net = sock_net(sk);
245 	int error = -EADDRINUSE;
246 
247 	if (!snum) {
248 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
249 		unsigned short first, last;
250 		int low, high, remaining;
251 		unsigned int rand;
252 
253 		inet_sk_get_local_port_range(sk, &low, &high);
254 		remaining = (high - low) + 1;
255 
256 		rand = get_random_u32();
257 		first = reciprocal_scale(rand, remaining) + low;
258 		/*
259 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
260 		 */
261 		rand = (rand | 1) * (udptable->mask + 1);
262 		last = first + udptable->mask + 1;
263 		do {
264 			hslot = udp_hashslot(udptable, net, first);
265 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
266 			spin_lock_bh(&hslot->lock);
267 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
268 					    udptable->log);
269 
270 			snum = first;
271 			/*
272 			 * Iterate on all possible values of snum for this hash.
273 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
274 			 * give us randomization and full range coverage.
275 			 */
276 			do {
277 				if (low <= snum && snum <= high &&
278 				    !test_bit(snum >> udptable->log, bitmap) &&
279 				    !inet_is_local_reserved_port(net, snum))
280 					goto found;
281 				snum += rand;
282 			} while (snum != first);
283 			spin_unlock_bh(&hslot->lock);
284 			cond_resched();
285 		} while (++first != last);
286 		goto fail;
287 	} else {
288 		hslot = udp_hashslot(udptable, net, snum);
289 		spin_lock_bh(&hslot->lock);
290 		if (hslot->count > 10) {
291 			int exist;
292 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
293 
294 			slot2          &= udptable->mask;
295 			hash2_nulladdr &= udptable->mask;
296 
297 			hslot2 = udp_hashslot2(udptable, slot2);
298 			if (hslot->count < hslot2->count)
299 				goto scan_primary_hash;
300 
301 			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
302 			if (!exist && (hash2_nulladdr != slot2)) {
303 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
304 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
305 							     sk);
306 			}
307 			if (exist)
308 				goto fail_unlock;
309 			else
310 				goto found;
311 		}
312 scan_primary_hash:
313 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
314 			goto fail_unlock;
315 	}
316 found:
317 	inet_sk(sk)->inet_num = snum;
318 	udp_sk(sk)->udp_port_hash = snum;
319 	udp_sk(sk)->udp_portaddr_hash ^= snum;
320 	if (sk_unhashed(sk)) {
321 		if (sk->sk_reuseport &&
322 		    udp_reuseport_add_sock(sk, hslot)) {
323 			inet_sk(sk)->inet_num = 0;
324 			udp_sk(sk)->udp_port_hash = 0;
325 			udp_sk(sk)->udp_portaddr_hash ^= snum;
326 			goto fail_unlock;
327 		}
328 
329 		sk_add_node_rcu(sk, &hslot->head);
330 		hslot->count++;
331 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
332 
333 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
334 		spin_lock(&hslot2->lock);
335 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
336 		    sk->sk_family == AF_INET6)
337 			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
338 					   &hslot2->head);
339 		else
340 			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
341 					   &hslot2->head);
342 		hslot2->count++;
343 		spin_unlock(&hslot2->lock);
344 	}
345 	sock_set_flag(sk, SOCK_RCU_FREE);
346 	error = 0;
347 fail_unlock:
348 	spin_unlock_bh(&hslot->lock);
349 fail:
350 	return error;
351 }
352 EXPORT_SYMBOL(udp_lib_get_port);
353 
354 int udp_v4_get_port(struct sock *sk, unsigned short snum)
355 {
356 	unsigned int hash2_nulladdr =
357 		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
358 	unsigned int hash2_partial =
359 		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
360 
361 	/* precompute partial secondary hash */
362 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
363 	return udp_lib_get_port(sk, snum, hash2_nulladdr);
364 }
365 
366 static int compute_score(struct sock *sk, struct net *net,
367 			 __be32 saddr, __be16 sport,
368 			 __be32 daddr, unsigned short hnum,
369 			 int dif, int sdif)
370 {
371 	int score;
372 	struct inet_sock *inet;
373 	bool dev_match;
374 
375 	if (!net_eq(sock_net(sk), net) ||
376 	    udp_sk(sk)->udp_port_hash != hnum ||
377 	    ipv6_only_sock(sk))
378 		return -1;
379 
380 	if (sk->sk_rcv_saddr != daddr)
381 		return -1;
382 
383 	score = (sk->sk_family == PF_INET) ? 2 : 1;
384 
385 	inet = inet_sk(sk);
386 	if (inet->inet_daddr) {
387 		if (inet->inet_daddr != saddr)
388 			return -1;
389 		score += 4;
390 	}
391 
392 	if (inet->inet_dport) {
393 		if (inet->inet_dport != sport)
394 			return -1;
395 		score += 4;
396 	}
397 
398 	dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
399 					dif, sdif);
400 	if (!dev_match)
401 		return -1;
402 	if (sk->sk_bound_dev_if)
403 		score += 4;
404 
405 	if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
406 		score++;
407 	return score;
408 }
409 
410 INDIRECT_CALLABLE_SCOPE
411 u32 udp_ehashfn(const struct net *net, const __be32 laddr, const __u16 lport,
412 		const __be32 faddr, const __be16 fport)
413 {
414 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
415 
416 	return __inet_ehashfn(laddr, lport, faddr, fport,
417 			      udp_ehash_secret + net_hash_mix(net));
418 }
419 
420 /* called with rcu_read_lock() */
421 static struct sock *udp4_lib_lookup2(struct net *net,
422 				     __be32 saddr, __be16 sport,
423 				     __be32 daddr, unsigned int hnum,
424 				     int dif, int sdif,
425 				     struct udp_hslot *hslot2,
426 				     struct sk_buff *skb)
427 {
428 	struct sock *sk, *result;
429 	int score, badness;
430 
431 	result = NULL;
432 	badness = 0;
433 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
434 		score = compute_score(sk, net, saddr, sport,
435 				      daddr, hnum, dif, sdif);
436 		if (score > badness) {
437 			badness = score;
438 
439 			if (sk->sk_state == TCP_ESTABLISHED) {
440 				result = sk;
441 				continue;
442 			}
443 
444 			result = inet_lookup_reuseport(net, sk, skb, sizeof(struct udphdr),
445 						       saddr, sport, daddr, hnum, udp_ehashfn);
446 			if (!result) {
447 				result = sk;
448 				continue;
449 			}
450 
451 			/* Fall back to scoring if group has connections */
452 			if (!reuseport_has_conns(sk))
453 				return result;
454 
455 			/* Reuseport logic returned an error, keep original score. */
456 			if (IS_ERR(result))
457 				continue;
458 
459 			badness = compute_score(result, net, saddr, sport,
460 						daddr, hnum, dif, sdif);
461 
462 		}
463 	}
464 	return result;
465 }
466 
467 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
468  * harder than this. -DaveM
469  */
470 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
471 		__be16 sport, __be32 daddr, __be16 dport, int dif,
472 		int sdif, struct udp_table *udptable, struct sk_buff *skb)
473 {
474 	unsigned short hnum = ntohs(dport);
475 	unsigned int hash2, slot2;
476 	struct udp_hslot *hslot2;
477 	struct sock *result, *sk;
478 
479 	hash2 = ipv4_portaddr_hash(net, daddr, hnum);
480 	slot2 = hash2 & udptable->mask;
481 	hslot2 = &udptable->hash2[slot2];
482 
483 	/* Lookup connected or non-wildcard socket */
484 	result = udp4_lib_lookup2(net, saddr, sport,
485 				  daddr, hnum, dif, sdif,
486 				  hslot2, skb);
487 	if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED)
488 		goto done;
489 
490 	/* Lookup redirect from BPF */
491 	if (static_branch_unlikely(&bpf_sk_lookup_enabled) &&
492 	    udptable == net->ipv4.udp_table) {
493 		sk = inet_lookup_run_sk_lookup(net, IPPROTO_UDP, skb, sizeof(struct udphdr),
494 					       saddr, sport, daddr, hnum, dif,
495 					       udp_ehashfn);
496 		if (sk) {
497 			result = sk;
498 			goto done;
499 		}
500 	}
501 
502 	/* Got non-wildcard socket or error on first lookup */
503 	if (result)
504 		goto done;
505 
506 	/* Lookup wildcard sockets */
507 	hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
508 	slot2 = hash2 & udptable->mask;
509 	hslot2 = &udptable->hash2[slot2];
510 
511 	result = udp4_lib_lookup2(net, saddr, sport,
512 				  htonl(INADDR_ANY), hnum, dif, sdif,
513 				  hslot2, skb);
514 done:
515 	if (IS_ERR(result))
516 		return NULL;
517 	return result;
518 }
519 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
520 
521 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
522 						 __be16 sport, __be16 dport,
523 						 struct udp_table *udptable)
524 {
525 	const struct iphdr *iph = ip_hdr(skb);
526 
527 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
528 				 iph->daddr, dport, inet_iif(skb),
529 				 inet_sdif(skb), udptable, skb);
530 }
531 
532 struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb,
533 				 __be16 sport, __be16 dport)
534 {
535 	const struct iphdr *iph = ip_hdr(skb);
536 	struct net *net = dev_net(skb->dev);
537 	int iif, sdif;
538 
539 	inet_get_iif_sdif(skb, &iif, &sdif);
540 
541 	return __udp4_lib_lookup(net, iph->saddr, sport,
542 				 iph->daddr, dport, iif,
543 				 sdif, net->ipv4.udp_table, NULL);
544 }
545 
546 /* Must be called under rcu_read_lock().
547  * Does increment socket refcount.
548  */
549 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
550 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
551 			     __be32 daddr, __be16 dport, int dif)
552 {
553 	struct sock *sk;
554 
555 	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
556 			       dif, 0, net->ipv4.udp_table, NULL);
557 	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
558 		sk = NULL;
559 	return sk;
560 }
561 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
562 #endif
563 
564 static inline bool __udp_is_mcast_sock(struct net *net, const struct sock *sk,
565 				       __be16 loc_port, __be32 loc_addr,
566 				       __be16 rmt_port, __be32 rmt_addr,
567 				       int dif, int sdif, unsigned short hnum)
568 {
569 	const struct inet_sock *inet = inet_sk(sk);
570 
571 	if (!net_eq(sock_net(sk), net) ||
572 	    udp_sk(sk)->udp_port_hash != hnum ||
573 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
574 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
575 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
576 	    ipv6_only_sock(sk) ||
577 	    !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
578 		return false;
579 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
580 		return false;
581 	return true;
582 }
583 
584 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
585 void udp_encap_enable(void)
586 {
587 	static_branch_inc(&udp_encap_needed_key);
588 }
589 EXPORT_SYMBOL(udp_encap_enable);
590 
591 void udp_encap_disable(void)
592 {
593 	static_branch_dec(&udp_encap_needed_key);
594 }
595 EXPORT_SYMBOL(udp_encap_disable);
596 
597 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go
598  * through error handlers in encapsulations looking for a match.
599  */
600 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
601 {
602 	int i;
603 
604 	for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
605 		int (*handler)(struct sk_buff *skb, u32 info);
606 		const struct ip_tunnel_encap_ops *encap;
607 
608 		encap = rcu_dereference(iptun_encaps[i]);
609 		if (!encap)
610 			continue;
611 		handler = encap->err_handler;
612 		if (handler && !handler(skb, info))
613 			return 0;
614 	}
615 
616 	return -ENOENT;
617 }
618 
619 /* Try to match ICMP errors to UDP tunnels by looking up a socket without
620  * reversing source and destination port: this will match tunnels that force the
621  * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
622  * lwtunnels might actually break this assumption by being configured with
623  * different destination ports on endpoints, in this case we won't be able to
624  * trace ICMP messages back to them.
625  *
626  * If this doesn't match any socket, probe tunnels with arbitrary destination
627  * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
628  * we've sent packets to won't necessarily match the local destination port.
629  *
630  * Then ask the tunnel implementation to match the error against a valid
631  * association.
632  *
633  * Return an error if we can't find a match, the socket if we need further
634  * processing, zero otherwise.
635  */
636 static struct sock *__udp4_lib_err_encap(struct net *net,
637 					 const struct iphdr *iph,
638 					 struct udphdr *uh,
639 					 struct udp_table *udptable,
640 					 struct sock *sk,
641 					 struct sk_buff *skb, u32 info)
642 {
643 	int (*lookup)(struct sock *sk, struct sk_buff *skb);
644 	int network_offset, transport_offset;
645 	struct udp_sock *up;
646 
647 	network_offset = skb_network_offset(skb);
648 	transport_offset = skb_transport_offset(skb);
649 
650 	/* Network header needs to point to the outer IPv4 header inside ICMP */
651 	skb_reset_network_header(skb);
652 
653 	/* Transport header needs to point to the UDP header */
654 	skb_set_transport_header(skb, iph->ihl << 2);
655 
656 	if (sk) {
657 		up = udp_sk(sk);
658 
659 		lookup = READ_ONCE(up->encap_err_lookup);
660 		if (lookup && lookup(sk, skb))
661 			sk = NULL;
662 
663 		goto out;
664 	}
665 
666 	sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
667 			       iph->saddr, uh->dest, skb->dev->ifindex, 0,
668 			       udptable, NULL);
669 	if (sk) {
670 		up = udp_sk(sk);
671 
672 		lookup = READ_ONCE(up->encap_err_lookup);
673 		if (!lookup || lookup(sk, skb))
674 			sk = NULL;
675 	}
676 
677 out:
678 	if (!sk)
679 		sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
680 
681 	skb_set_transport_header(skb, transport_offset);
682 	skb_set_network_header(skb, network_offset);
683 
684 	return sk;
685 }
686 
687 /*
688  * This routine is called by the ICMP module when it gets some
689  * sort of error condition.  If err < 0 then the socket should
690  * be closed and the error returned to the user.  If err > 0
691  * it's just the icmp type << 8 | icmp code.
692  * Header points to the ip header of the error packet. We move
693  * on past this. Then (as it used to claim before adjustment)
694  * header points to the first 8 bytes of the udp header.  We need
695  * to find the appropriate port.
