1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * The User Datagram Protocol (UDP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 11 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 12 * Hirokazu Takahashi, <taka@valinux.co.jp> 13 * 14 * Fixes: 15 * Alan Cox : verify_area() calls 16 * Alan Cox : stopped close while in use off icmp 17 * messages. Not a fix but a botch that 18 * for udp at least is 'valid'. 19 * Alan Cox : Fixed icmp handling properly 20 * Alan Cox : Correct error for oversized datagrams 21 * Alan Cox : Tidied select() semantics. 22 * Alan Cox : udp_err() fixed properly, also now 23 * select and read wake correctly on errors 24 * Alan Cox : udp_send verify_area moved to avoid mem leak 25 * Alan Cox : UDP can count its memory 26 * Alan Cox : send to an unknown connection causes 27 * an ECONNREFUSED off the icmp, but 28 * does NOT close. 29 * Alan Cox : Switched to new sk_buff handlers. No more backlog! 30 * Alan Cox : Using generic datagram code. Even smaller and the PEEK 31 * bug no longer crashes it. 32 * Fred Van Kempen : Net2e support for sk->broadcast. 33 * Alan Cox : Uses skb_free_datagram 34 * Alan Cox : Added get/set sockopt support. 35 * Alan Cox : Broadcasting without option set returns EACCES. 36 * Alan Cox : No wakeup calls. Instead we now use the callbacks. 37 * Alan Cox : Use ip_tos and ip_ttl 38 * Alan Cox : SNMP Mibs 39 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support. 40 * Matt Dillon : UDP length checks. 41 * Alan Cox : Smarter af_inet used properly. 42 * Alan Cox : Use new kernel side addressing. 43 * Alan Cox : Incorrect return on truncated datagram receive. 44 * Arnt Gulbrandsen : New udp_send and stuff 45 * Alan Cox : Cache last socket 46 * Alan Cox : Route cache 47 * Jon Peatfield : Minor efficiency fix to sendto(). 48 * Mike Shaver : RFC1122 checks. 49 * Alan Cox : Nonblocking error fix. 50 * Willy Konynenberg : Transparent proxying support. 51 * Mike McLagan : Routing by source 52 * David S. Miller : New socket lookup architecture. 53 * Last socket cache retained as it 54 * does have a high hit rate. 55 * Olaf Kirch : Don't linearise iovec on sendmsg. 56 * Andi Kleen : Some cleanups, cache destination entry 57 * for connect. 58 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 59 * Melvin Smith : Check msg_name not msg_namelen in sendto(), 60 * return ENOTCONN for unconnected sockets (POSIX) 61 * Janos Farkas : don't deliver multi/broadcasts to a different 62 * bound-to-device socket 63 * Hirokazu Takahashi : HW checksumming for outgoing UDP 64 * datagrams. 65 * Hirokazu Takahashi : sendfile() on UDP works now. 66 * Arnaldo C. Melo : convert /proc/net/udp to seq_file 67 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 68 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind 69 * a single port at the same time. 70 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support 71 * James Chapman : Add L2TP encapsulation type. 72 * 73 * 74 * This program is free software; you can redistribute it and/or 75 * modify it under the terms of the GNU General Public License 76 * as published by the Free Software Foundation; either version 77 * 2 of the License, or (at your option) any later version. 78 */ 79 80 #define pr_fmt(fmt) "UDP: " fmt 81 82 #include <linux/uaccess.h> 83 #include <asm/ioctls.h> 84 #include <linux/bootmem.h> 85 #include <linux/highmem.h> 86 #include <linux/swap.h> 87 #include <linux/types.h> 88 #include <linux/fcntl.h> 89 #include <linux/module.h> 90 #include <linux/socket.h> 91 #include <linux/sockios.h> 92 #include <linux/igmp.h> 93 #include <linux/inetdevice.h> 94 #include <linux/in.h> 95 #include <linux/errno.h> 96 #include <linux/timer.h> 97 #include <linux/mm.h> 98 #include <linux/inet.h> 99 #include <linux/netdevice.h> 100 #include <linux/slab.h> 101 #include <net/tcp_states.h> 102 #include <linux/skbuff.h> 103 #include <linux/proc_fs.h> 104 #include <linux/seq_file.h> 105 #include <net/net_namespace.h> 106 #include <net/icmp.h> 107 #include <net/inet_hashtables.h> 108 #include <net/route.h> 109 #include <net/checksum.h> 110 #include <net/xfrm.h> 111 #include <trace/events/udp.h> 112 #include <linux/static_key.h> 113 #include <trace/events/skb.h> 114 #include <net/busy_poll.h> 115 #include "udp_impl.h" 116 #include <net/sock_reuseport.h> 117 #include <net/addrconf.h> 118 119 struct udp_table udp_table __read_mostly; 120 EXPORT_SYMBOL(udp_table); 121 122 long sysctl_udp_mem[3] __read_mostly; 123 EXPORT_SYMBOL(sysctl_udp_mem); 124 125 int sysctl_udp_rmem_min __read_mostly; 126 EXPORT_SYMBOL(sysctl_udp_rmem_min); 127 128 int sysctl_udp_wmem_min __read_mostly; 129 EXPORT_SYMBOL(sysctl_udp_wmem_min); 130 131 atomic_long_t udp_memory_allocated; 132 EXPORT_SYMBOL(udp_memory_allocated); 133 134 #define MAX_UDP_PORTS 65536 135 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN) 136 137 /* IPCB reference means this can not be used from early demux */ 138 static bool udp_lib_exact_dif_match(struct net *net, struct sk_buff *skb) 139 { 140 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) 141 if (!net->ipv4.sysctl_udp_l3mdev_accept && 142 skb && ipv4_l3mdev_skb(IPCB(skb)->flags)) 143 return true; 144 #endif 145 return false; 146 } 147 148 static int udp_lib_lport_inuse(struct net *net, __u16 num, 149 const struct udp_hslot *hslot, 150 unsigned long *bitmap, 151 struct sock *sk, unsigned int log) 152 { 153 struct sock *sk2; 154 kuid_t uid = sock_i_uid(sk); 155 156 sk_for_each(sk2, &hslot->head) { 157 if (net_eq(sock_net(sk2), net) && 158 sk2 != sk && 159 (bitmap || udp_sk(sk2)->udp_port_hash == num) && 160 (!sk2->sk_reuse || !sk->sk_reuse) && 161 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 162 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 163 inet_rcv_saddr_equal(sk, sk2, true)) { 164 if (sk2->sk_reuseport && sk->sk_reuseport && 165 !rcu_access_pointer(sk->sk_reuseport_cb) && 166 uid_eq(uid, sock_i_uid(sk2))) { 167 if (!bitmap) 168 return 0; 169 } else { 170 if (!bitmap) 171 return 1; 172 __set_bit(udp_sk(sk2)->udp_port_hash >> log, 173 bitmap); 174 } 175 } 176 } 177 return 0; 178 } 179 180 /* 181 * Note: we still hold spinlock of primary hash chain, so no other writer 182 * can insert/delete a socket with local_port == num 183 */ 184 static int udp_lib_lport_inuse2(struct net *net, __u16 num, 185 struct udp_hslot *hslot2, 186 struct sock *sk) 187 { 188 struct sock *sk2; 189 kuid_t uid = sock_i_uid(sk); 190 int res = 0; 191 192 spin_lock(&hslot2->lock); 193 udp_portaddr_for_each_entry(sk2, &hslot2->head) { 194 if (net_eq(sock_net(sk2), net) && 195 sk2 != sk && 196 (udp_sk(sk2)->udp_port_hash == num) && 197 (!sk2->sk_reuse || !sk->sk_reuse) && 198 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 199 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 200 inet_rcv_saddr_equal(sk, sk2, true)) { 201 if (sk2->sk_reuseport && sk->sk_reuseport && 202 !rcu_access_pointer(sk->sk_reuseport_cb) && 203 uid_eq(uid, sock_i_uid(sk2))) { 204 res = 0; 205 } else { 206 res = 1; 207 } 208 break; 209 } 210 } 211 spin_unlock(&hslot2->lock); 212 return res; 213 } 214 215 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot) 216 { 217 struct net *net = sock_net(sk); 218 kuid_t uid = sock_i_uid(sk); 219 struct sock *sk2; 220 221 sk_for_each(sk2, &hslot->head) { 222 if (net_eq(sock_net(sk2), net) && 223 sk2 != sk && 224 sk2->sk_family == sk->sk_family && 225 ipv6_only_sock(sk2) == ipv6_only_sock(sk) && 226 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) && 227 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 228 sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) && 229 inet_rcv_saddr_equal(sk, sk2, false)) { 230 return reuseport_add_sock(sk, sk2); 231 } 232 } 233 234 /* Initial allocation may have already happened via setsockopt */ 235 if (!rcu_access_pointer(sk->sk_reuseport_cb)) 236 return reuseport_alloc(sk); 237 return 0; 238 } 239 240 /** 241 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6 242 * 243 * @sk: socket struct in question 244 * @snum: port number to look up 245 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains, 246 * with NULL address 247 */ 248 int udp_lib_get_port(struct sock *sk, unsigned short snum, 249 unsigned int hash2_nulladdr) 250 { 251 struct udp_hslot *hslot, *hslot2; 252 struct udp_table *udptable = sk->sk_prot->h.udp_table; 253 int error = 1; 254 struct net *net = sock_net(sk); 255 256 if (!snum) { 257 int low, high, remaining; 258 unsigned int rand; 259 unsigned short first, last; 260 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN); 261 262 inet_get_local_port_range(net, &low, &high); 263 remaining = (high - low) + 1; 264 265 rand = prandom_u32(); 266 first = reciprocal_scale(rand, remaining) + low; 267 /* 268 * force rand to be an odd multiple of UDP_HTABLE_SIZE 269 */ 270 rand = (rand | 1) * (udptable->mask + 1); 271 last = first + udptable->mask + 1; 272 do { 273 hslot = udp_hashslot(udptable, net, first); 274 bitmap_zero(bitmap, PORTS_PER_CHAIN); 275 spin_lock_bh(&hslot->lock); 276 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk, 277 udptable->log); 278 279 snum = first; 280 /* 281 * Iterate on all possible values of snum for this hash. 282 * Using steps of an odd multiple of UDP_HTABLE_SIZE 283 * give us randomization and full range coverage. 