xref: /linux/net/ipv4/udp.c (revision e71383fb9cd15a28d6c01d2c165a96f1c0bcf418)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		The User Datagram Protocol (UDP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
12  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
13  *		Hirokazu Takahashi, <taka@valinux.co.jp>
14  *
15  * Fixes:
16  *		Alan Cox	:	verify_area() calls
17  *		Alan Cox	: 	stopped close while in use off icmp
18  *					messages. Not a fix but a botch that
19  *					for udp at least is 'valid'.
20  *		Alan Cox	:	Fixed icmp handling properly
21  *		Alan Cox	: 	Correct error for oversized datagrams
22  *		Alan Cox	:	Tidied select() semantics.
23  *		Alan Cox	:	udp_err() fixed properly, also now
24  *					select and read wake correctly on errors
25  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
26  *		Alan Cox	:	UDP can count its memory
27  *		Alan Cox	:	send to an unknown connection causes
28  *					an ECONNREFUSED off the icmp, but
29  *					does NOT close.
30  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
31  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
32  *					bug no longer crashes it.
33  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
34  *		Alan Cox	:	Uses skb_free_datagram
35  *		Alan Cox	:	Added get/set sockopt support.
36  *		Alan Cox	:	Broadcasting without option set returns EACCES.
37  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
38  *		Alan Cox	:	Use ip_tos and ip_ttl
39  *		Alan Cox	:	SNMP Mibs
40  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
41  *		Matt Dillon	:	UDP length checks.
42  *		Alan Cox	:	Smarter af_inet used properly.
43  *		Alan Cox	:	Use new kernel side addressing.
44  *		Alan Cox	:	Incorrect return on truncated datagram receive.
45  *	Arnt Gulbrandsen 	:	New udp_send and stuff
46  *		Alan Cox	:	Cache last socket
47  *		Alan Cox	:	Route cache
48  *		Jon Peatfield	:	Minor efficiency fix to sendto().
49  *		Mike Shaver	:	RFC1122 checks.
50  *		Alan Cox	:	Nonblocking error fix.
51  *	Willy Konynenberg	:	Transparent proxying support.
52  *		Mike McLagan	:	Routing by source
53  *		David S. Miller	:	New socket lookup architecture.
54  *					Last socket cache retained as it
55  *					does have a high hit rate.
56  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
57  *		Andi Kleen	:	Some cleanups, cache destination entry
58  *					for connect.
59  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
60  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
61  *					return ENOTCONN for unconnected sockets (POSIX)
62  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
63  *					bound-to-device socket
64  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
65  *					datagrams.
66  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
67  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
68  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
69  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
70  *					a single port at the same time.
71  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
72  *	James Chapman		:	Add L2TP encapsulation type.
73  */
74 
75 #define pr_fmt(fmt) "UDP: " fmt
76 
77 #include <linux/bpf-cgroup.h>
78 #include <linux/uaccess.h>
79 #include <asm/ioctls.h>
80 #include <linux/memblock.h>
81 #include <linux/highmem.h>
82 #include <linux/types.h>
83 #include <linux/fcntl.h>
84 #include <linux/module.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/igmp.h>
88 #include <linux/inetdevice.h>
89 #include <linux/in.h>
90 #include <linux/errno.h>
91 #include <linux/timer.h>
92 #include <linux/mm.h>
93 #include <linux/inet.h>
94 #include <linux/netdevice.h>
95 #include <linux/slab.h>
96 #include <net/tcp_states.h>
97 #include <linux/skbuff.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <net/net_namespace.h>
101 #include <net/icmp.h>
102 #include <net/inet_hashtables.h>
103 #include <net/ip_tunnels.h>
104 #include <net/route.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <trace/events/udp.h>
108 #include <linux/static_key.h>
109 #include <linux/btf_ids.h>
110 #include <trace/events/skb.h>
111 #include <net/busy_poll.h>
112 #include "udp_impl.h"
113 #include <net/sock_reuseport.h>
114 #include <net/addrconf.h>
115 #include <net/udp_tunnel.h>
116 #if IS_ENABLED(CONFIG_IPV6)
117 #include <net/ipv6_stubs.h>
118 #endif
119 
120 struct udp_table udp_table __read_mostly;
121 EXPORT_SYMBOL(udp_table);
122 
123 long sysctl_udp_mem[3] __read_mostly;
124 EXPORT_SYMBOL(sysctl_udp_mem);
125 
126 atomic_long_t udp_memory_allocated ____cacheline_aligned_in_smp;
127 EXPORT_SYMBOL(udp_memory_allocated);
128 DEFINE_PER_CPU(int, udp_memory_per_cpu_fw_alloc);
129 EXPORT_PER_CPU_SYMBOL_GPL(udp_memory_per_cpu_fw_alloc);
130 
131 #define MAX_UDP_PORTS 65536
132 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN_PERNET)
133 
134 static struct udp_table *udp_get_table_prot(struct sock *sk)
135 {
136 	return sk->sk_prot->h.udp_table ? : sock_net(sk)->ipv4.udp_table;
137 }
138 
139 static int udp_lib_lport_inuse(struct net *net, __u16 num,
140 			       const struct udp_hslot *hslot,
141 			       unsigned long *bitmap,
142 			       struct sock *sk, unsigned int log)
143 {
144 	struct sock *sk2;
145 	kuid_t uid = sock_i_uid(sk);
146 
147 	sk_for_each(sk2, &hslot->head) {
148 		if (net_eq(sock_net(sk2), net) &&
149 		    sk2 != sk &&
150 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
151 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
152 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
153 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
154 		    inet_rcv_saddr_equal(sk, sk2, true)) {
155 			if (sk2->sk_reuseport && sk->sk_reuseport &&
156 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
157 			    uid_eq(uid, sock_i_uid(sk2))) {
158 				if (!bitmap)
159 					return 0;
160 			} else {
161 				if (!bitmap)
162 					return 1;
163 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
164 					  bitmap);
165 			}
166 		}
167 	}
168 	return 0;
169 }
170 
171 /*
172  * Note: we still hold spinlock of primary hash chain, so no other writer
173  * can insert/delete a socket with local_port == num
174  */
175 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
176 				struct udp_hslot *hslot2,
177 				struct sock *sk)
178 {
179 	struct sock *sk2;
180 	kuid_t uid = sock_i_uid(sk);
181 	int res = 0;
182 
183 	spin_lock(&hslot2->lock);
184 	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
185 		if (net_eq(sock_net(sk2), net) &&
186 		    sk2 != sk &&
187 		    (udp_sk(sk2)->udp_port_hash == num) &&
188 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
189 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
190 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
191 		    inet_rcv_saddr_equal(sk, sk2, true)) {
192 			if (sk2->sk_reuseport && sk->sk_reuseport &&
193 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
194 			    uid_eq(uid, sock_i_uid(sk2))) {
195 				res = 0;
196 			} else {
197 				res = 1;
198 			}
199 			break;
200 		}
201 	}
202 	spin_unlock(&hslot2->lock);
203 	return res;
204 }
205 
206 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
207 {
208 	struct net *net = sock_net(sk);
209 	kuid_t uid = sock_i_uid(sk);
210 	struct sock *sk2;
211 
212 	sk_for_each(sk2, &hslot->head) {
213 		if (net_eq(sock_net(sk2), net) &&
214 		    sk2 != sk &&
215 		    sk2->sk_family == sk->sk_family &&
216 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
217 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
218 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
219 		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
220 		    inet_rcv_saddr_equal(sk, sk2, false)) {
221 			return reuseport_add_sock(sk, sk2,
222 						  inet_rcv_saddr_any(sk));
223 		}
224 	}
225 
226 	return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
227 }
228 
229 /**
230  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
231  *
232  *  @sk:          socket struct in question
233  *  @snum:        port number to look up
234  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
235  *                   with NULL address
236  */
237 int udp_lib_get_port(struct sock *sk, unsigned short snum,
238 		     unsigned int hash2_nulladdr)
239 {
240 	struct udp_table *udptable = udp_get_table_prot(sk);
241 	struct udp_hslot *hslot, *hslot2;
242 	struct net *net = sock_net(sk);
243 	int error = -EADDRINUSE;
244 
245 	if (!snum) {
246 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
247 		unsigned short first, last;
248 		int low, high, remaining;
249 		unsigned int rand;
250 
251 		inet_sk_get_local_port_range(sk, &low, &high);
252 		remaining = (high - low) + 1;
253 
254 		rand = get_random_u32();
255 		first = reciprocal_scale(rand, remaining) + low;
256 		/*
257 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
258 		 */
259 		rand = (rand | 1) * (udptable->mask + 1);
260 		last = first + udptable->mask + 1;
261 		do {
262 			hslot = udp_hashslot(udptable, net, first);
263 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
264 			spin_lock_bh(&hslot->lock);
265 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
266 					    udptable->log);
267 
268 			snum = first;
269 			/*
270 			 * Iterate on all possible values of snum for this hash.
271 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
272 			 * give us randomization and full range coverage.
273 			 */
274 			do {
275 				if (low <= snum && snum <= high &&
276 				    !test_bit(snum >> udptable->log, bitmap) &&
277 				    !inet_is_local_reserved_port(net, snum))
278 					goto found;
279 				snum += rand;
280 			} while (snum != first);
281 			spin_unlock_bh(&hslot->lock);
282 			cond_resched();
283 		} while (++first != last);
284 		goto fail;
285 	} else {
286 		hslot = udp_hashslot(udptable, net, snum);
287 		spin_lock_bh(&hslot->lock);
288 		if (hslot->count > 10) {
289 			int exist;
290 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
291 
292 			slot2          &= udptable->mask;
293 			hash2_nulladdr &= udptable->mask;
294 
295 			hslot2 = udp_hashslot2(udptable, slot2);
296 			if (hslot->count < hslot2->count)
297 				goto scan_primary_hash;
298 
299 			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
300 			if (!exist && (hash2_nulladdr != slot2)) {
301 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
302 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
303 							     sk);
304 			}
305 			if (exist)
306 				goto fail_unlock;
307 			else
308 				goto found;
309 		}
310 scan_primary_hash:
311 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
312 			goto fail_unlock;
313 	}
314 found:
315 	inet_sk(sk)->inet_num = snum;
316 	udp_sk(sk)->udp_port_hash = snum;
317 	udp_sk(sk)->udp_portaddr_hash ^= snum;
318 	if (sk_unhashed(sk)) {
319 		if (sk->sk_reuseport &&
320 		    udp_reuseport_add_sock(sk, hslot)) {
321 			inet_sk(sk)->inet_num = 0;
322 			udp_sk(sk)->udp_port_hash = 0;
323 			udp_sk(sk)->udp_portaddr_hash ^= snum;
324 			goto fail_unlock;
325 		}
326 
327 		sk_add_node_rcu(sk, &hslot->head);
328 		hslot->count++;
329 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
330 
331 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
332 		spin_lock(&hslot2->lock);
333 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
334 		    sk->sk_family == AF_INET6)
335 			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
336 					   &hslot2->head);
337 		else
338 			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
339 					   &hslot2->head);
340 		hslot2->count++;
341 		spin_unlock(&hslot2->lock);
342 	}
343 	sock_set_flag(sk, SOCK_RCU_FREE);
344 	error = 0;
345 fail_unlock:
346 	spin_unlock_bh(&hslot->lock);
347 fail:
348 	return error;
349 }
350 EXPORT_SYMBOL(udp_lib_get_port);
351 
352 int udp_v4_get_port(struct sock *sk, unsigned short snum)
353 {
354 	unsigned int hash2_nulladdr =
355 		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
356 	unsigned int hash2_partial =
357 		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
358 
359 	/* precompute partial secondary hash */
360 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
361 	return udp_lib_get_port(sk, snum, hash2_nulladdr);
362 }
363 
364 static int compute_score(struct sock *sk, struct net *net,
365 			 __be32 saddr, __be16 sport,
366 			 __be32 daddr, unsigned short hnum,
367 			 int dif, int sdif)
368 {
369 	int score;
370 	struct inet_sock *inet;
371 	bool dev_match;
372 
373 	if (!net_eq(sock_net(sk), net) ||
374 	    udp_sk(sk)->udp_port_hash != hnum ||
375 	    ipv6_only_sock(sk))
376 		return -1;
377 
378 	if (sk->sk_rcv_saddr != daddr)
379 		return -1;
380 
381 	score = (sk->sk_family == PF_INET) ? 2 : 1;
382 
383 	inet = inet_sk(sk);
384 	if (inet->inet_daddr) {
385 		if (inet->inet_daddr != saddr)
386 			return -1;
387 		score += 4;
388 	}
389 
390 	if (inet->inet_dport) {
391 		if (inet->inet_dport != sport)
392 			return -1;
393 		score += 4;
394 	}
395 
396 	dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
397 					dif, sdif);
398 	if (!dev_match)
399 		return -1;
400 	if (sk->sk_bound_dev_if)
401 		score += 4;
402 
403 	if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
404 		score++;
405 	return score;
406 }
407 
408 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
409 		       const __u16 lport, const __be32 faddr,
410 		       const __be16 fport)
411 {
412 	static u32 udp_ehash_secret __read_mostly;
413 
414 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
415 
416 	return __inet_ehashfn(laddr, lport, faddr, fport,
417 			      udp_ehash_secret + net_hash_mix(net));
418 }
419 
420 static struct sock *lookup_reuseport(struct net *net, struct sock *sk,
421 				     struct sk_buff *skb,
422 				     __be32 saddr, __be16 sport,
423 				     __be32 daddr, unsigned short hnum)
424 {
425 	struct sock *reuse_sk = NULL;
426 	u32 hash;
427 
428 	if (sk->sk_reuseport && sk->sk_state != TCP_ESTABLISHED) {
429 		hash = udp_ehashfn(net, daddr, hnum, saddr, sport);
430 		reuse_sk = reuseport_select_sock(sk, hash, skb,
431 						 sizeof(struct udphdr));
432 	}
433 	return reuse_sk;
434 }
435 
436 /* called with rcu_read_lock() */
437 static struct sock *udp4_lib_lookup2(struct net *net,
438 				     __be32 saddr, __be16 sport,
439 				     __be32 daddr, unsigned int hnum,
440 				     int dif, int sdif,
441 				     struct udp_hslot *hslot2,
442 				     struct sk_buff *skb)
443 {
444 	struct sock *sk, *result;
445 	int score, badness;
446 
447 	result = NULL;
448 	badness = 0;
449 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
450 		score = compute_score(sk, net, saddr, sport,
451 				      daddr, hnum, dif, sdif);
452 		if (score > badness) {
453 			result = lookup_reuseport(net, sk, skb,
454 						  saddr, sport, daddr, hnum);
455 			/* Fall back to scoring if group has connections */
456 			if (result && !reuseport_has_conns(sk))
457 				return result;
458 
459 			result = result ? : sk;
460 			badness = score;
461 		}
462 	}
463 	return result;
464 }
465 
466 static struct sock *udp4_lookup_run_bpf(struct net *net,
467 					struct udp_table *udptable,
468 					struct sk_buff *skb,
469 					__be32 saddr, __be16 sport,
470 					__be32 daddr, u16 hnum, const int dif)
471 {
472 	struct sock *sk, *reuse_sk;
473 	bool no_reuseport;
474 
475 	if (udptable != net->ipv4.udp_table)
476 		return NULL; /* only UDP is supported */
477 
478 	no_reuseport = bpf_sk_lookup_run_v4(net, IPPROTO_UDP, saddr, sport,
479 					    daddr, hnum, dif, &sk);
480 	if (no_reuseport || IS_ERR_OR_NULL(sk))
481 		return sk;
482 
483 	reuse_sk = lookup_reuseport(net, sk, skb, saddr, sport, daddr, hnum);
484 	if (reuse_sk)
485 		sk = reuse_sk;
486 	return sk;
487 }
488 
489 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
490  * harder than this. -DaveM
491  */
492 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
493 		__be16 sport, __be32 daddr, __be16 dport, int dif,
494 		int sdif, struct udp_table *udptable, struct sk_buff *skb)
495 {
496 	unsigned short hnum = ntohs(dport);
497 	unsigned int hash2, slot2;
498 	struct udp_hslot *hslot2;
499 	struct sock *result, *sk;
500 
501 	hash2 = ipv4_portaddr_hash(net, daddr, hnum);
502 	slot2 = hash2 & udptable->mask;
503 	hslot2 = &udptable->hash2[slot2];
504 
505 	/* Lookup connected or non-wildcard socket */
506 	result = udp4_lib_lookup2(net, saddr, sport,
507 				  daddr, hnum, dif, sdif,
508 				  hslot2, skb);
509 	if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED)
510 		goto done;
511 
512 	/* Lookup redirect from BPF */
513 	if (static_branch_unlikely(&bpf_sk_lookup_enabled)) {
514 		sk = udp4_lookup_run_bpf(net, udptable, skb,
515 					 saddr, sport, daddr, hnum, dif);
516 		if (sk) {
517 			result = sk;
518 			goto done;
519 		}
520 	}
521 
522 	/* Got non-wildcard socket or error on first lookup */
523 	if (result)
524 		goto done;
525 
526 	/* Lookup wildcard sockets */
527 	hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
528 	slot2 = hash2 & udptable->mask;
529 	hslot2 = &udptable->hash2[slot2];
530 
531 	result = udp4_lib_lookup2(net, saddr, sport,
532 				  htonl(INADDR_ANY), hnum, dif, sdif,
533 				  hslot2, skb);
534 done:
535 	if (IS_ERR(result))
536 		return NULL;
537 	return result;
538 }
539 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
540 
541 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
542 						 __be16 sport, __be16 dport,
543 						 struct udp_table *udptable)
544 {
545 	const struct iphdr *iph = ip_hdr(skb);
546 
547 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
548 				 iph->daddr, dport, inet_iif(skb),
549 				 inet_sdif(skb), udptable, skb);
550 }
551 
552 struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb,
553 				 __be16 sport, __be16 dport)
554 {
555 	const struct iphdr *iph = ip_hdr(skb);
556 	struct net *net = dev_net(skb->dev);
557 
558 	return __udp4_lib_lookup(net, iph->saddr, sport,
559 				 iph->daddr, dport, inet_iif(skb),
560 				 inet_sdif(skb), net->ipv4.udp_table, NULL);
561 }
562 
563 /* Must be called under rcu_read_lock().
