1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * The User Datagram Protocol (UDP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 12 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 13 * Hirokazu Takahashi, <taka@valinux.co.jp> 14 * 15 * Fixes: 16 * Alan Cox : verify_area() calls 17 * Alan Cox : stopped close while in use off icmp 18 * messages. Not a fix but a botch that 19 * for udp at least is 'valid'. 20 * Alan Cox : Fixed icmp handling properly 21 * Alan Cox : Correct error for oversized datagrams 22 * Alan Cox : Tidied select() semantics. 23 * Alan Cox : udp_err() fixed properly, also now 24 * select and read wake correctly on errors 25 * Alan Cox : udp_send verify_area moved to avoid mem leak 26 * Alan Cox : UDP can count its memory 27 * Alan Cox : send to an unknown connection causes 28 * an ECONNREFUSED off the icmp, but 29 * does NOT close. 30 * Alan Cox : Switched to new sk_buff handlers. No more backlog! 31 * Alan Cox : Using generic datagram code. Even smaller and the PEEK 32 * bug no longer crashes it. 33 * Fred Van Kempen : Net2e support for sk->broadcast. 34 * Alan Cox : Uses skb_free_datagram 35 * Alan Cox : Added get/set sockopt support. 36 * Alan Cox : Broadcasting without option set returns EACCES. 37 * Alan Cox : No wakeup calls. Instead we now use the callbacks. 38 * Alan Cox : Use ip_tos and ip_ttl 39 * Alan Cox : SNMP Mibs 40 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support. 41 * Matt Dillon : UDP length checks. 42 * Alan Cox : Smarter af_inet used properly. 43 * Alan Cox : Use new kernel side addressing. 44 * Alan Cox : Incorrect return on truncated datagram receive. 45 * Arnt Gulbrandsen : New udp_send and stuff 46 * Alan Cox : Cache last socket 47 * Alan Cox : Route cache 48 * Jon Peatfield : Minor efficiency fix to sendto(). 49 * Mike Shaver : RFC1122 checks. 50 * Alan Cox : Nonblocking error fix. 51 * Willy Konynenberg : Transparent proxying support. 52 * Mike McLagan : Routing by source 53 * David S. Miller : New socket lookup architecture. 54 * Last socket cache retained as it 55 * does have a high hit rate. 56 * Olaf Kirch : Don't linearise iovec on sendmsg. 57 * Andi Kleen : Some cleanups, cache destination entry 58 * for connect. 59 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 60 * Melvin Smith : Check msg_name not msg_namelen in sendto(), 61 * return ENOTCONN for unconnected sockets (POSIX) 62 * Janos Farkas : don't deliver multi/broadcasts to a different 63 * bound-to-device socket 64 * Hirokazu Takahashi : HW checksumming for outgoing UDP 65 * datagrams. 66 * Hirokazu Takahashi : sendfile() on UDP works now. 67 * Arnaldo C. Melo : convert /proc/net/udp to seq_file 68 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 69 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind 70 * a single port at the same time. 71 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support 72 * James Chapman : Add L2TP encapsulation type. 73 */ 74 75 #define pr_fmt(fmt) "UDP: " fmt 76 77 #include <linux/bpf-cgroup.h> 78 #include <linux/uaccess.h> 79 #include <asm/ioctls.h> 80 #include <linux/memblock.h> 81 #include <linux/highmem.h> 82 #include <linux/types.h> 83 #include <linux/fcntl.h> 84 #include <linux/module.h> 85 #include <linux/socket.h> 86 #include <linux/sockios.h> 87 #include <linux/igmp.h> 88 #include <linux/inetdevice.h> 89 #include <linux/in.h> 90 #include <linux/errno.h> 91 #include <linux/timer.h> 92 #include <linux/mm.h> 93 #include <linux/inet.h> 94 #include <linux/netdevice.h> 95 #include <linux/slab.h> 96 #include <net/tcp_states.h> 97 #include <linux/skbuff.h> 98 #include <linux/proc_fs.h> 99 #include <linux/seq_file.h> 100 #include <net/net_namespace.h> 101 #include <net/icmp.h> 102 #include <net/inet_hashtables.h> 103 #include <net/ip_tunnels.h> 104 #include <net/route.h> 105 #include <net/checksum.h> 106 #include <net/xfrm.h> 107 #include <trace/events/udp.h> 108 #include <linux/static_key.h> 109 #include <linux/btf_ids.h> 110 #include <trace/events/skb.h> 111 #include <net/busy_poll.h> 112 #include "udp_impl.h" 113 #include <net/sock_reuseport.h> 114 #include <net/addrconf.h> 115 #include <net/udp_tunnel.h> 116 #if IS_ENABLED(CONFIG_IPV6) 117 #include <net/ipv6_stubs.h> 118 #endif 119 120 struct udp_table udp_table __read_mostly; 121 EXPORT_SYMBOL(udp_table); 122 123 long sysctl_udp_mem[3] __read_mostly; 124 EXPORT_SYMBOL(sysctl_udp_mem); 125 126 atomic_long_t udp_memory_allocated ____cacheline_aligned_in_smp; 127 EXPORT_SYMBOL(udp_memory_allocated); 128 DEFINE_PER_CPU(int, udp_memory_per_cpu_fw_alloc); 129 EXPORT_PER_CPU_SYMBOL_GPL(udp_memory_per_cpu_fw_alloc); 130 131 #define MAX_UDP_PORTS 65536 132 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN_PERNET) 133 134 static struct udp_table *udp_get_table_prot(struct sock *sk) 135 { 136 return sk->sk_prot->h.udp_table ? : sock_net(sk)->ipv4.udp_table; 137 } 138 139 static int udp_lib_lport_inuse(struct net *net, __u16 num, 140 const struct udp_hslot *hslot, 141 unsigned long *bitmap, 142 struct sock *sk, unsigned int log) 143 { 144 struct sock *sk2; 145 kuid_t uid = sock_i_uid(sk); 146 147 sk_for_each(sk2, &hslot->head) { 148 if (net_eq(sock_net(sk2), net) && 149 sk2 != sk && 150 (bitmap || udp_sk(sk2)->udp_port_hash == num) && 151 (!sk2->sk_reuse || !sk->sk_reuse) && 152 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 153 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 154 inet_rcv_saddr_equal(sk, sk2, true)) { 155 if (sk2->sk_reuseport && sk->sk_reuseport && 156 !rcu_access_pointer(sk->sk_reuseport_cb) && 157 uid_eq(uid, sock_i_uid(sk2))) { 158 if (!bitmap) 159 return 0; 160 } else { 161 if (!bitmap) 162 return 1; 163 __set_bit(udp_sk(sk2)->udp_port_hash >> log, 164 bitmap); 165 } 166 } 167 } 168 return 0; 169 } 170 171 /* 172 * Note: we still hold spinlock of primary hash chain, so no other writer 173 * can insert/delete a socket with local_port == num 174 */ 175 static int udp_lib_lport_inuse2(struct net *net, __u16 num, 176 struct udp_hslot *hslot2, 177 struct sock *sk) 178 { 179 struct sock *sk2; 180 kuid_t uid = sock_i_uid(sk); 181 int res = 0; 182 183 spin_lock(&hslot2->lock); 184 udp_portaddr_for_each_entry(sk2, &hslot2->head) { 185 if (net_eq(sock_net(sk2), net) && 186 sk2 != sk && 187 (udp_sk(sk2)->udp_port_hash == num) && 188 (!sk2->sk_reuse || !sk->sk_reuse) && 189 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 190 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 191 inet_rcv_saddr_equal(sk, sk2, true)) { 192 if (sk2->sk_reuseport && sk->sk_reuseport && 193 !rcu_access_pointer(sk->sk_reuseport_cb) && 194 uid_eq(uid, sock_i_uid(sk2))) { 195 res = 0; 196 } else { 197 res = 1; 198 } 199 break; 200 } 201 } 202 spin_unlock(&hslot2->lock); 203 return res; 204 } 205 206 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot) 207 { 208 struct net *net = sock_net(sk); 209 kuid_t uid = sock_i_uid(sk); 210 struct sock *sk2; 211 212 sk_for_each(sk2, &hslot->head) { 213 if (net_eq(sock_net(sk2), net) && 214 sk2 != sk && 215 sk2->sk_family == sk->sk_family && 216 ipv6_only_sock(sk2) == ipv6_only_sock(sk) && 217 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) && 218 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 219 sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) && 220 inet_rcv_saddr_equal(sk, sk2, false)) { 221 return reuseport_add_sock(sk, sk2, 222 inet_rcv_saddr_any(sk)); 223 } 224 } 225 226 return reuseport_alloc(sk, inet_rcv_saddr_any(sk)); 227 } 228 229 /** 230 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6 231 * 232 * @sk: socket struct in question 233 * @snum: port number to look up 234 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains, 235 * with NULL address 236 */ 237 int udp_lib_get_port(struct sock *sk, unsigned short snum, 238 unsigned int hash2_nulladdr) 239 { 240 struct udp_table *udptable = udp_get_table_prot(sk); 241 struct udp_hslot *hslot, *hslot2; 242 struct net *net = sock_net(sk); 243 int error = -EADDRINUSE; 244 245 if (!snum) { 246 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN); 247 unsigned short first, last; 248 int low, high, remaining; 249 unsigned int rand; 250 251 inet_sk_get_local_port_range(sk, &low, &high); 252 remaining = (high - low) + 1; 253 254 rand = get_random_u32(); 255 first = reciprocal_scale(rand, remaining) + low; 256 /* 257 * force rand to be an odd multiple of UDP_HTABLE_SIZE 258 */ 259 rand = (rand | 1) * (udptable->mask + 1); 260 last = first + udptable->mask + 1; 261 do { 262 hslot = udp_hashslot(udptable, net, first); 263 bitmap_zero(bitmap, PORTS_PER_CHAIN); 264 spin_lock_bh(&hslot->lock); 265 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk, 266 udptable->log); 267 268 snum = first; 269 /* 270 * Iterate on all possible values of snum for this hash. 271 * Using steps of an odd multiple of UDP_HTABLE_SIZE 272 * give us randomization and full range coverage. 273 */ 274 do { 275 if (low <= snum && snum <= high && 276 !test_bit(snum >> udptable->log, bitmap) && 277 !inet_is_local_reserved_port(net, snum)) 278 goto found; 279 snum += rand; 280 } while (snum != first); 281 spin_unlock_bh(&hslot->lock); 282 cond_resched(); 283 } while (++first != last); 284 goto fail; 285 } else { 286 hslot = udp_hashslot(udptable, net, snum); 287 spin_lock_bh(&hslot->lock); 288 if (hslot->count > 10) { 289 int exist; 290 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum; 291 292 slot2 &= udptable->mask; 293 hash2_nulladdr &= udptable->mask; 294 295 hslot2 = udp_hashslot2(udptable, slot2); 296 if (hslot->count < hslot2->count) 297 goto scan_primary_hash; 298 299 exist = udp_lib_lport_inuse2(net, snum, hslot2, sk); 300 if (!exist && (hash2_nulladdr != slot2)) { 301 hslot2 = udp_hashslot2(udptable, hash2_nulladdr); 302 exist = udp_lib_lport_inuse2(net, snum, hslot2, 303 sk); 304 } 305 if (exist) 306 goto fail_unlock; 307 else 308 goto found; 309 } 310 scan_primary_hash: 311 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0)) 312 goto fail_unlock; 313 } 314 found: 315 inet_sk(sk)->inet_num = snum; 316 udp_sk(sk)->udp_port_hash = snum; 317 udp_sk(sk)->udp_portaddr_hash ^= snum; 318 if (sk_unhashed(sk)) { 319 if (sk->sk_reuseport && 320 udp_reuseport_add_sock(sk, hslot)) { 321 inet_sk(sk)->inet_num = 0; 322 udp_sk(sk)->udp_port_hash = 0; 323 udp_sk(sk)->udp_portaddr_hash ^= snum; 324 goto fail_unlock; 325 } 326 327 sk_add_node_rcu(sk, &hslot->head); 328 hslot->count++; 329 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 330 331 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 332 spin_lock(&hslot2->lock); 333 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 334 sk->sk_family == AF_INET6) 335 hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node, 336 &hslot2->head); 337 else 338 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 339 &hslot2->head); 340 hslot2->count++; 341 spin_unlock(&hslot2->lock); 342 } 343 sock_set_flag(sk, SOCK_RCU_FREE); 344 error = 0; 345 fail_unlock: 346 spin_unlock_bh(&hslot->lock); 347 fail: 348 return error; 349 } 350 EXPORT_SYMBOL(udp_lib_get_port); 351 352 int udp_v4_get_port(struct sock *sk, unsigned short snum) 353 { 354 unsigned int hash2_nulladdr = 355 ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum); 356 unsigned int hash2_partial = 357 ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0); 358 359 /* precompute partial secondary hash */ 360 udp_sk(sk)->udp_portaddr_hash = hash2_partial; 361 return udp_lib_get_port(sk, snum, hash2_nulladdr); 362 } 363 364 static int compute_score(struct sock *sk, struct net *net, 365 __be32 saddr, __be16 sport, 366 __be32 daddr, unsigned short hnum, 367 int dif, int sdif) 368 { 369 int score; 370 struct inet_sock *inet; 371 bool dev_match; 372 373 if (!net_eq(sock_net(sk), net) || 374 udp_sk(sk)->udp_port_hash != hnum || 375 ipv6_only_sock(sk)) 376 return -1; 377 378 if (sk->sk_rcv_saddr != daddr) 379 return -1; 380 381 score = (sk->sk_family == PF_INET) ? 