696  */
697 
698 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
699 {
700 	struct inet_sock *inet;
701 	const struct iphdr *iph = (const struct iphdr *)skb->data;
702 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
703 	const int type = icmp_hdr(skb)->type;
704 	const int code = icmp_hdr(skb)->code;
705 	bool tunnel = false;
706 	struct sock *sk;
707 	int harderr;
708 	int err;
709 	struct net *net = dev_net(skb->dev);
710 
711 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
712 			       iph->saddr, uh->source, skb->dev->ifindex,
713 			       inet_sdif(skb), udptable, NULL);
714 
715 	if (!sk || READ_ONCE(udp_sk(sk)->encap_type)) {
716 		/* No socket for error: try tunnels before discarding */
717 		if (static_branch_unlikely(&udp_encap_needed_key)) {
718 			sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb,
719 						  info);
720 			if (!sk)
721 				return 0;
722 		} else
723 			sk = ERR_PTR(-ENOENT);
724 
725 		if (IS_ERR(sk)) {
726 			__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
727 			return PTR_ERR(sk);
728 		}
729 
730 		tunnel = true;
731 	}
732 
733 	err = 0;
734 	harderr = 0;
735 	inet = inet_sk(sk);
736 
737 	switch (type) {
738 	default:
739 	case ICMP_TIME_EXCEEDED:
740 		err = EHOSTUNREACH;
741 		break;
742 	case ICMP_SOURCE_QUENCH:
743 		goto out;
744 	case ICMP_PARAMETERPROB:
745 		err = EPROTO;
746 		harderr = 1;
747 		break;
748 	case ICMP_DEST_UNREACH:
749 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
750 			ipv4_sk_update_pmtu(skb, sk, info);
751 			if (READ_ONCE(inet->pmtudisc) != IP_PMTUDISC_DONT) {
752 				err = EMSGSIZE;
753 				harderr = 1;
754 				break;
755 			}
756 			goto out;
757 		}
758 		err = EHOSTUNREACH;
759 		if (code <= NR_ICMP_UNREACH) {
760 			harderr = icmp_err_convert[code].fatal;
761 			err = icmp_err_convert[code].errno;
762 		}
763 		break;
764 	case ICMP_REDIRECT:
765 		ipv4_sk_redirect(skb, sk);
766 		goto out;
767 	}
768 
769 	/*
770 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
771 	 *	4.1.3.3.
772 	 */
773 	if (tunnel) {
774 		/* ...not for tunnels though: we don't have a sending socket */
775 		if (udp_sk(sk)->encap_err_rcv)
776 			udp_sk(sk)->encap_err_rcv(sk, skb, err, uh->dest, info,
777 						  (u8 *)(uh+1));
778 		goto out;
779 	}
780 	if (!inet_test_bit(RECVERR, sk)) {
781 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
782 			goto out;
783 	} else
784 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
785 
786 	sk->sk_err = err;
787 	sk_error_report(sk);
788 out:
789 	return 0;
790 }
791 
792 int udp_err(struct sk_buff *skb, u32 info)
793 {
794 	return __udp4_lib_err(skb, info, dev_net(skb->dev)->ipv4.udp_table);
795 }
796 
797 /*
798  * Throw away all pending data and cancel the corking. Socket is locked.
799  */
800 void udp_flush_pending_frames(struct sock *sk)
801 {
802 	struct udp_sock *up = udp_sk(sk);
803 
804 	if (up->pending) {
805 		up->len = 0;
806 		WRITE_ONCE(up->pending, 0);
807 		ip_flush_pending_frames(sk);
808 	}
809 }
810 EXPORT_SYMBOL(udp_flush_pending_frames);
811 
812 /**
813  * 	udp4_hwcsum  -  handle outgoing HW checksumming
814  * 	@skb: 	sk_buff containing the filled-in UDP header
815  * 	        (checksum field must be zeroed out)
816  *	@src:	source IP address
817  *	@dst:	destination IP address
818  */
819 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
820 {
821 	struct udphdr *uh = udp_hdr(skb);
822 	int offset = skb_transport_offset(skb);
823 	int len = skb->len - offset;
824 	int hlen = len;
825 	__wsum csum = 0;
826 
827 	if (!skb_has_frag_list(skb)) {
828 		/*
829 		 * Only one fragment on the socket.
830 		 */
831 		skb->csum_start = skb_transport_header(skb) - skb->head;
832 		skb->csum_offset = offsetof(struct udphdr, check);
833 		uh->check = ~csum_tcpudp_magic(src, dst, len,
834 					       IPPROTO_UDP, 0);
835 	} else {
836 		struct sk_buff *frags;
837 
838 		/*
839 		 * HW-checksum won't work as there are two or more
840 		 * fragments on the socket so that all csums of sk_buffs
841 		 * should be together
842 		 */
843 		skb_walk_frags(skb, frags) {
844 			csum = csum_add(csum, frags->csum);
845 			hlen -= frags->len;
846 		}
847 
848 		csum = skb_checksum(skb, offset, hlen, csum);
849 		skb->ip_summed = CHECKSUM_NONE;
850 
851 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
852 		if (uh->check == 0)
853 			uh->check = CSUM_MANGLED_0;
854 	}
855 }
856 EXPORT_SYMBOL_GPL(udp4_hwcsum);
857 
858 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
859  * for the simple case like when setting the checksum for a UDP tunnel.
860  */
861 void udp_set_csum(bool nocheck, struct sk_buff *skb,
862 		  __be32 saddr, __be32 daddr, int len)
863 {
864 	struct udphdr *uh = udp_hdr(skb);
865 
866 	if (nocheck) {
867 		uh->check = 0;
868 	} else if (skb_is_gso(skb)) {
869 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
870 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
871 		uh->check = 0;
872 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
873 		if (uh->check == 0)
874 			uh->check = CSUM_MANGLED_0;
875 	} else {
876 		skb->ip_summed = CHECKSUM_PARTIAL;
877 		skb->csum_start = skb_transport_header(skb) - skb->head;
878 		skb->csum_offset = offsetof(struct udphdr, check);
879 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
880 	}
881 }
882 EXPORT_SYMBOL(udp_set_csum);
883 
884 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
885 			struct inet_cork *cork)
886 {
887 	struct sock *sk = skb->sk;
888 	struct inet_sock *inet = inet_sk(sk);
889 	struct udphdr *uh;
890 	int err;
891 	int is_udplite = IS_UDPLITE(sk);
892 	int offset = skb_transport_offset(skb);
893 	int len = skb->len - offset;
894 	int datalen = len - sizeof(*uh);
895 	__wsum csum = 0;
896 
897 	/*
898 	 * Create a UDP header
899 	 */
900 	uh = udp_hdr(skb);
901 	uh->source = inet->inet_sport;
902 	uh->dest = fl4->fl4_dport;
903 	uh->len = htons(len);
904 	uh->check = 0;
905 
906 	if (cork->gso_size) {
907 		const int hlen = skb_network_header_len(skb) +
908 				 sizeof(struct udphdr);
909 
910 		if (hlen + cork->gso_size > cork->fragsize) {
911 			kfree_skb(skb);
912 			return -EINVAL;
913 		}
914 		if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) {
915 			kfree_skb(skb);
916 			return -EINVAL;
917 		}
918 		if (sk->sk_no_check_tx) {
919 			kfree_skb(skb);
920 			return -EINVAL;
921 		}
922 		if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
923 		    dst_xfrm(skb_dst(skb))) {
924 			kfree_skb(skb);
925 			return -EIO;
926 		}
927 
928 		if (datalen > cork->gso_size) {
929 			skb_shinfo(skb)->gso_size = cork->gso_size;
930 			skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
931 			skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
932 								 cork->gso_size);
933 		}
934 		goto csum_partial;
935 	}
936 
937 	if (is_udplite)  				 /*     UDP-Lite      */
938 		csum = udplite_csum(skb);
939 
940 	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
941 
942 		skb->ip_summed = CHECKSUM_NONE;
943 		goto send;
944 
945 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
946 csum_partial:
947 
948 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
949 		goto send;
950 
951 	} else
952 		csum = udp_csum(skb);
953 
954 	/* add protocol-dependent pseudo-header */
955 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
956 				      sk->sk_protocol, csum);
957 	if (uh->check == 0)
958 		uh->check = CSUM_MANGLED_0;
959 
960 send:
961 	err = ip_send_skb(sock_net(sk), skb);
962 	if (err) {
963 		if (err == -ENOBUFS &&
964 		    !inet_test_bit(RECVERR, sk)) {
965 			UDP_INC_STATS(sock_net(sk),
966 				      UDP_MIB_SNDBUFERRORS, is_udplite);
967 			err = 0;
968 		}
969 	} else
970 		UDP_INC_STATS(sock_net(sk),
971 			      UDP_MIB_OUTDATAGRAMS, is_udplite);
972 	return err;
973 }
974 
975 /*
976  * Push out all pending data as one UDP datagram. Socket is locked.
977  */
978 int udp_push_pending_frames(struct sock *sk)
979 {
980 	struct udp_sock  *up = udp_sk(sk);
981 	struct inet_sock *inet = inet_sk(sk);
982 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
983 	struct sk_buff *skb;
984 	int err = 0;
985 
986 	skb = ip_finish_skb(sk, fl4);
987 	if (!skb)
988 		goto out;
989 
990 	err = udp_send_skb(skb, fl4, &inet->cork.base);
991 
992 out:
993 	up->len = 0;
994 	WRITE_ONCE(up->pending, 0);
995 	return err;
996 }
997 EXPORT_SYMBOL(udp_push_pending_frames);
998 
999 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
1000 {
1001 	switch (cmsg->cmsg_type) {
1002 	case UDP_SEGMENT:
1003 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
1004 			return -EINVAL;
1005 		*gso_size = *(__u16 *)CMSG_DATA(cmsg);
1006 		return 0;
1007 	default:
1008 		return -EINVAL;
1009 	}
1010 }
1011 
1012 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
1013 {
1014 	struct cmsghdr *cmsg;
1015 	bool need_ip = false;
1016 	int err;
1017 
1018 	for_each_cmsghdr(cmsg, msg) {
1019 		if (!CMSG_OK(msg, cmsg))
1020 			return -EINVAL;
1021 
1022 		if (cmsg->cmsg_level != SOL_UDP) {
1023 			need_ip = true;
1024 			continue;
1025 		}
1026 
1027 		err = __udp_cmsg_send(cmsg, gso_size);
1028 		if (err)
1029 			return err;
1030 	}
1031 
1032 	return need_ip;
1033 }
1034 EXPORT_SYMBOL_GPL(udp_cmsg_send);
1035 
1036 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1037 {
1038 	struct inet_sock *inet = inet_sk(sk);
1039 	struct udp_sock *up = udp_sk(sk);
1040 	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1041 	struct flowi4 fl4_stack;
1042 	struct flowi4 *fl4;
1043 	int ulen = len;
1044 	struct ipcm_cookie ipc;
1045 	struct rtable *rt = NULL;
1046 	int free = 0;
1047 	int connected = 0;
1048 	__be32 daddr, faddr, saddr;
1049 	u8 tos, scope;
1050 	__be16 dport;
1051 	int err, is_udplite = IS_UDPLITE(sk);
1052 	int corkreq = udp_test_bit(CORK, sk) || msg->msg_flags & MSG_MORE;
1053 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
1054 	struct sk_buff *skb;
1055 	struct ip_options_data opt_copy;
1056 	int uc_index;
1057 
1058 	if (len > 0xFFFF)
1059 		return -EMSGSIZE;
1060 
1061 	/*
1062 	 *	Check the flags.
1063 	 */
1064 
1065 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1066 		return -EOPNOTSUPP;
1067 
1068 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1069 
1070 	fl4 = &inet->cork.fl.u.ip4;
1071 	if (READ_ONCE(up->pending)) {
1072 		/*
1073 		 * There are pending frames.
1074 		 * The socket lock must be held while it's corked.
1075 		 */
1076 		lock_sock(sk);
1077 		if (likely(up->pending)) {
1078 			if (unlikely(up->pending != AF_INET)) {
1079 				release_sock(sk);
1080 				return -EINVAL;
1081 			}
1082 			goto do_append_data;
1083 		}
1084 		release_sock(sk);
1085 	}
1086 	ulen += sizeof(struct udphdr);
1087 
1088 	/*
1089 	 *	Get and verify the address.
1090 	 */
1091 	if (usin) {
1092 		if (msg->msg_namelen < sizeof(*usin))
1093 			return -EINVAL;
1094 		if (usin->sin_family != AF_INET) {
1095 			if (usin->sin_family != AF_UNSPEC)
1096 				return -EAFNOSUPPORT;
1097 		}
1098 
1099 		daddr = usin->sin_addr.s_addr;
1100 		dport = usin->sin_port;
1101 		if (dport == 0)
1102 			return -EINVAL;
1103 	} else {
1104 		if (sk->sk_state != TCP_ESTABLISHED)
1105 			return -EDESTADDRREQ;
1106 		daddr = inet->inet_daddr;
1107 		dport = inet->inet_dport;
1108 		/* Open fast path for connected socket.
1109 		   Route will not be used, if at least one option is set.
1110 		 */
1111 		connected = 1;
1112 	}
1113 
1114 	ipcm_init_sk(&ipc, inet);
1115 	ipc.gso_size = READ_ONCE(up->gso_size);
1116 
1117 	if (msg->msg_controllen) {
1118 		err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1119 		if (err > 0)
1120 			err = ip_cmsg_send(sk, msg, &ipc,
1121 					   sk->sk_family == AF_INET6);
1122 		if (unlikely(err < 0)) {
1123 			kfree(ipc.opt);
1124 			return err;
1125 		}
1126 		if (ipc.opt)
1127 			free = 1;
1128 		connected = 0;
1129 	}
1130 	if (!ipc.opt) {
1131 		struct ip_options_rcu *inet_opt;
1132 
1133 		rcu_read_lock();
1134 		inet_opt = rcu_dereference(inet->inet_opt);
1135 		if (inet_opt) {
1136 			memcpy(&opt_copy, inet_opt,
1137 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
1138 			ipc.opt = &opt_copy.opt;
1139 		}
1140 		rcu_read_unlock();
1141 	}
1142 
1143 	if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) {
1144 		err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1145 					    (struct sockaddr *)usin,
1146 					    &msg->msg_namelen,
1147 					    &ipc.addr);
1148 		if (err)
1149 			goto out_free;
1150 		if (usin) {
1151 			if (usin->sin_port == 0) {
1152 				/* BPF program set invalid port. Reject it. */
1153 				err = -EINVAL;
1154 				goto out_free;
1155 			}
1156 			daddr = usin->sin_addr.s_addr;
1157 			dport = usin->sin_port;
1158 		}
1159 	}
1160 
1161 	saddr = ipc.addr;
1162 	ipc.addr = faddr = daddr;
1163 
1164 	if (ipc.opt && ipc.opt->opt.srr) {
1165 		if (!daddr) {
1166 			err = -EINVAL;
1167 			goto out_free;
1168 		}
1169 		faddr = ipc.opt->opt.faddr;
1170 		connected = 0;
1171 	}
1172 	tos = get_rttos(&ipc, inet);
1173 	scope = ip_sendmsg_scope(inet, &ipc, msg);
1174 	if (scope == RT_SCOPE_LINK)
1175 		connected = 0;
1176 
1177 	uc_index = READ_ONCE(inet->uc_index);
1178 	if (ipv4_is_multicast(daddr)) {
1179 		if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1180 			ipc.oif = READ_ONCE(inet->mc_index);
1181 		if (!saddr)
1182 			saddr = READ_ONCE(inet->mc_addr);
1183 		connected = 0;
1184 	} else if (!ipc.oif) {
1185 		ipc.oif = uc_index;
1186 	} else if (ipv4_is_lbcast(daddr) && uc_index) {
1187 		/* oif is set, packet is to local broadcast and
1188 		 * uc_index is set. oif is most likely set
1189 		 * by sk_bound_dev_if. If uc_index != oif check if the
1190 		 * oif is an L3 master and uc_index is an L3 slave.