564  * Does increment socket refcount.
565  */
566 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
567 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
568 			     __be32 daddr, __be16 dport, int dif)
569 {
570 	struct sock *sk;
571 
572 	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
573 			       dif, 0, net->ipv4.udp_table, NULL);
574 	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
575 		sk = NULL;
576 	return sk;
577 }
578 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
579 #endif
580 
581 static inline bool __udp_is_mcast_sock(struct net *net, const struct sock *sk,
582 				       __be16 loc_port, __be32 loc_addr,
583 				       __be16 rmt_port, __be32 rmt_addr,
584 				       int dif, int sdif, unsigned short hnum)
585 {
586 	const struct inet_sock *inet = inet_sk(sk);
587 
588 	if (!net_eq(sock_net(sk), net) ||
589 	    udp_sk(sk)->udp_port_hash != hnum ||
590 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
591 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
592 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
593 	    ipv6_only_sock(sk) ||
594 	    !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
595 		return false;
596 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
597 		return false;
598 	return true;
599 }
600 
601 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
602 void udp_encap_enable(void)
603 {
604 	static_branch_inc(&udp_encap_needed_key);
605 }
606 EXPORT_SYMBOL(udp_encap_enable);
607 
608 void udp_encap_disable(void)
609 {
610 	static_branch_dec(&udp_encap_needed_key);
611 }
612 EXPORT_SYMBOL(udp_encap_disable);
613 
614 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go
615  * through error handlers in encapsulations looking for a match.
616  */
617 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
618 {
619 	int i;
620 
621 	for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
622 		int (*handler)(struct sk_buff *skb, u32 info);
623 		const struct ip_tunnel_encap_ops *encap;
624 
625 		encap = rcu_dereference(iptun_encaps[i]);
626 		if (!encap)
627 			continue;
628 		handler = encap->err_handler;
629 		if (handler && !handler(skb, info))
630 			return 0;
631 	}
632 
633 	return -ENOENT;
634 }
635 
636 /* Try to match ICMP errors to UDP tunnels by looking up a socket without
637  * reversing source and destination port: this will match tunnels that force the
638  * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
639  * lwtunnels might actually break this assumption by being configured with
640  * different destination ports on endpoints, in this case we won't be able to
641  * trace ICMP messages back to them.
642  *
643  * If this doesn't match any socket, probe tunnels with arbitrary destination
644  * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
645  * we've sent packets to won't necessarily match the local destination port.
646  *
647  * Then ask the tunnel implementation to match the error against a valid
648  * association.
649  *
650  * Return an error if we can't find a match, the socket if we need further
651  * processing, zero otherwise.
652  */
653 static struct sock *__udp4_lib_err_encap(struct net *net,
654 					 const struct iphdr *iph,
655 					 struct udphdr *uh,
656 					 struct udp_table *udptable,
657 					 struct sock *sk,
658 					 struct sk_buff *skb, u32 info)
659 {
660 	int (*lookup)(struct sock *sk, struct sk_buff *skb);
661 	int network_offset, transport_offset;
662 	struct udp_sock *up;
663 
664 	network_offset = skb_network_offset(skb);
665 	transport_offset = skb_transport_offset(skb);
666 
667 	/* Network header needs to point to the outer IPv4 header inside ICMP */
668 	skb_reset_network_header(skb);
669 
670 	/* Transport header needs to point to the UDP header */
671 	skb_set_transport_header(skb, iph->ihl << 2);
672 
673 	if (sk) {
674 		up = udp_sk(sk);
675 
676 		lookup = READ_ONCE(up->encap_err_lookup);
677 		if (lookup && lookup(sk, skb))
678 			sk = NULL;
679 
680 		goto out;
681 	}
682 
683 	sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
684 			       iph->saddr, uh->dest, skb->dev->ifindex, 0,
685 			       udptable, NULL);
686 	if (sk) {
687 		up = udp_sk(sk);
688 
689 		lookup = READ_ONCE(up->encap_err_lookup);
690 		if (!lookup || lookup(sk, skb))
691 			sk = NULL;
692 	}
693 
694 out:
695 	if (!sk)
696 		sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
697 
698 	skb_set_transport_header(skb, transport_offset);
699 	skb_set_network_header(skb, network_offset);
700 
701 	return sk;
702 }
703 
704 /*
705  * This routine is called by the ICMP module when it gets some
706  * sort of error condition.  If err < 0 then the socket should
707  * be closed and the error returned to the user.  If err > 0
708  * it's just the icmp type << 8 | icmp code.
709  * Header points to the ip header of the error packet. We move
710  * on past this. Then (as it used to claim before adjustment)
711  * header points to the first 8 bytes of the udp header.  We need
712  * to find the appropriate port.
713  */
714 
715 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
716 {
717 	struct inet_sock *inet;
718 	const struct iphdr *iph = (const struct iphdr *)skb->data;
719 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
720 	const int type = icmp_hdr(skb)->type;
721 	const int code = icmp_hdr(skb)->code;
722 	bool tunnel = false;
723 	struct sock *sk;
724 	int harderr;
725 	int err;
726 	struct net *net = dev_net(skb->dev);
727 
728 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
729 			       iph->saddr, uh->source, skb->dev->ifindex,
730 			       inet_sdif(skb), udptable, NULL);
731 
732 	if (!sk || udp_sk(sk)->encap_type) {
733 		/* No socket for error: try tunnels before discarding */
734 		if (static_branch_unlikely(&udp_encap_needed_key)) {
735 			sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb,
736 						  info);
737 			if (!sk)
738 				return 0;
739 		} else
740 			sk = ERR_PTR(-ENOENT);
741 
742 		if (IS_ERR(sk)) {
743 			__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
744 			return PTR_ERR(sk);
745 		}
746 
747 		tunnel = true;
748 	}
749 
750 	err = 0;
751 	harderr = 0;
752 	inet = inet_sk(sk);
753 
754 	switch (type) {
755 	default:
756 	case ICMP_TIME_EXCEEDED:
757 		err = EHOSTUNREACH;
758 		break;
759 	case ICMP_SOURCE_QUENCH:
760 		goto out;
761 	case ICMP_PARAMETERPROB:
762 		err = EPROTO;
763 		harderr = 1;
764 		break;
765 	case ICMP_DEST_UNREACH:
766 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
767 			ipv4_sk_update_pmtu(skb, sk, info);
768 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
769 				err = EMSGSIZE;
770 				harderr = 1;
771 				break;
772 			}
773 			goto out;
774 		}
775 		err = EHOSTUNREACH;
776 		if (code <= NR_ICMP_UNREACH) {
777 			harderr = icmp_err_convert[code].fatal;
778 			err = icmp_err_convert[code].errno;
779 		}
780 		break;
781 	case ICMP_REDIRECT:
782 		ipv4_sk_redirect(skb, sk);
783 		goto out;
784 	}
785 
786 	/*
787 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
788 	 *	4.1.3.3.
789 	 */
790 	if (tunnel) {
791 		/* ...not for tunnels though: we don't have a sending socket */
792 		if (udp_sk(sk)->encap_err_rcv)
793 			udp_sk(sk)->encap_err_rcv(sk, skb, err, uh->dest, info,
794 						  (u8 *)(uh+1));
795 		goto out;
796 	}
797 	if (!inet->recverr) {
798 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
799 			goto out;
800 	} else
801 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
802 
803 	sk->sk_err = err;
804 	sk_error_report(sk);
805 out:
806 	return 0;
807 }
808 
809 int udp_err(struct sk_buff *skb, u32 info)
810 {
811 	return __udp4_lib_err(skb, info, dev_net(skb->dev)->ipv4.udp_table);
812 }
813 
814 /*
815  * Throw away all pending data and cancel the corking. Socket is locked.
816  */
817 void udp_flush_pending_frames(struct sock *sk)
818 {
819 	struct udp_sock *up = udp_sk(sk);
820 
821 	if (up->pending) {
822 		up->len = 0;
823 		up->pending = 0;
824 		ip_flush_pending_frames(sk);
825 	}
826 }
827 EXPORT_SYMBOL(udp_flush_pending_frames);
828 
829 /**
830  * 	udp4_hwcsum  -  handle outgoing HW checksumming
831  * 	@skb: 	sk_buff containing the filled-in UDP header
832  * 	        (checksum field must be zeroed out)
833  *	@src:	source IP address
834  *	@dst:	destination IP address
835  */
836 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
837 {
838 	struct udphdr *uh = udp_hdr(skb);
839 	int offset = skb_transport_offset(skb);
840 	int len = skb->len - offset;
841 	int hlen = len;
842 	__wsum csum = 0;
843 
844 	if (!skb_has_frag_list(skb)) {
845 		/*
846 		 * Only one fragment on the socket.
847 		 */
848 		skb->csum_start = skb_transport_header(skb) - skb->head;
849 		skb->csum_offset = offsetof(struct udphdr, check);
850 		uh->check = ~csum_tcpudp_magic(src, dst, len,
851 					       IPPROTO_UDP, 0);
852 	} else {
853 		struct sk_buff *frags;
854 
855 		/*
856 		 * HW-checksum won't work as there are two or more
857 		 * fragments on the socket so that all csums of sk_buffs
858 		 * should be together
859 		 */
860 		skb_walk_frags(skb, frags) {
861 			csum = csum_add(csum, frags->csum);
862 			hlen -= frags->len;
863 		}
864 
865 		csum = skb_checksum(skb, offset, hlen, csum);
866 		skb->ip_summed = CHECKSUM_NONE;
867 
868 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
869 		if (uh->check == 0)
870 			uh->check = CSUM_MANGLED_0;
871 	}
872 }
873 EXPORT_SYMBOL_GPL(udp4_hwcsum);
874 
875 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
876  * for the simple case like when setting the checksum for a UDP tunnel.
877  */
878 void udp_set_csum(bool nocheck, struct sk_buff *skb,
879 		  __be32 saddr, __be32 daddr, int len)
880 {
881 	struct udphdr *uh = udp_hdr(skb);
882 
883 	if (nocheck) {
884 		uh->check = 0;
885 	} else if (skb_is_gso(skb)) {
886 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
887 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
888 		uh->check = 0;
889 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
890 		if (uh->check == 0)
891 			uh->check = CSUM_MANGLED_0;
892 	} else {
893 		skb->ip_summed = CHECKSUM_PARTIAL;
894 		skb->csum_start = skb_transport_header(skb) - skb->head;
895 		skb->csum_offset = offsetof(struct udphdr, check);
896 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
897 	}
898 }
899 EXPORT_SYMBOL(udp_set_csum);
900 
901 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
902 			struct inet_cork *cork)
903 {
904 	struct sock *sk = skb->sk;
905 	struct inet_sock *inet = inet_sk(sk);
906 	struct udphdr *uh;
907 	int err;
908 	int is_udplite = IS_UDPLITE(sk);
909 	int offset = skb_transport_offset(skb);
910 	int len = skb->len - offset;
911 	int datalen = len - sizeof(*uh);
912 	__wsum csum = 0;
913 
914 	/*
915 	 * Create a UDP header
916 	 */
917 	uh = udp_hdr(skb);
918 	uh->source = inet->inet_sport;
919 	uh->dest = fl4->fl4_dport;
920 	uh->len = htons(len);
921 	uh->check = 0;
922 
923 	if (cork->gso_size) {
924 		const int hlen = skb_network_header_len(skb) +
925 				 sizeof(struct udphdr);
926 
927 		if (hlen + cork->gso_size > cork->fragsize) {
928 			kfree_skb(skb);
929 			return -EINVAL;
930 		}
931 		if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) {
932 			kfree_skb(skb);
933 			return -EINVAL;
934 		}
935 		if (sk->sk_no_check_tx) {
936 			kfree_skb(skb);
937 			return -EINVAL;
938 		}
939 		if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
940 		    dst_xfrm(skb_dst(skb))) {
941 			kfree_skb(skb);
942 			return -EIO;
943 		}
944 
945 		if (datalen > cork->gso_size) {
946 			skb_shinfo(skb)->gso_size = cork->gso_size;
947 			skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
948 			skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
949 								 cork->gso_size);
950 		}
951 		goto csum_partial;
952 	}
953 
954 	if (is_udplite)  				 /*     UDP-Lite      */
955 		csum = udplite_csum(skb);
956 
957 	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
958 
959 		skb->ip_summed = CHECKSUM_NONE;
960 		goto send;
961 
962 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
963 csum_partial:
964 
965 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
966 		goto send;
967 
968 	} else
969 		csum = udp_csum(skb);
970 
971 	/* add protocol-dependent pseudo-header */
972 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
973 				      sk->sk_protocol, csum);
974 	if (uh->check == 0)
975 		uh->check = CSUM_MANGLED_0;
976 
977 send:
978 	err = ip_send_skb(sock_net(sk), skb);
979 	if (err) {
980 		if (err == -ENOBUFS && !inet->recverr) {
981 			UDP_INC_STATS(sock_net(sk),
982 				      UDP_MIB_SNDBUFERRORS, is_udplite);
983 			err = 0;
984 		}
985 	} else
986 		UDP_INC_STATS(sock_net(sk),
987 			      UDP_MIB_OUTDATAGRAMS, is_udplite);
988 	return err;
989 }
990 
991 /*
992  * Push out all pending data as one UDP datagram. Socket is locked.