2 : 1; 382 383 inet = inet_sk(sk); 384 if (inet->inet_daddr) { 385 if (inet->inet_daddr != saddr) 386 return -1; 387 score += 4; 388 } 389 390 if (inet->inet_dport) { 391 if (inet->inet_dport != sport) 392 return -1; 393 score += 4; 394 } 395 396 dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, 397 dif, sdif); 398 if (!dev_match) 399 return -1; 400 if (sk->sk_bound_dev_if) 401 score += 4; 402 403 if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id()) 404 score++; 405 return score; 406 } 407 408 static u32 udp_ehashfn(const struct net *net, const __be32 laddr, 409 const __u16 lport, const __be32 faddr, 410 const __be16 fport) 411 { 412 static u32 udp_ehash_secret __read_mostly; 413 414 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret)); 415 416 return __inet_ehashfn(laddr, lport, faddr, fport, 417 udp_ehash_secret + net_hash_mix(net)); 418 } 419 420 static struct sock *lookup_reuseport(struct net *net, struct sock *sk, 421 struct sk_buff *skb, 422 __be32 saddr, __be16 sport, 423 __be32 daddr, unsigned short hnum) 424 { 425 struct sock *reuse_sk = NULL; 426 u32 hash; 427 428 if (sk->sk_reuseport && sk->sk_state != TCP_ESTABLISHED) { 429 hash = udp_ehashfn(net, daddr, hnum, saddr, sport); 430 reuse_sk = reuseport_select_sock(sk, hash, skb, 431 sizeof(struct udphdr)); 432 } 433 return reuse_sk; 434 } 435 436 /* called with rcu_read_lock() */ 437 static struct sock *udp4_lib_lookup2(struct net *net, 438 __be32 saddr, __be16 sport, 439 __be32 daddr, unsigned int hnum, 440 int dif, int sdif, 441 struct udp_hslot *hslot2, 442 struct sk_buff *skb) 443 { 444 struct sock *sk, *result; 445 int score, badness; 446 447 result = NULL; 448 badness = 0; 449 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 450 score = compute_score(sk, net, saddr, sport, 451 daddr, hnum, dif, sdif); 452 if (score > badness) { 453 result = lookup_reuseport(net, sk, skb, 454 saddr, sport, daddr, hnum); 455 /* Fall back to scoring if group has connections */ 456 if (result && !reuseport_has_conns(sk)) 457 return result; 458 459 result = result ? : sk; 460 badness = score; 461 } 462 } 463 return result; 464 } 465 466 static struct sock *udp4_lookup_run_bpf(struct net *net, 467 struct udp_table *udptable, 468 struct sk_buff *skb, 469 __be32 saddr, __be16 sport, 470 __be32 daddr, u16 hnum, const int dif) 471 { 472 struct sock *sk, *reuse_sk; 473 bool no_reuseport; 474 475 if (udptable != net->ipv4.udp_table) 476 return NULL; /* only UDP is supported */ 477 478 no_reuseport = bpf_sk_lookup_run_v4(net, IPPROTO_UDP, saddr, sport, 479 daddr, hnum, dif, &sk); 480 if (no_reuseport || IS_ERR_OR_NULL(sk)) 481 return sk; 482 483 reuse_sk = lookup_reuseport(net, sk, skb, saddr, sport, daddr, hnum); 484 if (reuse_sk) 485 sk = reuse_sk; 486 return sk; 487 } 488 489 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try 490 * harder than this. -DaveM 491 */ 492 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr, 493 __be16 sport, __be32 daddr, __be16 dport, int dif, 494 int sdif, struct udp_table *udptable, struct sk_buff *skb) 495 { 496 unsigned short hnum = ntohs(dport); 497 unsigned int hash2, slot2; 498 struct udp_hslot *hslot2; 499 struct sock *result, *sk; 500 501 hash2 = ipv4_portaddr_hash(net, daddr, hnum); 502 slot2 = hash2 & udptable->mask; 503 hslot2 = &udptable->hash2[slot2]; 504 505 /* Lookup connected or non-wildcard socket */ 506 result = udp4_lib_lookup2(net, saddr, sport, 507 daddr, hnum, dif, sdif, 508 hslot2, skb); 509 if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED) 510 goto done; 511 512 /* Lookup redirect from BPF */ 513 if (static_branch_unlikely(&bpf_sk_lookup_enabled)) { 514 sk = udp4_lookup_run_bpf(net, udptable, skb, 515 saddr, sport, daddr, hnum, dif); 516 if (sk) { 517 result = sk; 518 goto done; 519 } 520 } 521 522 /* Got non-wildcard socket or error on first lookup */ 523 if (result) 524 goto done; 525 526 /* Lookup wildcard sockets */ 527 hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum); 528 slot2 = hash2 & udptable->mask; 529 hslot2 = &udptable->hash2[slot2]; 530 531 result = udp4_lib_lookup2(net, saddr, sport, 532 htonl(INADDR_ANY), hnum, dif, sdif, 533 hslot2, skb); 534 done: 535 if (IS_ERR(result)) 536 return NULL; 537 return result; 538 } 539 EXPORT_SYMBOL_GPL(__udp4_lib_lookup); 540 541 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb, 542 __be16 sport, __be16 dport, 543 struct udp_table *udptable) 544 { 545 const struct iphdr *iph = ip_hdr(skb); 546 547 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport, 548 iph->daddr, dport, inet_iif(skb), 549 inet_sdif(skb), udptable, skb); 550 } 551 552 struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb, 553 __be16 sport, __be16 dport) 554 { 555 const struct iphdr *iph = ip_hdr(skb); 556 struct net *net = dev_net(skb->dev); 557 558 return __udp4_lib_lookup(net, iph->saddr, sport, 559 iph->daddr, dport, inet_iif(skb), 560 inet_sdif(skb), net->ipv4.udp_table, NULL); 561 } 562 563 /* Must be called under rcu_read_lock(). 564 * Does increment socket refcount. 565 */ 566 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4) 567 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport, 568 __be32 daddr, __be16 dport, int dif) 569 { 570 struct sock *sk; 571 572 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport, 573 dif, 0, net->ipv4.udp_table, NULL); 574 if (sk && !refcount_inc_not_zero(&sk->sk_refcnt)) 575 sk = NULL; 576 return sk; 577 } 578 EXPORT_SYMBOL_GPL(udp4_lib_lookup); 579 #endif 580 581 static inline bool __udp_is_mcast_sock(struct net *net, const struct sock *sk, 582 __be16 loc_port, __be32 loc_addr, 583 __be16 rmt_port, __be32 rmt_addr, 584 int dif, int sdif, unsigned short hnum) 585 { 586 const struct inet_sock *inet = inet_sk(sk); 587 588 if (!net_eq(sock_net(sk), net) || 589 udp_sk(sk)->udp_port_hash != hnum || 590 (inet->inet_daddr && inet->inet_daddr != rmt_addr) || 591 (inet->inet_dport != rmt_port && inet->inet_dport) || 592 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) || 593 ipv6_only_sock(sk) || 594 !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif)) 595 return false; 596 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif)) 597 return false; 598 return true; 599 } 600 601 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key); 602 void udp_encap_enable(void) 603 { 604 static_branch_inc(&udp_encap_needed_key); 605 } 606 EXPORT_SYMBOL(udp_encap_enable); 607 608 void udp_encap_disable(void) 609 { 610 static_branch_dec(&udp_encap_needed_key); 611 } 612 EXPORT_SYMBOL(udp_encap_disable); 613 614 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go 615 * through error handlers in encapsulations looking for a match. 616 */ 617 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info) 618 { 619 int i; 620 621 for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) { 622 int (*handler)(struct sk_buff *skb, u32 info); 623 const struct ip_tunnel_encap_ops *encap; 624 625 encap = rcu_dereference(iptun_encaps[i]); 626 if (!encap) 627 continue; 628 handler = encap->err_handler; 629 if (handler && !handler(skb, info)) 630 return 0; 631 } 632 633 return -ENOENT; 634 } 635 636 /* Try to match ICMP errors to UDP tunnels by looking up a socket without 637 * reversing source and destination port: this will match tunnels that force the 638 * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that 639 * lwtunnels might actually break this assumption by being configured with 640 * different destination ports on endpoints, in this case we won't be able to 641 * trace ICMP messages back to them. 642 * 643 * If this doesn't match any socket, probe tunnels with arbitrary destination 644 * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port 645 * we've sent packets to won't necessarily match the local destination port. 646 * 647 * Then ask the tunnel implementation to match the error against a valid 648 * association. 649 * 650 * Return an error if we can't find a match, the socket if we need further 651 * processing, zero otherwise. 652 */ 653 static struct sock *__udp4_lib_err_encap(struct net *net, 654 const struct iphdr *iph, 655 struct udphdr *uh, 656 struct udp_table *udptable, 657 struct sock *sk, 658 struct sk_buff *skb, u32 info) 659 { 660 int (*lookup)(struct sock *sk, struct sk_buff *skb); 661 int network_offset, transport_offset; 662 struct udp_sock *up; 663 664 network_offset = skb_network_offset(skb); 665 transport_offset = skb_transport_offset(skb); 666 667 /* Network header needs to point to the outer IPv4 header inside ICMP */ 668 skb_reset_network_header(skb); 669 670 /* Transport header needs to point to the UDP header */ 671 skb_set_transport_header(skb, iph->ihl << 2); 672 673 if (sk) { 674 up = udp_sk(sk); 675 676 lookup = READ_ONCE(up->encap_err_lookup); 677 if (lookup && lookup(sk, skb)) 678 sk = NULL; 679 680 goto out; 681 } 682 683 sk = __udp4_lib_lookup(net, iph->daddr, uh->source, 684 iph->saddr, uh->dest, skb->dev->ifindex, 0, 685 udptable, NULL); 686 if (sk) { 687 up = udp_sk(sk); 688 689 lookup = READ_ONCE(up->encap_err_lookup); 690 if (!lookup || lookup(sk, skb)) 691 sk = NULL; 692 } 693 694 out: 695 if (!sk) 696 sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info)); 697 698 skb_set_transport_header(skb, transport_offset); 699 skb_set_network_header(skb, network_offset); 700 701 return sk; 702 } 703 704 /* 705 * This routine is called by the ICMP module when it gets some 706 * sort of error condition. If err < 0 then the socket should 707 * be closed and the error returned to the user. If err > 0 708 * it's just the icmp type << 8 | icmp code. 709 * Header points to the ip header of the error packet. We move 710 * on past this. Then (as it used to claim before adjustment) 711 * header points to the first 8 bytes of the udp header. We need 712 * to find the appropriate port. 713 */ 714 715 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable) 716 { 717 struct inet_sock *inet; 718 const struct iphdr *iph = (const struct iphdr *)skb->data; 719 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2)); 720 const int type = icmp_hdr(skb)->type; 721 const int code = icmp_hdr(skb)->code; 722 bool tunnel = false; 723 struct sock *sk; 724 int harderr; 725 int err; 726 struct net *net = dev_net(skb->dev); 727 728 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest, 729 iph->saddr, uh->source, skb->dev->ifindex, 730 inet_sdif(skb), udptable, NULL); 731 732 if (!sk || udp_sk(sk)->encap_type) { 733 /* No socket for error: try tunnels before discarding */ 734 if (static_branch_unlikely(&udp_encap_needed_key)) { 735 sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb, 736 info); 737 if (!sk) 738 return 0; 739 } else 740 sk = ERR_PTR(-ENOENT); 741 742 if (IS_ERR(sk)) { 743 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); 744 return PTR_ERR(sk); 745 } 746 747 tunnel = true; 748 } 749 750 err = 0; 751 harderr = 0; 752 inet = inet_sk(sk); 753 754 switch (type) { 755 default: 756 case ICMP_TIME_EXCEEDED: 757 err = EHOSTUNREACH; 758 break; 759 case ICMP_SOURCE_QUENCH: 760 goto out; 761 case ICMP_PARAMETERPROB: 762 err = EPROTO; 763 harderr = 1; 764 break; 765 case ICMP_DEST_UNREACH: 766 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */ 767 ipv4_sk_update_pmtu(skb, sk, info); 768 if (inet->pmtudisc != IP_PMTUDISC_DONT) { 769 err = EMSGSIZE; 770 harderr = 1; 771 break; 772 } 773 goto out; 774 } 775 err = EHOSTUNREACH; 776 if (code <= NR_ICMP_UNREACH) { 777 harderr = icmp_err_convert[code].fatal; 778 err = icmp_err_convert[code].errno; 779 } 780 break; 781 case ICMP_REDIRECT: 782 ipv4_sk_redirect(skb, sk); 783 goto out; 784 } 785 786 /* 787 * RFC1122: OK. Passes ICMP errors back to application, as per 788 * 4.1.3.3. 789 */ 790 if (tunnel) { 791 /* ...not for tunnels though: we don't have a sending socket */ 792 if (udp_sk(sk)->encap_err_rcv) 793 udp_sk(sk)->encap_err_rcv(sk, skb, err, uh->dest, info, 794 (u8 *)(uh+1)); 795 goto out; 796 } 797 if (!inet->recverr) { 798 if (!harderr || sk->sk_state != TCP_ESTABLISHED) 799 goto out; 800 } else 801 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1)); 802 803 sk->sk_err = err; 804 sk_error_report(sk); 805 out: 806 return 0; 807 } 808 809 int udp_err(struct sk_buff *skb, u32 info) 810 { 811 return __udp4_lib_err(skb, info, dev_net(skb->dev)->ipv4.udp_table); 812 } 813 814 /* 815 * Throw away all pending data and cancel the corking. Socket is locked. 816 */ 817 void udp_flush_pending_frames(struct sock *sk) 818 { 819 struct udp_sock *up = udp_sk(sk); 820 821 if (up->pending) { 822 up->len = 0; 823 up->pending = 0; 824 ip_flush_pending_frames(sk); 825 } 826 } 827 EXPORT_SYMBOL(udp_flush_pending_frames); 828 829 /** 830 * udp4_hwcsum - handle outgoing HW checksumming 831 * @skb: sk_buff containing the filled-in UDP header 832 * (checksum field must be zeroed out) 833 * @src: source IP address 834 * @dst: destination IP address 835 */ 836 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst) 837 { 838 struct udphdr *uh = udp_hdr(skb); 839 int offset = skb_transport_offset(skb); 840 int len = skb->len - offset; 841 int hlen = len; 842 __wsum csum = 0; 843 844 if (!skb_has_frag_list(skb)) { 845 /* 846 * Only one fragment on the socket. 847 */ 848 skb->csum_start = skb_transport_header(skb) - skb->head; 849 skb->csum_offset = offsetof(struct udphdr, check); 850 uh->check = ~csum_tcpudp_magic(src, dst, len, 851 IPPROTO_UDP, 0); 852 } else { 853 struct sk_buff *frags; 854 855 /* 856 * HW-checksum won't work as there are two or more 857 * fragments on the socket so that all csums of sk_buffs 858 * should be together 859 */ 860 skb_walk_frags(skb, frags) { 861 csum = csum_add(csum, frags->csum); 862 hlen -= frags->len; 863 } 864 865 csum = skb_checksum(skb, offset, hlen, csum); 866 skb->ip_summed = CHECKSUM_NONE; 867 868 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum); 869 if (uh->check == 0) 870 uh->check = CSUM_MANGLED_0; 871 } 872 } 873 EXPORT_SYMBOL_GPL(udp4_hwcsum); 874 875 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended 876 * for the simple case like when setting the checksum for a UDP tunnel. 