1191 		 * If so, we want to allow the send using the uc_index.
1192 		 */
1193 		if (ipc.oif != uc_index &&
1194 		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1195 							      uc_index)) {
1196 			ipc.oif = uc_index;
1197 		}
1198 	}
1199 
1200 	if (connected)
1201 		rt = (struct rtable *)sk_dst_check(sk, 0);
1202 
1203 	if (!rt) {
1204 		struct net *net = sock_net(sk);
1205 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1206 
1207 		fl4 = &fl4_stack;
1208 
1209 		flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos, scope,
1210 				   sk->sk_protocol, flow_flags, faddr, saddr,
1211 				   dport, inet->inet_sport, sk->sk_uid);
1212 
1213 		security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
1214 		rt = ip_route_output_flow(net, fl4, sk);
1215 		if (IS_ERR(rt)) {
1216 			err = PTR_ERR(rt);
1217 			rt = NULL;
1218 			if (err == -ENETUNREACH)
1219 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1220 			goto out;
1221 		}
1222 
1223 		err = -EACCES;
1224 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1225 		    !sock_flag(sk, SOCK_BROADCAST))
1226 			goto out;
1227 		if (connected)
1228 			sk_dst_set(sk, dst_clone(&rt->dst));
1229 	}
1230 
1231 	if (msg->msg_flags&MSG_CONFIRM)
1232 		goto do_confirm;
1233 back_from_confirm:
1234 
1235 	saddr = fl4->saddr;
1236 	if (!ipc.addr)
1237 		daddr = ipc.addr = fl4->daddr;
1238 
1239 	/* Lockless fast path for the non-corking case. */
1240 	if (!corkreq) {
1241 		struct inet_cork cork;
1242 
1243 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1244 				  sizeof(struct udphdr), &ipc, &rt,
1245 				  &cork, msg->msg_flags);
1246 		err = PTR_ERR(skb);
1247 		if (!IS_ERR_OR_NULL(skb))
1248 			err = udp_send_skb(skb, fl4, &cork);
1249 		goto out;
1250 	}
1251 
1252 	lock_sock(sk);
1253 	if (unlikely(up->pending)) {
1254 		/* The socket is already corked while preparing it. */
1255 		/* ... which is an evident application bug. --ANK */
1256 		release_sock(sk);
1257 
1258 		net_dbg_ratelimited("socket already corked\n");
1259 		err = -EINVAL;
1260 		goto out;
1261 	}
1262 	/*
1263 	 *	Now cork the socket to pend data.
1264 	 */
1265 	fl4 = &inet->cork.fl.u.ip4;
1266 	fl4->daddr = daddr;
1267 	fl4->saddr = saddr;
1268 	fl4->fl4_dport = dport;
1269 	fl4->fl4_sport = inet->inet_sport;
1270 	WRITE_ONCE(up->pending, AF_INET);
1271 
1272 do_append_data:
1273 	up->len += ulen;
1274 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1275 			     sizeof(struct udphdr), &ipc, &rt,
1276 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1277 	if (err)
1278 		udp_flush_pending_frames(sk);
1279 	else if (!corkreq)
1280 		err = udp_push_pending_frames(sk);
1281 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1282 		WRITE_ONCE(up->pending, 0);
1283 	release_sock(sk);
1284 
1285 out:
1286 	ip_rt_put(rt);
1287 out_free:
1288 	if (free)
1289 		kfree(ipc.opt);
1290 	if (!err)
1291 		return len;
1292 	/*
1293 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1294 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1295 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1296 	 * things).  We could add another new stat but at least for now that
1297 	 * seems like overkill.
1298 	 */
1299 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1300 		UDP_INC_STATS(sock_net(sk),
1301 			      UDP_MIB_SNDBUFERRORS, is_udplite);
1302 	}
1303 	return err;
1304 
1305 do_confirm:
1306 	if (msg->msg_flags & MSG_PROBE)
1307 		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1308 	if (!(msg->msg_flags&MSG_PROBE) || len)
1309 		goto back_from_confirm;
1310 	err = 0;
1311 	goto out;
1312 }
1313 EXPORT_SYMBOL(udp_sendmsg);
1314 
1315 void udp_splice_eof(struct socket *sock)
1316 {
1317 	struct sock *sk = sock->sk;
1318 	struct udp_sock *up = udp_sk(sk);
1319 
1320 	if (!READ_ONCE(up->pending) || udp_test_bit(CORK, sk))
1321 		return;
1322 
1323 	lock_sock(sk);
1324 	if (up->pending && !udp_test_bit(CORK, sk))
1325 		udp_push_pending_frames(sk);
1326 	release_sock(sk);
1327 }
1328 EXPORT_SYMBOL_GPL(udp_splice_eof);
1329 
1330 #define UDP_SKB_IS_STATELESS 0x80000000
1331 
1332 /* all head states (dst, sk, nf conntrack) except skb extensions are
1333  * cleared by udp_rcv().
1334  *
1335  * We need to preserve secpath, if present, to eventually process
1336  * IP_CMSG_PASSSEC at recvmsg() time.
1337  *
1338  * Other extensions can be cleared.
1339  */
1340 static bool udp_try_make_stateless(struct sk_buff *skb)
1341 {
1342 	if (!skb_has_extensions(skb))
1343 		return true;
1344 
1345 	if (!secpath_exists(skb)) {
1346 		skb_ext_reset(skb);
1347 		return true;
1348 	}
1349 
1350 	return false;
1351 }
1352 
1353 static void udp_set_dev_scratch(struct sk_buff *skb)
1354 {
1355 	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1356 
1357 	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1358 	scratch->_tsize_state = skb->truesize;
1359 #if BITS_PER_LONG == 64
1360 	scratch->len = skb->len;
1361 	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1362 	scratch->is_linear = !skb_is_nonlinear(skb);
1363 #endif
1364 	if (udp_try_make_stateless(skb))
1365 		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1366 }
1367 
1368 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1369 {
1370 	/* We come here after udp_lib_checksum_complete() returned 0.
1371 	 * This means that __skb_checksum_complete() might have
1372 	 * set skb->csum_valid to 1.
1373 	 * On 64bit platforms, we can set csum_unnecessary
1374 	 * to true, but only if the skb is not shared.
1375 	 */
1376 #if BITS_PER_LONG == 64
1377 	if (!skb_shared(skb))
1378 		udp_skb_scratch(skb)->csum_unnecessary = true;
1379 #endif
1380 }
1381 
1382 static int udp_skb_truesize(struct sk_buff *skb)
1383 {
1384 	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1385 }
1386 
1387 static bool udp_skb_has_head_state(struct sk_buff *skb)
1388 {
1389 	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1390 }
1391 
1392 /* fully reclaim rmem/fwd memory allocated for skb */
1393 static void udp_rmem_release(struct sock *sk, int size, int partial,
1394 			     bool rx_queue_lock_held)
1395 {
1396 	struct udp_sock *up = udp_sk(sk);
1397 	struct sk_buff_head *sk_queue;
1398 	int amt;
1399 
1400 	if (likely(partial)) {
1401 		up->forward_deficit += size;
1402 		size = up->forward_deficit;
1403 		if (size < READ_ONCE(up->forward_threshold) &&
1404 		    !skb_queue_empty(&up->reader_queue))
1405 			return;
1406 	} else {
1407 		size += up->forward_deficit;
1408 	}
1409 	up->forward_deficit = 0;
1410 
1411 	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1412 	 * if the called don't held it already
1413 	 */
1414 	sk_queue = &sk->sk_receive_queue;
1415 	if (!rx_queue_lock_held)
1416 		spin_lock(&sk_queue->lock);
1417 
1418 
1419 	sk_forward_alloc_add(sk, size);
1420 	amt = (sk->sk_forward_alloc - partial) & ~(PAGE_SIZE - 1);
1421 	sk_forward_alloc_add(sk, -amt);
1422 
1423 	if (amt)
1424 		__sk_mem_reduce_allocated(sk, amt >> PAGE_SHIFT);
1425 
1426 	atomic_sub(size, &sk->sk_rmem_alloc);
1427 
1428 	/* this can save us from acquiring the rx queue lock on next receive */
1429 	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1430 
1431 	if (!rx_queue_lock_held)
1432 		spin_unlock(&sk_queue->lock);
1433 }
1434 
1435 /* Note: called with reader_queue.lock held.
1436  * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1437  * This avoids a cache line miss while receive_queue lock is held.
1438  * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1439  */
1440 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1441 {
1442 	prefetch(&skb->data);
1443 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1444 }
1445 EXPORT_SYMBOL(udp_skb_destructor);
1446 
1447 /* as above, but the caller held the rx queue lock, too */
1448 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1449 {
1450 	prefetch(&skb->data);
1451 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1452 }
1453 
1454 /* Idea of busylocks is to let producers grab an extra spinlock
1455  * to relieve pressure on the receive_queue spinlock shared by consumer.
1456  * Under flood, this means that only one producer can be in line
1457  * trying to acquire the receive_queue spinlock.
1458  * These busylock can be allocated on a per cpu manner, instead of a
1459  * per socket one (that would consume a cache line per socket)
1460  */
1461 static int udp_busylocks_log __read_mostly;
1462 static spinlock_t *udp_busylocks __read_mostly;
1463 
1464 static spinlock_t *busylock_acquire(void *ptr)
1465 {
1466 	spinlock_t *busy;
1467 
1468 	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1469 	spin_lock(busy);
1470 	return busy;
1471 }
1472 
1473 static void busylock_release(spinlock_t *busy)
1474 {
1475 	if (busy)
1476 		spin_unlock(busy);
1477 }
1478 
1479 static int udp_rmem_schedule(struct sock *sk, int size)
1480 {
1481 	int delta;
1482 
1483 	delta = size - sk->sk_forward_alloc;
1484 	if (delta > 0 && !__sk_mem_schedule(sk, delta, SK_MEM_RECV))
1485 		return -ENOBUFS;
1486 
1487 	return 0;
1488 }
1489 
1490 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1491 {
1492 	struct sk_buff_head *list = &sk->sk_receive_queue;
1493 	int rmem, err = -ENOMEM;
1494 	spinlock_t *busy = NULL;
1495 	int size;
1496 
1497 	/* try to avoid the costly atomic add/sub pair when the receive
1498 	 * queue is full; always allow at least a packet
1499 	 */
1500 	rmem = atomic_read(&sk->sk_rmem_alloc);
1501 	if (rmem > sk->sk_rcvbuf)
1502 		goto drop;
1503 
1504 	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1505 	 * having linear skbs :
1506 	 * - Reduce memory overhead and thus increase receive queue capacity
1507 	 * - Less cache line misses at copyout() time
1508 	 * - Less work at consume_skb() (less alien page frag freeing)
1509 	 */
1510 	if (rmem > (sk->sk_rcvbuf >> 1)) {
1511 		skb_condense(skb);
1512 
1513 		busy = busylock_acquire(sk);
1514 	}
1515 	size = skb->truesize;
1516 	udp_set_dev_scratch(skb);
1517 
1518 	/* we drop only if the receive buf is full and the receive
1519 	 * queue contains some other skb
1520 	 */
1521 	rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1522 	if (rmem > (size + (unsigned int)sk->sk_rcvbuf))
1523 		goto uncharge_drop;
1524 
1525 	spin_lock(&list->lock);
1526 	err = udp_rmem_schedule(sk, size);
1527 	if (err) {
1528 		spin_unlock(&list->lock);
1529 		goto uncharge_drop;
1530 	}
1531 
1532 	sk_forward_alloc_add(sk, -size);
1533 
1534 	/* no need to setup a destructor, we will explicitly release the
1535 	 * forward allocated memory on dequeue
1536 	 */
1537 	sock_skb_set_dropcount(sk, skb);
1538 
1539 	__skb_queue_tail(list, skb);
1540 	spin_unlock(&list->lock);
1541 
1542 	if (!sock_flag(sk, SOCK_DEAD))
1543 		INDIRECT_CALL_1(sk->sk_data_ready, sock_def_readable, sk);
1544 
1545 	busylock_release(busy);
1546 	return 0;
1547 
1548 uncharge_drop:
1549 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1550 
1551 drop:
1552 	atomic_inc(&sk->sk_drops);
1553 	busylock_release(busy);
1554 	return err;
1555 }
1556 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1557 
1558 void udp_destruct_common(struct sock *sk)
1559 {
1560 	/* reclaim completely the forward allocated memory */
1561 	struct udp_sock *up = udp_sk(sk);
1562 	unsigned int total = 0;
1563 	struct sk_buff *skb;
1564 
1565 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1566 	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1567 		total += skb->truesize;
1568 		kfree_skb(skb);
1569 	}
1570 	udp_rmem_release(sk, total, 0, true);
1571 }
1572 EXPORT_SYMBOL_GPL(udp_destruct_common);
1573 
1574 static void udp_destruct_sock(struct sock *sk)
1575 {
1576 	udp_destruct_common(sk);
1577 	inet_sock_destruct(sk);
1578 }
1579 
1580 int udp_init_sock(struct sock *sk)
1581 {
1582 	udp_lib_init_sock(sk);
1583 	sk->sk_destruct = udp_destruct_sock;
1584 	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1585 	return 0;
1586 }
1587 
1588 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1589 {
1590 	if (unlikely(READ_ONCE(udp_sk(sk)->peeking_with_offset)))
1591 		sk_peek_offset_bwd(sk, len);
1592 
1593 	if (!skb_unref(skb))
1594 		return;
1595 
1596 	/* In the more common cases we cleared the head states previously,
1597 	 * see __udp_queue_rcv_skb().