993  */
994 int udp_push_pending_frames(struct sock *sk)
995 {
996 	struct udp_sock  *up = udp_sk(sk);
997 	struct inet_sock *inet = inet_sk(sk);
998 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
999 	struct sk_buff *skb;
1000 	int err = 0;
1001 
1002 	skb = ip_finish_skb(sk, fl4);
1003 	if (!skb)
1004 		goto out;
1005 
1006 	err = udp_send_skb(skb, fl4, &inet->cork.base);
1007 
1008 out:
1009 	up->len = 0;
1010 	up->pending = 0;
1011 	return err;
1012 }
1013 EXPORT_SYMBOL(udp_push_pending_frames);
1014 
1015 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
1016 {
1017 	switch (cmsg->cmsg_type) {
1018 	case UDP_SEGMENT:
1019 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
1020 			return -EINVAL;
1021 		*gso_size = *(__u16 *)CMSG_DATA(cmsg);
1022 		return 0;
1023 	default:
1024 		return -EINVAL;
1025 	}
1026 }
1027 
1028 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
1029 {
1030 	struct cmsghdr *cmsg;
1031 	bool need_ip = false;
1032 	int err;
1033 
1034 	for_each_cmsghdr(cmsg, msg) {
1035 		if (!CMSG_OK(msg, cmsg))
1036 			return -EINVAL;
1037 
1038 		if (cmsg->cmsg_level != SOL_UDP) {
1039 			need_ip = true;
1040 			continue;
1041 		}
1042 
1043 		err = __udp_cmsg_send(cmsg, gso_size);
1044 		if (err)
1045 			return err;
1046 	}
1047 
1048 	return need_ip;
1049 }
1050 EXPORT_SYMBOL_GPL(udp_cmsg_send);
1051 
1052 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1053 {
1054 	struct inet_sock *inet = inet_sk(sk);
1055 	struct udp_sock *up = udp_sk(sk);
1056 	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1057 	struct flowi4 fl4_stack;
1058 	struct flowi4 *fl4;
1059 	int ulen = len;
1060 	struct ipcm_cookie ipc;
1061 	struct rtable *rt = NULL;
1062 	int free = 0;
1063 	int connected = 0;
1064 	__be32 daddr, faddr, saddr;
1065 	u8 tos, scope;
1066 	__be16 dport;
1067 	int err, is_udplite = IS_UDPLITE(sk);
1068 	int corkreq = READ_ONCE(up->corkflag) || msg->msg_flags&MSG_MORE;
1069 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
1070 	struct sk_buff *skb;
1071 	struct ip_options_data opt_copy;
1072 
1073 	if (len > 0xFFFF)
1074 		return -EMSGSIZE;
1075 
1076 	/*
1077 	 *	Check the flags.
1078 	 */
1079 
1080 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1081 		return -EOPNOTSUPP;
1082 
1083 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1084 
1085 	fl4 = &inet->cork.fl.u.ip4;
1086 	if (up->pending) {
1087 		/*
1088 		 * There are pending frames.
1089 		 * The socket lock must be held while it's corked.
1090 		 */
1091 		lock_sock(sk);
1092 		if (likely(up->pending)) {
1093 			if (unlikely(up->pending != AF_INET)) {
1094 				release_sock(sk);
1095 				return -EINVAL;
1096 			}
1097 			goto do_append_data;
1098 		}
1099 		release_sock(sk);
1100 	}
1101 	ulen += sizeof(struct udphdr);
1102 
1103 	/*
1104 	 *	Get and verify the address.
1105 	 */
1106 	if (usin) {
1107 		if (msg->msg_namelen < sizeof(*usin))
1108 			return -EINVAL;
1109 		if (usin->sin_family != AF_INET) {
1110 			if (usin->sin_family != AF_UNSPEC)
1111 				return -EAFNOSUPPORT;
1112 		}
1113 
1114 		daddr = usin->sin_addr.s_addr;
1115 		dport = usin->sin_port;
1116 		if (dport == 0)
1117 			return -EINVAL;
1118 	} else {
1119 		if (sk->sk_state != TCP_ESTABLISHED)
1120 			return -EDESTADDRREQ;
1121 		daddr = inet->inet_daddr;
1122 		dport = inet->inet_dport;
1123 		/* Open fast path for connected socket.
1124 		   Route will not be used, if at least one option is set.
1125 		 */
1126 		connected = 1;
1127 	}
1128 
1129 	ipcm_init_sk(&ipc, inet);
1130 	ipc.gso_size = READ_ONCE(up->gso_size);
1131 
1132 	if (msg->msg_controllen) {
1133 		err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1134 		if (err > 0)
1135 			err = ip_cmsg_send(sk, msg, &ipc,
1136 					   sk->sk_family == AF_INET6);
1137 		if (unlikely(err < 0)) {
1138 			kfree(ipc.opt);
1139 			return err;
1140 		}
1141 		if (ipc.opt)
1142 			free = 1;
1143 		connected = 0;
1144 	}
1145 	if (!ipc.opt) {
1146 		struct ip_options_rcu *inet_opt;
1147 
1148 		rcu_read_lock();
1149 		inet_opt = rcu_dereference(inet->inet_opt);
1150 		if (inet_opt) {
1151 			memcpy(&opt_copy, inet_opt,
1152 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
1153 			ipc.opt = &opt_copy.opt;
1154 		}
1155 		rcu_read_unlock();
1156 	}
1157 
1158 	if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) {
1159 		err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1160 					    (struct sockaddr *)usin, &ipc.addr);
1161 		if (err)
1162 			goto out_free;
1163 		if (usin) {
1164 			if (usin->sin_port == 0) {
1165 				/* BPF program set invalid port. Reject it. */
1166 				err = -EINVAL;
1167 				goto out_free;
1168 			}
1169 			daddr = usin->sin_addr.s_addr;
1170 			dport = usin->sin_port;
1171 		}
1172 	}
1173 
1174 	saddr = ipc.addr;
1175 	ipc.addr = faddr = daddr;
1176 
1177 	if (ipc.opt && ipc.opt->opt.srr) {
1178 		if (!daddr) {
1179 			err = -EINVAL;
1180 			goto out_free;
1181 		}
1182 		faddr = ipc.opt->opt.faddr;
1183 		connected = 0;
1184 	}
1185 	tos = get_rttos(&ipc, inet);
1186 	scope = ip_sendmsg_scope(inet, &ipc, msg);
1187 	if (scope == RT_SCOPE_LINK)
1188 		connected = 0;
1189 
1190 	if (ipv4_is_multicast(daddr)) {
1191 		if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1192 			ipc.oif = inet->mc_index;
1193 		if (!saddr)
1194 			saddr = inet->mc_addr;
1195 		connected = 0;
1196 	} else if (!ipc.oif) {
1197 		ipc.oif = inet->uc_index;
1198 	} else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
1199 		/* oif is set, packet is to local broadcast and
1200 		 * uc_index is set. oif is most likely set
1201 		 * by sk_bound_dev_if. If uc_index != oif check if the
1202 		 * oif is an L3 master and uc_index is an L3 slave.
1203 		 * If so, we want to allow the send using the uc_index.
1204 		 */
1205 		if (ipc.oif != inet->uc_index &&
1206 		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1207 							      inet->uc_index)) {
1208 			ipc.oif = inet->uc_index;
1209 		}
1210 	}
1211 
1212 	if (connected)
1213 		rt = (struct rtable *)sk_dst_check(sk, 0);
1214 
1215 	if (!rt) {
1216 		struct net *net = sock_net(sk);
1217 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1218 
1219 		fl4 = &fl4_stack;
1220 
1221 		flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos, scope,
1222 				   sk->sk_protocol, flow_flags, faddr, saddr,
1223 				   dport, inet->inet_sport, sk->sk_uid);
1224 
1225 		security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
1226 		rt = ip_route_output_flow(net, fl4, sk);
1227 		if (IS_ERR(rt)) {
1228 			err = PTR_ERR(rt);
1229 			rt = NULL;
1230 			if (err == -ENETUNREACH)
1231 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1232 			goto out;
1233 		}
1234 
1235 		err = -EACCES;
1236 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1237 		    !sock_flag(sk, SOCK_BROADCAST))
1238 			goto out;
1239 		if (connected)
1240 			sk_dst_set(sk, dst_clone(&rt->dst));
1241 	}
1242 
1243 	if (msg->msg_flags&MSG_CONFIRM)
1244 		goto do_confirm;
1245 back_from_confirm:
1246 
1247 	saddr = fl4->saddr;
1248 	if (!ipc.addr)
1249 		daddr = ipc.addr = fl4->daddr;
1250 
1251 	/* Lockless fast path for the non-corking case. */
1252 	if (!corkreq) {
1253 		struct inet_cork cork;
1254 
1255 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1256 				  sizeof(struct udphdr), &ipc, &rt,
1257 				  &cork, msg->msg_flags);
1258 		err = PTR_ERR(skb);
1259 		if (!IS_ERR_OR_NULL(skb))
1260 			err = udp_send_skb(skb, fl4, &cork);
1261 		goto out;
1262 	}
1263 
1264 	lock_sock(sk);
1265 	if (unlikely(up->pending)) {
1266 		/* The socket is already corked while preparing it. */
1267 		/* ... which is an evident application bug. --ANK */
1268 		release_sock(sk);
1269 
1270 		net_dbg_ratelimited("socket already corked\n");
1271 		err = -EINVAL;
1272 		goto out;
1273 	}
1274 	/*
1275 	 *	Now cork the socket to pend data.
1276 	 */
1277 	fl4 = &inet->cork.fl.u.ip4;
1278 	fl4->daddr = daddr;
1279 	fl4->saddr = saddr;
1280 	fl4->fl4_dport = dport;
1281 	fl4->fl4_sport = inet->inet_sport;
1282 	up->pending = AF_INET;
1283 
1284 do_append_data:
1285 	up->len += ulen;
1286 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1287 			     sizeof(struct udphdr), &ipc, &rt,
1288 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1289 	if (err)
1290 		udp_flush_pending_frames(sk);
1291 	else if (!corkreq)
1292 		err = udp_push_pending_frames(sk);
1293 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1294 		up->pending = 0;
1295 	release_sock(sk);
1296 
1297 out:
1298 	ip_rt_put(rt);
1299 out_free:
1300 	if (free)
1301 		kfree(ipc.opt);
1302 	if (!err)
1303 		return len;
1304 	/*
1305 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1306 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1307 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1308 	 * things).  We could add another new stat but at least for now that
1309 	 * seems like overkill.
1310 	 */
1311 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1312 		UDP_INC_STATS(sock_net(sk),
1313 			      UDP_MIB_SNDBUFERRORS, is_udplite);
1314 	}
1315 	return err;
1316 
1317 do_confirm:
1318 	if (msg->msg_flags & MSG_PROBE)
1319 		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1320 	if (!(msg->msg_flags&MSG_PROBE) || len)
1321 		goto back_from_confirm;
1322 	err = 0;
1323 	goto out;
1324 }
1325 EXPORT_SYMBOL(udp_sendmsg);
1326 
1327 void udp_splice_eof(struct socket *sock)
1328 {
1329 	struct sock *sk = sock->sk;
1330 	struct udp_sock *up = udp_sk(sk);
1331 
1332 	if (!up->pending || READ_ONCE(up->corkflag))
1333 		return;
1334 
1335 	lock_sock(sk);
1336 	if (up->pending && !READ_ONCE(up->corkflag))
1337 		udp_push_pending_frames(sk);
1338 	release_sock(sk);
1339 }
1340 EXPORT_SYMBOL_GPL(udp_splice_eof);
1341 
1342 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1343 		 size_t size, int flags)
1344 {
1345 	struct bio_vec bvec;
1346 	struct msghdr msg = { .msg_flags = flags | MSG_SPLICE_PAGES };
1347 
1348 	if (flags & MSG_SENDPAGE_NOTLAST)
1349 		msg.msg_flags |= MSG_MORE;
1350 
1351 	bvec_set_page(&bvec, page, size, offset);
1352 	iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, size);
1353 	return udp_sendmsg(sk, &msg, size);
1354 }
1355 
1356 #define UDP_SKB_IS_STATELESS 0x80000000
1357 
1358 /* all head states (dst, sk, nf conntrack) except skb extensions are
1359  * cleared by udp_rcv().
1360  *
1361  * We need to preserve secpath, if present, to eventually process
1362  * IP_CMSG_PASSSEC at recvmsg() time.
1363  *
1364  * Other extensions can be cleared.
1365  */
1366 static bool udp_try_make_stateless(struct sk_buff *skb)
1367 {
1368 	if (!skb_has_extensions(skb))
1369 		return true;
1370 
1371 	if (!secpath_exists(skb)) {
1372 		skb_ext_reset(skb);
1373 		return true;
1374 	}
1375 
1376 	return false;
1377 }
1378 
1379 static void udp_set_dev_scratch(struct sk_buff *skb)
1380 {
1381 	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1382 
1383 	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1384 	scratch->_tsize_state = skb->truesize;
1385 #if BITS_PER_LONG == 64
1386 	scratch->len = skb->len;
1387 	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1388 	scratch->is_linear = !skb_is_nonlinear(skb);
1389 #endif
1390 	if (udp_try_make_stateless(skb))
1391 		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1392 }
1393 
1394 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1395 {
1396 	/* We come here after udp_lib_checksum_complete() returned 0.
1397 	 * This means that __skb_checksum_complete() might have
1398 	 * set skb->csum_valid to 1.
1399 	 * On 64bit platforms, we can set csum_unnecessary
1400 	 * to true, but only if the skb is not shared.