284 */ 285 do { 286 if (low <= snum && snum <= high && 287 !test_bit(snum >> udptable->log, bitmap) && 288 !inet_is_local_reserved_port(net, snum)) 289 goto found; 290 snum += rand; 291 } while (snum != first); 292 spin_unlock_bh(&hslot->lock); 293 cond_resched(); 294 } while (++first != last); 295 goto fail; 296 } else { 297 hslot = udp_hashslot(udptable, net, snum); 298 spin_lock_bh(&hslot->lock); 299 if (hslot->count > 10) { 300 int exist; 301 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum; 302 303 slot2 &= udptable->mask; 304 hash2_nulladdr &= udptable->mask; 305 306 hslot2 = udp_hashslot2(udptable, slot2); 307 if (hslot->count < hslot2->count) 308 goto scan_primary_hash; 309 310 exist = udp_lib_lport_inuse2(net, snum, hslot2, sk); 311 if (!exist && (hash2_nulladdr != slot2)) { 312 hslot2 = udp_hashslot2(udptable, hash2_nulladdr); 313 exist = udp_lib_lport_inuse2(net, snum, hslot2, 314 sk); 315 } 316 if (exist) 317 goto fail_unlock; 318 else 319 goto found; 320 } 321 scan_primary_hash: 322 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0)) 323 goto fail_unlock; 324 } 325 found: 326 inet_sk(sk)->inet_num = snum; 327 udp_sk(sk)->udp_port_hash = snum; 328 udp_sk(sk)->udp_portaddr_hash ^= snum; 329 if (sk_unhashed(sk)) { 330 if (sk->sk_reuseport && 331 udp_reuseport_add_sock(sk, hslot)) { 332 inet_sk(sk)->inet_num = 0; 333 udp_sk(sk)->udp_port_hash = 0; 334 udp_sk(sk)->udp_portaddr_hash ^= snum; 335 goto fail_unlock; 336 } 337 338 sk_add_node_rcu(sk, &hslot->head); 339 hslot->count++; 340 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 341 342 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 343 spin_lock(&hslot2->lock); 344 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 345 sk->sk_family == AF_INET6) 346 hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node, 347 &hslot2->head); 348 else 349 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 350 &hslot2->head); 351 hslot2->count++; 352 spin_unlock(&hslot2->lock); 353 } 354 sock_set_flag(sk, SOCK_RCU_FREE); 355 error = 0; 356 fail_unlock: 357 spin_unlock_bh(&hslot->lock); 358 fail: 359 return error; 360 } 361 EXPORT_SYMBOL(udp_lib_get_port); 362 363 static u32 udp4_portaddr_hash(const struct net *net, __be32 saddr, 364 unsigned int port) 365 { 366 return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port; 367 } 368 369 int udp_v4_get_port(struct sock *sk, unsigned short snum) 370 { 371 unsigned int hash2_nulladdr = 372 udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum); 373 unsigned int hash2_partial = 374 udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0); 375 376 /* precompute partial secondary hash */ 377 udp_sk(sk)->udp_portaddr_hash = hash2_partial; 378 return udp_lib_get_port(sk, snum, hash2_nulladdr); 379 } 380 381 static int compute_score(struct sock *sk, struct net *net, 382 __be32 saddr, __be16 sport, 383 __be32 daddr, unsigned short hnum, int dif, 384 bool exact_dif) 385 { 386 int score; 387 struct inet_sock *inet; 388 389 if (!net_eq(sock_net(sk), net) || 390 udp_sk(sk)->udp_port_hash != hnum || 391 ipv6_only_sock(sk)) 392 return -1; 393 394 score = (sk->sk_family == PF_INET) ? 2 : 1; 395 inet = inet_sk(sk); 396 397 if (inet->inet_rcv_saddr) { 398 if (inet->inet_rcv_saddr != daddr) 399 return -1; 400 score += 4; 401 } 402 403 if (inet->inet_daddr) { 404 if (inet->inet_daddr != saddr) 405 return -1; 406 score += 4; 407 } 408 409 if (inet->inet_dport) { 410 if (inet->inet_dport != sport) 411 return -1; 412 score += 4; 413 } 414 415 if (sk->sk_bound_dev_if || exact_dif) { 416 if (sk->sk_bound_dev_if != dif) 417 return -1; 418 score += 4; 419 } 420 if (sk->sk_incoming_cpu == raw_smp_processor_id()) 421 score++; 422 return score; 423 } 424 425 static u32 udp_ehashfn(const struct net *net, const __be32 laddr, 426 const __u16 lport, const __be32 faddr, 427 const __be16 fport) 428 { 429 static u32 udp_ehash_secret __read_mostly; 430 431 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret)); 432 433 return __inet_ehashfn(laddr, lport, faddr, fport, 434 udp_ehash_secret + net_hash_mix(net)); 435 } 436 437 /* called with rcu_read_lock() */ 438 static struct sock *udp4_lib_lookup2(struct net *net, 439 __be32 saddr, __be16 sport, 440 __be32 daddr, unsigned int hnum, int dif, bool exact_dif, 441 struct udp_hslot *hslot2, 442 struct sk_buff *skb) 443 { 444 struct sock *sk, *result; 445 int score, badness, matches = 0, reuseport = 0; 446 u32 hash = 0; 447 448 result = NULL; 449 badness = 0; 450 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 451 score = compute_score(sk, net, saddr, sport, 452 daddr, hnum, dif, exact_dif); 453 if (score > badness) { 454 reuseport = sk->sk_reuseport; 455 if (reuseport) { 456 hash = udp_ehashfn(net, daddr, hnum, 457 saddr, sport); 458 result = reuseport_select_sock(sk, hash, skb, 459 sizeof(struct udphdr)); 460 if (result) 461 return result; 462 matches = 1; 463 } 464 badness = score; 465 result = sk; 466 } else if (score == badness && reuseport) { 467 matches++; 468 if (reciprocal_scale(hash, matches) == 0) 469 result = sk; 470 hash = next_pseudo_random32(hash); 471 } 472 } 473 return result; 474 } 475 476 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try 477 * harder than this. -DaveM 478 */ 479 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr, 480 __be16 sport, __be32 daddr, __be16 dport, 481 int dif, struct udp_table *udptable, struct sk_buff *skb) 482 { 483 struct sock *sk, *result; 484 unsigned short hnum = ntohs(dport); 485 unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask); 486 struct udp_hslot *hslot2, *hslot = &udptable->hash[slot]; 487 bool exact_dif = udp_lib_exact_dif_match(net, skb); 488 int score, badness, matches = 0, reuseport = 0; 489 u32 hash = 0; 490 491 if (hslot->count > 10) { 492 hash2 = udp4_portaddr_hash(net, daddr, hnum); 493 slot2 = hash2 & udptable->mask; 494 hslot2 = &udptable->hash2[slot2]; 495 if (hslot->count < hslot2->count) 496 goto begin; 497 498 result = udp4_lib_lookup2(net, saddr, sport, 499 daddr, hnum, dif, 500 exact_dif, hslot2, skb); 501 if (!result) { 502 unsigned int old_slot2 = slot2; 503 hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum); 504 slot2 = hash2 & udptable->mask; 505 /* avoid searching the same slot again. */ 506 if (unlikely(slot2 == old_slot2)) 507 return result; 508 509 hslot2 = &udptable->hash2[slot2]; 510 if (hslot->count < hslot2->count) 511 goto begin; 512 513 result = udp4_lib_lookup2(net, saddr, sport, 514 daddr, hnum, dif, 515 exact_dif, hslot2, skb); 516 } 517 return result; 518 } 519 begin: 520 result = NULL; 521 badness = 0; 522 sk_for_each_rcu(sk, &hslot->head) { 523 score = compute_score(sk, net, saddr, sport, 524 daddr, hnum, dif, exact_dif); 525 if (score > badness) { 526 reuseport = sk->sk_reuseport; 527 if (reuseport) { 528 hash = udp_ehashfn(net, daddr, hnum, 529 saddr, sport); 530 result = reuseport_select_sock(sk, hash, skb, 531 sizeof(struct udphdr)); 532 if (result) 533 return result; 534 matches = 1; 535 } 536 result = sk; 537 badness = score; 538 } else if (score == badness && reuseport) { 539 matches++; 540 if (reciprocal_scale(hash, matches) == 0) 541 result = sk; 542 hash = next_pseudo_random32(hash); 543 } 544 } 545 return result; 546 } 547 EXPORT_SYMBOL_GPL(__udp4_lib_lookup); 548 549 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb, 550 __be16 sport, __be16 dport, 551 struct udp_table *udptable) 552 { 553 const struct iphdr *iph = ip_hdr(skb); 554 555 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport, 556 iph->daddr, dport, inet_iif(skb), 557 udptable, skb); 558 } 559 560 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb, 561 __be16 sport, __be16 dport) 562 { 563 return __udp4_lib_lookup_skb(skb, sport, dport, &udp_table); 564 } 565 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb); 566 567 /* Must be called under rcu_read_lock(). 568 * Does increment socket refcount. 569 */ 570 #if IS_ENABLED(CONFIG_NETFILTER_XT_MATCH_SOCKET) || \ 571 IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TPROXY) || \ 572 IS_ENABLED(CONFIG_NF_SOCKET_IPV4) 573 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport, 574 __be32 daddr, __be16 dport, int dif) 575 { 576 struct sock *sk; 577 578 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport, 579 dif, &udp_table, NULL); 580 if (sk && !atomic_inc_not_zero(&sk->sk_refcnt)) 581 sk = NULL; 582 return sk; 583 } 584 EXPORT_SYMBOL_GPL(udp4_lib_lookup); 585 #endif 586 587 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk, 588 __be16 loc_port, __be32 loc_addr, 589 __be16 rmt_port, __be32 rmt_addr, 590 int dif, unsigned short hnum) 591 { 592 struct inet_sock *inet = inet_sk(sk); 593 594 if (!net_eq(sock_net(sk), net) || 595 udp_sk(sk)->udp_port_hash != hnum || 596 (inet->inet_daddr && inet->inet_daddr != rmt_addr) || 597 (inet->inet_dport != rmt_port && inet->inet_dport) || 598 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) || 599 ipv6_only_sock(sk) || 600 (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif)) 601 return false; 602 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif)) 603 return false; 604 return true; 605 } 606 607 /* 608 * This routine is called by the ICMP module when it gets some 609 * sort of error condition. If err < 0 then the socket should 610 * be closed and the error returned to the user. If err > 0 611 * it's just the icmp type << 8 | icmp code. 612 * Header points to the ip header of the error packet. We move 613 * on past this. Then (as it used to claim before adjustment) 614 * header points to the first 8 bytes of the udp header. We need 615 * to find the appropriate port. 616 */ 617 618 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable) 