877 */ 878 void udp_set_csum(bool nocheck, struct sk_buff *skb, 879 __be32 saddr, __be32 daddr, int len) 880 { 881 struct udphdr *uh = udp_hdr(skb); 882 883 if (nocheck) { 884 uh->check = 0; 885 } else if (skb_is_gso(skb)) { 886 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 887 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 888 uh->check = 0; 889 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb)); 890 if (uh->check == 0) 891 uh->check = CSUM_MANGLED_0; 892 } else { 893 skb->ip_summed = CHECKSUM_PARTIAL; 894 skb->csum_start = skb_transport_header(skb) - skb->head; 895 skb->csum_offset = offsetof(struct udphdr, check); 896 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 897 } 898 } 899 EXPORT_SYMBOL(udp_set_csum); 900 901 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4, 902 struct inet_cork *cork) 903 { 904 struct sock *sk = skb->sk; 905 struct inet_sock *inet = inet_sk(sk); 906 struct udphdr *uh; 907 int err; 908 int is_udplite = IS_UDPLITE(sk); 909 int offset = skb_transport_offset(skb); 910 int len = skb->len - offset; 911 int datalen = len - sizeof(*uh); 912 __wsum csum = 0; 913 914 /* 915 * Create a UDP header 916 */ 917 uh = udp_hdr(skb); 918 uh->source = inet->inet_sport; 919 uh->dest = fl4->fl4_dport; 920 uh->len = htons(len); 921 uh->check = 0; 922 923 if (cork->gso_size) { 924 const int hlen = skb_network_header_len(skb) + 925 sizeof(struct udphdr); 926 927 if (hlen + cork->gso_size > cork->fragsize) { 928 kfree_skb(skb); 929 return -EINVAL; 930 } 931 if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) { 932 kfree_skb(skb); 933 return -EINVAL; 934 } 935 if (sk->sk_no_check_tx) { 936 kfree_skb(skb); 937 return -EINVAL; 938 } 939 if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite || 940 dst_xfrm(skb_dst(skb))) { 941 kfree_skb(skb); 942 return -EIO; 943 } 944 945 if (datalen > cork->gso_size) { 946 skb_shinfo(skb)->gso_size = cork->gso_size; 947 skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4; 948 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen, 949 cork->gso_size); 950 } 951 goto csum_partial; 952 } 953 954 if (is_udplite) /* UDP-Lite */ 955 csum = udplite_csum(skb); 956 957 else if (sk->sk_no_check_tx) { /* UDP csum off */ 958 959 skb->ip_summed = CHECKSUM_NONE; 960 goto send; 961 962 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */ 963 csum_partial: 964 965 udp4_hwcsum(skb, fl4->saddr, fl4->daddr); 966 goto send; 967 968 } else 969 csum = udp_csum(skb); 970 971 /* add protocol-dependent pseudo-header */ 972 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len, 973 sk->sk_protocol, csum); 974 if (uh->check == 0) 975 uh->check = CSUM_MANGLED_0; 976 977 send: 978 err = ip_send_skb(sock_net(sk), skb); 979 if (err) { 980 if (err == -ENOBUFS && !inet->recverr) { 981 UDP_INC_STATS(sock_net(sk), 982 UDP_MIB_SNDBUFERRORS, is_udplite); 983 err = 0; 984 } 985 } else 986 UDP_INC_STATS(sock_net(sk), 987 UDP_MIB_OUTDATAGRAMS, is_udplite); 988 return err; 989 } 990 991 /* 992 * Push out all pending data as one UDP datagram. Socket is locked. 993 */ 994 int udp_push_pending_frames(struct sock *sk) 995 { 996 struct udp_sock *up = udp_sk(sk); 997 struct inet_sock *inet = inet_sk(sk); 998 struct flowi4 *fl4 = &inet->cork.fl.u.ip4; 999 struct sk_buff *skb; 1000 int err = 0; 1001 1002 skb = ip_finish_skb(sk, fl4); 1003 if (!skb) 1004 goto out; 1005 1006 err = udp_send_skb(skb, fl4, &inet->cork.base); 1007 1008 out: 1009 up->len = 0; 1010 up->pending = 0; 1011 return err; 1012 } 1013 EXPORT_SYMBOL(udp_push_pending_frames); 1014 1015 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size) 1016 { 1017 switch (cmsg->cmsg_type) { 1018 case UDP_SEGMENT: 1019 if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16))) 1020 return -EINVAL; 1021 *gso_size = *(__u16 *)CMSG_DATA(cmsg); 1022 return 0; 1023 default: 1024 return -EINVAL; 1025 } 1026 } 1027 1028 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size) 1029 { 1030 struct cmsghdr *cmsg; 1031 bool need_ip = false; 1032 int err; 1033 1034 for_each_cmsghdr(cmsg, msg) { 1035 if (!CMSG_OK(msg, cmsg)) 1036 return -EINVAL; 1037 1038 if (cmsg->cmsg_level != SOL_UDP) { 1039 need_ip = true; 1040 continue; 1041 } 1042 1043 err = __udp_cmsg_send(cmsg, gso_size); 1044 if (err) 1045 return err; 1046 } 1047 1048 return need_ip; 1049 } 1050 EXPORT_SYMBOL_GPL(udp_cmsg_send); 1051 1052 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1053 { 1054 struct inet_sock *inet = inet_sk(sk); 1055 struct udp_sock *up = udp_sk(sk); 1056 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name); 1057 struct flowi4 fl4_stack; 1058 struct flowi4 *fl4; 1059 int ulen = len; 1060 struct ipcm_cookie ipc; 1061 struct rtable *rt = NULL; 1062 int free = 0; 1063 int connected = 0; 1064 __be32 daddr, faddr, saddr; 1065 u8 tos, scope; 1066 __be16 dport; 1067 int err, is_udplite = IS_UDPLITE(sk); 1068 int corkreq = READ_ONCE(up->corkflag) || msg->msg_flags&MSG_MORE; 1069 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *); 1070 struct sk_buff *skb; 1071 struct ip_options_data opt_copy; 1072 1073 if (len > 0xFFFF) 1074 return -EMSGSIZE; 1075 1076 /* 1077 * Check the flags. 1078 */ 1079 1080 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */ 1081 return -EOPNOTSUPP; 1082 1083 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag; 1084 1085 fl4 = &inet->cork.fl.u.ip4; 1086 if (up->pending) { 1087 /* 1088 * There are pending frames. 1089 * The socket lock must be held while it's corked. 1090 */ 1091 lock_sock(sk); 1092 if (likely(up->pending)) { 1093 if (unlikely(up->pending != AF_INET)) { 1094 release_sock(sk); 1095 return -EINVAL; 1096 } 1097 goto do_append_data; 1098 } 1099 release_sock(sk); 1100 } 1101 ulen += sizeof(struct udphdr); 1102 1103 /* 1104 * Get and verify the address. 1105 */ 1106 if (usin) { 1107 if (msg->msg_namelen < sizeof(*usin)) 1108 return -EINVAL; 1109 if (usin->sin_family != AF_INET) { 1110 if (usin->sin_family != AF_UNSPEC) 1111 return -EAFNOSUPPORT; 1112 } 1113 1114 daddr = usin->sin_addr.s_addr; 1115 dport = usin->sin_port; 1116 if (dport == 0) 1117 return -EINVAL; 1118 } else { 1119 if (sk->sk_state != TCP_ESTABLISHED) 1120 return -EDESTADDRREQ; 1121 daddr = inet->inet_daddr; 1122 dport = inet->inet_dport; 1123 /* Open fast path for connected socket. 1124 Route will not be used, if at least one option is set. 1125 */ 1126 connected = 1; 1127 } 1128 1129 ipcm_init_sk(&ipc, inet); 1130 ipc.gso_size = READ_ONCE(up->gso_size); 1131 1132 if (msg->msg_controllen) { 1133 err = udp_cmsg_send(sk, msg, &ipc.gso_size); 1134 if (err > 0) 1135 err = ip_cmsg_send(sk, msg, &ipc, 1136 sk->sk_family == AF_INET6); 1137 if (unlikely(err < 0)) { 1138 kfree(ipc.opt); 1139 return err; 1140 } 1141 if (ipc.opt) 1142 free = 1; 1143 connected = 0; 1144 } 1145 if (!ipc.opt) { 1146 struct ip_options_rcu *inet_opt; 1147 1148 rcu_read_lock(); 1149 inet_opt = rcu_dereference(inet->inet_opt); 1150 if (inet_opt) { 1151 memcpy(&opt_copy, inet_opt, 1152 sizeof(*inet_opt) + inet_opt->opt.optlen); 1153 ipc.opt = &opt_copy.opt; 1154 } 1155 rcu_read_unlock(); 1156 } 1157 1158 if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) { 1159 err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk, 1160 (struct sockaddr *)usin, &ipc.addr); 1161 if (err) 1162 goto out_free; 1163 if (usin) { 1164 if (usin->sin_port == 0) { 1165 /* BPF program set invalid port. Reject it. */ 1166 err = -EINVAL; 1167 goto out_free; 1168 } 1169 daddr = usin->sin_addr.s_addr; 1170 dport = usin->sin_port; 1171 } 1172 } 1173 1174 saddr = ipc.addr; 1175 ipc.addr = faddr = daddr; 1176 1177 if (ipc.opt && ipc.opt->opt.srr) { 1178 if (!daddr) { 1179 err = -EINVAL; 1180 goto out_free; 1181 } 1182 faddr = ipc.opt->opt.faddr; 1183 connected = 0; 1184 } 1185 tos = get_rttos(&ipc, inet); 1186 scope = ip_sendmsg_scope(inet, &ipc, msg); 1187 if (scope == RT_SCOPE_LINK) 1188 connected = 0; 1189 1190 if (ipv4_is_multicast(daddr)) { 1191 if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif)) 1192 ipc.oif = inet->mc_index; 1193 if (!saddr) 1194 saddr = inet->mc_addr; 1195 connected = 0; 1196 } else if (!ipc.oif) { 1197 ipc.oif = inet->uc_index; 1198 } else if (ipv4_is_lbcast(daddr) && inet->uc_index) { 1199 /* oif is set, packet is to local broadcast and 1200 * uc_index is set. oif is most likely set 1201 * by sk_bound_dev_if. If uc_index != oif check if the 1202 * oif is an L3 master and uc_index is an L3 slave. 1203 * If so, we want to allow the send using the uc_index. 1204 */ 1205 if (ipc.oif != inet->uc_index && 1206 ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk), 1207 inet->uc_index)) { 1208 ipc.oif = inet->uc_index; 1209 } 1210 } 1211 1212 if (connected) 1213 rt = (struct rtable *)sk_dst_check(sk, 0); 1214 1215 if (!rt) { 1216 struct net *net = sock_net(sk); 1217 __u8 flow_flags = inet_sk_flowi_flags(sk); 1218 1219 fl4 = &fl4_stack; 1220 1221 flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos, scope, 1222 sk->sk_protocol, flow_flags, faddr, saddr, 1223 dport, inet->inet_sport, sk->sk_uid); 1224 1225 security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4)); 1226 rt = ip_route_output_flow(net, fl4, sk); 1227 if (IS_ERR(rt)) { 1228 err = PTR_ERR(rt); 1229 rt = NULL; 1230 if (err == -ENETUNREACH) 1231 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 1232 goto out; 1233 } 1234 1235 err = -EACCES; 1236 if ((rt->rt_flags & RTCF_BROADCAST) && 1237 !sock_flag(sk, SOCK_BROADCAST)) 1238 goto out; 1239 if (connected) 1240 sk_dst_set(sk, dst_clone(&rt->dst)); 1241 } 1242 1243 if (msg->msg_flags&MSG_CONFIRM) 1244 goto do_confirm; 1245 back_from_confirm: 1246 1247 saddr = fl4->saddr; 1248 if (!ipc.addr) 1249 daddr = ipc.addr = fl4->daddr; 1250 1251 /* Lockless fast path for the non-corking case. */ 1252 if (!corkreq) { 1253 struct inet_cork cork; 1254 1255 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen, 1256 sizeof(struct udphdr), &ipc, &rt, 1257 &cork, msg->msg_flags); 1258 err = PTR_ERR(skb); 1259 if (!IS_ERR_OR_NULL(skb)) 1260 err = udp_send_skb(skb, fl4, &cork); 1261 goto out; 1262 } 1263 1264 lock_sock(sk); 1265 if (unlikely(up->pending)) { 1266 /* The socket is already corked while preparing it. */ 1267 /* ... which is an evident application bug. --ANK */ 1268 release_sock(sk); 1269 1270 net_dbg_ratelimited("socket already corked\n"); 1271 err = -EINVAL; 1272 goto out; 1273 } 1274 /* 1275 * Now cork the socket to pend data. 1276 */ 1277 fl4 = &inet->cork.fl.u.ip4; 1278 fl4->daddr = daddr; 1279 fl4->saddr = saddr; 1280 fl4->fl4_dport = dport; 1281 fl4->fl4_sport = inet->inet_sport; 1282 up->pending = AF_INET; 1283 1284 do_append_data: 1285 up->len += ulen; 1286 err = ip_append_data(sk, fl4, getfrag, msg, ulen, 1287 sizeof(struct udphdr), &ipc, &rt, 1288 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags); 1289 if (err) 1290 udp_flush_pending_frames(sk); 1291 else if (!corkreq) 1292 err = udp_push_pending_frames(sk); 1293 else if (unlikely(skb_queue_empty(&sk->sk_write_queue))) 1294 up->pending = 0; 1295 release_sock(sk); 1296 1297 out: 1298 ip_rt_put(rt); 1299 out_free: 1300 if (free) 1301 kfree(ipc.opt); 1302 if (!err) 1303 return len; 1304 /* 1305 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting 1306 * ENOBUFS might not be good (it's not tunable per se), but otherwise 1307 * we don't have a good statistic (IpOutDiscards but it can be too many 1308 * things). We could add another new stat but at least for now that 1309 * seems like overkill. 1310 */ 1311 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1312 UDP_INC_STATS(sock_net(sk), 1313 UDP_MIB_SNDBUFERRORS, is_udplite); 1314 } 1315 return err; 1316 1317 do_confirm: 1318 if (msg->msg_flags & MSG_PROBE) 1319 dst_confirm_neigh(&rt->dst, &fl4->daddr); 1320 if (!(msg->msg_flags&MSG_PROBE) || len) 1321 goto back_from_confirm; 1322 err = 0; 1323 goto out; 1324 } 1325 EXPORT_SYMBOL(udp_sendmsg); 1326 1327 void udp_splice_eof(struct socket *sock) 1328 { 1329 struct sock *sk = sock->sk; 1330 struct udp_sock *up = udp_sk(sk); 1331 1332 if (!up->pending || READ_ONCE(up->corkflag)) 1333 return; 1334 1335 lock_sock(sk); 1336 if (up->pending && !READ_ONCE(up->corkflag)) 1337 udp_push_pending_frames(sk); 1338 release_sock(sk); 1339 } 1340 EXPORT_SYMBOL_GPL(udp_splice_eof); 1341 1342 int udp_sendpage(struct sock *sk, struct page *page, int offset, 1343 size_t size, int flags) 1344 { 1345 struct bio_vec bvec; 1346 struct msghdr msg = { .msg_flags = flags | MSG_SPLICE_PAGES }; 1347 1348 if (flags & MSG_SENDPAGE_NOTLAST) 1349 msg.msg_flags |= MSG_MORE; 1350 1351 bvec_set_page(&bvec, page, size, offset); 1352 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, size); 1353 return udp_sendmsg(sk, &msg, size); 1354 } 1355 1356 #define UDP_SKB_IS_STATELESS 0x80000000 1357 1358 /* all head states (dst, sk, nf conntrack) except skb extensions are 1359 * cleared by udp_rcv(). 