1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * The User Datagram Protocol (UDP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 12 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 13 * Hirokazu Takahashi, <taka@valinux.co.jp> 14 * 15 * Fixes: 16 * Alan Cox : verify_area() calls 17 * Alan Cox : stopped close while in use off icmp 18 * messages. Not a fix but a botch that 19 * for udp at least is 'valid'. 20 * Alan Cox : Fixed icmp handling properly 21 * Alan Cox : Correct error for oversized datagrams 22 * Alan Cox : Tidied select() semantics. 23 * Alan Cox : udp_err() fixed properly, also now 24 * select and read wake correctly on errors 25 * Alan Cox : udp_send verify_area moved to avoid mem leak 26 * Alan Cox : UDP can count its memory 27 * Alan Cox : send to an unknown connection causes 28 * an ECONNREFUSED off the icmp, but 29 * does NOT close. 30 * Alan Cox : Switched to new sk_buff handlers. No more backlog! 31 * Alan Cox : Using generic datagram code. Even smaller and the PEEK 32 * bug no longer crashes it. 33 * Fred Van Kempen : Net2e support for sk->broadcast. 34 * Alan Cox : Uses skb_free_datagram 35 * Alan Cox : Added get/set sockopt support. 36 * Alan Cox : Broadcasting without option set returns EACCES. 37 * Alan Cox : No wakeup calls. Instead we now use the callbacks. 38 * Alan Cox : Use ip_tos and ip_ttl 39 * Alan Cox : SNMP Mibs 40 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support. 41 * Matt Dillon : UDP length checks. 42 * Alan Cox : Smarter af_inet used properly. 43 * Alan Cox : Use new kernel side addressing. 44 * Alan Cox : Incorrect return on truncated datagram receive. 45 * Arnt Gulbrandsen : New udp_send and stuff 46 * Alan Cox : Cache last socket 47 * Alan Cox : Route cache 48 * Jon Peatfield : Minor efficiency fix to sendto(). 49 * Mike Shaver : RFC1122 checks. 50 * Alan Cox : Nonblocking error fix. 51 * Willy Konynenberg : Transparent proxying support. 52 * Mike McLagan : Routing by source 53 * David S. Miller : New socket lookup architecture. 54 * Last socket cache retained as it 55 * does have a high hit rate. 56 * Olaf Kirch : Don't linearise iovec on sendmsg. 57 * Andi Kleen : Some cleanups, cache destination entry 58 * for connect. 59 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 60 * Melvin Smith : Check msg_name not msg_namelen in sendto(), 61 * return ENOTCONN for unconnected sockets (POSIX) 62 * Janos Farkas : don't deliver multi/broadcasts to a different 63 * bound-to-device socket 64 * Hirokazu Takahashi : HW checksumming for outgoing UDP 65 * datagrams. 66 * Hirokazu Takahashi : sendfile() on UDP works now. 67 * Arnaldo C. Melo : convert /proc/net/udp to seq_file 68 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 69 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind 70 * a single port at the same time. 71 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support 72 * James Chapman : Add L2TP encapsulation type. 73 */ 74 75 #define pr_fmt(fmt) "UDP: " fmt 76 77 #include <linux/bpf-cgroup.h> 78 #include <linux/uaccess.h> 79 #include <asm/ioctls.h> 80 #include <linux/memblock.h> 81 #include <linux/highmem.h> 82 #include <linux/types.h> 83 #include <linux/fcntl.h> 84 #include <linux/module.h> 85 #include <linux/socket.h> 86 #include <linux/sockios.h> 87 #include <linux/igmp.h> 88 #include <linux/inetdevice.h> 89 #include <linux/in.h> 90 #include <linux/errno.h> 91 #include <linux/timer.h> 92 #include <linux/mm.h> 93 #include <linux/inet.h> 94 #include <linux/netdevice.h> 95 #include <linux/slab.h> 96 #include <net/tcp_states.h> 97 #include <linux/skbuff.h> 98 #include <linux/proc_fs.h> 99 #include <linux/seq_file.h> 100 #include <net/net_namespace.h> 101 #include <net/icmp.h> 102 #include <net/inet_hashtables.h> 103 #include <net/ip.h> 104 #include <net/ip_tunnels.h> 105 #include <net/route.h> 106 #include <net/checksum.h> 107 #include <net/gso.h> 108 #include <net/xfrm.h> 109 #include <trace/events/udp.h> 110 #include <linux/static_key.h> 111 #include <linux/btf_ids.h> 112 #include <trace/events/skb.h> 113 #include <net/busy_poll.h> 114 #include "udp_impl.h" 115 #include <net/sock_reuseport.h> 116 #include <net/addrconf.h> 117 #include <net/udp_tunnel.h> 118 #include <net/gro.h> 119 #if IS_ENABLED(CONFIG_IPV6) 120 #include <net/ipv6_stubs.h> 121 #endif 122 123 struct udp_table udp_table __read_mostly; 124 EXPORT_SYMBOL(udp_table); 125 126 long sysctl_udp_mem[3] __read_mostly; 127 EXPORT_SYMBOL(sysctl_udp_mem); 128 129 atomic_long_t udp_memory_allocated ____cacheline_aligned_in_smp; 130 EXPORT_SYMBOL(udp_memory_allocated); 131 DEFINE_PER_CPU(int, udp_memory_per_cpu_fw_alloc); 132 EXPORT_PER_CPU_SYMBOL_GPL(udp_memory_per_cpu_fw_alloc); 133 134 #define MAX_UDP_PORTS 65536 135 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN_PERNET) 136 137 static struct udp_table *udp_get_table_prot(struct sock *sk) 138 { 139 return sk->sk_prot->h.udp_table ? : sock_net(sk)->ipv4.udp_table; 140 } 141 142 static int udp_lib_lport_inuse(struct net *net, __u16 num, 143 const struct udp_hslot *hslot, 144 unsigned long *bitmap, 145 struct sock *sk, unsigned int log) 146 { 147 struct sock *sk2; 148 kuid_t uid = sock_i_uid(sk); 149 150 sk_for_each(sk2, &hslot->head) { 151 if (net_eq(sock_net(sk2), net) && 152 sk2 != sk && 153 (bitmap || udp_sk(sk2)->udp_port_hash == num) && 154 (!sk2->sk_reuse || !sk->sk_reuse) && 155 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 156 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 157 inet_rcv_saddr_equal(sk, sk2, true)) { 158 if (sk2->sk_reuseport && sk->sk_reuseport && 159 !rcu_access_pointer(sk->sk_reuseport_cb) && 160 uid_eq(uid, sock_i_uid(sk2))) { 161 if (!bitmap) 162 return 0; 163 } else { 164 if (!bitmap) 165 return 1; 166 __set_bit(udp_sk(sk2)->udp_port_hash >> log, 167 bitmap); 168 } 169 } 170 } 171 return 0; 172 } 173 174 /* 175 * Note: we still hold spinlock of primary hash chain, so no other writer 176 * can insert/delete a socket with local_port == num 177 */ 178 static int udp_lib_lport_inuse2(struct net *net, __u16 num, 179 struct udp_hslot *hslot2, 180 struct sock *sk) 181 { 182 struct sock *sk2; 183 kuid_t uid = sock_i_uid(sk); 184 int res = 0; 185 186 spin_lock(&hslot2->lock); 187 udp_portaddr_for_each_entry(sk2, &hslot2->head) { 188 if (net_eq(sock_net(sk2), net) && 189 sk2 != sk && 190 (udp_sk(sk2)->udp_port_hash == num) && 191 (!sk2->sk_reuse || !sk->sk_reuse) && 192 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 193 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 194 inet_rcv_saddr_equal(sk, sk2, true)) { 195 if (sk2->sk_reuseport && sk->sk_reuseport && 196 !rcu_access_pointer(sk->sk_reuseport_cb) && 197 uid_eq(uid, sock_i_uid(sk2))) { 198 res = 0; 199 } else { 200 res = 1; 201 } 202 break; 203 } 204 } 205 spin_unlock(&hslot2->lock); 206 return res; 207 } 208 209 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot) 210 { 211 struct net *net = sock_net(sk); 212 kuid_t uid = sock_i_uid(sk); 213 struct sock *sk2; 214 215 sk_for_each(sk2, &hslot->head) { 216 if (net_eq(sock_net(sk2), net) && 217 sk2 != sk && 218 sk2->sk_family == sk->sk_family && 219 ipv6_only_sock(sk2) == ipv6_only_sock(sk) && 220 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) && 221 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 222 sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) && 223 inet_rcv_saddr_equal(sk, sk2, false)) { 224 return reuseport_add_sock(sk, sk2, 225 inet_rcv_saddr_any(sk)); 226 } 227 } 228 229 return reuseport_alloc(sk, inet_rcv_saddr_any(sk)); 230 } 231 232 /** 233 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6 234 * 235 * @sk: socket struct in question 236 * @snum: port number to look up 237 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains, 238 * with NULL address 239 */ 240 int udp_lib_get_port(struct sock *sk, unsigned short snum, 241 unsigned int hash2_nulladdr) 242 { 243 struct udp_table *udptable = udp_get_table_prot(sk); 244 struct udp_hslot *hslot, *hslot2; 245 struct net *net = sock_net(sk); 246 int error = -EADDRINUSE; 247 248 if (!snum) { 249 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN); 250 unsigned short first, last; 251 int low, high, remaining; 252 unsigned int rand; 253 254 inet_sk_get_local_port_range(sk, &low, &high); 255 remaining = (high - low) + 1; 256 257 rand = get_random_u32(); 258 first = reciprocal_scale(rand, remaining) + low; 259 /* 260 * force rand to be an odd multiple of UDP_HTABLE_SIZE 261 */ 262 rand = (rand | 1) * (udptable->mask + 1); 263 last = first + udptable->mask + 1; 264 do { 265 hslot = udp_hashslot(udptable, net, first); 266 bitmap_zero(bitmap, PORTS_PER_CHAIN); 267 spin_lock_bh(&hslot->lock); 268 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk, 269 udptable->log); 270 271 snum = first; 272 /* 273 * Iterate on all possible values of snum for this hash. 274 * Using steps of an odd multiple of UDP_HTABLE_SIZE 275 * give us randomization and full range coverage. 276 */ 277 do { 278 if (low <= snum && snum <= high && 279 !test_bit(snum >> udptable->log, bitmap) && 280 !inet_is_local_reserved_port(net, snum)) 281 goto found; 282 snum += rand; 283 } while (snum != first); 284 spin_unlock_bh(&hslot->lock); 285 cond_resched(); 286 } while (++first != last); 287 goto fail; 288 } else { 289 hslot = udp_hashslot(udptable, net, snum); 290 spin_lock_bh(&hslot->lock); 291 if (hslot->count > 10) { 292 int exist; 293 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum; 294 295 slot2 &= udptable->mask; 296 hash2_nulladdr &= udptable->mask; 297 298 hslot2 = udp_hashslot2(udptable, slot2); 299 if (hslot->count < hslot2->count) 300 goto scan_primary_hash; 301 302 exist = udp_lib_lport_inuse2(net, snum, hslot2, sk); 303 if (!exist && (hash2_nulladdr != slot2)) { 304 hslot2 = udp_hashslot2(udptable, hash2_nulladdr); 305 exist = udp_lib_lport_inuse2(net, snum, hslot2, 306 sk); 307 } 308 if (exist) 309 goto fail_unlock; 310 else 311 goto found; 312 } 313 scan_primary_hash: 314 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0)) 315 goto fail_unlock; 316 } 317 found: 318 inet_sk(sk)->inet_num = snum; 319 udp_sk(sk)->udp_port_hash = snum; 320 udp_sk(sk)->udp_portaddr_hash ^= snum; 321 if (sk_unhashed(sk)) { 322 if (sk->sk_reuseport && 323 udp_reuseport_add_sock(sk, hslot)) { 324 inet_sk(sk)->inet_num = 0; 325 udp_sk(sk)->udp_port_hash = 0; 326 udp_sk(sk)->udp_portaddr_hash ^= snum; 327 goto fail_unlock; 328 } 329 330 sock_set_flag(sk, SOCK_RCU_FREE); 331 332 sk_add_node_rcu(sk, &hslot->head); 333 hslot->count++; 334 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 335 336 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 337 spin_lock(&hslot2->lock); 338 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 339 sk->sk_family == AF_INET6) 340 hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node, 341 &hslot2->head); 342 else 343 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 344 &hslot2->head); 345 hslot2->count++; 346 spin_unlock(&hslot2->lock); 347 } 348 349 error = 0; 350 fail_unlock: 351 spin_unlock_bh(&hslot->lock); 352 fail: 353 return error; 354 } 355 EXPORT_SYMBOL(udp_lib_get_port); 356 357 int udp_v4_get_port(struct sock *sk, unsigned short snum) 358 { 359 unsigned int hash2_nulladdr = 360 ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum); 361 unsigned int hash2_partial = 362 ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0); 363 364 /* precompute partial secondary hash */ 365 udp_sk(sk)->udp_portaddr_hash = hash2_partial; 366 return udp_lib_get_port(sk, snum, hash2_nulladdr); 367 } 368 369 static int compute_score(struct sock *sk, const struct net *net, 370 __be32 saddr, __be16 sport, 371 __be32 daddr, unsigned short hnum, 372 int dif, int sdif) 373 { 374 int score; 375 struct inet_sock *inet; 376 bool dev_match; 377 378 if (!net_eq(sock_net(sk), net) || 379 udp_sk(sk)->udp_port_hash != hnum || 380 ipv6_only_sock(sk)) 381 return -1; 382 383 if (sk->sk_rcv_saddr != daddr) 384 return -1; 385 386 score = (sk->sk_family == PF_INET) ? 2 : 1; 387 388 inet = inet_sk(sk); 389 if (inet->inet_daddr) { 390 if (inet->inet_daddr != saddr) 391 return -1; 392 score += 4; 393 } 394 395 if (inet->inet_dport) { 396 if (inet->inet_dport != sport) 397 return -1; 398 score += 4; 399 } 400 401 dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, 402 dif, sdif); 403 if (!dev_match) 404 return -1; 405 if (sk->sk_bound_dev_if) 406 score += 4; 407 408 if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id()) 409 score++; 410 return score; 411 } 412 413 u32 udp_ehashfn(const struct net *net, const __be32 laddr, const __u16 lport, 414 const __be32 faddr, const __be16 fport) 415 { 416 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret)); 417 418 return __inet_ehashfn(laddr, lport, faddr, fport, 419 udp_ehash_secret + net_hash_mix(net)); 420 } 421 EXPORT_SYMBOL(udp_ehashfn); 422 423 /** 424 * udp4_lib_lookup1() - Simplified lookup using primary hash (destination port) 425 * @net: Network namespace 426 * @saddr: Source address, network order 427 * @sport: Source port, network order 428 * @daddr: Destination address, network order 429 * @hnum: Destination port, host order 430 * @dif: Destination interface index 431 * @sdif: Destination bridge port index, if relevant 432 * @udptable: Set of UDP hash tables 433 * 434 * Simplified lookup to be used as fallback if no sockets are found due to a 435 * potential race between (receive) address change, and lookup happening before 436 * the rehash operation. This function ignores SO_REUSEPORT groups while scoring 437 * result sockets, because if we have one, we don't need the fallback at all. 438 * 439 * Called under rcu_read_lock(). 