1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * The User Datagram Protocol (UDP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 12 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 13 * Hirokazu Takahashi, <taka@valinux.co.jp> 14 * 15 * Fixes: 16 * Alan Cox : verify_area() calls 17 * Alan Cox : stopped close while in use off icmp 18 * messages. Not a fix but a botch that 19 * for udp at least is 'valid'. 20 * Alan Cox : Fixed icmp handling properly 21 * Alan Cox : Correct error for oversized datagrams 22 * Alan Cox : Tidied select() semantics. 23 * Alan Cox : udp_err() fixed properly, also now 24 * select and read wake correctly on errors 25 * Alan Cox : udp_send verify_area moved to avoid mem leak 26 * Alan Cox : UDP can count its memory 27 * Alan Cox : send to an unknown connection causes 28 * an ECONNREFUSED off the icmp, but 29 * does NOT close. 30 * Alan Cox : Switched to new sk_buff handlers. No more backlog! 31 * Alan Cox : Using generic datagram code. Even smaller and the PEEK 32 * bug no longer crashes it. 33 * Fred Van Kempen : Net2e support for sk->broadcast. 34 * Alan Cox : Uses skb_free_datagram 35 * Alan Cox : Added get/set sockopt support. 36 * Alan Cox : Broadcasting without option set returns EACCES. 37 * Alan Cox : No wakeup calls. Instead we now use the callbacks. 38 * Alan Cox : Use ip_tos and ip_ttl 39 * Alan Cox : SNMP Mibs 40 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support. 41 * Matt Dillon : UDP length checks. 42 * Alan Cox : Smarter af_inet used properly. 43 * Alan Cox : Use new kernel side addressing. 44 * Alan Cox : Incorrect return on truncated datagram receive. 45 * Arnt Gulbrandsen : New udp_send and stuff 46 * Alan Cox : Cache last socket 47 * Alan Cox : Route cache 48 * Jon Peatfield : Minor efficiency fix to sendto(). 49 * Mike Shaver : RFC1122 checks. 50 * Alan Cox : Nonblocking error fix. 51 * Willy Konynenberg : Transparent proxying support. 52 * Mike McLagan : Routing by source 53 * David S. Miller : New socket lookup architecture. 54 * Last socket cache retained as it 55 * does have a high hit rate. 56 * Olaf Kirch : Don't linearise iovec on sendmsg. 57 * Andi Kleen : Some cleanups, cache destination entry 58 * for connect. 59 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 60 * Melvin Smith : Check msg_name not msg_namelen in sendto(), 61 * return ENOTCONN for unconnected sockets (POSIX) 62 * Janos Farkas : don't deliver multi/broadcasts to a different 63 * bound-to-device socket 64 * Hirokazu Takahashi : HW checksumming for outgoing UDP 65 * datagrams. 66 * Hirokazu Takahashi : sendfile() on UDP works now. 67 * Arnaldo C. Melo : convert /proc/net/udp to seq_file 68 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 69 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind 70 * a single port at the same time. 71 * Derek Atkins <derek@ihtfp.com>: Add Encapsulation Support 72 * James Chapman : Add L2TP encapsulation type. 73 */ 74 75 #define pr_fmt(fmt) "UDP: " fmt 76 77 #include <linux/bpf-cgroup.h> 78 #include <linux/uaccess.h> 79 #include <asm/ioctls.h> 80 #include <linux/memblock.h> 81 #include <linux/highmem.h> 82 #include <linux/types.h> 83 #include <linux/fcntl.h> 84 #include <linux/module.h> 85 #include <linux/socket.h> 86 #include <linux/sockios.h> 87 #include <linux/igmp.h> 88 #include <linux/inetdevice.h> 89 #include <linux/in.h> 90 #include <linux/errno.h> 91 #include <linux/timer.h> 92 #include <linux/mm.h> 93 #include <linux/inet.h> 94 #include <linux/netdevice.h> 95 #include <linux/slab.h> 96 #include <linux/sock_diag.h> 97 #include <net/tcp_states.h> 98 #include <linux/skbuff.h> 99 #include <linux/proc_fs.h> 100 #include <linux/seq_file.h> 101 #include <net/net_namespace.h> 102 #include <net/icmp.h> 103 #include <net/inet_hashtables.h> 104 #include <net/ip.h> 105 #include <net/ip_tunnels.h> 106 #include <net/route.h> 107 #include <net/checksum.h> 108 #include <net/gso.h> 109 #include <net/xfrm.h> 110 #include <trace/events/udp.h> 111 #include <linux/static_key.h> 112 #include <linux/btf_ids.h> 113 #include <trace/events/skb.h> 114 #include <net/busy_poll.h> 115 #include "udp_impl.h" 116 #include <net/sock_reuseport.h> 117 #include <net/addrconf.h> 118 #include <net/udp_tunnel.h> 119 #include <net/gro.h> 120 #if IS_ENABLED(CONFIG_IPV6) 121 #include <net/ipv6_stubs.h> 122 #endif 123 #include <net/rps.h> 124 125 struct udp_table udp_table __read_mostly; 126 127 long sysctl_udp_mem[3] __read_mostly; 128 EXPORT_IPV6_MOD(sysctl_udp_mem); 129 130 DEFINE_PER_CPU(int, udp_memory_per_cpu_fw_alloc); 131 EXPORT_PER_CPU_SYMBOL_GPL(udp_memory_per_cpu_fw_alloc); 132 133 #define MAX_UDP_PORTS 65536 134 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN_PERNET) 135 136 static struct udp_table *udp_get_table_prot(struct sock *sk) 137 { 138 return sk->sk_prot->h.udp_table ? : sock_net(sk)->ipv4.udp_table; 139 } 140 141 static int udp_lib_lport_inuse(struct net *net, __u16 num, 142 const struct udp_hslot *hslot, 143 unsigned long *bitmap, 144 struct sock *sk, unsigned int log) 145 { 146 kuid_t uid = sk_uid(sk); 147 struct sock *sk2; 148 149 sk_for_each(sk2, &hslot->head) { 150 if (net_eq(sock_net(sk2), net) && 151 sk2 != sk && 152 (bitmap || udp_sk(sk2)->udp_port_hash == num) && 153 (!sk2->sk_reuse || !sk->sk_reuse) && 154 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 155 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 156 inet_rcv_saddr_equal(sk, sk2, true)) { 157 if (sk2->sk_reuseport && sk->sk_reuseport && 158 !rcu_access_pointer(sk->sk_reuseport_cb) && 159 uid_eq(uid, sk_uid(sk2))) { 160 if (!bitmap) 161 return 0; 162 } else { 163 if (!bitmap) 164 return 1; 165 __set_bit(udp_sk(sk2)->udp_port_hash >> log, 166 bitmap); 167 } 168 } 169 } 170 return 0; 171 } 172 173 /* 174 * Note: we still hold spinlock of primary hash chain, so no other writer 175 * can insert/delete a socket with local_port == num 176 */ 177 static int udp_lib_lport_inuse2(struct net *net, __u16 num, 178 struct udp_hslot *hslot2, 179 struct sock *sk) 180 { 181 kuid_t uid = sk_uid(sk); 182 struct sock *sk2; 183 int res = 0; 184 185 spin_lock(&hslot2->lock); 186 udp_portaddr_for_each_entry(sk2, &hslot2->head) { 187 if (net_eq(sock_net(sk2), net) && 188 sk2 != sk && 189 (udp_sk(sk2)->udp_port_hash == num) && 190 (!sk2->sk_reuse || !sk->sk_reuse) && 191 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 192 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 193 inet_rcv_saddr_equal(sk, sk2, true)) { 194 if (sk2->sk_reuseport && sk->sk_reuseport && 195 !rcu_access_pointer(sk->sk_reuseport_cb) && 196 uid_eq(uid, sk_uid(sk2))) { 197 res = 0; 198 } else { 199 res = 1; 200 } 201 break; 202 } 203 } 204 spin_unlock(&hslot2->lock); 205 return res; 206 } 207 208 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot) 209 { 210 struct net *net = sock_net(sk); 211 kuid_t uid = sk_uid(sk); 212 struct sock *sk2; 213 214 sk_for_each(sk2, &hslot->head) { 215 if (net_eq(sock_net(sk2), net) && 216 sk2 != sk && 217 sk2->sk_family == sk->sk_family && 218 ipv6_only_sock(sk2) == ipv6_only_sock(sk) && 219 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) && 220 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 221 sk2->sk_reuseport && uid_eq(uid, sk_uid(sk2)) && 222 inet_rcv_saddr_equal(sk, sk2, false)) { 223 return reuseport_add_sock(sk, sk2, 224 inet_rcv_saddr_any(sk)); 225 } 226 } 227 228 return reuseport_alloc(sk, inet_rcv_saddr_any(sk)); 229 } 230 231 /** 232 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6 233 * 234 * @sk: socket struct in question 235 * @snum: port number to look up 236 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains, 237 * with NULL address 238 */ 239 int udp_lib_get_port(struct sock *sk, unsigned short snum, 240 unsigned int hash2_nulladdr) 241 { 242 struct udp_table *udptable = udp_get_table_prot(sk); 243 struct udp_hslot *hslot, *hslot2; 244 struct net *net = sock_net(sk); 245 int error = -EADDRINUSE; 246 247 if (!snum) { 248 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN); 249 unsigned short first, last; 250 int low, high, remaining; 251 unsigned int rand; 252 253 inet_sk_get_local_port_range(sk, &low, &high); 254 remaining = (high - low) + 1; 255 256 rand = get_random_u32(); 257 first = reciprocal_scale(rand, remaining) + low; 258 /* 259 * force rand to be an odd multiple of UDP_HTABLE_SIZE 260 */ 261 rand = (rand | 1) * (udptable->mask + 1); 262 last = first + udptable->mask + 1; 263 do { 264 hslot = udp_hashslot(udptable, net, first); 265 bitmap_zero(bitmap, PORTS_PER_CHAIN); 266 spin_lock_bh(&hslot->lock); 267 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk, 268 udptable->log); 269 270 snum = first; 271 /* 272 * Iterate on all possible values of snum for this hash. 273 * Using steps of an odd multiple of UDP_HTABLE_SIZE 274 * give us randomization and full range coverage. 275 */ 276 do { 277 if (low <= snum && snum <= high && 278 !test_bit(snum >> udptable->log, bitmap) && 279 !inet_is_local_reserved_port(net, snum)) 280 goto found; 281 snum += rand; 282 } while (snum != first); 283 spin_unlock_bh(&hslot->lock); 284 cond_resched(); 285 } while (++first != last); 286 goto fail; 287 } else { 288 hslot = udp_hashslot(udptable, net, snum); 289 spin_lock_bh(&hslot->lock); 290 if (hslot->count > 10) { 291 int exist; 292 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum; 293 294 slot2 &= udptable->mask; 295 hash2_nulladdr &= udptable->mask; 296 297 hslot2 = udp_hashslot2(udptable, slot2); 298 if (hslot->count < hslot2->count) 299 goto scan_primary_hash; 300 301 exist = udp_lib_lport_inuse2(net, snum, hslot2, sk); 302 if (!exist && (hash2_nulladdr != slot2)) { 303 hslot2 = udp_hashslot2(udptable, hash2_nulladdr); 304 exist = udp_lib_lport_inuse2(net, snum, hslot2, 305 sk); 306 } 307 if (exist) 308 goto fail_unlock; 309 else 310 goto found; 311 } 312 scan_primary_hash: 313 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0)) 314 goto fail_unlock; 315 } 316 found: 317 inet_sk(sk)->inet_num = snum; 318 udp_sk(sk)->udp_port_hash = snum; 319 udp_sk(sk)->udp_portaddr_hash ^= snum; 320 if (sk_unhashed(sk)) { 321 if (sk->sk_reuseport && 322 udp_reuseport_add_sock(sk, hslot)) { 323 inet_sk(sk)->inet_num = 0; 324 udp_sk(sk)->udp_port_hash = 0; 325 udp_sk(sk)->udp_portaddr_hash ^= snum; 326 goto fail_unlock; 327 } 328 329 sock_set_flag(sk, SOCK_RCU_FREE); 330 331 sk_add_node_rcu(sk, &hslot->head); 332 hslot->count++; 333 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 334 335 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 336 spin_lock(&hslot2->lock); 337 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 338 sk->sk_family == AF_INET6) 339 hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node, 340 &hslot2->head); 341 else 342 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 343 &hslot2->head); 344 hslot2->count++; 345 spin_unlock(&hslot2->lock); 346 } 347 348 error = 0; 349 fail_unlock: 350 spin_unlock_bh(&hslot->lock); 351 fail: 352 return error; 353 } 354 EXPORT_IPV6_MOD(udp_lib_get_port); 355 356 int udp_v4_get_port(struct sock *sk, unsigned short snum) 357 { 358 unsigned int hash2_nulladdr = 359 ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum); 360 unsigned int hash2_partial = 361 ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0); 362 363 /* precompute partial secondary hash */ 364 udp_sk(sk)->udp_portaddr_hash = hash2_partial; 365 return udp_lib_get_port(sk, snum, hash2_nulladdr); 366 } 367 368 static int compute_score(struct sock *sk, const struct net *net, 369 __be32 saddr, __be16 sport, 370 __be32 daddr, unsigned short hnum, 371 int dif, int sdif) 372 { 373 int score; 374 struct inet_sock *inet; 375 bool dev_match; 376 377 if (!net_eq(sock_net(sk), net) || 378 udp_sk(sk)->udp_port_hash != hnum || 379 ipv6_only_sock(sk)) 380 return -1; 381 382 if (sk->sk_rcv_saddr != daddr) 383 return -1; 384 385 score = (sk->sk_family == PF_INET) ? 2 : 1; 386 387 inet = inet_sk(sk); 388 if (inet->inet_daddr) { 389 if (inet->inet_daddr != saddr) 390 return -1; 391 score += 4; 392 } 393 394 if (inet->inet_dport) { 395 if (inet->inet_dport != sport) 396 return -1; 397 score += 4; 398 } 399 400 dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, 401 dif, sdif); 402 if (!dev_match) 403 return -1; 404 if (sk->sk_bound_dev_if) 405 score += 4; 406 407 if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id()) 408 score++; 409 return score; 410 } 411 412 u32 udp_ehashfn(const struct net *net, const __be32 laddr, const __u16 lport, 413 const __be32 faddr, const __be16 fport) 414 { 415 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret)); 416 417 return __inet_ehashfn(laddr, lport, faddr, fport, 418 udp_ehash_secret + net_hash_mix(net)); 419 } 420 EXPORT_IPV6_MOD(udp_ehashfn); 421 422 /** 423 * udp4_lib_lookup1() - Simplified lookup using primary hash (destination port) 424 * @net: Network namespace 425 * @saddr: Source address, network order 426 * @sport: Source port, network order 427 * @daddr: Destination address, network order 428 * @hnum: Destination port, host order 429 * @dif: Destination interface index 430 * @sdif: Destination bridge port index, if relevant 431 * @udptable: Set of UDP hash tables 432 * 433 * Simplified lookup to be used as fallback if no sockets are found due to a 434 * potential race between (receive) address change, and lookup happening before 435 * the rehash operation. This function ignores SO_REUSEPORT groups while scoring 436 * result sockets, because if we have one, we don't need the fallback at all. 437 * 438 * Called under rcu_read_lock(). 