1401 	 */
1402 #if BITS_PER_LONG == 64
1403 	if (!skb_shared(skb))
1404 		udp_skb_scratch(skb)->csum_unnecessary = true;
1405 #endif
1406 }
1407 
1408 static int udp_skb_truesize(struct sk_buff *skb)
1409 {
1410 	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1411 }
1412 
1413 static bool udp_skb_has_head_state(struct sk_buff *skb)
1414 {
1415 	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1416 }
1417 
1418 /* fully reclaim rmem/fwd memory allocated for skb */
1419 static void udp_rmem_release(struct sock *sk, int size, int partial,
1420 			     bool rx_queue_lock_held)
1421 {
1422 	struct udp_sock *up = udp_sk(sk);
1423 	struct sk_buff_head *sk_queue;
1424 	int amt;
1425 
1426 	if (likely(partial)) {
1427 		up->forward_deficit += size;
1428 		size = up->forward_deficit;
1429 		if (size < READ_ONCE(up->forward_threshold) &&
1430 		    !skb_queue_empty(&up->reader_queue))
1431 			return;
1432 	} else {
1433 		size += up->forward_deficit;
1434 	}
1435 	up->forward_deficit = 0;
1436 
1437 	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1438 	 * if the called don't held it already
1439 	 */
1440 	sk_queue = &sk->sk_receive_queue;
1441 	if (!rx_queue_lock_held)
1442 		spin_lock(&sk_queue->lock);
1443 
1444 
1445 	sk->sk_forward_alloc += size;
1446 	amt = (sk->sk_forward_alloc - partial) & ~(PAGE_SIZE - 1);
1447 	sk->sk_forward_alloc -= amt;
1448 
1449 	if (amt)
1450 		__sk_mem_reduce_allocated(sk, amt >> PAGE_SHIFT);
1451 
1452 	atomic_sub(size, &sk->sk_rmem_alloc);
1453 
1454 	/* this can save us from acquiring the rx queue lock on next receive */
1455 	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1456 
1457 	if (!rx_queue_lock_held)
1458 		spin_unlock(&sk_queue->lock);
1459 }
1460 
1461 /* Note: called with reader_queue.lock held.
1462  * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1463  * This avoids a cache line miss while receive_queue lock is held.
1464  * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1465  */
1466 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1467 {
1468 	prefetch(&skb->data);
1469 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1470 }
1471 EXPORT_SYMBOL(udp_skb_destructor);
1472 
1473 /* as above, but the caller held the rx queue lock, too */
1474 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1475 {
1476 	prefetch(&skb->data);
1477 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1478 }
1479 
1480 /* Idea of busylocks is to let producers grab an extra spinlock
1481  * to relieve pressure on the receive_queue spinlock shared by consumer.
1482  * Under flood, this means that only one producer can be in line
1483  * trying to acquire the receive_queue spinlock.
1484  * These busylock can be allocated on a per cpu manner, instead of a
1485  * per socket one (that would consume a cache line per socket)
1486  */
1487 static int udp_busylocks_log __read_mostly;
1488 static spinlock_t *udp_busylocks __read_mostly;
1489 
1490 static spinlock_t *busylock_acquire(void *ptr)
1491 {
1492 	spinlock_t *busy;
1493 
1494 	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1495 	spin_lock(busy);
1496 	return busy;
1497 }
1498 
1499 static void busylock_release(spinlock_t *busy)
1500 {
1501 	if (busy)
1502 		spin_unlock(busy);
1503 }
1504 
1505 static int udp_rmem_schedule(struct sock *sk, int size)
1506 {
1507 	int delta;
1508 
1509 	delta = size - sk->sk_forward_alloc;
1510 	if (delta > 0 && !__sk_mem_schedule(sk, delta, SK_MEM_RECV))
1511 		return -ENOBUFS;
1512 
1513 	return 0;
1514 }
1515 
1516 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1517 {
1518 	struct sk_buff_head *list = &sk->sk_receive_queue;
1519 	int rmem, err = -ENOMEM;
1520 	spinlock_t *busy = NULL;
1521 	int size;
1522 
1523 	/* try to avoid the costly atomic add/sub pair when the receive
1524 	 * queue is full; always allow at least a packet
1525 	 */
1526 	rmem = atomic_read(&sk->sk_rmem_alloc);
1527 	if (rmem > sk->sk_rcvbuf)
1528 		goto drop;
1529 
1530 	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1531 	 * having linear skbs :
1532 	 * - Reduce memory overhead and thus increase receive queue capacity
1533 	 * - Less cache line misses at copyout() time
1534 	 * - Less work at consume_skb() (less alien page frag freeing)
1535 	 */
1536 	if (rmem > (sk->sk_rcvbuf >> 1)) {
1537 		skb_condense(skb);
1538 
1539 		busy = busylock_acquire(sk);
1540 	}
1541 	size = skb->truesize;
1542 	udp_set_dev_scratch(skb);
1543 
1544 	/* we drop only if the receive buf is full and the receive
1545 	 * queue contains some other skb
1546 	 */
1547 	rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1548 	if (rmem > (size + (unsigned int)sk->sk_rcvbuf))
1549 		goto uncharge_drop;
1550 
1551 	spin_lock(&list->lock);
1552 	err = udp_rmem_schedule(sk, size);
1553 	if (err) {
1554 		spin_unlock(&list->lock);
1555 		goto uncharge_drop;
1556 	}
1557 
1558 	sk->sk_forward_alloc -= size;
1559 
1560 	/* no need to setup a destructor, we will explicitly release the
1561 	 * forward allocated memory on dequeue
1562 	 */
1563 	sock_skb_set_dropcount(sk, skb);
1564 
1565 	__skb_queue_tail(list, skb);
1566 	spin_unlock(&list->lock);
1567 
1568 	if (!sock_flag(sk, SOCK_DEAD))
1569 		sk->sk_data_ready(sk);
1570 
1571 	busylock_release(busy);
1572 	return 0;
1573 
1574 uncharge_drop:
1575 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1576 
1577 drop:
1578 	atomic_inc(&sk->sk_drops);
1579 	busylock_release(busy);
1580 	return err;
1581 }
1582 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1583 
1584 void udp_destruct_common(struct sock *sk)
1585 {
1586 	/* reclaim completely the forward allocated memory */
1587 	struct udp_sock *up = udp_sk(sk);
1588 	unsigned int total = 0;
1589 	struct sk_buff *skb;
1590 
1591 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1592 	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1593 		total += skb->truesize;
1594 		kfree_skb(skb);
1595 	}
1596 	udp_rmem_release(sk, total, 0, true);
1597 }
1598 EXPORT_SYMBOL_GPL(udp_destruct_common);
1599 
1600 static void udp_destruct_sock(struct sock *sk)
1601 {
1602 	udp_destruct_common(sk);
1603 	inet_sock_destruct(sk);
1604 }
1605 
1606 int udp_init_sock(struct sock *sk)
1607 {
1608 	udp_lib_init_sock(sk);
1609 	sk->sk_destruct = udp_destruct_sock;
1610 	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1611 	return 0;
1612 }
1613 
1614 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1615 {
1616 	if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1617 		bool slow = lock_sock_fast(sk);
1618 
1619 		sk_peek_offset_bwd(sk, len);
1620 		unlock_sock_fast(sk, slow);
1621 	}
1622 
1623 	if (!skb_unref(skb))
1624 		return;
1625 
1626 	/* In the more common cases we cleared the head states previously,
1627 	 * see __udp_queue_rcv_skb().
1628 	 */
1629 	if (unlikely(udp_skb_has_head_state(skb)))
1630 		skb_release_head_state(skb);
1631 	__consume_stateless_skb(skb);
1632 }
1633 EXPORT_SYMBOL_GPL(skb_consume_udp);
1634 
1635 static struct sk_buff *__first_packet_length(struct sock *sk,
1636 					     struct sk_buff_head *rcvq,
1637 					     int *total)
1638 {
1639 	struct sk_buff *skb;
1640 
1641 	while ((skb = skb_peek(rcvq)) != NULL) {
1642 		if (udp_lib_checksum_complete(skb)) {
1643 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1644 					IS_UDPLITE(sk));
1645 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1646 					IS_UDPLITE(sk));
1647 			atomic_inc(&sk->sk_drops);
1648 			__skb_unlink(skb, rcvq);
1649 			*total += skb->truesize;
1650 			kfree_skb(skb);
1651 		} else {
1652 			udp_skb_csum_unnecessary_set(skb);
1653 			break;
1654 		}
1655 	}
1656 	return skb;
1657 }
1658 
1659 /**
1660  *	first_packet_length	- return length of first packet in receive queue
1661  *	@sk: socket
1662  *
1663  *	Drops all bad checksum frames, until a valid one is found.
1664  *	Returns the length of found skb, or -1 if none is found.
1665  */
1666 static int first_packet_length(struct sock *sk)
1667 {
1668 	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1669 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1670 	struct sk_buff *skb;
1671 	int total = 0;
1672 	int res;
1673 
1674 	spin_lock_bh(&rcvq->lock);
1675 	skb = __first_packet_length(sk, rcvq, &total);
1676 	if (!skb && !skb_queue_empty_lockless(sk_queue)) {
1677 		spin_lock(&sk_queue->lock);
1678 		skb_queue_splice_tail_init(sk_queue, rcvq);
1679 		spin_unlock(&sk_queue->lock);
1680 
1681 		skb = __first_packet_length(sk, rcvq, &total);
1682 	}
1683 	res = skb ? skb->len : -1;
1684 	if (total)
1685 		udp_rmem_release(sk, total, 1, false);
1686 	spin_unlock_bh(&rcvq->lock);
1687 	return res;
1688 }
1689 
1690 /*
1691  *	IOCTL requests applicable to the UDP protocol
1692  */
1693 
1694 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1695 {
1696 	switch (cmd) {
1697 	case SIOCOUTQ:
1698 	{
1699 		int amount = sk_wmem_alloc_get(sk);
1700 
1701 		return put_user(amount, (int __user *)arg);
1702 	}
1703 
1704 	case SIOCINQ:
1705 	{
1706 		int amount = max_t(int, 0, first_packet_length(sk));
1707 
1708 		return put_user(amount, (int __user *)arg);
1709 	}
1710 
1711 	default:
1712 		return -ENOIOCTLCMD;
1713 	}
1714 
1715 	return 0;
1716 }
1717 EXPORT_SYMBOL(udp_ioctl);
1718 
1719 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1720 			       int *off, int *err)
1721 {
1722 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1723 	struct sk_buff_head *queue;
1724 	struct sk_buff *last;
1725 	long timeo;
1726 	int error;
1727 
1728 	queue = &udp_sk(sk)->reader_queue;
1729 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1730 	do {
1731 		struct sk_buff *skb;
1732 
1733 		error = sock_error(sk);
1734 		if (error)
1735 			break;
1736 
1737 		error = -EAGAIN;
1738 		do {
1739 			spin_lock_bh(&queue->lock);
1740 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1741 							err, &last);
1742 			if (skb) {
1743 				if (!(flags & MSG_PEEK))
1744 					udp_skb_destructor(sk, skb);
1745 				spin_unlock_bh(&queue->lock);
1746 				return skb;
1747 			}
1748 
1749 			if (skb_queue_empty_lockless(sk_queue)) {
1750 				spin_unlock_bh(&queue->lock);
1751 				goto busy_check;
1752 			}
1753 
1754 			/* refill the reader queue and walk it again
1755 			 * keep both queues locked to avoid re-acquiring
1756 			 * the sk_receive_queue lock if fwd memory scheduling
1757 			 * is needed.
1758 			 */
1759 			spin_lock(&sk_queue->lock);
1760 			skb_queue_splice_tail_init(sk_queue, queue);
1761 
1762 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1763 							err, &last);
1764 			if (skb && !(flags & MSG_PEEK))
1765 				udp_skb_dtor_locked(sk, skb);
1766 			spin_unlock(&sk_queue->lock);
1767 			spin_unlock_bh(&queue->lock);
1768 			if (skb)
1769 				return skb;
1770 
1771 busy_check:
1772 			if (!sk_can_busy_loop(sk))
1773 				break;
1774 
1775 			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1776 		} while (!skb_queue_empty_lockless(sk_queue));
1777 
1778 		/* sk_queue is empty, reader_queue may contain peeked packets */
1779 	} while (timeo &&
1780 		 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
1781 					      &error, &timeo,
1782 					      (struct sk_buff *)sk_queue));
1783 
1784 	*err = error;
1785 	return NULL;
1786 }
1787 EXPORT_SYMBOL(__skb_recv_udp);
1788 
1789 int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1790 {
1791 	struct sk_buff *skb;
1792 	int err;
1793 
1794 try_again:
1795 	skb = skb_recv_udp(sk, MSG_DONTWAIT, &err);
1796 	if (!skb)
1797 		return err;
1798 
1799 	if (udp_lib_checksum_complete(skb)) {
1800 		int is_udplite = IS_UDPLITE(sk);
1801 		struct net *net = sock_net(sk);
1802 
1803 		__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, is_udplite);
1804 		__UDP_INC_STATS(net, UDP_MIB_INERRORS, is_udplite);
1805 		atomic_inc(&sk->sk_drops);
1806 		kfree_skb(skb);
1807 		goto try_again;
1808 	}
1809 
1810 	WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1811 	return recv_actor(sk, skb);
1812 }
1813 EXPORT_SYMBOL(udp_read_skb);
1814 
1815 /*
1816  * 	This should be easy, if there is something there we
1817  * 	return it, otherwise we block.
1818  */
1819 
1820 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
1821 		int *addr_len)
1822 {
1823 	struct inet_sock *inet = inet_sk(sk);
1824 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1825 	struct sk_buff *skb;
1826 	unsigned int ulen, copied;
1827 	int off, err, peeking = flags & MSG_PEEK;
1828 	int is_udplite = IS_UDPLITE(sk);
1829 	bool checksum_valid = false;
1830 
1831 	if (flags & MSG_ERRQUEUE)
1832 		return ip_recv_error(sk, msg, len, addr_len);
1833 
1834 try_again:
1835 	off = sk_peek_offset(sk, flags);
1836 	skb = __skb_recv_udp(sk, flags, &off, &err);
1837 	if (!skb)
1838 		return err;
1839 
1840 	ulen = udp_skb_len(skb);
1841 	copied = len;
1842 	if (copied > ulen - off)
1843 		copied = ulen - off;
1844 	else if (copied < ulen)
1845 		msg->msg_flags |= MSG_TRUNC;
1846 
1847 	/*
1848 	 * If checksum is needed at all, try to do it while copying the
1849 	 * data.  If the data is truncated, or if we only want a partial
1850 	 * coverage checksum (UDP-Lite), do it before the copy.