440 * 441 * Return: socket with highest matching score if any, NULL if none 442 */ 443 static struct sock *udp4_lib_lookup1(const struct net *net, 444 __be32 saddr, __be16 sport, 445 __be32 daddr, unsigned int hnum, 446 int dif, int sdif, 447 const struct udp_table *udptable) 448 { 449 unsigned int slot = udp_hashfn(net, hnum, udptable->mask); 450 struct udp_hslot *hslot = &udptable->hash[slot]; 451 struct sock *sk, *result = NULL; 452 int score, badness = 0; 453 454 sk_for_each_rcu(sk, &hslot->head) { 455 score = compute_score(sk, net, 456 saddr, sport, daddr, hnum, dif, sdif); 457 if (score > badness) { 458 result = sk; 459 badness = score; 460 } 461 } 462 463 return result; 464 } 465 466 /* called with rcu_read_lock() */ 467 static struct sock *udp4_lib_lookup2(const struct net *net, 468 __be32 saddr, __be16 sport, 469 __be32 daddr, unsigned int hnum, 470 int dif, int sdif, 471 struct udp_hslot *hslot2, 472 struct sk_buff *skb) 473 { 474 struct sock *sk, *result; 475 int score, badness; 476 bool need_rescore; 477 478 result = NULL; 479 badness = 0; 480 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 481 need_rescore = false; 482 rescore: 483 score = compute_score(need_rescore ? result : sk, net, saddr, 484 sport, daddr, hnum, dif, sdif); 485 if (score > badness) { 486 badness = score; 487 488 if (need_rescore) 489 continue; 490 491 if (sk->sk_state == TCP_ESTABLISHED) { 492 result = sk; 493 continue; 494 } 495 496 result = inet_lookup_reuseport(net, sk, skb, sizeof(struct udphdr), 497 saddr, sport, daddr, hnum, udp_ehashfn); 498 if (!result) { 499 result = sk; 500 continue; 501 } 502 503 /* Fall back to scoring if group has connections */ 504 if (!reuseport_has_conns(sk)) 505 return result; 506 507 /* Reuseport logic returned an error, keep original score. */ 508 if (IS_ERR(result)) 509 continue; 510 511 /* compute_score is too long of a function to be 512 * inlined, and calling it again here yields 513 * measureable overhead for some 514 * workloads. Work around it by jumping 515 * backwards to rescore 'result'. 516 */ 517 need_rescore = true; 518 goto rescore; 519 } 520 } 521 return result; 522 } 523 524 #if IS_ENABLED(CONFIG_BASE_SMALL) 525 static struct sock *udp4_lib_lookup4(const struct net *net, 526 __be32 saddr, __be16 sport, 527 __be32 daddr, unsigned int hnum, 528 int dif, int sdif, 529 struct udp_table *udptable) 530 { 531 return NULL; 532 } 533 534 static void udp_rehash4(struct udp_table *udptable, struct sock *sk, 535 u16 newhash4) 536 { 537 } 538 539 static void udp_unhash4(struct udp_table *udptable, struct sock *sk) 540 { 541 } 542 #else /* !CONFIG_BASE_SMALL */ 543 static struct sock *udp4_lib_lookup4(const struct net *net, 544 __be32 saddr, __be16 sport, 545 __be32 daddr, unsigned int hnum, 546 int dif, int sdif, 547 struct udp_table *udptable) 548 { 549 const __portpair ports = INET_COMBINED_PORTS(sport, hnum); 550 const struct hlist_nulls_node *node; 551 struct udp_hslot *hslot4; 552 unsigned int hash4, slot; 553 struct udp_sock *up; 554 struct sock *sk; 555 556 hash4 = udp_ehashfn(net, daddr, hnum, saddr, sport); 557 slot = hash4 & udptable->mask; 558 hslot4 = &udptable->hash4[slot]; 559 INET_ADDR_COOKIE(acookie, saddr, daddr); 560 561 begin: 562 /* SLAB_TYPESAFE_BY_RCU not used, so we don't need to touch sk_refcnt */ 563 udp_lrpa_for_each_entry_rcu(up, node, &hslot4->nulls_head) { 564 sk = (struct sock *)up; 565 if (inet_match(net, sk, acookie, ports, dif, sdif)) 566 return sk; 567 } 568 569 /* if the nulls value we got at the end of this lookup is not the 570 * expected one, we must restart lookup. We probably met an item that 571 * was moved to another chain due to rehash. 572 */ 573 if (get_nulls_value(node) != slot) 574 goto begin; 575 576 return NULL; 577 } 578 579 /* udp_rehash4() only checks hslot4, and hash4_cnt is not processed. */ 580 static void udp_rehash4(struct udp_table *udptable, struct sock *sk, 581 u16 newhash4) 582 { 583 struct udp_hslot *hslot4, *nhslot4; 584 585 hslot4 = udp_hashslot4(udptable, udp_sk(sk)->udp_lrpa_hash); 586 nhslot4 = udp_hashslot4(udptable, newhash4); 587 udp_sk(sk)->udp_lrpa_hash = newhash4; 588 589 if (hslot4 != nhslot4) { 590 spin_lock_bh(&hslot4->lock); 591 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_lrpa_node); 592 hslot4->count--; 593 spin_unlock_bh(&hslot4->lock); 594 595 spin_lock_bh(&nhslot4->lock); 596 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_lrpa_node, 597 &nhslot4->nulls_head); 598 nhslot4->count++; 599 spin_unlock_bh(&nhslot4->lock); 600 } 601 } 602 603 static void udp_unhash4(struct udp_table *udptable, struct sock *sk) 604 { 605 struct udp_hslot *hslot2, *hslot4; 606 607 if (udp_hashed4(sk)) { 608 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 609 hslot4 = udp_hashslot4(udptable, udp_sk(sk)->udp_lrpa_hash); 610 611 spin_lock(&hslot4->lock); 612 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_lrpa_node); 613 hslot4->count--; 614 spin_unlock(&hslot4->lock); 615 616 spin_lock(&hslot2->lock); 617 udp_hash4_dec(hslot2); 618 spin_unlock(&hslot2->lock); 619 } 620 } 621 622 void udp_lib_hash4(struct sock *sk, u16 hash) 623 { 624 struct udp_hslot *hslot, *hslot2, *hslot4; 625 struct net *net = sock_net(sk); 626 struct udp_table *udptable; 627 628 /* Connected udp socket can re-connect to another remote address, which 629 * will be handled by rehash. Thus no need to redo hash4 here. 630 */ 631 if (udp_hashed4(sk)) 632 return; 633 634 udptable = net->ipv4.udp_table; 635 hslot = udp_hashslot(udptable, net, udp_sk(sk)->udp_port_hash); 636 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 637 hslot4 = udp_hashslot4(udptable, hash); 638 udp_sk(sk)->udp_lrpa_hash = hash; 639 640 spin_lock_bh(&hslot->lock); 641 if (rcu_access_pointer(sk->sk_reuseport_cb)) 642 reuseport_detach_sock(sk); 643 644 spin_lock(&hslot4->lock); 645 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_lrpa_node, 646 &hslot4->nulls_head); 647 hslot4->count++; 648 spin_unlock(&hslot4->lock); 649 650 spin_lock(&hslot2->lock); 651 udp_hash4_inc(hslot2); 652 spin_unlock(&hslot2->lock); 653 654 spin_unlock_bh(&hslot->lock); 655 } 656 EXPORT_SYMBOL(udp_lib_hash4); 657 658 /* call with sock lock */ 659 void udp4_hash4(struct sock *sk) 660 { 661 struct net *net = sock_net(sk); 662 unsigned int hash; 663 664 if (sk_unhashed(sk) || sk->sk_rcv_saddr == htonl(INADDR_ANY)) 665 return; 666 667 hash = udp_ehashfn(net, sk->sk_rcv_saddr, sk->sk_num, 668 sk->sk_daddr, sk->sk_dport); 669 670 udp_lib_hash4(sk, hash); 671 } 672 EXPORT_SYMBOL(udp4_hash4); 673 #endif /* CONFIG_BASE_SMALL */ 674 675 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try 676 * harder than this. -DaveM 677 */ 678 struct sock *__udp4_lib_lookup(const struct net *net, __be32 saddr, 679 __be16 sport, __be32 daddr, __be16 dport, int dif, 680 int sdif, struct udp_table *udptable, struct sk_buff *skb) 681 { 682 unsigned short hnum = ntohs(dport); 683 struct udp_hslot *hslot2; 684 struct sock *result, *sk; 685 unsigned int hash2; 686 687 hash2 = ipv4_portaddr_hash(net, daddr, hnum); 688 hslot2 = udp_hashslot2(udptable, hash2); 689 690 if (udp_has_hash4(hslot2)) { 691 result = udp4_lib_lookup4(net, saddr, sport, daddr, hnum, 692 dif, sdif, udptable); 693 if (result) /* udp4_lib_lookup4 return sk or NULL */ 694 return result; 695 } 696 697 /* Lookup connected or non-wildcard socket */ 698 result = udp4_lib_lookup2(net, saddr, sport, 699 daddr, hnum, dif, sdif, 700 hslot2, skb); 701 if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED) 702 goto done; 703 704 /* Lookup redirect from BPF */ 705 if (static_branch_unlikely(&bpf_sk_lookup_enabled) && 706 udptable == net->ipv4.udp_table) { 707 sk = inet_lookup_run_sk_lookup(net, IPPROTO_UDP, skb, sizeof(struct udphdr), 708 saddr, sport, daddr, hnum, dif, 709 udp_ehashfn); 710 if (sk) { 711 result = sk; 712 goto done; 713 } 714 } 715 716 /* Got non-wildcard socket or error on first lookup */ 717 if (result) 718 goto done; 719 720 /* Lookup wildcard sockets */ 721 hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum); 722 hslot2 = udp_hashslot2(udptable, hash2); 723 724 result = udp4_lib_lookup2(net, saddr, sport, 725 htonl(INADDR_ANY), hnum, dif, sdif, 726 hslot2, skb); 727 if (!IS_ERR_OR_NULL(result)) 728 goto done; 729 730 /* Primary hash (destination port) lookup as fallback for this race: 731 * 1. __ip4_datagram_connect() sets sk_rcv_saddr 732 * 2. lookup (this function): new sk_rcv_saddr, hashes not updated yet 733 * 3. rehash operation updating _secondary and four-tuple_ hashes 734 * The primary hash doesn't need an update after 1., so, thanks to this 735 * further step, 1. and 3. don't need to be atomic against the lookup. 736 */ 737 result = udp4_lib_lookup1(net, saddr, sport, daddr, hnum, dif, sdif, 738 udptable); 739 740 done: 741 if (IS_ERR(result)) 742 return NULL; 743 return result; 744 } 745 EXPORT_SYMBOL_GPL(__udp4_lib_lookup); 746 747 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb, 748 __be16 sport, __be16 dport, 749 struct udp_table *udptable) 750 { 751 const struct iphdr *iph = ip_hdr(skb); 752 753 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport, 754 iph->daddr, dport, inet_iif(skb), 755 inet_sdif(skb), udptable, skb); 756 } 757 758 struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb, 759 __be16 sport, __be16 dport) 760 { 761 const u16 offset = NAPI_GRO_CB(skb)->network_offsets[skb->encapsulation]; 762 const struct iphdr *iph = (struct iphdr *)(skb->data + offset); 763 struct net *net = dev_net(skb->dev); 764 int iif, sdif; 765 766 inet_get_iif_sdif(skb, &iif, &sdif); 767 768 return __udp4_lib_lookup(net, iph->saddr, sport, 769 iph->daddr, dport, iif, 770 sdif, net->ipv4.udp_table, NULL); 771 } 772 773 /* Must be called under rcu_read_lock(). 774 * Does increment socket refcount. 775 */ 776 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4) 777 struct sock *udp4_lib_lookup(const struct net *net, __be32 saddr, __be16 sport, 778 __be32 daddr, __be16 dport, int dif) 779 { 780 struct sock *sk; 781 782 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport, 783 dif, 0, net->ipv4.udp_table, NULL); 784 if (sk && !refcount_inc_not_zero(&sk->sk_refcnt)) 785 sk = NULL; 786 return sk; 787 } 788 EXPORT_SYMBOL_GPL(udp4_lib_lookup); 789 #endif 790 791 static inline bool __udp_is_mcast_sock(struct net *net, const struct sock *sk, 792 __be16 loc_port, __be32 loc_addr, 793 __be16 rmt_port, __be32 rmt_addr, 794 int dif, int sdif, unsigned short hnum) 795 { 796 const struct inet_sock *inet = inet_sk(sk); 797 798 if (!net_eq(sock_net(sk), net) || 799 udp_sk(sk)->udp_port_hash != hnum || 800 (inet->inet_daddr && inet->inet_daddr != rmt_addr) || 801 (inet->inet_dport != rmt_port && inet->inet_dport) || 802 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) || 803 ipv6_only_sock(sk) || 804 !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif)) 805 return false; 806 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif)) 807 return false; 808 return true; 809 } 810 811 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key); 812 EXPORT_SYMBOL(udp_encap_needed_key); 813 814 #if IS_ENABLED(CONFIG_IPV6) 815 DEFINE_STATIC_KEY_FALSE(udpv6_encap_needed_key); 816 EXPORT_SYMBOL(udpv6_encap_needed_key); 817 #endif 818 819 void udp_encap_enable(void) 820 { 821 static_branch_inc(&udp_encap_needed_key); 822 } 823 EXPORT_SYMBOL(udp_encap_enable); 824 825 void udp_encap_disable(void) 826 { 827 static_branch_dec(&udp_encap_needed_key); 828 } 829 EXPORT_SYMBOL(udp_encap_disable); 830 831 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go 832 * through error handlers in encapsulations looking for a match. 833 */ 834 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info) 835 { 836 int i; 837 838 for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) { 839 int (*handler)(struct sk_buff *skb, u32 info); 840 const struct ip_tunnel_encap_ops *encap; 841 842 encap = rcu_dereference(iptun_encaps[i]); 843 if (!encap) 844 continue; 845 handler = encap->err_handler; 846 if (handler && !handler(skb, info)) 847 return 0; 848 } 849 850 return -ENOENT; 851 } 852 853 /* Try to match ICMP errors to UDP tunnels by looking up a socket without 854 * reversing source and destination port: this will match tunnels that force the 855 * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that 856 * lwtunnels might actually break this assumption by being configured with 857 * different destination ports on endpoints, in this case we won't be able to 858 * trace ICMP messages back to them. 859 * 860 * If this doesn't match any socket, probe tunnels with arbitrary destination 861 * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port 862 * we've sent packets to won't necessarily match the local destination port. 863 * 864 * Then ask the tunnel implementation to match the error against a valid 865 * association. 866 * 867 * Return an error if we can't find a match, the socket if we need further 868 * processing, zero otherwise. 