439 * 440 * Return: socket with highest matching score if any, NULL if none 441 */ 442 static struct sock *udp4_lib_lookup1(const struct net *net, 443 __be32 saddr, __be16 sport, 444 __be32 daddr, unsigned int hnum, 445 int dif, int sdif, 446 const struct udp_table *udptable) 447 { 448 unsigned int slot = udp_hashfn(net, hnum, udptable->mask); 449 struct udp_hslot *hslot = &udptable->hash[slot]; 450 struct sock *sk, *result = NULL; 451 int score, badness = 0; 452 453 sk_for_each_rcu(sk, &hslot->head) { 454 score = compute_score(sk, net, 455 saddr, sport, daddr, hnum, dif, sdif); 456 if (score > badness) { 457 result = sk; 458 badness = score; 459 } 460 } 461 462 return result; 463 } 464 465 /* called with rcu_read_lock() */ 466 static struct sock *udp4_lib_lookup2(const struct net *net, 467 __be32 saddr, __be16 sport, 468 __be32 daddr, unsigned int hnum, 469 int dif, int sdif, 470 struct udp_hslot *hslot2, 471 struct sk_buff *skb) 472 { 473 struct sock *sk, *result; 474 int score, badness; 475 bool need_rescore; 476 477 result = NULL; 478 badness = 0; 479 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 480 need_rescore = false; 481 rescore: 482 score = compute_score(need_rescore ? result : sk, net, saddr, 483 sport, daddr, hnum, dif, sdif); 484 if (score > badness) { 485 badness = score; 486 487 if (need_rescore) 488 continue; 489 490 if (sk->sk_state == TCP_ESTABLISHED) { 491 result = sk; 492 continue; 493 } 494 495 result = inet_lookup_reuseport(net, sk, skb, sizeof(struct udphdr), 496 saddr, sport, daddr, hnum, udp_ehashfn); 497 if (!result) { 498 result = sk; 499 continue; 500 } 501 502 /* Fall back to scoring if group has connections */ 503 if (!reuseport_has_conns(sk)) 504 return result; 505 506 /* Reuseport logic returned an error, keep original score. */ 507 if (IS_ERR(result)) 508 continue; 509 510 /* compute_score is too long of a function to be 511 * inlined, and calling it again here yields 512 * measurable overhead for some 513 * workloads. Work around it by jumping 514 * backwards to rescore 'result'. 515 */ 516 need_rescore = true; 517 goto rescore; 518 } 519 } 520 return result; 521 } 522 523 #if IS_ENABLED(CONFIG_BASE_SMALL) 524 static struct sock *udp4_lib_lookup4(const struct net *net, 525 __be32 saddr, __be16 sport, 526 __be32 daddr, unsigned int hnum, 527 int dif, int sdif, 528 struct udp_table *udptable) 529 { 530 return NULL; 531 } 532 533 static void udp_rehash4(struct udp_table *udptable, struct sock *sk, 534 u16 newhash4) 535 { 536 } 537 538 static void udp_unhash4(struct udp_table *udptable, struct sock *sk) 539 { 540 } 541 #else /* !CONFIG_BASE_SMALL */ 542 static struct sock *udp4_lib_lookup4(const struct net *net, 543 __be32 saddr, __be16 sport, 544 __be32 daddr, unsigned int hnum, 545 int dif, int sdif, 546 struct udp_table *udptable) 547 { 548 const __portpair ports = INET_COMBINED_PORTS(sport, hnum); 549 const struct hlist_nulls_node *node; 550 struct udp_hslot *hslot4; 551 unsigned int hash4, slot; 552 struct udp_sock *up; 553 struct sock *sk; 554 555 hash4 = udp_ehashfn(net, daddr, hnum, saddr, sport); 556 slot = hash4 & udptable->mask; 557 hslot4 = &udptable->hash4[slot]; 558 INET_ADDR_COOKIE(acookie, saddr, daddr); 559 560 begin: 561 /* SLAB_TYPESAFE_BY_RCU not used, so we don't need to touch sk_refcnt */ 562 udp_lrpa_for_each_entry_rcu(up, node, &hslot4->nulls_head) { 563 sk = (struct sock *)up; 564 if (inet_match(net, sk, acookie, ports, dif, sdif)) 565 return sk; 566 } 567 568 /* if the nulls value we got at the end of this lookup is not the 569 * expected one, we must restart lookup. We probably met an item that 570 * was moved to another chain due to rehash. 571 */ 572 if (get_nulls_value(node) != slot) 573 goto begin; 574 575 return NULL; 576 } 577 578 /* udp_rehash4() only checks hslot4, and hash4_cnt is not processed. */ 579 static void udp_rehash4(struct udp_table *udptable, struct sock *sk, 580 u16 newhash4) 581 { 582 struct udp_hslot *hslot4, *nhslot4; 583 584 hslot4 = udp_hashslot4(udptable, udp_sk(sk)->udp_lrpa_hash); 585 nhslot4 = udp_hashslot4(udptable, newhash4); 586 udp_sk(sk)->udp_lrpa_hash = newhash4; 587 588 if (hslot4 != nhslot4) { 589 spin_lock_bh(&hslot4->lock); 590 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_lrpa_node); 591 hslot4->count--; 592 spin_unlock_bh(&hslot4->lock); 593 594 spin_lock_bh(&nhslot4->lock); 595 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_lrpa_node, 596 &nhslot4->nulls_head); 597 nhslot4->count++; 598 spin_unlock_bh(&nhslot4->lock); 599 } 600 } 601 602 static void udp_unhash4(struct udp_table *udptable, struct sock *sk) 603 { 604 struct udp_hslot *hslot2, *hslot4; 605 606 if (udp_hashed4(sk)) { 607 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 608 hslot4 = udp_hashslot4(udptable, udp_sk(sk)->udp_lrpa_hash); 609 610 spin_lock(&hslot4->lock); 611 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_lrpa_node); 612 hslot4->count--; 613 spin_unlock(&hslot4->lock); 614 615 spin_lock(&hslot2->lock); 616 udp_hash4_dec(hslot2); 617 spin_unlock(&hslot2->lock); 618 } 619 } 620 621 void udp_lib_hash4(struct sock *sk, u16 hash) 622 { 623 struct udp_hslot *hslot, *hslot2, *hslot4; 624 struct net *net = sock_net(sk); 625 struct udp_table *udptable; 626 627 /* Connected udp socket can re-connect to another remote address, which 628 * will be handled by rehash. Thus no need to redo hash4 here. 629 */ 630 if (udp_hashed4(sk)) 631 return; 632 633 udptable = net->ipv4.udp_table; 634 hslot = udp_hashslot(udptable, net, udp_sk(sk)->udp_port_hash); 635 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 636 hslot4 = udp_hashslot4(udptable, hash); 637 udp_sk(sk)->udp_lrpa_hash = hash; 638 639 spin_lock_bh(&hslot->lock); 640 if (rcu_access_pointer(sk->sk_reuseport_cb)) 641 reuseport_detach_sock(sk); 642 643 spin_lock(&hslot4->lock); 644 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_lrpa_node, 645 &hslot4->nulls_head); 646 hslot4->count++; 647 spin_unlock(&hslot4->lock); 648 649 spin_lock(&hslot2->lock); 650 udp_hash4_inc(hslot2); 651 spin_unlock(&hslot2->lock); 652 653 spin_unlock_bh(&hslot->lock); 654 } 655 EXPORT_IPV6_MOD(udp_lib_hash4); 656 657 /* call with sock lock */ 658 void udp4_hash4(struct sock *sk) 659 { 660 struct net *net = sock_net(sk); 661 unsigned int hash; 662 663 if (sk_unhashed(sk) || sk->sk_rcv_saddr == htonl(INADDR_ANY)) 664 return; 665 666 hash = udp_ehashfn(net, sk->sk_rcv_saddr, sk->sk_num, 667 sk->sk_daddr, sk->sk_dport); 668 669 udp_lib_hash4(sk, hash); 670 } 671 EXPORT_IPV6_MOD(udp4_hash4); 672 #endif /* CONFIG_BASE_SMALL */ 673 674 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try 675 * harder than this. -DaveM 676 */ 677 struct sock *__udp4_lib_lookup(const struct net *net, __be32 saddr, 678 __be16 sport, __be32 daddr, __be16 dport, int dif, 679 int sdif, struct udp_table *udptable, struct sk_buff *skb) 680 { 681 unsigned short hnum = ntohs(dport); 682 struct udp_hslot *hslot2; 683 struct sock *result, *sk; 684 unsigned int hash2; 685 686 hash2 = ipv4_portaddr_hash(net, daddr, hnum); 687 hslot2 = udp_hashslot2(udptable, hash2); 688 689 if (udp_has_hash4(hslot2)) { 690 result = udp4_lib_lookup4(net, saddr, sport, daddr, hnum, 691 dif, sdif, udptable); 692 if (result) /* udp4_lib_lookup4 return sk or NULL */ 693 return result; 694 } 695 696 /* Lookup connected or non-wildcard socket */ 697 result = udp4_lib_lookup2(net, saddr, sport, 698 daddr, hnum, dif, sdif, 699 hslot2, skb); 700 if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED) 701 goto done; 702 703 /* Lookup redirect from BPF */ 704 if (static_branch_unlikely(&bpf_sk_lookup_enabled) && 705 udptable == net->ipv4.udp_table) { 706 sk = inet_lookup_run_sk_lookup(net, IPPROTO_UDP, skb, sizeof(struct udphdr), 707 saddr, sport, daddr, hnum, dif, 708 udp_ehashfn); 709 if (sk) { 710 result = sk; 711 goto done; 712 } 713 } 714 715 /* Got non-wildcard socket or error on first lookup */ 716 if (result) 717 goto done; 718 719 /* Lookup wildcard sockets */ 720 hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum); 721 hslot2 = udp_hashslot2(udptable, hash2); 722 723 result = udp4_lib_lookup2(net, saddr, sport, 724 htonl(INADDR_ANY), hnum, dif, sdif, 725 hslot2, skb); 726 if (!IS_ERR_OR_NULL(result)) 727 goto done; 728 729 /* Primary hash (destination port) lookup as fallback for this race: 730 * 1. __ip4_datagram_connect() sets sk_rcv_saddr 731 * 2. lookup (this function): new sk_rcv_saddr, hashes not updated yet 732 * 3. rehash operation updating _secondary and four-tuple_ hashes 733 * The primary hash doesn't need an update after 1., so, thanks to this 734 * further step, 1. and 3. don't need to be atomic against the lookup. 735 */ 736 result = udp4_lib_lookup1(net, saddr, sport, daddr, hnum, dif, sdif, 737 udptable); 738 739 done: 740 if (IS_ERR(result)) 741 return NULL; 742 return result; 743 } 744 EXPORT_SYMBOL_GPL(__udp4_lib_lookup); 745 746 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb, 747 __be16 sport, __be16 dport, 748 struct udp_table *udptable) 749 { 750 const struct iphdr *iph = ip_hdr(skb); 751 752 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport, 753 iph->daddr, dport, inet_iif(skb), 754 inet_sdif(skb), udptable, skb); 755 } 756 757 struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb, 758 __be16 sport, __be16 dport) 759 { 760 const u16 offset = NAPI_GRO_CB(skb)->network_offsets[skb->encapsulation]; 761 const struct iphdr *iph = (struct iphdr *)(skb->data + offset); 762 struct net *net = dev_net(skb->dev); 763 int iif, sdif; 764 765 inet_get_iif_sdif(skb, &iif, &sdif); 766 767 return __udp4_lib_lookup(net, iph->saddr, sport, 768 iph->daddr, dport, iif, 769 sdif, net->ipv4.udp_table, NULL); 770 } 771 772 /* Must be called under rcu_read_lock(). 773 * Does increment socket refcount. 774 */ 775 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4) 776 struct sock *udp4_lib_lookup(const struct net *net, __be32 saddr, __be16 sport, 777 __be32 daddr, __be16 dport, int dif) 778 { 779 struct sock *sk; 780 781 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport, 782 dif, 0, net->ipv4.udp_table, NULL); 783 if (sk && !refcount_inc_not_zero(&sk->sk_refcnt)) 784 sk = NULL; 785 return sk; 786 } 787 EXPORT_SYMBOL_GPL(udp4_lib_lookup); 788 #endif 789 790 static inline bool __udp_is_mcast_sock(struct net *net, const struct sock *sk, 791 __be16 loc_port, __be32 loc_addr, 792 __be16 rmt_port, __be32 rmt_addr, 793 int dif, int sdif, unsigned short hnum) 794 { 795 const struct inet_sock *inet = inet_sk(sk); 796 797 if (!net_eq(sock_net(sk), net) || 798 udp_sk(sk)->udp_port_hash != hnum || 799 (inet->inet_daddr && inet->inet_daddr != rmt_addr) || 800 (inet->inet_dport != rmt_port && inet->inet_dport) || 801 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) || 802 ipv6_only_sock(sk) || 803 !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif)) 804 return false; 805 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif)) 806 return false; 807 return true; 808 } 809 810 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key); 811 EXPORT_IPV6_MOD(udp_encap_needed_key); 812 813 #if IS_ENABLED(CONFIG_IPV6) 814 DEFINE_STATIC_KEY_FALSE(udpv6_encap_needed_key); 815 EXPORT_IPV6_MOD(udpv6_encap_needed_key); 816 #endif 817 818 void udp_encap_enable(void) 819 { 820 static_branch_inc(&udp_encap_needed_key); 821 } 822 EXPORT_SYMBOL(udp_encap_enable); 823 824 void udp_encap_disable(void) 825 { 826 static_branch_dec(&udp_encap_needed_key); 827 } 828 EXPORT_SYMBOL(udp_encap_disable); 829 830 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go 831 * through error handlers in encapsulations looking for a match. 832 */ 833 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info) 834 { 835 int i; 836 837 for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) { 838 int (*handler)(struct sk_buff *skb, u32 info); 839 const struct ip_tunnel_encap_ops *encap; 840 841 encap = rcu_dereference(iptun_encaps[i]); 842 if (!encap) 843 continue; 844 handler = encap->err_handler; 845 if (handler && !handler(skb, info)) 846 return 0; 847 } 848 849 return -ENOENT; 850 } 851 852 /* Try to match ICMP errors to UDP tunnels by looking up a socket without 853 * reversing source and destination port: this will match tunnels that force the 854 * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that 855 * lwtunnels might actually break this assumption by being configured with 856 * different destination ports on endpoints, in this case we won't be able to 857 * trace ICMP messages back to them. 858 * 859 * If this doesn't match any socket, probe tunnels with arbitrary destination 860 * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port 861 * we've sent packets to won't necessarily match the local destination port. 862 * 863 * Then ask the tunnel implementation to match the error against a valid 864 * association. 865 * 866 * Return an error if we can't find a match, the socket if we need further 867 * processing, zero otherwise. 868 */ 869 static struct sock *__udp4_lib_err_encap(struct net *net, 870 const struct iphdr *iph, 871 struct udphdr *uh, 872 struct udp_table *udptable, 873 struct sock *sk, 874 struct sk_buff *skb, u32 info) 875 { 876 int (*lookup)(struct sock *sk, struct sk_buff *skb); 877 int network_offset, transport_offset; 878 struct udp_sock *up; 879 880 network_offset = skb_network_offset(skb); 881 transport_offset = skb_transport_offset(skb); 882 883 /* Network header needs to point to the outer IPv4 header inside ICMP */ 884 skb_reset_network_header(skb); 885 886 /* Transport header needs to point to the UDP header */ 887 skb_set_transport_header(skb, iph->ihl << 2); 888 889 if (sk) { 890 up = udp_sk(sk); 891 892 lookup = READ_ONCE(up->encap_err_lookup); 893 if (lookup && lookup(sk, skb)) 894 sk = NULL; 895 896 goto out; 897 } 898 899 sk = __udp4_lib_lookup(net, iph->daddr, uh->source, 900 iph->saddr, uh->dest, skb->dev->ifindex, 0, 901 udptable, NULL); 902 if (sk) { 903 up = udp_sk(sk); 904 905 lookup = READ_ONCE(up->encap_err_lookup); 906 if (!lookup || lookup(sk, skb)) 907 sk = NULL; 908 } 909 910 out: 911 if (!sk) 912 sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info)); 913 914 skb_set_transport_header(skb, transport_offset); 915 skb_set_network_header(skb, network_offset); 916 917 return sk; 918 } 919 920 /* 921 * This routine is called by the ICMP module when it gets some 922 * sort of error condition. If err < 0 then the socket should 923 * be closed and the error returned to the user. If err > 0 924 * it's just the icmp type << 8 | icmp code. 925 * Header points to the ip header of the error packet. We move 926 * on past this. Then (as it used to claim before adjustment) 927 * header points to the first 8 bytes of the udp header. We need 928 * to find the appropriate port. 929 */ 930 931 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable) 932 { 933 struct inet_sock *inet; 934 const struct iphdr *iph = (const struct iphdr *)skb->data; 935 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2)); 936 const int type = icmp_hdr(skb)->type; 937 const int code = icmp_hdr(skb)->code; 938 bool tunnel = false; 939 struct sock *sk; 940 int harderr; 941 int err; 942 struct net *net = dev_net(skb->dev); 943 944 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest, 945 iph->saddr, uh->source, skb->dev->ifindex, 946 inet_sdif(skb), udptable, NULL); 947 948 if (!sk || READ_ONCE(udp_sk(sk)->encap_type)) { 949 /* No socket for error: try tunnels before discarding */ 950 if (static_branch_unlikely(&udp_encap_needed_key)) { 951 sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb, 952 info); 953 if (!sk) 954 return 0; 955 } else 956 sk = ERR_PTR(-ENOENT); 957 958 if (IS_ERR(sk)) { 959 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); 960 return PTR_ERR(sk); 961 } 962 963 tunnel = true; 964 } 965 966 err = 0; 967 harderr = 0; 968 inet = inet_sk(sk); 969 970 switch (type) { 971 default: 972 case ICMP_TIME_EXCEEDED: 973 err = EHOSTUNREACH; 974 break; 975 case ICMP_SOURCE_QUENCH: 976 goto out; 977 case ICMP_PARAMETERPROB: 978 err = EPROTO; 979 harderr = 1; 980 break; 981 case ICMP_DEST_UNREACH: 982 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */ 983 ipv4_sk_update_pmtu(skb, sk, info); 984 if (READ_ONCE(inet->pmtudisc) != IP_PMTUDISC_DONT) { 985 err = EMSGSIZE; 986 harderr = 1; 987 break; 988 } 989 goto out; 990 } 991 err = EHOSTUNREACH; 992 if (code <= NR_ICMP_UNREACH) { 993 harderr = icmp_err_convert[code].fatal; 994 err = icmp_err_convert[code].errno; 995 } 996 break; 997 case ICMP_REDIRECT: 998 ipv4_sk_redirect(skb, sk); 999 goto out; 1000 } 1001 1002 /* 1003 * RFC1122: OK. Passes ICMP errors back to application, as per 1004 * 4.1.3.3. 