1598 	 */
1599 	if (unlikely(udp_skb_has_head_state(skb)))
1600 		skb_release_head_state(skb);
1601 	__consume_stateless_skb(skb);
1602 }
1603 EXPORT_SYMBOL_GPL(skb_consume_udp);
1604 
1605 static struct sk_buff *__first_packet_length(struct sock *sk,
1606 					     struct sk_buff_head *rcvq,
1607 					     int *total)
1608 {
1609 	struct sk_buff *skb;
1610 
1611 	while ((skb = skb_peek(rcvq)) != NULL) {
1612 		if (udp_lib_checksum_complete(skb)) {
1613 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1614 					IS_UDPLITE(sk));
1615 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1616 					IS_UDPLITE(sk));
1617 			atomic_inc(&sk->sk_drops);
1618 			__skb_unlink(skb, rcvq);
1619 			*total += skb->truesize;
1620 			kfree_skb(skb);
1621 		} else {
1622 			udp_skb_csum_unnecessary_set(skb);
1623 			break;
1624 		}
1625 	}
1626 	return skb;
1627 }
1628 
1629 /**
1630  *	first_packet_length	- return length of first packet in receive queue
1631  *	@sk: socket
1632  *
1633  *	Drops all bad checksum frames, until a valid one is found.
1634  *	Returns the length of found skb, or -1 if none is found.
1635  */
1636 static int first_packet_length(struct sock *sk)
1637 {
1638 	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1639 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1640 	struct sk_buff *skb;
1641 	int total = 0;
1642 	int res;
1643 
1644 	spin_lock_bh(&rcvq->lock);
1645 	skb = __first_packet_length(sk, rcvq, &total);
1646 	if (!skb && !skb_queue_empty_lockless(sk_queue)) {
1647 		spin_lock(&sk_queue->lock);
1648 		skb_queue_splice_tail_init(sk_queue, rcvq);
1649 		spin_unlock(&sk_queue->lock);
1650 
1651 		skb = __first_packet_length(sk, rcvq, &total);
1652 	}
1653 	res = skb ? skb->len : -1;
1654 	if (total)
1655 		udp_rmem_release(sk, total, 1, false);
1656 	spin_unlock_bh(&rcvq->lock);
1657 	return res;
1658 }
1659 
1660 /*
1661  *	IOCTL requests applicable to the UDP protocol
1662  */
1663 
1664 int udp_ioctl(struct sock *sk, int cmd, int *karg)
1665 {
1666 	switch (cmd) {
1667 	case SIOCOUTQ:
1668 	{
1669 		*karg = sk_wmem_alloc_get(sk);
1670 		return 0;
1671 	}
1672 
1673 	case SIOCINQ:
1674 	{
1675 		*karg = max_t(int, 0, first_packet_length(sk));
1676 		return 0;
1677 	}
1678 
1679 	default:
1680 		return -ENOIOCTLCMD;
1681 	}
1682 
1683 	return 0;
1684 }
1685 EXPORT_SYMBOL(udp_ioctl);
1686 
1687 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1688 			       int *off, int *err)
1689 {
1690 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1691 	struct sk_buff_head *queue;
1692 	struct sk_buff *last;
1693 	long timeo;
1694 	int error;
1695 
1696 	queue = &udp_sk(sk)->reader_queue;
1697 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1698 	do {
1699 		struct sk_buff *skb;
1700 
1701 		error = sock_error(sk);
1702 		if (error)
1703 			break;
1704 
1705 		error = -EAGAIN;
1706 		do {
1707 			spin_lock_bh(&queue->lock);
1708 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1709 							err, &last);
1710 			if (skb) {
1711 				if (!(flags & MSG_PEEK))
1712 					udp_skb_destructor(sk, skb);
1713 				spin_unlock_bh(&queue->lock);
1714 				return skb;
1715 			}
1716 
1717 			if (skb_queue_empty_lockless(sk_queue)) {
1718 				spin_unlock_bh(&queue->lock);
1719 				goto busy_check;
1720 			}
1721 
1722 			/* refill the reader queue and walk it again
1723 			 * keep both queues locked to avoid re-acquiring
1724 			 * the sk_receive_queue lock if fwd memory scheduling
1725 			 * is needed.
1726 			 */
1727 			spin_lock(&sk_queue->lock);
1728 			skb_queue_splice_tail_init(sk_queue, queue);
1729 
1730 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1731 							err, &last);
1732 			if (skb && !(flags & MSG_PEEK))
1733 				udp_skb_dtor_locked(sk, skb);
1734 			spin_unlock(&sk_queue->lock);
1735 			spin_unlock_bh(&queue->lock);
1736 			if (skb)
1737 				return skb;
1738 
1739 busy_check:
1740 			if (!sk_can_busy_loop(sk))
1741 				break;
1742 
1743 			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1744 		} while (!skb_queue_empty_lockless(sk_queue));
1745 
1746 		/* sk_queue is empty, reader_queue may contain peeked packets */
1747 	} while (timeo &&
1748 		 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
1749 					      &error, &timeo,
1750 					      (struct sk_buff *)sk_queue));
1751 
1752 	*err = error;
1753 	return NULL;
1754 }
1755 EXPORT_SYMBOL(__skb_recv_udp);
1756 
1757 int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1758 {
1759 	struct sk_buff *skb;
1760 	int err;
1761 
1762 try_again:
1763 	skb = skb_recv_udp(sk, MSG_DONTWAIT, &err);
1764 	if (!skb)
1765 		return err;
1766 
1767 	if (udp_lib_checksum_complete(skb)) {
1768 		int is_udplite = IS_UDPLITE(sk);
1769 		struct net *net = sock_net(sk);
1770 
1771 		__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, is_udplite);
1772 		__UDP_INC_STATS(net, UDP_MIB_INERRORS, is_udplite);
1773 		atomic_inc(&sk->sk_drops);
1774 		kfree_skb(skb);
1775 		goto try_again;
1776 	}
1777 
1778 	WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1779 	return recv_actor(sk, skb);
1780 }
1781 EXPORT_SYMBOL(udp_read_skb);
1782 
1783 /*
1784  * 	This should be easy, if there is something there we
1785  * 	return it, otherwise we block.
1786  */
1787 
1788 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
1789 		int *addr_len)
1790 {
1791 	struct inet_sock *inet = inet_sk(sk);
1792 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1793 	struct sk_buff *skb;
1794 	unsigned int ulen, copied;
1795 	int off, err, peeking = flags & MSG_PEEK;
1796 	int is_udplite = IS_UDPLITE(sk);
1797 	bool checksum_valid = false;
1798 
1799 	if (flags & MSG_ERRQUEUE)
1800 		return ip_recv_error(sk, msg, len, addr_len);
1801 
1802 try_again:
1803 	off = sk_peek_offset(sk, flags);
1804 	skb = __skb_recv_udp(sk, flags, &off, &err);
1805 	if (!skb)
1806 		return err;
1807 
1808 	ulen = udp_skb_len(skb);
1809 	copied = len;
1810 	if (copied > ulen - off)
1811 		copied = ulen - off;
1812 	else if (copied < ulen)
1813 		msg->msg_flags |= MSG_TRUNC;
1814 
1815 	/*
1816 	 * If checksum is needed at all, try to do it while copying the
1817 	 * data.  If the data is truncated, or if we only want a partial
1818 	 * coverage checksum (UDP-Lite), do it before the copy.
1819 	 */
1820 
1821 	if (copied < ulen || peeking ||
1822 	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1823 		checksum_valid = udp_skb_csum_unnecessary(skb) ||
1824 				!__udp_lib_checksum_complete(skb);
1825 		if (!checksum_valid)
1826 			goto csum_copy_err;
1827 	}
1828 
1829 	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1830 		if (udp_skb_is_linear(skb))
1831 			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1832 		else
1833 			err = skb_copy_datagram_msg(skb, off, msg, copied);
1834 	} else {
1835 		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1836 
1837 		if (err == -EINVAL)
1838 			goto csum_copy_err;
1839 	}
1840 
1841 	if (unlikely(err)) {
1842 		if (!peeking) {
1843 			atomic_inc(&sk->sk_drops);
1844 			UDP_INC_STATS(sock_net(sk),
1845 				      UDP_MIB_INERRORS, is_udplite);
1846 		}
1847 		kfree_skb(skb);
1848 		return err;
1849 	}
1850 
1851 	if (!peeking)
1852 		UDP_INC_STATS(sock_net(sk),
1853 			      UDP_MIB_INDATAGRAMS, is_udplite);
1854 
1855 	sock_recv_cmsgs(msg, sk, skb);
1856 
1857 	/* Copy the address. */
1858 	if (sin) {
1859 		sin->sin_family = AF_INET;
1860 		sin->sin_port = udp_hdr(skb)->source;
1861 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1862 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1863 		*addr_len = sizeof(*sin);
1864 
1865 		BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
1866 						      (struct sockaddr *)sin,
1867 						      addr_len);
1868 	}
1869 
1870 	if (udp_test_bit(GRO_ENABLED, sk))
1871 		udp_cmsg_recv(msg, sk, skb);
1872 
1873 	if (inet_cmsg_flags(inet))
1874 		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1875 
1876 	err = copied;
1877 	if (flags & MSG_TRUNC)
1878 		err = ulen;
1879 
1880 	skb_consume_udp(sk, skb, peeking ? -err : err);
1881 	return err;
1882 
1883 csum_copy_err:
1884 	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1885 				 udp_skb_destructor)) {
1886 		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1887 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1888 	}
1889 	kfree_skb(skb);
1890 
1891 	/* starting over for a new packet, but check if we need to yield */
1892 	cond_resched();
1893 	msg->msg_flags &= ~MSG_TRUNC;
1894 	goto try_again;
1895 }
1896 
1897 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1898 {
1899 	/* This check is replicated from __ip4_datagram_connect() and
1900 	 * intended to prevent BPF program called below from accessing bytes
1901 	 * that are out of the bound specified by user in addr_len.
1902 	 */
1903 	if (addr_len < sizeof(struct sockaddr_in))
1904 		return -EINVAL;
1905 
1906 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr, &addr_len);
1907 }
1908 EXPORT_SYMBOL(udp_pre_connect);
1909 
1910 int __udp_disconnect(struct sock *sk, int flags)
1911 {
1912 	struct inet_sock *inet = inet_sk(sk);
1913 	/*
1914 	 *	1003.1g - break association.
1915 	 */
1916 
1917 	sk->sk_state = TCP_CLOSE;
1918 	inet->inet_daddr = 0;
1919 	inet->inet_dport = 0;
1920 	sock_rps_reset_rxhash(sk);
1921 	sk->sk_bound_dev_if = 0;
1922 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) {
1923 		inet_reset_saddr(sk);
1924 		if (sk->sk_prot->rehash &&
1925 		    (sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1926 			sk->sk_prot->rehash(sk);
1927 	}
1928 
1929 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1930 		sk->sk_prot->unhash(sk);
1931 		inet->inet_sport = 0;
1932 	}
1933 	sk_dst_reset(sk);
1934 	return 0;
1935 }
1936 EXPORT_SYMBOL(__udp_disconnect);
1937 
1938 int udp_disconnect(struct sock *sk, int flags)
1939 {
1940 	lock_sock(sk);
1941 	__udp_disconnect(sk, flags);
1942 	release_sock(sk);
1943 	return 0;
1944 }
1945 EXPORT_SYMBOL(udp_disconnect);
1946 
1947 void udp_lib_unhash(struct sock *sk)
1948 {
1949 	if (sk_hashed(sk)) {
1950 		struct udp_table *udptable = udp_get_table_prot(sk);
1951 		struct udp_hslot *hslot, *hslot2;
1952 
1953 		hslot  = udp_hashslot(udptable, sock_net(sk),
1954 				      udp_sk(sk)->udp_port_hash);
1955 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1956 
1957 		spin_lock_bh(&hslot->lock);
1958 		if (rcu_access_pointer(sk->sk_reuseport_cb))
1959 			reuseport_detach_sock(sk);
1960 		if (sk_del_node_init_rcu(sk)) {
1961 			hslot->count--;
1962 			inet_sk(sk)->inet_num = 0;
1963 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1964 
1965 			spin_lock(&hslot2->lock);
1966 			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1967 			hslot2->count--;
1968 			spin_unlock(&hslot2->lock);
1969 		}
1970 		spin_unlock_bh(&hslot->lock);
1971 	}
1972 }
1973 EXPORT_SYMBOL(udp_lib_unhash);
1974 
1975 /*
1976  * inet_rcv_saddr was changed, we must rehash secondary hash
1977  */
1978 void udp_lib_rehash(struct sock *sk, u16 newhash)
1979 {
1980 	if (sk_hashed(sk)) {
1981 		struct udp_table *udptable = udp_get_table_prot(sk);
1982 		struct udp_hslot *hslot, *hslot2, *nhslot2;
1983 
1984 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1985 		nhslot2 = udp_hashslot2(udptable, newhash);
1986 		udp_sk(sk)->udp_portaddr_hash = newhash;
1987 
1988 		if (hslot2 != nhslot2 ||
1989 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
1990 			hslot = udp_hashslot(udptable, sock_net(sk),
1991 					     udp_sk(sk)->udp_port_hash);
1992 			/* we must lock primary chain too */
1993 			spin_lock_bh(&hslot->lock);
1994 			if (rcu_access_pointer(sk->sk_reuseport_cb))
1995 				reuseport_detach_sock(sk);
1996 
1997 			if (hslot2 != nhslot2) {
1998 				spin_lock(&hslot2->lock);
1999 				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2000 				hslot2->count--;
2001 				spin_unlock(&hslot2->lock);
2002 
2003 				spin_lock(&nhslot2->lock);
2004 				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
2005 							 &nhslot2->head);
2006 				nhslot2->count++;
2007 				spin_unlock(&nhslot2->lock);
2008 			}
2009 
2010 			spin_unlock_bh(&hslot->lock);
2011 		}
2012 	}
2013 }
2014 EXPORT_SYMBOL(udp_lib_rehash);
2015 
2016 void udp_v4_rehash(struct sock *sk)
2017 {
2018 	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
2019 					  inet_sk(sk)->inet_rcv_saddr,
2020 					  inet_sk(sk)->inet_num);
2021 	udp_lib_rehash(sk, new_hash);
2022 }
2023 
2024 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2025 {
2026 	int rc;
2027 
2028 	if (inet_sk(sk)->inet_daddr) {
2029 		sock_rps_save_rxhash(sk, skb);
2030 		sk_mark_napi_id(sk, skb);
2031 		sk_incoming_cpu_update(sk);
2032 	} else {
2033 		sk_mark_napi_id_once(sk, skb);
2034 	}
2035 
2036 	rc = __udp_enqueue_schedule_skb(sk, skb);
2037 	if (rc < 0) {
2038 		int is_udplite = IS_UDPLITE(sk);
2039 		int drop_reason;
2040 
2041 		/* Note that an ENOMEM error is charged twice */
2042 		if (rc == -ENOMEM) {
2043 			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
2044 					is_udplite);
2045 			drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
2046 		} else {
2047 			UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS,
2048 				      is_udplite);
2049 			drop_reason = SKB_DROP_REASON_PROTO_MEM;
2050 		}
2051 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2052 		kfree_skb_reason(skb, drop_reason);
2053 		trace_udp_fail_queue_rcv_skb(rc, sk);
2054 		return -1;
2055 	}
2056 
2057 	return 0;
2058 }
2059 
2060 /* returns:
2061  *  -1: error
2062  *   0: success
2063  *  >0: "udp encap" protocol resubmission
2064  *
2065  * Note that in the success and error cases, the skb is assumed to
2066  * have either been requeued or freed.