1851 	 */
1852 
1853 	if (copied < ulen || peeking ||
1854 	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1855 		checksum_valid = udp_skb_csum_unnecessary(skb) ||
1856 				!__udp_lib_checksum_complete(skb);
1857 		if (!checksum_valid)
1858 			goto csum_copy_err;
1859 	}
1860 
1861 	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1862 		if (udp_skb_is_linear(skb))
1863 			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1864 		else
1865 			err = skb_copy_datagram_msg(skb, off, msg, copied);
1866 	} else {
1867 		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1868 
1869 		if (err == -EINVAL)
1870 			goto csum_copy_err;
1871 	}
1872 
1873 	if (unlikely(err)) {
1874 		if (!peeking) {
1875 			atomic_inc(&sk->sk_drops);
1876 			UDP_INC_STATS(sock_net(sk),
1877 				      UDP_MIB_INERRORS, is_udplite);
1878 		}
1879 		kfree_skb(skb);
1880 		return err;
1881 	}
1882 
1883 	if (!peeking)
1884 		UDP_INC_STATS(sock_net(sk),
1885 			      UDP_MIB_INDATAGRAMS, is_udplite);
1886 
1887 	sock_recv_cmsgs(msg, sk, skb);
1888 
1889 	/* Copy the address. */
1890 	if (sin) {
1891 		sin->sin_family = AF_INET;
1892 		sin->sin_port = udp_hdr(skb)->source;
1893 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1894 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1895 		*addr_len = sizeof(*sin);
1896 
1897 		BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
1898 						      (struct sockaddr *)sin);
1899 	}
1900 
1901 	if (udp_sk(sk)->gro_enabled)
1902 		udp_cmsg_recv(msg, sk, skb);
1903 
1904 	if (inet->cmsg_flags)
1905 		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1906 
1907 	err = copied;
1908 	if (flags & MSG_TRUNC)
1909 		err = ulen;
1910 
1911 	skb_consume_udp(sk, skb, peeking ? -err : err);
1912 	return err;
1913 
1914 csum_copy_err:
1915 	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1916 				 udp_skb_destructor)) {
1917 		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1918 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1919 	}
1920 	kfree_skb(skb);
1921 
1922 	/* starting over for a new packet, but check if we need to yield */
1923 	cond_resched();
1924 	msg->msg_flags &= ~MSG_TRUNC;
1925 	goto try_again;
1926 }
1927 
1928 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1929 {
1930 	/* This check is replicated from __ip4_datagram_connect() and
1931 	 * intended to prevent BPF program called below from accessing bytes
1932 	 * that are out of the bound specified by user in addr_len.
1933 	 */
1934 	if (addr_len < sizeof(struct sockaddr_in))
1935 		return -EINVAL;
1936 
1937 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr);
1938 }
1939 EXPORT_SYMBOL(udp_pre_connect);
1940 
1941 int __udp_disconnect(struct sock *sk, int flags)
1942 {
1943 	struct inet_sock *inet = inet_sk(sk);
1944 	/*
1945 	 *	1003.1g - break association.
1946 	 */
1947 
1948 	sk->sk_state = TCP_CLOSE;
1949 	inet->inet_daddr = 0;
1950 	inet->inet_dport = 0;
1951 	sock_rps_reset_rxhash(sk);
1952 	sk->sk_bound_dev_if = 0;
1953 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) {
1954 		inet_reset_saddr(sk);
1955 		if (sk->sk_prot->rehash &&
1956 		    (sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1957 			sk->sk_prot->rehash(sk);
1958 	}
1959 
1960 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1961 		sk->sk_prot->unhash(sk);
1962 		inet->inet_sport = 0;
1963 	}
1964 	sk_dst_reset(sk);
1965 	return 0;
1966 }
1967 EXPORT_SYMBOL(__udp_disconnect);
1968 
1969 int udp_disconnect(struct sock *sk, int flags)
1970 {
1971 	lock_sock(sk);
1972 	__udp_disconnect(sk, flags);
1973 	release_sock(sk);
1974 	return 0;
1975 }
1976 EXPORT_SYMBOL(udp_disconnect);
1977 
1978 void udp_lib_unhash(struct sock *sk)
1979 {
1980 	if (sk_hashed(sk)) {
1981 		struct udp_table *udptable = udp_get_table_prot(sk);
1982 		struct udp_hslot *hslot, *hslot2;
1983 
1984 		hslot  = udp_hashslot(udptable, sock_net(sk),
1985 				      udp_sk(sk)->udp_port_hash);
1986 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1987 
1988 		spin_lock_bh(&hslot->lock);
1989 		if (rcu_access_pointer(sk->sk_reuseport_cb))
1990 			reuseport_detach_sock(sk);
1991 		if (sk_del_node_init_rcu(sk)) {
1992 			hslot->count--;
1993 			inet_sk(sk)->inet_num = 0;
1994 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1995 
1996 			spin_lock(&hslot2->lock);
1997 			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1998 			hslot2->count--;
1999 			spin_unlock(&hslot2->lock);
2000 		}
2001 		spin_unlock_bh(&hslot->lock);
2002 	}
2003 }
2004 EXPORT_SYMBOL(udp_lib_unhash);
2005 
2006 /*
2007  * inet_rcv_saddr was changed, we must rehash secondary hash
2008  */
2009 void udp_lib_rehash(struct sock *sk, u16 newhash)
2010 {
2011 	if (sk_hashed(sk)) {
2012 		struct udp_table *udptable = udp_get_table_prot(sk);
2013 		struct udp_hslot *hslot, *hslot2, *nhslot2;
2014 
2015 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2016 		nhslot2 = udp_hashslot2(udptable, newhash);
2017 		udp_sk(sk)->udp_portaddr_hash = newhash;
2018 
2019 		if (hslot2 != nhslot2 ||
2020 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
2021 			hslot = udp_hashslot(udptable, sock_net(sk),
2022 					     udp_sk(sk)->udp_port_hash);
2023 			/* we must lock primary chain too */
2024 			spin_lock_bh(&hslot->lock);
2025 			if (rcu_access_pointer(sk->sk_reuseport_cb))
2026 				reuseport_detach_sock(sk);
2027 
2028 			if (hslot2 != nhslot2) {
2029 				spin_lock(&hslot2->lock);
2030 				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2031 				hslot2->count--;
2032 				spin_unlock(&hslot2->lock);
2033 
2034 				spin_lock(&nhslot2->lock);
2035 				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
2036 							 &nhslot2->head);
2037 				nhslot2->count++;
2038 				spin_unlock(&nhslot2->lock);
2039 			}
2040 
2041 			spin_unlock_bh(&hslot->lock);
2042 		}
2043 	}
2044 }
2045 EXPORT_SYMBOL(udp_lib_rehash);
2046 
2047 void udp_v4_rehash(struct sock *sk)
2048 {
2049 	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
2050 					  inet_sk(sk)->inet_rcv_saddr,
2051 					  inet_sk(sk)->inet_num);
2052 	udp_lib_rehash(sk, new_hash);
2053 }
2054 
2055 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2056 {
2057 	int rc;
2058 
2059 	if (inet_sk(sk)->inet_daddr) {
2060 		sock_rps_save_rxhash(sk, skb);
2061 		sk_mark_napi_id(sk, skb);
2062 		sk_incoming_cpu_update(sk);
2063 	} else {
2064 		sk_mark_napi_id_once(sk, skb);
2065 	}
2066 
2067 	rc = __udp_enqueue_schedule_skb(sk, skb);
2068 	if (rc < 0) {
2069 		int is_udplite = IS_UDPLITE(sk);
2070 		int drop_reason;
2071 
2072 		/* Note that an ENOMEM error is charged twice */
2073 		if (rc == -ENOMEM) {
2074 			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
2075 					is_udplite);
2076 			drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
2077 		} else {
2078 			UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS,
2079 				      is_udplite);
2080 			drop_reason = SKB_DROP_REASON_PROTO_MEM;
2081 		}
2082 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2083 		kfree_skb_reason(skb, drop_reason);
2084 		trace_udp_fail_queue_rcv_skb(rc, sk);
2085 		return -1;
2086 	}
2087 
2088 	return 0;
2089 }
2090 
2091 /* returns:
2092  *  -1: error
2093  *   0: success
2094  *  >0: "udp encap" protocol resubmission
2095  *
2096  * Note that in the success and error cases, the skb is assumed to
2097  * have either been requeued or freed.
2098  */
2099 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
2100 {
2101 	int drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2102 	struct udp_sock *up = udp_sk(sk);
2103 	int is_udplite = IS_UDPLITE(sk);
2104 
2105 	/*
2106 	 *	Charge it to the socket, dropping if the queue is full.
2107 	 */
2108 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
2109 		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2110 		goto drop;
2111 	}
2112 	nf_reset_ct(skb);
2113 
2114 	if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) {
2115 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2116 
2117 		/*
2118 		 * This is an encapsulation socket so pass the skb to
2119 		 * the socket's udp_encap_rcv() hook. Otherwise, just
2120 		 * fall through and pass this up the UDP socket.
2121 		 * up->encap_rcv() returns the following value:
2122 		 * =0 if skb was successfully passed to the encap
2123 		 *    handler or was discarded by it.
2124 		 * >0 if skb should be passed on to UDP.
2125 		 * <0 if skb should be resubmitted as proto -N
2126 		 */
2127 
2128 		/* if we're overly short, let UDP handle it */
2129 		encap_rcv = READ_ONCE(up->encap_rcv);
2130 		if (encap_rcv) {
2131 			int ret;
2132 
2133 			/* Verify checksum before giving to encap */
2134 			if (udp_lib_checksum_complete(skb))
2135 				goto csum_error;
2136 
2137 			ret = encap_rcv(sk, skb);
2138 			if (ret <= 0) {
2139 				__UDP_INC_STATS(sock_net(sk),
2140 						UDP_MIB_INDATAGRAMS,
2141 						is_udplite);
2142 				return -ret;
2143 			}
2144 		}
2145 
2146 		/* FALLTHROUGH -- it's a UDP Packet */
2147 	}
2148 
2149 	/*
2150 	 * 	UDP-Lite specific tests, ignored on UDP sockets
2151 	 */
2152 	if ((up->pcflag & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
2153 
2154 		/*
2155 		 * MIB statistics other than incrementing the error count are
2156 		 * disabled for the following two types of errors: these depend
2157 		 * on the application settings, not on the functioning of the
2158 		 * protocol stack as such.
2159 		 *
2160 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
2161 		 * way ... to ... at least let the receiving application block
2162 		 * delivery of packets with coverage values less than a value
2163 		 * provided by the application."
2164 		 */
2165 		if (up->pcrlen == 0) {          /* full coverage was set  */
2166 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2167 					    UDP_SKB_CB(skb)->cscov, skb->len);
2168 			goto drop;
2169 		}
2170 		/* The next case involves violating the min. coverage requested
2171 		 * by the receiver. This is subtle: if receiver wants x and x is
2172 		 * greater than the buffersize/MTU then receiver will complain
2173 		 * that it wants x while sender emits packets of smaller size y.
2174 		 * Therefore the above ...()->partial_cov statement is essential.
2175 		 */
2176 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
2177 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2178 					    UDP_SKB_CB(skb)->cscov, up->pcrlen);
2179 			goto drop;
2180 		}
2181 	}
2182 
2183 	prefetch(&sk->sk_rmem_alloc);
2184 	if (rcu_access_pointer(sk->sk_filter) &&
2185 	    udp_lib_checksum_complete(skb))
2186 			goto csum_error;
2187 
2188 	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) {
2189 		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2190 		goto drop;
2191 	}
2192 
2193 	udp_csum_pull_header(skb);
2194 
2195 	ipv4_pktinfo_prepare(sk, skb);
2196 	return __udp_queue_rcv_skb(sk, skb);
2197 
2198 csum_error:
2199 	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2200 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2201 drop:
2202 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2203 	atomic_inc(&sk->sk_drops);
2204 	kfree_skb_reason(skb, drop_reason);
2205 	return -1;
2206 }
2207 
2208 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2209 {
2210 	struct sk_buff *next, *segs;
2211 	int ret;
2212 
2213 	if (likely(!udp_unexpected_gso(sk, skb)))
2214 		return udp_queue_rcv_one_skb(sk, skb);
2215 
2216 	BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET);
2217 	__skb_push(skb, -skb_mac_offset(skb));
2218 	segs = udp_rcv_segment(sk, skb, true);
2219 	skb_list_walk_safe(segs, skb, next) {
2220 		__skb_pull(skb, skb_transport_offset(skb));
2221 
2222 		udp_post_segment_fix_csum(skb);
2223 		ret = udp_queue_rcv_one_skb(sk, skb);
2224 		if (ret > 0)
2225 			ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret);
2226 	}
2227 	return 0;
2228 }
2229 
2230 /* For TCP sockets, sk_rx_dst is protected by socket lock
2231  * For UDP, we use xchg() to guard against concurrent changes.
2232  */
2233 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2234 {
2235 	struct dst_entry *old;
2236 
2237 	if (dst_hold_safe(dst)) {
2238 		old = xchg((__force struct dst_entry **)&sk->sk_rx_dst, dst);
2239 		dst_release(old);
2240 		return old != dst;
2241 	}
2242 	return false;
2243 }
2244 EXPORT_SYMBOL(udp_sk_rx_dst_set);
2245 
2246 /*
2247  *	Multicasts and broadcasts go to each listener.
2248  *
2249  *	Note: called only from the BH handler context.
2250  */
2251 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2252 				    struct udphdr  *uh,
2253 				    __be32 saddr, __be32 daddr,
2254 				    struct udp_table *udptable,
2255 				    int proto)
2256 {
2257 	struct sock *sk, *first = NULL;
2258 	unsigned short hnum = ntohs(uh->dest);
2259 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2260 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2261 	unsigned int offset = offsetof(typeof(*sk), sk_node);
2262 	int dif = skb->dev->ifindex;
2263 	int sdif = inet_sdif(skb);
2264 	struct hlist_node *node;
2265 	struct sk_buff *nskb;
2266 
2267 	if (use_hash2) {
2268 		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2269 			    udptable->mask;
2270 		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2271 start_lookup:
2272 		hslot = &udptable->hash2[hash2];
2273 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2274 	}
2275 
2276 	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2277 		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2278 					 uh->source, saddr, dif, sdif, hnum))
2279 			continue;
2280 
2281 		if (!first) {
2282 			first = sk;
2283 			continue;
2284 		}
2285 		nskb = skb_clone(skb, GFP_ATOMIC);
2286 
2287 		if (unlikely(!nskb)) {
2288 			atomic_inc(&sk->sk_drops);
2289 			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2290 					IS_UDPLITE(sk));
2291 			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
2292 					IS_UDPLITE(sk));
2293 			continue;
2294 		}
2295 		if (udp_queue_rcv_skb(sk, nskb) > 0)
2296 			consume_skb(nskb);
2297 	}
2298 
2299 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2300 	if (use_hash2 && hash2 != hash2_any) {
2301 		hash2 = hash2_any;
2302 		goto start_lookup;
2303 	}
2304 
2305 	if (first) {
2306 		if (udp_queue_rcv_skb(first, skb) > 0)
2307 			consume_skb(skb);
2308 	} else {
2309 		kfree_skb(skb);
2310 		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2311 				proto == IPPROTO_UDPLITE);
2312 	}
2313 	return 0;
2314 }
2315 
2316 /* Initialize UDP checksum. If exited with zero value (success),
2317  * CHECKSUM_UNNECESSARY means, that no more checks are required.
2318  * Otherwise, csum completion requires checksumming packet body,
2319  * including udp header and folding it to skb->csum.
2320  */
2321 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2322 				 int proto)
2323 {
2324 	int err;
2325 
2326 	UDP_SKB_CB(skb)->partial_cov = 0;
2327 	UDP_SKB_CB(skb)->cscov = skb->len;
2328 
2329 	if (proto == IPPROTO_UDPLITE) {
2330 		err = udplite_checksum_init(skb, uh);
2331 		if (err)
2332 			return err;
2333 
2334 		if (UDP_SKB_CB(skb)->partial_cov) {
2335 			skb->csum = inet_compute_pseudo(skb, proto);
2336 			return 0;
2337 		}
2338 	}
2339 
2340 	/* Note, we are only interested in != 0 or == 0, thus the
2341 	 * force to int.
