xref: /linux/net/ipv4/udp.c (revision d7f39aee79f04eeaa42085728423501b33ac5be5)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		The User Datagram Protocol (UDP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
12  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
13  *		Hirokazu Takahashi, <taka@valinux.co.jp>
14  *
15  * Fixes:
16  *		Alan Cox	:	verify_area() calls
17  *		Alan Cox	: 	stopped close while in use off icmp
18  *					messages. Not a fix but a botch that
19  *					for udp at least is 'valid'.
20  *		Alan Cox	:	Fixed icmp handling properly
21  *		Alan Cox	: 	Correct error for oversized datagrams
22  *		Alan Cox	:	Tidied select() semantics.
23  *		Alan Cox	:	udp_err() fixed properly, also now
24  *					select and read wake correctly on errors
25  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
26  *		Alan Cox	:	UDP can count its memory
27  *		Alan Cox	:	send to an unknown connection causes
28  *					an ECONNREFUSED off the icmp, but
29  *					does NOT close.
30  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
31  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
32  *					bug no longer crashes it.
33  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
34  *		Alan Cox	:	Uses skb_free_datagram
35  *		Alan Cox	:	Added get/set sockopt support.
36  *		Alan Cox	:	Broadcasting without option set returns EACCES.
37  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
38  *		Alan Cox	:	Use ip_tos and ip_ttl
39  *		Alan Cox	:	SNMP Mibs
40  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
41  *		Matt Dillon	:	UDP length checks.
42  *		Alan Cox	:	Smarter af_inet used properly.
43  *		Alan Cox	:	Use new kernel side addressing.
44  *		Alan Cox	:	Incorrect return on truncated datagram receive.
45  *	Arnt Gulbrandsen 	:	New udp_send and stuff
46  *		Alan Cox	:	Cache last socket
47  *		Alan Cox	:	Route cache
48  *		Jon Peatfield	:	Minor efficiency fix to sendto().
49  *		Mike Shaver	:	RFC1122 checks.
50  *		Alan Cox	:	Nonblocking error fix.
51  *	Willy Konynenberg	:	Transparent proxying support.
52  *		Mike McLagan	:	Routing by source
53  *		David S. Miller	:	New socket lookup architecture.
54  *					Last socket cache retained as it
55  *					does have a high hit rate.
56  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
57  *		Andi Kleen	:	Some cleanups, cache destination entry
58  *					for connect.
59  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
60  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
61  *					return ENOTCONN for unconnected sockets (POSIX)
62  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
63  *					bound-to-device socket
64  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
65  *					datagrams.
66  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
67  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
68  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
69  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
70  *					a single port at the same time.
71  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
72  *	James Chapman		:	Add L2TP encapsulation type.
73  */
74 
75 #define pr_fmt(fmt) "UDP: " fmt
76 
77 #include <linux/bpf-cgroup.h>
78 #include <linux/uaccess.h>
79 #include <asm/ioctls.h>
80 #include <linux/memblock.h>
81 #include <linux/highmem.h>
82 #include <linux/types.h>
83 #include <linux/fcntl.h>
84 #include <linux/module.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/igmp.h>
88 #include <linux/inetdevice.h>
89 #include <linux/in.h>
90 #include <linux/errno.h>
91 #include <linux/timer.h>
92 #include <linux/mm.h>
93 #include <linux/inet.h>
94 #include <linux/netdevice.h>
95 #include <linux/slab.h>
96 #include <net/tcp_states.h>
97 #include <linux/skbuff.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <net/net_namespace.h>
101 #include <net/icmp.h>
102 #include <net/inet_hashtables.h>
103 #include <net/ip_tunnels.h>
104 #include <net/route.h>
105 #include <net/checksum.h>
106 #include <net/gso.h>
107 #include <net/xfrm.h>
108 #include <trace/events/udp.h>
109 #include <linux/static_key.h>
110 #include <linux/btf_ids.h>
111 #include <trace/events/skb.h>
112 #include <net/busy_poll.h>
113 #include "udp_impl.h"
114 #include <net/sock_reuseport.h>
115 #include <net/addrconf.h>
116 #include <net/udp_tunnel.h>
117 #include <net/gro.h>
118 #if IS_ENABLED(CONFIG_IPV6)
119 #include <net/ipv6_stubs.h>
120 #endif
121 
122 struct udp_table udp_table __read_mostly;
123 EXPORT_SYMBOL(udp_table);
124 
125 long sysctl_udp_mem[3] __read_mostly;
126 EXPORT_SYMBOL(sysctl_udp_mem);
127 
128 atomic_long_t udp_memory_allocated ____cacheline_aligned_in_smp;
129 EXPORT_SYMBOL(udp_memory_allocated);
130 DEFINE_PER_CPU(int, udp_memory_per_cpu_fw_alloc);
131 EXPORT_PER_CPU_SYMBOL_GPL(udp_memory_per_cpu_fw_alloc);
132 
133 #define MAX_UDP_PORTS 65536
134 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN_PERNET)
135 
136 static struct udp_table *udp_get_table_prot(struct sock *sk)
137 {
138 	return sk->sk_prot->h.udp_table ? : sock_net(sk)->ipv4.udp_table;
139 }
140 
141 static int udp_lib_lport_inuse(struct net *net, __u16 num,
142 			       const struct udp_hslot *hslot,
143 			       unsigned long *bitmap,
144 			       struct sock *sk, unsigned int log)
145 {
146 	struct sock *sk2;
147 	kuid_t uid = sock_i_uid(sk);
148 
149 	sk_for_each(sk2, &hslot->head) {
150 		if (net_eq(sock_net(sk2), net) &&
151 		    sk2 != sk &&
152 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
153 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
154 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
155 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
156 		    inet_rcv_saddr_equal(sk, sk2, true)) {
157 			if (sk2->sk_reuseport && sk->sk_reuseport &&
158 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
159 			    uid_eq(uid, sock_i_uid(sk2))) {
160 				if (!bitmap)
161 					return 0;
162 			} else {
163 				if (!bitmap)
164 					return 1;
165 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
166 					  bitmap);
167 			}
168 		}
169 	}
170 	return 0;
171 }
172 
173 /*
174  * Note: we still hold spinlock of primary hash chain, so no other writer
175  * can insert/delete a socket with local_port == num
176  */
177 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
178 				struct udp_hslot *hslot2,
179 				struct sock *sk)
180 {
181 	struct sock *sk2;
182 	kuid_t uid = sock_i_uid(sk);
183 	int res = 0;
184 
185 	spin_lock(&hslot2->lock);
186 	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
187 		if (net_eq(sock_net(sk2), net) &&
188 		    sk2 != sk &&
189 		    (udp_sk(sk2)->udp_port_hash == num) &&
190 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
191 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
192 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
193 		    inet_rcv_saddr_equal(sk, sk2, true)) {
194 			if (sk2->sk_reuseport && sk->sk_reuseport &&
195 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
196 			    uid_eq(uid, sock_i_uid(sk2))) {
197 				res = 0;
198 			} else {
199 				res = 1;
200 			}
201 			break;
202 		}
203 	}
204 	spin_unlock(&hslot2->lock);
205 	return res;
206 }
207 
208 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
209 {
210 	struct net *net = sock_net(sk);
211 	kuid_t uid = sock_i_uid(sk);
212 	struct sock *sk2;
213 
214 	sk_for_each(sk2, &hslot->head) {
215 		if (net_eq(sock_net(sk2), net) &&
216 		    sk2 != sk &&
217 		    sk2->sk_family == sk->sk_family &&
218 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
219 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
220 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
221 		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
222 		    inet_rcv_saddr_equal(sk, sk2, false)) {
223 			return reuseport_add_sock(sk, sk2,
224 						  inet_rcv_saddr_any(sk));
225 		}
226 	}
227 
228 	return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
229 }
230 
231 /**
232  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
233  *
234  *  @sk:          socket struct in question
235  *  @snum:        port number to look up
236  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
237  *                   with NULL address
238  */
239 int udp_lib_get_port(struct sock *sk, unsigned short snum,
240 		     unsigned int hash2_nulladdr)
241 {
242 	struct udp_table *udptable = udp_get_table_prot(sk);
243 	struct udp_hslot *hslot, *hslot2;
244 	struct net *net = sock_net(sk);
245 	int error = -EADDRINUSE;
246 
247 	if (!snum) {
248 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
249 		unsigned short first, last;
250 		int low, high, remaining;
251 		unsigned int rand;
252 
253 		inet_sk_get_local_port_range(sk, &low, &high);
254 		remaining = (high - low) + 1;
255 
256 		rand = get_random_u32();
257 		first = reciprocal_scale(rand, remaining) + low;
258 		/*
259 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
260 		 */
261 		rand = (rand | 1) * (udptable->mask + 1);
262 		last = first + udptable->mask + 1;
263 		do {
264 			hslot = udp_hashslot(udptable, net, first);
265 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
266 			spin_lock_bh(&hslot->lock);
267 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
268 					    udptable->log);
269 
270 			snum = first;
271 			/*
272 			 * Iterate on all possible values of snum for this hash.