619 { 620 struct inet_sock *inet; 621 const struct iphdr *iph = (const struct iphdr *)skb->data; 622 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2)); 623 const int type = icmp_hdr(skb)->type; 624 const int code = icmp_hdr(skb)->code; 625 struct sock *sk; 626 int harderr; 627 int err; 628 struct net *net = dev_net(skb->dev); 629 630 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest, 631 iph->saddr, uh->source, skb->dev->ifindex, udptable, 632 NULL); 633 if (!sk) { 634 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); 635 return; /* No socket for error */ 636 } 637 638 err = 0; 639 harderr = 0; 640 inet = inet_sk(sk); 641 642 switch (type) { 643 default: 644 case ICMP_TIME_EXCEEDED: 645 err = EHOSTUNREACH; 646 break; 647 case ICMP_SOURCE_QUENCH: 648 goto out; 649 case ICMP_PARAMETERPROB: 650 err = EPROTO; 651 harderr = 1; 652 break; 653 case ICMP_DEST_UNREACH: 654 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */ 655 ipv4_sk_update_pmtu(skb, sk, info); 656 if (inet->pmtudisc != IP_PMTUDISC_DONT) { 657 err = EMSGSIZE; 658 harderr = 1; 659 break; 660 } 661 goto out; 662 } 663 err = EHOSTUNREACH; 664 if (code <= NR_ICMP_UNREACH) { 665 harderr = icmp_err_convert[code].fatal; 666 err = icmp_err_convert[code].errno; 667 } 668 break; 669 case ICMP_REDIRECT: 670 ipv4_sk_redirect(skb, sk); 671 goto out; 672 } 673 674 /* 675 * RFC1122: OK. Passes ICMP errors back to application, as per 676 * 4.1.3.3. 677 */ 678 if (!inet->recverr) { 679 if (!harderr || sk->sk_state != TCP_ESTABLISHED) 680 goto out; 681 } else 682 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1)); 683 684 sk->sk_err = err; 685 sk->sk_error_report(sk); 686 out: 687 return; 688 } 689 690 void udp_err(struct sk_buff *skb, u32 info) 691 { 692 __udp4_lib_err(skb, info, &udp_table); 693 } 694 695 /* 696 * Throw away all pending data and cancel the corking. Socket is locked. 697 */ 698 void udp_flush_pending_frames(struct sock *sk) 699 { 700 struct udp_sock *up = udp_sk(sk); 701 702 if (up->pending) { 703 up->len = 0; 704 up->pending = 0; 705 ip_flush_pending_frames(sk); 706 } 707 } 708 EXPORT_SYMBOL(udp_flush_pending_frames); 709 710 /** 711 * udp4_hwcsum - handle outgoing HW checksumming 712 * @skb: sk_buff containing the filled-in UDP header 713 * (checksum field must be zeroed out) 714 * @src: source IP address 715 * @dst: destination IP address 716 */ 717 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst) 718 { 719 struct udphdr *uh = udp_hdr(skb); 720 int offset = skb_transport_offset(skb); 721 int len = skb->len - offset; 722 int hlen = len; 723 __wsum csum = 0; 724 725 if (!skb_has_frag_list(skb)) { 726 /* 727 * Only one fragment on the socket. 728 */ 729 skb->csum_start = skb_transport_header(skb) - skb->head; 730 skb->csum_offset = offsetof(struct udphdr, check); 731 uh->check = ~csum_tcpudp_magic(src, dst, len, 732 IPPROTO_UDP, 0); 733 } else { 734 struct sk_buff *frags; 735 736 /* 737 * HW-checksum won't work as there are two or more 738 * fragments on the socket so that all csums of sk_buffs 739 * should be together 740 */ 741 skb_walk_frags(skb, frags) { 742 csum = csum_add(csum, frags->csum); 743 hlen -= frags->len; 744 } 745 746 csum = skb_checksum(skb, offset, hlen, csum); 747 skb->ip_summed = CHECKSUM_NONE; 748 749 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum); 750 if (uh->check == 0) 751 uh->check = CSUM_MANGLED_0; 752 } 753 } 754 EXPORT_SYMBOL_GPL(udp4_hwcsum); 755 756 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended 757 * for the simple case like when setting the checksum for a UDP tunnel. 758 */ 759 void udp_set_csum(bool nocheck, struct sk_buff *skb, 760 __be32 saddr, __be32 daddr, int len) 761 { 762 struct udphdr *uh = udp_hdr(skb); 763 764 if (nocheck) { 765 uh->check = 0; 766 } else if (skb_is_gso(skb)) { 767 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 768 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 769 uh->check = 0; 770 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb)); 771 if (uh->check == 0) 772 uh->check = CSUM_MANGLED_0; 773 } else { 774 skb->ip_summed = CHECKSUM_PARTIAL; 775 skb->csum_start = skb_transport_header(skb) - skb->head; 776 skb->csum_offset = offsetof(struct udphdr, check); 777 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 778 } 779 } 780 EXPORT_SYMBOL(udp_set_csum); 781 782 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4) 783 { 784 struct sock *sk = skb->sk; 785 struct inet_sock *inet = inet_sk(sk); 786 struct udphdr *uh; 787 int err = 0; 788 int is_udplite = IS_UDPLITE(sk); 789 int offset = skb_transport_offset(skb); 790 int len = skb->len - offset; 791 __wsum csum = 0; 792 793 /* 794 * Create a UDP header 795 */ 796 uh = udp_hdr(skb); 797 uh->source = inet->inet_sport; 798 uh->dest = fl4->fl4_dport; 799 uh->len = htons(len); 800 uh->check = 0; 801 802 if (is_udplite) /* UDP-Lite */ 803 csum = udplite_csum(skb); 804 805 else if (sk->sk_no_check_tx) { /* UDP csum disabled */ 806 807 skb->ip_summed = CHECKSUM_NONE; 808 goto send; 809 810 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */ 811 812 udp4_hwcsum(skb, fl4->saddr, fl4->daddr); 813 goto send; 814 815 } else 816 csum = udp_csum(skb); 817 818 /* add protocol-dependent pseudo-header */ 819 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len, 820 sk->sk_protocol, csum); 821 if (uh->check == 0) 822 uh->check = CSUM_MANGLED_0; 823 824 send: 825 err = ip_send_skb(sock_net(sk), skb); 826 if (err) { 827 if (err == -ENOBUFS && !inet->recverr) { 828 UDP_INC_STATS(sock_net(sk), 829 UDP_MIB_SNDBUFERRORS, is_udplite); 830 err = 0; 831 } 832 } else 833 UDP_INC_STATS(sock_net(sk), 834 UDP_MIB_OUTDATAGRAMS, is_udplite); 835 return err; 836 } 837 838 /* 839 * Push out all pending data as one UDP datagram. Socket is locked. 840 */ 841 int udp_push_pending_frames(struct sock *sk) 842 { 843 struct udp_sock *up = udp_sk(sk); 844 struct inet_sock *inet = inet_sk(sk); 845 struct flowi4 *fl4 = &inet->cork.fl.u.ip4; 846 struct sk_buff *skb; 847 int err = 0; 848 849 skb = ip_finish_skb(sk, fl4); 850 if (!skb) 851 goto out; 852 853 err = udp_send_skb(skb, fl4); 854 855 out: 856 up->len = 0; 857 up->pending = 0; 858 return err; 859 } 860 EXPORT_SYMBOL(udp_push_pending_frames); 861 862 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 863 { 864 struct inet_sock *inet = inet_sk(sk); 865 struct udp_sock *up = udp_sk(sk); 866 struct flowi4 fl4_stack; 867 struct flowi4 *fl4; 868 int ulen = len; 869 struct ipcm_cookie ipc; 870 struct rtable *rt = NULL; 871 int free = 0; 872 int connected = 0; 873 __be32 daddr, faddr, saddr; 874 __be16 dport; 875 u8 tos; 876 int err, is_udplite = IS_UDPLITE(sk); 877 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE; 878 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *); 879 struct sk_buff *skb; 880 struct ip_options_data opt_copy; 881 882 if (len > 0xFFFF) 883 return -EMSGSIZE; 884 885 /* 886 * Check the flags. 887 */ 888 889 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */ 890 return -EOPNOTSUPP; 891 892 ipc.opt = NULL; 893 ipc.tx_flags = 0; 894 ipc.ttl = 0; 895 ipc.tos = -1; 896 897 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag; 898 899 fl4 = &inet->cork.fl.u.ip4; 900 if (up->pending) { 901 /* 902 * There are pending frames. 903 * The socket lock must be held while it's corked. 904 */ 905 lock_sock(sk); 906 if (likely(up->pending)) { 907 if (unlikely(up->pending != AF_INET)) { 908 release_sock(sk); 909 return -EINVAL; 910 } 911 goto do_append_data; 912 } 913 release_sock(sk); 914 } 915 ulen += sizeof(struct udphdr); 916 917 /* 918 * Get and verify the address. 919 */ 920 if (msg->msg_name) { 921 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name); 922 if (msg->msg_namelen < sizeof(*usin)) 923 return -EINVAL; 924 if (usin->sin_family != AF_INET) { 925 if (usin->sin_family != AF_UNSPEC) 926 return -EAFNOSUPPORT; 927 } 928 929 daddr = usin->sin_addr.s_addr; 930 dport = usin->sin_port; 931 if (dport == 0) 932 return -EINVAL; 933 } else { 934 if (sk->sk_state != TCP_ESTABLISHED) 935 return -EDESTADDRREQ; 936 daddr = inet->inet_daddr; 937 dport = inet->inet_dport; 938 /* Open fast path for connected socket. 