1005 */ 1006 if (tunnel) { 1007 /* ...not for tunnels though: we don't have a sending socket */ 1008 if (udp_sk(sk)->encap_err_rcv) 1009 udp_sk(sk)->encap_err_rcv(sk, skb, err, uh->dest, info, 1010 (u8 *)(uh+1)); 1011 goto out; 1012 } 1013 if (!inet_test_bit(RECVERR, sk)) { 1014 if (!harderr || sk->sk_state != TCP_ESTABLISHED) 1015 goto out; 1016 } else 1017 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1)); 1018 1019 sk->sk_err = err; 1020 sk_error_report(sk); 1021 out: 1022 return 0; 1023 } 1024 1025 int udp_err(struct sk_buff *skb, u32 info) 1026 { 1027 return __udp4_lib_err(skb, info, dev_net(skb->dev)->ipv4.udp_table); 1028 } 1029 1030 /* 1031 * Throw away all pending data and cancel the corking. Socket is locked. 1032 */ 1033 void udp_flush_pending_frames(struct sock *sk) 1034 { 1035 struct udp_sock *up = udp_sk(sk); 1036 1037 if (up->pending) { 1038 up->len = 0; 1039 WRITE_ONCE(up->pending, 0); 1040 ip_flush_pending_frames(sk); 1041 } 1042 } 1043 EXPORT_IPV6_MOD(udp_flush_pending_frames); 1044 1045 /** 1046 * udp4_hwcsum - handle outgoing HW checksumming 1047 * @skb: sk_buff containing the filled-in UDP header 1048 * (checksum field must be zeroed out) 1049 * @src: source IP address 1050 * @dst: destination IP address 1051 */ 1052 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst) 1053 { 1054 struct udphdr *uh = udp_hdr(skb); 1055 int offset = skb_transport_offset(skb); 1056 int len = skb->len - offset; 1057 int hlen = len; 1058 __wsum csum = 0; 1059 1060 if (!skb_has_frag_list(skb)) { 1061 /* 1062 * Only one fragment on the socket. 1063 */ 1064 skb->csum_start = skb_transport_header(skb) - skb->head; 1065 skb->csum_offset = offsetof(struct udphdr, check); 1066 uh->check = ~csum_tcpudp_magic(src, dst, len, 1067 IPPROTO_UDP, 0); 1068 } else { 1069 struct sk_buff *frags; 1070 1071 /* 1072 * HW-checksum won't work as there are two or more 1073 * fragments on the socket so that all csums of sk_buffs 1074 * should be together 1075 */ 1076 skb_walk_frags(skb, frags) { 1077 csum = csum_add(csum, frags->csum); 1078 hlen -= frags->len; 1079 } 1080 1081 csum = skb_checksum(skb, offset, hlen, csum); 1082 skb->ip_summed = CHECKSUM_NONE; 1083 1084 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum); 1085 if (uh->check == 0) 1086 uh->check = CSUM_MANGLED_0; 1087 } 1088 } 1089 EXPORT_SYMBOL_GPL(udp4_hwcsum); 1090 1091 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended 1092 * for the simple case like when setting the checksum for a UDP tunnel. 1093 */ 1094 void udp_set_csum(bool nocheck, struct sk_buff *skb, 1095 __be32 saddr, __be32 daddr, int len) 1096 { 1097 struct udphdr *uh = udp_hdr(skb); 1098 1099 if (nocheck) { 1100 uh->check = 0; 1101 } else if (skb_is_gso(skb)) { 1102 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 1103 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 1104 uh->check = 0; 1105 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb)); 1106 if (uh->check == 0) 1107 uh->check = CSUM_MANGLED_0; 1108 } else { 1109 skb->ip_summed = CHECKSUM_PARTIAL; 1110 skb->csum_start = skb_transport_header(skb) - skb->head; 1111 skb->csum_offset = offsetof(struct udphdr, check); 1112 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 1113 } 1114 } 1115 EXPORT_SYMBOL(udp_set_csum); 1116 1117 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4, 1118 struct inet_cork *cork) 1119 { 1120 struct sock *sk = skb->sk; 1121 struct inet_sock *inet = inet_sk(sk); 1122 struct udphdr *uh; 1123 int err; 1124 int is_udplite = IS_UDPLITE(sk); 1125 int offset = skb_transport_offset(skb); 1126 int len = skb->len - offset; 1127 int datalen = len - sizeof(*uh); 1128 __wsum csum = 0; 1129 1130 /* 1131 * Create a UDP header 1132 */ 1133 uh = udp_hdr(skb); 1134 uh->source = inet->inet_sport; 1135 uh->dest = fl4->fl4_dport; 1136 uh->len = htons(len); 1137 uh->check = 0; 1138 1139 if (cork->gso_size) { 1140 const int hlen = skb_network_header_len(skb) + 1141 sizeof(struct udphdr); 1142 1143 if (hlen + min(datalen, cork->gso_size) > cork->fragsize) { 1144 kfree_skb(skb); 1145 return -EMSGSIZE; 1146 } 1147 if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) { 1148 kfree_skb(skb); 1149 return -EINVAL; 1150 } 1151 if (sk->sk_no_check_tx) { 1152 kfree_skb(skb); 1153 return -EINVAL; 1154 } 1155 if (is_udplite || dst_xfrm(skb_dst(skb))) { 1156 kfree_skb(skb); 1157 return -EIO; 1158 } 1159 1160 if (datalen > cork->gso_size) { 1161 skb_shinfo(skb)->gso_size = cork->gso_size; 1162 skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4; 1163 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen, 1164 cork->gso_size); 1165 1166 /* Don't checksum the payload, skb will get segmented */ 1167 goto csum_partial; 1168 } 1169 } 1170 1171 if (is_udplite) /* UDP-Lite */ 1172 csum = udplite_csum(skb); 1173 1174 else if (sk->sk_no_check_tx) { /* UDP csum off */ 1175 1176 skb->ip_summed = CHECKSUM_NONE; 1177 goto send; 1178 1179 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */ 1180 csum_partial: 1181 1182 udp4_hwcsum(skb, fl4->saddr, fl4->daddr); 1183 goto send; 1184 1185 } else 1186 csum = udp_csum(skb); 1187 1188 /* add protocol-dependent pseudo-header */ 1189 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len, 1190 sk->sk_protocol, csum); 1191 if (uh->check == 0) 1192 uh->check = CSUM_MANGLED_0; 1193 1194 send: 1195 err = ip_send_skb(sock_net(sk), skb); 1196 if (unlikely(err)) { 1197 if (err == -ENOBUFS && 1198 !inet_test_bit(RECVERR, sk)) { 1199 UDP_INC_STATS(sock_net(sk), 1200 UDP_MIB_SNDBUFERRORS, is_udplite); 1201 err = 0; 1202 } 1203 } else 1204 UDP_INC_STATS(sock_net(sk), 1205 UDP_MIB_OUTDATAGRAMS, is_udplite); 1206 return err; 1207 } 1208 1209 /* 1210 * Push out all pending data as one UDP datagram. Socket is locked. 1211 */ 1212 int udp_push_pending_frames(struct sock *sk) 1213 { 1214 struct udp_sock *up = udp_sk(sk); 1215 struct inet_sock *inet = inet_sk(sk); 1216 struct flowi4 *fl4 = &inet->cork.fl.u.ip4; 1217 struct sk_buff *skb; 1218 int err = 0; 1219 1220 skb = ip_finish_skb(sk, fl4); 1221 if (!skb) 1222 goto out; 1223 1224 err = udp_send_skb(skb, fl4, &inet->cork.base); 1225 1226 out: 1227 up->len = 0; 1228 WRITE_ONCE(up->pending, 0); 1229 return err; 1230 } 1231 EXPORT_IPV6_MOD(udp_push_pending_frames); 1232 1233 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size) 1234 { 1235 switch (cmsg->cmsg_type) { 1236 case UDP_SEGMENT: 1237 if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16))) 1238 return -EINVAL; 1239 *gso_size = *(__u16 *)CMSG_DATA(cmsg); 1240 return 0; 1241 default: 1242 return -EINVAL; 1243 } 1244 } 1245 1246 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size) 1247 { 1248 struct cmsghdr *cmsg; 1249 bool need_ip = false; 1250 int err; 1251 1252 for_each_cmsghdr(cmsg, msg) { 1253 if (!CMSG_OK(msg, cmsg)) 1254 return -EINVAL; 1255 1256 if (cmsg->cmsg_level != SOL_UDP) { 1257 need_ip = true; 1258 continue; 1259 } 1260 1261 err = __udp_cmsg_send(cmsg, gso_size); 1262 if (err) 1263 return err; 1264 } 1265 1266 return need_ip; 1267 } 1268 EXPORT_IPV6_MOD_GPL(udp_cmsg_send); 1269 1270 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1271 { 1272 DEFINE_RAW_FLEX(struct ip_options_rcu, opt_copy, opt.__data, 1273 IP_OPTIONS_DATA_FIXED_SIZE); 1274 struct inet_sock *inet = inet_sk(sk); 1275 struct udp_sock *up = udp_sk(sk); 1276 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name); 1277 struct flowi4 fl4_stack; 1278 struct flowi4 *fl4; 1279 int ulen = len; 1280 struct ipcm_cookie ipc; 1281 struct rtable *rt = NULL; 1282 int free = 0; 1283 int connected = 0; 1284 __be32 daddr, faddr, saddr; 1285 u8 scope; 1286 __be16 dport; 1287 int err, is_udplite = IS_UDPLITE(sk); 1288 int corkreq = udp_test_bit(CORK, sk) || msg->msg_flags & MSG_MORE; 1289 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *); 1290 struct sk_buff *skb; 1291 int uc_index; 1292 1293 if (len > 0xFFFF) 1294 return -EMSGSIZE; 1295 1296 /* 1297 * Check the flags. 1298 */ 1299 1300 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */ 1301 return -EOPNOTSUPP; 1302 1303 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag; 1304 1305 fl4 = &inet->cork.fl.u.ip4; 1306 if (READ_ONCE(up->pending)) { 1307 /* 1308 * There are pending frames. 1309 * The socket lock must be held while it's corked. 1310 */ 1311 lock_sock(sk); 1312 if (likely(up->pending)) { 1313 if (unlikely(up->pending != AF_INET)) { 1314 release_sock(sk); 1315 return -EINVAL; 1316 } 1317 goto do_append_data; 1318 } 1319 release_sock(sk); 1320 } 1321 ulen += sizeof(struct udphdr); 1322 1323 /* 1324 * Get and verify the address. 1325 */ 1326 if (usin) { 1327 if (msg->msg_namelen < sizeof(*usin)) 1328 return -EINVAL; 1329 if (usin->sin_family != AF_INET) { 1330 if (usin->sin_family != AF_UNSPEC) 1331 return -EAFNOSUPPORT; 1332 } 1333 1334 daddr = usin->sin_addr.s_addr; 1335 dport = usin->sin_port; 1336 if (dport == 0) 1337 return -EINVAL; 1338 } else { 1339 if (sk->sk_state != TCP_ESTABLISHED) 1340 return -EDESTADDRREQ; 1341 daddr = inet->inet_daddr; 1342 dport = inet->inet_dport; 1343 /* Open fast path for connected socket. 1344 Route will not be used, if at least one option is set. 1345 */ 1346 connected = 1; 1347 } 1348 1349 ipcm_init_sk(&ipc, inet); 1350 ipc.gso_size = READ_ONCE(up->gso_size); 1351 1352 if (msg->msg_controllen) { 1353 err = udp_cmsg_send(sk, msg, &ipc.gso_size); 1354 if (err > 0) { 1355 err = ip_cmsg_send(sk, msg, &ipc, 1356 sk->sk_family == AF_INET6); 1357 connected = 0; 1358 } 1359 if (unlikely(err < 0)) { 1360 kfree(ipc.opt); 1361 return err; 1362 } 1363 if (ipc.opt) 1364 free = 1; 1365 } 1366 if (!ipc.opt) { 1367 struct ip_options_rcu *inet_opt; 1368 1369 rcu_read_lock(); 1370 inet_opt = rcu_dereference(inet->inet_opt); 1371 if (inet_opt) { 1372 memcpy(opt_copy, inet_opt, 1373 sizeof(*inet_opt) + inet_opt->opt.optlen); 1374 ipc.opt = opt_copy; 1375 } 1376 rcu_read_unlock(); 1377 } 1378 1379 if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) { 1380 err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk, 1381 (struct sockaddr *)usin, 1382 &msg->msg_namelen, 1383 &ipc.addr); 1384 if (err) 1385 goto out_free; 1386 if (usin) { 1387 if (usin->sin_port == 0) { 1388 /* BPF program set invalid port. Reject it. */ 1389 err = -EINVAL; 1390 goto out_free; 1391 } 1392 daddr = usin->sin_addr.s_addr; 1393 dport = usin->sin_port; 1394 } 1395 } 1396 1397 saddr = ipc.addr; 1398 ipc.addr = faddr = daddr; 1399 1400 if (ipc.opt && ipc.opt->opt.srr) { 1401 if (!daddr) { 1402 err = -EINVAL; 1403 goto out_free; 1404 } 1405 faddr = ipc.opt->opt.faddr; 1406 connected = 0; 1407 } 1408 scope = ip_sendmsg_scope(inet, &ipc, msg); 1409 if (scope == RT_SCOPE_LINK) 1410 connected = 0; 1411 1412 uc_index = READ_ONCE(inet->uc_index); 1413 if (ipv4_is_multicast(daddr)) { 1414 if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif)) 1415 ipc.oif = READ_ONCE(inet->mc_index); 1416 if (!saddr) 1417 saddr = READ_ONCE(inet->mc_addr); 1418 connected = 0; 1419 } else if (!ipc.oif) { 1420 ipc.oif = uc_index; 1421 } else if (ipv4_is_lbcast(daddr) && uc_index) { 1422 /* oif is set, packet is to local broadcast and 1423 * uc_index is set. oif is most likely set 1424 * by sk_bound_dev_if. If uc_index != oif check if the 1425 * oif is an L3 master and uc_index is an L3 slave. 1426 * If so, we want to allow the send using the uc_index. 1427 */ 1428 if (ipc.oif != uc_index && 1429 ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk), 1430 uc_index)) { 1431 ipc.oif = uc_index; 1432 } 1433 } 1434 1435 if (connected) 1436 rt = dst_rtable(sk_dst_check(sk, 0)); 1437 1438 if (!rt) { 1439 struct net *net = sock_net(sk); 1440 __u8 flow_flags = inet_sk_flowi_flags(sk); 1441 1442 fl4 = &fl4_stack; 1443 1444 flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, 1445 ipc.tos & INET_DSCP_MASK, scope, 1446 sk->sk_protocol, flow_flags, faddr, saddr, 1447 dport, inet->inet_sport, 1448 sk_uid(sk)); 1449 1450 security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4)); 1451 rt = ip_route_output_flow(net, fl4, sk); 1452 if (IS_ERR(rt)) { 1453 err = PTR_ERR(rt); 1454 rt = NULL; 1455 if (err == -ENETUNREACH) 1456 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 1457 goto out; 1458 } 1459 1460 err = -EACCES; 1461 if ((rt->rt_flags & RTCF_BROADCAST) && 1462 !sock_flag(sk, SOCK_BROADCAST)) 1463 goto out; 1464 if (connected) 1465 sk_dst_set(sk, dst_clone(&rt->dst)); 1466 } 1467 1468 if (msg->msg_flags&MSG_CONFIRM) 1469 goto do_confirm; 1470 back_from_confirm: 1471 1472 saddr = fl4->saddr; 1473 if (!ipc.addr) 1474 daddr = ipc.addr = fl4->daddr; 1475 1476 /* Lockless fast path for the non-corking case. */ 1477 if (!corkreq) { 1478 struct inet_cork cork; 1479 1480 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen, 1481 sizeof(struct udphdr), &ipc, &rt, 1482 &cork, msg->msg_flags); 1483 err = PTR_ERR(skb); 1484 if (!IS_ERR_OR_NULL(skb)) 1485 err = udp_send_skb(skb, fl4, &cork); 1486 goto out; 1487 } 1488 1489 lock_sock(sk); 1490 if (unlikely(up->pending)) { 1491 /* The socket is already corked while preparing it. */ 1492 /* ... which is an evident application bug. --ANK */ 1493 release_sock(sk); 1494 1495 net_dbg_ratelimited("socket already corked\n"); 1496 err = -EINVAL; 1497 goto out; 1498 } 1499 /* 1500 * Now cork the socket to pend data. 1501 */ 1502 fl4 = &inet->cork.fl.u.ip4; 1503 fl4->daddr = daddr; 1504 fl4->saddr = saddr; 1505 fl4->fl4_dport = dport; 1506 fl4->fl4_sport = inet->inet_sport; 1507 WRITE_ONCE(up->pending, AF_INET); 1508 1509 do_append_data: 1510 up->len += ulen; 1511 err = ip_append_data(sk, fl4, getfrag, msg, ulen, 1512 sizeof(struct udphdr), &ipc, &rt, 1513 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags); 1514 if (err) 1515 udp_flush_pending_frames(sk); 1516 else if (!corkreq) 1517 err = udp_push_pending_frames(sk); 1518 else if (unlikely(skb_queue_empty(&sk->sk_write_queue))) 1519 WRITE_ONCE(up->pending, 0); 1520 release_sock(sk); 1521 1522 out: 1523 ip_rt_put(rt); 1524 out_free: 1525 if (free) 1526 kfree(ipc.opt); 1527 if (!err) 1528 return len; 1529 /* 1530 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting 1531 * ENOBUFS might not be good (it's not tunable per se), but otherwise 1532 * we don't have a good statistic (IpOutDiscards but it can be too many 1533 * things). We could add another new stat but at least for now that 1534 * seems like overkill. 