273 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
274 			 * give us randomization and full range coverage.
275 			 */
276 			do {
277 				if (low <= snum && snum <= high &&
278 				    !test_bit(snum >> udptable->log, bitmap) &&
279 				    !inet_is_local_reserved_port(net, snum))
280 					goto found;
281 				snum += rand;
282 			} while (snum != first);
283 			spin_unlock_bh(&hslot->lock);
284 			cond_resched();
285 		} while (++first != last);
286 		goto fail;
287 	} else {
288 		hslot = udp_hashslot(udptable, net, snum);
289 		spin_lock_bh(&hslot->lock);
290 		if (hslot->count > 10) {
291 			int exist;
292 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
293 
294 			slot2          &= udptable->mask;
295 			hash2_nulladdr &= udptable->mask;
296 
297 			hslot2 = udp_hashslot2(udptable, slot2);
298 			if (hslot->count < hslot2->count)
299 				goto scan_primary_hash;
300 
301 			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
302 			if (!exist && (hash2_nulladdr != slot2)) {
303 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
304 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
305 							     sk);
306 			}
307 			if (exist)
308 				goto fail_unlock;
309 			else
310 				goto found;
311 		}
312 scan_primary_hash:
313 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
314 			goto fail_unlock;
315 	}
316 found:
317 	inet_sk(sk)->inet_num = snum;
318 	udp_sk(sk)->udp_port_hash = snum;
319 	udp_sk(sk)->udp_portaddr_hash ^= snum;
320 	if (sk_unhashed(sk)) {
321 		if (sk->sk_reuseport &&
322 		    udp_reuseport_add_sock(sk, hslot)) {
323 			inet_sk(sk)->inet_num = 0;
324 			udp_sk(sk)->udp_port_hash = 0;
325 			udp_sk(sk)->udp_portaddr_hash ^= snum;
326 			goto fail_unlock;
327 		}
328 
329 		sk_add_node_rcu(sk, &hslot->head);
330 		hslot->count++;
331 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
332 
333 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
334 		spin_lock(&hslot2->lock);
335 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
336 		    sk->sk_family == AF_INET6)
337 			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
338 					   &hslot2->head);
339 		else
340 			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
341 					   &hslot2->head);
342 		hslot2->count++;
343 		spin_unlock(&hslot2->lock);
344 	}
345 	sock_set_flag(sk, SOCK_RCU_FREE);
346 	error = 0;
347 fail_unlock:
348 	spin_unlock_bh(&hslot->lock);
349 fail:
350 	return error;
351 }
352 EXPORT_SYMBOL(udp_lib_get_port);
353 
354 int udp_v4_get_port(struct sock *sk, unsigned short snum)
355 {
356 	unsigned int hash2_nulladdr =
357 		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
358 	unsigned int hash2_partial =
359 		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
360 
361 	/* precompute partial secondary hash */
362 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
363 	return udp_lib_get_port(sk, snum, hash2_nulladdr);
364 }
365 
366 static int compute_score(struct sock *sk, struct net *net,
367 			 __be32 saddr, __be16 sport,
368 			 __be32 daddr, unsigned short hnum,
369 			 int dif, int sdif)
370 {
371 	int score;
372 	struct inet_sock *inet;
373 	bool dev_match;
374 
375 	if (!net_eq(sock_net(sk), net) ||
376 	    udp_sk(sk)->udp_port_hash != hnum ||
377 	    ipv6_only_sock(sk))
378 		return -1;
379 
380 	if (sk->sk_rcv_saddr != daddr)
381 		return -1;
382 
383 	score = (sk->sk_family == PF_INET) ? 2 : 1;
384 
385 	inet = inet_sk(sk);
386 	if (inet->inet_daddr) {
387 		if (inet->inet_daddr != saddr)
388 			return -1;
389 		score += 4;
390 	}
391 
392 	if (inet->inet_dport) {
393 		if (inet->inet_dport != sport)
394 			return -1;
395 		score += 4;
396 	}
397 
398 	dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
399 					dif, sdif);
400 	if (!dev_match)
401 		return -1;
402 	if (sk->sk_bound_dev_if)
403 		score += 4;
404 
405 	if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
406 		score++;
407 	return score;
408 }
409 
410 INDIRECT_CALLABLE_SCOPE
411 u32 udp_ehashfn(const struct net *net, const __be32 laddr, const __u16 lport,
412 		const __be32 faddr, const __be16 fport)
413 {
414 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
415 
416 	return __inet_ehashfn(laddr, lport, faddr, fport,
417 			      udp_ehash_secret + net_hash_mix(net));
418 }
419 
420 /* called with rcu_read_lock() */
421 static struct sock *udp4_lib_lookup2(struct net *net,
422 				     __be32 saddr, __be16 sport,
423 				     __be32 daddr, unsigned int hnum,
424 				     int dif, int sdif,
425 				     struct udp_hslot *hslot2,
426 				     struct sk_buff *skb)
427 {
428 	struct sock *sk, *result;
429 	int score, badness;
430 	bool need_rescore;
431 
432 	result = NULL;
433 	badness = 0;
434 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
435 		need_rescore = false;
436 rescore:
437 		score = compute_score(need_rescore ? result : sk, net, saddr,
438 				      sport, daddr, hnum, dif, sdif);
439 		if (score > badness) {
440 			badness = score;
441 
442 			if (need_rescore)
443 				continue;
444 
445 			if (sk->sk_state == TCP_ESTABLISHED) {
446 				result = sk;
447 				continue;
448 			}
449 
450 			result = inet_lookup_reuseport(net, sk, skb, sizeof(struct udphdr),
451 						       saddr, sport, daddr, hnum, udp_ehashfn);
452 			if (!result) {
453 				result = sk;
454 				continue;
455 			}
456 
457 			/* Fall back to scoring if group has connections */
458 			if (!reuseport_has_conns(sk))
459 				return result;
460 
461 			/* Reuseport logic returned an error, keep original score. */
462 			if (IS_ERR(result))
463 				continue;
464 
465 			/* compute_score is too long of a function to be
466 			 * inlined, and calling it again here yields
467 			 * measureable overhead for some
468 			 * workloads. Work around it by jumping
469 			 * backwards to rescore 'result'.
470 			 */
471 			need_rescore = true;
472 			goto rescore;
473 		}
474 	}
475 	return result;
476 }
477 
478 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
479  * harder than this. -DaveM
480  */
481 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
482 		__be16 sport, __be32 daddr, __be16 dport, int dif,
483 		int sdif, struct udp_table *udptable, struct sk_buff *skb)
484 {
485 	unsigned short hnum = ntohs(dport);
486 	unsigned int hash2, slot2;
487 	struct udp_hslot *hslot2;
488 	struct sock *result, *sk;
489 
490 	hash2 = ipv4_portaddr_hash(net, daddr, hnum);
491 	slot2 = hash2 & udptable->mask;
492 	hslot2 = &udptable->hash2[slot2];
493 
494 	/* Lookup connected or non-wildcard socket */
495 	result = udp4_lib_lookup2(net, saddr, sport,
496 				  daddr, hnum, dif, sdif,
497 				  hslot2, skb);
498 	if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED)
499 		goto done;
500 
501 	/* Lookup redirect from BPF */
502 	if (static_branch_unlikely(&bpf_sk_lookup_enabled) &&
503 	    udptable == net->ipv4.udp_table) {
504 		sk = inet_lookup_run_sk_lookup(net, IPPROTO_UDP, skb, sizeof(struct udphdr),
505 					       saddr, sport, daddr, hnum, dif,
506 					       udp_ehashfn);
507 		if (sk) {
508 			result = sk;
509 			goto done;
510 		}
511 	}
512 
513 	/* Got non-wildcard socket or error on first lookup */
514 	if (result)
515 		goto done;
516 
517 	/* Lookup wildcard sockets */
518 	hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
519 	slot2 = hash2 & udptable->mask;
520 	hslot2 = &udptable->hash2[slot2];
521 
522 	result = udp4_lib_lookup2(net, saddr, sport,
523 				  htonl(INADDR_ANY), hnum, dif, sdif,
524 				  hslot2, skb);
525 done:
526 	if (IS_ERR(result))
527 		return NULL;
528 	return result;
529 }
530 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
531 
532 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
533 						 __be16 sport, __be16 dport,
534 						 struct udp_table *udptable)
535 {
536 	const struct iphdr *iph = ip_hdr(skb);
537 
538 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
539 				 iph->daddr, dport, inet_iif(skb),
540 				 inet_sdif(skb), udptable, skb);
541 }
542 
543 struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb,
544 				 __be16 sport, __be16 dport)
545 {
546 	const u16 offset = NAPI_GRO_CB(skb)->network_offsets[skb->encapsulation];
547 	const struct iphdr *iph = (struct iphdr *)(skb->data + offset);
548 	struct net *net = dev_net(skb->dev);
549 	int iif, sdif;
550 
551 	inet_get_iif_sdif(skb, &iif, &sdif);
552 
553 	return __udp4_lib_lookup(net, iph->saddr, sport,
554 				 iph->daddr, dport, iif,
555 				 sdif, net->ipv4.udp_table, NULL);
556 }
557 
558 /* Must be called under rcu_read_lock().