939 Route will not be used, if at least one option is set. 940 */ 941 connected = 1; 942 } 943 944 ipc.sockc.tsflags = sk->sk_tsflags; 945 ipc.addr = inet->inet_saddr; 946 ipc.oif = sk->sk_bound_dev_if; 947 948 if (msg->msg_controllen) { 949 err = ip_cmsg_send(sk, msg, &ipc, sk->sk_family == AF_INET6); 950 if (unlikely(err)) { 951 kfree(ipc.opt); 952 return err; 953 } 954 if (ipc.opt) 955 free = 1; 956 connected = 0; 957 } 958 if (!ipc.opt) { 959 struct ip_options_rcu *inet_opt; 960 961 rcu_read_lock(); 962 inet_opt = rcu_dereference(inet->inet_opt); 963 if (inet_opt) { 964 memcpy(&opt_copy, inet_opt, 965 sizeof(*inet_opt) + inet_opt->opt.optlen); 966 ipc.opt = &opt_copy.opt; 967 } 968 rcu_read_unlock(); 969 } 970 971 saddr = ipc.addr; 972 ipc.addr = faddr = daddr; 973 974 sock_tx_timestamp(sk, ipc.sockc.tsflags, &ipc.tx_flags); 975 976 if (ipc.opt && ipc.opt->opt.srr) { 977 if (!daddr) 978 return -EINVAL; 979 faddr = ipc.opt->opt.faddr; 980 connected = 0; 981 } 982 tos = get_rttos(&ipc, inet); 983 if (sock_flag(sk, SOCK_LOCALROUTE) || 984 (msg->msg_flags & MSG_DONTROUTE) || 985 (ipc.opt && ipc.opt->opt.is_strictroute)) { 986 tos |= RTO_ONLINK; 987 connected = 0; 988 } 989 990 if (ipv4_is_multicast(daddr)) { 991 if (!ipc.oif) 992 ipc.oif = inet->mc_index; 993 if (!saddr) 994 saddr = inet->mc_addr; 995 connected = 0; 996 } else if (!ipc.oif) 997 ipc.oif = inet->uc_index; 998 999 if (connected) 1000 rt = (struct rtable *)sk_dst_check(sk, 0); 1001 1002 if (!rt) { 1003 struct net *net = sock_net(sk); 1004 __u8 flow_flags = inet_sk_flowi_flags(sk); 1005 1006 fl4 = &fl4_stack; 1007 1008 flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos, 1009 RT_SCOPE_UNIVERSE, sk->sk_protocol, 1010 flow_flags, 1011 faddr, saddr, dport, inet->inet_sport, 1012 sk->sk_uid); 1013 1014 security_sk_classify_flow(sk, flowi4_to_flowi(fl4)); 1015 rt = ip_route_output_flow(net, fl4, sk); 1016 if (IS_ERR(rt)) { 1017 err = PTR_ERR(rt); 1018 rt = NULL; 1019 if (err == -ENETUNREACH) 1020 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 1021 goto out; 1022 } 1023 1024 err = -EACCES; 1025 if ((rt->rt_flags & RTCF_BROADCAST) && 1026 !sock_flag(sk, SOCK_BROADCAST)) 1027 goto out; 1028 if (connected) 1029 sk_dst_set(sk, dst_clone(&rt->dst)); 1030 } 1031 1032 if (msg->msg_flags&MSG_CONFIRM) 1033 goto do_confirm; 1034 back_from_confirm: 1035 1036 saddr = fl4->saddr; 1037 if (!ipc.addr) 1038 daddr = ipc.addr = fl4->daddr; 1039 1040 /* Lockless fast path for the non-corking case. */ 1041 if (!corkreq) { 1042 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen, 1043 sizeof(struct udphdr), &ipc, &rt, 1044 msg->msg_flags); 1045 err = PTR_ERR(skb); 1046 if (!IS_ERR_OR_NULL(skb)) 1047 err = udp_send_skb(skb, fl4); 1048 goto out; 1049 } 1050 1051 lock_sock(sk); 1052 if (unlikely(up->pending)) { 1053 /* The socket is already corked while preparing it. */ 1054 /* ... which is an evident application bug. --ANK */ 1055 release_sock(sk); 1056 1057 net_dbg_ratelimited("cork app bug 2\n"); 1058 err = -EINVAL; 1059 goto out; 1060 } 1061 /* 1062 * Now cork the socket to pend data. 1063 */ 1064 fl4 = &inet->cork.fl.u.ip4; 1065 fl4->daddr = daddr; 1066 fl4->saddr = saddr; 1067 fl4->fl4_dport = dport; 1068 fl4->fl4_sport = inet->inet_sport; 1069 up->pending = AF_INET; 1070 1071 do_append_data: 1072 up->len += ulen; 1073 err = ip_append_data(sk, fl4, getfrag, msg, ulen, 1074 sizeof(struct udphdr), &ipc, &rt, 1075 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags); 1076 if (err) 1077 udp_flush_pending_frames(sk); 1078 else if (!corkreq) 1079 err = udp_push_pending_frames(sk); 1080 else if (unlikely(skb_queue_empty(&sk->sk_write_queue))) 1081 up->pending = 0; 1082 release_sock(sk); 1083 1084 out: 1085 ip_rt_put(rt); 1086 if (free) 1087 kfree(ipc.opt); 1088 if (!err) 1089 return len; 1090 /* 1091 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting 1092 * ENOBUFS might not be good (it's not tunable per se), but otherwise 1093 * we don't have a good statistic (IpOutDiscards but it can be too many 1094 * things). We could add another new stat but at least for now that 1095 * seems like overkill. 1096 */ 1097 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1098 UDP_INC_STATS(sock_net(sk), 1099 UDP_MIB_SNDBUFERRORS, is_udplite); 1100 } 1101 return err; 1102 1103 do_confirm: 1104 if (msg->msg_flags & MSG_PROBE) 1105 dst_confirm_neigh(&rt->dst, &fl4->daddr); 1106 if (!(msg->msg_flags&MSG_PROBE) || len) 1107 goto back_from_confirm; 1108 err = 0; 1109 goto out; 1110 } 1111 EXPORT_SYMBOL(udp_sendmsg); 1112 1113 int udp_sendpage(struct sock *sk, struct page *page, int offset, 1114 size_t size, int flags) 1115 { 1116 struct inet_sock *inet = inet_sk(sk); 1117 struct udp_sock *up = udp_sk(sk); 1118 int ret; 1119 1120 if (flags & MSG_SENDPAGE_NOTLAST) 1121 flags |= MSG_MORE; 1122 1123 if (!up->pending) { 1124 struct msghdr msg = { .msg_flags = flags|MSG_MORE }; 1125 1126 /* Call udp_sendmsg to specify destination address which 1127 * sendpage interface can't pass. 1128 * This will succeed only when the socket is connected. 1129 */ 1130 ret = udp_sendmsg(sk, &msg, 0); 1131 if (ret < 0) 1132 return ret; 1133 } 1134 1135 lock_sock(sk); 1136 1137 if (unlikely(!up->pending)) { 1138 release_sock(sk); 1139 1140 net_dbg_ratelimited("udp cork app bug 3\n"); 1141 return -EINVAL; 1142 } 1143 1144 ret = ip_append_page(sk, &inet->cork.fl.u.ip4, 1145 page, offset, size, flags); 1146 if (ret == -EOPNOTSUPP) { 1147 release_sock(sk); 1148 return sock_no_sendpage(sk->sk_socket, page, offset, 1149 size, flags); 1150 } 1151 if (ret < 0) { 1152 udp_flush_pending_frames(sk); 1153 goto out; 1154 } 1155 1156 up->len += size; 1157 if (!(up->corkflag || (flags&MSG_MORE))) 1158 ret = udp_push_pending_frames(sk); 1159 if (!ret) 1160 ret = size; 1161 out: 1162 release_sock(sk); 1163 return ret; 1164 } 1165 1166 /* fully reclaim rmem/fwd memory allocated for skb */ 1167 static void udp_rmem_release(struct sock *sk, int size, int partial) 1168 { 1169 struct udp_sock *up = udp_sk(sk); 1170 int amt; 1171 1172 if (likely(partial)) { 1173 up->forward_deficit += size; 1174 size = up->forward_deficit; 1175 if (size < (sk->sk_rcvbuf >> 2) && 1176 !skb_queue_empty(&sk->sk_receive_queue)) 1177 return; 1178 } else { 1179 size += up->forward_deficit; 1180 } 1181 up->forward_deficit = 0; 1182 1183 sk->sk_forward_alloc += size; 1184 amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1); 1185 sk->sk_forward_alloc -= amt; 1186 1187 if (amt) 1188 __sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT); 1189 1190 atomic_sub(size, &sk->sk_rmem_alloc); 1191 } 1192 1193 /* Note: called with sk_receive_queue.lock held. 1194 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch 1195 * This avoids a cache line miss while receive_queue lock is held. 1196 * Look at __udp_enqueue_schedule_skb() to find where this copy is done. 1197 */ 1198 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb) 1199 { 1200 udp_rmem_release(sk, skb->dev_scratch, 1); 1201 } 1202 EXPORT_SYMBOL(udp_skb_destructor); 1203 1204 /* Idea of busylocks is to let producers grab an extra spinlock 1205 * to relieve pressure on the receive_queue spinlock shared by consumer. 1206 * Under flood, this means that only one producer can be in line 1207 * trying to acquire the receive_queue spinlock. 1208 * These busylock can be allocated on a per cpu manner, instead of a 1209 * per socket one (that would consume a cache line per socket) 1210 */ 1211 static int udp_busylocks_log __read_mostly; 1212 static spinlock_t *udp_busylocks __read_mostly; 1213 1214 static spinlock_t *busylock_acquire(void *ptr) 1215 { 1216 spinlock_t *busy; 1217 1218 busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log); 1219 spin_lock(busy); 1220 return busy; 1221 } 1222 1223 static void busylock_release(spinlock_t *busy) 1224 { 1225 if (busy) 1226 spin_unlock(busy); 1227 } 1228 1229 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb) 1230 { 1231 struct sk_buff_head *list = &sk->sk_receive_queue; 1232 int rmem, delta, amt, err = -ENOMEM; 1233 spinlock_t *busy = NULL; 1234 int size; 1235 1236 /* try to avoid the costly atomic add/sub pair when the receive 1237 * queue is full; always allow at least a packet 1238 */ 1239 rmem = atomic_read(&sk->sk_rmem_alloc); 1240 if (rmem > sk->sk_rcvbuf) 1241 goto drop; 1242 1243 /* Under mem pressure, it might be helpful to help udp_recvmsg() 1244 * having linear skbs : 1245 * - Reduce memory overhead and thus increase receive queue capacity 1246 * - Less cache line misses at copyout() time 1247 * - Less work at consume_skb() (less alien page frag freeing) 1248 */ 1249 if (rmem > (sk->sk_rcvbuf >> 1)) { 1250 skb_condense(skb); 1251 1252 busy = busylock_acquire(sk); 1253 } 1254 size = skb->truesize; 1255 /* Copy skb->truesize into skb->dev_scratch to avoid a cache line miss 1256 * in udp_skb_destructor() 1257 */ 1258 skb->dev_scratch = size; 1259 1260 /* we drop only if the receive buf is full and the receive 1261 * queue contains some other skb 1262 */ 1263 rmem = atomic_add_return(size, &sk->sk_rmem_alloc); 1264 if (rmem > (size + sk->sk_rcvbuf)) 1265 goto uncharge_drop; 1266 1267 spin_lock(&list->lock); 1268 if (size >= sk->sk_forward_alloc) { 1269 amt = sk_mem_pages(size); 1270 delta = amt << SK_MEM_QUANTUM_SHIFT; 1271 if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) { 1272 err = -ENOBUFS; 1273 spin_unlock(&list->lock); 1274 goto uncharge_drop; 1275 } 1276 1277 sk->sk_forward_alloc += delta; 1278 } 1279 1280 sk->sk_forward_alloc -= size; 1281 1282 /* no need to setup a destructor, we will explicitly release the 1283 * forward allocated memory on dequeue 1284 */ 1285 sock_skb_set_dropcount(sk, skb); 1286 1287 __skb_queue_tail(list, skb); 1288 spin_unlock(&list->lock); 1289 1290 if (!sock_flag(sk, SOCK_DEAD)) 1291 sk->sk_data_ready(sk); 1292 1293 busylock_release(busy); 1294 return 0; 1295 1296 uncharge_drop: 1297 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 1298 1299 drop: 1300 atomic_inc(&sk->sk_drops); 1301 busylock_release(busy); 1302 return err; 1303 } 1304 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb); 1305 1306 void udp_destruct_sock(struct sock *sk) 1307 { 1308 /* reclaim completely the forward allocated memory */ 1309 unsigned int total = 0; 1310 struct sk_buff *skb; 1311 1312 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 1313 total += skb->truesize; 1314 kfree_skb(skb); 1315 } 1316 udp_rmem_release(sk, total, 0); 1317 1318 inet_sock_destruct(sk); 1319 } 1320 EXPORT_SYMBOL_GPL(udp_destruct_sock); 1321 1322 int udp_init_sock(struct sock *sk) 1323 { 1324 sk->sk_destruct = udp_destruct_sock; 1325 return 0; 1326 } 1327 EXPORT_SYMBOL_GPL(udp_init_sock); 1328 1329 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len) 1330 { 1331 if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) { 1332 bool slow = lock_sock_fast(sk); 1333 1334 sk_peek_offset_bwd(sk, len); 1335 unlock_sock_fast(sk, slow); 1336 } 1337 consume_skb(skb); 1338 } 1339 EXPORT_SYMBOL_GPL(skb_consume_udp); 1340 1341 /** 1342 * first_packet_length - return length of first packet in receive queue 1343 * @sk: socket 1344 * 1345 * Drops all bad checksum frames, until a valid one is found. 