869 */ 870 static struct sock *__udp4_lib_err_encap(struct net *net, 871 const struct iphdr *iph, 872 struct udphdr *uh, 873 struct udp_table *udptable, 874 struct sock *sk, 875 struct sk_buff *skb, u32 info) 876 { 877 int (*lookup)(struct sock *sk, struct sk_buff *skb); 878 int network_offset, transport_offset; 879 struct udp_sock *up; 880 881 network_offset = skb_network_offset(skb); 882 transport_offset = skb_transport_offset(skb); 883 884 /* Network header needs to point to the outer IPv4 header inside ICMP */ 885 skb_reset_network_header(skb); 886 887 /* Transport header needs to point to the UDP header */ 888 skb_set_transport_header(skb, iph->ihl << 2); 889 890 if (sk) { 891 up = udp_sk(sk); 892 893 lookup = READ_ONCE(up->encap_err_lookup); 894 if (lookup && lookup(sk, skb)) 895 sk = NULL; 896 897 goto out; 898 } 899 900 sk = __udp4_lib_lookup(net, iph->daddr, uh->source, 901 iph->saddr, uh->dest, skb->dev->ifindex, 0, 902 udptable, NULL); 903 if (sk) { 904 up = udp_sk(sk); 905 906 lookup = READ_ONCE(up->encap_err_lookup); 907 if (!lookup || lookup(sk, skb)) 908 sk = NULL; 909 } 910 911 out: 912 if (!sk) 913 sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info)); 914 915 skb_set_transport_header(skb, transport_offset); 916 skb_set_network_header(skb, network_offset); 917 918 return sk; 919 } 920 921 /* 922 * This routine is called by the ICMP module when it gets some 923 * sort of error condition. If err < 0 then the socket should 924 * be closed and the error returned to the user. If err > 0 925 * it's just the icmp type << 8 | icmp code. 926 * Header points to the ip header of the error packet. We move 927 * on past this. Then (as it used to claim before adjustment) 928 * header points to the first 8 bytes of the udp header. We need 929 * to find the appropriate port. 930 */ 931 932 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable) 933 { 934 struct inet_sock *inet; 935 const struct iphdr *iph = (const struct iphdr *)skb->data; 936 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2)); 937 const int type = icmp_hdr(skb)->type; 938 const int code = icmp_hdr(skb)->code; 939 bool tunnel = false; 940 struct sock *sk; 941 int harderr; 942 int err; 943 struct net *net = dev_net(skb->dev); 944 945 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest, 946 iph->saddr, uh->source, skb->dev->ifindex, 947 inet_sdif(skb), udptable, NULL); 948 949 if (!sk || READ_ONCE(udp_sk(sk)->encap_type)) { 950 /* No socket for error: try tunnels before discarding */ 951 if (static_branch_unlikely(&udp_encap_needed_key)) { 952 sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb, 953 info); 954 if (!sk) 955 return 0; 956 } else 957 sk = ERR_PTR(-ENOENT); 958 959 if (IS_ERR(sk)) { 960 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); 961 return PTR_ERR(sk); 962 } 963 964 tunnel = true; 965 } 966 967 err = 0; 968 harderr = 0; 969 inet = inet_sk(sk); 970 971 switch (type) { 972 default: 973 case ICMP_TIME_EXCEEDED: 974 err = EHOSTUNREACH; 975 break; 976 case ICMP_SOURCE_QUENCH: 977 goto out; 978 case ICMP_PARAMETERPROB: 979 err = EPROTO; 980 harderr = 1; 981 break; 982 case ICMP_DEST_UNREACH: 983 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */ 984 ipv4_sk_update_pmtu(skb, sk, info); 985 if (READ_ONCE(inet->pmtudisc) != IP_PMTUDISC_DONT) { 986 err = EMSGSIZE; 987 harderr = 1; 988 break; 989 } 990 goto out; 991 } 992 err = EHOSTUNREACH; 993 if (code <= NR_ICMP_UNREACH) { 994 harderr = icmp_err_convert[code].fatal; 995 err = icmp_err_convert[code].errno; 996 } 997 break; 998 case ICMP_REDIRECT: 999 ipv4_sk_redirect(skb, sk); 1000 goto out; 1001 } 1002 1003 /* 1004 * RFC1122: OK. Passes ICMP errors back to application, as per 1005 * 4.1.3.3. 1006 */ 1007 if (tunnel) { 1008 /* ...not for tunnels though: we don't have a sending socket */ 1009 if (udp_sk(sk)->encap_err_rcv) 1010 udp_sk(sk)->encap_err_rcv(sk, skb, err, uh->dest, info, 1011 (u8 *)(uh+1)); 1012 goto out; 1013 } 1014 if (!inet_test_bit(RECVERR, sk)) { 1015 if (!harderr || sk->sk_state != TCP_ESTABLISHED) 1016 goto out; 1017 } else 1018 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1)); 1019 1020 sk->sk_err = err; 1021 sk_error_report(sk); 1022 out: 1023 return 0; 1024 } 1025 1026 int udp_err(struct sk_buff *skb, u32 info) 1027 { 1028 return __udp4_lib_err(skb, info, dev_net(skb->dev)->ipv4.udp_table); 1029 } 1030 1031 /* 1032 * Throw away all pending data and cancel the corking. Socket is locked. 1033 */ 1034 void udp_flush_pending_frames(struct sock *sk) 1035 { 1036 struct udp_sock *up = udp_sk(sk); 1037 1038 if (up->pending) { 1039 up->len = 0; 1040 WRITE_ONCE(up->pending, 0); 1041 ip_flush_pending_frames(sk); 1042 } 1043 } 1044 EXPORT_SYMBOL(udp_flush_pending_frames); 1045 1046 /** 1047 * udp4_hwcsum - handle outgoing HW checksumming 1048 * @skb: sk_buff containing the filled-in UDP header 1049 * (checksum field must be zeroed out) 1050 * @src: source IP address 1051 * @dst: destination IP address 1052 */ 1053 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst) 1054 { 1055 struct udphdr *uh = udp_hdr(skb); 1056 int offset = skb_transport_offset(skb); 1057 int len = skb->len - offset; 1058 int hlen = len; 1059 __wsum csum = 0; 1060 1061 if (!skb_has_frag_list(skb)) { 1062 /* 1063 * Only one fragment on the socket. 1064 */ 1065 skb->csum_start = skb_transport_header(skb) - skb->head; 1066 skb->csum_offset = offsetof(struct udphdr, check); 1067 uh->check = ~csum_tcpudp_magic(src, dst, len, 1068 IPPROTO_UDP, 0); 1069 } else { 1070 struct sk_buff *frags; 1071 1072 /* 1073 * HW-checksum won't work as there are two or more 1074 * fragments on the socket so that all csums of sk_buffs 1075 * should be together 1076 */ 1077 skb_walk_frags(skb, frags) { 1078 csum = csum_add(csum, frags->csum); 1079 hlen -= frags->len; 1080 } 1081 1082 csum = skb_checksum(skb, offset, hlen, csum); 1083 skb->ip_summed = CHECKSUM_NONE; 1084 1085 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum); 1086 if (uh->check == 0) 1087 uh->check = CSUM_MANGLED_0; 1088 } 1089 } 1090 EXPORT_SYMBOL_GPL(udp4_hwcsum); 1091 1092 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended 1093 * for the simple case like when setting the checksum for a UDP tunnel. 1094 */ 1095 void udp_set_csum(bool nocheck, struct sk_buff *skb, 1096 __be32 saddr, __be32 daddr, int len) 1097 { 1098 struct udphdr *uh = udp_hdr(skb); 1099 1100 if (nocheck) { 1101 uh->check = 0; 1102 } else if (skb_is_gso(skb)) { 1103 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 1104 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 1105 uh->check = 0; 1106 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb)); 1107 if (uh->check == 0) 1108 uh->check = CSUM_MANGLED_0; 1109 } else { 1110 skb->ip_summed = CHECKSUM_PARTIAL; 1111 skb->csum_start = skb_transport_header(skb) - skb->head; 1112 skb->csum_offset = offsetof(struct udphdr, check); 1113 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 1114 } 1115 } 1116 EXPORT_SYMBOL(udp_set_csum); 1117 1118 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4, 1119 struct inet_cork *cork) 1120 { 1121 struct sock *sk = skb->sk; 1122 struct inet_sock *inet = inet_sk(sk); 1123 struct udphdr *uh; 1124 int err; 1125 int is_udplite = IS_UDPLITE(sk); 1126 int offset = skb_transport_offset(skb); 1127 int len = skb->len - offset; 1128 int datalen = len - sizeof(*uh); 1129 __wsum csum = 0; 1130 1131 /* 1132 * Create a UDP header 1133 */ 1134 uh = udp_hdr(skb); 1135 uh->source = inet->inet_sport; 1136 uh->dest = fl4->fl4_dport; 1137 uh->len = htons(len); 1138 uh->check = 0; 1139 1140 if (cork->gso_size) { 1141 const int hlen = skb_network_header_len(skb) + 1142 sizeof(struct udphdr); 1143 1144 if (hlen + cork->gso_size > cork->fragsize) { 1145 kfree_skb(skb); 1146 return -EINVAL; 1147 } 1148 if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) { 1149 kfree_skb(skb); 1150 return -EINVAL; 1151 } 1152 if (sk->sk_no_check_tx) { 1153 kfree_skb(skb); 1154 return -EINVAL; 1155 } 1156 if (is_udplite || dst_xfrm(skb_dst(skb))) { 1157 kfree_skb(skb); 1158 return -EIO; 1159 } 1160 1161 if (datalen > cork->gso_size) { 1162 skb_shinfo(skb)->gso_size = cork->gso_size; 1163 skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4; 1164 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen, 1165 cork->gso_size); 1166 1167 /* Don't checksum the payload, skb will get segmented */ 1168 goto csum_partial; 1169 } 1170 } 1171 1172 if (is_udplite) /* UDP-Lite */ 1173 csum = udplite_csum(skb); 1174 1175 else if (sk->sk_no_check_tx) { /* UDP csum off */ 1176 1177 skb->ip_summed = CHECKSUM_NONE; 1178 goto send; 1179 1180 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */ 1181 csum_partial: 1182 1183 udp4_hwcsum(skb, fl4->saddr, fl4->daddr); 1184 goto send; 1185 1186 } else 1187 csum = udp_csum(skb); 1188 1189 /* add protocol-dependent pseudo-header */ 1190 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len, 1191 sk->sk_protocol, csum); 1192 if (uh->check == 0) 1193 uh->check = CSUM_MANGLED_0; 1194 1195 send: 1196 err = ip_send_skb(sock_net(sk), skb); 1197 if (err) { 1198 if (err == -ENOBUFS && 1199 !inet_test_bit(RECVERR, sk)) { 1200 UDP_INC_STATS(sock_net(sk), 1201 UDP_MIB_SNDBUFERRORS, is_udplite); 1202 err = 0; 1203 } 1204 } else 1205 UDP_INC_STATS(sock_net(sk), 1206 UDP_MIB_OUTDATAGRAMS, is_udplite); 1207 return err; 1208 } 1209 1210 /* 1211 * Push out all pending data as one UDP datagram. Socket is locked. 1212 */ 1213 int udp_push_pending_frames(struct sock *sk) 1214 { 1215 struct udp_sock *up = udp_sk(sk); 1216 struct inet_sock *inet = inet_sk(sk); 1217 struct flowi4 *fl4 = &inet->cork.fl.u.ip4; 1218 struct sk_buff *skb; 1219 int err = 0; 1220 1221 skb = ip_finish_skb(sk, fl4); 1222 if (!skb) 1223 goto out; 1224 1225 err = udp_send_skb(skb, fl4, &inet->cork.base); 1226 1227 out: 1228 up->len = 0; 1229 WRITE_ONCE(up->pending, 0); 1230 return err; 1231 } 1232 EXPORT_SYMBOL(udp_push_pending_frames); 1233 1234 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size) 1235 { 1236 switch (cmsg->cmsg_type) { 1237 case UDP_SEGMENT: 1238 if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16))) 1239 return -EINVAL; 1240 *gso_size = *(__u16 *)CMSG_DATA(cmsg); 1241 return 0; 1242 default: 1243 return -EINVAL; 1244 } 1245 } 1246 1247 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size) 1248 { 1249 struct cmsghdr *cmsg; 1250 bool need_ip = false; 1251 int err; 1252 1253 for_each_cmsghdr(cmsg, msg) { 1254 if (!CMSG_OK(msg, cmsg)) 1255 return -EINVAL; 1256 1257 if (cmsg->cmsg_level != SOL_UDP) { 1258 need_ip = true; 1259 continue; 1260 } 1261 1262 err = __udp_cmsg_send(cmsg, gso_size); 1263 if (err) 1264 return err; 1265 } 1266 1267 return need_ip; 1268 } 1269 EXPORT_SYMBOL_GPL(udp_cmsg_send); 1270 1271 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1272 { 1273 struct inet_sock *inet = inet_sk(sk); 1274 struct udp_sock *up = udp_sk(sk); 1275 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name); 1276 struct flowi4 fl4_stack; 1277 struct flowi4 *fl4; 1278 int ulen = len; 1279 struct ipcm_cookie ipc; 1280 struct rtable *rt = NULL; 1281 int free = 0; 1282 int connected = 0; 1283 __be32 daddr, faddr, saddr; 1284 u8 tos, scope; 1285 __be16 dport; 1286 int err, is_udplite = IS_UDPLITE(sk); 1287 int corkreq = udp_test_bit(CORK, sk) || msg->msg_flags & MSG_MORE; 1288 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *); 1289 struct sk_buff *skb; 1290 struct ip_options_data opt_copy; 1291 int uc_index; 1292 1293 if (len > 0xFFFF) 1294 return -EMSGSIZE; 1295 1296 /* 1297 * Check the flags. 1298 */ 1299 1300 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */ 1301 return -EOPNOTSUPP; 1302 1303 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag; 1304 1305 fl4 = &inet->cork.fl.u.ip4; 1306 if (READ_ONCE(up->pending)) { 1307 /* 1308 * There are pending frames. 1309 * The socket lock must be held while it's corked. 1310 */ 1311 lock_sock(sk); 1312 if (likely(up->pending)) { 1313 if (unlikely(up->pending != AF_INET)) { 1314 release_sock(sk); 1315 return -EINVAL; 1316 } 1317 goto do_append_data; 1318 } 1319 release_sock(sk); 1320 } 1321 ulen += sizeof(struct udphdr); 1322 1323 /* 1324 * Get and verify the address. 1325 */ 1326 if (usin) { 1327 if (msg->msg_namelen < sizeof(*usin)) 1328 return -EINVAL; 1329 if (usin->sin_family != AF_INET) { 1330 if (usin->sin_family != AF_UNSPEC) 1331 return -EAFNOSUPPORT; 1332 } 1333 1334 daddr = usin->sin_addr.s_addr; 1335 dport = usin->sin_port; 1336 if (dport == 0) 1337 return -EINVAL; 1338 } else { 1339 if (sk->sk_state != TCP_ESTABLISHED) 1340 return -EDESTADDRREQ; 1341 daddr = inet->inet_daddr; 1342 dport = inet->inet_dport; 1343 /* Open fast path for connected socket. 1344 Route will not be used, if at least one option is set. 1345 */ 1346 connected = 1; 1347 } 1348 1349 ipcm_init_sk(&ipc, inet); 1350 ipc.gso_size = READ_ONCE(up->gso_size); 1351 1352 if (msg->msg_controllen) { 1353 err = udp_cmsg_send(sk, msg, &ipc.gso_size); 1354 if (err > 0) { 1355 err = ip_cmsg_send(sk, msg, &ipc, 1356 sk->sk_family == AF_INET6); 1357 connected = 0; 1358 } 1359 if (unlikely(err < 0)) { 1360 kfree(ipc.opt); 1361 return err; 1362 } 1363 if (ipc.opt) 1364 free = 1; 1365 } 1366 if (!ipc.opt) { 1367 struct ip_options_rcu *inet_opt; 1368 1369 rcu_read_lock(); 1370 inet_opt = rcu_dereference(inet->inet_opt); 1371 if (inet_opt) { 1372 memcpy(&opt_copy, inet_opt, 1373 sizeof(*inet_opt) + inet_opt->opt.optlen); 1374 ipc.opt = &opt_copy.opt; 1375 } 1376 rcu_read_unlock(); 1377 } 1378 1379 if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) { 1380 err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk, 1381 (struct sockaddr *)usin, 1382 &msg->msg_namelen, 1383 &ipc.addr); 1384 if (err) 1385 goto out_free; 1386 if (usin) { 1387 if (usin->sin_port == 0) { 1388 /* BPF program set invalid port. Reject it. */ 1389 err = -EINVAL; 1390 goto out_free; 1391 } 1392 daddr = usin->sin_addr.s_addr; 1393 dport = usin->sin_port; 1394 } 1395 } 1396 1397 saddr = ipc.addr; 1398 ipc.addr = faddr = daddr; 1399 1400 if (ipc.opt && ipc.opt->opt.srr) { 1401 if (!daddr) { 1402 err = -EINVAL; 1403 goto out_free; 1404 } 1405 faddr = ipc.opt->opt.faddr; 1406 connected = 0; 1407 } 1408 tos = get_rttos(&ipc, inet); 1409 scope = ip_sendmsg_scope(inet, &ipc, msg); 1410 if (scope == RT_SCOPE_LINK) 1411 connected = 0; 1412 1413 uc_index = READ_ONCE(inet->uc_index); 1414 if (ipv4_is_multicast(daddr)) { 1415 if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif)) 1416 ipc.oif = READ_ONCE(inet->mc_index); 1417 if (!saddr) 1418 saddr = READ_ONCE(inet->mc_addr); 1419 connected = 0; 1420 } else if (!ipc.oif) { 1421 ipc.oif = uc_index; 1422 } else if (ipv4_is_lbcast(daddr) && uc_index) { 1423 /* oif is set, packet is to local broadcast and 1424 * uc_index is set. oif is most likely set 1425 * by sk_bound_dev_if. If uc_index != oif check if the 1426 * oif is an L3 master and uc_index is an L3 slave. 1427 * If so, we want to allow the send using the uc_index. 