2342 	 */
2343 	err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2344 							inet_compute_pseudo);
2345 	if (err)
2346 		return err;
2347 
2348 	if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2349 		/* If SW calculated the value, we know it's bad */
2350 		if (skb->csum_complete_sw)
2351 			return 1;
2352 
2353 		/* HW says the value is bad. Let's validate that.
2354 		 * skb->csum is no longer the full packet checksum,
2355 		 * so don't treat it as such.
2356 		 */
2357 		skb_checksum_complete_unset(skb);
2358 	}
2359 
2360 	return 0;
2361 }
2362 
2363 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2364  * return code conversion for ip layer consumption
2365  */
2366 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2367 			       struct udphdr *uh)
2368 {
2369 	int ret;
2370 
2371 	if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2372 		skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2373 
2374 	ret = udp_queue_rcv_skb(sk, skb);
2375 
2376 	/* a return value > 0 means to resubmit the input, but
2377 	 * it wants the return to be -protocol, or 0
2378 	 */
2379 	if (ret > 0)
2380 		return -ret;
2381 	return 0;
2382 }
2383 
2384 /*
2385  *	All we need to do is get the socket, and then do a checksum.
2386  */
2387 
2388 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2389 		   int proto)
2390 {
2391 	struct sock *sk;
2392 	struct udphdr *uh;
2393 	unsigned short ulen;
2394 	struct rtable *rt = skb_rtable(skb);
2395 	__be32 saddr, daddr;
2396 	struct net *net = dev_net(skb->dev);
2397 	bool refcounted;
2398 	int drop_reason;
2399 
2400 	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2401 
2402 	/*
2403 	 *  Validate the packet.
2404 	 */
2405 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2406 		goto drop;		/* No space for header. */
2407 
2408 	uh   = udp_hdr(skb);
2409 	ulen = ntohs(uh->len);
2410 	saddr = ip_hdr(skb)->saddr;
2411 	daddr = ip_hdr(skb)->daddr;
2412 
2413 	if (ulen > skb->len)
2414 		goto short_packet;
2415 
2416 	if (proto == IPPROTO_UDP) {
2417 		/* UDP validates ulen. */
2418 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2419 			goto short_packet;
2420 		uh = udp_hdr(skb);
2421 	}
2422 
2423 	if (udp4_csum_init(skb, uh, proto))
2424 		goto csum_error;
2425 
2426 	sk = skb_steal_sock(skb, &refcounted);
2427 	if (sk) {
2428 		struct dst_entry *dst = skb_dst(skb);
2429 		int ret;
2430 
2431 		if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst))
2432 			udp_sk_rx_dst_set(sk, dst);
2433 
2434 		ret = udp_unicast_rcv_skb(sk, skb, uh);
2435 		if (refcounted)
2436 			sock_put(sk);
2437 		return ret;
2438 	}
2439 
2440 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2441 		return __udp4_lib_mcast_deliver(net, skb, uh,
2442 						saddr, daddr, udptable, proto);
2443 
2444 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2445 	if (sk)
2446 		return udp_unicast_rcv_skb(sk, skb, uh);
2447 
2448 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2449 		goto drop;
2450 	nf_reset_ct(skb);
2451 
2452 	/* No socket. Drop packet silently, if checksum is wrong */
2453 	if (udp_lib_checksum_complete(skb))
2454 		goto csum_error;
2455 
2456 	drop_reason = SKB_DROP_REASON_NO_SOCKET;
2457 	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2458 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2459 
2460 	/*
2461 	 * Hmm.  We got an UDP packet to a port to which we
2462 	 * don't wanna listen.  Ignore it.
2463 	 */
2464 	kfree_skb_reason(skb, drop_reason);
2465 	return 0;
2466 
2467 short_packet:
2468 	drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
2469 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2470 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2471 			    &saddr, ntohs(uh->source),
2472 			    ulen, skb->len,
2473 			    &daddr, ntohs(uh->dest));
2474 	goto drop;
2475 
2476 csum_error:
2477 	/*
2478 	 * RFC1122: OK.  Discards the bad packet silently (as far as
2479 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2480 	 */
2481 	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2482 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2483 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2484 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2485 			    ulen);
2486 	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2487 drop:
2488 	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2489 	kfree_skb_reason(skb, drop_reason);
2490 	return 0;
2491 }
2492 
2493 /* We can only early demux multicast if there is a single matching socket.
2494  * If more than one socket found returns NULL
2495  */
2496 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2497 						  __be16 loc_port, __be32 loc_addr,
2498 						  __be16 rmt_port, __be32 rmt_addr,
2499 						  int dif, int sdif)
2500 {
2501 	struct udp_table *udptable = net->ipv4.udp_table;
2502 	unsigned short hnum = ntohs(loc_port);
2503 	struct sock *sk, *result;
2504 	struct udp_hslot *hslot;
2505 	unsigned int slot;
2506 
2507 	slot = udp_hashfn(net, hnum, udptable->mask);
2508 	hslot = &udptable->hash[slot];
2509 
2510 	/* Do not bother scanning a too big list */
2511 	if (hslot->count > 10)
2512 		return NULL;
2513 
2514 	result = NULL;
2515 	sk_for_each_rcu(sk, &hslot->head) {
2516 		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2517 					rmt_port, rmt_addr, dif, sdif, hnum)) {
2518 			if (result)
2519 				return NULL;
2520 			result = sk;
2521 		}
2522 	}
2523 
2524 	return result;
2525 }
2526 
2527 /* For unicast we should only early demux connected sockets or we can
2528  * break forwarding setups.  The chains here can be long so only check
2529  * if the first socket is an exact match and if not move on.
2530  */
2531 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2532 					    __be16 loc_port, __be32 loc_addr,
2533 					    __be16 rmt_port, __be32 rmt_addr,
2534 					    int dif, int sdif)
2535 {
2536 	struct udp_table *udptable = net->ipv4.udp_table;
2537 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2538 	unsigned short hnum = ntohs(loc_port);
2539 	unsigned int hash2, slot2;
2540 	struct udp_hslot *hslot2;
2541 	__portpair ports;
2542 	struct sock *sk;
2543 
2544 	hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2545 	slot2 = hash2 & udptable->mask;
2546 	hslot2 = &udptable->hash2[slot2];
2547 	ports = INET_COMBINED_PORTS(rmt_port, hnum);
2548 
2549 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2550 		if (inet_match(net, sk, acookie, ports, dif, sdif))
2551 			return sk;
2552 		/* Only check first socket in chain */
2553 		break;
2554 	}
2555 	return NULL;
2556 }
2557 
2558 int udp_v4_early_demux(struct sk_buff *skb)
2559 {
2560 	struct net *net = dev_net(skb->dev);
2561 	struct in_device *in_dev = NULL;
2562 	const struct iphdr *iph;
2563 	const struct udphdr *uh;
2564 	struct sock *sk = NULL;
2565 	struct dst_entry *dst;
2566 	int dif = skb->dev->ifindex;
2567 	int sdif = inet_sdif(skb);
2568 	int ours;
2569 
2570 	/* validate the packet */
2571 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2572 		return 0;
2573 
2574 	iph = ip_hdr(skb);
2575 	uh = udp_hdr(skb);
2576 
2577 	if (skb->pkt_type == PACKET_MULTICAST) {
2578 		in_dev = __in_dev_get_rcu(skb->dev);
2579 
2580 		if (!in_dev)
2581 			return 0;
2582 
2583 		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2584 				       iph->protocol);
2585 		if (!ours)
2586 			return 0;
2587 
2588 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2589 						   uh->source, iph->saddr,
2590 						   dif, sdif);
2591 	} else if (skb->pkt_type == PACKET_HOST) {
2592 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2593 					     uh->source, iph->saddr, dif, sdif);
2594 	}
2595 
2596 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2597 		return 0;
2598 
2599 	skb->sk = sk;
2600 	skb->destructor = sock_efree;
2601 	dst = rcu_dereference(sk->sk_rx_dst);
2602 
2603 	if (dst)
2604 		dst = dst_check(dst, 0);
2605 	if (dst) {
2606 		u32 itag = 0;
2607 
2608 		/* set noref for now.
2609 		 * any place which wants to hold dst has to call
2610 		 * dst_hold_safe()
2611 		 */
2612 		skb_dst_set_noref(skb, dst);
2613 
2614 		/* for unconnected multicast sockets we need to validate
2615 		 * the source on each packet
2616 		 */
2617 		if (!inet_sk(sk)->inet_daddr && in_dev)
2618 			return ip_mc_validate_source(skb, iph->daddr,
2619 						     iph->saddr,
2620 						     iph->tos & IPTOS_RT_MASK,
2621 						     skb->dev, in_dev, &itag);
2622 	}
2623 	return 0;
2624 }
2625 
2626 int udp_rcv(struct sk_buff *skb)
2627 {
2628 	return __udp4_lib_rcv(skb, dev_net(skb->dev)->ipv4.udp_table, IPPROTO_UDP);
2629 }
2630 
2631 void udp_destroy_sock(struct sock *sk)
2632 {
2633 	struct udp_sock *up = udp_sk(sk);
2634 	bool slow = lock_sock_fast(sk);
2635 
2636 	/* protects from races with udp_abort() */
2637 	sock_set_flag(sk, SOCK_DEAD);
2638 	udp_flush_pending_frames(sk);
2639 	unlock_sock_fast(sk, slow);
2640 	if (static_branch_unlikely(&udp_encap_needed_key)) {
2641 		if (up->encap_type) {
2642 			void (*encap_destroy)(struct sock *sk);
2643 			encap_destroy = READ_ONCE(up->encap_destroy);
2644 			if (encap_destroy)
2645 				encap_destroy(sk);
2646 		}
2647 		if (up->encap_enabled)
2648 			static_branch_dec(&udp_encap_needed_key);
2649 	}
2650 }
2651 
2652 /*
2653  *	Socket option code for UDP
2654  */
2655 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2656 		       sockptr_t optval, unsigned int optlen,
2657 		       int (*push_pending_frames)(struct sock *))
2658 {
2659 	struct udp_sock *up = udp_sk(sk);
2660 	int val, valbool;
2661 	int err = 0;
2662 	int is_udplite = IS_UDPLITE(sk);
2663 
2664 	if (level == SOL_SOCKET) {
2665 		err = sk_setsockopt(sk, level, optname, optval, optlen);
2666 
2667 		if (optname == SO_RCVBUF || optname == SO_RCVBUFFORCE) {
2668 			sockopt_lock_sock(sk);
2669 			/* paired with READ_ONCE in udp_rmem_release() */
2670 			WRITE_ONCE(up->forward_threshold, sk->sk_rcvbuf >> 2);
2671 			sockopt_release_sock(sk);
2672 		}
2673 		return err;
2674 	}
2675 
2676 	if (optlen < sizeof(int))
2677 		return -EINVAL;
2678 
2679 	if (copy_from_sockptr(&val, optval, sizeof(val)))
2680 		return -EFAULT;
2681 
2682 	valbool = val ? 1 : 0;
2683 
2684 	switch (optname) {
2685 	case UDP_CORK:
2686 		if (val != 0) {
2687 			WRITE_ONCE(up->corkflag, 1);
2688 		} else {
2689 			WRITE_ONCE(up->corkflag, 0);
2690 			lock_sock(sk);
2691 			push_pending_frames(sk);
2692 			release_sock(sk);
2693 		}
2694 		break;
2695 
2696 	case UDP_ENCAP:
2697 		switch (val) {
2698 		case 0:
2699 #ifdef CONFIG_XFRM
2700 		case UDP_ENCAP_ESPINUDP:
2701 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2702 #if IS_ENABLED(CONFIG_IPV6)
2703 			if (sk->sk_family == AF_INET6)
2704 				up->encap_rcv = ipv6_stub->xfrm6_udp_encap_rcv;
2705 			else
2706 #endif
2707 				up->encap_rcv = xfrm4_udp_encap_rcv;
2708 #endif
2709 			fallthrough;
2710 		case UDP_ENCAP_L2TPINUDP:
2711 			up->encap_type = val;
2712 			lock_sock(sk);
2713 			udp_tunnel_encap_enable(sk->sk_socket);
2714 			release_sock(sk);
2715 			break;
2716 		default:
2717 			err = -ENOPROTOOPT;
2718 			break;
2719 		}
2720 		break;
2721 
2722 	case UDP_NO_CHECK6_TX:
2723 		up->no_check6_tx = valbool;
2724 		break;
2725 
2726 	case UDP_NO_CHECK6_RX:
2727 		up->no_check6_rx = valbool;
2728 		break;
2729 
2730 	case UDP_SEGMENT:
2731 		if (val < 0 || val > USHRT_MAX)
2732 			return -EINVAL;
2733 		WRITE_ONCE(up->gso_size, val);
2734 		break;
2735 
2736 	case UDP_GRO:
2737 		lock_sock(sk);
2738 
2739 		/* when enabling GRO, accept the related GSO packet type */
2740 		if (valbool)
2741 			udp_tunnel_encap_enable(sk->sk_socket);
2742 		up->gro_enabled = valbool;
2743 		up->accept_udp_l4 = valbool;
2744 		release_sock(sk);
2745 		break;
2746 
2747 	/*
2748 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2749 	 */
2750 	/* The sender sets actual checksum coverage length via this option.