1346 * Returns the length of found skb, or -1 if none is found. 1347 */ 1348 static int first_packet_length(struct sock *sk) 1349 { 1350 struct sk_buff_head *rcvq = &sk->sk_receive_queue; 1351 struct sk_buff *skb; 1352 int total = 0; 1353 int res; 1354 1355 spin_lock_bh(&rcvq->lock); 1356 while ((skb = skb_peek(rcvq)) != NULL && 1357 udp_lib_checksum_complete(skb)) { 1358 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, 1359 IS_UDPLITE(sk)); 1360 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, 1361 IS_UDPLITE(sk)); 1362 atomic_inc(&sk->sk_drops); 1363 __skb_unlink(skb, rcvq); 1364 total += skb->truesize; 1365 kfree_skb(skb); 1366 } 1367 res = skb ? skb->len : -1; 1368 if (total) 1369 udp_rmem_release(sk, total, 1); 1370 spin_unlock_bh(&rcvq->lock); 1371 return res; 1372 } 1373 1374 /* 1375 * IOCTL requests applicable to the UDP protocol 1376 */ 1377 1378 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg) 1379 { 1380 switch (cmd) { 1381 case SIOCOUTQ: 1382 { 1383 int amount = sk_wmem_alloc_get(sk); 1384 1385 return put_user(amount, (int __user *)arg); 1386 } 1387 1388 case SIOCINQ: 1389 { 1390 int amount = max_t(int, 0, first_packet_length(sk)); 1391 1392 return put_user(amount, (int __user *)arg); 1393 } 1394 1395 default: 1396 return -ENOIOCTLCMD; 1397 } 1398 1399 return 0; 1400 } 1401 EXPORT_SYMBOL(udp_ioctl); 1402 1403 /* 1404 * This should be easy, if there is something there we 1405 * return it, otherwise we block. 1406 */ 1407 1408 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock, 1409 int flags, int *addr_len) 1410 { 1411 struct inet_sock *inet = inet_sk(sk); 1412 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name); 1413 struct sk_buff *skb; 1414 unsigned int ulen, copied; 1415 int peeked, peeking, off; 1416 int err; 1417 int is_udplite = IS_UDPLITE(sk); 1418 bool checksum_valid = false; 1419 1420 if (flags & MSG_ERRQUEUE) 1421 return ip_recv_error(sk, msg, len, addr_len); 1422 1423 try_again: 1424 peeking = off = sk_peek_offset(sk, flags); 1425 skb = __skb_recv_udp(sk, flags, noblock, &peeked, &off, &err); 1426 if (!skb) 1427 return err; 1428 1429 ulen = skb->len; 1430 copied = len; 1431 if (copied > ulen - off) 1432 copied = ulen - off; 1433 else if (copied < ulen) 1434 msg->msg_flags |= MSG_TRUNC; 1435 1436 /* 1437 * If checksum is needed at all, try to do it while copying the 1438 * data. If the data is truncated, or if we only want a partial 1439 * coverage checksum (UDP-Lite), do it before the copy. 1440 */ 1441 1442 if (copied < ulen || peeking || 1443 (is_udplite && UDP_SKB_CB(skb)->partial_cov)) { 1444 checksum_valid = !udp_lib_checksum_complete(skb); 1445 if (!checksum_valid) 1446 goto csum_copy_err; 1447 } 1448 1449 if (checksum_valid || skb_csum_unnecessary(skb)) 1450 err = skb_copy_datagram_msg(skb, off, msg, copied); 1451 else { 1452 err = skb_copy_and_csum_datagram_msg(skb, off, msg); 1453 1454 if (err == -EINVAL) 1455 goto csum_copy_err; 1456 } 1457 1458 if (unlikely(err)) { 1459 if (!peeked) { 1460 atomic_inc(&sk->sk_drops); 1461 UDP_INC_STATS(sock_net(sk), 1462 UDP_MIB_INERRORS, is_udplite); 1463 } 1464 kfree_skb(skb); 1465 return err; 1466 } 1467 1468 if (!peeked) 1469 UDP_INC_STATS(sock_net(sk), 1470 UDP_MIB_INDATAGRAMS, is_udplite); 1471 1472 sock_recv_ts_and_drops(msg, sk, skb); 1473 1474 /* Copy the address. */ 1475 if (sin) { 1476 sin->sin_family = AF_INET; 1477 sin->sin_port = udp_hdr(skb)->source; 1478 sin->sin_addr.s_addr = ip_hdr(skb)->saddr; 1479 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 1480 *addr_len = sizeof(*sin); 1481 } 1482 if (inet->cmsg_flags) 1483 ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off); 1484 1485 err = copied; 1486 if (flags & MSG_TRUNC) 1487 err = ulen; 1488 1489 skb_consume_udp(sk, skb, peeking ? -err : err); 1490 return err; 1491 1492 csum_copy_err: 1493 if (!__sk_queue_drop_skb(sk, skb, flags, udp_skb_destructor)) { 1494 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 1495 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1496 } 1497 kfree_skb(skb); 1498 1499 /* starting over for a new packet, but check if we need to yield */ 1500 cond_resched(); 1501 msg->msg_flags &= ~MSG_TRUNC; 1502 goto try_again; 1503 } 1504 1505 int __udp_disconnect(struct sock *sk, int flags) 1506 { 1507 struct inet_sock *inet = inet_sk(sk); 1508 /* 1509 * 1003.1g - break association. 1510 */ 1511 1512 sk->sk_state = TCP_CLOSE; 1513 inet->inet_daddr = 0; 1514 inet->inet_dport = 0; 1515 sock_rps_reset_rxhash(sk); 1516 sk->sk_bound_dev_if = 0; 1517 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 1518 inet_reset_saddr(sk); 1519 1520 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) { 1521 sk->sk_prot->unhash(sk); 1522 inet->inet_sport = 0; 1523 } 1524 sk_dst_reset(sk); 1525 return 0; 1526 } 1527 EXPORT_SYMBOL(__udp_disconnect); 1528 1529 int udp_disconnect(struct sock *sk, int flags) 1530 { 1531 lock_sock(sk); 1532 __udp_disconnect(sk, flags); 1533 release_sock(sk); 1534 return 0; 1535 } 1536 EXPORT_SYMBOL(udp_disconnect); 1537 1538 void udp_lib_unhash(struct sock *sk) 1539 { 1540 if (sk_hashed(sk)) { 1541 struct udp_table *udptable = sk->sk_prot->h.udp_table; 1542 struct udp_hslot *hslot, *hslot2; 1543 1544 hslot = udp_hashslot(udptable, sock_net(sk), 1545 udp_sk(sk)->udp_port_hash); 1546 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1547 1548 spin_lock_bh(&hslot->lock); 1549 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1550 reuseport_detach_sock(sk); 1551 if (sk_del_node_init_rcu(sk)) { 1552 hslot->count--; 1553 inet_sk(sk)->inet_num = 0; 1554 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 1555 1556 spin_lock(&hslot2->lock); 1557 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 1558 hslot2->count--; 1559 spin_unlock(&hslot2->lock); 1560 } 1561 spin_unlock_bh(&hslot->lock); 1562 } 1563 } 1564 EXPORT_SYMBOL(udp_lib_unhash); 1565 1566 /* 1567 * inet_rcv_saddr was changed, we must rehash secondary hash 1568 */ 1569 void udp_lib_rehash(struct sock *sk, u16 newhash) 1570 { 1571 if (sk_hashed(sk)) { 1572 struct udp_table *udptable = sk->sk_prot->h.udp_table; 1573 struct udp_hslot *hslot, *hslot2, *nhslot2; 1574 1575 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1576 nhslot2 = udp_hashslot2(udptable, newhash); 1577 udp_sk(sk)->udp_portaddr_hash = newhash; 1578 1579 if (hslot2 != nhslot2 || 1580 rcu_access_pointer(sk->sk_reuseport_cb)) { 1581 hslot = udp_hashslot(udptable, sock_net(sk), 1582 udp_sk(sk)->udp_port_hash); 1583 /* we must lock primary chain too */ 1584 spin_lock_bh(&hslot->lock); 1585 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1586 reuseport_detach_sock(sk); 1587 1588 if (hslot2 != nhslot2) { 1589 spin_lock(&hslot2->lock); 1590 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 1591 hslot2->count--; 1592 spin_unlock(&hslot2->lock); 1593 1594 spin_lock(&nhslot2->lock); 1595 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 1596 &nhslot2->head); 1597 nhslot2->count++; 1598 spin_unlock(&nhslot2->lock); 1599 } 1600 1601 spin_unlock_bh(&hslot->lock); 1602 } 1603 } 1604 } 1605 EXPORT_SYMBOL(udp_lib_rehash); 1606 1607 static void udp_v4_rehash(struct sock *sk) 1608 { 1609 u16 new_hash = udp4_portaddr_hash(sock_net(sk), 1610 inet_sk(sk)->inet_rcv_saddr, 1611 inet_sk(sk)->inet_num); 1612 udp_lib_rehash(sk, new_hash); 1613 } 1614 1615 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 1616 { 1617 int rc; 1618 1619 if (inet_sk(sk)->inet_daddr) { 1620 sock_rps_save_rxhash(sk, skb); 1621 sk_mark_napi_id(sk, skb); 1622 sk_incoming_cpu_update(sk); 1623 } else { 1624 sk_mark_napi_id_once(sk, skb); 1625 } 1626 1627 rc = __udp_enqueue_schedule_skb(sk, skb); 1628 if (rc < 0) { 1629 int is_udplite = IS_UDPLITE(sk); 1630 1631 /* Note that an ENOMEM error is charged twice */ 1632 if (rc == -ENOMEM) 1633 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS, 1634 is_udplite); 1635 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1636 kfree_skb(skb); 1637 trace_udp_fail_queue_rcv_skb(rc, sk); 1638 return -1; 1639 } 1640 1641 return 0; 1642 } 1643 1644 static struct static_key udp_encap_needed __read_mostly; 1645 void udp_encap_enable(void) 1646 { 1647 if (!static_key_enabled(&udp_encap_needed)) 1648 static_key_slow_inc(&udp_encap_needed); 1649 } 1650 EXPORT_SYMBOL(udp_encap_enable); 1651 1652 /* returns: 1653 * -1: error 1654 * 0: success 1655 * >0: "udp encap" protocol resubmission 1656 * 1657 * Note that in the success and error cases, the skb is assumed to 1658 * have either been requeued or freed. 1659 */ 1660 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 1661 { 1662 struct udp_sock *up = udp_sk(sk); 1663 int is_udplite = IS_UDPLITE(sk); 1664 1665 /* 1666 * Charge it to the socket, dropping if the queue is full. 1667 */ 1668 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) 1669 goto drop; 1670 nf_reset(skb); 1671 1672 if (static_key_false(&udp_encap_needed) && up->encap_type) { 1673 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb); 1674 1675 /* 1676 * This is an encapsulation socket so pass the skb to 1677 * the socket's udp_encap_rcv() hook. Otherwise, just 1678 * fall through and pass this up the UDP socket. 