1428 */ 1429 if (ipc.oif != uc_index && 1430 ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk), 1431 uc_index)) { 1432 ipc.oif = uc_index; 1433 } 1434 } 1435 1436 if (connected) 1437 rt = dst_rtable(sk_dst_check(sk, 0)); 1438 1439 if (!rt) { 1440 struct net *net = sock_net(sk); 1441 __u8 flow_flags = inet_sk_flowi_flags(sk); 1442 1443 fl4 = &fl4_stack; 1444 1445 flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos, scope, 1446 sk->sk_protocol, flow_flags, faddr, saddr, 1447 dport, inet->inet_sport, sk->sk_uid); 1448 1449 security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4)); 1450 rt = ip_route_output_flow(net, fl4, sk); 1451 if (IS_ERR(rt)) { 1452 err = PTR_ERR(rt); 1453 rt = NULL; 1454 if (err == -ENETUNREACH) 1455 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 1456 goto out; 1457 } 1458 1459 err = -EACCES; 1460 if ((rt->rt_flags & RTCF_BROADCAST) && 1461 !sock_flag(sk, SOCK_BROADCAST)) 1462 goto out; 1463 if (connected) 1464 sk_dst_set(sk, dst_clone(&rt->dst)); 1465 } 1466 1467 if (msg->msg_flags&MSG_CONFIRM) 1468 goto do_confirm; 1469 back_from_confirm: 1470 1471 saddr = fl4->saddr; 1472 if (!ipc.addr) 1473 daddr = ipc.addr = fl4->daddr; 1474 1475 /* Lockless fast path for the non-corking case. */ 1476 if (!corkreq) { 1477 struct inet_cork cork; 1478 1479 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen, 1480 sizeof(struct udphdr), &ipc, &rt, 1481 &cork, msg->msg_flags); 1482 err = PTR_ERR(skb); 1483 if (!IS_ERR_OR_NULL(skb)) 1484 err = udp_send_skb(skb, fl4, &cork); 1485 goto out; 1486 } 1487 1488 lock_sock(sk); 1489 if (unlikely(up->pending)) { 1490 /* The socket is already corked while preparing it. */ 1491 /* ... which is an evident application bug. --ANK */ 1492 release_sock(sk); 1493 1494 net_dbg_ratelimited("socket already corked\n"); 1495 err = -EINVAL; 1496 goto out; 1497 } 1498 /* 1499 * Now cork the socket to pend data. 1500 */ 1501 fl4 = &inet->cork.fl.u.ip4; 1502 fl4->daddr = daddr; 1503 fl4->saddr = saddr; 1504 fl4->fl4_dport = dport; 1505 fl4->fl4_sport = inet->inet_sport; 1506 WRITE_ONCE(up->pending, AF_INET); 1507 1508 do_append_data: 1509 up->len += ulen; 1510 err = ip_append_data(sk, fl4, getfrag, msg, ulen, 1511 sizeof(struct udphdr), &ipc, &rt, 1512 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags); 1513 if (err) 1514 udp_flush_pending_frames(sk); 1515 else if (!corkreq) 1516 err = udp_push_pending_frames(sk); 1517 else if (unlikely(skb_queue_empty(&sk->sk_write_queue))) 1518 WRITE_ONCE(up->pending, 0); 1519 release_sock(sk); 1520 1521 out: 1522 ip_rt_put(rt); 1523 out_free: 1524 if (free) 1525 kfree(ipc.opt); 1526 if (!err) 1527 return len; 1528 /* 1529 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting 1530 * ENOBUFS might not be good (it's not tunable per se), but otherwise 1531 * we don't have a good statistic (IpOutDiscards but it can be too many 1532 * things). We could add another new stat but at least for now that 1533 * seems like overkill. 1534 */ 1535 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1536 UDP_INC_STATS(sock_net(sk), 1537 UDP_MIB_SNDBUFERRORS, is_udplite); 1538 } 1539 return err; 1540 1541 do_confirm: 1542 if (msg->msg_flags & MSG_PROBE) 1543 dst_confirm_neigh(&rt->dst, &fl4->daddr); 1544 if (!(msg->msg_flags&MSG_PROBE) || len) 1545 goto back_from_confirm; 1546 err = 0; 1547 goto out; 1548 } 1549 EXPORT_SYMBOL(udp_sendmsg); 1550 1551 void udp_splice_eof(struct socket *sock) 1552 { 1553 struct sock *sk = sock->sk; 1554 struct udp_sock *up = udp_sk(sk); 1555 1556 if (!READ_ONCE(up->pending) || udp_test_bit(CORK, sk)) 1557 return; 1558 1559 lock_sock(sk); 1560 if (up->pending && !udp_test_bit(CORK, sk)) 1561 udp_push_pending_frames(sk); 1562 release_sock(sk); 1563 } 1564 EXPORT_SYMBOL_GPL(udp_splice_eof); 1565 1566 #define UDP_SKB_IS_STATELESS 0x80000000 1567 1568 /* all head states (dst, sk, nf conntrack) except skb extensions are 1569 * cleared by udp_rcv(). 1570 * 1571 * We need to preserve secpath, if present, to eventually process 1572 * IP_CMSG_PASSSEC at recvmsg() time. 1573 * 1574 * Other extensions can be cleared. 1575 */ 1576 static bool udp_try_make_stateless(struct sk_buff *skb) 1577 { 1578 if (!skb_has_extensions(skb)) 1579 return true; 1580 1581 if (!secpath_exists(skb)) { 1582 skb_ext_reset(skb); 1583 return true; 1584 } 1585 1586 return false; 1587 } 1588 1589 static void udp_set_dev_scratch(struct sk_buff *skb) 1590 { 1591 struct udp_dev_scratch *scratch = udp_skb_scratch(skb); 1592 1593 BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long)); 1594 scratch->_tsize_state = skb->truesize; 1595 #if BITS_PER_LONG == 64 1596 scratch->len = skb->len; 1597 scratch->csum_unnecessary = !!skb_csum_unnecessary(skb); 1598 scratch->is_linear = !skb_is_nonlinear(skb); 1599 #endif 1600 if (udp_try_make_stateless(skb)) 1601 scratch->_tsize_state |= UDP_SKB_IS_STATELESS; 1602 } 1603 1604 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb) 1605 { 1606 /* We come here after udp_lib_checksum_complete() returned 0. 1607 * This means that __skb_checksum_complete() might have 1608 * set skb->csum_valid to 1. 1609 * On 64bit platforms, we can set csum_unnecessary 1610 * to true, but only if the skb is not shared. 1611 */ 1612 #if BITS_PER_LONG == 64 1613 if (!skb_shared(skb)) 1614 udp_skb_scratch(skb)->csum_unnecessary = true; 1615 #endif 1616 } 1617 1618 static int udp_skb_truesize(struct sk_buff *skb) 1619 { 1620 return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS; 1621 } 1622 1623 static bool udp_skb_has_head_state(struct sk_buff *skb) 1624 { 1625 return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS); 1626 } 1627 1628 /* fully reclaim rmem/fwd memory allocated for skb */ 1629 static void udp_rmem_release(struct sock *sk, int size, int partial, 1630 bool rx_queue_lock_held) 1631 { 1632 struct udp_sock *up = udp_sk(sk); 1633 struct sk_buff_head *sk_queue; 1634 int amt; 1635 1636 if (likely(partial)) { 1637 up->forward_deficit += size; 1638 size = up->forward_deficit; 1639 if (size < READ_ONCE(up->forward_threshold) && 1640 !skb_queue_empty(&up->reader_queue)) 1641 return; 1642 } else { 1643 size += up->forward_deficit; 1644 } 1645 up->forward_deficit = 0; 1646 1647 /* acquire the sk_receive_queue for fwd allocated memory scheduling, 1648 * if the called don't held it already 1649 */ 1650 sk_queue = &sk->sk_receive_queue; 1651 if (!rx_queue_lock_held) 1652 spin_lock(&sk_queue->lock); 1653 1654 1655 sk_forward_alloc_add(sk, size); 1656 amt = (sk->sk_forward_alloc - partial) & ~(PAGE_SIZE - 1); 1657 sk_forward_alloc_add(sk, -amt); 1658 1659 if (amt) 1660 __sk_mem_reduce_allocated(sk, amt >> PAGE_SHIFT); 1661 1662 atomic_sub(size, &sk->sk_rmem_alloc); 1663 1664 /* this can save us from acquiring the rx queue lock on next receive */ 1665 skb_queue_splice_tail_init(sk_queue, &up->reader_queue); 1666 1667 if (!rx_queue_lock_held) 1668 spin_unlock(&sk_queue->lock); 1669 } 1670 1671 /* Note: called with reader_queue.lock held. 1672 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch 1673 * This avoids a cache line miss while receive_queue lock is held. 1674 * Look at __udp_enqueue_schedule_skb() to find where this copy is done. 1675 */ 1676 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb) 1677 { 1678 prefetch(&skb->data); 1679 udp_rmem_release(sk, udp_skb_truesize(skb), 1, false); 1680 } 1681 EXPORT_SYMBOL(udp_skb_destructor); 1682 1683 /* as above, but the caller held the rx queue lock, too */ 1684 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb) 1685 { 1686 prefetch(&skb->data); 1687 udp_rmem_release(sk, udp_skb_truesize(skb), 1, true); 1688 } 1689 1690 /* Idea of busylocks is to let producers grab an extra spinlock 1691 * to relieve pressure on the receive_queue spinlock shared by consumer. 1692 * Under flood, this means that only one producer can be in line 1693 * trying to acquire the receive_queue spinlock. 1694 * These busylock can be allocated on a per cpu manner, instead of a 1695 * per socket one (that would consume a cache line per socket) 1696 */ 1697 static int udp_busylocks_log __read_mostly; 1698 static spinlock_t *udp_busylocks __read_mostly; 1699 1700 static spinlock_t *busylock_acquire(void *ptr) 1701 { 1702 spinlock_t *busy; 1703 1704 busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log); 1705 spin_lock(busy); 1706 return busy; 1707 } 1708 1709 static void busylock_release(spinlock_t *busy) 1710 { 1711 if (busy) 1712 spin_unlock(busy); 1713 } 1714 1715 static int udp_rmem_schedule(struct sock *sk, int size) 1716 { 1717 int delta; 1718 1719 delta = size - sk->sk_forward_alloc; 1720 if (delta > 0 && !__sk_mem_schedule(sk, delta, SK_MEM_RECV)) 1721 return -ENOBUFS; 1722 1723 return 0; 1724 } 1725 1726 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb) 1727 { 1728 struct sk_buff_head *list = &sk->sk_receive_queue; 1729 int rmem, err = -ENOMEM; 1730 spinlock_t *busy = NULL; 1731 int size, rcvbuf; 1732 1733 /* Immediately drop when the receive queue is full. 1734 * Always allow at least one packet. 1735 */ 1736 rmem = atomic_read(&sk->sk_rmem_alloc); 1737 rcvbuf = READ_ONCE(sk->sk_rcvbuf); 1738 if (rmem > rcvbuf) 1739 goto drop; 1740 1741 /* Under mem pressure, it might be helpful to help udp_recvmsg() 1742 * having linear skbs : 1743 * - Reduce memory overhead and thus increase receive queue capacity 1744 * - Less cache line misses at copyout() time 1745 * - Less work at consume_skb() (less alien page frag freeing) 1746 */ 1747 if (rmem > (rcvbuf >> 1)) { 1748 skb_condense(skb); 1749 1750 busy = busylock_acquire(sk); 1751 } 1752 size = skb->truesize; 1753 udp_set_dev_scratch(skb); 1754 1755 atomic_add(size, &sk->sk_rmem_alloc); 1756 1757 spin_lock(&list->lock); 1758 err = udp_rmem_schedule(sk, size); 1759 if (err) { 1760 spin_unlock(&list->lock); 1761 goto uncharge_drop; 1762 } 1763 1764 sk_forward_alloc_add(sk, -size); 1765 1766 /* no need to setup a destructor, we will explicitly release the 1767 * forward allocated memory on dequeue 1768 */ 1769 sock_skb_set_dropcount(sk, skb); 1770 1771 __skb_queue_tail(list, skb); 1772 spin_unlock(&list->lock); 1773 1774 if (!sock_flag(sk, SOCK_DEAD)) 1775 INDIRECT_CALL_1(sk->sk_data_ready, sock_def_readable, sk); 1776 1777 busylock_release(busy); 1778 return 0; 1779 1780 uncharge_drop: 1781 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 1782 1783 drop: 1784 atomic_inc(&sk->sk_drops); 1785 busylock_release(busy); 1786 return err; 1787 } 1788 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb); 1789 1790 void udp_destruct_common(struct sock *sk) 1791 { 1792 /* reclaim completely the forward allocated memory */ 1793 struct udp_sock *up = udp_sk(sk); 1794 unsigned int total = 0; 1795 struct sk_buff *skb; 1796 1797 skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue); 1798 while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) { 1799 total += skb->truesize; 1800 kfree_skb(skb); 1801 } 1802 udp_rmem_release(sk, total, 0, true); 1803 } 1804 EXPORT_SYMBOL_GPL(udp_destruct_common); 1805 1806 static void udp_destruct_sock(struct sock *sk) 1807 { 1808 udp_destruct_common(sk); 1809 inet_sock_destruct(sk); 1810 } 1811 1812 int udp_init_sock(struct sock *sk) 1813 { 1814 udp_lib_init_sock(sk); 1815 sk->sk_destruct = udp_destruct_sock; 1816 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); 1817 return 0; 1818 } 1819 1820 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len) 1821 { 1822 if (unlikely(READ_ONCE(udp_sk(sk)->peeking_with_offset))) 1823 sk_peek_offset_bwd(sk, len); 1824 1825 if (!skb_unref(skb)) 1826 return; 1827 1828 /* In the more common cases we cleared the head states previously, 1829 * see __udp_queue_rcv_skb(). 1830 */ 1831 if (unlikely(udp_skb_has_head_state(skb))) 1832 skb_release_head_state(skb); 1833 __consume_stateless_skb(skb); 1834 } 1835 EXPORT_SYMBOL_GPL(skb_consume_udp); 1836 1837 static struct sk_buff *__first_packet_length(struct sock *sk, 1838 struct sk_buff_head *rcvq, 1839 int *total) 1840 { 1841 struct sk_buff *skb; 1842 1843 while ((skb = skb_peek(rcvq)) != NULL) { 1844 if (udp_lib_checksum_complete(skb)) { 1845 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, 1846 IS_UDPLITE(sk)); 1847 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, 1848 IS_UDPLITE(sk)); 1849 atomic_inc(&sk->sk_drops); 1850 __skb_unlink(skb, rcvq); 1851 *total += skb->truesize; 1852 kfree_skb(skb); 1853 } else { 1854 udp_skb_csum_unnecessary_set(skb); 1855 break; 1856 } 1857 } 1858 return skb; 1859 } 1860 1861 /** 1862 * first_packet_length - return length of first packet in receive queue 1863 * @sk: socket 1864 * 1865 * Drops all bad checksum frames, until a valid one is found. 1866 * Returns the length of found skb, or -1 if none is found. 1867 */ 1868 static int first_packet_length(struct sock *sk) 1869 { 1870 struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue; 1871 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1872 struct sk_buff *skb; 1873 int total = 0; 1874 int res; 1875 1876 spin_lock_bh(&rcvq->lock); 1877 skb = __first_packet_length(sk, rcvq, &total); 1878 if (!skb && !skb_queue_empty_lockless(sk_queue)) { 1879 spin_lock(&sk_queue->lock); 1880 skb_queue_splice_tail_init(sk_queue, rcvq); 1881 spin_unlock(&sk_queue->lock); 1882 1883 skb = __first_packet_length(sk, rcvq, &total); 1884 } 1885 res = skb ? skb->len : -1; 1886 if (total) 1887 udp_rmem_release(sk, total, 1, false); 1888 spin_unlock_bh(&rcvq->lock); 1889 return res; 1890 } 1891 1892 /* 1893 * IOCTL requests applicable to the UDP protocol 1894 */ 1895 1896 int udp_ioctl(struct sock *sk, int cmd, int *karg) 1897 { 1898 switch (cmd) { 1899 case SIOCOUTQ: 1900 { 1901 *karg = sk_wmem_alloc_get(sk); 1902 return 0; 1903 } 1904 1905 case SIOCINQ: 1906 { 1907 *karg = max_t(int, 0, first_packet_length(sk)); 1908 return 0; 1909 } 1910 1911 default: 1912 return -ENOIOCTLCMD; 1913 } 1914 1915 return 0; 1916 } 1917 EXPORT_SYMBOL(udp_ioctl); 1918 1919 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags, 1920 int *off, int *err) 1921 { 1922 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1923 struct sk_buff_head *queue; 1924 struct sk_buff *last; 1925 long timeo; 1926 int error; 1927 1928 queue = &udp_sk(sk)->reader_queue; 1929 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1930 do { 1931 struct sk_buff *skb; 1932 1933 error = sock_error(sk); 1934 if (error) 1935 break; 1936 1937 error = -EAGAIN; 1938 do { 1939 spin_lock_bh(&queue->lock); 1940 skb = __skb_try_recv_from_queue(sk, queue, flags, off, 1941 err, &last); 1942 if (skb) { 1943 if (!