559  * Does increment socket refcount.
560  */
561 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
562 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
563 			     __be32 daddr, __be16 dport, int dif)
564 {
565 	struct sock *sk;
566 
567 	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
568 			       dif, 0, net->ipv4.udp_table, NULL);
569 	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
570 		sk = NULL;
571 	return sk;
572 }
573 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
574 #endif
575 
576 static inline bool __udp_is_mcast_sock(struct net *net, const struct sock *sk,
577 				       __be16 loc_port, __be32 loc_addr,
578 				       __be16 rmt_port, __be32 rmt_addr,
579 				       int dif, int sdif, unsigned short hnum)
580 {
581 	const struct inet_sock *inet = inet_sk(sk);
582 
583 	if (!net_eq(sock_net(sk), net) ||
584 	    udp_sk(sk)->udp_port_hash != hnum ||
585 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
586 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
587 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
588 	    ipv6_only_sock(sk) ||
589 	    !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
590 		return false;
591 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
592 		return false;
593 	return true;
594 }
595 
596 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
597 EXPORT_SYMBOL(udp_encap_needed_key);
598 
599 #if IS_ENABLED(CONFIG_IPV6)
600 DEFINE_STATIC_KEY_FALSE(udpv6_encap_needed_key);
601 EXPORT_SYMBOL(udpv6_encap_needed_key);
602 #endif
603 
604 void udp_encap_enable(void)
605 {
606 	static_branch_inc(&udp_encap_needed_key);
607 }
608 EXPORT_SYMBOL(udp_encap_enable);
609 
610 void udp_encap_disable(void)
611 {
612 	static_branch_dec(&udp_encap_needed_key);
613 }
614 EXPORT_SYMBOL(udp_encap_disable);
615 
616 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go
617  * through error handlers in encapsulations looking for a match.
618  */
619 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
620 {
621 	int i;
622 
623 	for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
624 		int (*handler)(struct sk_buff *skb, u32 info);
625 		const struct ip_tunnel_encap_ops *encap;
626 
627 		encap = rcu_dereference(iptun_encaps[i]);
628 		if (!encap)
629 			continue;
630 		handler = encap->err_handler;
631 		if (handler && !handler(skb, info))
632 			return 0;
633 	}
634 
635 	return -ENOENT;
636 }
637 
638 /* Try to match ICMP errors to UDP tunnels by looking up a socket without
639  * reversing source and destination port: this will match tunnels that force the
640  * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
641  * lwtunnels might actually break this assumption by being configured with
642  * different destination ports on endpoints, in this case we won't be able to
643  * trace ICMP messages back to them.
644  *
645  * If this doesn't match any socket, probe tunnels with arbitrary destination
646  * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
647  * we've sent packets to won't necessarily match the local destination port.
648  *
649  * Then ask the tunnel implementation to match the error against a valid
650  * association.
651  *
652  * Return an error if we can't find a match, the socket if we need further
653  * processing, zero otherwise.
654  */
655 static struct sock *__udp4_lib_err_encap(struct net *net,
656 					 const struct iphdr *iph,
657 					 struct udphdr *uh,
658 					 struct udp_table *udptable,
659 					 struct sock *sk,
660 					 struct sk_buff *skb, u32 info)
661 {
662 	int (*lookup)(struct sock *sk, struct sk_buff *skb);
663 	int network_offset, transport_offset;
664 	struct udp_sock *up;
665 
666 	network_offset = skb_network_offset(skb);
667 	transport_offset = skb_transport_offset(skb);
668 
669 	/* Network header needs to point to the outer IPv4 header inside ICMP */
670 	skb_reset_network_header(skb);
671 
672 	/* Transport header needs to point to the UDP header */
673 	skb_set_transport_header(skb, iph->ihl << 2);
674 
675 	if (sk) {
676 		up = udp_sk(sk);
677 
678 		lookup = READ_ONCE(up->encap_err_lookup);
679 		if (lookup && lookup(sk, skb))
680 			sk = NULL;
681 
682 		goto out;
683 	}
684 
685 	sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
686 			       iph->saddr, uh->dest, skb->dev->ifindex, 0,
687 			       udptable, NULL);
688 	if (sk) {
689 		up = udp_sk(sk);
690 
691 		lookup = READ_ONCE(up->encap_err_lookup);
692 		if (!lookup || lookup(sk, skb))
693 			sk = NULL;
694 	}
695 
696 out:
697 	if (!sk)
698 		sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
699 
700 	skb_set_transport_header(skb, transport_offset);
701 	skb_set_network_header(skb, network_offset);
702 
703 	return sk;
704 }
705 
706 /*
707  * This routine is called by the ICMP module when it gets some
708  * sort of error condition.  If err < 0 then the socket should
709  * be closed and the error returned to the user.  If err > 0
710  * it's just the icmp type << 8 | icmp code.
711  * Header points to the ip header of the error packet. We move
712  * on past this. Then (as it used to claim before adjustment)
713  * header points to the first 8 bytes of the udp header.  We need
714  * to find the appropriate port.
715  */
716 
717 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
718 {
719 	struct inet_sock *inet;
720 	const struct iphdr *iph = (const struct iphdr *)skb->data;
721 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
722 	const int type = icmp_hdr(skb)->type;
723 	const int code = icmp_hdr(skb)->code;
724 	bool tunnel = false;
725 	struct sock *sk;
726 	int harderr;
727 	int err;
728 	struct net *net = dev_net(skb->dev);
729 
730 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
731 			       iph->saddr, uh->source, skb->dev->ifindex,
732 			       inet_sdif(skb), udptable, NULL);
733 
734 	if (!sk || READ_ONCE(udp_sk(sk)->encap_type)) {
735 		/* No socket for error: try tunnels before discarding */
736 		if (static_branch_unlikely(&udp_encap_needed_key)) {
737 			sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb,
738 						  info);
739 			if (!sk)
740 				return 0;
741 		} else
742 			sk = ERR_PTR(-ENOENT);
743 
744 		if (IS_ERR(sk)) {
745 			__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
746 			return PTR_ERR(sk);
747 		}
748 
749 		tunnel = true;
750 	}
751 
752 	err = 0;
753 	harderr = 0;
754 	inet = inet_sk(sk);
755 
756 	switch (type) {
757 	default:
758 	case ICMP_TIME_EXCEEDED:
759 		err = EHOSTUNREACH;
760 		break;
761 	case ICMP_SOURCE_QUENCH:
762 		goto out;
763 	case ICMP_PARAMETERPROB:
764 		err = EPROTO;
765 		harderr = 1;
766 		break;
767 	case ICMP_DEST_UNREACH:
768 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
769 			ipv4_sk_update_pmtu(skb, sk, info);
770 			if (READ_ONCE(inet->pmtudisc) != IP_PMTUDISC_DONT) {
771 				err = EMSGSIZE;
772 				harderr = 1;
773 				break;
774 			}
775 			goto out;
776 		}
777 		err = EHOSTUNREACH;
778 		if (code <= NR_ICMP_UNREACH) {
779 			harderr = icmp_err_convert[code].fatal;
780 			err = icmp_err_convert[code].errno;
781 		}
782 		break;
783 	case ICMP_REDIRECT:
784 		ipv4_sk_redirect(skb, sk);
785 		goto out;
786 	}
787 
788 	/*
789 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
790 	 *	4.1.3.3.
791 	 */
792 	if (tunnel) {
793 		/* ...not for tunnels though: we don't have a sending socket */
794 		if (udp_sk(sk)->encap_err_rcv)
795 			udp_sk(sk)->encap_err_rcv(sk, skb, err, uh->dest, info,
796 						  (u8 *)(uh+1));
797 		goto out;
798 	}
799 	if (!inet_test_bit(RECVERR, sk)) {
800 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
801 			goto out;
802 	} else
803 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
804 
805 	sk->sk_err = err;
806 	sk_error_report(sk);
807 out:
808 	return 0;
809 }
810 
811 int udp_err(struct sk_buff *skb, u32 info)
812 {
813 	return __udp4_lib_err(skb, info, dev_net(skb->dev)->ipv4.udp_table);
814 }
815 
816 /*
817  * Throw away all pending data and cancel the corking. Socket is locked.
818  */
819 void udp_flush_pending_frames(struct sock *sk)
820 {
821 	struct udp_sock *up = udp_sk(sk);
822 
823 	if (up->pending) {
824 		up->len = 0;
825 		WRITE_ONCE(up->pending, 0);
826 		ip_flush_pending_frames(sk);
827 	}
828 }
829 EXPORT_SYMBOL(udp_flush_pending_frames);
830 
831 /**
832  * 	udp4_hwcsum  -  handle outgoing HW checksumming
833  * 	@skb: 	sk_buff containing the filled-in UDP header
834  * 	        (checksum field must be zeroed out)
835  *	@src:	source IP address
836  *	@dst:	destination IP address
837  */
838 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
839 {
840 	struct udphdr *uh = udp_hdr(skb);
841 	int offset = skb_transport_offset(skb);
842 	int len = skb->len - offset;
843 	int hlen = len;
844 	__wsum csum = 0;
845 
846 	if (!skb_has_frag_list(skb)) {
847 		/*
848 		 * Only one fragment on the socket.