2751 	 * The case coverage > packet length is handled by send module. */
2752 	case UDPLITE_SEND_CSCOV:
2753 		if (!is_udplite)         /* Disable the option on UDP sockets */
2754 			return -ENOPROTOOPT;
2755 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2756 			val = 8;
2757 		else if (val > USHRT_MAX)
2758 			val = USHRT_MAX;
2759 		up->pcslen = val;
2760 		up->pcflag |= UDPLITE_SEND_CC;
2761 		break;
2762 
2763 	/* The receiver specifies a minimum checksum coverage value. To make
2764 	 * sense, this should be set to at least 8 (as done below). If zero is
2765 	 * used, this again means full checksum coverage.                     */
2766 	case UDPLITE_RECV_CSCOV:
2767 		if (!is_udplite)         /* Disable the option on UDP sockets */
2768 			return -ENOPROTOOPT;
2769 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2770 			val = 8;
2771 		else if (val > USHRT_MAX)
2772 			val = USHRT_MAX;
2773 		up->pcrlen = val;
2774 		up->pcflag |= UDPLITE_RECV_CC;
2775 		break;
2776 
2777 	default:
2778 		err = -ENOPROTOOPT;
2779 		break;
2780 	}
2781 
2782 	return err;
2783 }
2784 EXPORT_SYMBOL(udp_lib_setsockopt);
2785 
2786 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
2787 		   unsigned int optlen)
2788 {
2789 	if (level == SOL_UDP  ||  level == SOL_UDPLITE || level == SOL_SOCKET)
2790 		return udp_lib_setsockopt(sk, level, optname,
2791 					  optval, optlen,
2792 					  udp_push_pending_frames);
2793 	return ip_setsockopt(sk, level, optname, optval, optlen);
2794 }
2795 
2796 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2797 		       char __user *optval, int __user *optlen)
2798 {
2799 	struct udp_sock *up = udp_sk(sk);
2800 	int val, len;
2801 
2802 	if (get_user(len, optlen))
2803 		return -EFAULT;
2804 
2805 	len = min_t(unsigned int, len, sizeof(int));
2806 
2807 	if (len < 0)
2808 		return -EINVAL;
2809 
2810 	switch (optname) {
2811 	case UDP_CORK:
2812 		val = READ_ONCE(up->corkflag);
2813 		break;
2814 
2815 	case UDP_ENCAP:
2816 		val = up->encap_type;
2817 		break;
2818 
2819 	case UDP_NO_CHECK6_TX:
2820 		val = up->no_check6_tx;
2821 		break;
2822 
2823 	case UDP_NO_CHECK6_RX:
2824 		val = up->no_check6_rx;
2825 		break;
2826 
2827 	case UDP_SEGMENT:
2828 		val = READ_ONCE(up->gso_size);
2829 		break;
2830 
2831 	case UDP_GRO:
2832 		val = up->gro_enabled;
2833 		break;
2834 
2835 	/* The following two cannot be changed on UDP sockets, the return is
2836 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2837 	case UDPLITE_SEND_CSCOV:
2838 		val = up->pcslen;
2839 		break;
2840 
2841 	case UDPLITE_RECV_CSCOV:
2842 		val = up->pcrlen;
2843 		break;
2844 
2845 	default:
2846 		return -ENOPROTOOPT;
2847 	}
2848 
2849 	if (put_user(len, optlen))
2850 		return -EFAULT;
2851 	if (copy_to_user(optval, &val, len))
2852 		return -EFAULT;
2853 	return 0;
2854 }
2855 EXPORT_SYMBOL(udp_lib_getsockopt);
2856 
2857 int udp_getsockopt(struct sock *sk, int level, int optname,
2858 		   char __user *optval, int __user *optlen)
2859 {
2860 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2861 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2862 	return ip_getsockopt(sk, level, optname, optval, optlen);
2863 }
2864 
2865 /**
2866  * 	udp_poll - wait for a UDP event.
2867  *	@file: - file struct
2868  *	@sock: - socket
2869  *	@wait: - poll table
2870  *
2871  *	This is same as datagram poll, except for the special case of
2872  *	blocking sockets. If application is using a blocking fd
2873  *	and a packet with checksum error is in the queue;
2874  *	then it could get return from select indicating data available
2875  *	but then block when reading it. Add special case code
2876  *	to work around these arguably broken applications.
2877  */
2878 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2879 {
2880 	__poll_t mask = datagram_poll(file, sock, wait);
2881 	struct sock *sk = sock->sk;
2882 
2883 	if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
2884 		mask |= EPOLLIN | EPOLLRDNORM;
2885 
2886 	/* Check for false positives due to checksum errors */
2887 	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2888 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2889 		mask &= ~(EPOLLIN | EPOLLRDNORM);
2890 
2891 	/* psock ingress_msg queue should not contain any bad checksum frames */
2892 	if (sk_is_readable(sk))
2893 		mask |= EPOLLIN | EPOLLRDNORM;
2894 	return mask;
2895 
2896 }
2897 EXPORT_SYMBOL(udp_poll);
2898 
2899 int udp_abort(struct sock *sk, int err)
2900 {
2901 	if (!has_current_bpf_ctx())
2902 		lock_sock(sk);
2903 
2904 	/* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing
2905 	 * with close()
2906 	 */
2907 	if (sock_flag(sk, SOCK_DEAD))
2908 		goto out;
2909 
2910 	sk->sk_err = err;
2911 	sk_error_report(sk);
2912 	__udp_disconnect(sk, 0);
2913 
2914 out:
2915 	if (!has_current_bpf_ctx())
2916 		release_sock(sk);
2917 
2918 	return 0;
2919 }
2920 EXPORT_SYMBOL_GPL(udp_abort);
2921 
2922 struct proto udp_prot = {
2923 	.name			= "UDP",
2924 	.owner			= THIS_MODULE,
2925 	.close			= udp_lib_close,
2926 	.pre_connect		= udp_pre_connect,
2927 	.connect		= ip4_datagram_connect,
2928 	.disconnect		= udp_disconnect,
2929 	.ioctl			= udp_ioctl,
2930 	.init			= udp_init_sock,
2931 	.destroy		= udp_destroy_sock,
2932 	.setsockopt		= udp_setsockopt,
2933 	.getsockopt		= udp_getsockopt,
2934 	.sendmsg		= udp_sendmsg,
2935 	.recvmsg		= udp_recvmsg,
2936 	.splice_eof		= udp_splice_eof,
2937 	.sendpage		= udp_sendpage,
2938 	.release_cb		= ip4_datagram_release_cb,
2939 	.hash			= udp_lib_hash,
2940 	.unhash			= udp_lib_unhash,
2941 	.rehash			= udp_v4_rehash,
2942 	.get_port		= udp_v4_get_port,
2943 	.put_port		= udp_lib_unhash,
2944 #ifdef CONFIG_BPF_SYSCALL
2945 	.psock_update_sk_prot	= udp_bpf_update_proto,
2946 #endif
2947 	.memory_allocated	= &udp_memory_allocated,
2948 	.per_cpu_fw_alloc	= &udp_memory_per_cpu_fw_alloc,
2949 
2950 	.sysctl_mem		= sysctl_udp_mem,
2951 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2952 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2953 	.obj_size		= sizeof(struct udp_sock),
2954 	.h.udp_table		= NULL,
2955 	.diag_destroy		= udp_abort,
2956 };
2957 EXPORT_SYMBOL(udp_prot);
2958 
2959 /* ------------------------------------------------------------------------ */
2960 #ifdef CONFIG_PROC_FS
2961 
2962 static unsigned short seq_file_family(const struct seq_file *seq);
2963 static bool seq_sk_match(struct seq_file *seq, const struct sock *sk)
2964 {
2965 	unsigned short family = seq_file_family(seq);
2966 
2967 	/* AF_UNSPEC is used as a match all */
2968 	return ((family == AF_UNSPEC || family == sk->sk_family) &&
2969 		net_eq(sock_net(sk), seq_file_net(seq)));
2970 }
2971 
2972 #ifdef CONFIG_BPF_SYSCALL
2973 static const struct seq_operations bpf_iter_udp_seq_ops;
2974 #endif
2975 static struct udp_table *udp_get_table_seq(struct seq_file *seq,
2976 					   struct net *net)
2977 {
2978 	const struct udp_seq_afinfo *afinfo;
2979 
2980 #ifdef CONFIG_BPF_SYSCALL
2981 	if (seq->op == &bpf_iter_udp_seq_ops)
2982 		return net->ipv4.udp_table;
2983 #endif
2984 
2985 	afinfo = pde_data(file_inode(seq->file));
2986 	return afinfo->udp_table ? : net->ipv4.udp_table;
2987 }
2988 
2989 static struct sock *udp_get_first(struct seq_file *seq, int start)
2990 {
2991 	struct udp_iter_state *state = seq->private;
2992 	struct net *net = seq_file_net(seq);
2993 	struct udp_table *udptable;
2994 	struct sock *sk;
2995 
2996 	udptable = udp_get_table_seq(seq, net);
2997 
2998 	for (state->bucket = start; state->bucket <= udptable->mask;
2999 	     ++state->bucket) {
3000 		struct udp_hslot *hslot = &udptable->hash[state->bucket];
3001 
3002 		if (hlist_empty(&hslot->head))
3003 			continue;
3004 
3005 		spin_lock_bh(&hslot->lock);
3006 		sk_for_each(sk, &hslot->head) {
3007 			if (seq_sk_match(seq, sk))
3008 				goto found;
3009 		}
3010 		spin_unlock_bh(&hslot->lock);
3011 	}
3012 	sk = NULL;
3013 found:
3014 	return sk;
3015 }
3016 
3017 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
3018 {
3019 	struct udp_iter_state *state = seq->private;
3020 	struct net *net = seq_file_net(seq);
3021 	struct udp_table *udptable;
3022 
3023 	do {
3024 		sk = sk_next(sk);
3025 	} while (sk && !seq_sk_match(seq, sk));
3026 
3027 	if (!sk) {
3028 		udptable = udp_get_table_seq(seq, net);
3029 
3030 		if (state->bucket <= udptable->mask)
3031 			spin_unlock_bh(&udptable->hash[state->bucket].lock);
3032 
3033 		return udp_get_first(seq, state->bucket + 1);
3034 	}
3035 	return sk;
3036 }
3037 
3038 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
3039 {
3040 	struct sock *sk = udp_get_first(seq, 0);
3041 
3042 	if (sk)
3043 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
3044 			--pos;
3045 	return pos ? NULL : sk;
3046 }
3047 
3048 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
3049 {
3050 	struct udp_iter_state *state = seq->private;
3051 	state->bucket = MAX_UDP_PORTS;
3052 
3053 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
3054 }
3055 EXPORT_SYMBOL(udp_seq_start);
3056 
3057 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3058 {
3059 	struct sock *sk;
3060 
3061 	if (v == SEQ_START_TOKEN)
3062 		sk = udp_get_idx(seq, 0);
3063 	else
3064 		sk = udp_get_next(seq, v);
3065 
3066 	++*pos;
3067 	return sk;
3068 }
3069 EXPORT_SYMBOL(udp_seq_next);
3070 
3071 void udp_seq_stop(struct seq_file *seq, void *v)
3072 {
3073 	struct udp_iter_state *state = seq->private;
3074 	struct udp_table *udptable;
3075 
3076 	udptable = udp_get_table_seq(seq, seq_file_net(seq));
3077 
3078 	if (state->bucket <= udptable->mask)
3079 		spin_unlock_bh(&udptable->hash[state->bucket].lock);
3080 }
3081 EXPORT_SYMBOL(udp_seq_stop);
3082 
3083 /* ------------------------------------------------------------------------ */
3084 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
3085 		int bucket)
3086 {
3087 	struct inet_sock *inet = inet_sk(sp);
3088 	__be32 dest = inet->inet_daddr;
3089 	__be32 src  = inet->inet_rcv_saddr;
3090 	__u16 destp	  = ntohs(inet->inet_dport);
3091 	__u16 srcp	  = ntohs(inet->inet_sport);
3092 
3093 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
3094 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
3095 		bucket, src, srcp, dest, destp, sp->sk_state,
3096 		sk_wmem_alloc_get(sp),
3097 		udp_rqueue_get(sp),
3098 		0, 0L, 0,
3099 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
3100 		0, sock_i_ino(sp),
3101 		refcount_read(&sp->sk_refcnt), sp,
3102 		atomic_read(&sp->sk_drops));
3103 }
3104 
3105 int udp4_seq_show(struct seq_file *seq, void *v)
3106 {
3107 	seq_setwidth(seq, 127);
3108 	if (v == SEQ_START_TOKEN)
3109 		seq_puts(seq, "   sl  local_address rem_address   st tx_queue "
3110 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
3111 			   "inode ref pointer drops");
3112 	else {
3113 		struct udp_iter_state *state = seq->private;
3114 
3115 		udp4_format_sock(v, seq, state->bucket);
3116 	}
3117 	seq_pad(seq, '\n');
3118 	return 0;
3119 }
3120 
3121 #ifdef CONFIG_BPF_SYSCALL
3122 struct bpf_iter__udp {
3123 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
3124 	__bpf_md_ptr(struct udp_sock *, udp_sk);
3125 	uid_t uid __aligned(8);
3126 	int bucket __aligned(8);
3127 };
3128 
3129 struct bpf_udp_iter_state {
3130 	struct udp_iter_state state;
3131 	unsigned int cur_sk;
3132 	unsigned int end_sk;
3133 	unsigned int max_sk;
3134 	int offset;
3135 	struct sock **batch;
3136 	bool st_bucket_done;
3137 };
3138 
3139 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3140 				      unsigned int new_batch_sz);
3141 static struct sock *bpf_iter_udp_batch(struct seq_file *seq)
3142 {
3143 	struct bpf_udp_iter_state *iter = seq->private;
3144 	struct udp_iter_state *state = &iter->state;
3145 	struct net *net = seq_file_net(seq);
3146 	struct udp_table *udptable;
3147 	unsigned int batch_sks = 0;
3148 	bool resized = false;
3149 	struct sock *sk;
3150 
3151 	/* The current batch is done, so advance the bucket. */
3152 	if (iter->st_bucket_done) {
3153 		state->bucket++;
3154 		iter->offset = 0;
3155 	}
3156 
3157 	udptable = udp_get_table_seq(seq, net);
3158 
3159 again:
3160 	/* New batch for the next bucket.
3161 	 * Iterate over the hash table to find a bucket with sockets matching
3162 	 * the iterator attributes, and return the first matching socket from
3163 	 * the bucket. The remaining matched sockets from the bucket are batched
3164 	 * before releasing the bucket lock. This allows BPF programs that are
3165 	 * called in seq_show to acquire the bucket lock if needed.
3166 	 */
3167 	iter->cur_sk = 0;
3168 	iter->end_sk = 0;
3169 	iter->st_bucket_done = false;
3170 	batch_sks = 0;
3171 
3172 	for (; state->bucket <= udptable->mask; state->bucket++) {
3173 		struct udp_hslot *hslot2 = &udptable->hash2[state->bucket];
3174 
3175 		if (hlist_empty(&hslot2->head)) {
3176 			iter->offset = 0;
3177 			continue;
3178 		}
3179 
3180 		spin_lock_bh(&hslot2->lock);
3181 		udp_portaddr_for_each_entry(sk, &hslot2->head) {
3182 			if (seq_sk_match(seq, sk)) {
3183 				/* Resume from the last iterated socket at the
3184 				 * offset in the bucket before iterator was stopped.
3185 				 */
3186 				if (iter->offset) {
3187 					--iter->offset;
3188 					continue;
3189 				}
3190 				if (iter->end_sk < iter->max_sk) {
3191 					sock_hold(sk);
3192 					iter->batch[iter->end_sk++] = sk;
3193 				}
3194 				batch_sks++;
3195 			}
3196 		}
3197 		spin_unlock_bh(&hslot2->lock);
3198 
3199 		if (iter->end_sk)
3200 			break;
3201 
3202 		/* Reset the current bucket's offset before moving to the next bucket. */
3203 		iter->offset = 0;
3204 	}
3205 
3206 	/* All done: no batch made. */
3207 	if (!iter->end_sk)
3208 		return NULL;
3209 
3210 	if (iter->end_sk == batch_sks) {
3211 		/* Batching is done for the current bucket; return the first
3212 		 * socket to be iterated from the batch.
3213 		 */
3214 		iter->st_bucket_done = true;
3215 		goto done;
3216 	}
3217 	if (!resized && !bpf_iter_udp_realloc_batch(iter, batch_sks * 3 / 2)) {
3218 		resized = true;
3219 		/* After allocating a larger batch, retry one more time to grab
3220 		 * the whole bucket.
3221 		 */
3222 		state->bucket--;
3223 		goto again;
3224 	}
3225 done:
3226 	return iter->batch[0];
3227 }
3228 
3229 static void *bpf_iter_udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3230 {
3231 	struct bpf_udp_iter_state *iter = seq->private;
3232 	struct sock *sk;
3233 
3234 	/* Whenever seq_next() is called, the iter->cur_sk is
3235 	 * done with seq_show(), so unref the iter->cur_sk.