(flags & MSG_PEEK)) 1944 udp_skb_destructor(sk, skb); 1945 spin_unlock_bh(&queue->lock); 1946 return skb; 1947 } 1948 1949 if (skb_queue_empty_lockless(sk_queue)) { 1950 spin_unlock_bh(&queue->lock); 1951 goto busy_check; 1952 } 1953 1954 /* refill the reader queue and walk it again 1955 * keep both queues locked to avoid re-acquiring 1956 * the sk_receive_queue lock if fwd memory scheduling 1957 * is needed. 1958 */ 1959 spin_lock(&sk_queue->lock); 1960 skb_queue_splice_tail_init(sk_queue, queue); 1961 1962 skb = __skb_try_recv_from_queue(sk, queue, flags, off, 1963 err, &last); 1964 if (skb && !(flags & MSG_PEEK)) 1965 udp_skb_dtor_locked(sk, skb); 1966 spin_unlock(&sk_queue->lock); 1967 spin_unlock_bh(&queue->lock); 1968 if (skb) 1969 return skb; 1970 1971 busy_check: 1972 if (!sk_can_busy_loop(sk)) 1973 break; 1974 1975 sk_busy_loop(sk, flags & MSG_DONTWAIT); 1976 } while (!skb_queue_empty_lockless(sk_queue)); 1977 1978 /* sk_queue is empty, reader_queue may contain peeked packets */ 1979 } while (timeo && 1980 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue, 1981 &error, &timeo, 1982 (struct sk_buff *)sk_queue)); 1983 1984 *err = error; 1985 return NULL; 1986 } 1987 EXPORT_SYMBOL(__skb_recv_udp); 1988 1989 int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor) 1990 { 1991 struct sk_buff *skb; 1992 int err; 1993 1994 try_again: 1995 skb = skb_recv_udp(sk, MSG_DONTWAIT, &err); 1996 if (!skb) 1997 return err; 1998 1999 if (udp_lib_checksum_complete(skb)) { 2000 int is_udplite = IS_UDPLITE(sk); 2001 struct net *net = sock_net(sk); 2002 2003 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, is_udplite); 2004 __UDP_INC_STATS(net, UDP_MIB_INERRORS, is_udplite); 2005 atomic_inc(&sk->sk_drops); 2006 kfree_skb(skb); 2007 goto try_again; 2008 } 2009 2010 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk)); 2011 return recv_actor(sk, skb); 2012 } 2013 EXPORT_SYMBOL(udp_read_skb); 2014 2015 /* 2016 * This should be easy, if there is something there we 2017 * return it, otherwise we block. 2018 */ 2019 2020 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, 2021 int *addr_len) 2022 { 2023 struct inet_sock *inet = inet_sk(sk); 2024 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name); 2025 struct sk_buff *skb; 2026 unsigned int ulen, copied; 2027 int off, err, peeking = flags & MSG_PEEK; 2028 int is_udplite = IS_UDPLITE(sk); 2029 bool checksum_valid = false; 2030 2031 if (flags & MSG_ERRQUEUE) 2032 return ip_recv_error(sk, msg, len, addr_len); 2033 2034 try_again: 2035 off = sk_peek_offset(sk, flags); 2036 skb = __skb_recv_udp(sk, flags, &off, &err); 2037 if (!skb) 2038 return err; 2039 2040 ulen = udp_skb_len(skb); 2041 copied = len; 2042 if (copied > ulen - off) 2043 copied = ulen - off; 2044 else if (copied < ulen) 2045 msg->msg_flags |= MSG_TRUNC; 2046 2047 /* 2048 * If checksum is needed at all, try to do it while copying the 2049 * data. If the data is truncated, or if we only want a partial 2050 * coverage checksum (UDP-Lite), do it before the copy. 2051 */ 2052 2053 if (copied < ulen || peeking || 2054 (is_udplite && UDP_SKB_CB(skb)->partial_cov)) { 2055 checksum_valid = udp_skb_csum_unnecessary(skb) || 2056 !__udp_lib_checksum_complete(skb); 2057 if (!checksum_valid) 2058 goto csum_copy_err; 2059 } 2060 2061 if (checksum_valid || udp_skb_csum_unnecessary(skb)) { 2062 if (udp_skb_is_linear(skb)) 2063 err = copy_linear_skb(skb, copied, off, &msg->msg_iter); 2064 else 2065 err = skb_copy_datagram_msg(skb, off, msg, copied); 2066 } else { 2067 err = skb_copy_and_csum_datagram_msg(skb, off, msg); 2068 2069 if (err == -EINVAL) 2070 goto csum_copy_err; 2071 } 2072 2073 if (unlikely(err)) { 2074 if (!peeking) { 2075 atomic_inc(&sk->sk_drops); 2076 UDP_INC_STATS(sock_net(sk), 2077 UDP_MIB_INERRORS, is_udplite); 2078 } 2079 kfree_skb(skb); 2080 return err; 2081 } 2082 2083 if (!peeking) 2084 UDP_INC_STATS(sock_net(sk), 2085 UDP_MIB_INDATAGRAMS, is_udplite); 2086 2087 sock_recv_cmsgs(msg, sk, skb); 2088 2089 /* Copy the address. */ 2090 if (sin) { 2091 sin->sin_family = AF_INET; 2092 sin->sin_port = udp_hdr(skb)->source; 2093 sin->sin_addr.s_addr = ip_hdr(skb)->saddr; 2094 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 2095 *addr_len = sizeof(*sin); 2096 2097 BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk, 2098 (struct sockaddr *)sin, 2099 addr_len); 2100 } 2101 2102 if (udp_test_bit(GRO_ENABLED, sk)) 2103 udp_cmsg_recv(msg, sk, skb); 2104 2105 if (inet_cmsg_flags(inet)) 2106 ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off); 2107 2108 err = copied; 2109 if (flags & MSG_TRUNC) 2110 err = ulen; 2111 2112 skb_consume_udp(sk, skb, peeking ? -err : err); 2113 return err; 2114 2115 csum_copy_err: 2116 if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags, 2117 udp_skb_destructor)) { 2118 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 2119 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 2120 } 2121 kfree_skb(skb); 2122 2123 /* starting over for a new packet, but check if we need to yield */ 2124 cond_resched(); 2125 msg->msg_flags &= ~MSG_TRUNC; 2126 goto try_again; 2127 } 2128 2129 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 2130 { 2131 /* This check is replicated from __ip4_datagram_connect() and 2132 * intended to prevent BPF program called below from accessing bytes 2133 * that are out of the bound specified by user in addr_len. 2134 */ 2135 if (addr_len < sizeof(struct sockaddr_in)) 2136 return -EINVAL; 2137 2138 return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr, &addr_len); 2139 } 2140 EXPORT_SYMBOL(udp_pre_connect); 2141 2142 static int udp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 2143 { 2144 int res; 2145 2146 lock_sock(sk); 2147 res = __ip4_datagram_connect(sk, uaddr, addr_len); 2148 if (!res) 2149 udp4_hash4(sk); 2150 release_sock(sk); 2151 return res; 2152 } 2153 2154 int __udp_disconnect(struct sock *sk, int flags) 2155 { 2156 struct inet_sock *inet = inet_sk(sk); 2157 /* 2158 * 1003.1g - break association. 2159 */ 2160 2161 sk->sk_state = TCP_CLOSE; 2162 inet->inet_daddr = 0; 2163 inet->inet_dport = 0; 2164 sock_rps_reset_rxhash(sk); 2165 sk->sk_bound_dev_if = 0; 2166 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) { 2167 inet_reset_saddr(sk); 2168 if (sk->sk_prot->rehash && 2169 (sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2170 sk->sk_prot->rehash(sk); 2171 } 2172 2173 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) { 2174 sk->sk_prot->unhash(sk); 2175 inet->inet_sport = 0; 2176 } 2177 sk_dst_reset(sk); 2178 return 0; 2179 } 2180 EXPORT_SYMBOL(__udp_disconnect); 2181 2182 int udp_disconnect(struct sock *sk, int flags) 2183 { 2184 lock_sock(sk); 2185 __udp_disconnect(sk, flags); 2186 release_sock(sk); 2187 return 0; 2188 } 2189 EXPORT_SYMBOL(udp_disconnect); 2190 2191 void udp_lib_unhash(struct sock *sk) 2192 { 2193 if (sk_hashed(sk)) { 2194 struct udp_table *udptable = udp_get_table_prot(sk); 2195 struct udp_hslot *hslot, *hslot2; 2196 2197 hslot = udp_hashslot(udptable, sock_net(sk), 2198 udp_sk(sk)->udp_port_hash); 2199 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 2200 2201 spin_lock_bh(&hslot->lock); 2202 if (rcu_access_pointer(sk->sk_reuseport_cb)) 2203 reuseport_detach_sock(sk); 2204 if (sk_del_node_init_rcu(sk)) { 2205 hslot->count--; 2206 inet_sk(sk)->inet_num = 0; 2207 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 2208 2209 spin_lock(&hslot2->lock); 2210 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 2211 hslot2->count--; 2212 spin_unlock(&hslot2->lock); 2213 2214 udp_unhash4(udptable, sk); 2215 } 2216 spin_unlock_bh(&hslot->lock); 2217 } 2218 } 2219 EXPORT_SYMBOL(udp_lib_unhash); 2220 2221 /* 2222 * inet_rcv_saddr was changed, we must rehash secondary hash 2223 */ 2224 void udp_lib_rehash(struct sock *sk, u16 newhash, u16 newhash4) 2225 { 2226 if (sk_hashed(sk)) { 2227 struct udp_table *udptable = udp_get_table_prot(sk); 2228 struct udp_hslot *hslot, *hslot2, *nhslot2; 2229 2230 hslot = udp_hashslot(udptable, sock_net(sk), 2231 udp_sk(sk)->udp_port_hash); 2232 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 2233 nhslot2 = udp_hashslot2(udptable, newhash); 2234 udp_sk(sk)->udp_portaddr_hash = newhash; 2235 2236 if (hslot2 != nhslot2 || 2237 rcu_access_pointer(sk->sk_reuseport_cb)) { 2238 /* we must lock primary chain too */ 2239 spin_lock_bh(&hslot->lock); 2240 if (rcu_access_pointer(sk->sk_reuseport_cb)) 2241 reuseport_detach_sock(sk); 2242 2243 if (hslot2 != nhslot2) { 2244 spin_lock(&hslot2->lock); 2245 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 2246 hslot2->count--; 2247 spin_unlock(&hslot2->lock); 2248 2249 spin_lock(&nhslot2->lock); 2250 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 2251 &nhslot2->head); 2252 nhslot2->count++; 2253 spin_unlock(&nhslot2->lock); 2254 } 2255 2256 spin_unlock_bh(&hslot->lock); 2257 } 2258 2259 /* Now process hash4 if necessary: 2260 * (1) update hslot4; 2261 * (2) update hslot2->hash4_cnt. 2262 * Note that hslot2/hslot4 should be checked separately, as 2263 * either of them may change with the other unchanged. 2264 */ 2265 if (udp_hashed4(sk)) { 2266 spin_lock_bh(&hslot->lock); 2267 2268 udp_rehash4(udptable, sk, newhash4); 2269 if (hslot2 != nhslot2) { 2270 spin_lock(&hslot2->lock); 2271 udp_hash4_dec(hslot2); 2272 spin_unlock(&hslot2->lock); 2273 2274 spin_lock(&nhslot2->lock); 2275 udp_hash4_inc(nhslot2); 2276 spin_unlock(&nhslot2->lock); 2277 } 2278 2279 spin_unlock_bh(&hslot->lock); 2280 } 2281 } 2282 } 2283 EXPORT_SYMBOL(udp_lib_rehash); 2284 2285 void udp_v4_rehash(struct sock *sk) 2286 { 2287 u16 new_hash = ipv4_portaddr_hash(sock_net(sk), 2288 inet_sk(sk)->inet_rcv_saddr, 2289 inet_sk(sk)->inet_num); 2290 u16 new_hash4 = udp_ehashfn(sock_net(sk), 2291 sk->sk_rcv_saddr, sk->sk_num, 2292 sk->sk_daddr, sk->sk_dport); 2293 2294 udp_lib_rehash(sk, new_hash, new_hash4); 2295 } 2296 2297 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 2298 { 2299 int rc; 2300 2301 if (inet_sk(sk)->inet_daddr) { 2302 sock_rps_save_rxhash(sk, skb); 2303 sk_mark_napi_id(sk, skb); 2304 sk_incoming_cpu_update(sk); 2305 } else { 2306 sk_mark_napi_id_once(sk, skb); 2307 } 2308 2309 rc = __udp_enqueue_schedule_skb(sk, skb); 2310 if (rc < 0) { 2311 int is_udplite = IS_UDPLITE(sk); 2312 int drop_reason; 2313 2314 /* Note that an ENOMEM error is charged twice */ 2315 if (rc == -ENOMEM) { 2316 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS, 2317 is_udplite); 2318 drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF; 2319 } else { 2320 UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS, 2321 is_udplite); 2322 drop_reason = SKB_DROP_REASON_PROTO_MEM; 2323 } 2324 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 2325 trace_udp_fail_queue_rcv_skb(rc, sk, skb); 2326 sk_skb_reason_drop(sk, skb, drop_reason); 2327 return -1; 2328 } 2329 2330 return 0; 2331 } 2332 2333 /* returns: 2334 * -1: error 2335 * 0: success 2336 * >0: "udp encap" protocol resubmission 2337 * 2338 * Note that in the success and error cases, the skb is assumed to 2339 * have either been requeued or freed. 2340 */ 2341 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb) 2342 { 2343 int drop_reason = SKB_DROP_REASON_NOT_SPECIFIED; 2344 struct udp_sock *up = udp_sk(sk); 2345 int is_udplite = IS_UDPLITE(sk); 2346 2347 /* 2348 * Charge it to the socket, dropping if the queue is full. 2349 */ 2350 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) { 2351 drop_reason = SKB_DROP_REASON_XFRM_POLICY; 2352 goto drop; 2353 } 2354 nf_reset_ct(skb); 2355 2356 if (static_branch_unlikely(&udp_encap_needed_key) && 2357 READ_ONCE(up->encap_type)) { 2358 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb); 2359 2360 /* 2361 * This is an encapsulation socket so pass the skb to 2362 * the socket's udp_encap_rcv() hook. Otherwise, just 2363 * fall through and pass this up the UDP socket. 2364 * up->encap_rcv() returns the following value: 2365 * =0 if skb was successfully passed to the encap 2366 * handler or was discarded by it. 2367 * >0 if skb should be passed on to UDP. 2368 * <0 if skb should be resubmitted as proto -N 2369 */ 2370 2371 /* if we're overly short, let UDP handle it */ 2372 encap_rcv = READ_ONCE(up->encap_rcv); 2373 if (encap_rcv) { 2374 int ret; 2375 2376 /* Verify checksum before giving to encap */ 2377 if (udp_lib_checksum_complete(skb)) 2378 goto csum_error; 2379 2380 ret = encap_rcv(sk, skb); 2381 if (ret <= 0) { 2382 __UDP_INC_STATS(sock_net(sk), 2383 UDP_MIB_INDATAGRAMS, 2384 is_udplite); 2385 return -ret; 2386 } 2387 } 2388 2389 /* FALLTHROUGH -- it's a UDP Packet */ 2390 } 2391 2392 /* 2393 * UDP-Lite specific tests, ignored on UDP sockets 2394 */ 2395 if (udp_test_bit(UDPLITE_RECV_CC, sk) && UDP_SKB_CB(skb)->partial_cov) { 2396 u16 pcrlen = READ_ONCE(up->pcrlen); 2397 2398 /* 2399 * MIB statistics other than incrementing the error count are 2400 * disabled for the following two types of errors: these depend 2401 * on the application settings, not on the functioning of the 2402 * protocol stack as such. 2403 * 2404 * RFC 3828 here recommends (sec 3.3): "There should also be a 2405 * way ... to ... at least let the receiving application block 2406 * delivery of packets with coverage values less than a value 2407 * provided by the application." 2408 */ 2409 if (pcrlen == 0) { /* full coverage was set */ 2410 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n", 2411 UDP_SKB_CB(skb)->cscov, skb->len); 2412 goto drop; 2413 } 2414 /* The next case involves violating the min. coverage requested 2415 * by the receiver. This is subtle: if receiver wants x and x is 2416 * greater than the buffersize/MTU then receiver will complain 2417 * that it wants x while sender emits packets of smaller size y. 2418 * Therefore the above ...()->partial_cov statement is essential. 