1360 * 1361 * We need to preserve secpath, if present, to eventually process 1362 * IP_CMSG_PASSSEC at recvmsg() time. 1363 * 1364 * Other extensions can be cleared. 1365 */ 1366 static bool udp_try_make_stateless(struct sk_buff *skb) 1367 { 1368 if (!skb_has_extensions(skb)) 1369 return true; 1370 1371 if (!secpath_exists(skb)) { 1372 skb_ext_reset(skb); 1373 return true; 1374 } 1375 1376 return false; 1377 } 1378 1379 static void udp_set_dev_scratch(struct sk_buff *skb) 1380 { 1381 struct udp_dev_scratch *scratch = udp_skb_scratch(skb); 1382 1383 BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long)); 1384 scratch->_tsize_state = skb->truesize; 1385 #if BITS_PER_LONG == 64 1386 scratch->len = skb->len; 1387 scratch->csum_unnecessary = !!skb_csum_unnecessary(skb); 1388 scratch->is_linear = !skb_is_nonlinear(skb); 1389 #endif 1390 if (udp_try_make_stateless(skb)) 1391 scratch->_tsize_state |= UDP_SKB_IS_STATELESS; 1392 } 1393 1394 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb) 1395 { 1396 /* We come here after udp_lib_checksum_complete() returned 0. 1397 * This means that __skb_checksum_complete() might have 1398 * set skb->csum_valid to 1. 1399 * On 64bit platforms, we can set csum_unnecessary 1400 * to true, but only if the skb is not shared. 1401 */ 1402 #if BITS_PER_LONG == 64 1403 if (!skb_shared(skb)) 1404 udp_skb_scratch(skb)->csum_unnecessary = true; 1405 #endif 1406 } 1407 1408 static int udp_skb_truesize(struct sk_buff *skb) 1409 { 1410 return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS; 1411 } 1412 1413 static bool udp_skb_has_head_state(struct sk_buff *skb) 1414 { 1415 return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS); 1416 } 1417 1418 /* fully reclaim rmem/fwd memory allocated for skb */ 1419 static void udp_rmem_release(struct sock *sk, int size, int partial, 1420 bool rx_queue_lock_held) 1421 { 1422 struct udp_sock *up = udp_sk(sk); 1423 struct sk_buff_head *sk_queue; 1424 int amt; 1425 1426 if (likely(partial)) { 1427 up->forward_deficit += size; 1428 size = up->forward_deficit; 1429 if (size < READ_ONCE(up->forward_threshold) && 1430 !skb_queue_empty(&up->reader_queue)) 1431 return; 1432 } else { 1433 size += up->forward_deficit; 1434 } 1435 up->forward_deficit = 0; 1436 1437 /* acquire the sk_receive_queue for fwd allocated memory scheduling, 1438 * if the called don't held it already 1439 */ 1440 sk_queue = &sk->sk_receive_queue; 1441 if (!rx_queue_lock_held) 1442 spin_lock(&sk_queue->lock); 1443 1444 1445 sk->sk_forward_alloc += size; 1446 amt = (sk->sk_forward_alloc - partial) & ~(PAGE_SIZE - 1); 1447 sk->sk_forward_alloc -= amt; 1448 1449 if (amt) 1450 __sk_mem_reduce_allocated(sk, amt >> PAGE_SHIFT); 1451 1452 atomic_sub(size, &sk->sk_rmem_alloc); 1453 1454 /* this can save us from acquiring the rx queue lock on next receive */ 1455 skb_queue_splice_tail_init(sk_queue, &up->reader_queue); 1456 1457 if (!rx_queue_lock_held) 1458 spin_unlock(&sk_queue->lock); 1459 } 1460 1461 /* Note: called with reader_queue.lock held. 1462 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch 1463 * This avoids a cache line miss while receive_queue lock is held. 1464 * Look at __udp_enqueue_schedule_skb() to find where this copy is done. 1465 */ 1466 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb) 1467 { 1468 prefetch(&skb->data); 1469 udp_rmem_release(sk, udp_skb_truesize(skb), 1, false); 1470 } 1471 EXPORT_SYMBOL(udp_skb_destructor); 1472 1473 /* as above, but the caller held the rx queue lock, too */ 1474 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb) 1475 { 1476 prefetch(&skb->data); 1477 udp_rmem_release(sk, udp_skb_truesize(skb), 1, true); 1478 } 1479 1480 /* Idea of busylocks is to let producers grab an extra spinlock 1481 * to relieve pressure on the receive_queue spinlock shared by consumer. 1482 * Under flood, this means that only one producer can be in line 1483 * trying to acquire the receive_queue spinlock. 1484 * These busylock can be allocated on a per cpu manner, instead of a 1485 * per socket one (that would consume a cache line per socket) 1486 */ 1487 static int udp_busylocks_log __read_mostly; 1488 static spinlock_t *udp_busylocks __read_mostly; 1489 1490 static spinlock_t *busylock_acquire(void *ptr) 1491 { 1492 spinlock_t *busy; 1493 1494 busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log); 1495 spin_lock(busy); 1496 return busy; 1497 } 1498 1499 static void busylock_release(spinlock_t *busy) 1500 { 1501 if (busy) 1502 spin_unlock(busy); 1503 } 1504 1505 static int udp_rmem_schedule(struct sock *sk, int size) 1506 { 1507 int delta; 1508 1509 delta = size - sk->sk_forward_alloc; 1510 if (delta > 0 && !__sk_mem_schedule(sk, delta, SK_MEM_RECV)) 1511 return -ENOBUFS; 1512 1513 return 0; 1514 } 1515 1516 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb) 1517 { 1518 struct sk_buff_head *list = &sk->sk_receive_queue; 1519 int rmem, err = -ENOMEM; 1520 spinlock_t *busy = NULL; 1521 int size; 1522 1523 /* try to avoid the costly atomic add/sub pair when the receive 1524 * queue is full; always allow at least a packet 1525 */ 1526 rmem = atomic_read(&sk->sk_rmem_alloc); 1527 if (rmem > sk->sk_rcvbuf) 1528 goto drop; 1529 1530 /* Under mem pressure, it might be helpful to help udp_recvmsg() 1531 * having linear skbs : 1532 * - Reduce memory overhead and thus increase receive queue capacity 1533 * - Less cache line misses at copyout() time 1534 * - Less work at consume_skb() (less alien page frag freeing) 1535 */ 1536 if (rmem > (sk->sk_rcvbuf >> 1)) { 1537 skb_condense(skb); 1538 1539 busy = busylock_acquire(sk); 1540 } 1541 size = skb->truesize; 1542 udp_set_dev_scratch(skb); 1543 1544 /* we drop only if the receive buf is full and the receive 1545 * queue contains some other skb 1546 */ 1547 rmem = atomic_add_return(size, &sk->sk_rmem_alloc); 1548 if (rmem > (size + (unsigned int)sk->sk_rcvbuf)) 1549 goto uncharge_drop; 1550 1551 spin_lock(&list->lock); 1552 err = udp_rmem_schedule(sk, size); 1553 if (err) { 1554 spin_unlock(&list->lock); 1555 goto uncharge_drop; 1556 } 1557 1558 sk->sk_forward_alloc -= size; 1559 1560 /* no need to setup a destructor, we will explicitly release the 1561 * forward allocated memory on dequeue 1562 */ 1563 sock_skb_set_dropcount(sk, skb); 1564 1565 __skb_queue_tail(list, skb); 1566 spin_unlock(&list->lock); 1567 1568 if (!sock_flag(sk, SOCK_DEAD)) 1569 sk->sk_data_ready(sk); 1570 1571 busylock_release(busy); 1572 return 0; 1573 1574 uncharge_drop: 1575 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 1576 1577 drop: 1578 atomic_inc(&sk->sk_drops); 1579 busylock_release(busy); 1580 return err; 1581 } 1582 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb); 1583 1584 void udp_destruct_common(struct sock *sk) 1585 { 1586 /* reclaim completely the forward allocated memory */ 1587 struct udp_sock *up = udp_sk(sk); 1588 unsigned int total = 0; 1589 struct sk_buff *skb; 1590 1591 skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue); 1592 while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) { 1593 total += skb->truesize; 1594 kfree_skb(skb); 1595 } 1596 udp_rmem_release(sk, total, 0, true); 1597 } 1598 EXPORT_SYMBOL_GPL(udp_destruct_common); 1599 1600 static void udp_destruct_sock(struct sock *sk) 1601 { 1602 udp_destruct_common(sk); 1603 inet_sock_destruct(sk); 1604 } 1605 1606 int udp_init_sock(struct sock *sk) 1607 { 1608 udp_lib_init_sock(sk); 1609 sk->sk_destruct = udp_destruct_sock; 1610 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); 1611 return 0; 1612 } 1613 1614 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len) 1615 { 1616 if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) { 1617 bool slow = lock_sock_fast(sk); 1618 1619 sk_peek_offset_bwd(sk, len); 1620 unlock_sock_fast(sk, slow); 1621 } 1622 1623 if (!skb_unref(skb)) 1624 return; 1625 1626 /* In the more common cases we cleared the head states previously, 1627 * see __udp_queue_rcv_skb(). 1628 */ 1629 if (unlikely(udp_skb_has_head_state(skb))) 1630 skb_release_head_state(skb); 1631 __consume_stateless_skb(skb); 1632 } 1633 EXPORT_SYMBOL_GPL(skb_consume_udp); 1634 1635 static struct sk_buff *__first_packet_length(struct sock *sk, 1636 struct sk_buff_head *rcvq, 1637 int *total) 1638 { 1639 struct sk_buff *skb; 1640 1641 while ((skb = skb_peek(rcvq)) != NULL) { 1642 if (udp_lib_checksum_complete(skb)) { 1643 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, 1644 IS_UDPLITE(sk)); 1645 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, 1646 IS_UDPLITE(sk)); 1647 atomic_inc(&sk->sk_drops); 1648 __skb_unlink(skb, rcvq); 1649 *total += skb->truesize; 1650 kfree_skb(skb); 1651 } else { 1652 udp_skb_csum_unnecessary_set(skb); 1653 break; 1654 } 1655 } 1656 return skb; 1657 } 1658 1659 /** 1660 * first_packet_length - return length of first packet in receive queue 1661 * @sk: socket 1662 * 1663 * Drops all bad checksum frames, until a valid one is found. 1664 * Returns the length of found skb, or -1 if none is found. 1665 */ 1666 static int first_packet_length(struct sock *sk) 1667 { 1668 struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue; 1669 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1670 struct sk_buff *skb; 1671 int total = 0; 1672 int res; 1673 1674 spin_lock_bh(&rcvq->lock); 1675 skb = __first_packet_length(sk, rcvq, &total); 1676 if (!skb && !skb_queue_empty_lockless(sk_queue)) { 1677 spin_lock(&sk_queue->lock); 1678 skb_queue_splice_tail_init(sk_queue, rcvq); 1679 spin_unlock(&sk_queue->lock); 1680 1681 skb = __first_packet_length(sk, rcvq, &total); 1682 } 1683 res = skb ? skb->len : -1; 1684 if (total) 1685 udp_rmem_release(sk, total, 1, false); 1686 spin_unlock_bh(&rcvq->lock); 1687 return res; 1688 } 1689 1690 /* 1691 * IOCTL requests applicable to the UDP protocol 1692 */ 1693 1694 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg) 1695 { 1696 switch (cmd) { 1697 case SIOCOUTQ: 1698 { 1699 int amount = sk_wmem_alloc_get(sk); 1700 1701 return put_user(amount, (int __user *)arg); 1702 } 1703 1704 case SIOCINQ: 1705 { 1706 int amount = max_t(int, 0, first_packet_length(sk)); 1707 1708 return put_user(amount, (int __user *)arg); 1709 } 1710 1711 default: 1712 return -ENOIOCTLCMD; 1713 } 1714 1715 return 0; 1716 } 1717 EXPORT_SYMBOL(udp_ioctl); 1718 1719 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags, 1720 int *off, int *err) 1721 { 1722 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1723 struct sk_buff_head *queue; 1724 struct sk_buff *last; 1725 long timeo; 1726 int error; 1727 1728 queue = &udp_sk(sk)->reader_queue; 1729 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1730 do { 1731 struct sk_buff *skb; 1732 1733 error = sock_error(sk); 1734 if (error) 1735 break; 1736 1737 error = -EAGAIN; 1738 do { 1739 spin_lock_bh(&queue->lock); 1740 skb = __skb_try_recv_from_queue(sk, queue, flags, off, 1741 err, &last); 1742 if (skb) { 1743 if (!(flags & MSG_PEEK)) 1744 udp_skb_destructor(sk, skb); 1745 spin_unlock_bh(&queue->lock); 1746 return skb; 1747 } 1748 1749 if (skb_queue_empty_lockless(sk_queue)) { 1750 spin_unlock_bh(&queue->lock); 1751 goto busy_check; 1752 } 1753 1754 /* refill the reader queue and walk it again 1755 * keep both queues locked to avoid re-acquiring 1756 * the sk_receive_queue lock if fwd memory scheduling 1757 * is needed. 1758 */ 1759 spin_lock(&sk_queue->lock); 1760 skb_queue_splice_tail_init(sk_queue, queue); 1761 1762 skb = __skb_try_recv_from_queue(sk, queue, flags, off, 1763 err, &last); 1764 if (skb && !(flags & MSG_PEEK)) 1765 udp_skb_dtor_locked(sk, skb); 1766 spin_unlock(&sk_queue->lock); 1767 spin_unlock_bh(&queue->lock); 1768 if (skb) 1769 return skb; 1770 1771 busy_check: 1772 if (!sk_can_busy_loop(sk)) 1773 break; 1774 1775 sk_busy_loop(sk, flags & MSG_DONTWAIT); 1776 } while (!skb_queue_empty_lockless(sk_queue)); 1777 1778 /* sk_queue is empty, reader_queue may contain peeked packets */ 1779 } while (timeo && 1780 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue, 1781 &error, &timeo, 1782 (struct sk_buff *)sk_queue)); 1783 1784 *err = error; 1785 return NULL; 1786 } 1787 EXPORT_SYMBOL(__skb_recv_udp); 1788 1789 int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor) 1790 { 1791 struct sk_buff *skb; 1792 int err; 1793 1794 try_again: 1795 skb = skb_recv_udp(sk, MSG_DONTWAIT, &err); 1796 if (!skb) 1797 return err; 1798 1799 if (udp_lib_checksum_complete(skb)) { 1800 int is_udplite = IS_UDPLITE(sk); 1801 struct net *net = sock_net(sk); 1802 1803 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, is_udplite); 1804 __UDP_INC_STATS(net, UDP_MIB_INERRORS, is_udplite); 1805 atomic_inc(&sk->sk_drops); 1806 kfree_skb(skb); 1807 goto try_again; 1808 } 1809 1810 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk)); 1811 return recv_actor(sk, skb); 1812 } 1813 EXPORT_SYMBOL(udp_read_skb); 1814 1815 /* 1816 * This should be easy, if there is something there we 1817 * return it, otherwise we block. 