849 		 */
850 		skb->csum_start = skb_transport_header(skb) - skb->head;
851 		skb->csum_offset = offsetof(struct udphdr, check);
852 		uh->check = ~csum_tcpudp_magic(src, dst, len,
853 					       IPPROTO_UDP, 0);
854 	} else {
855 		struct sk_buff *frags;
856 
857 		/*
858 		 * HW-checksum won't work as there are two or more
859 		 * fragments on the socket so that all csums of sk_buffs
860 		 * should be together
861 		 */
862 		skb_walk_frags(skb, frags) {
863 			csum = csum_add(csum, frags->csum);
864 			hlen -= frags->len;
865 		}
866 
867 		csum = skb_checksum(skb, offset, hlen, csum);
868 		skb->ip_summed = CHECKSUM_NONE;
869 
870 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
871 		if (uh->check == 0)
872 			uh->check = CSUM_MANGLED_0;
873 	}
874 }
875 EXPORT_SYMBOL_GPL(udp4_hwcsum);
876 
877 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
878  * for the simple case like when setting the checksum for a UDP tunnel.
879  */
880 void udp_set_csum(bool nocheck, struct sk_buff *skb,
881 		  __be32 saddr, __be32 daddr, int len)
882 {
883 	struct udphdr *uh = udp_hdr(skb);
884 
885 	if (nocheck) {
886 		uh->check = 0;
887 	} else if (skb_is_gso(skb)) {
888 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
889 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
890 		uh->check = 0;
891 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
892 		if (uh->check == 0)
893 			uh->check = CSUM_MANGLED_0;
894 	} else {
895 		skb->ip_summed = CHECKSUM_PARTIAL;
896 		skb->csum_start = skb_transport_header(skb) - skb->head;
897 		skb->csum_offset = offsetof(struct udphdr, check);
898 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
899 	}
900 }
901 EXPORT_SYMBOL(udp_set_csum);
902 
903 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
904 			struct inet_cork *cork)
905 {
906 	struct sock *sk = skb->sk;
907 	struct inet_sock *inet = inet_sk(sk);
908 	struct udphdr *uh;
909 	int err;
910 	int is_udplite = IS_UDPLITE(sk);
911 	int offset = skb_transport_offset(skb);
912 	int len = skb->len - offset;
913 	int datalen = len - sizeof(*uh);
914 	__wsum csum = 0;
915 
916 	/*
917 	 * Create a UDP header
918 	 */
919 	uh = udp_hdr(skb);
920 	uh->source = inet->inet_sport;
921 	uh->dest = fl4->fl4_dport;
922 	uh->len = htons(len);
923 	uh->check = 0;
924 
925 	if (cork->gso_size) {
926 		const int hlen = skb_network_header_len(skb) +
927 				 sizeof(struct udphdr);
928 
929 		if (hlen + cork->gso_size > cork->fragsize) {
930 			kfree_skb(skb);
931 			return -EINVAL;
932 		}
933 		if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) {
934 			kfree_skb(skb);
935 			return -EINVAL;
936 		}
937 		if (sk->sk_no_check_tx) {
938 			kfree_skb(skb);
939 			return -EINVAL;
940 		}
941 		if (is_udplite || dst_xfrm(skb_dst(skb))) {
942 			kfree_skb(skb);
943 			return -EIO;
944 		}
945 
946 		if (datalen > cork->gso_size) {
947 			skb_shinfo(skb)->gso_size = cork->gso_size;
948 			skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
949 			skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
950 								 cork->gso_size);
951 		}
952 		goto csum_partial;
953 	}
954 
955 	if (is_udplite)  				 /*     UDP-Lite      */
956 		csum = udplite_csum(skb);
957 
958 	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
959 
960 		skb->ip_summed = CHECKSUM_NONE;
961 		goto send;
962 
963 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
964 csum_partial:
965 
966 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
967 		goto send;
968 
969 	} else
970 		csum = udp_csum(skb);
971 
972 	/* add protocol-dependent pseudo-header */
973 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
974 				      sk->sk_protocol, csum);
975 	if (uh->check == 0)
976 		uh->check = CSUM_MANGLED_0;
977 
978 send:
979 	err = ip_send_skb(sock_net(sk), skb);
980 	if (err) {
981 		if (err == -ENOBUFS &&
982 		    !inet_test_bit(RECVERR, sk)) {
983 			UDP_INC_STATS(sock_net(sk),
984 				      UDP_MIB_SNDBUFERRORS, is_udplite);
985 			err = 0;
986 		}
987 	} else
988 		UDP_INC_STATS(sock_net(sk),
989 			      UDP_MIB_OUTDATAGRAMS, is_udplite);
990 	return err;
991 }
992 
993 /*
994  * Push out all pending data as one UDP datagram. Socket is locked.
995  */
996 int udp_push_pending_frames(struct sock *sk)
997 {
998 	struct udp_sock  *up = udp_sk(sk);
999 	struct inet_sock *inet = inet_sk(sk);
1000 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
1001 	struct sk_buff *skb;
1002 	int err = 0;
1003 
1004 	skb = ip_finish_skb(sk, fl4);
1005 	if (!skb)
1006 		goto out;
1007 
1008 	err = udp_send_skb(skb, fl4, &inet->cork.base);
1009 
1010 out:
1011 	up->len = 0;
1012 	WRITE_ONCE(up->pending, 0);
1013 	return err;
1014 }
1015 EXPORT_SYMBOL(udp_push_pending_frames);
1016 
1017 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
1018 {
1019 	switch (cmsg->cmsg_type) {
1020 	case UDP_SEGMENT:
1021 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
1022 			return -EINVAL;
1023 		*gso_size = *(__u16 *)CMSG_DATA(cmsg);
1024 		return 0;
1025 	default:
1026 		return -EINVAL;
1027 	}
1028 }
1029 
1030 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
1031 {
1032 	struct cmsghdr *cmsg;
1033 	bool need_ip = false;
1034 	int err;
1035 
1036 	for_each_cmsghdr(cmsg, msg) {
1037 		if (!CMSG_OK(msg, cmsg))
1038 			return -EINVAL;
1039 
1040 		if (cmsg->cmsg_level != SOL_UDP) {
1041 			need_ip = true;
1042 			continue;
1043 		}
1044 
1045 		err = __udp_cmsg_send(cmsg, gso_size);
1046 		if (err)
1047 			return err;
1048 	}
1049 
1050 	return need_ip;
1051 }
1052 EXPORT_SYMBOL_GPL(udp_cmsg_send);
1053 
1054 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1055 {
1056 	struct inet_sock *inet = inet_sk(sk);
1057 	struct udp_sock *up = udp_sk(sk);
1058 	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1059 	struct flowi4 fl4_stack;
1060 	struct flowi4 *fl4;
1061 	int ulen = len;
1062 	struct ipcm_cookie ipc;
1063 	struct rtable *rt = NULL;
1064 	int free = 0;
1065 	int connected = 0;
1066 	__be32 daddr, faddr, saddr;
1067 	u8 tos, scope;
1068 	__be16 dport;
1069 	int err, is_udplite = IS_UDPLITE(sk);
1070 	int corkreq = udp_test_bit(CORK, sk) || msg->msg_flags & MSG_MORE;
1071 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
1072 	struct sk_buff *skb;
1073 	struct ip_options_data opt_copy;
1074 	int uc_index;
1075 
1076 	if (len > 0xFFFF)
1077 		return -EMSGSIZE;
1078 
1079 	/*
1080 	 *	Check the flags.
1081 	 */
1082 
1083 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1084 		return -EOPNOTSUPP;
1085 
1086 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1087 
1088 	fl4 = &inet->cork.fl.u.ip4;
1089 	if (READ_ONCE(up->pending)) {
1090 		/*
1091 		 * There are pending frames.
1092 		 * The socket lock must be held while it's corked.
1093 		 */
1094 		lock_sock(sk);
1095 		if (likely(up->pending)) {
1096 			if (unlikely(up->pending != AF_INET)) {
1097 				release_sock(sk);
1098 				return -EINVAL;
1099 			}
1100 			goto do_append_data;
1101 		}
1102 		release_sock(sk);
1103 	}
1104 	ulen += sizeof(struct udphdr);
1105 
1106 	/*
1107 	 *	Get and verify the address.