1679 * up->encap_rcv() returns the following value: 1680 * =0 if skb was successfully passed to the encap 1681 * handler or was discarded by it. 1682 * >0 if skb should be passed on to UDP. 1683 * <0 if skb should be resubmitted as proto -N 1684 */ 1685 1686 /* if we're overly short, let UDP handle it */ 1687 encap_rcv = ACCESS_ONCE(up->encap_rcv); 1688 if (encap_rcv) { 1689 int ret; 1690 1691 /* Verify checksum before giving to encap */ 1692 if (udp_lib_checksum_complete(skb)) 1693 goto csum_error; 1694 1695 ret = encap_rcv(sk, skb); 1696 if (ret <= 0) { 1697 __UDP_INC_STATS(sock_net(sk), 1698 UDP_MIB_INDATAGRAMS, 1699 is_udplite); 1700 return -ret; 1701 } 1702 } 1703 1704 /* FALLTHROUGH -- it's a UDP Packet */ 1705 } 1706 1707 /* 1708 * UDP-Lite specific tests, ignored on UDP sockets 1709 */ 1710 if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) { 1711 1712 /* 1713 * MIB statistics other than incrementing the error count are 1714 * disabled for the following two types of errors: these depend 1715 * on the application settings, not on the functioning of the 1716 * protocol stack as such. 1717 * 1718 * RFC 3828 here recommends (sec 3.3): "There should also be a 1719 * way ... to ... at least let the receiving application block 1720 * delivery of packets with coverage values less than a value 1721 * provided by the application." 1722 */ 1723 if (up->pcrlen == 0) { /* full coverage was set */ 1724 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n", 1725 UDP_SKB_CB(skb)->cscov, skb->len); 1726 goto drop; 1727 } 1728 /* The next case involves violating the min. coverage requested 1729 * by the receiver. This is subtle: if receiver wants x and x is 1730 * greater than the buffersize/MTU then receiver will complain 1731 * that it wants x while sender emits packets of smaller size y. 1732 * Therefore the above ...()->partial_cov statement is essential. 1733 */ 1734 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) { 1735 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n", 1736 UDP_SKB_CB(skb)->cscov, up->pcrlen); 1737 goto drop; 1738 } 1739 } 1740 1741 if (rcu_access_pointer(sk->sk_filter) && 1742 udp_lib_checksum_complete(skb)) 1743 goto csum_error; 1744 1745 if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) 1746 goto drop; 1747 1748 udp_csum_pull_header(skb); 1749 1750 ipv4_pktinfo_prepare(sk, skb); 1751 return __udp_queue_rcv_skb(sk, skb); 1752 1753 csum_error: 1754 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 1755 drop: 1756 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1757 atomic_inc(&sk->sk_drops); 1758 kfree_skb(skb); 1759 return -1; 1760 } 1761 1762 /* For TCP sockets, sk_rx_dst is protected by socket lock 1763 * For UDP, we use xchg() to guard against concurrent changes. 1764 */ 1765 static void udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst) 1766 { 1767 struct dst_entry *old; 1768 1769 dst_hold(dst); 1770 old = xchg(&sk->sk_rx_dst, dst); 1771 dst_release(old); 1772 } 1773 1774 /* 1775 * Multicasts and broadcasts go to each listener. 1776 * 1777 * Note: called only from the BH handler context. 1778 */ 1779 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb, 1780 struct udphdr *uh, 1781 __be32 saddr, __be32 daddr, 1782 struct udp_table *udptable, 1783 int proto) 1784 { 1785 struct sock *sk, *first = NULL; 1786 unsigned short hnum = ntohs(uh->dest); 1787 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum); 1788 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10); 1789 unsigned int offset = offsetof(typeof(*sk), sk_node); 1790 int dif = skb->dev->ifindex; 1791 struct hlist_node *node; 1792 struct sk_buff *nskb; 1793 1794 if (use_hash2) { 1795 hash2_any = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum) & 1796 udptable->mask; 1797 hash2 = udp4_portaddr_hash(net, daddr, hnum) & udptable->mask; 1798 start_lookup: 1799 hslot = &udptable->hash2[hash2]; 1800 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node); 1801 } 1802 1803 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) { 1804 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr, 1805 uh->source, saddr, dif, hnum)) 1806 continue; 1807 1808 if (!first) { 1809 first = sk; 1810 continue; 1811 } 1812 nskb = skb_clone(skb, GFP_ATOMIC); 1813 1814 if (unlikely(!nskb)) { 1815 atomic_inc(&sk->sk_drops); 1816 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS, 1817 IS_UDPLITE(sk)); 1818 __UDP_INC_STATS(net, UDP_MIB_INERRORS, 1819 IS_UDPLITE(sk)); 1820 continue; 1821 } 1822 if (udp_queue_rcv_skb(sk, nskb) > 0) 1823 consume_skb(nskb); 1824 } 1825 1826 /* Also lookup *:port if we are using hash2 and haven't done so yet. */ 1827 if (use_hash2 && hash2 != hash2_any) { 1828 hash2 = hash2_any; 1829 goto start_lookup; 1830 } 1831 1832 if (first) { 1833 if (udp_queue_rcv_skb(first, skb) > 0) 1834 consume_skb(skb); 1835 } else { 1836 kfree_skb(skb); 1837 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI, 1838 proto == IPPROTO_UDPLITE); 1839 } 1840 return 0; 1841 } 1842 1843 /* Initialize UDP checksum. If exited with zero value (success), 1844 * CHECKSUM_UNNECESSARY means, that no more checks are required. 1845 * Otherwise, csum completion requires chacksumming packet body, 1846 * including udp header and folding it to skb->csum. 1847 */ 1848 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh, 1849 int proto) 1850 { 1851 int err; 1852 1853 UDP_SKB_CB(skb)->partial_cov = 0; 1854 UDP_SKB_CB(skb)->cscov = skb->len; 1855 1856 if (proto == IPPROTO_UDPLITE) { 1857 err = udplite_checksum_init(skb, uh); 1858 if (err) 1859 return err; 1860 } 1861 1862 /* Note, we are only interested in != 0 or == 0, thus the 1863 * force to int. 1864 */ 1865 return (__force int)skb_checksum_init_zero_check(skb, proto, uh->check, 1866 inet_compute_pseudo); 1867 } 1868 1869 /* 1870 * All we need to do is get the socket, and then do a checksum. 1871 */ 1872 1873 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable, 1874 int proto) 1875 { 1876 struct sock *sk; 1877 struct udphdr *uh; 1878 unsigned short ulen; 1879 struct rtable *rt = skb_rtable(skb); 1880 __be32 saddr, daddr; 1881 struct net *net = dev_net(skb->dev); 1882 1883 /* 1884 * Validate the packet. 1885 */ 1886 if (!pskb_may_pull(skb, sizeof(struct udphdr))) 1887 goto drop; /* No space for header. */ 1888 1889 uh = udp_hdr(skb); 1890 ulen = ntohs(uh->len); 1891 saddr = ip_hdr(skb)->saddr; 1892 daddr = ip_hdr(skb)->daddr; 1893 1894 if (ulen > skb->len) 1895 goto short_packet; 1896 1897 if (proto == IPPROTO_UDP) { 1898 /* UDP validates ulen. */ 1899 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen)) 1900 goto short_packet; 1901 uh = udp_hdr(skb); 1902 } 1903 1904 if (udp4_csum_init(skb, uh, proto)) 1905 goto csum_error; 1906 1907 sk = skb_steal_sock(skb); 1908 if (sk) { 1909 struct dst_entry *dst = skb_dst(skb); 1910 int ret; 1911 1912 if (unlikely(sk->sk_rx_dst != dst)) 1913 udp_sk_rx_dst_set(sk, dst); 1914 1915 ret = udp_queue_rcv_skb(sk, skb); 1916 sock_put(sk); 1917 /* a return value > 0 means to resubmit the input, but 1918 * it wants the return to be -protocol, or 0 1919 */ 1920 if (ret > 0) 1921 return -ret; 1922 return 0; 1923 } 1924 1925 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST)) 1926 return __udp4_lib_mcast_deliver(net, skb, uh, 1927 saddr, daddr, udptable, proto); 1928 1929 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable); 1930 if (sk) { 1931 int ret; 1932 1933 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk)) 1934 skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check, 1935 inet_compute_pseudo); 1936 1937 ret = udp_queue_rcv_skb(sk, skb); 1938 1939 /* a return value > 0 means to resubmit the input, but 1940 * it wants the return to be -protocol, or 0 1941 */ 1942 if (ret > 0) 1943 return -ret; 1944 return 0; 1945 } 1946 1947 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 1948 goto drop; 1949 nf_reset(skb); 1950 1951 /* No socket. Drop packet silently, if checksum is wrong */ 1952 if (udp_lib_checksum_complete(skb)) 1953 goto csum_error; 1954 1955 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE); 1956 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0); 1957 1958 /* 1959 * Hmm. We got an UDP packet to a port to which we 1960 * don't wanna listen. Ignore it. 1961 */ 1962 kfree_skb(skb); 1963 return 0; 1964 1965 short_packet: 1966 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n", 1967 proto == IPPROTO_UDPLITE ? "Lite" : "", 1968 &saddr, ntohs(uh->source), 1969 ulen, skb->len, 1970 &daddr, ntohs(uh->dest)); 1971 goto drop; 1972 1973 csum_error: 1974 /* 1975 * RFC1122: OK. Discards the bad packet silently (as far as 1976 * the network is concerned, anyway) as per 4.1.3.4 (MUST). 1977 */ 1978 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n", 1979 proto == IPPROTO_UDPLITE ? "Lite" : "", 1980 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest), 1981 ulen); 1982 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE); 1983 drop: 1984 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE); 1985 kfree_skb(skb); 1986 return 0; 1987 } 1988 1989 /* We can only early demux multicast if there is a single matching socket. 