1818 */ 1819 1820 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, 1821 int *addr_len) 1822 { 1823 struct inet_sock *inet = inet_sk(sk); 1824 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name); 1825 struct sk_buff *skb; 1826 unsigned int ulen, copied; 1827 int off, err, peeking = flags & MSG_PEEK; 1828 int is_udplite = IS_UDPLITE(sk); 1829 bool checksum_valid = false; 1830 1831 if (flags & MSG_ERRQUEUE) 1832 return ip_recv_error(sk, msg, len, addr_len); 1833 1834 try_again: 1835 off = sk_peek_offset(sk, flags); 1836 skb = __skb_recv_udp(sk, flags, &off, &err); 1837 if (!skb) 1838 return err; 1839 1840 ulen = udp_skb_len(skb); 1841 copied = len; 1842 if (copied > ulen - off) 1843 copied = ulen - off; 1844 else if (copied < ulen) 1845 msg->msg_flags |= MSG_TRUNC; 1846 1847 /* 1848 * If checksum is needed at all, try to do it while copying the 1849 * data. If the data is truncated, or if we only want a partial 1850 * coverage checksum (UDP-Lite), do it before the copy. 1851 */ 1852 1853 if (copied < ulen || peeking || 1854 (is_udplite && UDP_SKB_CB(skb)->partial_cov)) { 1855 checksum_valid = udp_skb_csum_unnecessary(skb) || 1856 !__udp_lib_checksum_complete(skb); 1857 if (!checksum_valid) 1858 goto csum_copy_err; 1859 } 1860 1861 if (checksum_valid || udp_skb_csum_unnecessary(skb)) { 1862 if (udp_skb_is_linear(skb)) 1863 err = copy_linear_skb(skb, copied, off, &msg->msg_iter); 1864 else 1865 err = skb_copy_datagram_msg(skb, off, msg, copied); 1866 } else { 1867 err = skb_copy_and_csum_datagram_msg(skb, off, msg); 1868 1869 if (err == -EINVAL) 1870 goto csum_copy_err; 1871 } 1872 1873 if (unlikely(err)) { 1874 if (!peeking) { 1875 atomic_inc(&sk->sk_drops); 1876 UDP_INC_STATS(sock_net(sk), 1877 UDP_MIB_INERRORS, is_udplite); 1878 } 1879 kfree_skb(skb); 1880 return err; 1881 } 1882 1883 if (!peeking) 1884 UDP_INC_STATS(sock_net(sk), 1885 UDP_MIB_INDATAGRAMS, is_udplite); 1886 1887 sock_recv_cmsgs(msg, sk, skb); 1888 1889 /* Copy the address. */ 1890 if (sin) { 1891 sin->sin_family = AF_INET; 1892 sin->sin_port = udp_hdr(skb)->source; 1893 sin->sin_addr.s_addr = ip_hdr(skb)->saddr; 1894 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 1895 *addr_len = sizeof(*sin); 1896 1897 BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk, 1898 (struct sockaddr *)sin); 1899 } 1900 1901 if (udp_sk(sk)->gro_enabled) 1902 udp_cmsg_recv(msg, sk, skb); 1903 1904 if (inet->cmsg_flags) 1905 ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off); 1906 1907 err = copied; 1908 if (flags & MSG_TRUNC) 1909 err = ulen; 1910 1911 skb_consume_udp(sk, skb, peeking ? -err : err); 1912 return err; 1913 1914 csum_copy_err: 1915 if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags, 1916 udp_skb_destructor)) { 1917 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 1918 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1919 } 1920 kfree_skb(skb); 1921 1922 /* starting over for a new packet, but check if we need to yield */ 1923 cond_resched(); 1924 msg->msg_flags &= ~MSG_TRUNC; 1925 goto try_again; 1926 } 1927 1928 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 1929 { 1930 /* This check is replicated from __ip4_datagram_connect() and 1931 * intended to prevent BPF program called below from accessing bytes 1932 * that are out of the bound specified by user in addr_len. 1933 */ 1934 if (addr_len < sizeof(struct sockaddr_in)) 1935 return -EINVAL; 1936 1937 return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr); 1938 } 1939 EXPORT_SYMBOL(udp_pre_connect); 1940 1941 int __udp_disconnect(struct sock *sk, int flags) 1942 { 1943 struct inet_sock *inet = inet_sk(sk); 1944 /* 1945 * 1003.1g - break association. 1946 */ 1947 1948 sk->sk_state = TCP_CLOSE; 1949 inet->inet_daddr = 0; 1950 inet->inet_dport = 0; 1951 sock_rps_reset_rxhash(sk); 1952 sk->sk_bound_dev_if = 0; 1953 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) { 1954 inet_reset_saddr(sk); 1955 if (sk->sk_prot->rehash && 1956 (sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 1957 sk->sk_prot->rehash(sk); 1958 } 1959 1960 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) { 1961 sk->sk_prot->unhash(sk); 1962 inet->inet_sport = 0; 1963 } 1964 sk_dst_reset(sk); 1965 return 0; 1966 } 1967 EXPORT_SYMBOL(__udp_disconnect); 1968 1969 int udp_disconnect(struct sock *sk, int flags) 1970 { 1971 lock_sock(sk); 1972 __udp_disconnect(sk, flags); 1973 release_sock(sk); 1974 return 0; 1975 } 1976 EXPORT_SYMBOL(udp_disconnect); 1977 1978 void udp_lib_unhash(struct sock *sk) 1979 { 1980 if (sk_hashed(sk)) { 1981 struct udp_table *udptable = udp_get_table_prot(sk); 1982 struct udp_hslot *hslot, *hslot2; 1983 1984 hslot = udp_hashslot(udptable, sock_net(sk), 1985 udp_sk(sk)->udp_port_hash); 1986 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1987 1988 spin_lock_bh(&hslot->lock); 1989 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1990 reuseport_detach_sock(sk); 1991 if (sk_del_node_init_rcu(sk)) { 1992 hslot->count--; 1993 inet_sk(sk)->inet_num = 0; 1994 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 1995 1996 spin_lock(&hslot2->lock); 1997 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 1998 hslot2->count--; 1999 spin_unlock(&hslot2->lock); 2000 } 2001 spin_unlock_bh(&hslot->lock); 2002 } 2003 } 2004 EXPORT_SYMBOL(udp_lib_unhash); 2005 2006 /* 2007 * inet_rcv_saddr was changed, we must rehash secondary hash 2008 */ 2009 void udp_lib_rehash(struct sock *sk, u16 newhash) 2010 { 2011 if (sk_hashed(sk)) { 2012 struct udp_table *udptable = udp_get_table_prot(sk); 2013 struct udp_hslot *hslot, *hslot2, *nhslot2; 2014 2015 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 2016 nhslot2 = udp_hashslot2(udptable, newhash); 2017 udp_sk(sk)->udp_portaddr_hash = newhash; 2018 2019 if (hslot2 != nhslot2 || 2020 rcu_access_pointer(sk->sk_reuseport_cb)) { 2021 hslot = udp_hashslot(udptable, sock_net(sk), 2022 udp_sk(sk)->udp_port_hash); 2023 /* we must lock primary chain too */ 2024 spin_lock_bh(&hslot->lock); 2025 if (rcu_access_pointer(sk->sk_reuseport_cb)) 2026 reuseport_detach_sock(sk); 2027 2028 if (hslot2 != nhslot2) { 2029 spin_lock(&hslot2->lock); 2030 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 2031 hslot2->count--; 2032 spin_unlock(&hslot2->lock); 2033 2034 spin_lock(&nhslot2->lock); 2035 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 2036 &nhslot2->head); 2037 nhslot2->count++; 2038 spin_unlock(&nhslot2->lock); 2039 } 2040 2041 spin_unlock_bh(&hslot->lock); 2042 } 2043 } 2044 } 2045 EXPORT_SYMBOL(udp_lib_rehash); 2046 2047 void udp_v4_rehash(struct sock *sk) 2048 { 2049 u16 new_hash = ipv4_portaddr_hash(sock_net(sk), 2050 inet_sk(sk)->inet_rcv_saddr, 2051 inet_sk(sk)->inet_num); 2052 udp_lib_rehash(sk, new_hash); 2053 } 2054 2055 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 2056 { 2057 int rc; 2058 2059 if (inet_sk(sk)->inet_daddr) { 2060 sock_rps_save_rxhash(sk, skb); 2061 sk_mark_napi_id(sk, skb); 2062 sk_incoming_cpu_update(sk); 2063 } else { 2064 sk_mark_napi_id_once(sk, skb); 2065 } 2066 2067 rc = __udp_enqueue_schedule_skb(sk, skb); 2068 if (rc < 0) { 2069 int is_udplite = IS_UDPLITE(sk); 2070 int drop_reason; 2071 2072 /* Note that an ENOMEM error is charged twice */ 2073 if (rc == -ENOMEM) { 2074 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS, 2075 is_udplite); 2076 drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF; 2077 } else { 2078 UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS, 2079 is_udplite); 2080 drop_reason = SKB_DROP_REASON_PROTO_MEM; 2081 } 2082 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 2083 kfree_skb_reason(skb, drop_reason); 2084 trace_udp_fail_queue_rcv_skb(rc, sk); 2085 return -1; 2086 } 2087 2088 return 0; 2089 } 2090 2091 /* returns: 2092 * -1: error 2093 * 0: success 2094 * >0: "udp encap" protocol resubmission 2095 * 2096 * Note that in the success and error cases, the skb is assumed to 2097 * have either been requeued or freed. 2098 */ 2099 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb) 2100 { 2101 int drop_reason = SKB_DROP_REASON_NOT_SPECIFIED; 2102 struct udp_sock *up = udp_sk(sk); 2103 int is_udplite = IS_UDPLITE(sk); 2104 2105 /* 2106 * Charge it to the socket, dropping if the queue is full. 2107 */ 2108 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) { 2109 drop_reason = SKB_DROP_REASON_XFRM_POLICY; 2110 goto drop; 2111 } 2112 nf_reset_ct(skb); 2113 2114 if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) { 2115 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb); 2116 2117 /* 2118 * This is an encapsulation socket so pass the skb to 2119 * the socket's udp_encap_rcv() hook. Otherwise, just 2120 * fall through and pass this up the UDP socket. 2121 * up->encap_rcv() returns the following value: 2122 * =0 if skb was successfully passed to the encap 2123 * handler or was discarded by it. 2124 * >0 if skb should be passed on to UDP. 2125 * <0 if skb should be resubmitted as proto -N 2126 */ 2127 2128 /* if we're overly short, let UDP handle it */ 2129 encap_rcv = READ_ONCE(up->encap_rcv); 2130 if (encap_rcv) { 2131 int ret; 2132 2133 /* Verify checksum before giving to encap */ 2134 if (udp_lib_checksum_complete(skb)) 2135 goto csum_error; 2136 2137 ret = encap_rcv(sk, skb); 2138 if (ret <= 0) { 2139 __UDP_INC_STATS(sock_net(sk), 2140 UDP_MIB_INDATAGRAMS, 2141 is_udplite); 2142 return -ret; 2143 } 2144 } 2145 2146 /* FALLTHROUGH -- it's a UDP Packet */ 2147 } 2148 2149 /* 2150 * UDP-Lite specific tests, ignored on UDP sockets 2151 */ 2152 if ((up->pcflag & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) { 2153 2154 /* 2155 * MIB statistics other than incrementing the error count are 2156 * disabled for the following two types of errors: these depend 2157 * on the application settings, not on the functioning of the 2158 * protocol stack as such. 2159 * 2160 * RFC 3828 here recommends (sec 3.3): "There should also be a 2161 * way ... to ... at least let the receiving application block 2162 * delivery of packets with coverage values less than a value 2163 * provided by the application." 2164 */ 2165 if (up->pcrlen == 0) { /* full coverage was set */ 2166 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n", 2167 UDP_SKB_CB(skb)->cscov, skb->len); 2168 goto drop; 2169 } 2170 /* The next case involves violating the min. coverage requested 2171 * by the receiver. This is subtle: if receiver wants x and x is 2172 * greater than the buffersize/MTU then receiver will complain 2173 * that it wants x while sender emits packets of smaller size y. 2174 * Therefore the above ...()->partial_cov statement is essential. 2175 */ 2176 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) { 2177 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n", 2178 UDP_SKB_CB(skb)->cscov, up->pcrlen); 2179 goto drop; 2180 } 2181 } 2182 2183 prefetch(&sk->sk_rmem_alloc); 2184 if (rcu_access_pointer(sk->sk_filter) && 2185 udp_lib_checksum_complete(skb)) 2186 goto csum_error; 2187 2188 if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) { 2189 drop_reason = SKB_DROP_REASON_SOCKET_FILTER; 2190 goto drop; 2191 } 2192 2193 udp_csum_pull_header(skb); 2194 2195 ipv4_pktinfo_prepare(sk, skb); 2196 return __udp_queue_rcv_skb(sk, skb); 2197 2198 csum_error: 2199 drop_reason = SKB_DROP_REASON_UDP_CSUM; 2200 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 2201 drop: 2202 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 2203 atomic_inc(&sk->sk_drops); 2204 kfree_skb_reason(skb, drop_reason); 2205 return -1; 2206 } 2207 2208 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 2209 { 2210 struct sk_buff *next, *segs; 2211 int ret; 2212 2213 if (likely(!udp_unexpected_gso(sk, skb))) 2214 return udp_queue_rcv_one_skb(sk, skb); 2215 2216 BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET); 2217 __skb_push(skb, -skb_mac_offset(skb)); 2218 segs = udp_rcv_segment(sk, skb, true); 2219 skb_list_walk_safe(segs, skb, next) { 2220 __skb_pull(skb, skb_transport_offset(skb)); 2221 2222 udp_post_segment_fix_csum(skb); 2223 ret = udp_queue_rcv_one_skb(sk, skb); 2224 if (ret > 0) 2225 ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret); 2226 } 2227 return 0; 2228 } 2229 2230 /* For TCP sockets, sk_rx_dst is protected by socket lock 2231 * For UDP, we use xchg() to guard against concurrent changes. 2232 */ 2233 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst) 2234 { 2235 struct dst_entry *old; 2236 2237 if (dst_hold_safe(dst)) { 2238 old = xchg((__force struct dst_entry **)&sk->sk_rx_dst, dst); 2239 dst_release(old); 2240 return old != dst; 2241 } 2242 return false; 2243 } 2244 EXPORT_SYMBOL(udp_sk_rx_dst_set); 2245 2246 /* 2247 * Multicasts and broadcasts go to each listener. 2248 * 2249 * Note: called only from the BH handler context. 