2067  */
2068 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
2069 {
2070 	int drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2071 	struct udp_sock *up = udp_sk(sk);
2072 	int is_udplite = IS_UDPLITE(sk);
2073 
2074 	/*
2075 	 *	Charge it to the socket, dropping if the queue is full.
2076 	 */
2077 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
2078 		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2079 		goto drop;
2080 	}
2081 	nf_reset_ct(skb);
2082 
2083 	if (static_branch_unlikely(&udp_encap_needed_key) &&
2084 	    READ_ONCE(up->encap_type)) {
2085 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2086 
2087 		/*
2088 		 * This is an encapsulation socket so pass the skb to
2089 		 * the socket's udp_encap_rcv() hook. Otherwise, just
2090 		 * fall through and pass this up the UDP socket.
2091 		 * up->encap_rcv() returns the following value:
2092 		 * =0 if skb was successfully passed to the encap
2093 		 *    handler or was discarded by it.
2094 		 * >0 if skb should be passed on to UDP.
2095 		 * <0 if skb should be resubmitted as proto -N
2096 		 */
2097 
2098 		/* if we're overly short, let UDP handle it */
2099 		encap_rcv = READ_ONCE(up->encap_rcv);
2100 		if (encap_rcv) {
2101 			int ret;
2102 
2103 			/* Verify checksum before giving to encap */
2104 			if (udp_lib_checksum_complete(skb))
2105 				goto csum_error;
2106 
2107 			ret = encap_rcv(sk, skb);
2108 			if (ret <= 0) {
2109 				__UDP_INC_STATS(sock_net(sk),
2110 						UDP_MIB_INDATAGRAMS,
2111 						is_udplite);
2112 				return -ret;
2113 			}
2114 		}
2115 
2116 		/* FALLTHROUGH -- it's a UDP Packet */
2117 	}
2118 
2119 	/*
2120 	 * 	UDP-Lite specific tests, ignored on UDP sockets
2121 	 */
2122 	if (udp_test_bit(UDPLITE_RECV_CC, sk) && UDP_SKB_CB(skb)->partial_cov) {
2123 		u16 pcrlen = READ_ONCE(up->pcrlen);
2124 
2125 		/*
2126 		 * MIB statistics other than incrementing the error count are
2127 		 * disabled for the following two types of errors: these depend
2128 		 * on the application settings, not on the functioning of the
2129 		 * protocol stack as such.
2130 		 *
2131 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
2132 		 * way ... to ... at least let the receiving application block
2133 		 * delivery of packets with coverage values less than a value
2134 		 * provided by the application."
2135 		 */
2136 		if (pcrlen == 0) {          /* full coverage was set  */
2137 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2138 					    UDP_SKB_CB(skb)->cscov, skb->len);
2139 			goto drop;
2140 		}
2141 		/* The next case involves violating the min. coverage requested
2142 		 * by the receiver. This is subtle: if receiver wants x and x is
2143 		 * greater than the buffersize/MTU then receiver will complain
2144 		 * that it wants x while sender emits packets of smaller size y.
2145 		 * Therefore the above ...()->partial_cov statement is essential.
2146 		 */
2147 		if (UDP_SKB_CB(skb)->cscov < pcrlen) {
2148 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2149 					    UDP_SKB_CB(skb)->cscov, pcrlen);
2150 			goto drop;
2151 		}
2152 	}
2153 
2154 	prefetch(&sk->sk_rmem_alloc);
2155 	if (rcu_access_pointer(sk->sk_filter) &&
2156 	    udp_lib_checksum_complete(skb))
2157 			goto csum_error;
2158 
2159 	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) {
2160 		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2161 		goto drop;
2162 	}
2163 
2164 	udp_csum_pull_header(skb);
2165 
2166 	ipv4_pktinfo_prepare(sk, skb, true);
2167 	return __udp_queue_rcv_skb(sk, skb);
2168 
2169 csum_error:
2170 	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2171 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2172 drop:
2173 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2174 	atomic_inc(&sk->sk_drops);
2175 	kfree_skb_reason(skb, drop_reason);
2176 	return -1;
2177 }
2178 
2179 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2180 {
2181 	struct sk_buff *next, *segs;
2182 	int ret;
2183 
2184 	if (likely(!udp_unexpected_gso(sk, skb)))
2185 		return udp_queue_rcv_one_skb(sk, skb);
2186 
2187 	BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET);
2188 	__skb_push(skb, -skb_mac_offset(skb));
2189 	segs = udp_rcv_segment(sk, skb, true);
2190 	skb_list_walk_safe(segs, skb, next) {
2191 		__skb_pull(skb, skb_transport_offset(skb));
2192 
2193 		udp_post_segment_fix_csum(skb);
2194 		ret = udp_queue_rcv_one_skb(sk, skb);
2195 		if (ret > 0)
2196 			ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret);
2197 	}
2198 	return 0;
2199 }
2200 
2201 /* For TCP sockets, sk_rx_dst is protected by socket lock
2202  * For UDP, we use xchg() to guard against concurrent changes.
2203  */
2204 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2205 {
2206 	struct dst_entry *old;
2207 
2208 	if (dst_hold_safe(dst)) {
2209 		old = xchg((__force struct dst_entry **)&sk->sk_rx_dst, dst);
2210 		dst_release(old);
2211 		return old != dst;
2212 	}
2213 	return false;
2214 }
2215 EXPORT_SYMBOL(udp_sk_rx_dst_set);
2216 
2217 /*
2218  *	Multicasts and broadcasts go to each listener.
2219  *
2220  *	Note: called only from the BH handler context.
2221  */
2222 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2223 				    struct udphdr  *uh,
2224 				    __be32 saddr, __be32 daddr,
2225 				    struct udp_table *udptable,
2226 				    int proto)
2227 {
2228 	struct sock *sk, *first = NULL;
2229 	unsigned short hnum = ntohs(uh->dest);
2230 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2231 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2232 	unsigned int offset = offsetof(typeof(*sk), sk_node);
2233 	int dif = skb->dev->ifindex;
2234 	int sdif = inet_sdif(skb);
2235 	struct hlist_node *node;
2236 	struct sk_buff *nskb;
2237 
2238 	if (use_hash2) {
2239 		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2240 			    udptable->mask;
2241 		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2242 start_lookup:
2243 		hslot = &udptable->hash2[hash2];
2244 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2245 	}
2246 
2247 	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2248 		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2249 					 uh->source, saddr, dif, sdif, hnum))
2250 			continue;
2251 
2252 		if (!first) {
2253 			first = sk;
2254 			continue;
2255 		}
2256 		nskb = skb_clone(skb, GFP_ATOMIC);
2257 
2258 		if (unlikely(!nskb)) {
2259 			atomic_inc(&sk->sk_drops);
2260 			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2261 					IS_UDPLITE(sk));
2262 			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
2263 					IS_UDPLITE(sk));
2264 			continue;
2265 		}
2266 		if (udp_queue_rcv_skb(sk, nskb) > 0)
2267 			consume_skb(nskb);
2268 	}
2269 
2270 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2271 	if (use_hash2 && hash2 != hash2_any) {
2272 		hash2 = hash2_any;
2273 		goto start_lookup;
2274 	}
2275 
2276 	if (first) {
2277 		if (udp_queue_rcv_skb(first, skb) > 0)
2278 			consume_skb(skb);
2279 	} else {
2280 		kfree_skb(skb);
2281 		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2282 				proto == IPPROTO_UDPLITE);
2283 	}
2284 	return 0;
2285 }
2286 
2287 /* Initialize UDP checksum. If exited with zero value (success),
2288  * CHECKSUM_UNNECESSARY means, that no more checks are required.
2289  * Otherwise, csum completion requires checksumming packet body,
2290  * including udp header and folding it to skb->csum.
2291  */
2292 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2293 				 int proto)
2294 {
2295 	int err;
2296 
2297 	UDP_SKB_CB(skb)->partial_cov = 0;
2298 	UDP_SKB_CB(skb)->cscov = skb->len;
2299 
2300 	if (proto == IPPROTO_UDPLITE) {
2301 		err = udplite_checksum_init(skb, uh);
2302 		if (err)
2303 			return err;
2304 
2305 		if (UDP_SKB_CB(skb)->partial_cov) {
2306 			skb->csum = inet_compute_pseudo(skb, proto);
2307 			return 0;
2308 		}
2309 	}
2310 
2311 	/* Note, we are only interested in != 0 or == 0, thus the
2312 	 * force to int.
2313 	 */
2314 	err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2315 							inet_compute_pseudo);
2316 	if (err)
2317 		return err;
2318 
2319 	if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2320 		/* If SW calculated the value, we know it's bad */
2321 		if (skb->csum_complete_sw)
2322 			return 1;
2323 
2324 		/* HW says the value is bad. Let's validate that.
2325 		 * skb->csum is no longer the full packet checksum,
2326 		 * so don't treat it as such.
2327 		 */
2328 		skb_checksum_complete_unset(skb);
2329 	}
2330 
2331 	return 0;
2332 }
2333 
2334 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2335  * return code conversion for ip layer consumption
2336  */
2337 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2338 			       struct udphdr *uh)
2339 {
2340 	int ret;
2341 
2342 	if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2343 		skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2344 
2345 	ret = udp_queue_rcv_skb(sk, skb);
2346 
2347 	/* a return value > 0 means to resubmit the input, but
2348 	 * it wants the return to be -protocol, or 0
2349 	 */
2350 	if (ret > 0)
2351 		return -ret;
2352 	return 0;
2353 }
2354 
2355 /*
2356  *	All we need to do is get the socket, and then do a checksum.
2357  */
2358 
2359 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2360 		   int proto)
2361 {
2362 	struct sock *sk;
2363 	struct udphdr *uh;
2364 	unsigned short ulen;
2365 	struct rtable *rt = skb_rtable(skb);
2366 	__be32 saddr, daddr;
2367 	struct net *net = dev_net(skb->dev);
2368 	bool refcounted;
2369 	int drop_reason;
2370 
2371 	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2372 
2373 	/*
2374 	 *  Validate the packet.
2375 	 */
2376 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2377 		goto drop;		/* No space for header. */
2378 
2379 	uh   = udp_hdr(skb);
2380 	ulen = ntohs(uh->len);
2381 	saddr = ip_hdr(skb)->saddr;
2382 	daddr = ip_hdr(skb)->daddr;
2383 
2384 	if (ulen > skb->len)
2385 		goto short_packet;
2386 
2387 	if (proto == IPPROTO_UDP) {
2388 		/* UDP validates ulen. */
2389 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2390 			goto short_packet;
2391 		uh = udp_hdr(skb);
2392 	}
2393 
2394 	if (udp4_csum_init(skb, uh, proto))
2395 		goto csum_error;
2396 
2397 	sk = inet_steal_sock(net, skb, sizeof(struct udphdr), saddr, uh->source, daddr, uh->dest,
2398 			     &refcounted, udp_ehashfn);
2399 	if (IS_ERR(sk))
2400 		goto no_sk;
2401 
2402 	if (sk) {
2403 		struct dst_entry *dst = skb_dst(skb);
2404 		int ret;
2405 
2406 		if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst))
2407 			udp_sk_rx_dst_set(sk, dst);
2408 
2409 		ret = udp_unicast_rcv_skb(sk, skb, uh);
2410 		if (refcounted)
2411 			sock_put(sk);
2412 		return ret;
2413 	}
2414 
2415 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2416 		return __udp4_lib_mcast_deliver(net, skb, uh,
2417 						saddr, daddr, udptable, proto);
2418 
2419 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2420 	if (sk)
2421 		return udp_unicast_rcv_skb(sk, skb, uh);
2422 no_sk:
2423 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2424 		goto drop;
2425 	nf_reset_ct(skb);
2426 
2427 	/* No socket. Drop packet silently, if checksum is wrong */
2428 	if (udp_lib_checksum_complete(skb))
2429 		goto csum_error;
2430 
2431 	drop_reason = SKB_DROP_REASON_NO_SOCKET;
2432 	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2433 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2434 
2435 	/*
2436 	 * Hmm.  We got an UDP packet to a port to which we
2437 	 * don't wanna listen.  Ignore it.