1108 	 */
1109 	if (usin) {
1110 		if (msg->msg_namelen < sizeof(*usin))
1111 			return -EINVAL;
1112 		if (usin->sin_family != AF_INET) {
1113 			if (usin->sin_family != AF_UNSPEC)
1114 				return -EAFNOSUPPORT;
1115 		}
1116 
1117 		daddr = usin->sin_addr.s_addr;
1118 		dport = usin->sin_port;
1119 		if (dport == 0)
1120 			return -EINVAL;
1121 	} else {
1122 		if (sk->sk_state != TCP_ESTABLISHED)
1123 			return -EDESTADDRREQ;
1124 		daddr = inet->inet_daddr;
1125 		dport = inet->inet_dport;
1126 		/* Open fast path for connected socket.
1127 		   Route will not be used, if at least one option is set.
1128 		 */
1129 		connected = 1;
1130 	}
1131 
1132 	ipcm_init_sk(&ipc, inet);
1133 	ipc.gso_size = READ_ONCE(up->gso_size);
1134 
1135 	if (msg->msg_controllen) {
1136 		err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1137 		if (err > 0) {
1138 			err = ip_cmsg_send(sk, msg, &ipc,
1139 					   sk->sk_family == AF_INET6);
1140 			connected = 0;
1141 		}
1142 		if (unlikely(err < 0)) {
1143 			kfree(ipc.opt);
1144 			return err;
1145 		}
1146 		if (ipc.opt)
1147 			free = 1;
1148 	}
1149 	if (!ipc.opt) {
1150 		struct ip_options_rcu *inet_opt;
1151 
1152 		rcu_read_lock();
1153 		inet_opt = rcu_dereference(inet->inet_opt);
1154 		if (inet_opt) {
1155 			memcpy(&opt_copy, inet_opt,
1156 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
1157 			ipc.opt = &opt_copy.opt;
1158 		}
1159 		rcu_read_unlock();
1160 	}
1161 
1162 	if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) {
1163 		err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1164 					    (struct sockaddr *)usin,
1165 					    &msg->msg_namelen,
1166 					    &ipc.addr);
1167 		if (err)
1168 			goto out_free;
1169 		if (usin) {
1170 			if (usin->sin_port == 0) {
1171 				/* BPF program set invalid port. Reject it. */
1172 				err = -EINVAL;
1173 				goto out_free;
1174 			}
1175 			daddr = usin->sin_addr.s_addr;
1176 			dport = usin->sin_port;
1177 		}
1178 	}
1179 
1180 	saddr = ipc.addr;
1181 	ipc.addr = faddr = daddr;
1182 
1183 	if (ipc.opt && ipc.opt->opt.srr) {
1184 		if (!daddr) {
1185 			err = -EINVAL;
1186 			goto out_free;
1187 		}
1188 		faddr = ipc.opt->opt.faddr;
1189 		connected = 0;
1190 	}
1191 	tos = get_rttos(&ipc, inet);
1192 	scope = ip_sendmsg_scope(inet, &ipc, msg);
1193 	if (scope == RT_SCOPE_LINK)
1194 		connected = 0;
1195 
1196 	uc_index = READ_ONCE(inet->uc_index);
1197 	if (ipv4_is_multicast(daddr)) {
1198 		if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1199 			ipc.oif = READ_ONCE(inet->mc_index);
1200 		if (!saddr)
1201 			saddr = READ_ONCE(inet->mc_addr);
1202 		connected = 0;
1203 	} else if (!ipc.oif) {
1204 		ipc.oif = uc_index;
1205 	} else if (ipv4_is_lbcast(daddr) && uc_index) {
1206 		/* oif is set, packet is to local broadcast and
1207 		 * uc_index is set. oif is most likely set
1208 		 * by sk_bound_dev_if. If uc_index != oif check if the
1209 		 * oif is an L3 master and uc_index is an L3 slave.
1210 		 * If so, we want to allow the send using the uc_index.
1211 		 */
1212 		if (ipc.oif != uc_index &&
1213 		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1214 							      uc_index)) {
1215 			ipc.oif = uc_index;
1216 		}
1217 	}
1218 
1219 	if (connected)
1220 		rt = dst_rtable(sk_dst_check(sk, 0));
1221 
1222 	if (!rt) {
1223 		struct net *net = sock_net(sk);
1224 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1225 
1226 		fl4 = &fl4_stack;
1227 
1228 		flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos, scope,
1229 				   sk->sk_protocol, flow_flags, faddr, saddr,
1230 				   dport, inet->inet_sport, sk->sk_uid);
1231 
1232 		security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
1233 		rt = ip_route_output_flow(net, fl4, sk);
1234 		if (IS_ERR(rt)) {
1235 			err = PTR_ERR(rt);
1236 			rt = NULL;
1237 			if (err == -ENETUNREACH)
1238 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1239 			goto out;
1240 		}
1241 
1242 		err = -EACCES;
1243 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1244 		    !sock_flag(sk, SOCK_BROADCAST))
1245 			goto out;
1246 		if (connected)
1247 			sk_dst_set(sk, dst_clone(&rt->dst));
1248 	}
1249 
1250 	if (msg->msg_flags&MSG_CONFIRM)
1251 		goto do_confirm;
1252 back_from_confirm:
1253 
1254 	saddr = fl4->saddr;
1255 	if (!ipc.addr)
1256 		daddr = ipc.addr = fl4->daddr;
1257 
1258 	/* Lockless fast path for the non-corking case. */
1259 	if (!corkreq) {
1260 		struct inet_cork cork;
1261 
1262 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1263 				  sizeof(struct udphdr), &ipc, &rt,
1264 				  &cork, msg->msg_flags);
1265 		err = PTR_ERR(skb);
1266 		if (!IS_ERR_OR_NULL(skb))
1267 			err = udp_send_skb(skb, fl4, &cork);
1268 		goto out;
1269 	}
1270 
1271 	lock_sock(sk);
1272 	if (unlikely(up->pending)) {
1273 		/* The socket is already corked while preparing it. */
1274 		/* ... which is an evident application bug. --ANK */
1275 		release_sock(sk);
1276 
1277 		net_dbg_ratelimited("socket already corked\n");
1278 		err = -EINVAL;
1279 		goto out;
1280 	}
1281 	/*
1282 	 *	Now cork the socket to pend data.
1283 	 */
1284 	fl4 = &inet->cork.fl.u.ip4;
1285 	fl4->daddr = daddr;
1286 	fl4->saddr = saddr;
1287 	fl4->fl4_dport = dport;
1288 	fl4->fl4_sport = inet->inet_sport;
1289 	WRITE_ONCE(up->pending, AF_INET);
1290 
1291 do_append_data:
1292 	up->len += ulen;
1293 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1294 			     sizeof(struct udphdr), &ipc, &rt,
1295 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1296 	if (err)
1297 		udp_flush_pending_frames(sk);
1298 	else if (!corkreq)
1299 		err = udp_push_pending_frames(sk);
1300 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1301 		WRITE_ONCE(up->pending, 0);
1302 	release_sock(sk);
1303 
1304 out:
1305 	ip_rt_put(rt);
1306 out_free:
1307 	if (free)
1308 		kfree(ipc.opt);
1309 	if (!err)
1310 		return len;
1311 	/*
1312 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1313 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1314 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1315 	 * things).  We could add another new stat but at least for now that
1316 	 * seems like overkill.
1317 	 */
1318 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1319 		UDP_INC_STATS(sock_net(sk),
1320 			      UDP_MIB_SNDBUFERRORS, is_udplite);
1321 	}
1322 	return err;
1323 
1324 do_confirm:
1325 	if (msg->msg_flags & MSG_PROBE)
1326 		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1327 	if (!(msg->msg_flags&MSG_PROBE) || len)
1328 		goto back_from_confirm;
1329 	err = 0;
1330 	goto out;
1331 }
1332 EXPORT_SYMBOL(udp_sendmsg);
1333 
1334 void udp_splice_eof(struct socket *sock)
1335 {
1336 	struct sock *sk = sock->sk;
1337 	struct udp_sock *up = udp_sk(sk);
1338 
1339 	if (!READ_ONCE(up->pending) || udp_test_bit(CORK, sk))
1340 		return;
1341 
1342 	lock_sock(sk);
1343 	if (up->pending && !udp_test_bit(CORK, sk))
1344 		udp_push_pending_frames(sk);
1345 	release_sock(sk);
1346 }
1347 EXPORT_SYMBOL_GPL(udp_splice_eof);
1348 
1349 #define UDP_SKB_IS_STATELESS 0x80000000
1350 
1351 /* all head states (dst, sk, nf conntrack) except skb extensions are
1352  * cleared by udp_rcv().
1353  *
1354  * We need to preserve secpath, if present, to eventually process
1355  * IP_CMSG_PASSSEC at recvmsg() time.
1356  *
1357  * Other extensions can be cleared.
1358  */
1359 static bool udp_try_make_stateless(struct sk_buff *skb)
1360 {
1361 	if (!skb_has_extensions(skb))
1362 		return true;
1363 
1364 	if (!secpath_exists(skb)) {
1365 		skb_ext_reset(skb);
1366 		return true;
1367 	}
1368 
1369 	return false;
1370 }
1371 
1372 static void udp_set_dev_scratch(struct sk_buff *skb)
1373 {
1374 	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1375 
1376 	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1377 	scratch->_tsize_state = skb->truesize;
1378 #if BITS_PER_LONG == 64
1379 	scratch->len = skb->len;
1380 	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1381 	scratch->is_linear = !skb_is_nonlinear(skb);
1382 #endif
1383 	if (udp_try_make_stateless(skb))
1384 		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1385 }
1386 
1387 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1388 {
1389 	/* We come here after udp_lib_checksum_complete() returned 0.