1990 * If more than one socket found returns NULL 1991 */ 1992 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net, 1993 __be16 loc_port, __be32 loc_addr, 1994 __be16 rmt_port, __be32 rmt_addr, 1995 int dif) 1996 { 1997 struct sock *sk, *result; 1998 unsigned short hnum = ntohs(loc_port); 1999 unsigned int slot = udp_hashfn(net, hnum, udp_table.mask); 2000 struct udp_hslot *hslot = &udp_table.hash[slot]; 2001 2002 /* Do not bother scanning a too big list */ 2003 if (hslot->count > 10) 2004 return NULL; 2005 2006 result = NULL; 2007 sk_for_each_rcu(sk, &hslot->head) { 2008 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr, 2009 rmt_port, rmt_addr, dif, hnum)) { 2010 if (result) 2011 return NULL; 2012 result = sk; 2013 } 2014 } 2015 2016 return result; 2017 } 2018 2019 /* For unicast we should only early demux connected sockets or we can 2020 * break forwarding setups. The chains here can be long so only check 2021 * if the first socket is an exact match and if not move on. 2022 */ 2023 static struct sock *__udp4_lib_demux_lookup(struct net *net, 2024 __be16 loc_port, __be32 loc_addr, 2025 __be16 rmt_port, __be32 rmt_addr, 2026 int dif) 2027 { 2028 unsigned short hnum = ntohs(loc_port); 2029 unsigned int hash2 = udp4_portaddr_hash(net, loc_addr, hnum); 2030 unsigned int slot2 = hash2 & udp_table.mask; 2031 struct udp_hslot *hslot2 = &udp_table.hash2[slot2]; 2032 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr); 2033 const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum); 2034 struct sock *sk; 2035 2036 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 2037 if (INET_MATCH(sk, net, acookie, rmt_addr, 2038 loc_addr, ports, dif)) 2039 return sk; 2040 /* Only check first socket in chain */ 2041 break; 2042 } 2043 return NULL; 2044 } 2045 2046 void udp_v4_early_demux(struct sk_buff *skb) 2047 { 2048 struct net *net = dev_net(skb->dev); 2049 const struct iphdr *iph; 2050 const struct udphdr *uh; 2051 struct sock *sk = NULL; 2052 struct dst_entry *dst; 2053 int dif = skb->dev->ifindex; 2054 int ours; 2055 2056 /* validate the packet */ 2057 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr))) 2058 return; 2059 2060 iph = ip_hdr(skb); 2061 uh = udp_hdr(skb); 2062 2063 if (skb->pkt_type == PACKET_BROADCAST || 2064 skb->pkt_type == PACKET_MULTICAST) { 2065 struct in_device *in_dev = __in_dev_get_rcu(skb->dev); 2066 2067 if (!in_dev) 2068 return; 2069 2070 /* we are supposed to accept bcast packets */ 2071 if (skb->pkt_type == PACKET_MULTICAST) { 2072 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr, 2073 iph->protocol); 2074 if (!ours) 2075 return; 2076 } 2077 2078 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr, 2079 uh->source, iph->saddr, dif); 2080 } else if (skb->pkt_type == PACKET_HOST) { 2081 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr, 2082 uh->source, iph->saddr, dif); 2083 } 2084 2085 if (!sk || !atomic_inc_not_zero_hint(&sk->sk_refcnt, 2)) 2086 return; 2087 2088 skb->sk = sk; 2089 skb->destructor = sock_efree; 2090 dst = READ_ONCE(sk->sk_rx_dst); 2091 2092 if (dst) 2093 dst = dst_check(dst, 0); 2094 if (dst) { 2095 /* DST_NOCACHE can not be used without taking a reference */ 2096 if (dst->flags & DST_NOCACHE) { 2097 if (likely(atomic_inc_not_zero(&dst->__refcnt))) 2098 skb_dst_set(skb, dst); 2099 } else { 2100 skb_dst_set_noref(skb, dst); 2101 } 2102 } 2103 } 2104 2105 int udp_rcv(struct sk_buff *skb) 2106 { 2107 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP); 2108 } 2109 2110 void udp_destroy_sock(struct sock *sk) 2111 { 2112 struct udp_sock *up = udp_sk(sk); 2113 bool slow = lock_sock_fast(sk); 2114 udp_flush_pending_frames(sk); 2115 unlock_sock_fast(sk, slow); 2116 if (static_key_false(&udp_encap_needed) && up->encap_type) { 2117 void (*encap_destroy)(struct sock *sk); 2118 encap_destroy = ACCESS_ONCE(up->encap_destroy); 2119 if (encap_destroy) 2120 encap_destroy(sk); 2121 } 2122 } 2123 2124 /* 2125 * Socket option code for UDP 2126 */ 2127 int udp_lib_setsockopt(struct sock *sk, int level, int optname, 2128 char __user *optval, unsigned int optlen, 2129 int (*push_pending_frames)(struct sock *)) 2130 { 2131 struct udp_sock *up = udp_sk(sk); 2132 int val, valbool; 2133 int err = 0; 2134 int is_udplite = IS_UDPLITE(sk); 2135 2136 if (optlen < sizeof(int)) 2137 return -EINVAL; 2138 2139 if (get_user(val, (int __user *)optval)) 2140 return -EFAULT; 2141 2142 valbool = val ? 1 : 0; 2143 2144 switch (optname) { 2145 case UDP_CORK: 2146 if (val != 0) { 2147 up->corkflag = 1; 2148 } else { 2149 up->corkflag = 0; 2150 lock_sock(sk); 2151 push_pending_frames(sk); 2152 release_sock(sk); 2153 } 2154 break; 2155 2156 case UDP_ENCAP: 2157 switch (val) { 2158 case 0: 2159 case UDP_ENCAP_ESPINUDP: 2160 case UDP_ENCAP_ESPINUDP_NON_IKE: 2161 up->encap_rcv = xfrm4_udp_encap_rcv; 2162 /* FALLTHROUGH */ 2163 case UDP_ENCAP_L2TPINUDP: 2164 up->encap_type = val; 2165 udp_encap_enable(); 2166 break; 2167 default: 2168 err = -ENOPROTOOPT; 2169 break; 2170 } 2171 break; 2172 2173 case UDP_NO_CHECK6_TX: 2174 up->no_check6_tx = valbool; 2175 break; 2176 2177 case UDP_NO_CHECK6_RX: 2178 up->no_check6_rx = valbool; 2179 break; 2180 2181 /* 2182 * UDP-Lite's partial checksum coverage (RFC 3828). 2183 */ 2184 /* The sender sets actual checksum coverage length via this option. 2185 * The case coverage > packet length is handled by send module. */ 2186 case UDPLITE_SEND_CSCOV: 2187 if (!is_udplite) /* Disable the option on UDP sockets */ 2188 return -ENOPROTOOPT; 2189 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */ 2190 val = 8; 2191 else if (val > USHRT_MAX) 2192 val = USHRT_MAX; 2193 up->pcslen = val; 2194 up->pcflag |= UDPLITE_SEND_CC; 2195 break; 2196 2197 /* The receiver specifies a minimum checksum coverage value. To make 2198 * sense, this should be set to at least 8 (as done below). If zero is 2199 * used, this again means full checksum coverage. */ 2200 case UDPLITE_RECV_CSCOV: 2201 if (!is_udplite) /* Disable the option on UDP sockets */ 2202 return -ENOPROTOOPT; 2203 if (val != 0 && val < 8) /* Avoid silly minimal values. */ 2204 val = 8; 2205 else if (val > USHRT_MAX) 2206 val = USHRT_MAX; 2207 up->pcrlen = val; 2208 up->pcflag |= UDPLITE_RECV_CC; 2209 break; 2210 2211 default: 2212 err = -ENOPROTOOPT; 2213 break; 2214 } 2215 2216 return err; 2217 } 2218 EXPORT_SYMBOL(udp_lib_setsockopt); 2219 2220 int udp_setsockopt(struct sock *sk, int level, int optname, 2221 char __user *optval, unsigned int optlen) 2222 { 2223 if (level == SOL_UDP || level == SOL_UDPLITE) 2224 return udp_lib_setsockopt(sk, level, optname, optval, optlen, 2225 udp_push_pending_frames); 2226 return ip_setsockopt(sk, level, optname, optval, optlen); 2227 } 2228 2229 #ifdef CONFIG_COMPAT 2230 int compat_udp_setsockopt(struct sock *sk, int level, int optname, 2231 char __user *optval, unsigned int optlen) 2232 { 2233 if (level == SOL_UDP || level == SOL_UDPLITE) 2234 return udp_lib_setsockopt(sk, level, optname, optval, optlen, 2235 udp_push_pending_frames); 2236 return compat_ip_setsockopt(sk, level, optname, optval, optlen); 2237 } 2238 #endif 2239 2240 int udp_lib_getsockopt(struct sock *sk, int level, int optname, 2241 char __user *optval, int __user *optlen) 2242 { 2243 struct udp_sock *up = udp_sk(sk); 2244 int val, len; 2245 2246 if (get_user(len, optlen)) 2247 return -EFAULT; 2248 2249 len = min_t(unsigned int, len, sizeof(int)); 2250 2251 if (len < 0) 2252 return -EINVAL; 2253 2254 switch (optname) { 2255 case UDP_CORK: 2256 val = up->corkflag; 2257 break; 2258 2259 case UDP_ENCAP: 2260 val = up->encap_type; 2261 break; 2262 2263 case UDP_NO_CHECK6_TX: 2264 val = up->no_check6_tx; 2265 break; 2266 2267 case UDP_NO_CHECK6_RX: 2268 val = up->no_check6_rx; 2269 break; 2270 2271 /* The following two cannot be changed on UDP sockets, the return is 2272 * always 0 (which corresponds to the full checksum coverage of UDP). */ 2273 case UDPLITE_SEND_CSCOV: 2274 val = up->pcslen; 2275 break; 2276 2277 case UDPLITE_RECV_CSCOV: 2278 val = up->pcrlen; 2279 break; 2280 2281 default: 2282 return -ENOPROTOOPT; 2283 } 2284 2285 if (put_user(len, optlen)) 2286 return -EFAULT; 2287 if (copy_to_user(optval, &val, len)) 2288 return -EFAULT; 2289 return 0; 2290 } 2291 EXPORT_SYMBOL(udp_lib_getsockopt); 2292 2293 int udp_getsockopt(struct sock *sk, int level, int optname, 2294 char __user *optval, int __user *optlen) 2295 { 2296 if (level == SOL_UDP || level == SOL_UDPLITE) 2297 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 2298 return ip_getsockopt(sk, level, optname, optval, optlen); 2299 } 2300 2301 #ifdef CONFIG_COMPAT 2302 int compat_udp_getsockopt(struct sock *sk, int level, int optname, 2303 char __user *optval, int __user *optlen) 2304 { 2305 if (level == SOL_UDP || level == SOL_UDPLITE) 2306 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 2307 return compat_ip_getsockopt(sk, level, optname, optval, optlen); 2308 } 2309 #endif 2310 /** 2311 * udp_poll - wait for a UDP event. 2312 * @file - file struct 2313 * @sock - socket 2314 * @wait - poll table 2315 * 2316 * This is same as datagram poll, except for the special case of 2317 * blocking sockets. If application is using a blocking fd 2318 * and a packet with checksum error is in the queue; 2319 * then it could get return from select indicating data available 2320 * but then block when reading it. Add special case code 2321 * to work around these arguably broken applications. 2322 */ 2323 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait) 2324 { 2325 unsigned int mask = datagram_poll(file, sock, wait); 2326 struct sock *sk = sock->sk; 2327 2328 sock_rps_record_flow(sk); 2329 2330 /* Check for false positives due to checksum errors */ 2331 if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) && 2332 !