2250 */ 2251 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb, 2252 struct udphdr *uh, 2253 __be32 saddr, __be32 daddr, 2254 struct udp_table *udptable, 2255 int proto) 2256 { 2257 struct sock *sk, *first = NULL; 2258 unsigned short hnum = ntohs(uh->dest); 2259 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum); 2260 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10); 2261 unsigned int offset = offsetof(typeof(*sk), sk_node); 2262 int dif = skb->dev->ifindex; 2263 int sdif = inet_sdif(skb); 2264 struct hlist_node *node; 2265 struct sk_buff *nskb; 2266 2267 if (use_hash2) { 2268 hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) & 2269 udptable->mask; 2270 hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask; 2271 start_lookup: 2272 hslot = &udptable->hash2[hash2]; 2273 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node); 2274 } 2275 2276 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) { 2277 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr, 2278 uh->source, saddr, dif, sdif, hnum)) 2279 continue; 2280 2281 if (!first) { 2282 first = sk; 2283 continue; 2284 } 2285 nskb = skb_clone(skb, GFP_ATOMIC); 2286 2287 if (unlikely(!nskb)) { 2288 atomic_inc(&sk->sk_drops); 2289 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS, 2290 IS_UDPLITE(sk)); 2291 __UDP_INC_STATS(net, UDP_MIB_INERRORS, 2292 IS_UDPLITE(sk)); 2293 continue; 2294 } 2295 if (udp_queue_rcv_skb(sk, nskb) > 0) 2296 consume_skb(nskb); 2297 } 2298 2299 /* Also lookup *:port if we are using hash2 and haven't done so yet. */ 2300 if (use_hash2 && hash2 != hash2_any) { 2301 hash2 = hash2_any; 2302 goto start_lookup; 2303 } 2304 2305 if (first) { 2306 if (udp_queue_rcv_skb(first, skb) > 0) 2307 consume_skb(skb); 2308 } else { 2309 kfree_skb(skb); 2310 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI, 2311 proto == IPPROTO_UDPLITE); 2312 } 2313 return 0; 2314 } 2315 2316 /* Initialize UDP checksum. If exited with zero value (success), 2317 * CHECKSUM_UNNECESSARY means, that no more checks are required. 2318 * Otherwise, csum completion requires checksumming packet body, 2319 * including udp header and folding it to skb->csum. 2320 */ 2321 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh, 2322 int proto) 2323 { 2324 int err; 2325 2326 UDP_SKB_CB(skb)->partial_cov = 0; 2327 UDP_SKB_CB(skb)->cscov = skb->len; 2328 2329 if (proto == IPPROTO_UDPLITE) { 2330 err = udplite_checksum_init(skb, uh); 2331 if (err) 2332 return err; 2333 2334 if (UDP_SKB_CB(skb)->partial_cov) { 2335 skb->csum = inet_compute_pseudo(skb, proto); 2336 return 0; 2337 } 2338 } 2339 2340 /* Note, we are only interested in != 0 or == 0, thus the 2341 * force to int. 2342 */ 2343 err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check, 2344 inet_compute_pseudo); 2345 if (err) 2346 return err; 2347 2348 if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) { 2349 /* If SW calculated the value, we know it's bad */ 2350 if (skb->csum_complete_sw) 2351 return 1; 2352 2353 /* HW says the value is bad. Let's validate that. 2354 * skb->csum is no longer the full packet checksum, 2355 * so don't treat it as such. 2356 */ 2357 skb_checksum_complete_unset(skb); 2358 } 2359 2360 return 0; 2361 } 2362 2363 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and 2364 * return code conversion for ip layer consumption 2365 */ 2366 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb, 2367 struct udphdr *uh) 2368 { 2369 int ret; 2370 2371 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk)) 2372 skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo); 2373 2374 ret = udp_queue_rcv_skb(sk, skb); 2375 2376 /* a return value > 0 means to resubmit the input, but 2377 * it wants the return to be -protocol, or 0 2378 */ 2379 if (ret > 0) 2380 return -ret; 2381 return 0; 2382 } 2383 2384 /* 2385 * All we need to do is get the socket, and then do a checksum. 2386 */ 2387 2388 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable, 2389 int proto) 2390 { 2391 struct sock *sk; 2392 struct udphdr *uh; 2393 unsigned short ulen; 2394 struct rtable *rt = skb_rtable(skb); 2395 __be32 saddr, daddr; 2396 struct net *net = dev_net(skb->dev); 2397 bool refcounted; 2398 int drop_reason; 2399 2400 drop_reason = SKB_DROP_REASON_NOT_SPECIFIED; 2401 2402 /* 2403 * Validate the packet. 2404 */ 2405 if (!pskb_may_pull(skb, sizeof(struct udphdr))) 2406 goto drop; /* No space for header. */ 2407 2408 uh = udp_hdr(skb); 2409 ulen = ntohs(uh->len); 2410 saddr = ip_hdr(skb)->saddr; 2411 daddr = ip_hdr(skb)->daddr; 2412 2413 if (ulen > skb->len) 2414 goto short_packet; 2415 2416 if (proto == IPPROTO_UDP) { 2417 /* UDP validates ulen. */ 2418 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen)) 2419 goto short_packet; 2420 uh = udp_hdr(skb); 2421 } 2422 2423 if (udp4_csum_init(skb, uh, proto)) 2424 goto csum_error; 2425 2426 sk = skb_steal_sock(skb, &refcounted); 2427 if (sk) { 2428 struct dst_entry *dst = skb_dst(skb); 2429 int ret; 2430 2431 if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst)) 2432 udp_sk_rx_dst_set(sk, dst); 2433 2434 ret = udp_unicast_rcv_skb(sk, skb, uh); 2435 if (refcounted) 2436 sock_put(sk); 2437 return ret; 2438 } 2439 2440 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST)) 2441 return __udp4_lib_mcast_deliver(net, skb, uh, 2442 saddr, daddr, udptable, proto); 2443 2444 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable); 2445 if (sk) 2446 return udp_unicast_rcv_skb(sk, skb, uh); 2447 2448 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 2449 goto drop; 2450 nf_reset_ct(skb); 2451 2452 /* No socket. Drop packet silently, if checksum is wrong */ 2453 if (udp_lib_checksum_complete(skb)) 2454 goto csum_error; 2455 2456 drop_reason = SKB_DROP_REASON_NO_SOCKET; 2457 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE); 2458 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0); 2459 2460 /* 2461 * Hmm. We got an UDP packet to a port to which we 2462 * don't wanna listen. Ignore it. 2463 */ 2464 kfree_skb_reason(skb, drop_reason); 2465 return 0; 2466 2467 short_packet: 2468 drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL; 2469 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n", 2470 proto == IPPROTO_UDPLITE ? "Lite" : "", 2471 &saddr, ntohs(uh->source), 2472 ulen, skb->len, 2473 &daddr, ntohs(uh->dest)); 2474 goto drop; 2475 2476 csum_error: 2477 /* 2478 * RFC1122: OK. Discards the bad packet silently (as far as 2479 * the network is concerned, anyway) as per 4.1.3.4 (MUST). 2480 */ 2481 drop_reason = SKB_DROP_REASON_UDP_CSUM; 2482 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n", 2483 proto == IPPROTO_UDPLITE ? "Lite" : "", 2484 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest), 2485 ulen); 2486 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE); 2487 drop: 2488 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE); 2489 kfree_skb_reason(skb, drop_reason); 2490 return 0; 2491 } 2492 2493 /* We can only early demux multicast if there is a single matching socket. 2494 * If more than one socket found returns NULL 2495 */ 2496 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net, 2497 __be16 loc_port, __be32 loc_addr, 2498 __be16 rmt_port, __be32 rmt_addr, 2499 int dif, int sdif) 2500 { 2501 struct udp_table *udptable = net->ipv4.udp_table; 2502 unsigned short hnum = ntohs(loc_port); 2503 struct sock *sk, *result; 2504 struct udp_hslot *hslot; 2505 unsigned int slot; 2506 2507 slot = udp_hashfn(net, hnum, udptable->mask); 2508 hslot = &udptable->hash[slot]; 2509 2510 /* Do not bother scanning a too big list */ 2511 if (hslot->count > 10) 2512 return NULL; 2513 2514 result = NULL; 2515 sk_for_each_rcu(sk, &hslot->head) { 2516 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr, 2517 rmt_port, rmt_addr, dif, sdif, hnum)) { 2518 if (result) 2519 return NULL; 2520 result = sk; 2521 } 2522 } 2523 2524 return result; 2525 } 2526 2527 /* For unicast we should only early demux connected sockets or we can 2528 * break forwarding setups. The chains here can be long so only check 2529 * if the first socket is an exact match and if not move on. 2530 */ 2531 static struct sock *__udp4_lib_demux_lookup(struct net *net, 2532 __be16 loc_port, __be32 loc_addr, 2533 __be16 rmt_port, __be32 rmt_addr, 2534 int dif, int sdif) 2535 { 2536 struct udp_table *udptable = net->ipv4.udp_table; 2537 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr); 2538 unsigned short hnum = ntohs(loc_port); 2539 unsigned int hash2, slot2; 2540 struct udp_hslot *hslot2; 2541 __portpair ports; 2542 struct sock *sk; 2543 2544 hash2 = ipv4_portaddr_hash(net, loc_addr, hnum); 2545 slot2 = hash2 & udptable->mask; 2546 hslot2 = &udptable->hash2[slot2]; 2547 ports = INET_COMBINED_PORTS(rmt_port, hnum); 2548 2549 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 2550 if (inet_match(net, sk, acookie, ports, dif, sdif)) 2551 return sk; 2552 /* Only check first socket in chain */ 2553 break; 2554 } 2555 return NULL; 2556 } 2557 2558 int udp_v4_early_demux(struct sk_buff *skb) 2559 { 2560 struct net *net = dev_net(skb->dev); 2561 struct in_device *in_dev = NULL; 2562 const struct iphdr *iph; 2563 const struct udphdr *uh; 2564 struct sock *sk = NULL; 2565 struct dst_entry *dst; 2566 int dif = skb->dev->ifindex; 2567 int sdif = inet_sdif(skb); 2568 int ours; 2569 2570 /* validate the packet */ 2571 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr))) 2572 return 0; 2573 2574 iph = ip_hdr(skb); 2575 uh = udp_hdr(skb); 2576 2577 if (skb->pkt_type == PACKET_MULTICAST) { 2578 in_dev = __in_dev_get_rcu(skb->dev); 2579 2580 if (!in_dev) 2581 return 0; 2582 2583 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr, 2584 iph->protocol); 2585 if (!ours) 2586 return 0; 2587 2588 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr, 2589 uh->source, iph->saddr, 2590 dif, sdif); 2591 } else if (skb->pkt_type == PACKET_HOST) { 2592 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr, 2593 uh->source, iph->saddr, dif, sdif); 2594 } 2595 2596 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 2597 return 0; 2598 2599 skb->sk = sk; 2600 skb->destructor = sock_efree; 2601 dst = rcu_dereference(sk->sk_rx_dst); 2602 2603 if (dst) 2604 dst = dst_check(dst, 0); 2605 if (dst) { 2606 u32 itag = 0; 2607 2608 /* set noref for now. 2609 * any place which wants to hold dst has to call 2610 * dst_hold_safe() 2611 */ 2612 skb_dst_set_noref(skb, dst); 2613 2614 /* for unconnected multicast sockets we need to validate 2615 * the source on each packet 2616 */ 2617 if (!inet_sk(sk)->inet_daddr && in_dev) 2618 return ip_mc_validate_source(skb, iph->daddr, 2619 iph->saddr, 2620 iph->tos & IPTOS_RT_MASK, 2621 skb->dev, in_dev, &itag); 2622 } 2623 return 0; 2624 } 2625 2626 int udp_rcv(struct sk_buff *skb) 2627 { 2628 return __udp4_lib_rcv(skb, dev_net(skb->dev)->ipv4.udp_table, IPPROTO_UDP); 2629 } 2630 2631 void udp_destroy_sock(struct sock *sk) 2632 { 2633 struct udp_sock *up = udp_sk(sk); 2634 bool slow = lock_sock_fast(sk); 2635 2636 /* protects from races with udp_abort() */ 2637 sock_set_flag(sk, SOCK_DEAD); 2638 udp_flush_pending_frames(sk); 2639 unlock_sock_fast(sk, slow); 2640 if (static_branch_unlikely(&udp_encap_needed_key)) { 2641 if (up->encap_type) { 2642 void (*encap_destroy)(struct sock *sk); 2643 encap_destroy = READ_ONCE(up->encap_destroy); 2644 if (encap_destroy) 2645 encap_destroy(sk); 2646 } 2647 if (up->encap_enabled) 2648 static_branch_dec(&udp_encap_needed_key); 2649 } 2650 } 2651 2652 /* 2653 * Socket option code for UDP 2654 */ 2655 int udp_lib_setsockopt(struct sock *sk, int level, int optname, 2656 sockptr_t optval, unsigned int optlen, 2657 int (*push_pending_frames)(struct sock *)) 2658 { 2659 struct udp_sock *up = udp_sk(sk); 2660 int val, valbool; 2661 int err = 0; 2662 int is_udplite = IS_UDPLITE(sk); 2663 2664 if (level == SOL_SOCKET) { 2665 err = sk_setsockopt(sk, level, optname, optval, optlen); 2666 2667 if (optname == SO_RCVBUF || optname == SO_RCVBUFFORCE) { 2668 sockopt_lock_sock(sk); 2669 /* paired with READ_ONCE in udp_rmem_release() */ 2670 WRITE_ONCE(up->forward_threshold, sk->sk_rcvbuf >> 2); 2671 sockopt_release_sock(sk); 2672 } 2673 return err; 2674 } 2675 2676 if (optlen < sizeof(int)) 2677 return -EINVAL; 2678 2679 if (copy_from_sockptr(&val, optval, sizeof(val))) 2680 return -EFAULT; 2681 2682 valbool = val ? 1 : 0; 2683 2684 switch (optname) { 2685 case UDP_CORK: 2686 if (val != 0) { 2687 WRITE_ONCE(up->corkflag, 1); 2688 } else { 2689 WRITE_ONCE(up->corkflag, 0); 2690 lock_sock(sk); 2691 push_pending_frames(sk); 2692 release_sock(sk); 2693 } 2694 break; 2695 2696 case UDP_ENCAP: 2697 switch (val) { 2698 case 0: 2699 #ifdef CONFIG_XFRM 2700 case UDP_ENCAP_ESPINUDP: 2701 case UDP_ENCAP_ESPINUDP_NON_IKE: 2702 #if IS_ENABLED(CONFIG_IPV6) 2703 if (sk->sk_family == AF_INET6) 2704 up->encap_rcv = ipv6_stub->xfrm6_udp_encap_rcv; 2705 else 2706 #endif 2707 up->encap_rcv = xfrm4_udp_encap_rcv; 2708 #endif 2709 fallthrough; 2710 case UDP_ENCAP_L2TPINUDP: 2711 up->encap_type = val; 2712 lock_sock(sk); 2713 udp_tunnel_encap_enable(sk->sk_socket); 2714 release_sock(sk); 2715 break; 2716 default: 2717 err = -ENOPROTOOPT; 2718 break; 2719 } 2720 break; 2721 2722 case UDP_NO_CHECK6_TX: 2723 up->no_check6_tx = valbool; 2724 break; 2725 2726 case UDP_NO_CHECK6_RX: 2727 up->no_check6_rx = valbool; 2728 break; 2729 2730 case UDP_SEGMENT: 2731 if (val < 0 || val > USHRT_MAX) 2732 return -EINVAL; 2733 WRITE_ONCE(up->gso_size, val); 2734 break; 2735 2736 case UDP_GRO: 2737 lock_sock(sk); 2738 2739 /* when enabling GRO, accept the related GSO packet type */ 2740 if (valbool) 2741 udp_tunnel_encap_enable(sk->sk_socket); 2742 up->gro_enabled = valbool; 2743 up->accept_udp_l4 = valbool; 2744 release_sock(sk); 2745 break; 2746 2747 /* 2748 * UDP-Lite's partial checksum coverage (RFC 3828). 