1390 	 * This means that __skb_checksum_complete() might have
1391 	 * set skb->csum_valid to 1.
1392 	 * On 64bit platforms, we can set csum_unnecessary
1393 	 * to true, but only if the skb is not shared.
1394 	 */
1395 #if BITS_PER_LONG == 64
1396 	if (!skb_shared(skb))
1397 		udp_skb_scratch(skb)->csum_unnecessary = true;
1398 #endif
1399 }
1400 
1401 static int udp_skb_truesize(struct sk_buff *skb)
1402 {
1403 	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1404 }
1405 
1406 static bool udp_skb_has_head_state(struct sk_buff *skb)
1407 {
1408 	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1409 }
1410 
1411 /* fully reclaim rmem/fwd memory allocated for skb */
1412 static void udp_rmem_release(struct sock *sk, int size, int partial,
1413 			     bool rx_queue_lock_held)
1414 {
1415 	struct udp_sock *up = udp_sk(sk);
1416 	struct sk_buff_head *sk_queue;
1417 	int amt;
1418 
1419 	if (likely(partial)) {
1420 		up->forward_deficit += size;
1421 		size = up->forward_deficit;
1422 		if (size < READ_ONCE(up->forward_threshold) &&
1423 		    !skb_queue_empty(&up->reader_queue))
1424 			return;
1425 	} else {
1426 		size += up->forward_deficit;
1427 	}
1428 	up->forward_deficit = 0;
1429 
1430 	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1431 	 * if the called don't held it already
1432 	 */
1433 	sk_queue = &sk->sk_receive_queue;
1434 	if (!rx_queue_lock_held)
1435 		spin_lock(&sk_queue->lock);
1436 
1437 
1438 	sk_forward_alloc_add(sk, size);
1439 	amt = (sk->sk_forward_alloc - partial) & ~(PAGE_SIZE - 1);
1440 	sk_forward_alloc_add(sk, -amt);
1441 
1442 	if (amt)
1443 		__sk_mem_reduce_allocated(sk, amt >> PAGE_SHIFT);
1444 
1445 	atomic_sub(size, &sk->sk_rmem_alloc);
1446 
1447 	/* this can save us from acquiring the rx queue lock on next receive */
1448 	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1449 
1450 	if (!rx_queue_lock_held)
1451 		spin_unlock(&sk_queue->lock);
1452 }
1453 
1454 /* Note: called with reader_queue.lock held.
1455  * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1456  * This avoids a cache line miss while receive_queue lock is held.
1457  * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1458  */
1459 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1460 {
1461 	prefetch(&skb->data);
1462 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1463 }
1464 EXPORT_SYMBOL(udp_skb_destructor);
1465 
1466 /* as above, but the caller held the rx queue lock, too */
1467 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1468 {
1469 	prefetch(&skb->data);
1470 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1471 }
1472 
1473 /* Idea of busylocks is to let producers grab an extra spinlock
1474  * to relieve pressure on the receive_queue spinlock shared by consumer.
1475  * Under flood, this means that only one producer can be in line
1476  * trying to acquire the receive_queue spinlock.
1477  * These busylock can be allocated on a per cpu manner, instead of a
1478  * per socket one (that would consume a cache line per socket)
1479  */
1480 static int udp_busylocks_log __read_mostly;
1481 static spinlock_t *udp_busylocks __read_mostly;
1482 
1483 static spinlock_t *busylock_acquire(void *ptr)
1484 {
1485 	spinlock_t *busy;
1486 
1487 	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1488 	spin_lock(busy);
1489 	return busy;
1490 }
1491 
1492 static void busylock_release(spinlock_t *busy)
1493 {
1494 	if (busy)
1495 		spin_unlock(busy);
1496 }
1497 
1498 static int udp_rmem_schedule(struct sock *sk, int size)
1499 {
1500 	int delta;
1501 
1502 	delta = size - sk->sk_forward_alloc;
1503 	if (delta > 0 && !__sk_mem_schedule(sk, delta, SK_MEM_RECV))
1504 		return -ENOBUFS;
1505 
1506 	return 0;
1507 }
1508 
1509 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1510 {
1511 	struct sk_buff_head *list = &sk->sk_receive_queue;
1512 	int rmem, err = -ENOMEM;
1513 	spinlock_t *busy = NULL;
1514 	bool becomes_readable;
1515 	int size, rcvbuf;
1516 
1517 	/* Immediately drop when the receive queue is full.
1518 	 * Always allow at least one packet.
1519 	 */
1520 	rmem = atomic_read(&sk->sk_rmem_alloc);
1521 	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1522 	if (rmem > rcvbuf)
1523 		goto drop;
1524 
1525 	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1526 	 * having linear skbs :
1527 	 * - Reduce memory overhead and thus increase receive queue capacity
1528 	 * - Less cache line misses at copyout() time
1529 	 * - Less work at consume_skb() (less alien page frag freeing)
1530 	 */
1531 	if (rmem > (rcvbuf >> 1)) {
1532 		skb_condense(skb);
1533 
1534 		busy = busylock_acquire(sk);
1535 	}
1536 	size = skb->truesize;
1537 	udp_set_dev_scratch(skb);
1538 
1539 	atomic_add(size, &sk->sk_rmem_alloc);
1540 
1541 	spin_lock(&list->lock);
1542 	err = udp_rmem_schedule(sk, size);
1543 	if (err) {
1544 		spin_unlock(&list->lock);
1545 		goto uncharge_drop;
1546 	}
1547 
1548 	sk_forward_alloc_add(sk, -size);
1549 
1550 	/* no need to setup a destructor, we will explicitly release the
1551 	 * forward allocated memory on dequeue
1552 	 */
1553 	sock_skb_set_dropcount(sk, skb);
1554 
1555 	becomes_readable = skb_queue_empty(list);
1556 	__skb_queue_tail(list, skb);
1557 	spin_unlock(&list->lock);
1558 
1559 	if (!sock_flag(sk, SOCK_DEAD)) {
1560 		if (becomes_readable ||
1561 		    sk->sk_data_ready != sock_def_readable ||
1562 		    READ_ONCE(sk->sk_peek_off) >= 0)
1563 			INDIRECT_CALL_1(sk->sk_data_ready,
1564 					sock_def_readable, sk);
1565 		else
1566 			sk_wake_async_rcu(sk, SOCK_WAKE_WAITD, POLL_IN);
1567 	}
1568 	busylock_release(busy);
1569 	return 0;
1570 
1571 uncharge_drop:
1572 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1573 
1574 drop:
1575 	atomic_inc(&sk->sk_drops);
1576 	busylock_release(busy);
1577 	return err;
1578 }
1579 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1580 
1581 void udp_destruct_common(struct sock *sk)
1582 {
1583 	/* reclaim completely the forward allocated memory */
1584 	struct udp_sock *up = udp_sk(sk);
1585 	unsigned int total = 0;
1586 	struct sk_buff *skb;
1587 
1588 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1589 	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1590 		total += skb->truesize;
1591 		kfree_skb(skb);
1592 	}
1593 	udp_rmem_release(sk, total, 0, true);
1594 }
1595 EXPORT_SYMBOL_GPL(udp_destruct_common);
1596 
1597 static void udp_destruct_sock(struct sock *sk)
1598 {
1599 	udp_destruct_common(sk);
1600 	inet_sock_destruct(sk);
1601 }
1602 
1603 int udp_init_sock(struct sock *sk)
1604 {
1605 	udp_lib_init_sock(sk);
1606 	sk->sk_destruct = udp_destruct_sock;
1607 	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1608 	return 0;
1609 }
1610 
1611 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1612 {
1613 	if (unlikely(READ_ONCE(udp_sk(sk)->peeking_with_offset)))
1614 		sk_peek_offset_bwd(sk, len);
1615 
1616 	if (!skb_unref(skb))
1617 		return;
1618 
1619 	/* In the more common cases we cleared the head states previously,
1620 	 * see __udp_queue_rcv_skb().
1621 	 */
1622 	if (unlikely(udp_skb_has_head_state(skb)))
1623 		skb_release_head_state(skb);
1624 	__consume_stateless_skb(skb);
1625 }
1626 EXPORT_SYMBOL_GPL(skb_consume_udp);
1627 
1628 static struct sk_buff *__first_packet_length(struct sock *sk,
1629 					     struct sk_buff_head *rcvq,
1630 					     int *total)
1631 {
1632 	struct sk_buff *skb;
1633 
1634 	while ((skb = skb_peek(rcvq)) != NULL) {
1635 		if (udp_lib_checksum_complete(skb)) {
1636 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1637 					IS_UDPLITE(sk));
1638 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1639 					IS_UDPLITE(sk));
1640 			atomic_inc(&sk->sk_drops);
1641 			__skb_unlink(skb, rcvq);
1642 			*total += skb->truesize;
1643 			kfree_skb(skb);
1644 		} else {
1645 			udp_skb_csum_unnecessary_set(skb);
1646 			break;
1647 		}
1648 	}
1649 	return skb;
1650 }
1651 
1652 /**
1653  *	first_packet_length	- return length of first packet in receive queue
1654  *	@sk: socket
1655  *
1656  *	Drops all bad checksum frames, until a valid one is found.