3236 	 */
3237 	if (iter->cur_sk < iter->end_sk) {
3238 		sock_put(iter->batch[iter->cur_sk++]);
3239 		++iter->offset;
3240 	}
3241 
3242 	/* After updating iter->cur_sk, check if there are more sockets
3243 	 * available in the current bucket batch.
3244 	 */
3245 	if (iter->cur_sk < iter->end_sk)
3246 		sk = iter->batch[iter->cur_sk];
3247 	else
3248 		/* Prepare a new batch. */
3249 		sk = bpf_iter_udp_batch(seq);
3250 
3251 	++*pos;
3252 	return sk;
3253 }
3254 
3255 static void *bpf_iter_udp_seq_start(struct seq_file *seq, loff_t *pos)
3256 {
3257 	/* bpf iter does not support lseek, so it always
3258 	 * continue from where it was stop()-ped.
3259 	 */
3260 	if (*pos)
3261 		return bpf_iter_udp_batch(seq);
3262 
3263 	return SEQ_START_TOKEN;
3264 }
3265 
3266 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3267 			     struct udp_sock *udp_sk, uid_t uid, int bucket)
3268 {
3269 	struct bpf_iter__udp ctx;
3270 
3271 	meta->seq_num--;  /* skip SEQ_START_TOKEN */
3272 	ctx.meta = meta;
3273 	ctx.udp_sk = udp_sk;
3274 	ctx.uid = uid;
3275 	ctx.bucket = bucket;
3276 	return bpf_iter_run_prog(prog, &ctx);
3277 }
3278 
3279 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v)
3280 {
3281 	struct udp_iter_state *state = seq->private;
3282 	struct bpf_iter_meta meta;
3283 	struct bpf_prog *prog;
3284 	struct sock *sk = v;
3285 	uid_t uid;
3286 	int ret;
3287 
3288 	if (v == SEQ_START_TOKEN)
3289 		return 0;
3290 
3291 	lock_sock(sk);
3292 
3293 	if (unlikely(sk_unhashed(sk))) {
3294 		ret = SEQ_SKIP;
3295 		goto unlock;
3296 	}
3297 
3298 	uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3299 	meta.seq = seq;
3300 	prog = bpf_iter_get_info(&meta, false);
3301 	ret = udp_prog_seq_show(prog, &meta, v, uid, state->bucket);
3302 
3303 unlock:
3304 	release_sock(sk);
3305 	return ret;
3306 }
3307 
3308 static void bpf_iter_udp_put_batch(struct bpf_udp_iter_state *iter)
3309 {
3310 	while (iter->cur_sk < iter->end_sk)
3311 		sock_put(iter->batch[iter->cur_sk++]);
3312 }
3313 
3314 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v)
3315 {
3316 	struct bpf_udp_iter_state *iter = seq->private;
3317 	struct bpf_iter_meta meta;
3318 	struct bpf_prog *prog;
3319 
3320 	if (!v) {
3321 		meta.seq = seq;
3322 		prog = bpf_iter_get_info(&meta, true);
3323 		if (prog)
3324 			(void)udp_prog_seq_show(prog, &meta, v, 0, 0);
3325 	}
3326 
3327 	if (iter->cur_sk < iter->end_sk) {
3328 		bpf_iter_udp_put_batch(iter);
3329 		iter->st_bucket_done = false;
3330 	}
3331 }
3332 
3333 static const struct seq_operations bpf_iter_udp_seq_ops = {
3334 	.start		= bpf_iter_udp_seq_start,
3335 	.next		= bpf_iter_udp_seq_next,
3336 	.stop		= bpf_iter_udp_seq_stop,
3337 	.show		= bpf_iter_udp_seq_show,
3338 };
3339 #endif
3340 
3341 static unsigned short seq_file_family(const struct seq_file *seq)
3342 {
3343 	const struct udp_seq_afinfo *afinfo;
3344 
3345 #ifdef CONFIG_BPF_SYSCALL
3346 	/* BPF iterator: bpf programs to filter sockets. */
3347 	if (seq->op == &bpf_iter_udp_seq_ops)
3348 		return AF_UNSPEC;
3349 #endif
3350 
3351 	/* Proc fs iterator */
3352 	afinfo = pde_data(file_inode(seq->file));
3353 	return afinfo->family;
3354 }
3355 
3356 const struct seq_operations udp_seq_ops = {
3357 	.start		= udp_seq_start,
3358 	.next		= udp_seq_next,
3359 	.stop		= udp_seq_stop,
3360 	.show		= udp4_seq_show,
3361 };
3362 EXPORT_SYMBOL(udp_seq_ops);
3363 
3364 static struct udp_seq_afinfo udp4_seq_afinfo = {
3365 	.family		= AF_INET,
3366 	.udp_table	= NULL,
3367 };
3368 
3369 static int __net_init udp4_proc_init_net(struct net *net)
3370 {
3371 	if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
3372 			sizeof(struct udp_iter_state), &udp4_seq_afinfo))
3373 		return -ENOMEM;
3374 	return 0;
3375 }
3376 
3377 static void __net_exit udp4_proc_exit_net(struct net *net)
3378 {
3379 	remove_proc_entry("udp", net->proc_net);
3380 }
3381 
3382 static struct pernet_operations udp4_net_ops = {
3383 	.init = udp4_proc_init_net,
3384 	.exit = udp4_proc_exit_net,
3385 };
3386 
3387 int __init udp4_proc_init(void)
3388 {
3389 	return register_pernet_subsys(&udp4_net_ops);
3390 }
3391 
3392 void udp4_proc_exit(void)
3393 {
3394 	unregister_pernet_subsys(&udp4_net_ops);
3395 }
3396 #endif /* CONFIG_PROC_FS */
3397 
3398 static __initdata unsigned long uhash_entries;
3399 static int __init set_uhash_entries(char *str)
3400 {
3401 	ssize_t ret;
3402 
3403 	if (!str)
3404 		return 0;
3405 
3406 	ret = kstrtoul(str, 0, &uhash_entries);
3407 	if (ret)
3408 		return 0;
3409 
3410 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
3411 		uhash_entries = UDP_HTABLE_SIZE_MIN;
3412 	return 1;
3413 }
3414 __setup("uhash_entries=", set_uhash_entries);
3415 
3416 void __init udp_table_init(struct udp_table *table, const char *name)
3417 {
3418 	unsigned int i;
3419 
3420 	table->hash = alloc_large_system_hash(name,
3421 					      2 * sizeof(struct udp_hslot),
3422 					      uhash_entries,
3423 					      21, /* one slot per 2 MB */
3424 					      0,
3425 					      &table->log,
3426 					      &table->mask,
3427 					      UDP_HTABLE_SIZE_MIN,
3428 					      UDP_HTABLE_SIZE_MAX);
3429 
3430 	table->hash2 = table->hash + (table->mask + 1);
3431 	for (i = 0; i <= table->mask; i++) {
3432 		INIT_HLIST_HEAD(&table->hash[i].head);
3433 		table->hash[i].count = 0;
3434 		spin_lock_init(&table->hash[i].lock);
3435 	}
3436 	for (i = 0; i <= table->mask; i++) {
3437 		INIT_HLIST_HEAD(&table->hash2[i].head);
3438 		table->hash2[i].count = 0;
3439 		spin_lock_init(&table->hash2[i].lock);
3440 	}
3441 }
3442 
3443 u32 udp_flow_hashrnd(void)
3444 {
3445 	static u32 hashrnd __read_mostly;
3446 
3447 	net_get_random_once(&hashrnd, sizeof(hashrnd));
3448 
3449 	return hashrnd;
3450 }
3451 EXPORT_SYMBOL(udp_flow_hashrnd);
3452 
3453 static void __net_init udp_sysctl_init(struct net *net)
3454 {
3455 	net->ipv4.sysctl_udp_rmem_min = PAGE_SIZE;
3456 	net->ipv4.sysctl_udp_wmem_min = PAGE_SIZE;
3457 
3458 #ifdef CONFIG_NET_L3_MASTER_DEV
3459 	net->ipv4.sysctl_udp_l3mdev_accept = 0;
3460 #endif
3461 }
3462 
3463 static struct udp_table __net_init *udp_pernet_table_alloc(unsigned int hash_entries)
3464 {
3465 	struct udp_table *udptable;
3466 	int i;
3467 
3468 	udptable = kmalloc(sizeof(*udptable), GFP_KERNEL);
3469 	if (!udptable)
3470 		goto out;
3471 
3472 	udptable->hash = vmalloc_huge(hash_entries * 2 * sizeof(struct udp_hslot),
3473 				      GFP_KERNEL_ACCOUNT);
3474 	if (!udptable->hash)
3475 		goto free_table;
3476 
3477 	udptable->hash2 = udptable->hash + hash_entries;
3478 	udptable->mask = hash_entries - 1;
3479 	udptable->log = ilog2(hash_entries);
3480 
3481 	for (i = 0; i < hash_entries; i++) {
3482 		INIT_HLIST_HEAD(&udptable->hash[i].head);
3483 		udptable->hash[i].count = 0;
3484 		spin_lock_init(&udptable->hash[i].lock);
3485 
3486 		INIT_HLIST_HEAD(&udptable->hash2[i].head);
3487 		udptable->hash2[i].count = 0;
3488 		spin_lock_init(&udptable->hash2[i].lock);
3489 	}
3490 
3491 	return udptable;
3492 
3493 free_table:
3494 	kfree(udptable);
3495 out:
3496 	return NULL;
3497 }
3498 
3499 static void __net_exit udp_pernet_table_free(struct net *net)
3500 {
3501 	struct udp_table *udptable = net->ipv4.udp_table;
3502 
3503 	if (udptable == &udp_table)
3504 		return;
3505 
3506 	kvfree(udptable->hash);
3507 	kfree(udptable);
3508 }
3509 
3510 static void __net_init udp_set_table(struct net *net)
3511 {
3512 	struct udp_table *udptable;
3513 	unsigned int hash_entries;
3514 	struct net *old_net;
3515 
3516 	if (net_eq(net, &init_net))
3517 		goto fallback;
3518 
3519 	old_net = current->nsproxy->net_ns;
3520 	hash_entries = READ_ONCE(old_net->ipv4.sysctl_udp_child_hash_entries);
3521 	if (!hash_entries)
3522 		goto fallback;
3523 
3524 	/* Set min to keep the bitmap on stack in udp_lib_get_port() */
3525 	if (hash_entries < UDP_HTABLE_SIZE_MIN_PERNET)
3526 		hash_entries = UDP_HTABLE_SIZE_MIN_PERNET;
3527 	else
3528 		hash_entries = roundup_pow_of_two(hash_entries);
3529 
3530 	udptable = udp_pernet_table_alloc(hash_entries);
3531 	if (udptable) {
3532 		net->ipv4.udp_table = udptable;
3533 	} else {
3534 		pr_warn("Failed to allocate UDP hash table (entries: %u) "
3535 			"for a netns, fallback to the global one\n",
3536 			hash_entries);
3537 fallback:
3538 		net->ipv4.udp_table = &udp_table;
3539 	}
3540 }
3541 
3542 static int __net_init udp_pernet_init(struct net *net)
3543 {
3544 	udp_sysctl_init(net);
3545 	udp_set_table(net);
3546 
3547 	return 0;
3548 }
3549 
3550 static void __net_exit udp_pernet_exit(struct net *net)
3551 {
3552 	udp_pernet_table_free(net);
3553 }
3554 
3555 static struct pernet_operations __net_initdata udp_sysctl_ops = {
3556 	.init	= udp_pernet_init,
3557 	.exit	= udp_pernet_exit,
3558 };
3559 
3560 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3561 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta,
3562 		     struct udp_sock *udp_sk, uid_t uid, int bucket)
3563 
3564 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3565 				      unsigned int new_batch_sz)
3566 {
3567 	struct sock **new_batch;
3568 
3569 	new_batch = kvmalloc_array(new_batch_sz, sizeof(*new_batch),
3570 				   GFP_USER | __GFP_NOWARN);
3571 	if (!new_batch)
3572 		return -ENOMEM;
3573 
3574 	bpf_iter_udp_put_batch(iter);
3575 	kvfree(iter->batch);
3576 	iter->batch = new_batch;
3577 	iter->max_sk = new_batch_sz;
3578 
3579 	return 0;
3580 }
3581 
3582 #define INIT_BATCH_SZ 16
3583 
3584 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux)
3585 {
3586 	struct bpf_udp_iter_state *iter = priv_data;
3587 	int ret;
3588 
3589 	ret = bpf_iter_init_seq_net(priv_data, aux);
3590 	if (ret)
3591 		return ret;
3592 
3593 	ret = bpf_iter_udp_realloc_batch(iter, INIT_BATCH_SZ);
3594 	if (ret)
3595 		bpf_iter_fini_seq_net(priv_data);
3596 
3597 	return ret;
3598 }
3599 
3600 static void bpf_iter_fini_udp(void *priv_data)
3601 {
3602 	struct bpf_udp_iter_state *iter = priv_data;
3603 
3604 	bpf_iter_fini_seq_net(priv_data);
3605 	kvfree(iter->batch);
3606 }
3607 
3608 static const struct bpf_iter_seq_info udp_seq_info = {
3609 	.seq_ops		= &bpf_iter_udp_seq_ops,
3610 	.init_seq_private	= bpf_iter_init_udp,
3611 	.fini_seq_private	= bpf_iter_fini_udp,
3612 	.seq_priv_size		= sizeof(struct bpf_udp_iter_state),
3613 };
3614 
3615 static struct bpf_iter_reg udp_reg_info = {
3616 	.target			= "udp",
3617 	.ctx_arg_info_size	= 1,
3618 	.ctx_arg_info		= {
3619 		{ offsetof(struct bpf_iter__udp, udp_sk),
3620 		  PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED },
3621 	},
3622 	.seq_info		= &udp_seq_info,
3623 };
3624 
3625 static void __init bpf_iter_register(void)
3626 {
3627 	udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP];
3628 	if (bpf_iter_reg_target(&udp_reg_info))
3629 		pr_warn("Warning: could not register bpf iterator udp\n");
3630 }
3631 #endif
3632 
3633 void __init udp_init(void)
3634 {
3635 	unsigned long limit;
3636 	unsigned int i;
3637 
3638 	udp_table_init(&udp_table, "UDP");
3639 	limit = nr_free_buffer_pages() / 8;
3640 	limit = max(limit, 128UL);
3641 	sysctl_udp_mem[0] = limit / 4 * 3;
3642 	sysctl_udp_mem[1] = limit;
3643 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3644 
3645 	/* 16 spinlocks per cpu */
3646 	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3647 	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3648 				GFP_KERNEL);
3649 	if (!udp_busylocks)
3650 		panic("UDP: failed to alloc udp_busylocks\n");
3651 	for (i = 0; i < (1U << udp_busylocks_log); i++)
3652 		spin_lock_init(udp_busylocks + i);
3653 
3654 	if (register_pernet_subsys(&udp_sysctl_ops))
3655 		panic("UDP: failed to init sysctl parameters.\n");
3656 
3657 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3658 	bpf_iter_register();
3659 #endif
3660 }
3661