2749 */ 2750 /* The sender sets actual checksum coverage length via this option. 2751 * The case coverage > packet length is handled by send module. */ 2752 case UDPLITE_SEND_CSCOV: 2753 if (!is_udplite) /* Disable the option on UDP sockets */ 2754 return -ENOPROTOOPT; 2755 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */ 2756 val = 8; 2757 else if (val > USHRT_MAX) 2758 val = USHRT_MAX; 2759 up->pcslen = val; 2760 up->pcflag |= UDPLITE_SEND_CC; 2761 break; 2762 2763 /* The receiver specifies a minimum checksum coverage value. To make 2764 * sense, this should be set to at least 8 (as done below). If zero is 2765 * used, this again means full checksum coverage. */ 2766 case UDPLITE_RECV_CSCOV: 2767 if (!is_udplite) /* Disable the option on UDP sockets */ 2768 return -ENOPROTOOPT; 2769 if (val != 0 && val < 8) /* Avoid silly minimal values. */ 2770 val = 8; 2771 else if (val > USHRT_MAX) 2772 val = USHRT_MAX; 2773 up->pcrlen = val; 2774 up->pcflag |= UDPLITE_RECV_CC; 2775 break; 2776 2777 default: 2778 err = -ENOPROTOOPT; 2779 break; 2780 } 2781 2782 return err; 2783 } 2784 EXPORT_SYMBOL(udp_lib_setsockopt); 2785 2786 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 2787 unsigned int optlen) 2788 { 2789 if (level == SOL_UDP || level == SOL_UDPLITE || level == SOL_SOCKET) 2790 return udp_lib_setsockopt(sk, level, optname, 2791 optval, optlen, 2792 udp_push_pending_frames); 2793 return ip_setsockopt(sk, level, optname, optval, optlen); 2794 } 2795 2796 int udp_lib_getsockopt(struct sock *sk, int level, int optname, 2797 char __user *optval, int __user *optlen) 2798 { 2799 struct udp_sock *up = udp_sk(sk); 2800 int val, len; 2801 2802 if (get_user(len, optlen)) 2803 return -EFAULT; 2804 2805 len = min_t(unsigned int, len, sizeof(int)); 2806 2807 if (len < 0) 2808 return -EINVAL; 2809 2810 switch (optname) { 2811 case UDP_CORK: 2812 val = READ_ONCE(up->corkflag); 2813 break; 2814 2815 case UDP_ENCAP: 2816 val = up->encap_type; 2817 break; 2818 2819 case UDP_NO_CHECK6_TX: 2820 val = up->no_check6_tx; 2821 break; 2822 2823 case UDP_NO_CHECK6_RX: 2824 val = up->no_check6_rx; 2825 break; 2826 2827 case UDP_SEGMENT: 2828 val = READ_ONCE(up->gso_size); 2829 break; 2830 2831 case UDP_GRO: 2832 val = up->gro_enabled; 2833 break; 2834 2835 /* The following two cannot be changed on UDP sockets, the return is 2836 * always 0 (which corresponds to the full checksum coverage of UDP). */ 2837 case UDPLITE_SEND_CSCOV: 2838 val = up->pcslen; 2839 break; 2840 2841 case UDPLITE_RECV_CSCOV: 2842 val = up->pcrlen; 2843 break; 2844 2845 default: 2846 return -ENOPROTOOPT; 2847 } 2848 2849 if (put_user(len, optlen)) 2850 return -EFAULT; 2851 if (copy_to_user(optval, &val, len)) 2852 return -EFAULT; 2853 return 0; 2854 } 2855 EXPORT_SYMBOL(udp_lib_getsockopt); 2856 2857 int udp_getsockopt(struct sock *sk, int level, int optname, 2858 char __user *optval, int __user *optlen) 2859 { 2860 if (level == SOL_UDP || level == SOL_UDPLITE) 2861 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 2862 return ip_getsockopt(sk, level, optname, optval, optlen); 2863 } 2864 2865 /** 2866 * udp_poll - wait for a UDP event. 2867 * @file: - file struct 2868 * @sock: - socket 2869 * @wait: - poll table 2870 * 2871 * This is same as datagram poll, except for the special case of 2872 * blocking sockets. If application is using a blocking fd 2873 * and a packet with checksum error is in the queue; 2874 * then it could get return from select indicating data available 2875 * but then block when reading it. Add special case code 2876 * to work around these arguably broken applications. 2877 */ 2878 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait) 2879 { 2880 __poll_t mask = datagram_poll(file, sock, wait); 2881 struct sock *sk = sock->sk; 2882 2883 if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue)) 2884 mask |= EPOLLIN | EPOLLRDNORM; 2885 2886 /* Check for false positives due to checksum errors */ 2887 if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) && 2888 !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1) 2889 mask &= ~(EPOLLIN | EPOLLRDNORM); 2890 2891 /* psock ingress_msg queue should not contain any bad checksum frames */ 2892 if (sk_is_readable(sk)) 2893 mask |= EPOLLIN | EPOLLRDNORM; 2894 return mask; 2895 2896 } 2897 EXPORT_SYMBOL(udp_poll); 2898 2899 int udp_abort(struct sock *sk, int err) 2900 { 2901 if (!has_current_bpf_ctx()) 2902 lock_sock(sk); 2903 2904 /* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing 2905 * with close() 2906 */ 2907 if (sock_flag(sk, SOCK_DEAD)) 2908 goto out; 2909 2910 sk->sk_err = err; 2911 sk_error_report(sk); 2912 __udp_disconnect(sk, 0); 2913 2914 out: 2915 if (!has_current_bpf_ctx()) 2916 release_sock(sk); 2917 2918 return 0; 2919 } 2920 EXPORT_SYMBOL_GPL(udp_abort); 2921 2922 struct proto udp_prot = { 2923 .name = "UDP", 2924 .owner = THIS_MODULE, 2925 .close = udp_lib_close, 2926 .pre_connect = udp_pre_connect, 2927 .connect = ip4_datagram_connect, 2928 .disconnect = udp_disconnect, 2929 .ioctl = udp_ioctl, 2930 .init = udp_init_sock, 2931 .destroy = udp_destroy_sock, 2932 .setsockopt = udp_setsockopt, 2933 .getsockopt = udp_getsockopt, 2934 .sendmsg = udp_sendmsg, 2935 .recvmsg = udp_recvmsg, 2936 .splice_eof = udp_splice_eof, 2937 .sendpage = udp_sendpage, 2938 .release_cb = ip4_datagram_release_cb, 2939 .hash = udp_lib_hash, 2940 .unhash = udp_lib_unhash, 2941 .rehash = udp_v4_rehash, 2942 .get_port = udp_v4_get_port, 2943 .put_port = udp_lib_unhash, 2944 #ifdef CONFIG_BPF_SYSCALL 2945 .psock_update_sk_prot = udp_bpf_update_proto, 2946 #endif 2947 .memory_allocated = &udp_memory_allocated, 2948 .per_cpu_fw_alloc = &udp_memory_per_cpu_fw_alloc, 2949 2950 .sysctl_mem = sysctl_udp_mem, 2951 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_udp_wmem_min), 2952 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_udp_rmem_min), 2953 .obj_size = sizeof(struct udp_sock), 2954 .h.udp_table = NULL, 2955 .diag_destroy = udp_abort, 2956 }; 2957 EXPORT_SYMBOL(udp_prot); 2958 2959 /* ------------------------------------------------------------------------ */ 2960 #ifdef CONFIG_PROC_FS 2961 2962 static unsigned short seq_file_family(const struct seq_file *seq); 2963 static bool seq_sk_match(struct seq_file *seq, const struct sock *sk) 2964 { 2965 unsigned short family = seq_file_family(seq); 2966 2967 /* AF_UNSPEC is used as a match all */ 2968 return ((family == AF_UNSPEC || family == sk->sk_family) && 2969 net_eq(sock_net(sk), seq_file_net(seq))); 2970 } 2971 2972 #ifdef CONFIG_BPF_SYSCALL 2973 static const struct seq_operations bpf_iter_udp_seq_ops; 2974 #endif 2975 static struct udp_table *udp_get_table_seq(struct seq_file *seq, 2976 struct net *net) 2977 { 2978 const struct udp_seq_afinfo *afinfo; 2979 2980 #ifdef CONFIG_BPF_SYSCALL 2981 if (seq->op == &bpf_iter_udp_seq_ops) 2982 return net->ipv4.udp_table; 2983 #endif 2984 2985 afinfo = pde_data(file_inode(seq->file)); 2986 return afinfo->udp_table ? : net->ipv4.udp_table; 2987 } 2988 2989 static struct sock *udp_get_first(struct seq_file *seq, int start) 2990 { 2991 struct udp_iter_state *state = seq->private; 2992 struct net *net = seq_file_net(seq); 2993 struct udp_table *udptable; 2994 struct sock *sk; 2995 2996 udptable = udp_get_table_seq(seq, net); 2997 2998 for (state->bucket = start; state->bucket <= udptable->mask; 2999 ++state->bucket) { 3000 struct udp_hslot *hslot = &udptable->hash[state->bucket]; 3001 3002 if (hlist_empty(&hslot->head)) 3003 continue; 3004 3005 spin_lock_bh(&hslot->lock); 3006 sk_for_each(sk, &hslot->head) { 3007 if (seq_sk_match(seq, sk)) 3008 goto found; 3009 } 3010 spin_unlock_bh(&hslot->lock); 3011 } 3012 sk = NULL; 3013 found: 3014 return sk; 3015 } 3016 3017 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk) 3018 { 3019 struct udp_iter_state *state = seq->private; 3020 struct net *net = seq_file_net(seq); 3021 struct udp_table *udptable; 3022 3023 do { 3024 sk = sk_next(sk); 3025 } while (sk && !seq_sk_match(seq, sk)); 3026 3027 if (!sk) { 3028 udptable = udp_get_table_seq(seq, net); 3029 3030 if (state->bucket <= udptable->mask) 3031 spin_unlock_bh(&udptable->hash[state->bucket].lock); 3032 3033 return udp_get_first(seq, state->bucket + 1); 3034 } 3035 return sk; 3036 } 3037 3038 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos) 3039 { 3040 struct sock *sk = udp_get_first(seq, 0); 3041 3042 if (sk) 3043 while (pos && (sk = udp_get_next(seq, sk)) != NULL) 3044 --pos; 3045 return pos ? NULL : sk; 3046 } 3047 3048 void *udp_seq_start(struct seq_file *seq, loff_t *pos) 3049 { 3050 struct udp_iter_state *state = seq->private; 3051 state->bucket = MAX_UDP_PORTS; 3052 3053 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN; 3054 } 3055 EXPORT_SYMBOL(udp_seq_start); 3056 3057 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3058 { 3059 struct sock *sk; 3060 3061 if (v == SEQ_START_TOKEN) 3062 sk = udp_get_idx(seq, 0); 3063 else 3064 sk = udp_get_next(seq, v); 3065 3066 ++*pos; 3067 return sk; 3068 } 3069 EXPORT_SYMBOL(udp_seq_next); 3070 3071 void udp_seq_stop(struct seq_file *seq, void *v) 3072 { 3073 struct udp_iter_state *state = seq->private; 3074 struct udp_table *udptable; 3075 3076 udptable = udp_get_table_seq(seq, seq_file_net(seq)); 3077 3078 if (state->bucket <= udptable->mask) 3079 spin_unlock_bh(&udptable->hash[state->bucket].lock); 3080 } 3081 EXPORT_SYMBOL(udp_seq_stop); 3082 3083 /* ------------------------------------------------------------------------ */ 3084 static void udp4_format_sock(struct sock *sp, struct seq_file *f, 3085 int bucket) 3086 { 3087 struct inet_sock *inet = inet_sk(sp); 3088 __be32 dest = inet->inet_daddr; 3089 __be32 src = inet->inet_rcv_saddr; 3090 __u16 destp = ntohs(inet->inet_dport); 3091 __u16 srcp = ntohs(inet->inet_sport); 3092 3093 seq_printf(f, "%5d: %08X:%04X %08X:%04X" 3094 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u", 3095 bucket, src, srcp, dest, destp, sp->sk_state, 3096 sk_wmem_alloc_get(sp), 3097 udp_rqueue_get(sp), 3098 0, 0L, 0, 3099 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)), 3100 0, sock_i_ino(sp), 3101 refcount_read(&sp->sk_refcnt), sp, 3102 atomic_read(&sp->sk_drops)); 3103 } 3104 3105 int udp4_seq_show(struct seq_file *seq, void *v) 3106 { 3107 seq_setwidth(seq, 127); 3108 if (v == SEQ_START_TOKEN) 3109 seq_puts(seq, " sl local_address rem_address st tx_queue " 3110 "rx_queue tr tm->when retrnsmt uid timeout " 3111 "inode ref pointer drops"); 3112 else { 3113 struct udp_iter_state *state = seq->private; 3114 3115 udp4_format_sock(v, seq, state->bucket); 3116 } 3117 seq_pad(seq, '\n'); 3118 return 0; 3119 } 3120 3121 #ifdef CONFIG_BPF_SYSCALL 3122 struct bpf_iter__udp { 3123 __bpf_md_ptr(struct bpf_iter_meta *, meta); 3124 __bpf_md_ptr(struct udp_sock *, udp_sk); 3125 uid_t uid __aligned(8); 3126 int bucket __aligned(8); 3127 }; 3128 3129 struct bpf_udp_iter_state { 3130 struct udp_iter_state state; 3131 unsigned int cur_sk; 3132 unsigned int end_sk; 3133 unsigned int max_sk; 3134 int offset; 3135 struct sock **batch; 3136 bool st_bucket_done; 3137 }; 3138 3139 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter, 3140 unsigned int new_batch_sz); 3141 static struct sock *bpf_iter_udp_batch(struct seq_file *seq) 3142 { 3143 struct bpf_udp_iter_state *iter = seq->private; 3144 struct udp_iter_state *state = &iter->state; 3145 struct net *net = seq_file_net(seq); 3146 struct udp_table *udptable; 3147 unsigned int batch_sks = 0; 3148 bool resized = false; 3149 struct sock *sk; 3150 3151 /* The current batch is done, so advance the bucket. */ 3152 if (iter->st_bucket_done) { 3153 state->bucket++; 3154 iter->offset = 0; 3155 } 3156 3157 udptable = udp_get_table_seq(seq, net); 3158 3159 again: 3160 /* New batch for the next bucket. 3161 * Iterate over the hash table to find a bucket with sockets matching 3162 * the iterator attributes, and return the first matching socket from 3163 * the bucket. The remaining matched sockets from the bucket are batched 3164 * before releasing the bucket lock. This allows BPF programs that are 3165 * called in seq_show to acquire the bucket lock if needed. 