2438 	 */
2439 	kfree_skb_reason(skb, drop_reason);
2440 	return 0;
2441 
2442 short_packet:
2443 	drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
2444 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2445 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2446 			    &saddr, ntohs(uh->source),
2447 			    ulen, skb->len,
2448 			    &daddr, ntohs(uh->dest));
2449 	goto drop;
2450 
2451 csum_error:
2452 	/*
2453 	 * RFC1122: OK.  Discards the bad packet silently (as far as
2454 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2455 	 */
2456 	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2457 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2458 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2459 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2460 			    ulen);
2461 	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2462 drop:
2463 	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2464 	kfree_skb_reason(skb, drop_reason);
2465 	return 0;
2466 }
2467 
2468 /* We can only early demux multicast if there is a single matching socket.
2469  * If more than one socket found returns NULL
2470  */
2471 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2472 						  __be16 loc_port, __be32 loc_addr,
2473 						  __be16 rmt_port, __be32 rmt_addr,
2474 						  int dif, int sdif)
2475 {
2476 	struct udp_table *udptable = net->ipv4.udp_table;
2477 	unsigned short hnum = ntohs(loc_port);
2478 	struct sock *sk, *result;
2479 	struct udp_hslot *hslot;
2480 	unsigned int slot;
2481 
2482 	slot = udp_hashfn(net, hnum, udptable->mask);
2483 	hslot = &udptable->hash[slot];
2484 
2485 	/* Do not bother scanning a too big list */
2486 	if (hslot->count > 10)
2487 		return NULL;
2488 
2489 	result = NULL;
2490 	sk_for_each_rcu(sk, &hslot->head) {
2491 		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2492 					rmt_port, rmt_addr, dif, sdif, hnum)) {
2493 			if (result)
2494 				return NULL;
2495 			result = sk;
2496 		}
2497 	}
2498 
2499 	return result;
2500 }
2501 
2502 /* For unicast we should only early demux connected sockets or we can
2503  * break forwarding setups.  The chains here can be long so only check
2504  * if the first socket is an exact match and if not move on.
2505  */
2506 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2507 					    __be16 loc_port, __be32 loc_addr,
2508 					    __be16 rmt_port, __be32 rmt_addr,
2509 					    int dif, int sdif)
2510 {
2511 	struct udp_table *udptable = net->ipv4.udp_table;
2512 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2513 	unsigned short hnum = ntohs(loc_port);
2514 	unsigned int hash2, slot2;
2515 	struct udp_hslot *hslot2;
2516 	__portpair ports;
2517 	struct sock *sk;
2518 
2519 	hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2520 	slot2 = hash2 & udptable->mask;
2521 	hslot2 = &udptable->hash2[slot2];
2522 	ports = INET_COMBINED_PORTS(rmt_port, hnum);
2523 
2524 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2525 		if (inet_match(net, sk, acookie, ports, dif, sdif))
2526 			return sk;
2527 		/* Only check first socket in chain */
2528 		break;
2529 	}
2530 	return NULL;
2531 }
2532 
2533 int udp_v4_early_demux(struct sk_buff *skb)
2534 {
2535 	struct net *net = dev_net(skb->dev);
2536 	struct in_device *in_dev = NULL;
2537 	const struct iphdr *iph;
2538 	const struct udphdr *uh;
2539 	struct sock *sk = NULL;
2540 	struct dst_entry *dst;
2541 	int dif = skb->dev->ifindex;
2542 	int sdif = inet_sdif(skb);
2543 	int ours;
2544 
2545 	/* validate the packet */
2546 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2547 		return 0;
2548 
2549 	iph = ip_hdr(skb);
2550 	uh = udp_hdr(skb);
2551 
2552 	if (skb->pkt_type == PACKET_MULTICAST) {
2553 		in_dev = __in_dev_get_rcu(skb->dev);
2554 
2555 		if (!in_dev)
2556 			return 0;
2557 
2558 		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2559 				       iph->protocol);
2560 		if (!ours)
2561 			return 0;
2562 
2563 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2564 						   uh->source, iph->saddr,
2565 						   dif, sdif);
2566 	} else if (skb->pkt_type == PACKET_HOST) {
2567 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2568 					     uh->source, iph->saddr, dif, sdif);
2569 	}
2570 
2571 	if (!sk)
2572 		return 0;
2573 
2574 	skb->sk = sk;
2575 	DEBUG_NET_WARN_ON_ONCE(sk_is_refcounted(sk));
2576 	skb->destructor = sock_pfree;
2577 	dst = rcu_dereference(sk->sk_rx_dst);
2578 
2579 	if (dst)
2580 		dst = dst_check(dst, 0);
2581 	if (dst) {
2582 		u32 itag = 0;
2583 
2584 		/* set noref for now.
2585 		 * any place which wants to hold dst has to call
2586 		 * dst_hold_safe()
2587 		 */
2588 		skb_dst_set_noref(skb, dst);
2589 
2590 		/* for unconnected multicast sockets we need to validate
2591 		 * the source on each packet
2592 		 */
2593 		if (!inet_sk(sk)->inet_daddr && in_dev)
2594 			return ip_mc_validate_source(skb, iph->daddr,
2595 						     iph->saddr,
2596 						     iph->tos & IPTOS_RT_MASK,
2597 						     skb->dev, in_dev, &itag);
2598 	}
2599 	return 0;
2600 }
2601 
2602 int udp_rcv(struct sk_buff *skb)
2603 {
2604 	return __udp4_lib_rcv(skb, dev_net(skb->dev)->ipv4.udp_table, IPPROTO_UDP);
2605 }
2606 
2607 void udp_destroy_sock(struct sock *sk)
2608 {
2609 	struct udp_sock *up = udp_sk(sk);
2610 	bool slow = lock_sock_fast(sk);
2611 
2612 	/* protects from races with udp_abort() */
2613 	sock_set_flag(sk, SOCK_DEAD);
2614 	udp_flush_pending_frames(sk);
2615 	unlock_sock_fast(sk, slow);
2616 	if (static_branch_unlikely(&udp_encap_needed_key)) {
2617 		if (up->encap_type) {
2618 			void (*encap_destroy)(struct sock *sk);
2619 			encap_destroy = READ_ONCE(up->encap_destroy);
2620 			if (encap_destroy)
2621 				encap_destroy(sk);
2622 		}
2623 		if (udp_test_bit(ENCAP_ENABLED, sk))
2624 			static_branch_dec(&udp_encap_needed_key);
2625 	}
2626 }
2627 
2628 static void set_xfrm_gro_udp_encap_rcv(__u16 encap_type, unsigned short family,
2629 				       struct sock *sk)
2630 {
2631 #ifdef CONFIG_XFRM
2632 	if (udp_test_bit(GRO_ENABLED, sk) && encap_type == UDP_ENCAP_ESPINUDP) {
2633 		if (family == AF_INET)
2634 			WRITE_ONCE(udp_sk(sk)->gro_receive, xfrm4_gro_udp_encap_rcv);
2635 		else if (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6)
2636 			WRITE_ONCE(udp_sk(sk)->gro_receive, ipv6_stub->xfrm6_gro_udp_encap_rcv);
2637 	}
2638 #endif
2639 }
2640 
2641 /*
2642  *	Socket option code for UDP
2643  */
2644 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2645 		       sockptr_t optval, unsigned int optlen,
2646 		       int (*push_pending_frames)(struct sock *))
2647 {
2648 	struct udp_sock *up = udp_sk(sk);
2649 	int val, valbool;
2650 	int err = 0;
2651 	int is_udplite = IS_UDPLITE(sk);
2652 
2653 	if (level == SOL_SOCKET) {
2654 		err = sk_setsockopt(sk, level, optname, optval, optlen);
2655 
2656 		if (optname == SO_RCVBUF || optname == SO_RCVBUFFORCE) {
2657 			sockopt_lock_sock(sk);
2658 			/* paired with READ_ONCE in udp_rmem_release() */
2659 			WRITE_ONCE(up->forward_threshold, sk->sk_rcvbuf >> 2);
2660 			sockopt_release_sock(sk);
2661 		}
2662 		return err;
2663 	}
2664 
2665 	if (optlen < sizeof(int))
2666 		return -EINVAL;
2667 
2668 	if (copy_from_sockptr(&val, optval, sizeof(val)))
2669 		return -EFAULT;
2670 
2671 	valbool = val ? 1 : 0;
2672 
2673 	switch (optname) {
2674 	case UDP_CORK:
2675 		if (val != 0) {
2676 			udp_set_bit(CORK, sk);
2677 		} else {
2678 			udp_clear_bit(CORK, sk);
2679 			lock_sock(sk);
2680 			push_pending_frames(sk);
2681 			release_sock(sk);
2682 		}
2683 		break;
2684 
2685 	case UDP_ENCAP:
2686 		switch (val) {
2687 		case 0:
2688 #ifdef CONFIG_XFRM
2689 		case UDP_ENCAP_ESPINUDP:
2690 			set_xfrm_gro_udp_encap_rcv(val, sk->sk_family, sk);
2691 			fallthrough;
2692 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2693 #if IS_ENABLED(CONFIG_IPV6)
2694 			if (sk->sk_family == AF_INET6)
2695 				WRITE_ONCE(up->encap_rcv,
2696 					   ipv6_stub->xfrm6_udp_encap_rcv);
2697 			else
2698 #endif
2699 				WRITE_ONCE(up->encap_rcv,
2700 					   xfrm4_udp_encap_rcv);
2701 #endif
2702 			fallthrough;
2703 		case UDP_ENCAP_L2TPINUDP:
2704 			WRITE_ONCE(up->encap_type, val);
2705 			udp_tunnel_encap_enable(sk);
2706 			break;
2707 		default:
2708 			err = -ENOPROTOOPT;
2709 			break;
2710 		}
2711 		break;
2712 
2713 	case UDP_NO_CHECK6_TX:
2714 		udp_set_no_check6_tx(sk, valbool);
2715 		break;
2716 
2717 	case UDP_NO_CHECK6_RX:
2718 		udp_set_no_check6_rx(sk, valbool);
2719 		break;
2720 
2721 	case UDP_SEGMENT:
2722 		if (val < 0 || val > USHRT_MAX)
2723 			return -EINVAL;
2724 		WRITE_ONCE(up->gso_size, val);
2725 		break;
2726 
2727 	case UDP_GRO:
2728 
2729 		/* when enabling GRO, accept the related GSO packet type */
2730 		if (valbool)
2731 			udp_tunnel_encap_enable(sk);
2732 		udp_assign_bit(GRO_ENABLED, sk, valbool);
2733 		udp_assign_bit(ACCEPT_L4, sk, valbool);
2734 		set_xfrm_gro_udp_encap_rcv(up->encap_type, sk->sk_family, sk);
2735 		break;
2736 
2737 	/*
2738 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2739 	 */
2740 	/* The sender sets actual checksum coverage length via this option.
2741 	 * The case coverage > packet length is handled by send module. */
2742 	case UDPLITE_SEND_CSCOV:
2743 		if (!is_udplite)         /* Disable the option on UDP sockets */
2744 			return -ENOPROTOOPT;
2745 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2746 			val = 8;
2747 		else if (val > USHRT_MAX)
2748 			val = USHRT_MAX;
2749 		WRITE_ONCE(up->pcslen, val);
2750 		udp_set_bit(UDPLITE_SEND_CC, sk);
2751 		break;
2752 
2753 	/* The receiver specifies a minimum checksum coverage value. To make
2754 	 * sense, this should be set to at least 8 (as done below). If zero is
2755 	 * used, this again means full checksum coverage.                     */
2756 	case UDPLITE_RECV_CSCOV:
2757 		if (!is_udplite)         /* Disable the option on UDP sockets */
2758 			return -ENOPROTOOPT;
2759 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2760 			val = 8;
2761 		else if (val > USHRT_MAX)
2762 			val = USHRT_MAX;
2763 		WRITE_ONCE(up->pcrlen, val);
2764 		udp_set_bit(UDPLITE_RECV_CC, sk);
2765 		break;
2766 
2767 	default:
2768 		err = -ENOPROTOOPT;
2769 		break;
2770 	}
2771 
2772 	return err;
2773 }
2774 EXPORT_SYMBOL(udp_lib_setsockopt);
2775 
2776 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
2777 		   unsigned int optlen)
2778 {
2779 	if (level == SOL_UDP  ||  level == SOL_UDPLITE || level == SOL_SOCKET)
2780 		return udp_lib_setsockopt(sk, level, optname,
2781 					  optval, optlen,
2782 					  udp_push_pending_frames);
2783 	return ip_setsockopt(sk, level, optname, optval, optlen);
2784 }
2785 
2786 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2787 		       char __user *optval, int __user *optlen)
2788 {
2789 	struct udp_sock *up = udp_sk(sk);
2790 	int val, len;
2791 
2792 	if (get_user(len, optlen))
2793 		return -EFAULT;
2794 
2795 	if (len < 0)
2796 		return -EINVAL;
2797 
2798 	len = min_t(unsigned int, len, sizeof(int));
2799 
2800 	switch (optname) {
2801 	case UDP_CORK:
2802 		val = udp_test_bit(CORK, sk);
2803 		break;
2804 
2805 	case UDP_ENCAP:
2806 		val = READ_ONCE(up->encap_type);
2807 		break;
2808 
2809 	case UDP_NO_CHECK6_TX:
2810 		val = udp_get_no_check6_tx(sk);
2811 		break;
2812 
2813 	case UDP_NO_CHECK6_RX:
2814 		val = udp_get_no_check6_rx(sk);
2815 		break;
2816 
2817 	case UDP_SEGMENT:
2818 		val = READ_ONCE(up->gso_size);
2819 		break;
2820 
2821 	case UDP_GRO:
2822 		val = udp_test_bit(GRO_ENABLED, sk);
2823 		break;
2824 
2825 	/* The following two cannot be changed on UDP sockets, the return is
2826 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2827 	case UDPLITE_SEND_CSCOV:
2828 		val = READ_ONCE(up->pcslen);
2829 		break;
2830 
2831 	case UDPLITE_RECV_CSCOV:
2832 		val = READ_ONCE(up->pcrlen);
2833 		break;
2834 
2835 	default:
2836 		return -ENOPROTOOPT;
2837 	}
2838 
2839 	if (put_user(len, optlen))
2840 		return -EFAULT;
2841 	if (copy_to_user(optval, &val, len))
2842 		return -EFAULT;
2843 	return 0;
2844 }
2845 EXPORT_SYMBOL(udp_lib_getsockopt);
2846 
2847 int udp_getsockopt(struct sock *sk, int level, int optname,
2848 		   char __user *optval, int __user *optlen)
2849 {
2850 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2851 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2852 	return ip_getsockopt(sk, level, optname, optval, optlen);
2853 }
2854 
2855 /**
2856  * 	udp_poll - wait for a UDP event.