1535 */ 1536 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1537 UDP_INC_STATS(sock_net(sk), 1538 UDP_MIB_SNDBUFERRORS, is_udplite); 1539 } 1540 return err; 1541 1542 do_confirm: 1543 if (msg->msg_flags & MSG_PROBE) 1544 dst_confirm_neigh(&rt->dst, &fl4->daddr); 1545 if (!(msg->msg_flags&MSG_PROBE) || len) 1546 goto back_from_confirm; 1547 err = 0; 1548 goto out; 1549 } 1550 EXPORT_SYMBOL(udp_sendmsg); 1551 1552 void udp_splice_eof(struct socket *sock) 1553 { 1554 struct sock *sk = sock->sk; 1555 struct udp_sock *up = udp_sk(sk); 1556 1557 if (!READ_ONCE(up->pending) || udp_test_bit(CORK, sk)) 1558 return; 1559 1560 lock_sock(sk); 1561 if (up->pending && !udp_test_bit(CORK, sk)) 1562 udp_push_pending_frames(sk); 1563 release_sock(sk); 1564 } 1565 EXPORT_IPV6_MOD_GPL(udp_splice_eof); 1566 1567 #define UDP_SKB_IS_STATELESS 0x80000000 1568 1569 /* all head states (dst, sk, nf conntrack) except skb extensions are 1570 * cleared by udp_rcv(). 1571 * 1572 * We need to preserve secpath, if present, to eventually process 1573 * IP_CMSG_PASSSEC at recvmsg() time. 1574 * 1575 * Other extensions can be cleared. 1576 */ 1577 static bool udp_try_make_stateless(struct sk_buff *skb) 1578 { 1579 if (!skb_has_extensions(skb)) 1580 return true; 1581 1582 if (!secpath_exists(skb)) { 1583 skb_ext_reset(skb); 1584 return true; 1585 } 1586 1587 return false; 1588 } 1589 1590 static void udp_set_dev_scratch(struct sk_buff *skb) 1591 { 1592 struct udp_dev_scratch *scratch = udp_skb_scratch(skb); 1593 1594 BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long)); 1595 scratch->_tsize_state = skb->truesize; 1596 #if BITS_PER_LONG == 64 1597 scratch->len = skb->len; 1598 scratch->csum_unnecessary = !!skb_csum_unnecessary(skb); 1599 scratch->is_linear = !skb_is_nonlinear(skb); 1600 #endif 1601 if (udp_try_make_stateless(skb)) 1602 scratch->_tsize_state |= UDP_SKB_IS_STATELESS; 1603 } 1604 1605 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb) 1606 { 1607 /* We come here after udp_lib_checksum_complete() returned 0. 1608 * This means that __skb_checksum_complete() might have 1609 * set skb->csum_valid to 1. 1610 * On 64bit platforms, we can set csum_unnecessary 1611 * to true, but only if the skb is not shared. 1612 */ 1613 #if BITS_PER_LONG == 64 1614 if (!skb_shared(skb)) 1615 udp_skb_scratch(skb)->csum_unnecessary = true; 1616 #endif 1617 } 1618 1619 static int udp_skb_truesize(struct sk_buff *skb) 1620 { 1621 return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS; 1622 } 1623 1624 static bool udp_skb_has_head_state(struct sk_buff *skb) 1625 { 1626 return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS); 1627 } 1628 1629 /* fully reclaim rmem/fwd memory allocated for skb */ 1630 static void udp_rmem_release(struct sock *sk, unsigned int size, 1631 int partial, bool rx_queue_lock_held) 1632 { 1633 struct udp_sock *up = udp_sk(sk); 1634 struct sk_buff_head *sk_queue; 1635 unsigned int amt; 1636 1637 if (likely(partial)) { 1638 up->forward_deficit += size; 1639 size = up->forward_deficit; 1640 if (size < READ_ONCE(up->forward_threshold) && 1641 !skb_queue_empty(&up->reader_queue)) 1642 return; 1643 } else { 1644 size += up->forward_deficit; 1645 } 1646 up->forward_deficit = 0; 1647 1648 /* acquire the sk_receive_queue for fwd allocated memory scheduling, 1649 * if the called don't held it already 1650 */ 1651 sk_queue = &sk->sk_receive_queue; 1652 if (!rx_queue_lock_held) 1653 spin_lock(&sk_queue->lock); 1654 1655 amt = (size + sk->sk_forward_alloc - partial) & ~(PAGE_SIZE - 1); 1656 sk_forward_alloc_add(sk, size - amt); 1657 1658 if (amt) 1659 __sk_mem_reduce_allocated(sk, amt >> PAGE_SHIFT); 1660 1661 atomic_sub(size, &sk->sk_rmem_alloc); 1662 1663 /* this can save us from acquiring the rx queue lock on next receive */ 1664 skb_queue_splice_tail_init(sk_queue, &up->reader_queue); 1665 1666 if (!rx_queue_lock_held) 1667 spin_unlock(&sk_queue->lock); 1668 } 1669 1670 /* Note: called with reader_queue.lock held. 1671 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch 1672 * This avoids a cache line miss while receive_queue lock is held. 1673 * Look at __udp_enqueue_schedule_skb() to find where this copy is done. 1674 */ 1675 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb) 1676 { 1677 prefetch(&skb->data); 1678 udp_rmem_release(sk, udp_skb_truesize(skb), 1, false); 1679 } 1680 EXPORT_IPV6_MOD(udp_skb_destructor); 1681 1682 /* as above, but the caller held the rx queue lock, too */ 1683 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb) 1684 { 1685 prefetch(&skb->data); 1686 udp_rmem_release(sk, udp_skb_truesize(skb), 1, true); 1687 } 1688 1689 static int udp_rmem_schedule(struct sock *sk, int size) 1690 { 1691 int delta; 1692 1693 delta = size - sk->sk_forward_alloc; 1694 if (delta > 0 && !__sk_mem_schedule(sk, delta, SK_MEM_RECV)) 1695 return -ENOBUFS; 1696 1697 return 0; 1698 } 1699 1700 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb) 1701 { 1702 struct sk_buff_head *list = &sk->sk_receive_queue; 1703 struct udp_prod_queue *udp_prod_queue; 1704 struct sk_buff *next, *to_drop = NULL; 1705 struct llist_node *ll_list; 1706 unsigned int rmem, rcvbuf; 1707 int size, err = -ENOMEM; 1708 int total_size = 0; 1709 int q_size = 0; 1710 int dropcount; 1711 int nb = 0; 1712 1713 rmem = atomic_read(&sk->sk_rmem_alloc); 1714 rcvbuf = READ_ONCE(sk->sk_rcvbuf); 1715 size = skb->truesize; 1716 1717 udp_prod_queue = &udp_sk(sk)->udp_prod_queue[numa_node_id()]; 1718 1719 rmem += atomic_read(&udp_prod_queue->rmem_alloc); 1720 1721 /* Immediately drop when the receive queue is full. 1722 * Cast to unsigned int performs the boundary check for INT_MAX. 1723 */ 1724 if (rmem + size > rcvbuf) { 1725 if (rcvbuf > INT_MAX >> 1) 1726 goto drop; 1727 1728 /* Accept the packet if queue is empty. */ 1729 if (rmem) 1730 goto drop; 1731 } 1732 1733 /* Under mem pressure, it might be helpful to help udp_recvmsg() 1734 * having linear skbs : 1735 * - Reduce memory overhead and thus increase receive queue capacity 1736 * - Less cache line misses at copyout() time 1737 * - Less work at consume_skb() (less alien page frag freeing) 1738 */ 1739 if (rmem > (rcvbuf >> 1)) { 1740 skb_condense(skb); 1741 size = skb->truesize; 1742 } 1743 1744 udp_set_dev_scratch(skb); 1745 1746 atomic_add(size, &udp_prod_queue->rmem_alloc); 1747 1748 if (!llist_add(&skb->ll_node, &udp_prod_queue->ll_root)) 1749 return 0; 1750 1751 dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ? sk_drops_read(sk) : 0; 1752 1753 spin_lock(&list->lock); 1754 1755 ll_list = llist_del_all(&udp_prod_queue->ll_root); 1756 1757 ll_list = llist_reverse_order(ll_list); 1758 1759 llist_for_each_entry_safe(skb, next, ll_list, ll_node) { 1760 size = udp_skb_truesize(skb); 1761 total_size += size; 1762 err = udp_rmem_schedule(sk, size); 1763 if (unlikely(err)) { 1764 /* Free the skbs outside of locked section. */ 1765 skb->next = to_drop; 1766 to_drop = skb; 1767 continue; 1768 } 1769 1770 q_size += size; 1771 sk_forward_alloc_add(sk, -size); 1772 1773 /* no need to setup a destructor, we will explicitly release the 1774 * forward allocated memory on dequeue 1775 */ 1776 SOCK_SKB_CB(skb)->dropcount = dropcount; 1777 nb++; 1778 __skb_queue_tail(list, skb); 1779 } 1780 1781 atomic_add(q_size, &sk->sk_rmem_alloc); 1782 1783 spin_unlock(&list->lock); 1784 1785 if (!sock_flag(sk, SOCK_DEAD)) { 1786 /* Multiple threads might be blocked in recvmsg(), 1787 * using prepare_to_wait_exclusive(). 1788 */ 1789 while (nb) { 1790 INDIRECT_CALL_1(sk->sk_data_ready, 1791 sock_def_readable, sk); 1792 nb--; 1793 } 1794 } 1795 1796 if (unlikely(to_drop)) { 1797 for (nb = 0; to_drop != NULL; nb++) { 1798 skb = to_drop; 1799 to_drop = skb->next; 1800 skb_mark_not_on_list(skb); 1801 /* TODO: update SNMP values. */ 1802 sk_skb_reason_drop(sk, skb, SKB_DROP_REASON_PROTO_MEM); 1803 } 1804 numa_drop_add(&udp_sk(sk)->drop_counters, nb); 1805 } 1806 1807 atomic_sub(total_size, &udp_prod_queue->rmem_alloc); 1808 1809 return 0; 1810 1811 drop: 1812 udp_drops_inc(sk); 1813 return err; 1814 } 1815 EXPORT_IPV6_MOD_GPL(__udp_enqueue_schedule_skb); 1816 1817 void udp_destruct_common(struct sock *sk) 1818 { 1819 /* reclaim completely the forward allocated memory */ 1820 struct udp_sock *up = udp_sk(sk); 1821 unsigned int total = 0; 1822 struct sk_buff *skb; 1823 1824 skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue); 1825 while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) { 1826 total += skb->truesize; 1827 kfree_skb(skb); 1828 } 1829 udp_rmem_release(sk, total, 0, true); 1830 kfree(up->udp_prod_queue); 1831 } 1832 EXPORT_IPV6_MOD_GPL(udp_destruct_common); 1833 1834 static void udp_destruct_sock(struct sock *sk) 1835 { 1836 udp_destruct_common(sk); 1837 inet_sock_destruct(sk); 1838 } 1839 1840 int udp_init_sock(struct sock *sk) 1841 { 1842 int res = udp_lib_init_sock(sk); 1843 1844 sk->sk_destruct = udp_destruct_sock; 1845 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); 1846 return res; 1847 } 1848 1849 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len) 1850 { 1851 if (unlikely(READ_ONCE(udp_sk(sk)->peeking_with_offset))) 1852 sk_peek_offset_bwd(sk, len); 1853 1854 if (!skb_shared(skb)) { 1855 skb_orphan(skb); 1856 skb_attempt_defer_free(skb); 1857 return; 1858 } 1859 1860 if (!skb_unref(skb)) 1861 return; 1862 1863 /* In the more common cases we cleared the head states previously, 1864 * see __udp_queue_rcv_skb(). 1865 */ 1866 if (unlikely(udp_skb_has_head_state(skb))) 1867 skb_release_head_state(skb); 1868 __consume_stateless_skb(skb); 1869 } 1870 EXPORT_IPV6_MOD_GPL(skb_consume_udp); 1871 1872 static struct sk_buff *__first_packet_length(struct sock *sk, 1873 struct sk_buff_head *rcvq, 1874 unsigned int *total) 1875 { 1876 struct sk_buff *skb; 1877 1878 while ((skb = skb_peek(rcvq)) != NULL) { 1879 if (udp_lib_checksum_complete(skb)) { 1880 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, 1881 IS_UDPLITE(sk)); 1882 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, 1883 IS_UDPLITE(sk)); 1884 udp_drops_inc(sk); 1885 __skb_unlink(skb, rcvq); 1886 *total += skb->truesize; 1887 kfree_skb_reason(skb, SKB_DROP_REASON_UDP_CSUM); 1888 } else { 1889 udp_skb_csum_unnecessary_set(skb); 1890 break; 1891 } 1892 } 1893 return skb; 1894 } 1895 1896 /** 1897 * first_packet_length - return length of first packet in receive queue 1898 * @sk: socket 1899 * 1900 * Drops all bad checksum frames, until a valid one is found. 1901 * Returns the length of found skb, or -1 if none is found. 1902 */ 1903 static int first_packet_length(struct sock *sk) 1904 { 1905 struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue; 1906 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1907 unsigned int total = 0; 1908 struct sk_buff *skb; 1909 int res; 1910 1911 spin_lock_bh(&rcvq->lock); 1912 skb = __first_packet_length(sk, rcvq, &total); 1913 if (!skb && !skb_queue_empty_lockless(sk_queue)) { 1914 spin_lock(&sk_queue->lock); 1915 skb_queue_splice_tail_init(sk_queue, rcvq); 1916 spin_unlock(&sk_queue->lock); 1917 1918 skb = __first_packet_length(sk, rcvq, &total); 1919 } 1920 res = skb ? skb->len : -1; 1921 if (total) 1922 udp_rmem_release(sk, total, 1, false); 1923 spin_unlock_bh(&rcvq->lock); 1924 return res; 1925 } 1926 1927 /* 1928 * IOCTL requests applicable to the UDP protocol 1929 */ 1930 1931 int udp_ioctl(struct sock *sk, int cmd, int *karg) 1932 { 1933 switch (cmd) { 1934 case SIOCOUTQ: 1935 { 1936 *karg = sk_wmem_alloc_get(sk); 1937 return 0; 1938 } 1939 1940 case SIOCINQ: 1941 { 1942 *karg = max_t(int, 0, first_packet_length(sk)); 1943 return 0; 1944 } 1945 1946 default: 1947 return -ENOIOCTLCMD; 1948 } 1949 1950 return 0; 1951 } 1952 EXPORT_IPV6_MOD(udp_ioctl); 1953 1954 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags, 1955 int *off, int *err) 1956 { 1957 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1958 struct sk_buff_head *queue; 1959 struct sk_buff *last; 1960 long timeo; 1961 int error; 1962 1963 queue = &udp_sk(sk)->reader_queue; 1964 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1965 do { 1966 struct sk_buff *skb; 1967 1968 error = sock_error(sk); 1969 if (error) 1970 break; 1971 1972 error = -EAGAIN; 1973 do { 1974 spin_lock_bh(&queue->lock); 1975 skb = __skb_try_recv_from_queue(queue, flags, off, err, 1976 &last); 1977 if (skb) { 1978 if (!(flags & MSG_PEEK)) 1979 udp_skb_destructor(sk, skb); 1980 spin_unlock_bh(&queue->lock); 1981 return skb; 1982 } 1983 1984 if (skb_queue_empty_lockless(sk_queue)) { 1985 spin_unlock_bh(&queue->lock); 1986 goto busy_check; 1987 } 1988 1989 /* refill the reader queue and walk it again 1990 * keep both queues locked to avoid re-acquiring 1991 * the sk_receive_queue lock if fwd memory scheduling 1992 * is needed. 1993 */ 1994 spin_lock(&sk_queue->lock); 1995 skb_queue_splice_tail_init(sk_queue, queue); 1996 1997 skb = __skb_try_recv_from_queue(queue, flags, off, err, 1998 &last); 1999 if (skb && !