1657  *	Returns the length of found skb, or -1 if none is found.
1658  */
1659 static int first_packet_length(struct sock *sk)
1660 {
1661 	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1662 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1663 	struct sk_buff *skb;
1664 	int total = 0;
1665 	int res;
1666 
1667 	spin_lock_bh(&rcvq->lock);
1668 	skb = __first_packet_length(sk, rcvq, &total);
1669 	if (!skb && !skb_queue_empty_lockless(sk_queue)) {
1670 		spin_lock(&sk_queue->lock);
1671 		skb_queue_splice_tail_init(sk_queue, rcvq);
1672 		spin_unlock(&sk_queue->lock);
1673 
1674 		skb = __first_packet_length(sk, rcvq, &total);
1675 	}
1676 	res = skb ? skb->len : -1;
1677 	if (total)
1678 		udp_rmem_release(sk, total, 1, false);
1679 	spin_unlock_bh(&rcvq->lock);
1680 	return res;
1681 }
1682 
1683 /*
1684  *	IOCTL requests applicable to the UDP protocol
1685  */
1686 
1687 int udp_ioctl(struct sock *sk, int cmd, int *karg)
1688 {
1689 	switch (cmd) {
1690 	case SIOCOUTQ:
1691 	{
1692 		*karg = sk_wmem_alloc_get(sk);
1693 		return 0;
1694 	}
1695 
1696 	case SIOCINQ:
1697 	{
1698 		*karg = max_t(int, 0, first_packet_length(sk));
1699 		return 0;
1700 	}
1701 
1702 	default:
1703 		return -ENOIOCTLCMD;
1704 	}
1705 
1706 	return 0;
1707 }
1708 EXPORT_SYMBOL(udp_ioctl);
1709 
1710 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1711 			       int *off, int *err)
1712 {
1713 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1714 	struct sk_buff_head *queue;
1715 	struct sk_buff *last;
1716 	long timeo;
1717 	int error;
1718 
1719 	queue = &udp_sk(sk)->reader_queue;
1720 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1721 	do {
1722 		struct sk_buff *skb;
1723 
1724 		error = sock_error(sk);
1725 		if (error)
1726 			break;
1727 
1728 		error = -EAGAIN;
1729 		do {
1730 			spin_lock_bh(&queue->lock);
1731 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1732 							err, &last);
1733 			if (skb) {
1734 				if (!(flags & MSG_PEEK))
1735 					udp_skb_destructor(sk, skb);
1736 				spin_unlock_bh(&queue->lock);
1737 				return skb;
1738 			}
1739 
1740 			if (skb_queue_empty_lockless(sk_queue)) {
1741 				spin_unlock_bh(&queue->lock);
1742 				goto busy_check;
1743 			}
1744 
1745 			/* refill the reader queue and walk it again
1746 			 * keep both queues locked to avoid re-acquiring
1747 			 * the sk_receive_queue lock if fwd memory scheduling
1748 			 * is needed.
1749 			 */
1750 			spin_lock(&sk_queue->lock);
1751 			skb_queue_splice_tail_init(sk_queue, queue);
1752 
1753 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1754 							err, &last);
1755 			if (skb && !(flags & MSG_PEEK))
1756 				udp_skb_dtor_locked(sk, skb);
1757 			spin_unlock(&sk_queue->lock);
1758 			spin_unlock_bh(&queue->lock);
1759 			if (skb)
1760 				return skb;
1761 
1762 busy_check:
1763 			if (!sk_can_busy_loop(sk))
1764 				break;
1765 
1766 			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1767 		} while (!skb_queue_empty_lockless(sk_queue));
1768 
1769 		/* sk_queue is empty, reader_queue may contain peeked packets */
1770 	} while (timeo &&
1771 		 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
1772 					      &error, &timeo,
1773 					      (struct sk_buff *)sk_queue));
1774 
1775 	*err = error;
1776 	return NULL;
1777 }
1778 EXPORT_SYMBOL(__skb_recv_udp);
1779 
1780 int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1781 {
1782 	struct sk_buff *skb;
1783 	int err;
1784 
1785 try_again:
1786 	skb = skb_recv_udp(sk, MSG_DONTWAIT, &err);
1787 	if (!skb)
1788 		return err;
1789 
1790 	if (udp_lib_checksum_complete(skb)) {
1791 		int is_udplite = IS_UDPLITE(sk);
1792 		struct net *net = sock_net(sk);
1793 
1794 		__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, is_udplite);
1795 		__UDP_INC_STATS(net, UDP_MIB_INERRORS, is_udplite);
1796 		atomic_inc(&sk->sk_drops);
1797 		kfree_skb(skb);
1798 		goto try_again;
1799 	}
1800 
1801 	WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1802 	return recv_actor(sk, skb);
1803 }
1804 EXPORT_SYMBOL(udp_read_skb);
1805 
1806 /*
1807  * 	This should be easy, if there is something there we
1808  * 	return it, otherwise we block.
1809  */
1810 
1811 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
1812 		int *addr_len)
1813 {
1814 	struct inet_sock *inet = inet_sk(sk);
1815 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1816 	struct sk_buff *skb;
1817 	unsigned int ulen, copied;
1818 	int off, err, peeking = flags & MSG_PEEK;
1819 	int is_udplite = IS_UDPLITE(sk);
1820 	bool checksum_valid = false;
1821 
1822 	if (flags & MSG_ERRQUEUE)
1823 		return ip_recv_error(sk, msg, len, addr_len);
1824 
1825 try_again:
1826 	off = sk_peek_offset(sk, flags);
1827 	skb = __skb_recv_udp(sk, flags, &off, &err);
1828 	if (!skb)
1829 		return err;
1830 
1831 	ulen = udp_skb_len(skb);
1832 	copied = len;
1833 	if (copied > ulen - off)
1834 		copied = ulen - off;
1835 	else if (copied < ulen)
1836 		msg->msg_flags |= MSG_TRUNC;
1837 
1838 	/*
1839 	 * If checksum is needed at all, try to do it while copying the
1840 	 * data.  If the data is truncated, or if we only want a partial
1841 	 * coverage checksum (UDP-Lite), do it before the copy.
1842 	 */
1843 
1844 	if (copied < ulen || peeking ||
1845 	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1846 		checksum_valid = udp_skb_csum_unnecessary(skb) ||
1847 				!__udp_lib_checksum_complete(skb);
1848 		if (!checksum_valid)
1849 			goto csum_copy_err;
1850 	}
1851 
1852 	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1853 		if (udp_skb_is_linear(skb))
1854 			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1855 		else
1856 			err = skb_copy_datagram_msg(skb, off, msg, copied);
1857 	} else {
1858 		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1859 
1860 		if (err == -EINVAL)
1861 			goto csum_copy_err;
1862 	}
1863 
1864 	if (unlikely(err)) {
1865 		if (!peeking) {
1866 			atomic_inc(&sk->sk_drops);
1867 			UDP_INC_STATS(sock_net(sk),
1868 				      UDP_MIB_INERRORS, is_udplite);
1869 		}
1870 		kfree_skb(skb);
1871 		return err;
1872 	}
1873 
1874 	if (!peeking)
1875 		UDP_INC_STATS(sock_net(sk),
1876 			      UDP_MIB_INDATAGRAMS, is_udplite);
1877 
1878 	sock_recv_cmsgs(msg, sk, skb);
1879 
1880 	/* Copy the address. */
1881 	if (sin) {
1882 		sin->sin_family = AF_INET;
1883 		sin->sin_port = udp_hdr(skb)->source;
1884 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1885 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1886 		*addr_len = sizeof(*sin);
1887 
1888 		BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
1889 						      (struct sockaddr *)sin,
1890 						      addr_len);
1891 	}
1892 
1893 	if (udp_test_bit(GRO_ENABLED, sk))
1894 		udp_cmsg_recv(msg, sk, skb);
1895 
1896 	if (inet_cmsg_flags(inet))
1897 		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1898 
1899 	err = copied;
1900 	if (flags & MSG_TRUNC)
1901 		err = ulen;
1902 
1903 	skb_consume_udp(sk, skb, peeking ? -err : err);
1904 	return err;
1905 
1906 csum_copy_err:
1907 	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1908 				 udp_skb_destructor)) {
1909 		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1910 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1911 	}
1912 	kfree_skb(skb);
1913 
1914 	/* starting over for a new packet, but check if we need to yield */
1915 	cond_resched();
1916 	msg->msg_flags &= ~MSG_TRUNC;
1917 	goto try_again;
1918 }
1919 
1920 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1921 {
1922 	/* This check is replicated from __ip4_datagram_connect() and
1923 	 * intended to prevent BPF program called below from accessing bytes
1924 	 * that are out of the bound specified by user in addr_len.