2857  *	@file: - file struct
2858  *	@sock: - socket
2859  *	@wait: - poll table
2860  *
2861  *	This is same as datagram poll, except for the special case of
2862  *	blocking sockets. If application is using a blocking fd
2863  *	and a packet with checksum error is in the queue;
2864  *	then it could get return from select indicating data available
2865  *	but then block when reading it. Add special case code
2866  *	to work around these arguably broken applications.
2867  */
2868 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2869 {
2870 	__poll_t mask = datagram_poll(file, sock, wait);
2871 	struct sock *sk = sock->sk;
2872 
2873 	if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
2874 		mask |= EPOLLIN | EPOLLRDNORM;
2875 
2876 	/* Check for false positives due to checksum errors */
2877 	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2878 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2879 		mask &= ~(EPOLLIN | EPOLLRDNORM);
2880 
2881 	/* psock ingress_msg queue should not contain any bad checksum frames */
2882 	if (sk_is_readable(sk))
2883 		mask |= EPOLLIN | EPOLLRDNORM;
2884 	return mask;
2885 
2886 }
2887 EXPORT_SYMBOL(udp_poll);
2888 
2889 int udp_abort(struct sock *sk, int err)
2890 {
2891 	if (!has_current_bpf_ctx())
2892 		lock_sock(sk);
2893 
2894 	/* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing
2895 	 * with close()
2896 	 */
2897 	if (sock_flag(sk, SOCK_DEAD))
2898 		goto out;
2899 
2900 	sk->sk_err = err;
2901 	sk_error_report(sk);
2902 	__udp_disconnect(sk, 0);
2903 
2904 out:
2905 	if (!has_current_bpf_ctx())
2906 		release_sock(sk);
2907 
2908 	return 0;
2909 }
2910 EXPORT_SYMBOL_GPL(udp_abort);
2911 
2912 struct proto udp_prot = {
2913 	.name			= "UDP",
2914 	.owner			= THIS_MODULE,
2915 	.close			= udp_lib_close,
2916 	.pre_connect		= udp_pre_connect,
2917 	.connect		= ip4_datagram_connect,
2918 	.disconnect		= udp_disconnect,
2919 	.ioctl			= udp_ioctl,
2920 	.init			= udp_init_sock,
2921 	.destroy		= udp_destroy_sock,
2922 	.setsockopt		= udp_setsockopt,
2923 	.getsockopt		= udp_getsockopt,
2924 	.sendmsg		= udp_sendmsg,
2925 	.recvmsg		= udp_recvmsg,
2926 	.splice_eof		= udp_splice_eof,
2927 	.release_cb		= ip4_datagram_release_cb,
2928 	.hash			= udp_lib_hash,
2929 	.unhash			= udp_lib_unhash,
2930 	.rehash			= udp_v4_rehash,
2931 	.get_port		= udp_v4_get_port,
2932 	.put_port		= udp_lib_unhash,
2933 #ifdef CONFIG_BPF_SYSCALL
2934 	.psock_update_sk_prot	= udp_bpf_update_proto,
2935 #endif
2936 	.memory_allocated	= &udp_memory_allocated,
2937 	.per_cpu_fw_alloc	= &udp_memory_per_cpu_fw_alloc,
2938 
2939 	.sysctl_mem		= sysctl_udp_mem,
2940 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2941 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2942 	.obj_size		= sizeof(struct udp_sock),
2943 	.h.udp_table		= NULL,
2944 	.diag_destroy		= udp_abort,
2945 };
2946 EXPORT_SYMBOL(udp_prot);
2947 
2948 /* ------------------------------------------------------------------------ */
2949 #ifdef CONFIG_PROC_FS
2950 
2951 static unsigned short seq_file_family(const struct seq_file *seq);
2952 static bool seq_sk_match(struct seq_file *seq, const struct sock *sk)
2953 {
2954 	unsigned short family = seq_file_family(seq);
2955 
2956 	/* AF_UNSPEC is used as a match all */
2957 	return ((family == AF_UNSPEC || family == sk->sk_family) &&
2958 		net_eq(sock_net(sk), seq_file_net(seq)));
2959 }
2960 
2961 #ifdef CONFIG_BPF_SYSCALL
2962 static const struct seq_operations bpf_iter_udp_seq_ops;
2963 #endif
2964 static struct udp_table *udp_get_table_seq(struct seq_file *seq,
2965 					   struct net *net)
2966 {
2967 	const struct udp_seq_afinfo *afinfo;
2968 
2969 #ifdef CONFIG_BPF_SYSCALL
2970 	if (seq->op == &bpf_iter_udp_seq_ops)
2971 		return net->ipv4.udp_table;
2972 #endif
2973 
2974 	afinfo = pde_data(file_inode(seq->file));
2975 	return afinfo->udp_table ? : net->ipv4.udp_table;
2976 }
2977 
2978 static struct sock *udp_get_first(struct seq_file *seq, int start)
2979 {
2980 	struct udp_iter_state *state = seq->private;
2981 	struct net *net = seq_file_net(seq);
2982 	struct udp_table *udptable;
2983 	struct sock *sk;
2984 
2985 	udptable = udp_get_table_seq(seq, net);
2986 
2987 	for (state->bucket = start; state->bucket <= udptable->mask;
2988 	     ++state->bucket) {
2989 		struct udp_hslot *hslot = &udptable->hash[state->bucket];
2990 
2991 		if (hlist_empty(&hslot->head))
2992 			continue;
2993 
2994 		spin_lock_bh(&hslot->lock);
2995 		sk_for_each(sk, &hslot->head) {
2996 			if (seq_sk_match(seq, sk))
2997 				goto found;
2998 		}
2999 		spin_unlock_bh(&hslot->lock);
3000 	}
3001 	sk = NULL;
3002 found:
3003 	return sk;
3004 }
3005 
3006 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
3007 {
3008 	struct udp_iter_state *state = seq->private;
3009 	struct net *net = seq_file_net(seq);
3010 	struct udp_table *udptable;
3011 
3012 	do {
3013 		sk = sk_next(sk);
3014 	} while (sk && !seq_sk_match(seq, sk));
3015 
3016 	if (!sk) {
3017 		udptable = udp_get_table_seq(seq, net);
3018 
3019 		if (state->bucket <= udptable->mask)
3020 			spin_unlock_bh(&udptable->hash[state->bucket].lock);
3021 
3022 		return udp_get_first(seq, state->bucket + 1);
3023 	}
3024 	return sk;
3025 }
3026 
3027 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
3028 {
3029 	struct sock *sk = udp_get_first(seq, 0);
3030 
3031 	if (sk)
3032 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
3033 			--pos;
3034 	return pos ? NULL : sk;
3035 }
3036 
3037 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
3038 {
3039 	struct udp_iter_state *state = seq->private;
3040 	state->bucket = MAX_UDP_PORTS;
3041 
3042 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
3043 }
3044 EXPORT_SYMBOL(udp_seq_start);
3045 
3046 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3047 {
3048 	struct sock *sk;
3049 
3050 	if (v == SEQ_START_TOKEN)
3051 		sk = udp_get_idx(seq, 0);
3052 	else
3053 		sk = udp_get_next(seq, v);
3054 
3055 	++*pos;
3056 	return sk;
3057 }
3058 EXPORT_SYMBOL(udp_seq_next);
3059 
3060 void udp_seq_stop(struct seq_file *seq, void *v)
3061 {
3062 	struct udp_iter_state *state = seq->private;
3063 	struct udp_table *udptable;
3064 
3065 	udptable = udp_get_table_seq(seq, seq_file_net(seq));
3066 
3067 	if (state->bucket <= udptable->mask)
3068 		spin_unlock_bh(&udptable->hash[state->bucket].lock);
3069 }
3070 EXPORT_SYMBOL(udp_seq_stop);
3071 
3072 /* ------------------------------------------------------------------------ */
3073 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
3074 		int bucket)
3075 {
3076 	struct inet_sock *inet = inet_sk(sp);
3077 	__be32 dest = inet->inet_daddr;
3078 	__be32 src  = inet->inet_rcv_saddr;
3079 	__u16 destp	  = ntohs(inet->inet_dport);
3080 	__u16 srcp	  = ntohs(inet->inet_sport);
3081 
3082 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
3083 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
3084 		bucket, src, srcp, dest, destp, sp->sk_state,
3085 		sk_wmem_alloc_get(sp),
3086 		udp_rqueue_get(sp),
3087 		0, 0L, 0,
3088 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
3089 		0, sock_i_ino(sp),
3090 		refcount_read(&sp->sk_refcnt), sp,
3091 		atomic_read(&sp->sk_drops));
3092 }
3093 
3094 int udp4_seq_show(struct seq_file *seq, void *v)
3095 {
3096 	seq_setwidth(seq, 127);
3097 	if (v == SEQ_START_TOKEN)
3098 		seq_puts(seq, "   sl  local_address rem_address   st tx_queue "
3099 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
3100 			   "inode ref pointer drops");
3101 	else {
3102 		struct udp_iter_state *state = seq->private;
3103 
3104 		udp4_format_sock(v, seq, state->bucket);
3105 	}
3106 	seq_pad(seq, '\n');
3107 	return 0;
3108 }
3109 
3110 #ifdef CONFIG_BPF_SYSCALL
3111 struct bpf_iter__udp {
3112 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
3113 	__bpf_md_ptr(struct udp_sock *, udp_sk);
3114 	uid_t uid __aligned(8);
3115 	int bucket __aligned(8);
3116 };
3117 
3118 struct bpf_udp_iter_state {
3119 	struct udp_iter_state state;
3120 	unsigned int cur_sk;
3121 	unsigned int end_sk;
3122 	unsigned int max_sk;
3123 	int offset;
3124 	struct sock **batch;
3125 	bool st_bucket_done;
3126 };
3127 
3128 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3129 				      unsigned int new_batch_sz);
3130 static struct sock *bpf_iter_udp_batch(struct seq_file *seq)
3131 {
3132 	struct bpf_udp_iter_state *iter = seq->private;
3133 	struct udp_iter_state *state = &iter->state;
3134 	struct net *net = seq_file_net(seq);
3135 	int resume_bucket, resume_offset;
3136 	struct udp_table *udptable;
3137 	unsigned int batch_sks = 0;
3138 	bool resized = false;
3139 	struct sock *sk;
3140 
3141 	resume_bucket = state->bucket;
3142 	resume_offset = iter->offset;
3143 
3144 	/* The current batch is done, so advance the bucket. */
3145 	if (iter->st_bucket_done)
3146 		state->bucket++;
3147 
3148 	udptable = udp_get_table_seq(seq, net);
3149 
3150 again:
3151 	/* New batch for the next bucket.
3152 	 * Iterate over the hash table to find a bucket with sockets matching
3153 	 * the iterator attributes, and return the first matching socket from
3154 	 * the bucket. The remaining matched sockets from the bucket are batched
3155 	 * before releasing the bucket lock. This allows BPF programs that are
3156 	 * called in seq_show to acquire the bucket lock if needed.
3157 	 */
3158 	iter->cur_sk = 0;
3159 	iter->end_sk = 0;
3160 	iter->st_bucket_done = false;
3161 	batch_sks = 0;
3162 
3163 	for (; state->bucket <= udptable->mask; state->bucket++) {
3164 		struct udp_hslot *hslot2 = &udptable->hash2[state->bucket];
3165 
3166 		if (hlist_empty(&hslot2->head))
3167 			continue;
3168 
3169 		iter->offset = 0;
3170 		spin_lock_bh(&hslot2->lock);
3171 		udp_portaddr_for_each_entry(sk, &hslot2->head) {
3172 			if (seq_sk_match(seq, sk)) {
3173 				/* Resume from the last iterated socket at the
3174 				 * offset in the bucket before iterator was stopped.
3175 				 */
3176 				if (state->bucket == resume_bucket &&
3177 				    iter->offset < resume_offset) {
3178 					++iter->offset;
3179 					continue;
3180 				}
3181 				if (iter->end_sk < iter->max_sk) {
3182 					sock_hold(sk);
3183 					iter->batch[iter->end_sk++] = sk;
3184 				}
3185 				batch_sks++;
3186 			}
3187 		}
3188 		spin_unlock_bh(&hslot2->lock);
3189 
3190 		if (iter->end_sk)
3191 			break;
3192 	}
3193 
3194 	/* All done: no batch made. */
3195 	if (!iter->end_sk)
3196 		return NULL;
3197 
3198 	if (iter->end_sk == batch_sks) {
3199 		/* Batching is done for the current bucket; return the first
3200 		 * socket to be iterated from the batch.
3201 		 */
3202 		iter->st_bucket_done = true;
3203 		goto done;
3204 	}
3205 	if (!resized && !bpf_iter_udp_realloc_batch(iter, batch_sks * 3 / 2)) {
3206 		resized = true;
3207 		/* After allocating a larger batch, retry one more time to grab
3208 		 * the whole bucket.
3209 		 */
3210 		goto again;
3211 	}
3212 done:
3213 	return iter->batch[0];
3214 }
3215 
3216 static void *bpf_iter_udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3217 {
3218 	struct bpf_udp_iter_state *iter = seq->private;
3219 	struct sock *sk;
3220 
3221 	/* Whenever seq_next() is called, the iter->cur_sk is
3222 	 * done with seq_show(), so unref the iter->cur_sk.
3223 	 */
3224 	if (iter->cur_sk < iter->end_sk) {
3225 		sock_put(iter->batch[iter->cur_sk++]);
3226 		++iter->offset;
3227 	}
3228 
3229 	/* After updating iter->cur_sk, check if there are more sockets
3230 	 * available in the current bucket batch.
3231 	 */
3232 	if (iter->cur_sk < iter->end_sk)
3233 		sk = iter->batch[iter->cur_sk];
3234 	else
3235 		/* Prepare a new batch. */
3236 		sk = bpf_iter_udp_batch(seq);
3237 
3238 	++*pos;
3239 	return sk;
3240 }
3241 
3242 static void *bpf_iter_udp_seq_start(struct seq_file *seq, loff_t *pos)
3243 {
3244 	/* bpf iter does not support lseek, so it always
3245 	 * continue from where it was stop()-ped.