(flags & MSG_PEEK)) 2000 udp_skb_dtor_locked(sk, skb); 2001 spin_unlock(&sk_queue->lock); 2002 spin_unlock_bh(&queue->lock); 2003 if (skb) 2004 return skb; 2005 2006 busy_check: 2007 if (!sk_can_busy_loop(sk)) 2008 break; 2009 2010 sk_busy_loop(sk, flags & MSG_DONTWAIT); 2011 } while (!skb_queue_empty_lockless(sk_queue)); 2012 2013 /* sk_queue is empty, reader_queue may contain peeked packets */ 2014 } while (timeo && 2015 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue, 2016 &error, &timeo, 2017 (struct sk_buff *)sk_queue)); 2018 2019 *err = error; 2020 return NULL; 2021 } 2022 EXPORT_SYMBOL(__skb_recv_udp); 2023 2024 int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor) 2025 { 2026 struct sk_buff *skb; 2027 int err; 2028 2029 try_again: 2030 skb = skb_recv_udp(sk, MSG_DONTWAIT, &err); 2031 if (!skb) 2032 return err; 2033 2034 if (udp_lib_checksum_complete(skb)) { 2035 int is_udplite = IS_UDPLITE(sk); 2036 struct net *net = sock_net(sk); 2037 2038 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, is_udplite); 2039 __UDP_INC_STATS(net, UDP_MIB_INERRORS, is_udplite); 2040 udp_drops_inc(sk); 2041 kfree_skb_reason(skb, SKB_DROP_REASON_UDP_CSUM); 2042 goto try_again; 2043 } 2044 2045 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk)); 2046 return recv_actor(sk, skb); 2047 } 2048 EXPORT_IPV6_MOD(udp_read_skb); 2049 2050 /* 2051 * This should be easy, if there is something there we 2052 * return it, otherwise we block. 2053 */ 2054 2055 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, 2056 int *addr_len) 2057 { 2058 struct inet_sock *inet = inet_sk(sk); 2059 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name); 2060 struct sk_buff *skb; 2061 unsigned int ulen, copied; 2062 int off, err, peeking = flags & MSG_PEEK; 2063 int is_udplite = IS_UDPLITE(sk); 2064 bool checksum_valid = false; 2065 2066 if (flags & MSG_ERRQUEUE) 2067 return ip_recv_error(sk, msg, len, addr_len); 2068 2069 try_again: 2070 off = sk_peek_offset(sk, flags); 2071 skb = __skb_recv_udp(sk, flags, &off, &err); 2072 if (!skb) 2073 return err; 2074 2075 ulen = udp_skb_len(skb); 2076 copied = len; 2077 if (copied > ulen - off) 2078 copied = ulen - off; 2079 else if (copied < ulen) 2080 msg->msg_flags |= MSG_TRUNC; 2081 2082 /* 2083 * If checksum is needed at all, try to do it while copying the 2084 * data. If the data is truncated, or if we only want a partial 2085 * coverage checksum (UDP-Lite), do it before the copy. 2086 */ 2087 2088 if (copied < ulen || peeking || 2089 (is_udplite && UDP_SKB_CB(skb)->partial_cov)) { 2090 checksum_valid = udp_skb_csum_unnecessary(skb) || 2091 !__udp_lib_checksum_complete(skb); 2092 if (!checksum_valid) 2093 goto csum_copy_err; 2094 } 2095 2096 if (checksum_valid || udp_skb_csum_unnecessary(skb)) { 2097 if (udp_skb_is_linear(skb)) 2098 err = copy_linear_skb(skb, copied, off, &msg->msg_iter); 2099 else 2100 err = skb_copy_datagram_msg(skb, off, msg, copied); 2101 } else { 2102 err = skb_copy_and_csum_datagram_msg(skb, off, msg); 2103 2104 if (err == -EINVAL) 2105 goto csum_copy_err; 2106 } 2107 2108 if (unlikely(err)) { 2109 if (!peeking) { 2110 udp_drops_inc(sk); 2111 UDP_INC_STATS(sock_net(sk), 2112 UDP_MIB_INERRORS, is_udplite); 2113 } 2114 kfree_skb(skb); 2115 return err; 2116 } 2117 2118 if (!peeking) 2119 UDP_INC_STATS(sock_net(sk), 2120 UDP_MIB_INDATAGRAMS, is_udplite); 2121 2122 sock_recv_cmsgs(msg, sk, skb); 2123 2124 /* Copy the address. */ 2125 if (sin) { 2126 sin->sin_family = AF_INET; 2127 sin->sin_port = udp_hdr(skb)->source; 2128 sin->sin_addr.s_addr = ip_hdr(skb)->saddr; 2129 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 2130 *addr_len = sizeof(*sin); 2131 2132 BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk, 2133 (struct sockaddr *)sin, 2134 addr_len); 2135 } 2136 2137 if (udp_test_bit(GRO_ENABLED, sk)) 2138 udp_cmsg_recv(msg, sk, skb); 2139 2140 if (inet_cmsg_flags(inet)) 2141 ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off); 2142 2143 err = copied; 2144 if (flags & MSG_TRUNC) 2145 err = ulen; 2146 2147 skb_consume_udp(sk, skb, peeking ? -err : err); 2148 return err; 2149 2150 csum_copy_err: 2151 if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags, 2152 udp_skb_destructor)) { 2153 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 2154 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 2155 } 2156 kfree_skb_reason(skb, SKB_DROP_REASON_UDP_CSUM); 2157 2158 /* starting over for a new packet, but check if we need to yield */ 2159 cond_resched(); 2160 msg->msg_flags &= ~MSG_TRUNC; 2161 goto try_again; 2162 } 2163 2164 int udp_pre_connect(struct sock *sk, struct sockaddr_unsized *uaddr, 2165 int addr_len) 2166 { 2167 /* This check is replicated from __ip4_datagram_connect() and 2168 * intended to prevent BPF program called below from accessing bytes 2169 * that are out of the bound specified by user in addr_len. 2170 */ 2171 if (addr_len < sizeof(struct sockaddr_in)) 2172 return -EINVAL; 2173 2174 return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr, &addr_len); 2175 } 2176 EXPORT_IPV6_MOD(udp_pre_connect); 2177 2178 static int udp_connect(struct sock *sk, struct sockaddr_unsized *uaddr, 2179 int addr_len) 2180 { 2181 int res; 2182 2183 lock_sock(sk); 2184 res = __ip4_datagram_connect(sk, uaddr, addr_len); 2185 if (!res) 2186 udp4_hash4(sk); 2187 release_sock(sk); 2188 return res; 2189 } 2190 2191 int __udp_disconnect(struct sock *sk, int flags) 2192 { 2193 struct inet_sock *inet = inet_sk(sk); 2194 /* 2195 * 1003.1g - break association. 2196 */ 2197 2198 sk->sk_state = TCP_CLOSE; 2199 inet->inet_daddr = 0; 2200 inet->inet_dport = 0; 2201 sock_rps_reset_rxhash(sk); 2202 sk->sk_bound_dev_if = 0; 2203 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) { 2204 inet_reset_saddr(sk); 2205 if (sk->sk_prot->rehash && 2206 (sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2207 sk->sk_prot->rehash(sk); 2208 } 2209 2210 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) { 2211 sk->sk_prot->unhash(sk); 2212 inet->inet_sport = 0; 2213 } 2214 sk_dst_reset(sk); 2215 return 0; 2216 } 2217 EXPORT_SYMBOL(__udp_disconnect); 2218 2219 int udp_disconnect(struct sock *sk, int flags) 2220 { 2221 lock_sock(sk); 2222 __udp_disconnect(sk, flags); 2223 release_sock(sk); 2224 return 0; 2225 } 2226 EXPORT_IPV6_MOD(udp_disconnect); 2227 2228 void udp_lib_unhash(struct sock *sk) 2229 { 2230 if (sk_hashed(sk)) { 2231 struct udp_table *udptable = udp_get_table_prot(sk); 2232 struct udp_hslot *hslot, *hslot2; 2233 2234 sock_rps_delete_flow(sk); 2235 hslot = udp_hashslot(udptable, sock_net(sk), 2236 udp_sk(sk)->udp_port_hash); 2237 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 2238 2239 spin_lock_bh(&hslot->lock); 2240 if (rcu_access_pointer(sk->sk_reuseport_cb)) 2241 reuseport_detach_sock(sk); 2242 if (sk_del_node_init_rcu(sk)) { 2243 hslot->count--; 2244 inet_sk(sk)->inet_num = 0; 2245 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 2246 2247 spin_lock(&hslot2->lock); 2248 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 2249 hslot2->count--; 2250 spin_unlock(&hslot2->lock); 2251 2252 udp_unhash4(udptable, sk); 2253 } 2254 spin_unlock_bh(&hslot->lock); 2255 } 2256 } 2257 EXPORT_IPV6_MOD(udp_lib_unhash); 2258 2259 /* 2260 * inet_rcv_saddr was changed, we must rehash secondary hash 2261 */ 2262 void udp_lib_rehash(struct sock *sk, u16 newhash, u16 newhash4) 2263 { 2264 if (sk_hashed(sk)) { 2265 struct udp_table *udptable = udp_get_table_prot(sk); 2266 struct udp_hslot *hslot, *hslot2, *nhslot2; 2267 2268 hslot = udp_hashslot(udptable, sock_net(sk), 2269 udp_sk(sk)->udp_port_hash); 2270 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 2271 nhslot2 = udp_hashslot2(udptable, newhash); 2272 udp_sk(sk)->udp_portaddr_hash = newhash; 2273 2274 if (hslot2 != nhslot2 || 2275 rcu_access_pointer(sk->sk_reuseport_cb)) { 2276 /* we must lock primary chain too */ 2277 spin_lock_bh(&hslot->lock); 2278 if (rcu_access_pointer(sk->sk_reuseport_cb)) 2279 reuseport_detach_sock(sk); 2280 2281 if (hslot2 != nhslot2) { 2282 spin_lock(&hslot2->lock); 2283 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 2284 hslot2->count--; 2285 spin_unlock(&hslot2->lock); 2286 2287 spin_lock(&nhslot2->lock); 2288 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 2289 &nhslot2->head); 2290 nhslot2->count++; 2291 spin_unlock(&nhslot2->lock); 2292 } 2293 2294 spin_unlock_bh(&hslot->lock); 2295 } 2296 2297 /* Now process hash4 if necessary: 2298 * (1) update hslot4; 2299 * (2) update hslot2->hash4_cnt. 2300 * Note that hslot2/hslot4 should be checked separately, as 2301 * either of them may change with the other unchanged. 2302 */ 2303 if (udp_hashed4(sk)) { 2304 spin_lock_bh(&hslot->lock); 2305 2306 udp_rehash4(udptable, sk, newhash4); 2307 if (hslot2 != nhslot2) { 2308 spin_lock(&hslot2->lock); 2309 udp_hash4_dec(hslot2); 2310 spin_unlock(&hslot2->lock); 2311 2312 spin_lock(&nhslot2->lock); 2313 udp_hash4_inc(nhslot2); 2314 spin_unlock(&nhslot2->lock); 2315 } 2316 2317 spin_unlock_bh(&hslot->lock); 2318 } 2319 } 2320 } 2321 EXPORT_IPV6_MOD(udp_lib_rehash); 2322 2323 void udp_v4_rehash(struct sock *sk) 2324 { 2325 u16 new_hash = ipv4_portaddr_hash(sock_net(sk), 2326 inet_sk(sk)->inet_rcv_saddr, 2327 inet_sk(sk)->inet_num); 2328 u16 new_hash4 = udp_ehashfn(sock_net(sk), 2329 sk->sk_rcv_saddr, sk->sk_num, 2330 sk->sk_daddr, sk->sk_dport); 2331 2332 udp_lib_rehash(sk, new_hash, new_hash4); 2333 } 2334 2335 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 2336 { 2337 int rc; 2338 2339 if (inet_sk(sk)->inet_daddr) { 2340 sock_rps_save_rxhash(sk, skb); 2341 sk_mark_napi_id(sk, skb); 2342 sk_incoming_cpu_update(sk); 2343 } else { 2344 sk_mark_napi_id_once(sk, skb); 2345 } 2346 2347 rc = __udp_enqueue_schedule_skb(sk, skb); 2348 if (rc < 0) { 2349 int is_udplite = IS_UDPLITE(sk); 2350 int drop_reason; 2351 2352 /* Note that an ENOMEM error is charged twice */ 2353 if (rc == -ENOMEM) { 2354 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS, 2355 is_udplite); 2356 drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF; 2357 } else { 2358 UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS, 2359 is_udplite); 2360 drop_reason = SKB_DROP_REASON_PROTO_MEM; 2361 } 2362 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 2363 trace_udp_fail_queue_rcv_skb(rc, sk, skb); 2364 sk_skb_reason_drop(sk, skb, drop_reason); 2365 return -1; 2366 } 2367 2368 return 0; 2369 } 2370 2371 /* returns: 2372 * -1: error 2373 * 0: success 2374 * >0: "udp encap" protocol resubmission 2375 * 2376 * Note that in the success and error cases, the skb is assumed to 2377 * have either been requeued or freed. 2378 */ 2379 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb) 2380 { 2381 enum skb_drop_reason drop_reason = SKB_DROP_REASON_NOT_SPECIFIED; 2382 struct udp_sock *up = udp_sk(sk); 2383 int is_udplite = IS_UDPLITE(sk); 2384 2385 /* 2386 * Charge it to the socket, dropping if the queue is full. 2387 */ 2388 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) { 2389 drop_reason = SKB_DROP_REASON_XFRM_POLICY; 2390 goto drop; 2391 } 2392 nf_reset_ct(skb); 2393 2394 if (static_branch_unlikely(&udp_encap_needed_key) && 2395 READ_ONCE(up->encap_type)) { 2396 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb); 2397 2398 /* 2399 * This is an encapsulation socket so pass the skb to 2400 * the socket's udp_encap_rcv() hook. Otherwise, just 2401 * fall through and pass this up the UDP socket. 2402 * up->encap_rcv() returns the following value: 2403 * =0 if skb was successfully passed to the encap 2404 * handler or was discarded by it. 2405 * >0 if skb should be passed on to UDP. 2406 * <0 if skb should be resubmitted as proto -N 2407 */ 2408 2409 /* if we're overly short, let UDP handle it */ 2410 encap_rcv = READ_ONCE(up->encap_rcv); 2411 if (encap_rcv) { 2412 int ret; 2413 2414 /* Verify checksum before giving to encap */ 2415 if (udp_lib_checksum_complete(skb)) 2416 goto csum_error; 2417 2418 ret = encap_rcv(sk, skb); 2419 if (ret <= 0) { 2420 __UDP_INC_STATS(sock_net(sk), 2421 UDP_MIB_INDATAGRAMS, 2422 is_udplite); 2423 return -ret; 2424 } 2425 } 2426 2427 /* FALLTHROUGH -- it's a UDP Packet */ 2428 } 2429 2430 /* 2431 * UDP-Lite specific tests, ignored on UDP sockets 2432 */ 2433 if (unlikely(udp_test_bit(UDPLITE_RECV_CC, sk) && 2434 UDP_SKB_CB(skb)->partial_cov)) { 2435 u16 pcrlen = READ_ONCE(up->pcrlen); 2436 2437 /* 2438 * MIB statistics other than incrementing the error count are 2439 * disabled for the following two types of errors: these depend 2440 * on the application settings, not on the functioning of the 2441 * protocol stack as such. 2442 * 2443 * RFC 3828 here recommends (sec 3.3): "There should also be a 2444 * way ... to ... at least let the receiving application block 2445 * delivery of packets with coverage values less than a value 2446 * provided by the application." 2447 */ 2448 if (pcrlen == 0) { /* full coverage was set */ 2449 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n", 2450 UDP_SKB_CB(skb)->cscov, skb->len); 2451 goto drop; 2452 } 2453 /* The next case involves violating the min. coverage requested 2454 * by the receiver. This is subtle: if receiver wants x and x is 2455 * greater than the buffersize/MTU then receiver will complain 2456 * that it wants x while sender emits packets of smaller size y. 2457 * Therefore the above ...()->partial_cov statement is essential. 2458 */ 2459 if (UDP_SKB_CB(skb)->cscov < pcrlen) { 2460 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n", 2461 UDP_SKB_CB(skb)->cscov, pcrlen); 2462 goto drop; 2463 } 2464 } 2465 2466 prefetch(&sk->sk_rmem_alloc); 2467 if (rcu_access_pointer(sk->sk_filter) && 2468 udp_lib_checksum_complete(skb)) 2469 goto csum_error; 2470 2471 if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr), &drop_reason)) 2472 goto drop; 2473 2474 udp_csum_pull_header(skb); 2475 2476 ipv4_pktinfo_prepare(sk, skb, true); 2477 return __udp_queue_rcv_skb(sk, skb); 2478 2479 csum_error: 2480 drop_reason = SKB_DROP_REASON_UDP_CSUM; 2481 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 2482 drop: 2483 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 2484 udp_drops_inc(sk); 2485 sk_skb_reason_drop(sk, skb, drop_reason); 2486 return -1; 2487 } 2488 2489 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 2490 { 2491 struct sk_buff *next, *segs; 2492 int ret; 2493 2494 if (likely(!udp_unexpected_gso(sk, skb))) 2495 return udp_queue_rcv_one_skb(sk, skb); 2496 2497 BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET); 2498 __skb_push(skb, -skb_mac_offset(skb)); 2499 segs = udp_rcv_segment(sk, skb, true); 2500 skb_list_walk_safe(segs, skb, next) { 2501 __skb_pull(skb, skb_transport_offset(skb)); 2502 2503 udp_post_segment_fix_csum(skb); 2504 ret = udp_queue_rcv_one_skb(sk, skb); 2505 if (ret > 0) 2506 ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret); 2507 } 2508 return 0; 2509 } 2510 2511 /* For TCP sockets, sk_rx_dst is protected by socket lock 2512 * For UDP, we use xchg() to guard against concurrent changes. 