2419 */ 2420 if (UDP_SKB_CB(skb)->cscov < pcrlen) { 2421 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n", 2422 UDP_SKB_CB(skb)->cscov, pcrlen); 2423 goto drop; 2424 } 2425 } 2426 2427 prefetch(&sk->sk_rmem_alloc); 2428 if (rcu_access_pointer(sk->sk_filter) && 2429 udp_lib_checksum_complete(skb)) 2430 goto csum_error; 2431 2432 if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) { 2433 drop_reason = SKB_DROP_REASON_SOCKET_FILTER; 2434 goto drop; 2435 } 2436 2437 udp_csum_pull_header(skb); 2438 2439 ipv4_pktinfo_prepare(sk, skb, true); 2440 return __udp_queue_rcv_skb(sk, skb); 2441 2442 csum_error: 2443 drop_reason = SKB_DROP_REASON_UDP_CSUM; 2444 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 2445 drop: 2446 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 2447 atomic_inc(&sk->sk_drops); 2448 sk_skb_reason_drop(sk, skb, drop_reason); 2449 return -1; 2450 } 2451 2452 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 2453 { 2454 struct sk_buff *next, *segs; 2455 int ret; 2456 2457 if (likely(!udp_unexpected_gso(sk, skb))) 2458 return udp_queue_rcv_one_skb(sk, skb); 2459 2460 BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET); 2461 __skb_push(skb, -skb_mac_offset(skb)); 2462 segs = udp_rcv_segment(sk, skb, true); 2463 skb_list_walk_safe(segs, skb, next) { 2464 __skb_pull(skb, skb_transport_offset(skb)); 2465 2466 udp_post_segment_fix_csum(skb); 2467 ret = udp_queue_rcv_one_skb(sk, skb); 2468 if (ret > 0) 2469 ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret); 2470 } 2471 return 0; 2472 } 2473 2474 /* For TCP sockets, sk_rx_dst is protected by socket lock 2475 * For UDP, we use xchg() to guard against concurrent changes. 2476 */ 2477 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst) 2478 { 2479 struct dst_entry *old; 2480 2481 if (dst_hold_safe(dst)) { 2482 old = unrcu_pointer(xchg(&sk->sk_rx_dst, RCU_INITIALIZER(dst))); 2483 dst_release(old); 2484 return old != dst; 2485 } 2486 return false; 2487 } 2488 EXPORT_SYMBOL(udp_sk_rx_dst_set); 2489 2490 /* 2491 * Multicasts and broadcasts go to each listener. 2492 * 2493 * Note: called only from the BH handler context. 2494 */ 2495 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb, 2496 struct udphdr *uh, 2497 __be32 saddr, __be32 daddr, 2498 struct udp_table *udptable, 2499 int proto) 2500 { 2501 struct sock *sk, *first = NULL; 2502 unsigned short hnum = ntohs(uh->dest); 2503 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum); 2504 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10); 2505 unsigned int offset = offsetof(typeof(*sk), sk_node); 2506 int dif = skb->dev->ifindex; 2507 int sdif = inet_sdif(skb); 2508 struct hlist_node *node; 2509 struct sk_buff *nskb; 2510 2511 if (use_hash2) { 2512 hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) & 2513 udptable->mask; 2514 hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask; 2515 start_lookup: 2516 hslot = &udptable->hash2[hash2].hslot; 2517 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node); 2518 } 2519 2520 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) { 2521 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr, 2522 uh->source, saddr, dif, sdif, hnum)) 2523 continue; 2524 2525 if (!first) { 2526 first = sk; 2527 continue; 2528 } 2529 nskb = skb_clone(skb, GFP_ATOMIC); 2530 2531 if (unlikely(!nskb)) { 2532 atomic_inc(&sk->sk_drops); 2533 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS, 2534 IS_UDPLITE(sk)); 2535 __UDP_INC_STATS(net, UDP_MIB_INERRORS, 2536 IS_UDPLITE(sk)); 2537 continue; 2538 } 2539 if (udp_queue_rcv_skb(sk, nskb) > 0) 2540 consume_skb(nskb); 2541 } 2542 2543 /* Also lookup *:port if we are using hash2 and haven't done so yet. */ 2544 if (use_hash2 && hash2 != hash2_any) { 2545 hash2 = hash2_any; 2546 goto start_lookup; 2547 } 2548 2549 if (first) { 2550 if (udp_queue_rcv_skb(first, skb) > 0) 2551 consume_skb(skb); 2552 } else { 2553 kfree_skb(skb); 2554 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI, 2555 proto == IPPROTO_UDPLITE); 2556 } 2557 return 0; 2558 } 2559 2560 /* Initialize UDP checksum. If exited with zero value (success), 2561 * CHECKSUM_UNNECESSARY means, that no more checks are required. 2562 * Otherwise, csum completion requires checksumming packet body, 2563 * including udp header and folding it to skb->csum. 2564 */ 2565 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh, 2566 int proto) 2567 { 2568 int err; 2569 2570 UDP_SKB_CB(skb)->partial_cov = 0; 2571 UDP_SKB_CB(skb)->cscov = skb->len; 2572 2573 if (proto == IPPROTO_UDPLITE) { 2574 err = udplite_checksum_init(skb, uh); 2575 if (err) 2576 return err; 2577 2578 if (UDP_SKB_CB(skb)->partial_cov) { 2579 skb->csum = inet_compute_pseudo(skb, proto); 2580 return 0; 2581 } 2582 } 2583 2584 /* Note, we are only interested in != 0 or == 0, thus the 2585 * force to int. 2586 */ 2587 err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check, 2588 inet_compute_pseudo); 2589 if (err) 2590 return err; 2591 2592 if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) { 2593 /* If SW calculated the value, we know it's bad */ 2594 if (skb->csum_complete_sw) 2595 return 1; 2596 2597 /* HW says the value is bad. Let's validate that. 2598 * skb->csum is no longer the full packet checksum, 2599 * so don't treat it as such. 2600 */ 2601 skb_checksum_complete_unset(skb); 2602 } 2603 2604 return 0; 2605 } 2606 2607 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and 2608 * return code conversion for ip layer consumption 2609 */ 2610 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb, 2611 struct udphdr *uh) 2612 { 2613 int ret; 2614 2615 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk)) 2616 skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo); 2617 2618 ret = udp_queue_rcv_skb(sk, skb); 2619 2620 /* a return value > 0 means to resubmit the input, but 2621 * it wants the return to be -protocol, or 0 2622 */ 2623 if (ret > 0) 2624 return -ret; 2625 return 0; 2626 } 2627 2628 /* 2629 * All we need to do is get the socket, and then do a checksum. 2630 */ 2631 2632 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable, 2633 int proto) 2634 { 2635 struct sock *sk = NULL; 2636 struct udphdr *uh; 2637 unsigned short ulen; 2638 struct rtable *rt = skb_rtable(skb); 2639 __be32 saddr, daddr; 2640 struct net *net = dev_net(skb->dev); 2641 bool refcounted; 2642 int drop_reason; 2643 2644 drop_reason = SKB_DROP_REASON_NOT_SPECIFIED; 2645 2646 /* 2647 * Validate the packet. 2648 */ 2649 if (!pskb_may_pull(skb, sizeof(struct udphdr))) 2650 goto drop; /* No space for header. */ 2651 2652 uh = udp_hdr(skb); 2653 ulen = ntohs(uh->len); 2654 saddr = ip_hdr(skb)->saddr; 2655 daddr = ip_hdr(skb)->daddr; 2656 2657 if (ulen > skb->len) 2658 goto short_packet; 2659 2660 if (proto == IPPROTO_UDP) { 2661 /* UDP validates ulen. */ 2662 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen)) 2663 goto short_packet; 2664 uh = udp_hdr(skb); 2665 } 2666 2667 if (udp4_csum_init(skb, uh, proto)) 2668 goto csum_error; 2669 2670 sk = inet_steal_sock(net, skb, sizeof(struct udphdr), saddr, uh->source, daddr, uh->dest, 2671 &refcounted, udp_ehashfn); 2672 if (IS_ERR(sk)) 2673 goto no_sk; 2674 2675 if (sk) { 2676 struct dst_entry *dst = skb_dst(skb); 2677 int ret; 2678 2679 if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst)) 2680 udp_sk_rx_dst_set(sk, dst); 2681 2682 ret = udp_unicast_rcv_skb(sk, skb, uh); 2683 if (refcounted) 2684 sock_put(sk); 2685 return ret; 2686 } 2687 2688 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST)) 2689 return __udp4_lib_mcast_deliver(net, skb, uh, 2690 saddr, daddr, udptable, proto); 2691 2692 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable); 2693 if (sk) 2694 return udp_unicast_rcv_skb(sk, skb, uh); 2695 no_sk: 2696 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 2697 goto drop; 2698 nf_reset_ct(skb); 2699 2700 /* No socket. Drop packet silently, if checksum is wrong */ 2701 if (udp_lib_checksum_complete(skb)) 2702 goto csum_error; 2703 2704 drop_reason = SKB_DROP_REASON_NO_SOCKET; 2705 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE); 2706 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0); 2707 2708 /* 2709 * Hmm. We got an UDP packet to a port to which we 2710 * don't wanna listen. Ignore it. 2711 */ 2712 sk_skb_reason_drop(sk, skb, drop_reason); 2713 return 0; 2714 2715 short_packet: 2716 drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL; 2717 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n", 2718 proto == IPPROTO_UDPLITE ? "Lite" : "", 2719 &saddr, ntohs(uh->source), 2720 ulen, skb->len, 2721 &daddr, ntohs(uh->dest)); 2722 goto drop; 2723 2724 csum_error: 2725 /* 2726 * RFC1122: OK. Discards the bad packet silently (as far as 2727 * the network is concerned, anyway) as per 4.1.3.4 (MUST). 2728 */ 2729 drop_reason = SKB_DROP_REASON_UDP_CSUM; 2730 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n", 2731 proto == IPPROTO_UDPLITE ? "Lite" : "", 2732 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest), 2733 ulen); 2734 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE); 2735 drop: 2736 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE); 2737 sk_skb_reason_drop(sk, skb, drop_reason); 2738 return 0; 2739 } 2740 2741 /* We can only early demux multicast if there is a single matching socket. 2742 * If more than one socket found returns NULL 2743 */ 2744 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net, 2745 __be16 loc_port, __be32 loc_addr, 2746 __be16 rmt_port, __be32 rmt_addr, 2747 int dif, int sdif) 2748 { 2749 struct udp_table *udptable = net->ipv4.udp_table; 2750 unsigned short hnum = ntohs(loc_port); 2751 struct sock *sk, *result; 2752 struct udp_hslot *hslot; 2753 unsigned int slot; 2754 2755 slot = udp_hashfn(net, hnum, udptable->mask); 2756 hslot = &udptable->hash[slot]; 2757 2758 /* Do not bother scanning a too big list */ 2759 if (hslot->count > 10) 2760 return NULL; 2761 2762 result = NULL; 2763 sk_for_each_rcu(sk, &hslot->head) { 2764 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr, 2765 rmt_port, rmt_addr, dif, sdif, hnum)) { 2766 if (result) 2767 return NULL; 2768 result = sk; 2769 } 2770 } 2771 2772 return result; 2773 } 2774 2775 /* For unicast we should only early demux connected sockets or we can 2776 * break forwarding setups. The chains here can be long so only check 2777 * if the first socket is an exact match and if not move on. 2778 */ 2779 static struct sock *__udp4_lib_demux_lookup(struct net *net, 2780 __be16 loc_port, __be32 loc_addr, 2781 __be16 rmt_port, __be32 rmt_addr, 2782 int dif, int sdif) 2783 { 2784 struct udp_table *udptable = net->ipv4.udp_table; 2785 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr); 2786 unsigned short hnum = ntohs(loc_port); 2787 struct udp_hslot *hslot2; 2788 unsigned int hash2; 2789 __portpair ports; 2790 struct sock *sk; 2791 2792 hash2 = ipv4_portaddr_hash(net, loc_addr, hnum); 2793 hslot2 = udp_hashslot2(udptable, hash2); 2794 ports = INET_COMBINED_PORTS(rmt_port, hnum); 2795 2796 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 2797 if (inet_match(net, sk, acookie, ports, dif, sdif)) 2798 return sk; 2799 /* Only check first socket in chain */ 2800 break; 2801 } 2802 return NULL; 2803 } 2804 2805 int udp_v4_early_demux(struct sk_buff *skb) 2806 { 2807 struct net *net = dev_net(skb->dev); 2808 struct in_device *in_dev = NULL; 2809 const struct iphdr *iph; 2810 const struct udphdr *uh; 2811 struct sock *sk = NULL; 2812 struct dst_entry *dst; 2813 int dif = skb->dev->ifindex; 2814 int sdif = inet_sdif(skb); 2815 int ours; 2816 2817 /* validate the packet */ 2818 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr))) 2819 return 0; 2820 2821 iph = ip_hdr(skb); 2822 uh = udp_hdr(skb); 2823 2824 if (skb->pkt_type == PACKET_MULTICAST) { 2825 in_dev = __in_dev_get_rcu(skb->dev); 2826 2827 if (!in_dev) 2828 return 0; 2829 2830 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr, 2831 iph->protocol); 2832 if (!ours) 2833 return 0; 2834 2835 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr, 2836 uh->source, iph->saddr, 2837 dif, sdif); 2838 } else if (skb->pkt_type == PACKET_HOST) { 2839 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr, 2840 uh->source, iph->saddr, dif, sdif); 2841 } 2842 2843 if (!sk) 2844 return 0; 2845 2846 skb->sk = sk; 2847 DEBUG_NET_WARN_ON_ONCE(sk_is_refcounted(sk)); 2848 skb->destructor = sock_pfree; 2849 dst = rcu_dereference(sk->sk_rx_dst); 2850 2851 if (dst) 2852 dst = dst_check(dst, 0); 2853 if (dst) { 2854 u32 itag = 0; 2855 2856 /* set noref for now. 2857 * any place which wants to hold dst has to call 2858 * dst_hold_safe() 2859 */ 2860 skb_dst_set_noref(skb, dst); 2861 2862 /* for unconnected multicast sockets we need to validate 2863 * the source on each packet 2864 */ 2865 if (!inet_sk(sk)->inet_daddr && in_dev) 2866 return ip_mc_validate_source(skb, iph->daddr, 2867 iph->saddr, 2868 ip4h_dscp(iph), 2869 skb->dev, in_dev, &itag); 2870 } 2871 return 0; 2872 } 2873 2874 int udp_rcv(struct sk_buff *skb) 2875 { 2876 return __udp4_lib_rcv(skb, dev_net(skb->dev)->ipv4.udp_table, IPPROTO_UDP); 2877 } 2878 2879 void udp_destroy_sock(struct sock *sk) 2880 { 2881 struct udp_sock *up = udp_sk(sk); 2882 bool slow = lock_sock_fast(sk); 2883 2884 /* protects from races with udp_abort() */ 2885 sock_set_flag(sk, SOCK_DEAD); 2886 udp_flush_pending_frames(sk); 2887 unlock_sock_fast(sk, slow); 2888 if (static_branch_unlikely(&udp_encap_needed_key)) { 2889 if (up->encap_type) { 2890 void (*encap_destroy)(struct sock *sk); 2891 encap_destroy = READ_ONCE(up->encap_destroy); 2892 if (encap_destroy) 2893 encap_destroy(sk); 2894 } 2895 if (udp_test_bit(ENCAP_ENABLED, sk)) 2896 static_branch_dec(&udp_encap_needed_key); 2897 } 2898 } 2899 2900 static void set_xfrm_gro_udp_encap_rcv(__u16 encap_type, unsigned short family, 2901 struct sock *sk) 2902 { 2903 #ifdef CONFIG_XFRM 2904 if (udp_test_bit(GRO_ENABLED, sk) && encap_type == UDP_ENCAP_ESPINUDP) { 2905 if (family == AF_INET) 2906 WRITE_ONCE(udp_sk(sk)->gro_receive, xfrm4_gro_udp_encap_rcv); 2907 else if (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6) 2908 WRITE_ONCE(udp_sk(sk)->gro_receive, ipv6_stub->xfrm6_gro_udp_encap_rcv); 2909 } 2910 #endif 2911 } 2912 2913 /* 2914 * Socket option code for UDP 2915 */ 2916 int udp_lib_setsockopt(struct sock *sk, int level, int optname, 2917 sockptr_t optval, unsigned int optlen, 2918 int (*push_pending_frames)(struct sock *)) 2919 { 2920 struct udp_sock *up = udp_sk(sk); 2921 int val, valbool; 2922 int err = 0; 2923 int is_udplite = IS_UDPLITE(sk); 2924 2925 if (level == SOL_SOCKET) { 2926 err = sk_setsockopt(sk, level, optname, optval, optlen); 2927 2928 if (optname == SO_RCVBUF || optname == SO_RCVBUFFORCE) { 2929 sockopt_lock_sock(sk); 2930 /* paired with READ_ONCE in udp_rmem_release() */ 2931 WRITE_ONCE(up->forward_threshold, sk->sk_rcvbuf >> 2); 2932 sockopt_release_sock(sk); 2933 } 2934 return err; 2935 } 2936 2937 if (optlen < sizeof(int)) 2938 return -EINVAL; 2939 2940 if (copy_from_sockptr(&val, optval, sizeof(val))) 2941 return -EFAULT; 2942 2943 valbool = val ? 