3246 	 */
3247 	if (*pos)
3248 		return bpf_iter_udp_batch(seq);
3249 
3250 	return SEQ_START_TOKEN;
3251 }
3252 
3253 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3254 			     struct udp_sock *udp_sk, uid_t uid, int bucket)
3255 {
3256 	struct bpf_iter__udp ctx;
3257 
3258 	meta->seq_num--;  /* skip SEQ_START_TOKEN */
3259 	ctx.meta = meta;
3260 	ctx.udp_sk = udp_sk;
3261 	ctx.uid = uid;
3262 	ctx.bucket = bucket;
3263 	return bpf_iter_run_prog(prog, &ctx);
3264 }
3265 
3266 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v)
3267 {
3268 	struct udp_iter_state *state = seq->private;
3269 	struct bpf_iter_meta meta;
3270 	struct bpf_prog *prog;
3271 	struct sock *sk = v;
3272 	uid_t uid;
3273 	int ret;
3274 
3275 	if (v == SEQ_START_TOKEN)
3276 		return 0;
3277 
3278 	lock_sock(sk);
3279 
3280 	if (unlikely(sk_unhashed(sk))) {
3281 		ret = SEQ_SKIP;
3282 		goto unlock;
3283 	}
3284 
3285 	uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3286 	meta.seq = seq;
3287 	prog = bpf_iter_get_info(&meta, false);
3288 	ret = udp_prog_seq_show(prog, &meta, v, uid, state->bucket);
3289 
3290 unlock:
3291 	release_sock(sk);
3292 	return ret;
3293 }
3294 
3295 static void bpf_iter_udp_put_batch(struct bpf_udp_iter_state *iter)
3296 {
3297 	while (iter->cur_sk < iter->end_sk)
3298 		sock_put(iter->batch[iter->cur_sk++]);
3299 }
3300 
3301 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v)
3302 {
3303 	struct bpf_udp_iter_state *iter = seq->private;
3304 	struct bpf_iter_meta meta;
3305 	struct bpf_prog *prog;
3306 
3307 	if (!v) {
3308 		meta.seq = seq;
3309 		prog = bpf_iter_get_info(&meta, true);
3310 		if (prog)
3311 			(void)udp_prog_seq_show(prog, &meta, v, 0, 0);
3312 	}
3313 
3314 	if (iter->cur_sk < iter->end_sk) {
3315 		bpf_iter_udp_put_batch(iter);
3316 		iter->st_bucket_done = false;
3317 	}
3318 }
3319 
3320 static const struct seq_operations bpf_iter_udp_seq_ops = {
3321 	.start		= bpf_iter_udp_seq_start,
3322 	.next		= bpf_iter_udp_seq_next,
3323 	.stop		= bpf_iter_udp_seq_stop,
3324 	.show		= bpf_iter_udp_seq_show,
3325 };
3326 #endif
3327 
3328 static unsigned short seq_file_family(const struct seq_file *seq)
3329 {
3330 	const struct udp_seq_afinfo *afinfo;
3331 
3332 #ifdef CONFIG_BPF_SYSCALL
3333 	/* BPF iterator: bpf programs to filter sockets. */
3334 	if (seq->op == &bpf_iter_udp_seq_ops)
3335 		return AF_UNSPEC;
3336 #endif
3337 
3338 	/* Proc fs iterator */
3339 	afinfo = pde_data(file_inode(seq->file));
3340 	return afinfo->family;
3341 }
3342 
3343 const struct seq_operations udp_seq_ops = {
3344 	.start		= udp_seq_start,
3345 	.next		= udp_seq_next,
3346 	.stop		= udp_seq_stop,
3347 	.show		= udp4_seq_show,
3348 };
3349 EXPORT_SYMBOL(udp_seq_ops);
3350 
3351 static struct udp_seq_afinfo udp4_seq_afinfo = {
3352 	.family		= AF_INET,
3353 	.udp_table	= NULL,
3354 };
3355 
3356 static int __net_init udp4_proc_init_net(struct net *net)
3357 {
3358 	if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
3359 			sizeof(struct udp_iter_state), &udp4_seq_afinfo))
3360 		return -ENOMEM;
3361 	return 0;
3362 }
3363 
3364 static void __net_exit udp4_proc_exit_net(struct net *net)
3365 {
3366 	remove_proc_entry("udp", net->proc_net);
3367 }
3368 
3369 static struct pernet_operations udp4_net_ops = {
3370 	.init = udp4_proc_init_net,
3371 	.exit = udp4_proc_exit_net,
3372 };
3373 
3374 int __init udp4_proc_init(void)
3375 {
3376 	return register_pernet_subsys(&udp4_net_ops);
3377 }
3378 
3379 void udp4_proc_exit(void)
3380 {
3381 	unregister_pernet_subsys(&udp4_net_ops);
3382 }
3383 #endif /* CONFIG_PROC_FS */
3384 
3385 static __initdata unsigned long uhash_entries;
3386 static int __init set_uhash_entries(char *str)
3387 {
3388 	ssize_t ret;
3389 
3390 	if (!str)
3391 		return 0;
3392 
3393 	ret = kstrtoul(str, 0, &uhash_entries);
3394 	if (ret)
3395 		return 0;
3396 
3397 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
3398 		uhash_entries = UDP_HTABLE_SIZE_MIN;
3399 	return 1;
3400 }
3401 __setup("uhash_entries=", set_uhash_entries);
3402 
3403 void __init udp_table_init(struct udp_table *table, const char *name)
3404 {
3405 	unsigned int i;
3406 
3407 	table->hash = alloc_large_system_hash(name,
3408 					      2 * sizeof(struct udp_hslot),
3409 					      uhash_entries,
3410 					      21, /* one slot per 2 MB */
3411 					      0,
3412 					      &table->log,
3413 					      &table->mask,
3414 					      UDP_HTABLE_SIZE_MIN,
3415 					      UDP_HTABLE_SIZE_MAX);
3416 
3417 	table->hash2 = table->hash + (table->mask + 1);
3418 	for (i = 0; i <= table->mask; i++) {
3419 		INIT_HLIST_HEAD(&table->hash[i].head);
3420 		table->hash[i].count = 0;
3421 		spin_lock_init(&table->hash[i].lock);
3422 	}
3423 	for (i = 0; i <= table->mask; i++) {
3424 		INIT_HLIST_HEAD(&table->hash2[i].head);
3425 		table->hash2[i].count = 0;
3426 		spin_lock_init(&table->hash2[i].lock);
3427 	}
3428 }
3429 
3430 u32 udp_flow_hashrnd(void)
3431 {
3432 	static u32 hashrnd __read_mostly;
3433 
3434 	net_get_random_once(&hashrnd, sizeof(hashrnd));
3435 
3436 	return hashrnd;
3437 }
3438 EXPORT_SYMBOL(udp_flow_hashrnd);
3439 
3440 static void __net_init udp_sysctl_init(struct net *net)
3441 {
3442 	net->ipv4.sysctl_udp_rmem_min = PAGE_SIZE;
3443 	net->ipv4.sysctl_udp_wmem_min = PAGE_SIZE;
3444 
3445 #ifdef CONFIG_NET_L3_MASTER_DEV
3446 	net->ipv4.sysctl_udp_l3mdev_accept = 0;
3447 #endif
3448 }
3449 
3450 static struct udp_table __net_init *udp_pernet_table_alloc(unsigned int hash_entries)
3451 {
3452 	struct udp_table *udptable;
3453 	int i;
3454 
3455 	udptable = kmalloc(sizeof(*udptable), GFP_KERNEL);
3456 	if (!udptable)
3457 		goto out;
3458 
3459 	udptable->hash = vmalloc_huge(hash_entries * 2 * sizeof(struct udp_hslot),
3460 				      GFP_KERNEL_ACCOUNT);
3461 	if (!udptable->hash)
3462 		goto free_table;
3463 
3464 	udptable->hash2 = udptable->hash + hash_entries;
3465 	udptable->mask = hash_entries - 1;
3466 	udptable->log = ilog2(hash_entries);
3467 
3468 	for (i = 0; i < hash_entries; i++) {
3469 		INIT_HLIST_HEAD(&udptable->hash[i].head);
3470 		udptable->hash[i].count = 0;
3471 		spin_lock_init(&udptable->hash[i].lock);
3472 
3473 		INIT_HLIST_HEAD(&udptable->hash2[i].head);
3474 		udptable->hash2[i].count = 0;
3475 		spin_lock_init(&udptable->hash2[i].lock);
3476 	}
3477 
3478 	return udptable;
3479 
3480 free_table:
3481 	kfree(udptable);
3482 out:
3483 	return NULL;
3484 }
3485 
3486 static void __net_exit udp_pernet_table_free(struct net *net)
3487 {
3488 	struct udp_table *udptable = net->ipv4.udp_table;
3489 
3490 	if (udptable == &udp_table)
3491 		return;
3492 
3493 	kvfree(udptable->hash);
3494 	kfree(udptable);
3495 }
3496 
3497 static void __net_init udp_set_table(struct net *net)
3498 {
3499 	struct udp_table *udptable;
3500 	unsigned int hash_entries;
3501 	struct net *old_net;
3502 
3503 	if (net_eq(net, &init_net))
3504 		goto fallback;
3505 
3506 	old_net = current->nsproxy->net_ns;
3507 	hash_entries = READ_ONCE(old_net->ipv4.sysctl_udp_child_hash_entries);
3508 	if (!hash_entries)
3509 		goto fallback;
3510 
3511 	/* Set min to keep the bitmap on stack in udp_lib_get_port() */
3512 	if (hash_entries < UDP_HTABLE_SIZE_MIN_PERNET)
3513 		hash_entries = UDP_HTABLE_SIZE_MIN_PERNET;
3514 	else
3515 		hash_entries = roundup_pow_of_two(hash_entries);
3516 
3517 	udptable = udp_pernet_table_alloc(hash_entries);
3518 	if (udptable) {
3519 		net->ipv4.udp_table = udptable;
3520 	} else {
3521 		pr_warn("Failed to allocate UDP hash table (entries: %u) "
3522 			"for a netns, fallback to the global one\n",
3523 			hash_entries);
3524 fallback:
3525 		net->ipv4.udp_table = &udp_table;
3526 	}
3527 }
3528 
3529 static int __net_init udp_pernet_init(struct net *net)
3530 {
3531 	udp_sysctl_init(net);
3532 	udp_set_table(net);
3533 
3534 	return 0;
3535 }
3536 
3537 static void __net_exit udp_pernet_exit(struct net *net)
3538 {
3539 	udp_pernet_table_free(net);
3540 }
3541 
3542 static struct pernet_operations __net_initdata udp_sysctl_ops = {
3543 	.init	= udp_pernet_init,
3544 	.exit	= udp_pernet_exit,
3545 };
3546 
3547 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3548 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta,
3549 		     struct udp_sock *udp_sk, uid_t uid, int bucket)
3550 
3551 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3552 				      unsigned int new_batch_sz)
3553 {
3554 	struct sock **new_batch;
3555 
3556 	new_batch = kvmalloc_array(new_batch_sz, sizeof(*new_batch),
3557 				   GFP_USER | __GFP_NOWARN);
3558 	if (!new_batch)
3559 		return -ENOMEM;
3560 
3561 	bpf_iter_udp_put_batch(iter);
3562 	kvfree(iter->batch);
3563 	iter->batch = new_batch;
3564 	iter->max_sk = new_batch_sz;
3565 
3566 	return 0;
3567 }
3568 
3569 #define INIT_BATCH_SZ 16
3570 
3571 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux)
3572 {
3573 	struct bpf_udp_iter_state *iter = priv_data;
3574 	int ret;
3575 
3576 	ret = bpf_iter_init_seq_net(priv_data, aux);
3577 	if (ret)
3578 		return ret;
3579 
3580 	ret = bpf_iter_udp_realloc_batch(iter, INIT_BATCH_SZ);
3581 	if (ret)
3582 		bpf_iter_fini_seq_net(priv_data);
3583 
3584 	return ret;
3585 }
3586 
3587 static void bpf_iter_fini_udp(void *priv_data)
3588 {
3589 	struct bpf_udp_iter_state *iter = priv_data;
3590 
3591 	bpf_iter_fini_seq_net(priv_data);
3592 	kvfree(iter->batch);
3593 }
3594 
3595 static const struct bpf_iter_seq_info udp_seq_info = {
3596 	.seq_ops		= &bpf_iter_udp_seq_ops,
3597 	.init_seq_private	= bpf_iter_init_udp,
3598 	.fini_seq_private	= bpf_iter_fini_udp,
3599 	.seq_priv_size		= sizeof(struct bpf_udp_iter_state),
3600 };
3601 
3602 static struct bpf_iter_reg udp_reg_info = {
3603 	.target			= "udp",
3604 	.ctx_arg_info_size	= 1,
3605 	.ctx_arg_info		= {
3606 		{ offsetof(struct bpf_iter__udp, udp_sk),
3607 		  PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED },
3608 	},
3609 	.seq_info		= &udp_seq_info,
3610 };
3611 
3612 static void __init bpf_iter_register(void)
3613 {
3614 	udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP];
3615 	if (bpf_iter_reg_target(&udp_reg_info))
3616 		pr_warn("Warning: could not register bpf iterator udp\n");
3617 }
3618 #endif
3619 
3620 void __init udp_init(void)
3621 {
3622 	unsigned long limit;
3623 	unsigned int i;
3624 
3625 	udp_table_init(&udp_table, "UDP");
3626 	limit = nr_free_buffer_pages() / 8;
3627 	limit = max(limit, 128UL);
3628 	sysctl_udp_mem[0] = limit / 4 * 3;
3629 	sysctl_udp_mem[1] = limit;
3630 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3631 
3632 	/* 16 spinlocks per cpu */
3633 	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3634 	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3635 				GFP_KERNEL);
3636 	if (!udp_busylocks)
3637 		panic("UDP: failed to alloc udp_busylocks\n");
3638 	for (i = 0; i < (1U << udp_busylocks_log); i++)
3639 		spin_lock_init(udp_busylocks + i);
3640 
3641 	if (register_pernet_subsys(&udp_sysctl_ops))
3642 		panic("UDP: failed to init sysctl parameters.\n");
3643 
3644 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3645 	bpf_iter_register();
3646 #endif
3647 }
3648