2513 */ 2514 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst) 2515 { 2516 struct dst_entry *old; 2517 2518 if (dst_hold_safe(dst)) { 2519 old = unrcu_pointer(xchg(&sk->sk_rx_dst, RCU_INITIALIZER(dst))); 2520 dst_release(old); 2521 return old != dst; 2522 } 2523 return false; 2524 } 2525 EXPORT_IPV6_MOD(udp_sk_rx_dst_set); 2526 2527 /* 2528 * Multicasts and broadcasts go to each listener. 2529 * 2530 * Note: called only from the BH handler context. 2531 */ 2532 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb, 2533 struct udphdr *uh, 2534 __be32 saddr, __be32 daddr, 2535 struct udp_table *udptable, 2536 int proto) 2537 { 2538 struct sock *sk, *first = NULL; 2539 unsigned short hnum = ntohs(uh->dest); 2540 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum); 2541 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10); 2542 unsigned int offset = offsetof(typeof(*sk), sk_node); 2543 int dif = skb->dev->ifindex; 2544 int sdif = inet_sdif(skb); 2545 struct hlist_node *node; 2546 struct sk_buff *nskb; 2547 2548 if (use_hash2) { 2549 hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) & 2550 udptable->mask; 2551 hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask; 2552 start_lookup: 2553 hslot = &udptable->hash2[hash2].hslot; 2554 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node); 2555 } 2556 2557 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) { 2558 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr, 2559 uh->source, saddr, dif, sdif, hnum)) 2560 continue; 2561 2562 if (!first) { 2563 first = sk; 2564 continue; 2565 } 2566 nskb = skb_clone(skb, GFP_ATOMIC); 2567 2568 if (unlikely(!nskb)) { 2569 udp_drops_inc(sk); 2570 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS, 2571 IS_UDPLITE(sk)); 2572 __UDP_INC_STATS(net, UDP_MIB_INERRORS, 2573 IS_UDPLITE(sk)); 2574 continue; 2575 } 2576 if (udp_queue_rcv_skb(sk, nskb) > 0) 2577 consume_skb(nskb); 2578 } 2579 2580 /* Also lookup *:port if we are using hash2 and haven't done so yet. */ 2581 if (use_hash2 && hash2 != hash2_any) { 2582 hash2 = hash2_any; 2583 goto start_lookup; 2584 } 2585 2586 if (first) { 2587 if (udp_queue_rcv_skb(first, skb) > 0) 2588 consume_skb(skb); 2589 } else { 2590 kfree_skb(skb); 2591 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI, 2592 proto == IPPROTO_UDPLITE); 2593 } 2594 return 0; 2595 } 2596 2597 /* Initialize UDP checksum. If exited with zero value (success), 2598 * CHECKSUM_UNNECESSARY means, that no more checks are required. 2599 * Otherwise, csum completion requires checksumming packet body, 2600 * including udp header and folding it to skb->csum. 2601 */ 2602 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh, 2603 int proto) 2604 { 2605 int err; 2606 2607 UDP_SKB_CB(skb)->partial_cov = 0; 2608 UDP_SKB_CB(skb)->cscov = skb->len; 2609 2610 if (proto == IPPROTO_UDPLITE) { 2611 err = udplite_checksum_init(skb, uh); 2612 if (err) 2613 return err; 2614 2615 if (UDP_SKB_CB(skb)->partial_cov) { 2616 skb->csum = inet_compute_pseudo(skb, proto); 2617 return 0; 2618 } 2619 } 2620 2621 /* Note, we are only interested in != 0 or == 0, thus the 2622 * force to int. 2623 */ 2624 err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check, 2625 inet_compute_pseudo); 2626 if (err) 2627 return err; 2628 2629 if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) { 2630 /* If SW calculated the value, we know it's bad */ 2631 if (skb->csum_complete_sw) 2632 return 1; 2633 2634 /* HW says the value is bad. Let's validate that. 2635 * skb->csum is no longer the full packet checksum, 2636 * so don't treat it as such. 2637 */ 2638 skb_checksum_complete_unset(skb); 2639 } 2640 2641 return 0; 2642 } 2643 2644 /* wrapper for udp_queue_rcv_skb taking care of csum conversion and 2645 * return code conversion for ip layer consumption 2646 */ 2647 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb, 2648 struct udphdr *uh) 2649 { 2650 int ret; 2651 2652 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk)) 2653 skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo); 2654 2655 ret = udp_queue_rcv_skb(sk, skb); 2656 2657 /* a return value > 0 means to resubmit the input, but 2658 * it wants the return to be -protocol, or 0 2659 */ 2660 if (ret > 0) 2661 return -ret; 2662 return 0; 2663 } 2664 2665 /* 2666 * All we need to do is get the socket, and then do a checksum. 2667 */ 2668 2669 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable, 2670 int proto) 2671 { 2672 struct sock *sk = NULL; 2673 struct udphdr *uh; 2674 unsigned short ulen; 2675 struct rtable *rt = skb_rtable(skb); 2676 __be32 saddr, daddr; 2677 struct net *net = dev_net(skb->dev); 2678 bool refcounted; 2679 int drop_reason; 2680 2681 drop_reason = SKB_DROP_REASON_NOT_SPECIFIED; 2682 2683 /* 2684 * Validate the packet. 2685 */ 2686 if (!pskb_may_pull(skb, sizeof(struct udphdr))) 2687 goto drop; /* No space for header. */ 2688 2689 uh = udp_hdr(skb); 2690 ulen = ntohs(uh->len); 2691 saddr = ip_hdr(skb)->saddr; 2692 daddr = ip_hdr(skb)->daddr; 2693 2694 if (ulen > skb->len) 2695 goto short_packet; 2696 2697 if (proto == IPPROTO_UDP) { 2698 /* UDP validates ulen. */ 2699 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen)) 2700 goto short_packet; 2701 uh = udp_hdr(skb); 2702 } 2703 2704 if (udp4_csum_init(skb, uh, proto)) 2705 goto csum_error; 2706 2707 sk = inet_steal_sock(net, skb, sizeof(struct udphdr), saddr, uh->source, daddr, uh->dest, 2708 &refcounted, udp_ehashfn); 2709 if (IS_ERR(sk)) 2710 goto no_sk; 2711 2712 if (sk) { 2713 struct dst_entry *dst = skb_dst(skb); 2714 int ret; 2715 2716 if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst)) 2717 udp_sk_rx_dst_set(sk, dst); 2718 2719 ret = udp_unicast_rcv_skb(sk, skb, uh); 2720 if (refcounted) 2721 sock_put(sk); 2722 return ret; 2723 } 2724 2725 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST)) 2726 return __udp4_lib_mcast_deliver(net, skb, uh, 2727 saddr, daddr, udptable, proto); 2728 2729 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable); 2730 if (sk) 2731 return udp_unicast_rcv_skb(sk, skb, uh); 2732 no_sk: 2733 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 2734 goto drop; 2735 nf_reset_ct(skb); 2736 2737 /* No socket. Drop packet silently, if checksum is wrong */ 2738 if (udp_lib_checksum_complete(skb)) 2739 goto csum_error; 2740 2741 drop_reason = SKB_DROP_REASON_NO_SOCKET; 2742 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE); 2743 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0); 2744 2745 /* 2746 * Hmm. We got an UDP packet to a port to which we 2747 * don't wanna listen. Ignore it. 2748 */ 2749 sk_skb_reason_drop(sk, skb, drop_reason); 2750 return 0; 2751 2752 short_packet: 2753 drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL; 2754 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n", 2755 proto == IPPROTO_UDPLITE ? "Lite" : "", 2756 &saddr, ntohs(uh->source), 2757 ulen, skb->len, 2758 &daddr, ntohs(uh->dest)); 2759 goto drop; 2760 2761 csum_error: 2762 /* 2763 * RFC1122: OK. Discards the bad packet silently (as far as 2764 * the network is concerned, anyway) as per 4.1.3.4 (MUST). 2765 */ 2766 drop_reason = SKB_DROP_REASON_UDP_CSUM; 2767 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n", 2768 proto == IPPROTO_UDPLITE ? "Lite" : "", 2769 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest), 2770 ulen); 2771 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE); 2772 drop: 2773 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE); 2774 sk_skb_reason_drop(sk, skb, drop_reason); 2775 return 0; 2776 } 2777 2778 /* We can only early demux multicast if there is a single matching socket. 2779 * If more than one socket found returns NULL 2780 */ 2781 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net, 2782 __be16 loc_port, __be32 loc_addr, 2783 __be16 rmt_port, __be32 rmt_addr, 2784 int dif, int sdif) 2785 { 2786 struct udp_table *udptable = net->ipv4.udp_table; 2787 unsigned short hnum = ntohs(loc_port); 2788 struct sock *sk, *result; 2789 struct udp_hslot *hslot; 2790 unsigned int slot; 2791 2792 slot = udp_hashfn(net, hnum, udptable->mask); 2793 hslot = &udptable->hash[slot]; 2794 2795 /* Do not bother scanning a too big list */ 2796 if (hslot->count > 10) 2797 return NULL; 2798 2799 result = NULL; 2800 sk_for_each_rcu(sk, &hslot->head) { 2801 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr, 2802 rmt_port, rmt_addr, dif, sdif, hnum)) { 2803 if (result) 2804 return NULL; 2805 result = sk; 2806 } 2807 } 2808 2809 return result; 2810 } 2811 2812 /* For unicast we should only early demux connected sockets or we can 2813 * break forwarding setups. The chains here can be long so only check 2814 * if the first socket is an exact match and if not move on. 2815 */ 2816 static struct sock *__udp4_lib_demux_lookup(struct net *net, 2817 __be16 loc_port, __be32 loc_addr, 2818 __be16 rmt_port, __be32 rmt_addr, 2819 int dif, int sdif) 2820 { 2821 struct udp_table *udptable = net->ipv4.udp_table; 2822 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr); 2823 unsigned short hnum = ntohs(loc_port); 2824 struct udp_hslot *hslot2; 2825 unsigned int hash2; 2826 __portpair ports; 2827 struct sock *sk; 2828 2829 hash2 = ipv4_portaddr_hash(net, loc_addr, hnum); 2830 hslot2 = udp_hashslot2(udptable, hash2); 2831 ports = INET_COMBINED_PORTS(rmt_port, hnum); 2832 2833 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 2834 if (inet_match(net, sk, acookie, ports, dif, sdif)) 2835 return sk; 2836 /* Only check first socket in chain */ 2837 break; 2838 } 2839 return NULL; 2840 } 2841 2842 enum skb_drop_reason udp_v4_early_demux(struct sk_buff *skb) 2843 { 2844 struct net *net = dev_net(skb->dev); 2845 struct in_device *in_dev = NULL; 2846 const struct iphdr *iph; 2847 const struct udphdr *uh; 2848 struct sock *sk = NULL; 2849 struct dst_entry *dst; 2850 int dif = skb->dev->ifindex; 2851 int sdif = inet_sdif(skb); 2852 int ours; 2853 2854 /* validate the packet */ 2855 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr))) 2856 return SKB_NOT_DROPPED_YET; 2857 2858 iph = ip_hdr(skb); 2859 uh = udp_hdr(skb); 2860 2861 if (skb->pkt_type == PACKET_MULTICAST) { 2862 in_dev = __in_dev_get_rcu(skb->dev); 2863 2864 if (!in_dev) 2865 return SKB_NOT_DROPPED_YET; 2866 2867 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr, 2868 iph->protocol); 2869 if (!ours) 2870 return SKB_NOT_DROPPED_YET; 2871 2872 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr, 2873 uh->source, iph->saddr, 2874 dif, sdif); 2875 } else if (skb->pkt_type == PACKET_HOST) { 2876 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr, 2877 uh->source, iph->saddr, dif, sdif); 2878 } 2879 2880 if (!sk) 2881 return SKB_NOT_DROPPED_YET; 2882 2883 skb->sk = sk; 2884 DEBUG_NET_WARN_ON_ONCE(sk_is_refcounted(sk)); 2885 skb->destructor = sock_pfree; 2886 dst = rcu_dereference(sk->sk_rx_dst); 2887 2888 if (dst) 2889 dst = dst_check(dst, 0); 2890 if (dst) { 2891 u32 itag = 0; 2892 2893 /* set noref for now. 2894 * any place which wants to hold dst has to call 2895 * dst_hold_safe() 2896 */ 2897 skb_dst_set_noref(skb, dst); 2898 2899 /* for unconnected multicast sockets we need to validate 2900 * the source on each packet 2901 */ 2902 if (!inet_sk(sk)->inet_daddr && in_dev) 2903 return ip_mc_validate_source(skb, iph->daddr, 2904 iph->saddr, 2905 ip4h_dscp(iph), 2906 skb->dev, in_dev, &itag); 2907 } 2908 return SKB_NOT_DROPPED_YET; 2909 } 2910 2911 int udp_rcv(struct sk_buff *skb) 2912 { 2913 return __udp4_lib_rcv(skb, dev_net(skb->dev)->ipv4.udp_table, IPPROTO_UDP); 2914 } 2915 2916 void udp_destroy_sock(struct sock *sk) 2917 { 2918 struct udp_sock *up = udp_sk(sk); 2919 bool slow = lock_sock_fast(sk); 2920 2921 /* protects from races with udp_abort() */ 2922 sock_set_flag(sk, SOCK_DEAD); 2923 udp_flush_pending_frames(sk); 2924 unlock_sock_fast(sk, slow); 2925 if (static_branch_unlikely(&udp_encap_needed_key)) { 2926 if (up->encap_type) { 2927 void (*encap_destroy)(struct sock *sk); 2928 encap_destroy = READ_ONCE(up->encap_destroy); 2929 if (encap_destroy) 2930 encap_destroy(sk); 2931 } 2932 if (udp_test_bit(ENCAP_ENABLED, sk)) { 2933 static_branch_dec(&udp_encap_needed_key); 2934 udp_tunnel_cleanup_gro(sk); 2935 } 2936 } 2937 } 2938 2939 typedef struct sk_buff *(*udp_gro_receive_t)(struct sock *sk, 2940 struct list_head *head, 2941 struct sk_buff *skb); 2942 2943 static void set_xfrm_gro_udp_encap_rcv(__u16 encap_type, unsigned short family, 2944 struct sock *sk) 2945 { 2946 #ifdef CONFIG_XFRM 2947 udp_gro_receive_t new_gro_receive; 2948 2949 if (udp_test_bit(GRO_ENABLED, sk) && encap_type == UDP_ENCAP_ESPINUDP) { 2950 if (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6) 2951 new_gro_receive = ipv6_stub->xfrm6_gro_udp_encap_rcv; 2952 else 2953 new_gro_receive = xfrm4_gro_udp_encap_rcv; 2954 2955 if (udp_sk(sk)->gro_receive != new_gro_receive) { 2956 /* 2957 * With IPV6_ADDRFORM the gro callback could change 2958 * after being set, unregister the old one, if valid. 2959 */ 2960 if (udp_sk(sk)->gro_receive) 2961 udp_tunnel_update_gro_rcv(sk, false); 2962 2963 WRITE_ONCE(udp_sk(sk)->gro_receive, new_gro_receive); 2964 udp_tunnel_update_gro_rcv(sk, true); 2965 } 2966 } 2967 #endif 2968 } 2969 2970 /* 2971 * Socket option code for UDP 2972 */ 2973 int udp_lib_setsockopt(struct sock *sk, int level, int optname, 2974 sockptr_t optval, unsigned int optlen, 2975 int (*push_pending_frames)(struct sock *)) 2976 { 2977 struct udp_sock *up = udp_sk(sk); 2978 int val, valbool; 2979 int err = 0; 2980 int is_udplite = IS_UDPLITE(sk); 2981 2982 if (level == SOL_SOCKET) { 2983 err = sk_setsockopt(sk, level, optname, optval, optlen); 2984 2985 if (optname == SO_RCVBUF || optname == SO_RCVBUFFORCE) { 2986 sockopt_lock_sock(sk); 2987 /* paired with READ_ONCE in udp_rmem_release() */ 2988 WRITE_ONCE(up->forward_threshold, sk->sk_rcvbuf >> 2); 2989 sockopt_release_sock(sk); 2990 } 2991 return err; 2992 } 2993 2994 if (optlen < sizeof(int)) 2995 return -EINVAL; 2996 2997 if (copy_from_sockptr(&val, optval, sizeof(val))) 2998 return -EFAULT; 2999 3000 valbool = val ? 