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1) 2333 mask &= ~(POLLIN | POLLRDNORM); 2334 2335 return mask; 2336 2337 } 2338 EXPORT_SYMBOL(udp_poll); 2339 2340 int udp_abort(struct sock *sk, int err) 2341 { 2342 lock_sock(sk); 2343 2344 sk->sk_err = err; 2345 sk->sk_error_report(sk); 2346 __udp_disconnect(sk, 0); 2347 2348 release_sock(sk); 2349 2350 return 0; 2351 } 2352 EXPORT_SYMBOL_GPL(udp_abort); 2353 2354 struct proto udp_prot = { 2355 .name = "UDP", 2356 .owner = THIS_MODULE, 2357 .close = udp_lib_close, 2358 .connect = ip4_datagram_connect, 2359 .disconnect = udp_disconnect, 2360 .ioctl = udp_ioctl, 2361 .init = udp_init_sock, 2362 .destroy = udp_destroy_sock, 2363 .setsockopt = udp_setsockopt, 2364 .getsockopt = udp_getsockopt, 2365 .sendmsg = udp_sendmsg, 2366 .recvmsg = udp_recvmsg, 2367 .sendpage = udp_sendpage, 2368 .release_cb = ip4_datagram_release_cb, 2369 .hash = udp_lib_hash, 2370 .unhash = udp_lib_unhash, 2371 .rehash = udp_v4_rehash, 2372 .get_port = udp_v4_get_port, 2373 .memory_allocated = &udp_memory_allocated, 2374 .sysctl_mem = sysctl_udp_mem, 2375 .sysctl_wmem = &sysctl_udp_wmem_min, 2376 .sysctl_rmem = &sysctl_udp_rmem_min, 2377 .obj_size = sizeof(struct udp_sock), 2378 .h.udp_table = &udp_table, 2379 #ifdef CONFIG_COMPAT 2380 .compat_setsockopt = compat_udp_setsockopt, 2381 .compat_getsockopt = compat_udp_getsockopt, 2382 #endif 2383 .diag_destroy = udp_abort, 2384 }; 2385 EXPORT_SYMBOL(udp_prot); 2386 2387 /* ------------------------------------------------------------------------ */ 2388 #ifdef CONFIG_PROC_FS 2389 2390 static struct sock *udp_get_first(struct seq_file *seq, int start) 2391 { 2392 struct sock *sk; 2393 struct udp_iter_state *state = seq->private; 2394 struct net *net = seq_file_net(seq); 2395 2396 for (state->bucket = start; state->bucket <= state->udp_table->mask; 2397 ++state->bucket) { 2398 struct udp_hslot *hslot = &state->udp_table->hash[state->bucket]; 2399 2400 if (hlist_empty(&hslot->head)) 2401 continue; 2402 2403 spin_lock_bh(&hslot->lock); 2404 sk_for_each(sk, &hslot->head) { 2405 if (!net_eq(sock_net(sk), net)) 2406 continue; 2407 if (sk->sk_family == state->family) 2408 goto found; 2409 } 2410 spin_unlock_bh(&hslot->lock); 2411 } 2412 sk = NULL; 2413 found: 2414 return sk; 2415 } 2416 2417 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk) 2418 { 2419 struct udp_iter_state *state = seq->private; 2420 struct net *net = seq_file_net(seq); 2421 2422 do { 2423 sk = sk_next(sk); 2424 } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family)); 2425 2426 if (!sk) { 2427 if (state->bucket <= state->udp_table->mask) 2428 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock); 2429 return udp_get_first(seq, state->bucket + 1); 2430 } 2431 return sk; 2432 } 2433 2434 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos) 2435 { 2436 struct sock *sk = udp_get_first(seq, 0); 2437 2438 if (sk) 2439 while (pos && (sk = udp_get_next(seq, sk)) != NULL) 2440 --pos; 2441 return pos ? NULL : sk; 2442 } 2443 2444 static void *udp_seq_start(struct seq_file *seq, loff_t *pos) 2445 { 2446 struct udp_iter_state *state = seq->private; 2447 state->bucket = MAX_UDP_PORTS; 2448 2449 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN; 2450 } 2451 2452 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2453 { 2454 struct sock *sk; 2455 2456 if (v == SEQ_START_TOKEN) 2457 sk = udp_get_idx(seq, 0); 2458 else 2459 sk = udp_get_next(seq, v); 2460 2461 ++*pos; 2462 return sk; 2463 } 2464 2465 static void udp_seq_stop(struct seq_file *seq, void *v) 2466 { 2467 struct udp_iter_state *state = seq->private; 2468 2469 if (state->bucket <= state->udp_table->mask) 2470 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock); 2471 } 2472 2473 int udp_seq_open(struct inode *inode, struct file *file) 2474 { 2475 struct udp_seq_afinfo *afinfo = PDE_DATA(inode); 2476 struct udp_iter_state *s; 2477 int err; 2478 2479 err = seq_open_net(inode, file, &afinfo->seq_ops, 2480 sizeof(struct udp_iter_state)); 2481 if (err < 0) 2482 return err; 2483 2484 s = ((struct seq_file *)file->private_data)->private; 2485 s->family = afinfo->family; 2486 s->udp_table = afinfo->udp_table; 2487 return err; 2488 } 2489 EXPORT_SYMBOL(udp_seq_open); 2490 2491 /* ------------------------------------------------------------------------ */ 2492 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo) 2493 { 2494 struct proc_dir_entry *p; 2495 int rc = 0; 2496 2497 afinfo->seq_ops.start = udp_seq_start; 2498 afinfo->seq_ops.next = udp_seq_next; 2499 afinfo->seq_ops.stop = udp_seq_stop; 2500 2501 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net, 2502 afinfo->seq_fops, afinfo); 2503 if (!p) 2504 rc = -ENOMEM; 2505 return rc; 2506 } 2507 EXPORT_SYMBOL(udp_proc_register); 2508 2509 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo) 2510 { 2511 remove_proc_entry(afinfo->name, net->proc_net); 2512 } 2513 EXPORT_SYMBOL(udp_proc_unregister); 2514 2515 /* ------------------------------------------------------------------------ */ 2516 static void udp4_format_sock(struct sock *sp, struct seq_file *f, 2517 int bucket) 2518 { 2519 struct inet_sock *inet = inet_sk(sp); 2520 __be32 dest = inet->inet_daddr; 2521 __be32 src = inet->inet_rcv_saddr; 2522 __u16 destp = ntohs(inet->inet_dport); 2523 __u16 srcp = ntohs(inet->inet_sport); 2524 2525 seq_printf(f, "%5d: %08X:%04X %08X:%04X" 2526 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d", 2527 bucket, src, srcp, dest, destp, sp->sk_state, 2528 sk_wmem_alloc_get(sp), 2529 sk_rmem_alloc_get(sp), 2530 0, 0L, 0, 2531 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)), 2532 0, sock_i_ino(sp), 2533 atomic_read(&sp->sk_refcnt), sp, 2534 atomic_read(&sp->sk_drops)); 2535 } 2536 2537 int udp4_seq_show(struct seq_file *seq, void *v) 2538 { 2539 seq_setwidth(seq, 127); 2540 if (v == SEQ_START_TOKEN) 2541 seq_puts(seq, " sl local_address rem_address st tx_queue " 2542 "rx_queue tr tm->when retrnsmt uid timeout " 2543 "inode ref pointer drops"); 2544 else { 2545 struct udp_iter_state *state = seq->private; 2546 2547 udp4_format_sock(v, seq, state->bucket); 2548 } 2549 seq_pad(seq, '\n'); 2550 return 0; 2551 } 2552 2553 static const struct file_operations udp_afinfo_seq_fops = { 2554 .owner = THIS_MODULE, 2555 .open = udp_seq_open, 2556 .read = seq_read, 2557 .llseek = seq_lseek, 2558 .release = seq_release_net 2559 }; 2560 2561 /* ------------------------------------------------------------------------ */ 2562 static struct udp_seq_afinfo udp4_seq_afinfo = { 2563 .name = "udp", 2564 .family = AF_INET, 2565 .udp_table = &udp_table, 2566 .seq_fops = &udp_afinfo_seq_fops, 2567 .seq_ops = { 2568 .show = udp4_seq_show, 2569 }, 2570 }; 2571 2572 static int __net_init udp4_proc_init_net(struct net *net) 2573 { 2574 return udp_proc_register(net, &udp4_seq_afinfo); 2575 } 2576 2577 static void __net_exit udp4_proc_exit_net(struct net *net) 2578 { 2579 udp_proc_unregister(net, &udp4_seq_afinfo); 2580 } 2581 2582 static struct pernet_operations udp4_net_ops = { 2583 .init = udp4_proc_init_net, 2584 .exit = udp4_proc_exit_net, 2585 }; 2586 2587 int __init udp4_proc_init(void) 2588 { 2589 return register_pernet_subsys(&udp4_net_ops); 2590 } 2591 2592 void udp4_proc_exit(void) 2593 { 2594 unregister_pernet_subsys(&udp4_net_ops); 2595 } 2596 #endif /* CONFIG_PROC_FS */ 2597 2598 static __initdata unsigned long uhash_entries; 2599 static int __init set_uhash_entries(char *str) 2600 { 2601 ssize_t ret; 2602 2603 if (!str) 2604 return 0; 2605 2606 ret = kstrtoul(str, 0, &uhash_entries); 2607 if (ret) 2608 return 0; 2609 2610 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN) 2611 uhash_entries = UDP_HTABLE_SIZE_MIN; 2612 return 1; 2613 } 2614 __setup("uhash_entries=", set_uhash_entries); 2615 2616 void __init udp_table_init(struct udp_table *table, const char *name) 2617 { 2618 unsigned int i; 2619 2620 table->hash = alloc_large_system_hash(name, 2621 2 * sizeof(struct udp_hslot), 2622 uhash_entries, 2623 21, /* one slot per 2 MB */ 2624 0, 2625 &table->log, 2626 &table->mask, 2627 UDP_HTABLE_SIZE_MIN, 2628 64 * 1024); 2629 2630 table->hash2 = table->hash + (table->mask + 1); 2631 for (i = 0; i <= table->mask; i++) { 2632 INIT_HLIST_HEAD(&table->hash[i].head); 2633 table->hash[i].count = 0; 2634 spin_lock_init(&table->hash[i].lock); 2635 } 2636 for (i = 0; i <= table->mask; i++) { 2637 INIT_HLIST_HEAD(&table->hash2[i].head); 2638 table->hash2[i].count = 0; 2639 spin_lock_init(&table->hash2[i].lock); 2640 } 2641 } 2642 2643 u32 udp_flow_hashrnd(void) 2644 { 2645 static u32 hashrnd __read_mostly; 2646 2647 net_get_random_once(&hashrnd, sizeof(hashrnd)); 2648 2649 return hashrnd; 2650 } 2651 EXPORT_SYMBOL(udp_flow_hashrnd); 2652 2653 void __init udp_init(void) 2654 { 2655 unsigned long limit; 2656 unsigned int i; 2657 2658 udp_table_init(&udp_table, "UDP"); 2659 limit = nr_free_buffer_pages() / 8; 2660 limit = max(limit, 128UL); 2661 sysctl_udp_mem[0] = limit / 4 * 3; 2662 sysctl_udp_mem[1] = limit; 2663 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2; 2664 2665 sysctl_udp_rmem_min = SK_MEM_QUANTUM; 2666 sysctl_udp_wmem_min = SK_MEM_QUANTUM; 2667 2668 /* 16 spinlocks per cpu */ 2669 udp_busylocks_log = ilog2(nr_cpu_ids) + 4; 2670 udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log, 2671 GFP_KERNEL); 2672 if (!udp_busylocks) 2673 panic("UDP: failed to alloc udp_busylocks\n"); 2674 for (i = 0; i < (1U << udp_busylocks_log); i++) 2675 spin_lock_init(udp_busylocks + i); 2676 } 2677