3166 */ 3167 iter->cur_sk = 0; 3168 iter->end_sk = 0; 3169 iter->st_bucket_done = false; 3170 batch_sks = 0; 3171 3172 for (; state->bucket <= udptable->mask; state->bucket++) { 3173 struct udp_hslot *hslot2 = &udptable->hash2[state->bucket]; 3174 3175 if (hlist_empty(&hslot2->head)) { 3176 iter->offset = 0; 3177 continue; 3178 } 3179 3180 spin_lock_bh(&hslot2->lock); 3181 udp_portaddr_for_each_entry(sk, &hslot2->head) { 3182 if (seq_sk_match(seq, sk)) { 3183 /* Resume from the last iterated socket at the 3184 * offset in the bucket before iterator was stopped. 3185 */ 3186 if (iter->offset) { 3187 --iter->offset; 3188 continue; 3189 } 3190 if (iter->end_sk < iter->max_sk) { 3191 sock_hold(sk); 3192 iter->batch[iter->end_sk++] = sk; 3193 } 3194 batch_sks++; 3195 } 3196 } 3197 spin_unlock_bh(&hslot2->lock); 3198 3199 if (iter->end_sk) 3200 break; 3201 3202 /* Reset the current bucket's offset before moving to the next bucket. */ 3203 iter->offset = 0; 3204 } 3205 3206 /* All done: no batch made. */ 3207 if (!iter->end_sk) 3208 return NULL; 3209 3210 if (iter->end_sk == batch_sks) { 3211 /* Batching is done for the current bucket; return the first 3212 * socket to be iterated from the batch. 3213 */ 3214 iter->st_bucket_done = true; 3215 goto done; 3216 } 3217 if (!resized && !bpf_iter_udp_realloc_batch(iter, batch_sks * 3 / 2)) { 3218 resized = true; 3219 /* After allocating a larger batch, retry one more time to grab 3220 * the whole bucket. 3221 */ 3222 state->bucket--; 3223 goto again; 3224 } 3225 done: 3226 return iter->batch[0]; 3227 } 3228 3229 static void *bpf_iter_udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3230 { 3231 struct bpf_udp_iter_state *iter = seq->private; 3232 struct sock *sk; 3233 3234 /* Whenever seq_next() is called, the iter->cur_sk is 3235 * done with seq_show(), so unref the iter->cur_sk. 3236 */ 3237 if (iter->cur_sk < iter->end_sk) { 3238 sock_put(iter->batch[iter->cur_sk++]); 3239 ++iter->offset; 3240 } 3241 3242 /* After updating iter->cur_sk, check if there are more sockets 3243 * available in the current bucket batch. 3244 */ 3245 if (iter->cur_sk < iter->end_sk) 3246 sk = iter->batch[iter->cur_sk]; 3247 else 3248 /* Prepare a new batch. */ 3249 sk = bpf_iter_udp_batch(seq); 3250 3251 ++*pos; 3252 return sk; 3253 } 3254 3255 static void *bpf_iter_udp_seq_start(struct seq_file *seq, loff_t *pos) 3256 { 3257 /* bpf iter does not support lseek, so it always 3258 * continue from where it was stop()-ped. 3259 */ 3260 if (*pos) 3261 return bpf_iter_udp_batch(seq); 3262 3263 return SEQ_START_TOKEN; 3264 } 3265 3266 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta, 3267 struct udp_sock *udp_sk, uid_t uid, int bucket) 3268 { 3269 struct bpf_iter__udp ctx; 3270 3271 meta->seq_num--; /* skip SEQ_START_TOKEN */ 3272 ctx.meta = meta; 3273 ctx.udp_sk = udp_sk; 3274 ctx.uid = uid; 3275 ctx.bucket = bucket; 3276 return bpf_iter_run_prog(prog, &ctx); 3277 } 3278 3279 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v) 3280 { 3281 struct udp_iter_state *state = seq->private; 3282 struct bpf_iter_meta meta; 3283 struct bpf_prog *prog; 3284 struct sock *sk = v; 3285 uid_t uid; 3286 int ret; 3287 3288 if (v == SEQ_START_TOKEN) 3289 return 0; 3290 3291 lock_sock(sk); 3292 3293 if (unlikely(sk_unhashed(sk))) { 3294 ret = SEQ_SKIP; 3295 goto unlock; 3296 } 3297 3298 uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk)); 3299 meta.seq = seq; 3300 prog = bpf_iter_get_info(&meta, false); 3301 ret = udp_prog_seq_show(prog, &meta, v, uid, state->bucket); 3302 3303 unlock: 3304 release_sock(sk); 3305 return ret; 3306 } 3307 3308 static void bpf_iter_udp_put_batch(struct bpf_udp_iter_state *iter) 3309 { 3310 while (iter->cur_sk < iter->end_sk) 3311 sock_put(iter->batch[iter->cur_sk++]); 3312 } 3313 3314 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v) 3315 { 3316 struct bpf_udp_iter_state *iter = seq->private; 3317 struct bpf_iter_meta meta; 3318 struct bpf_prog *prog; 3319 3320 if (!v) { 3321 meta.seq = seq; 3322 prog = bpf_iter_get_info(&meta, true); 3323 if (prog) 3324 (void)udp_prog_seq_show(prog, &meta, v, 0, 0); 3325 } 3326 3327 if (iter->cur_sk < iter->end_sk) { 3328 bpf_iter_udp_put_batch(iter); 3329 iter->st_bucket_done = false; 3330 } 3331 } 3332 3333 static const struct seq_operations bpf_iter_udp_seq_ops = { 3334 .start = bpf_iter_udp_seq_start, 3335 .next = bpf_iter_udp_seq_next, 3336 .stop = bpf_iter_udp_seq_stop, 3337 .show = bpf_iter_udp_seq_show, 3338 }; 3339 #endif 3340 3341 static unsigned short seq_file_family(const struct seq_file *seq) 3342 { 3343 const struct udp_seq_afinfo *afinfo; 3344 3345 #ifdef CONFIG_BPF_SYSCALL 3346 /* BPF iterator: bpf programs to filter sockets. */ 3347 if (seq->op == &bpf_iter_udp_seq_ops) 3348 return AF_UNSPEC; 3349 #endif 3350 3351 /* Proc fs iterator */ 3352 afinfo = pde_data(file_inode(seq->file)); 3353 return afinfo->family; 3354 } 3355 3356 const struct seq_operations udp_seq_ops = { 3357 .start = udp_seq_start, 3358 .next = udp_seq_next, 3359 .stop = udp_seq_stop, 3360 .show = udp4_seq_show, 3361 }; 3362 EXPORT_SYMBOL(udp_seq_ops); 3363 3364 static struct udp_seq_afinfo udp4_seq_afinfo = { 3365 .family = AF_INET, 3366 .udp_table = NULL, 3367 }; 3368 3369 static int __net_init udp4_proc_init_net(struct net *net) 3370 { 3371 if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops, 3372 sizeof(struct udp_iter_state), &udp4_seq_afinfo)) 3373 return -ENOMEM; 3374 return 0; 3375 } 3376 3377 static void __net_exit udp4_proc_exit_net(struct net *net) 3378 { 3379 remove_proc_entry("udp", net->proc_net); 3380 } 3381 3382 static struct pernet_operations udp4_net_ops = { 3383 .init = udp4_proc_init_net, 3384 .exit = udp4_proc_exit_net, 3385 }; 3386 3387 int __init udp4_proc_init(void) 3388 { 3389 return register_pernet_subsys(&udp4_net_ops); 3390 } 3391 3392 void udp4_proc_exit(void) 3393 { 3394 unregister_pernet_subsys(&udp4_net_ops); 3395 } 3396 #endif /* CONFIG_PROC_FS */ 3397 3398 static __initdata unsigned long uhash_entries; 3399 static int __init set_uhash_entries(char *str) 3400 { 3401 ssize_t ret; 3402 3403 if (!str) 3404 return 0; 3405 3406 ret = kstrtoul(str, 0, &uhash_entries); 3407 if (ret) 3408 return 0; 3409 3410 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN) 3411 uhash_entries = UDP_HTABLE_SIZE_MIN; 3412 return 1; 3413 } 3414 __setup("uhash_entries=", set_uhash_entries); 3415 3416 void __init udp_table_init(struct udp_table *table, const char *name) 3417 { 3418 unsigned int i; 3419 3420 table->hash = alloc_large_system_hash(name, 3421 2 * sizeof(struct udp_hslot), 3422 uhash_entries, 3423 21, /* one slot per 2 MB */ 3424 0, 3425 &table->log, 3426 &table->mask, 3427 UDP_HTABLE_SIZE_MIN, 3428 UDP_HTABLE_SIZE_MAX); 3429 3430 table->hash2 = table->hash + (table->mask + 1); 3431 for (i = 0; i <= table->mask; i++) { 3432 INIT_HLIST_HEAD(&table->hash[i].head); 3433 table->hash[i].count = 0; 3434 spin_lock_init(&table->hash[i].lock); 3435 } 3436 for (i = 0; i <= table->mask; i++) { 3437 INIT_HLIST_HEAD(&table->hash2[i].head); 3438 table->hash2[i].count = 0; 3439 spin_lock_init(&table->hash2[i].lock); 3440 } 3441 } 3442 3443 u32 udp_flow_hashrnd(void) 3444 { 3445 static u32 hashrnd __read_mostly; 3446 3447 net_get_random_once(&hashrnd, sizeof(hashrnd)); 3448 3449 return hashrnd; 3450 } 3451 EXPORT_SYMBOL(udp_flow_hashrnd); 3452 3453 static void __net_init udp_sysctl_init(struct net *net) 3454 { 3455 net->ipv4.sysctl_udp_rmem_min = PAGE_SIZE; 3456 net->ipv4.sysctl_udp_wmem_min = PAGE_SIZE; 3457 3458 #ifdef CONFIG_NET_L3_MASTER_DEV 3459 net->ipv4.sysctl_udp_l3mdev_accept = 0; 3460 #endif 3461 } 3462 3463 static struct udp_table __net_init *udp_pernet_table_alloc(unsigned int hash_entries) 3464 { 3465 struct udp_table *udptable; 3466 int i; 3467 3468 udptable = kmalloc(sizeof(*udptable), GFP_KERNEL); 3469 if (!udptable) 3470 goto out; 3471 3472 udptable->hash = vmalloc_huge(hash_entries * 2 * sizeof(struct udp_hslot), 3473 GFP_KERNEL_ACCOUNT); 3474 if (!udptable->hash) 3475 goto free_table; 3476 3477 udptable->hash2 = udptable->hash + hash_entries; 3478 udptable->mask = hash_entries - 1; 3479 udptable->log = ilog2(hash_entries); 3480 3481 for (i = 0; i < hash_entries; i++) { 3482 INIT_HLIST_HEAD(&udptable->hash[i].head); 3483 udptable->hash[i].count = 0; 3484 spin_lock_init(&udptable->hash[i].lock); 3485 3486 INIT_HLIST_HEAD(&udptable->hash2[i].head); 3487 udptable->hash2[i].count = 0; 3488 spin_lock_init(&udptable->hash2[i].lock); 3489 } 3490 3491 return udptable; 3492 3493 free_table: 3494 kfree(udptable); 3495 out: 3496 return NULL; 3497 } 3498 3499 static void __net_exit udp_pernet_table_free(struct net *net) 3500 { 3501 struct udp_table *udptable = net->ipv4.udp_table; 3502 3503 if (udptable == &udp_table) 3504 return; 3505 3506 kvfree(udptable->hash); 3507 kfree(udptable); 3508 } 3509 3510 static void __net_init udp_set_table(struct net *net) 3511 { 3512 struct udp_table *udptable; 3513 unsigned int hash_entries; 3514 struct net *old_net; 3515 3516 if (net_eq(net, &init_net)) 3517 goto fallback; 3518 3519 old_net = current->nsproxy->net_ns; 3520 hash_entries = READ_ONCE(old_net->ipv4.sysctl_udp_child_hash_entries); 3521 if (!hash_entries) 3522 goto fallback; 3523 3524 /* Set min to keep the bitmap on stack in udp_lib_get_port() */ 3525 if (hash_entries < UDP_HTABLE_SIZE_MIN_PERNET) 3526 hash_entries = UDP_HTABLE_SIZE_MIN_PERNET; 3527 else 3528 hash_entries = roundup_pow_of_two(hash_entries); 3529 3530 udptable = udp_pernet_table_alloc(hash_entries); 3531 if (udptable) { 3532 net->ipv4.udp_table = udptable; 3533 } else { 3534 pr_warn("Failed to allocate UDP hash table (entries: %u) " 3535 "for a netns, fallback to the global one\n", 3536 hash_entries); 3537 fallback: 3538 net->ipv4.udp_table = &udp_table; 3539 } 3540 } 3541 3542 static int __net_init udp_pernet_init(struct net *net) 3543 { 3544 udp_sysctl_init(net); 3545 udp_set_table(net); 3546 3547 return 0; 3548 } 3549 3550 static void __net_exit udp_pernet_exit(struct net *net) 3551 { 3552 udp_pernet_table_free(net); 3553 } 3554 3555 static struct pernet_operations __net_initdata udp_sysctl_ops = { 3556 .init = udp_pernet_init, 3557 .exit = udp_pernet_exit, 3558 }; 3559 3560 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3561 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta, 3562 struct udp_sock *udp_sk, uid_t uid, int bucket) 3563 3564 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter, 3565 unsigned int new_batch_sz) 3566 { 3567 struct sock **new_batch; 3568 3569 new_batch = kvmalloc_array(new_batch_sz, sizeof(*new_batch), 3570 GFP_USER | __GFP_NOWARN); 3571 if (!new_batch) 3572 return -ENOMEM; 3573 3574 bpf_iter_udp_put_batch(iter); 3575 kvfree(iter->batch); 3576 iter->batch = new_batch; 3577 iter->max_sk = new_batch_sz; 3578 3579 return 0; 3580 } 3581 3582 #define INIT_BATCH_SZ 16 3583 3584 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux) 3585 { 3586 struct bpf_udp_iter_state *iter = priv_data; 3587 int ret; 3588 3589 ret = bpf_iter_init_seq_net(priv_data, aux); 3590 if (ret) 3591 return ret; 3592 3593 ret = bpf_iter_udp_realloc_batch(iter, INIT_BATCH_SZ); 3594 if (ret) 3595 bpf_iter_fini_seq_net(priv_data); 3596 3597 return ret; 3598 } 3599 3600 static void bpf_iter_fini_udp(void *priv_data) 3601 { 3602 struct bpf_udp_iter_state *iter = priv_data; 3603 3604 bpf_iter_fini_seq_net(priv_data); 3605 kvfree(iter->batch); 3606 } 3607 3608 static const struct bpf_iter_seq_info udp_seq_info = { 3609 .seq_ops = &bpf_iter_udp_seq_ops, 3610 .init_seq_private = bpf_iter_init_udp, 3611 .fini_seq_private = bpf_iter_fini_udp, 3612 .seq_priv_size = sizeof(struct bpf_udp_iter_state), 3613 }; 3614 3615 static struct bpf_iter_reg udp_reg_info = { 3616 .target = "udp", 3617 .ctx_arg_info_size = 1, 3618 .ctx_arg_info = { 3619 { offsetof(struct bpf_iter__udp, udp_sk), 3620 PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED }, 3621 }, 3622 .seq_info = &udp_seq_info, 3623 }; 3624 3625 static void __init bpf_iter_register(void) 3626 { 3627 udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP]; 3628 if (bpf_iter_reg_target(&udp_reg_info)) 3629 pr_warn("Warning: could not register bpf iterator udp\n"); 3630 } 3631 #endif 3632 3633 void __init udp_init(void) 3634 { 3635 unsigned long limit; 3636 unsigned int i; 3637 3638 udp_table_init(&udp_table, "UDP"); 3639 limit = nr_free_buffer_pages() / 8; 3640 limit = max(limit, 128UL); 3641 sysctl_udp_mem[0] = limit / 4 * 3; 3642 sysctl_udp_mem[1] = limit; 3643 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2; 3644 3645 /* 16 spinlocks per cpu */ 3646 udp_busylocks_log = ilog2(nr_cpu_ids) + 4; 3647 udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log, 3648 GFP_KERNEL); 3649 if (!udp_busylocks) 3650 panic("UDP: failed to alloc udp_busylocks\n"); 3651 for (i = 0; i < (1U << udp_busylocks_log); i++) 3652 spin_lock_init(udp_busylocks + i); 3653 3654 if (register_pernet_subsys(&udp_sysctl_ops)) 3655 panic("UDP: failed to init sysctl parameters.\n"); 3656 3657 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3658 bpf_iter_register(); 3659 #endif 3660 } 3661