1 : 0; 3001 3002 switch (optname) { 3003 case UDP_CORK: 3004 if (val != 0) { 3005 udp_set_bit(CORK, sk); 3006 } else { 3007 udp_clear_bit(CORK, sk); 3008 lock_sock(sk); 3009 push_pending_frames(sk); 3010 release_sock(sk); 3011 } 3012 break; 3013 3014 case UDP_ENCAP: 3015 sockopt_lock_sock(sk); 3016 switch (val) { 3017 case 0: 3018 #ifdef CONFIG_XFRM 3019 case UDP_ENCAP_ESPINUDP: 3020 set_xfrm_gro_udp_encap_rcv(val, sk->sk_family, sk); 3021 #if IS_ENABLED(CONFIG_IPV6) 3022 if (sk->sk_family == AF_INET6) 3023 WRITE_ONCE(up->encap_rcv, 3024 ipv6_stub->xfrm6_udp_encap_rcv); 3025 else 3026 #endif 3027 WRITE_ONCE(up->encap_rcv, 3028 xfrm4_udp_encap_rcv); 3029 #endif 3030 fallthrough; 3031 case UDP_ENCAP_L2TPINUDP: 3032 WRITE_ONCE(up->encap_type, val); 3033 udp_tunnel_encap_enable(sk); 3034 break; 3035 default: 3036 err = -ENOPROTOOPT; 3037 break; 3038 } 3039 sockopt_release_sock(sk); 3040 break; 3041 3042 case UDP_NO_CHECK6_TX: 3043 udp_set_no_check6_tx(sk, valbool); 3044 break; 3045 3046 case UDP_NO_CHECK6_RX: 3047 udp_set_no_check6_rx(sk, valbool); 3048 break; 3049 3050 case UDP_SEGMENT: 3051 if (val < 0 || val > USHRT_MAX) 3052 return -EINVAL; 3053 WRITE_ONCE(up->gso_size, val); 3054 break; 3055 3056 case UDP_GRO: 3057 sockopt_lock_sock(sk); 3058 /* when enabling GRO, accept the related GSO packet type */ 3059 if (valbool) 3060 udp_tunnel_encap_enable(sk); 3061 udp_assign_bit(GRO_ENABLED, sk, valbool); 3062 udp_assign_bit(ACCEPT_L4, sk, valbool); 3063 set_xfrm_gro_udp_encap_rcv(up->encap_type, sk->sk_family, sk); 3064 sockopt_release_sock(sk); 3065 break; 3066 3067 /* 3068 * UDP-Lite's partial checksum coverage (RFC 3828). 3069 */ 3070 /* The sender sets actual checksum coverage length via this option. 3071 * The case coverage > packet length is handled by send module. */ 3072 case UDPLITE_SEND_CSCOV: 3073 if (!is_udplite) /* Disable the option on UDP sockets */ 3074 return -ENOPROTOOPT; 3075 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */ 3076 val = 8; 3077 else if (val > USHRT_MAX) 3078 val = USHRT_MAX; 3079 WRITE_ONCE(up->pcslen, val); 3080 udp_set_bit(UDPLITE_SEND_CC, sk); 3081 break; 3082 3083 /* The receiver specifies a minimum checksum coverage value. To make 3084 * sense, this should be set to at least 8 (as done below). If zero is 3085 * used, this again means full checksum coverage. */ 3086 case UDPLITE_RECV_CSCOV: 3087 if (!is_udplite) /* Disable the option on UDP sockets */ 3088 return -ENOPROTOOPT; 3089 if (val != 0 && val < 8) /* Avoid silly minimal values. */ 3090 val = 8; 3091 else if (val > USHRT_MAX) 3092 val = USHRT_MAX; 3093 WRITE_ONCE(up->pcrlen, val); 3094 udp_set_bit(UDPLITE_RECV_CC, sk); 3095 break; 3096 3097 default: 3098 err = -ENOPROTOOPT; 3099 break; 3100 } 3101 3102 return err; 3103 } 3104 EXPORT_IPV6_MOD(udp_lib_setsockopt); 3105 3106 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 3107 unsigned int optlen) 3108 { 3109 if (level == SOL_UDP || level == SOL_UDPLITE || level == SOL_SOCKET) 3110 return udp_lib_setsockopt(sk, level, optname, 3111 optval, optlen, 3112 udp_push_pending_frames); 3113 return ip_setsockopt(sk, level, optname, optval, optlen); 3114 } 3115 3116 int udp_lib_getsockopt(struct sock *sk, int level, int optname, 3117 char __user *optval, int __user *optlen) 3118 { 3119 struct udp_sock *up = udp_sk(sk); 3120 int val, len; 3121 3122 if (get_user(len, optlen)) 3123 return -EFAULT; 3124 3125 if (len < 0) 3126 return -EINVAL; 3127 3128 len = min_t(unsigned int, len, sizeof(int)); 3129 3130 switch (optname) { 3131 case UDP_CORK: 3132 val = udp_test_bit(CORK, sk); 3133 break; 3134 3135 case UDP_ENCAP: 3136 val = READ_ONCE(up->encap_type); 3137 break; 3138 3139 case UDP_NO_CHECK6_TX: 3140 val = udp_get_no_check6_tx(sk); 3141 break; 3142 3143 case UDP_NO_CHECK6_RX: 3144 val = udp_get_no_check6_rx(sk); 3145 break; 3146 3147 case UDP_SEGMENT: 3148 val = READ_ONCE(up->gso_size); 3149 break; 3150 3151 case UDP_GRO: 3152 val = udp_test_bit(GRO_ENABLED, sk); 3153 break; 3154 3155 /* The following two cannot be changed on UDP sockets, the return is 3156 * always 0 (which corresponds to the full checksum coverage of UDP). */ 3157 case UDPLITE_SEND_CSCOV: 3158 val = READ_ONCE(up->pcslen); 3159 break; 3160 3161 case UDPLITE_RECV_CSCOV: 3162 val = READ_ONCE(up->pcrlen); 3163 break; 3164 3165 default: 3166 return -ENOPROTOOPT; 3167 } 3168 3169 if (put_user(len, optlen)) 3170 return -EFAULT; 3171 if (copy_to_user(optval, &val, len)) 3172 return -EFAULT; 3173 return 0; 3174 } 3175 EXPORT_IPV6_MOD(udp_lib_getsockopt); 3176 3177 int udp_getsockopt(struct sock *sk, int level, int optname, 3178 char __user *optval, int __user *optlen) 3179 { 3180 if (level == SOL_UDP || level == SOL_UDPLITE) 3181 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 3182 return ip_getsockopt(sk, level, optname, optval, optlen); 3183 } 3184 3185 /** 3186 * udp_poll - wait for a UDP event. 3187 * @file: - file struct 3188 * @sock: - socket 3189 * @wait: - poll table 3190 * 3191 * This is same as datagram poll, except for the special case of 3192 * blocking sockets. If application is using a blocking fd 3193 * and a packet with checksum error is in the queue; 3194 * then it could get return from select indicating data available 3195 * but then block when reading it. Add special case code 3196 * to work around these arguably broken applications. 3197 */ 3198 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait) 3199 { 3200 __poll_t mask = datagram_poll(file, sock, wait); 3201 struct sock *sk = sock->sk; 3202 3203 if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue)) 3204 mask |= EPOLLIN | EPOLLRDNORM; 3205 3206 /* Check for false positives due to checksum errors */ 3207 if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) && 3208 !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1) 3209 mask &= ~(EPOLLIN | EPOLLRDNORM); 3210 3211 /* psock ingress_msg queue should not contain any bad checksum frames */ 3212 if (sk_is_readable(sk)) 3213 mask |= EPOLLIN | EPOLLRDNORM; 3214 return mask; 3215 3216 } 3217 EXPORT_IPV6_MOD(udp_poll); 3218 3219 int udp_abort(struct sock *sk, int err) 3220 { 3221 if (!has_current_bpf_ctx()) 3222 lock_sock(sk); 3223 3224 /* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing 3225 * with close() 3226 */ 3227 if (sock_flag(sk, SOCK_DEAD)) 3228 goto out; 3229 3230 sk->sk_err = err; 3231 sk_error_report(sk); 3232 __udp_disconnect(sk, 0); 3233 3234 out: 3235 if (!has_current_bpf_ctx()) 3236 release_sock(sk); 3237 3238 return 0; 3239 } 3240 EXPORT_IPV6_MOD_GPL(udp_abort); 3241 3242 struct proto udp_prot = { 3243 .name = "UDP", 3244 .owner = THIS_MODULE, 3245 .close = udp_lib_close, 3246 .pre_connect = udp_pre_connect, 3247 .connect = udp_connect, 3248 .disconnect = udp_disconnect, 3249 .ioctl = udp_ioctl, 3250 .init = udp_init_sock, 3251 .destroy = udp_destroy_sock, 3252 .setsockopt = udp_setsockopt, 3253 .getsockopt = udp_getsockopt, 3254 .sendmsg = udp_sendmsg, 3255 .recvmsg = udp_recvmsg, 3256 .splice_eof = udp_splice_eof, 3257 .release_cb = ip4_datagram_release_cb, 3258 .hash = udp_lib_hash, 3259 .unhash = udp_lib_unhash, 3260 .rehash = udp_v4_rehash, 3261 .get_port = udp_v4_get_port, 3262 .put_port = udp_lib_unhash, 3263 #ifdef CONFIG_BPF_SYSCALL 3264 .psock_update_sk_prot = udp_bpf_update_proto, 3265 #endif 3266 .memory_allocated = &net_aligned_data.udp_memory_allocated, 3267 .per_cpu_fw_alloc = &udp_memory_per_cpu_fw_alloc, 3268 3269 .sysctl_mem = sysctl_udp_mem, 3270 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_udp_wmem_min), 3271 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_udp_rmem_min), 3272 .obj_size = sizeof(struct udp_sock), 3273 .h.udp_table = NULL, 3274 .diag_destroy = udp_abort, 3275 }; 3276 EXPORT_SYMBOL(udp_prot); 3277 3278 /* ------------------------------------------------------------------------ */ 3279 #ifdef CONFIG_PROC_FS 3280 3281 static unsigned short seq_file_family(const struct seq_file *seq); 3282 static bool seq_sk_match(struct seq_file *seq, const struct sock *sk) 3283 { 3284 unsigned short family = seq_file_family(seq); 3285 3286 /* AF_UNSPEC is used as a match all */ 3287 return ((family == AF_UNSPEC || family == sk->sk_family) && 3288 net_eq(sock_net(sk), seq_file_net(seq))); 3289 } 3290 3291 #ifdef CONFIG_BPF_SYSCALL 3292 static const struct seq_operations bpf_iter_udp_seq_ops; 3293 #endif 3294 static struct udp_table *udp_get_table_seq(struct seq_file *seq, 3295 struct net *net) 3296 { 3297 const struct udp_seq_afinfo *afinfo; 3298 3299 #ifdef CONFIG_BPF_SYSCALL 3300 if (seq->op == &bpf_iter_udp_seq_ops) 3301 return net->ipv4.udp_table; 3302 #endif 3303 3304 afinfo = pde_data(file_inode(seq->file)); 3305 return afinfo->udp_table ? : net->ipv4.udp_table; 3306 } 3307 3308 static struct sock *udp_get_first(struct seq_file *seq, int start) 3309 { 3310 struct udp_iter_state *state = seq->private; 3311 struct net *net = seq_file_net(seq); 3312 struct udp_table *udptable; 3313 struct sock *sk; 3314 3315 udptable = udp_get_table_seq(seq, net); 3316 3317 for (state->bucket = start; state->bucket <= udptable->mask; 3318 ++state->bucket) { 3319 struct udp_hslot *hslot = &udptable->hash[state->bucket]; 3320 3321 if (hlist_empty(&hslot->head)) 3322 continue; 3323 3324 spin_lock_bh(&hslot->lock); 3325 sk_for_each(sk, &hslot->head) { 3326 if (seq_sk_match(seq, sk)) 3327 goto found; 3328 } 3329 spin_unlock_bh(&hslot->lock); 3330 } 3331 sk = NULL; 3332 found: 3333 return sk; 3334 } 3335 3336 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk) 3337 { 3338 struct udp_iter_state *state = seq->private; 3339 struct net *net = seq_file_net(seq); 3340 struct udp_table *udptable; 3341 3342 do { 3343 sk = sk_next(sk); 3344 } while (sk && !seq_sk_match(seq, sk)); 3345 3346 if (!sk) { 3347 udptable = udp_get_table_seq(seq, net); 3348 3349 if (state->bucket <= udptable->mask) 3350 spin_unlock_bh(&udptable->hash[state->bucket].lock); 3351 3352 return udp_get_first(seq, state->bucket + 1); 3353 } 3354 return sk; 3355 } 3356 3357 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos) 3358 { 3359 struct sock *sk = udp_get_first(seq, 0); 3360 3361 if (sk) 3362 while (pos && (sk = udp_get_next(seq, sk)) != NULL) 3363 --pos; 3364 return pos ? NULL : sk; 3365 } 3366 3367 void *udp_seq_start(struct seq_file *seq, loff_t *pos) 3368 { 3369 struct udp_iter_state *state = seq->private; 3370 state->bucket = MAX_UDP_PORTS; 3371 3372 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN; 3373 } 3374 EXPORT_IPV6_MOD(udp_seq_start); 3375 3376 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3377 { 3378 struct sock *sk; 3379 3380 if (v == SEQ_START_TOKEN) 3381 sk = udp_get_idx(seq, 0); 3382 else 3383 sk = udp_get_next(seq, v); 3384 3385 ++*pos; 3386 return sk; 3387 } 3388 EXPORT_IPV6_MOD(udp_seq_next); 3389 3390 void udp_seq_stop(struct seq_file *seq, void *v) 3391 { 3392 struct udp_iter_state *state = seq->private; 3393 struct udp_table *udptable; 3394 3395 udptable = udp_get_table_seq(seq, seq_file_net(seq)); 3396 3397 if (state->bucket <= udptable->mask) 3398 spin_unlock_bh(&udptable->hash[state->bucket].lock); 3399 } 3400 EXPORT_IPV6_MOD(udp_seq_stop); 3401 3402 /* ------------------------------------------------------------------------ */ 3403 static void udp4_format_sock(struct sock *sp, struct seq_file *f, 3404 int bucket) 3405 { 3406 struct inet_sock *inet = inet_sk(sp); 3407 __be32 dest = inet->inet_daddr; 3408 __be32 src = inet->inet_rcv_saddr; 3409 __u16 destp = ntohs(inet->inet_dport); 3410 __u16 srcp = ntohs(inet->inet_sport); 3411 3412 seq_printf(f, "%5d: %08X:%04X %08X:%04X" 3413 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u", 3414 bucket, src, srcp, dest, destp, sp->sk_state, 3415 sk_wmem_alloc_get(sp), 3416 udp_rqueue_get(sp), 3417 0, 0L, 0, 3418 from_kuid_munged(seq_user_ns(f), sk_uid(sp)), 3419 0, sock_i_ino(sp), 3420 refcount_read(&sp->sk_refcnt), sp, 3421 sk_drops_read(sp)); 3422 } 3423 3424 int udp4_seq_show(struct seq_file *seq, void *v) 3425 { 3426 seq_setwidth(seq, 127); 3427 if (v == SEQ_START_TOKEN) 3428 seq_puts(seq, " sl local_address rem_address st tx_queue " 3429 "rx_queue tr tm->when retrnsmt uid timeout " 3430 "inode ref pointer drops"); 3431 else { 3432 struct udp_iter_state *state = seq->private; 3433 3434 udp4_format_sock(v, seq, state->bucket); 3435 } 3436 seq_pad(seq, '\n'); 3437 return 0; 3438 } 3439 3440 #ifdef CONFIG_BPF_SYSCALL 3441 struct bpf_iter__udp { 3442 __bpf_md_ptr(struct bpf_iter_meta *, meta); 3443 __bpf_md_ptr(struct udp_sock *, udp_sk); 3444 uid_t uid __aligned(8); 3445 int bucket __aligned(8); 3446 }; 3447 3448 union bpf_udp_iter_batch_item { 3449 struct sock *sk; 3450 __u64 cookie; 3451 }; 3452 3453 struct bpf_udp_iter_state { 3454 struct udp_iter_state state; 3455 unsigned int cur_sk; 3456 unsigned int end_sk; 3457 unsigned int max_sk; 3458 union bpf_udp_iter_batch_item *batch; 3459 }; 3460 3461 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter, 3462 unsigned int new_batch_sz, gfp_t flags); 3463 static struct sock *bpf_iter_udp_resume(struct sock *first_sk, 3464 union bpf_udp_iter_batch_item *cookies, 3465 int n_cookies) 3466 { 3467 struct sock *sk = NULL; 3468 int i; 3469 3470 for (i = 0; i < n_cookies; i++) { 3471 sk = first_sk; 3472 udp_portaddr_for_each_entry_from(sk) 3473 if (cookies[i].cookie == atomic64_read(&sk->sk_cookie)) 3474 goto done; 3475 } 3476 done: 3477 return sk; 3478 } 3479 3480 static struct sock *bpf_iter_udp_batch(struct seq_file *seq) 3481 { 3482 struct bpf_udp_iter_state *iter = seq->private; 3483 struct udp_iter_state *state = &iter->state; 3484 unsigned int find_cookie, end_cookie; 3485 struct net *net = seq_file_net(seq); 3486 struct udp_table *udptable; 3487 unsigned int batch_sks = 0; 3488 int resume_bucket; 3489 int resizes = 0; 3490 struct sock *sk; 3491 int err = 0; 3492 3493 resume_bucket = state->bucket; 3494 3495 /* The current batch is done, so advance the bucket. */ 3496 if (iter->cur_sk == iter->end_sk) 3497 state->bucket++; 3498 3499 udptable = udp_get_table_seq(seq, net); 3500 3501 again: 3502 /* New batch for the next bucket. 3503 * Iterate over the hash table to find a bucket with sockets matching 3504 * the iterator attributes, and return the first matching socket from 3505 * the bucket. The remaining matched sockets from the bucket are batched 3506 * before releasing the bucket lock. This allows BPF programs that are 3507 * called in seq_show to acquire the bucket lock if needed. 