1 : 0; 2944 2945 switch (optname) { 2946 case UDP_CORK: 2947 if (val != 0) { 2948 udp_set_bit(CORK, sk); 2949 } else { 2950 udp_clear_bit(CORK, sk); 2951 lock_sock(sk); 2952 push_pending_frames(sk); 2953 release_sock(sk); 2954 } 2955 break; 2956 2957 case UDP_ENCAP: 2958 switch (val) { 2959 case 0: 2960 #ifdef CONFIG_XFRM 2961 case UDP_ENCAP_ESPINUDP: 2962 set_xfrm_gro_udp_encap_rcv(val, sk->sk_family, sk); 2963 #if IS_ENABLED(CONFIG_IPV6) 2964 if (sk->sk_family == AF_INET6) 2965 WRITE_ONCE(up->encap_rcv, 2966 ipv6_stub->xfrm6_udp_encap_rcv); 2967 else 2968 #endif 2969 WRITE_ONCE(up->encap_rcv, 2970 xfrm4_udp_encap_rcv); 2971 #endif 2972 fallthrough; 2973 case UDP_ENCAP_L2TPINUDP: 2974 WRITE_ONCE(up->encap_type, val); 2975 udp_tunnel_encap_enable(sk); 2976 break; 2977 default: 2978 err = -ENOPROTOOPT; 2979 break; 2980 } 2981 break; 2982 2983 case UDP_NO_CHECK6_TX: 2984 udp_set_no_check6_tx(sk, valbool); 2985 break; 2986 2987 case UDP_NO_CHECK6_RX: 2988 udp_set_no_check6_rx(sk, valbool); 2989 break; 2990 2991 case UDP_SEGMENT: 2992 if (val < 0 || val > USHRT_MAX) 2993 return -EINVAL; 2994 WRITE_ONCE(up->gso_size, val); 2995 break; 2996 2997 case UDP_GRO: 2998 2999 /* when enabling GRO, accept the related GSO packet type */ 3000 if (valbool) 3001 udp_tunnel_encap_enable(sk); 3002 udp_assign_bit(GRO_ENABLED, sk, valbool); 3003 udp_assign_bit(ACCEPT_L4, sk, valbool); 3004 set_xfrm_gro_udp_encap_rcv(up->encap_type, sk->sk_family, sk); 3005 break; 3006 3007 /* 3008 * UDP-Lite's partial checksum coverage (RFC 3828). 3009 */ 3010 /* The sender sets actual checksum coverage length via this option. 3011 * The case coverage > packet length is handled by send module. */ 3012 case UDPLITE_SEND_CSCOV: 3013 if (!is_udplite) /* Disable the option on UDP sockets */ 3014 return -ENOPROTOOPT; 3015 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */ 3016 val = 8; 3017 else if (val > USHRT_MAX) 3018 val = USHRT_MAX; 3019 WRITE_ONCE(up->pcslen, val); 3020 udp_set_bit(UDPLITE_SEND_CC, sk); 3021 break; 3022 3023 /* The receiver specifies a minimum checksum coverage value. To make 3024 * sense, this should be set to at least 8 (as done below). If zero is 3025 * used, this again means full checksum coverage. */ 3026 case UDPLITE_RECV_CSCOV: 3027 if (!is_udplite) /* Disable the option on UDP sockets */ 3028 return -ENOPROTOOPT; 3029 if (val != 0 && val < 8) /* Avoid silly minimal values. */ 3030 val = 8; 3031 else if (val > USHRT_MAX) 3032 val = USHRT_MAX; 3033 WRITE_ONCE(up->pcrlen, val); 3034 udp_set_bit(UDPLITE_RECV_CC, sk); 3035 break; 3036 3037 default: 3038 err = -ENOPROTOOPT; 3039 break; 3040 } 3041 3042 return err; 3043 } 3044 EXPORT_SYMBOL(udp_lib_setsockopt); 3045 3046 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 3047 unsigned int optlen) 3048 { 3049 if (level == SOL_UDP || level == SOL_UDPLITE || level == SOL_SOCKET) 3050 return udp_lib_setsockopt(sk, level, optname, 3051 optval, optlen, 3052 udp_push_pending_frames); 3053 return ip_setsockopt(sk, level, optname, optval, optlen); 3054 } 3055 3056 int udp_lib_getsockopt(struct sock *sk, int level, int optname, 3057 char __user *optval, int __user *optlen) 3058 { 3059 struct udp_sock *up = udp_sk(sk); 3060 int val, len; 3061 3062 if (get_user(len, optlen)) 3063 return -EFAULT; 3064 3065 if (len < 0) 3066 return -EINVAL; 3067 3068 len = min_t(unsigned int, len, sizeof(int)); 3069 3070 switch (optname) { 3071 case UDP_CORK: 3072 val = udp_test_bit(CORK, sk); 3073 break; 3074 3075 case UDP_ENCAP: 3076 val = READ_ONCE(up->encap_type); 3077 break; 3078 3079 case UDP_NO_CHECK6_TX: 3080 val = udp_get_no_check6_tx(sk); 3081 break; 3082 3083 case UDP_NO_CHECK6_RX: 3084 val = udp_get_no_check6_rx(sk); 3085 break; 3086 3087 case UDP_SEGMENT: 3088 val = READ_ONCE(up->gso_size); 3089 break; 3090 3091 case UDP_GRO: 3092 val = udp_test_bit(GRO_ENABLED, sk); 3093 break; 3094 3095 /* The following two cannot be changed on UDP sockets, the return is 3096 * always 0 (which corresponds to the full checksum coverage of UDP). */ 3097 case UDPLITE_SEND_CSCOV: 3098 val = READ_ONCE(up->pcslen); 3099 break; 3100 3101 case UDPLITE_RECV_CSCOV: 3102 val = READ_ONCE(up->pcrlen); 3103 break; 3104 3105 default: 3106 return -ENOPROTOOPT; 3107 } 3108 3109 if (put_user(len, optlen)) 3110 return -EFAULT; 3111 if (copy_to_user(optval, &val, len)) 3112 return -EFAULT; 3113 return 0; 3114 } 3115 EXPORT_SYMBOL(udp_lib_getsockopt); 3116 3117 int udp_getsockopt(struct sock *sk, int level, int optname, 3118 char __user *optval, int __user *optlen) 3119 { 3120 if (level == SOL_UDP || level == SOL_UDPLITE) 3121 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 3122 return ip_getsockopt(sk, level, optname, optval, optlen); 3123 } 3124 3125 /** 3126 * udp_poll - wait for a UDP event. 3127 * @file: - file struct 3128 * @sock: - socket 3129 * @wait: - poll table 3130 * 3131 * This is same as datagram poll, except for the special case of 3132 * blocking sockets. If application is using a blocking fd 3133 * and a packet with checksum error is in the queue; 3134 * then it could get return from select indicating data available 3135 * but then block when reading it. Add special case code 3136 * to work around these arguably broken applications. 3137 */ 3138 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait) 3139 { 3140 __poll_t mask = datagram_poll(file, sock, wait); 3141 struct sock *sk = sock->sk; 3142 3143 if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue)) 3144 mask |= EPOLLIN | EPOLLRDNORM; 3145 3146 /* Check for false positives due to checksum errors */ 3147 if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) && 3148 !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1) 3149 mask &= ~(EPOLLIN | EPOLLRDNORM); 3150 3151 /* psock ingress_msg queue should not contain any bad checksum frames */ 3152 if (sk_is_readable(sk)) 3153 mask |= EPOLLIN | EPOLLRDNORM; 3154 return mask; 3155 3156 } 3157 EXPORT_SYMBOL(udp_poll); 3158 3159 int udp_abort(struct sock *sk, int err) 3160 { 3161 if (!has_current_bpf_ctx()) 3162 lock_sock(sk); 3163 3164 /* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing 3165 * with close() 3166 */ 3167 if (sock_flag(sk, SOCK_DEAD)) 3168 goto out; 3169 3170 sk->sk_err = err; 3171 sk_error_report(sk); 3172 __udp_disconnect(sk, 0); 3173 3174 out: 3175 if (!has_current_bpf_ctx()) 3176 release_sock(sk); 3177 3178 return 0; 3179 } 3180 EXPORT_SYMBOL_GPL(udp_abort); 3181 3182 struct proto udp_prot = { 3183 .name = "UDP", 3184 .owner = THIS_MODULE, 3185 .close = udp_lib_close, 3186 .pre_connect = udp_pre_connect, 3187 .connect = udp_connect, 3188 .disconnect = udp_disconnect, 3189 .ioctl = udp_ioctl, 3190 .init = udp_init_sock, 3191 .destroy = udp_destroy_sock, 3192 .setsockopt = udp_setsockopt, 3193 .getsockopt = udp_getsockopt, 3194 .sendmsg = udp_sendmsg, 3195 .recvmsg = udp_recvmsg, 3196 .splice_eof = udp_splice_eof, 3197 .release_cb = ip4_datagram_release_cb, 3198 .hash = udp_lib_hash, 3199 .unhash = udp_lib_unhash, 3200 .rehash = udp_v4_rehash, 3201 .get_port = udp_v4_get_port, 3202 .put_port = udp_lib_unhash, 3203 #ifdef CONFIG_BPF_SYSCALL 3204 .psock_update_sk_prot = udp_bpf_update_proto, 3205 #endif 3206 .memory_allocated = &udp_memory_allocated, 3207 .per_cpu_fw_alloc = &udp_memory_per_cpu_fw_alloc, 3208 3209 .sysctl_mem = sysctl_udp_mem, 3210 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_udp_wmem_min), 3211 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_udp_rmem_min), 3212 .obj_size = sizeof(struct udp_sock), 3213 .h.udp_table = NULL, 3214 .diag_destroy = udp_abort, 3215 }; 3216 EXPORT_SYMBOL(udp_prot); 3217 3218 /* ------------------------------------------------------------------------ */ 3219 #ifdef CONFIG_PROC_FS 3220 3221 static unsigned short seq_file_family(const struct seq_file *seq); 3222 static bool seq_sk_match(struct seq_file *seq, const struct sock *sk) 3223 { 3224 unsigned short family = seq_file_family(seq); 3225 3226 /* AF_UNSPEC is used as a match all */ 3227 return ((family == AF_UNSPEC || family == sk->sk_family) && 3228 net_eq(sock_net(sk), seq_file_net(seq))); 3229 } 3230 3231 #ifdef CONFIG_BPF_SYSCALL 3232 static const struct seq_operations bpf_iter_udp_seq_ops; 3233 #endif 3234 static struct udp_table *udp_get_table_seq(struct seq_file *seq, 3235 struct net *net) 3236 { 3237 const struct udp_seq_afinfo *afinfo; 3238 3239 #ifdef CONFIG_BPF_SYSCALL 3240 if (seq->op == &bpf_iter_udp_seq_ops) 3241 return net->ipv4.udp_table; 3242 #endif 3243 3244 afinfo = pde_data(file_inode(seq->file)); 3245 return afinfo->udp_table ? : net->ipv4.udp_table; 3246 } 3247 3248 static struct sock *udp_get_first(struct seq_file *seq, int start) 3249 { 3250 struct udp_iter_state *state = seq->private; 3251 struct net *net = seq_file_net(seq); 3252 struct udp_table *udptable; 3253 struct sock *sk; 3254 3255 udptable = udp_get_table_seq(seq, net); 3256 3257 for (state->bucket = start; state->bucket <= udptable->mask; 3258 ++state->bucket) { 3259 struct udp_hslot *hslot = &udptable->hash[state->bucket]; 3260 3261 if (hlist_empty(&hslot->head)) 3262 continue; 3263 3264 spin_lock_bh(&hslot->lock); 3265 sk_for_each(sk, &hslot->head) { 3266 if (seq_sk_match(seq, sk)) 3267 goto found; 3268 } 3269 spin_unlock_bh(&hslot->lock); 3270 } 3271 sk = NULL; 3272 found: 3273 return sk; 3274 } 3275 3276 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk) 3277 { 3278 struct udp_iter_state *state = seq->private; 3279 struct net *net = seq_file_net(seq); 3280 struct udp_table *udptable; 3281 3282 do { 3283 sk = sk_next(sk); 3284 } while (sk && !seq_sk_match(seq, sk)); 3285 3286 if (!sk) { 3287 udptable = udp_get_table_seq(seq, net); 3288 3289 if (state->bucket <= udptable->mask) 3290 spin_unlock_bh(&udptable->hash[state->bucket].lock); 3291 3292 return udp_get_first(seq, state->bucket + 1); 3293 } 3294 return sk; 3295 } 3296 3297 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos) 3298 { 3299 struct sock *sk = udp_get_first(seq, 0); 3300 3301 if (sk) 3302 while (pos && (sk = udp_get_next(seq, sk)) != NULL) 3303 --pos; 3304 return pos ? NULL : sk; 3305 } 3306 3307 void *udp_seq_start(struct seq_file *seq, loff_t *pos) 3308 { 3309 struct udp_iter_state *state = seq->private; 3310 state->bucket = MAX_UDP_PORTS; 3311 3312 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN; 3313 } 3314 EXPORT_SYMBOL(udp_seq_start); 3315 3316 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3317 { 3318 struct sock *sk; 3319 3320 if (v == SEQ_START_TOKEN) 3321 sk = udp_get_idx(seq, 0); 3322 else 3323 sk = udp_get_next(seq, v); 3324 3325 ++*pos; 3326 return sk; 3327 } 3328 EXPORT_SYMBOL(udp_seq_next); 3329 3330 void udp_seq_stop(struct seq_file *seq, void *v) 3331 { 3332 struct udp_iter_state *state = seq->private; 3333 struct udp_table *udptable; 3334 3335 udptable = udp_get_table_seq(seq, seq_file_net(seq)); 3336 3337 if (state->bucket <= udptable->mask) 3338 spin_unlock_bh(&udptable->hash[state->bucket].lock); 3339 } 3340 EXPORT_SYMBOL(udp_seq_stop); 3341 3342 /* ------------------------------------------------------------------------ */ 3343 static void udp4_format_sock(struct sock *sp, struct seq_file *f, 3344 int bucket) 3345 { 3346 struct inet_sock *inet = inet_sk(sp); 3347 __be32 dest = inet->inet_daddr; 3348 __be32 src = inet->inet_rcv_saddr; 3349 __u16 destp = ntohs(inet->inet_dport); 3350 __u16 srcp = ntohs(inet->inet_sport); 3351 3352 seq_printf(f, "%5d: %08X:%04X %08X:%04X" 3353 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u", 3354 bucket, src, srcp, dest, destp, sp->sk_state, 3355 sk_wmem_alloc_get(sp), 3356 udp_rqueue_get(sp), 3357 0, 0L, 0, 3358 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)), 3359 0, sock_i_ino(sp), 3360 refcount_read(&sp->sk_refcnt), sp, 3361 atomic_read(&sp->sk_drops)); 3362 } 3363 3364 int udp4_seq_show(struct seq_file *seq, void *v) 3365 { 3366 seq_setwidth(seq, 127); 3367 if (v == SEQ_START_TOKEN) 3368 seq_puts(seq, " sl local_address rem_address st tx_queue " 3369 "rx_queue tr tm->when retrnsmt uid timeout " 3370 "inode ref pointer drops"); 3371 else { 3372 struct udp_iter_state *state = seq->private; 3373 3374 udp4_format_sock(v, seq, state->bucket); 3375 } 3376 seq_pad(seq, '\n'); 3377 return 0; 3378 } 3379 3380 #ifdef CONFIG_BPF_SYSCALL 3381 struct bpf_iter__udp { 3382 __bpf_md_ptr(struct bpf_iter_meta *, meta); 3383 __bpf_md_ptr(struct udp_sock *, udp_sk); 3384 uid_t uid __aligned(8); 3385 int bucket __aligned(8); 3386 }; 3387 3388 struct bpf_udp_iter_state { 3389 struct udp_iter_state state; 3390 unsigned int cur_sk; 3391 unsigned int end_sk; 3392 unsigned int max_sk; 3393 int offset; 3394 struct sock **batch; 3395 bool st_bucket_done; 3396 }; 3397 3398 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter, 3399 unsigned int new_batch_sz); 3400 static struct sock *bpf_iter_udp_batch(struct seq_file *seq) 3401 { 3402 struct bpf_udp_iter_state *iter = seq->private; 3403 struct udp_iter_state *state = &iter->state; 3404 struct net *net = seq_file_net(seq); 3405 int resume_bucket, resume_offset; 3406 struct udp_table *udptable; 3407 unsigned int batch_sks = 0; 3408 bool resized = false; 3409 struct sock *sk; 3410 3411 resume_bucket = state->bucket; 3412 resume_offset = iter->offset; 3413 3414 /* The current batch is done, so advance the bucket. */ 3415 if (iter->st_bucket_done) 3416 state->bucket++; 3417 3418 udptable = udp_get_table_seq(seq, net); 3419 3420 again: 3421 /* New batch for the next bucket. 