3508 */ 3509 find_cookie = iter->cur_sk; 3510 end_cookie = iter->end_sk; 3511 iter->cur_sk = 0; 3512 iter->end_sk = 0; 3513 batch_sks = 0; 3514 3515 for (; state->bucket <= udptable->mask; state->bucket++) { 3516 struct udp_hslot *hslot2 = &udptable->hash2[state->bucket].hslot; 3517 3518 if (hlist_empty(&hslot2->head)) 3519 goto next_bucket; 3520 3521 spin_lock_bh(&hslot2->lock); 3522 sk = hlist_entry_safe(hslot2->head.first, struct sock, 3523 __sk_common.skc_portaddr_node); 3524 /* Resume from the first (in iteration order) unseen socket from 3525 * the last batch that still exists in resume_bucket. Most of 3526 * the time this will just be where the last iteration left off 3527 * in resume_bucket unless that socket disappeared between 3528 * reads. 3529 */ 3530 if (state->bucket == resume_bucket) 3531 sk = bpf_iter_udp_resume(sk, &iter->batch[find_cookie], 3532 end_cookie - find_cookie); 3533 fill_batch: 3534 udp_portaddr_for_each_entry_from(sk) { 3535 if (seq_sk_match(seq, sk)) { 3536 if (iter->end_sk < iter->max_sk) { 3537 sock_hold(sk); 3538 iter->batch[iter->end_sk++].sk = sk; 3539 } 3540 batch_sks++; 3541 } 3542 } 3543 3544 /* Allocate a larger batch and try again. */ 3545 if (unlikely(resizes <= 1 && iter->end_sk && 3546 iter->end_sk != batch_sks)) { 3547 resizes++; 3548 3549 /* First, try with GFP_USER to maximize the chances of 3550 * grabbing more memory. 3551 */ 3552 if (resizes == 1) { 3553 spin_unlock_bh(&hslot2->lock); 3554 err = bpf_iter_udp_realloc_batch(iter, 3555 batch_sks * 3 / 2, 3556 GFP_USER); 3557 if (err) 3558 return ERR_PTR(err); 3559 /* Start over. */ 3560 goto again; 3561 } 3562 3563 /* Next, hold onto the lock, so the bucket doesn't 3564 * change while we get the rest of the sockets. 3565 */ 3566 err = bpf_iter_udp_realloc_batch(iter, batch_sks, 3567 GFP_NOWAIT); 3568 if (err) { 3569 spin_unlock_bh(&hslot2->lock); 3570 return ERR_PTR(err); 3571 } 3572 3573 /* Pick up where we left off. */ 3574 sk = iter->batch[iter->end_sk - 1].sk; 3575 sk = hlist_entry_safe(sk->__sk_common.skc_portaddr_node.next, 3576 struct sock, 3577 __sk_common.skc_portaddr_node); 3578 batch_sks = iter->end_sk; 3579 goto fill_batch; 3580 } 3581 3582 spin_unlock_bh(&hslot2->lock); 3583 3584 if (iter->end_sk) 3585 break; 3586 next_bucket: 3587 resizes = 0; 3588 } 3589 3590 WARN_ON_ONCE(iter->end_sk != batch_sks); 3591 return iter->end_sk ? iter->batch[0].sk : NULL; 3592 } 3593 3594 static void *bpf_iter_udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3595 { 3596 struct bpf_udp_iter_state *iter = seq->private; 3597 struct sock *sk; 3598 3599 /* Whenever seq_next() is called, the iter->cur_sk is 3600 * done with seq_show(), so unref the iter->cur_sk. 3601 */ 3602 if (iter->cur_sk < iter->end_sk) 3603 sock_put(iter->batch[iter->cur_sk++].sk); 3604 3605 /* After updating iter->cur_sk, check if there are more sockets 3606 * available in the current bucket batch. 3607 */ 3608 if (iter->cur_sk < iter->end_sk) 3609 sk = iter->batch[iter->cur_sk].sk; 3610 else 3611 /* Prepare a new batch. */ 3612 sk = bpf_iter_udp_batch(seq); 3613 3614 ++*pos; 3615 return sk; 3616 } 3617 3618 static void *bpf_iter_udp_seq_start(struct seq_file *seq, loff_t *pos) 3619 { 3620 /* bpf iter does not support lseek, so it always 3621 * continue from where it was stop()-ped. 3622 */ 3623 if (*pos) 3624 return bpf_iter_udp_batch(seq); 3625 3626 return SEQ_START_TOKEN; 3627 } 3628 3629 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta, 3630 struct udp_sock *udp_sk, uid_t uid, int bucket) 3631 { 3632 struct bpf_iter__udp ctx; 3633 3634 meta->seq_num--; /* skip SEQ_START_TOKEN */ 3635 ctx.meta = meta; 3636 ctx.udp_sk = udp_sk; 3637 ctx.uid = uid; 3638 ctx.bucket = bucket; 3639 return bpf_iter_run_prog(prog, &ctx); 3640 } 3641 3642 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v) 3643 { 3644 struct udp_iter_state *state = seq->private; 3645 struct bpf_iter_meta meta; 3646 struct bpf_prog *prog; 3647 struct sock *sk = v; 3648 uid_t uid; 3649 int ret; 3650 3651 if (v == SEQ_START_TOKEN) 3652 return 0; 3653 3654 lock_sock(sk); 3655 3656 if (unlikely(sk_unhashed(sk))) { 3657 ret = SEQ_SKIP; 3658 goto unlock; 3659 } 3660 3661 uid = from_kuid_munged(seq_user_ns(seq), sk_uid(sk)); 3662 meta.seq = seq; 3663 prog = bpf_iter_get_info(&meta, false); 3664 ret = udp_prog_seq_show(prog, &meta, v, uid, state->bucket); 3665 3666 unlock: 3667 release_sock(sk); 3668 return ret; 3669 } 3670 3671 static void bpf_iter_udp_put_batch(struct bpf_udp_iter_state *iter) 3672 { 3673 union bpf_udp_iter_batch_item *item; 3674 unsigned int cur_sk = iter->cur_sk; 3675 __u64 cookie; 3676 3677 /* Remember the cookies of the sockets we haven't seen yet, so we can 3678 * pick up where we left off next time around. 3679 */ 3680 while (cur_sk < iter->end_sk) { 3681 item = &iter->batch[cur_sk++]; 3682 cookie = sock_gen_cookie(item->sk); 3683 sock_put(item->sk); 3684 item->cookie = cookie; 3685 } 3686 } 3687 3688 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v) 3689 { 3690 struct bpf_udp_iter_state *iter = seq->private; 3691 struct bpf_iter_meta meta; 3692 struct bpf_prog *prog; 3693 3694 if (!v) { 3695 meta.seq = seq; 3696 prog = bpf_iter_get_info(&meta, true); 3697 if (prog) 3698 (void)udp_prog_seq_show(prog, &meta, v, 0, 0); 3699 } 3700 3701 if (iter->cur_sk < iter->end_sk) 3702 bpf_iter_udp_put_batch(iter); 3703 } 3704 3705 static const struct seq_operations bpf_iter_udp_seq_ops = { 3706 .start = bpf_iter_udp_seq_start, 3707 .next = bpf_iter_udp_seq_next, 3708 .stop = bpf_iter_udp_seq_stop, 3709 .show = bpf_iter_udp_seq_show, 3710 }; 3711 #endif 3712 3713 static unsigned short seq_file_family(const struct seq_file *seq) 3714 { 3715 const struct udp_seq_afinfo *afinfo; 3716 3717 #ifdef CONFIG_BPF_SYSCALL 3718 /* BPF iterator: bpf programs to filter sockets. */ 3719 if (seq->op == &bpf_iter_udp_seq_ops) 3720 return AF_UNSPEC; 3721 #endif 3722 3723 /* Proc fs iterator */ 3724 afinfo = pde_data(file_inode(seq->file)); 3725 return afinfo->family; 3726 } 3727 3728 const struct seq_operations udp_seq_ops = { 3729 .start = udp_seq_start, 3730 .next = udp_seq_next, 3731 .stop = udp_seq_stop, 3732 .show = udp4_seq_show, 3733 }; 3734 EXPORT_IPV6_MOD(udp_seq_ops); 3735 3736 static struct udp_seq_afinfo udp4_seq_afinfo = { 3737 .family = AF_INET, 3738 .udp_table = NULL, 3739 }; 3740 3741 static int __net_init udp4_proc_init_net(struct net *net) 3742 { 3743 if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops, 3744 sizeof(struct udp_iter_state), &udp4_seq_afinfo)) 3745 return -ENOMEM; 3746 return 0; 3747 } 3748 3749 static void __net_exit udp4_proc_exit_net(struct net *net) 3750 { 3751 remove_proc_entry("udp", net->proc_net); 3752 } 3753 3754 static struct pernet_operations udp4_net_ops = { 3755 .init = udp4_proc_init_net, 3756 .exit = udp4_proc_exit_net, 3757 }; 3758 3759 int __init udp4_proc_init(void) 3760 { 3761 return register_pernet_subsys(&udp4_net_ops); 3762 } 3763 3764 void udp4_proc_exit(void) 3765 { 3766 unregister_pernet_subsys(&udp4_net_ops); 3767 } 3768 #endif /* CONFIG_PROC_FS */ 3769 3770 static __initdata unsigned long uhash_entries; 3771 static int __init set_uhash_entries(char *str) 3772 { 3773 ssize_t ret; 3774 3775 if (!str) 3776 return 0; 3777 3778 ret = kstrtoul(str, 0, &uhash_entries); 3779 if (ret) 3780 return 0; 3781 3782 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN) 3783 uhash_entries = UDP_HTABLE_SIZE_MIN; 3784 return 1; 3785 } 3786 __setup("uhash_entries=", set_uhash_entries); 3787 3788 void __init udp_table_init(struct udp_table *table, const char *name) 3789 { 3790 unsigned int i, slot_size; 3791 3792 slot_size = sizeof(struct udp_hslot) + sizeof(struct udp_hslot_main) + 3793 udp_hash4_slot_size(); 3794 table->hash = alloc_large_system_hash(name, 3795 slot_size, 3796 uhash_entries, 3797 21, /* one slot per 2 MB */ 3798 0, 3799 &table->log, 3800 &table->mask, 3801 UDP_HTABLE_SIZE_MIN, 3802 UDP_HTABLE_SIZE_MAX); 3803 3804 table->hash2 = (void *)(table->hash + (table->mask + 1)); 3805 for (i = 0; i <= table->mask; i++) { 3806 INIT_HLIST_HEAD(&table->hash[i].head); 3807 table->hash[i].count = 0; 3808 spin_lock_init(&table->hash[i].lock); 3809 } 3810 for (i = 0; i <= table->mask; i++) { 3811 INIT_HLIST_HEAD(&table->hash2[i].hslot.head); 3812 table->hash2[i].hslot.count = 0; 3813 spin_lock_init(&table->hash2[i].hslot.lock); 3814 } 3815 udp_table_hash4_init(table); 3816 } 3817 3818 u32 udp_flow_hashrnd(void) 3819 { 3820 static u32 hashrnd __read_mostly; 3821 3822 net_get_random_once(&hashrnd, sizeof(hashrnd)); 3823 3824 return hashrnd; 3825 } 3826 EXPORT_SYMBOL(udp_flow_hashrnd); 3827 3828 static void __net_init udp_sysctl_init(struct net *net) 3829 { 3830 net->ipv4.sysctl_udp_rmem_min = PAGE_SIZE; 3831 net->ipv4.sysctl_udp_wmem_min = PAGE_SIZE; 3832 3833 #ifdef CONFIG_NET_L3_MASTER_DEV 3834 net->ipv4.sysctl_udp_l3mdev_accept = 0; 3835 #endif 3836 } 3837 3838 static struct udp_table __net_init *udp_pernet_table_alloc(unsigned int hash_entries) 3839 { 3840 struct udp_table *udptable; 3841 unsigned int slot_size; 3842 int i; 3843 3844 udptable = kmalloc(sizeof(*udptable), GFP_KERNEL); 3845 if (!udptable) 3846 goto out; 3847 3848 slot_size = sizeof(struct udp_hslot) + sizeof(struct udp_hslot_main) + 3849 udp_hash4_slot_size(); 3850 udptable->hash = vmalloc_huge(hash_entries * slot_size, 3851 GFP_KERNEL_ACCOUNT); 3852 if (!udptable->hash) 3853 goto free_table; 3854 3855 udptable->hash2 = (void *)(udptable->hash + hash_entries); 3856 udptable->mask = hash_entries - 1; 3857 udptable->log = ilog2(hash_entries); 3858 3859 for (i = 0; i < hash_entries; i++) { 3860 INIT_HLIST_HEAD(&udptable->hash[i].head); 3861 udptable->hash[i].count = 0; 3862 spin_lock_init(&udptable->hash[i].lock); 3863 3864 INIT_HLIST_HEAD(&udptable->hash2[i].hslot.head); 3865 udptable->hash2[i].hslot.count = 0; 3866 spin_lock_init(&udptable->hash2[i].hslot.lock); 3867 } 3868 udp_table_hash4_init(udptable); 3869 3870 return udptable; 3871 3872 free_table: 3873 kfree(udptable); 3874 out: 3875 return NULL; 3876 } 3877 3878 static void __net_exit udp_pernet_table_free(struct net *net) 3879 { 3880 struct udp_table *udptable = net->ipv4.udp_table; 3881 3882 if (udptable == &udp_table) 3883 return; 3884 3885 kvfree(udptable->hash); 3886 kfree(udptable); 3887 } 3888 3889 static void __net_init udp_set_table(struct net *net) 3890 { 3891 struct udp_table *udptable; 3892 unsigned int hash_entries; 3893 struct net *old_net; 3894 3895 if (net_eq(net, &init_net)) 3896 goto fallback; 3897 3898 old_net = current->nsproxy->net_ns; 3899 hash_entries = READ_ONCE(old_net->ipv4.sysctl_udp_child_hash_entries); 3900 if (!hash_entries) 3901 goto fallback; 3902 3903 /* Set min to keep the bitmap on stack in udp_lib_get_port() */ 3904 if (hash_entries < UDP_HTABLE_SIZE_MIN_PERNET) 3905 hash_entries = UDP_HTABLE_SIZE_MIN_PERNET; 3906 else 3907 hash_entries = roundup_pow_of_two(hash_entries); 3908 3909 udptable = udp_pernet_table_alloc(hash_entries); 3910 if (udptable) { 3911 net->ipv4.udp_table = udptable; 3912 } else { 3913 pr_warn("Failed to allocate UDP hash table (entries: %u) " 3914 "for a netns, fallback to the global one\n", 3915 hash_entries); 3916 fallback: 3917 net->ipv4.udp_table = &udp_table; 3918 } 3919 } 3920 3921 static int __net_init udp_pernet_init(struct net *net) 3922 { 3923 #if IS_ENABLED(CONFIG_NET_UDP_TUNNEL) 3924 int i; 3925 3926 /* No tunnel is configured */ 3927 for (i = 0; i < ARRAY_SIZE(net->ipv4.udp_tunnel_gro); ++i) { 3928 INIT_HLIST_HEAD(&net->ipv4.udp_tunnel_gro[i].list); 3929 RCU_INIT_POINTER(net->ipv4.udp_tunnel_gro[i].sk, NULL); 3930 } 3931 #endif 3932 udp_sysctl_init(net); 3933 udp_set_table(net); 3934 3935 return 0; 3936 } 3937 3938 static void __net_exit udp_pernet_exit(struct net *net) 3939 { 3940 udp_pernet_table_free(net); 3941 } 3942 3943 static struct pernet_operations __net_initdata udp_sysctl_ops = { 3944 .init = udp_pernet_init, 3945 .exit = udp_pernet_exit, 3946 }; 3947 3948 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3949 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta, 3950 struct udp_sock *udp_sk, uid_t uid, int bucket) 3951 3952 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter, 3953 unsigned int new_batch_sz, gfp_t flags) 3954 { 3955 union bpf_udp_iter_batch_item *new_batch; 3956 3957 new_batch = kvmalloc_array(new_batch_sz, sizeof(*new_batch), 3958 flags | __GFP_NOWARN); 3959 if (!new_batch) 3960 return -ENOMEM; 3961 3962 if (flags != GFP_NOWAIT) 3963 bpf_iter_udp_put_batch(iter); 3964 3965 memcpy(new_batch, iter->batch, sizeof(*iter->batch) * iter->end_sk); 3966 kvfree(iter->batch); 3967 iter->batch = new_batch; 3968 iter->max_sk = new_batch_sz; 3969 3970 return 0; 3971 } 3972 3973 #define INIT_BATCH_SZ 16 3974 3975 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux) 3976 { 3977 struct bpf_udp_iter_state *iter = priv_data; 3978 int ret; 3979 3980 ret = bpf_iter_init_seq_net(priv_data, aux); 3981 if (ret) 3982 return ret; 3983 3984 ret = bpf_iter_udp_realloc_batch(iter, INIT_BATCH_SZ, GFP_USER); 3985 if (ret) 3986 bpf_iter_fini_seq_net(priv_data); 3987 3988 iter->state.bucket = -1; 3989 3990 return ret; 3991 } 3992 3993 static void bpf_iter_fini_udp(void *priv_data) 3994 { 3995 struct bpf_udp_iter_state *iter = priv_data; 3996 3997 bpf_iter_fini_seq_net(priv_data); 3998 kvfree(iter->batch); 3999 } 4000 4001 static const struct bpf_iter_seq_info udp_seq_info = { 4002 .seq_ops = &bpf_iter_udp_seq_ops, 4003 .init_seq_private = bpf_iter_init_udp, 4004 .fini_seq_private = bpf_iter_fini_udp, 4005 .seq_priv_size = sizeof(struct bpf_udp_iter_state), 4006 }; 4007 4008 static struct bpf_iter_reg udp_reg_info = { 4009 .target = "udp", 4010 .ctx_arg_info_size = 1, 4011 .ctx_arg_info = { 4012 { offsetof(struct bpf_iter__udp, udp_sk), 4013 PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED }, 4014 }, 4015 .seq_info = &udp_seq_info, 4016 }; 4017 4018 static void __init bpf_iter_register(void) 4019 { 4020 udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP]; 4021 if (bpf_iter_reg_target(&udp_reg_info)) 4022 pr_warn("Warning: could not register bpf iterator udp\n"); 4023 } 4024 #endif 4025 4026 void __init udp_init(void) 4027 { 4028 unsigned long limit; 4029 4030 udp_table_init(&udp_table, "UDP"); 4031 limit = nr_free_buffer_pages() / 8; 4032 limit = max(limit, 128UL); 4033 sysctl_udp_mem[0] = limit / 4 * 3; 4034 sysctl_udp_mem[1] = limit; 4035 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2; 4036 4037 if (register_pernet_subsys(&udp_sysctl_ops)) 4038 panic("UDP: failed to init sysctl parameters.\n"); 4039 4040 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 4041 bpf_iter_register(); 4042 #endif 4043 } 4044