3422 * Iterate over the hash table to find a bucket with sockets matching 3423 * the iterator attributes, and return the first matching socket from 3424 * the bucket. The remaining matched sockets from the bucket are batched 3425 * before releasing the bucket lock. This allows BPF programs that are 3426 * called in seq_show to acquire the bucket lock if needed. 3427 */ 3428 iter->cur_sk = 0; 3429 iter->end_sk = 0; 3430 iter->st_bucket_done = false; 3431 batch_sks = 0; 3432 3433 for (; state->bucket <= udptable->mask; state->bucket++) { 3434 struct udp_hslot *hslot2 = &udptable->hash2[state->bucket].hslot; 3435 3436 if (hlist_empty(&hslot2->head)) 3437 continue; 3438 3439 iter->offset = 0; 3440 spin_lock_bh(&hslot2->lock); 3441 udp_portaddr_for_each_entry(sk, &hslot2->head) { 3442 if (seq_sk_match(seq, sk)) { 3443 /* Resume from the last iterated socket at the 3444 * offset in the bucket before iterator was stopped. 3445 */ 3446 if (state->bucket == resume_bucket && 3447 iter->offset < resume_offset) { 3448 ++iter->offset; 3449 continue; 3450 } 3451 if (iter->end_sk < iter->max_sk) { 3452 sock_hold(sk); 3453 iter->batch[iter->end_sk++] = sk; 3454 } 3455 batch_sks++; 3456 } 3457 } 3458 spin_unlock_bh(&hslot2->lock); 3459 3460 if (iter->end_sk) 3461 break; 3462 } 3463 3464 /* All done: no batch made. */ 3465 if (!iter->end_sk) 3466 return NULL; 3467 3468 if (iter->end_sk == batch_sks) { 3469 /* Batching is done for the current bucket; return the first 3470 * socket to be iterated from the batch. 3471 */ 3472 iter->st_bucket_done = true; 3473 goto done; 3474 } 3475 if (!resized && !bpf_iter_udp_realloc_batch(iter, batch_sks * 3 / 2)) { 3476 resized = true; 3477 /* After allocating a larger batch, retry one more time to grab 3478 * the whole bucket. 3479 */ 3480 goto again; 3481 } 3482 done: 3483 return iter->batch[0]; 3484 } 3485 3486 static void *bpf_iter_udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3487 { 3488 struct bpf_udp_iter_state *iter = seq->private; 3489 struct sock *sk; 3490 3491 /* Whenever seq_next() is called, the iter->cur_sk is 3492 * done with seq_show(), so unref the iter->cur_sk. 3493 */ 3494 if (iter->cur_sk < iter->end_sk) { 3495 sock_put(iter->batch[iter->cur_sk++]); 3496 ++iter->offset; 3497 } 3498 3499 /* After updating iter->cur_sk, check if there are more sockets 3500 * available in the current bucket batch. 3501 */ 3502 if (iter->cur_sk < iter->end_sk) 3503 sk = iter->batch[iter->cur_sk]; 3504 else 3505 /* Prepare a new batch. */ 3506 sk = bpf_iter_udp_batch(seq); 3507 3508 ++*pos; 3509 return sk; 3510 } 3511 3512 static void *bpf_iter_udp_seq_start(struct seq_file *seq, loff_t *pos) 3513 { 3514 /* bpf iter does not support lseek, so it always 3515 * continue from where it was stop()-ped. 3516 */ 3517 if (*pos) 3518 return bpf_iter_udp_batch(seq); 3519 3520 return SEQ_START_TOKEN; 3521 } 3522 3523 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta, 3524 struct udp_sock *udp_sk, uid_t uid, int bucket) 3525 { 3526 struct bpf_iter__udp ctx; 3527 3528 meta->seq_num--; /* skip SEQ_START_TOKEN */ 3529 ctx.meta = meta; 3530 ctx.udp_sk = udp_sk; 3531 ctx.uid = uid; 3532 ctx.bucket = bucket; 3533 return bpf_iter_run_prog(prog, &ctx); 3534 } 3535 3536 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v) 3537 { 3538 struct udp_iter_state *state = seq->private; 3539 struct bpf_iter_meta meta; 3540 struct bpf_prog *prog; 3541 struct sock *sk = v; 3542 uid_t uid; 3543 int ret; 3544 3545 if (v == SEQ_START_TOKEN) 3546 return 0; 3547 3548 lock_sock(sk); 3549 3550 if (unlikely(sk_unhashed(sk))) { 3551 ret = SEQ_SKIP; 3552 goto unlock; 3553 } 3554 3555 uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk)); 3556 meta.seq = seq; 3557 prog = bpf_iter_get_info(&meta, false); 3558 ret = udp_prog_seq_show(prog, &meta, v, uid, state->bucket); 3559 3560 unlock: 3561 release_sock(sk); 3562 return ret; 3563 } 3564 3565 static void bpf_iter_udp_put_batch(struct bpf_udp_iter_state *iter) 3566 { 3567 while (iter->cur_sk < iter->end_sk) 3568 sock_put(iter->batch[iter->cur_sk++]); 3569 } 3570 3571 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v) 3572 { 3573 struct bpf_udp_iter_state *iter = seq->private; 3574 struct bpf_iter_meta meta; 3575 struct bpf_prog *prog; 3576 3577 if (!v) { 3578 meta.seq = seq; 3579 prog = bpf_iter_get_info(&meta, true); 3580 if (prog) 3581 (void)udp_prog_seq_show(prog, &meta, v, 0, 0); 3582 } 3583 3584 if (iter->cur_sk < iter->end_sk) { 3585 bpf_iter_udp_put_batch(iter); 3586 iter->st_bucket_done = false; 3587 } 3588 } 3589 3590 static const struct seq_operations bpf_iter_udp_seq_ops = { 3591 .start = bpf_iter_udp_seq_start, 3592 .next = bpf_iter_udp_seq_next, 3593 .stop = bpf_iter_udp_seq_stop, 3594 .show = bpf_iter_udp_seq_show, 3595 }; 3596 #endif 3597 3598 static unsigned short seq_file_family(const struct seq_file *seq) 3599 { 3600 const struct udp_seq_afinfo *afinfo; 3601 3602 #ifdef CONFIG_BPF_SYSCALL 3603 /* BPF iterator: bpf programs to filter sockets. */ 3604 if (seq->op == &bpf_iter_udp_seq_ops) 3605 return AF_UNSPEC; 3606 #endif 3607 3608 /* Proc fs iterator */ 3609 afinfo = pde_data(file_inode(seq->file)); 3610 return afinfo->family; 3611 } 3612 3613 const struct seq_operations udp_seq_ops = { 3614 .start = udp_seq_start, 3615 .next = udp_seq_next, 3616 .stop = udp_seq_stop, 3617 .show = udp4_seq_show, 3618 }; 3619 EXPORT_SYMBOL(udp_seq_ops); 3620 3621 static struct udp_seq_afinfo udp4_seq_afinfo = { 3622 .family = AF_INET, 3623 .udp_table = NULL, 3624 }; 3625 3626 static int __net_init udp4_proc_init_net(struct net *net) 3627 { 3628 if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops, 3629 sizeof(struct udp_iter_state), &udp4_seq_afinfo)) 3630 return -ENOMEM; 3631 return 0; 3632 } 3633 3634 static void __net_exit udp4_proc_exit_net(struct net *net) 3635 { 3636 remove_proc_entry("udp", net->proc_net); 3637 } 3638 3639 static struct pernet_operations udp4_net_ops = { 3640 .init = udp4_proc_init_net, 3641 .exit = udp4_proc_exit_net, 3642 }; 3643 3644 int __init udp4_proc_init(void) 3645 { 3646 return register_pernet_subsys(&udp4_net_ops); 3647 } 3648 3649 void udp4_proc_exit(void) 3650 { 3651 unregister_pernet_subsys(&udp4_net_ops); 3652 } 3653 #endif /* CONFIG_PROC_FS */ 3654 3655 static __initdata unsigned long uhash_entries; 3656 static int __init set_uhash_entries(char *str) 3657 { 3658 ssize_t ret; 3659 3660 if (!str) 3661 return 0; 3662 3663 ret = kstrtoul(str, 0, &uhash_entries); 3664 if (ret) 3665 return 0; 3666 3667 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN) 3668 uhash_entries = UDP_HTABLE_SIZE_MIN; 3669 return 1; 3670 } 3671 __setup("uhash_entries=", set_uhash_entries); 3672 3673 void __init udp_table_init(struct udp_table *table, const char *name) 3674 { 3675 unsigned int i, slot_size; 3676 3677 slot_size = sizeof(struct udp_hslot) + sizeof(struct udp_hslot_main) + 3678 udp_hash4_slot_size(); 3679 table->hash = alloc_large_system_hash(name, 3680 slot_size, 3681 uhash_entries, 3682 21, /* one slot per 2 MB */ 3683 0, 3684 &table->log, 3685 &table->mask, 3686 UDP_HTABLE_SIZE_MIN, 3687 UDP_HTABLE_SIZE_MAX); 3688 3689 table->hash2 = (void *)(table->hash + (table->mask + 1)); 3690 for (i = 0; i <= table->mask; i++) { 3691 INIT_HLIST_HEAD(&table->hash[i].head); 3692 table->hash[i].count = 0; 3693 spin_lock_init(&table->hash[i].lock); 3694 } 3695 for (i = 0; i <= table->mask; i++) { 3696 INIT_HLIST_HEAD(&table->hash2[i].hslot.head); 3697 table->hash2[i].hslot.count = 0; 3698 spin_lock_init(&table->hash2[i].hslot.lock); 3699 } 3700 udp_table_hash4_init(table); 3701 } 3702 3703 u32 udp_flow_hashrnd(void) 3704 { 3705 static u32 hashrnd __read_mostly; 3706 3707 net_get_random_once(&hashrnd, sizeof(hashrnd)); 3708 3709 return hashrnd; 3710 } 3711 EXPORT_SYMBOL(udp_flow_hashrnd); 3712 3713 static void __net_init udp_sysctl_init(struct net *net) 3714 { 3715 net->ipv4.sysctl_udp_rmem_min = PAGE_SIZE; 3716 net->ipv4.sysctl_udp_wmem_min = PAGE_SIZE; 3717 3718 #ifdef CONFIG_NET_L3_MASTER_DEV 3719 net->ipv4.sysctl_udp_l3mdev_accept = 0; 3720 #endif 3721 } 3722 3723 static struct udp_table __net_init *udp_pernet_table_alloc(unsigned int hash_entries) 3724 { 3725 struct udp_table *udptable; 3726 unsigned int slot_size; 3727 int i; 3728 3729 udptable = kmalloc(sizeof(*udptable), GFP_KERNEL); 3730 if (!udptable) 3731 goto out; 3732 3733 slot_size = sizeof(struct udp_hslot) + sizeof(struct udp_hslot_main) + 3734 udp_hash4_slot_size(); 3735 udptable->hash = vmalloc_huge(hash_entries * slot_size, 3736 GFP_KERNEL_ACCOUNT); 3737 if (!udptable->hash) 3738 goto free_table; 3739 3740 udptable->hash2 = (void *)(udptable->hash + hash_entries); 3741 udptable->mask = hash_entries - 1; 3742 udptable->log = ilog2(hash_entries); 3743 3744 for (i = 0; i < hash_entries; i++) { 3745 INIT_HLIST_HEAD(&udptable->hash[i].head); 3746 udptable->hash[i].count = 0; 3747 spin_lock_init(&udptable->hash[i].lock); 3748 3749 INIT_HLIST_HEAD(&udptable->hash2[i].hslot.head); 3750 udptable->hash2[i].hslot.count = 0; 3751 spin_lock_init(&udptable->hash2[i].hslot.lock); 3752 } 3753 udp_table_hash4_init(udptable); 3754 3755 return udptable; 3756 3757 free_table: 3758 kfree(udptable); 3759 out: 3760 return NULL; 3761 } 3762 3763 static void __net_exit udp_pernet_table_free(struct net *net) 3764 { 3765 struct udp_table *udptable = net->ipv4.udp_table; 3766 3767 if (udptable == &udp_table) 3768 return; 3769 3770 kvfree(udptable->hash); 3771 kfree(udptable); 3772 } 3773 3774 static void __net_init udp_set_table(struct net *net) 3775 { 3776 struct udp_table *udptable; 3777 unsigned int hash_entries; 3778 struct net *old_net; 3779 3780 if (net_eq(net, &init_net)) 3781 goto fallback; 3782 3783 old_net = current->nsproxy->net_ns; 3784 hash_entries = READ_ONCE(old_net->ipv4.sysctl_udp_child_hash_entries); 3785 if (!hash_entries) 3786 goto fallback; 3787 3788 /* Set min to keep the bitmap on stack in udp_lib_get_port() */ 3789 if (hash_entries < UDP_HTABLE_SIZE_MIN_PERNET) 3790 hash_entries = UDP_HTABLE_SIZE_MIN_PERNET; 3791 else 3792 hash_entries = roundup_pow_of_two(hash_entries); 3793 3794 udptable = udp_pernet_table_alloc(hash_entries); 3795 if (udptable) { 3796 net->ipv4.udp_table = udptable; 3797 } else { 3798 pr_warn("Failed to allocate UDP hash table (entries: %u) " 3799 "for a netns, fallback to the global one\n", 3800 hash_entries); 3801 fallback: 3802 net->ipv4.udp_table = &udp_table; 3803 } 3804 } 3805 3806 static int __net_init udp_pernet_init(struct net *net) 3807 { 3808 udp_sysctl_init(net); 3809 udp_set_table(net); 3810 3811 return 0; 3812 } 3813 3814 static void __net_exit udp_pernet_exit(struct net *net) 3815 { 3816 udp_pernet_table_free(net); 3817 } 3818 3819 static struct pernet_operations __net_initdata udp_sysctl_ops = { 3820 .init = udp_pernet_init, 3821 .exit = udp_pernet_exit, 3822 }; 3823 3824 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3825 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta, 3826 struct udp_sock *udp_sk, uid_t uid, int bucket) 3827 3828 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter, 3829 unsigned int new_batch_sz) 3830 { 3831 struct sock **new_batch; 3832 3833 new_batch = kvmalloc_array(new_batch_sz, sizeof(*new_batch), 3834 GFP_USER | __GFP_NOWARN); 3835 if (!new_batch) 3836 return -ENOMEM; 3837 3838 bpf_iter_udp_put_batch(iter); 3839 kvfree(iter->batch); 3840 iter->batch = new_batch; 3841 iter->max_sk = new_batch_sz; 3842 3843 return 0; 3844 } 3845 3846 #define INIT_BATCH_SZ 16 3847 3848 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux) 3849 { 3850 struct bpf_udp_iter_state *iter = priv_data; 3851 int ret; 3852 3853 ret = bpf_iter_init_seq_net(priv_data, aux); 3854 if (ret) 3855 return ret; 3856 3857 ret = bpf_iter_udp_realloc_batch(iter, INIT_BATCH_SZ); 3858 if (ret) 3859 bpf_iter_fini_seq_net(priv_data); 3860 3861 return ret; 3862 } 3863 3864 static void bpf_iter_fini_udp(void *priv_data) 3865 { 3866 struct bpf_udp_iter_state *iter = priv_data; 3867 3868 bpf_iter_fini_seq_net(priv_data); 3869 kvfree(iter->batch); 3870 } 3871 3872 static const struct bpf_iter_seq_info udp_seq_info = { 3873 .seq_ops = &bpf_iter_udp_seq_ops, 3874 .init_seq_private = bpf_iter_init_udp, 3875 .fini_seq_private = bpf_iter_fini_udp, 3876 .seq_priv_size = sizeof(struct bpf_udp_iter_state), 3877 }; 3878 3879 static struct bpf_iter_reg udp_reg_info = { 3880 .target = "udp", 3881 .ctx_arg_info_size = 1, 3882 .ctx_arg_info = { 3883 { offsetof(struct bpf_iter__udp, udp_sk), 3884 PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED }, 3885 }, 3886 .seq_info = &udp_seq_info, 3887 }; 3888 3889 static void __init bpf_iter_register(void) 3890 { 3891 udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP]; 3892 if (bpf_iter_reg_target(&udp_reg_info)) 3893 pr_warn("Warning: could not register bpf iterator udp\n"); 3894 } 3895 #endif 3896 3897 void __init udp_init(void) 3898 { 3899 unsigned long limit; 3900 unsigned int i; 3901 3902 udp_table_init(&udp_table, "UDP"); 3903 limit = nr_free_buffer_pages() / 8; 3904 limit = max(limit, 128UL); 3905 sysctl_udp_mem[0] = limit / 4 * 3; 3906 sysctl_udp_mem[1] = limit; 3907 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2; 3908 3909 /* 16 spinlocks per cpu */ 3910 udp_busylocks_log = ilog2(nr_cpu_ids) + 4; 3911 udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log, 3912 GFP_KERNEL); 3913 if (!udp_busylocks) 3914 panic("UDP: failed to alloc udp_busylocks\n"); 3915 for (i = 0; i < (1U << udp_busylocks_log); i++) 3916 spin_lock_init(udp_busylocks + i); 3917 3918 if (register_pernet_subsys(&udp_sysctl_ops)) 3919 panic("UDP: failed to init sysctl parameters.\n"); 3920 3921 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3922 bpf_iter_register(); 3923 #endif 3924 } 3925