1925 	 */
1926 	if (addr_len < sizeof(struct sockaddr_in))
1927 		return -EINVAL;
1928 
1929 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr, &addr_len);
1930 }
1931 EXPORT_SYMBOL(udp_pre_connect);
1932 
1933 int __udp_disconnect(struct sock *sk, int flags)
1934 {
1935 	struct inet_sock *inet = inet_sk(sk);
1936 	/*
1937 	 *	1003.1g - break association.
1938 	 */
1939 
1940 	sk->sk_state = TCP_CLOSE;
1941 	inet->inet_daddr = 0;
1942 	inet->inet_dport = 0;
1943 	sock_rps_reset_rxhash(sk);
1944 	sk->sk_bound_dev_if = 0;
1945 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) {
1946 		inet_reset_saddr(sk);
1947 		if (sk->sk_prot->rehash &&
1948 		    (sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1949 			sk->sk_prot->rehash(sk);
1950 	}
1951 
1952 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1953 		sk->sk_prot->unhash(sk);
1954 		inet->inet_sport = 0;
1955 	}
1956 	sk_dst_reset(sk);
1957 	return 0;
1958 }
1959 EXPORT_SYMBOL(__udp_disconnect);
1960 
1961 int udp_disconnect(struct sock *sk, int flags)
1962 {
1963 	lock_sock(sk);
1964 	__udp_disconnect(sk, flags);
1965 	release_sock(sk);
1966 	return 0;
1967 }
1968 EXPORT_SYMBOL(udp_disconnect);
1969 
1970 void udp_lib_unhash(struct sock *sk)
1971 {
1972 	if (sk_hashed(sk)) {
1973 		struct udp_table *udptable = udp_get_table_prot(sk);
1974 		struct udp_hslot *hslot, *hslot2;
1975 
1976 		hslot  = udp_hashslot(udptable, sock_net(sk),
1977 				      udp_sk(sk)->udp_port_hash);
1978 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1979 
1980 		spin_lock_bh(&hslot->lock);
1981 		if (rcu_access_pointer(sk->sk_reuseport_cb))
1982 			reuseport_detach_sock(sk);
1983 		if (sk_del_node_init_rcu(sk)) {
1984 			hslot->count--;
1985 			inet_sk(sk)->inet_num = 0;
1986 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1987 
1988 			spin_lock(&hslot2->lock);
1989 			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1990 			hslot2->count--;
1991 			spin_unlock(&hslot2->lock);
1992 		}
1993 		spin_unlock_bh(&hslot->lock);
1994 	}
1995 }
1996 EXPORT_SYMBOL(udp_lib_unhash);
1997 
1998 /*
1999  * inet_rcv_saddr was changed, we must rehash secondary hash
2000  */
2001 void udp_lib_rehash(struct sock *sk, u16 newhash)
2002 {
2003 	if (sk_hashed(sk)) {
2004 		struct udp_table *udptable = udp_get_table_prot(sk);
2005 		struct udp_hslot *hslot, *hslot2, *nhslot2;
2006 
2007 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2008 		nhslot2 = udp_hashslot2(udptable, newhash);
2009 		udp_sk(sk)->udp_portaddr_hash = newhash;
2010 
2011 		if (hslot2 != nhslot2 ||
2012 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
2013 			hslot = udp_hashslot(udptable, sock_net(sk),
2014 					     udp_sk(sk)->udp_port_hash);
2015 			/* we must lock primary chain too */
2016 			spin_lock_bh(&hslot->lock);
2017 			if (rcu_access_pointer(sk->sk_reuseport_cb))
2018 				reuseport_detach_sock(sk);
2019 
2020 			if (hslot2 != nhslot2) {
2021 				spin_lock(&hslot2->lock);
2022 				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2023 				hslot2->count--;
2024 				spin_unlock(&hslot2->lock);
2025 
2026 				spin_lock(&nhslot2->lock);
2027 				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
2028 							 &nhslot2->head);
2029 				nhslot2->count++;
2030 				spin_unlock(&nhslot2->lock);
2031 			}
2032 
2033 			spin_unlock_bh(&hslot->lock);
2034 		}
2035 	}
2036 }
2037 EXPORT_SYMBOL(udp_lib_rehash);
2038 
2039 void udp_v4_rehash(struct sock *sk)
2040 {
2041 	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
2042 					  inet_sk(sk)->inet_rcv_saddr,
2043 					  inet_sk(sk)->inet_num);
2044 	udp_lib_rehash(sk, new_hash);
2045 }
2046 
2047 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2048 {
2049 	int rc;
2050 
2051 	if (inet_sk(sk)->inet_daddr) {
2052 		sock_rps_save_rxhash(sk, skb);
2053 		sk_mark_napi_id(sk, skb);
2054 		sk_incoming_cpu_update(sk);
2055 	} else {
2056 		sk_mark_napi_id_once(sk, skb);
2057 	}
2058 
2059 	rc = __udp_enqueue_schedule_skb(sk, skb);
2060 	if (rc < 0) {
2061 		int is_udplite = IS_UDPLITE(sk);
2062 		int drop_reason;
2063 
2064 		/* Note that an ENOMEM error is charged twice */
2065 		if (rc == -ENOMEM) {
2066 			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
2067 					is_udplite);
2068 			drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
2069 		} else {
2070 			UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS,
2071 				      is_udplite);
2072 			drop_reason = SKB_DROP_REASON_PROTO_MEM;
2073 		}
2074 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2075 		trace_udp_fail_queue_rcv_skb(rc, sk, skb);
2076 		sk_skb_reason_drop(sk, skb, drop_reason);
2077 		return -1;
2078 	}
2079 
2080 	return 0;
2081 }
2082 
2083 /* returns:
2084  *  -1: error
2085  *   0: success
2086  *  >0: "udp encap" protocol resubmission
2087  *
2088  * Note that in the success and error cases, the skb is assumed to
2089  * have either been requeued or freed.
2090  */
2091 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
2092 {
2093 	int drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2094 	struct udp_sock *up = udp_sk(sk);
2095 	int is_udplite = IS_UDPLITE(sk);
2096 
2097 	/*
2098 	 *	Charge it to the socket, dropping if the queue is full.
2099 	 */
2100 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
2101 		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2102 		goto drop;
2103 	}
2104 	nf_reset_ct(skb);
2105 
2106 	if (static_branch_unlikely(&udp_encap_needed_key) &&
2107 	    READ_ONCE(up->encap_type)) {
2108 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2109 
2110 		/*
2111 		 * This is an encapsulation socket so pass the skb to
2112 		 * the socket's udp_encap_rcv() hook. Otherwise, just
2113 		 * fall through and pass this up the UDP socket.
2114 		 * up->encap_rcv() returns the following value:
2115 		 * =0 if skb was successfully passed to the encap
2116 		 *    handler or was discarded by it.
2117 		 * >0 if skb should be passed on to UDP.
2118 		 * <0 if skb should be resubmitted as proto -N
2119 		 */
2120 
2121 		/* if we're overly short, let UDP handle it */
2122 		encap_rcv = READ_ONCE(up->encap_rcv);
2123 		if (encap_rcv) {
2124 			int ret;
2125 
2126 			/* Verify checksum before giving to encap */
2127 			if (udp_lib_checksum_complete(skb))
2128 				goto csum_error;
2129 
2130 			ret = encap_rcv(sk, skb);
2131 			if (ret <= 0) {
2132 				__UDP_INC_STATS(sock_net(sk),
2133 						UDP_MIB_INDATAGRAMS,
2134 						is_udplite);
2135 				return -ret;
2136 			}
2137 		}
2138 
2139 		/* FALLTHROUGH -- it's a UDP Packet */
2140 	}
2141 
2142 	/*
2143 	 * 	UDP-Lite specific tests, ignored on UDP sockets
2144 	 */
2145 	if (udp_test_bit(UDPLITE_RECV_CC, sk) && UDP_SKB_CB(skb)->partial_cov) {
2146 		u16 pcrlen = READ_ONCE(up->pcrlen);
2147 
2148 		/*
2149 		 * MIB statistics other than incrementing the error count are
2150 		 * disabled for the following two types of errors: these depend
2151 		 * on the application settings, not on the functioning of the
2152 		 * protocol stack as such.
2153 		 *
2154 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
2155 		 * way ... to ... at least let the receiving application block
2156 		 * delivery of packets with coverage values less than a value
2157 		 * provided by the application."
2158 		 */
2159 		if (pcrlen == 0) {          /* full coverage was set  */
2160 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2161 					    UDP_SKB_CB(skb)->cscov, skb->len);
2162 			goto drop;
2163 		}
2164 		/* The next case involves violating the min. coverage requested
2165 		 * by the receiver. This is subtle: if receiver wants x and x is
2166 		 * greater than the buffersize/MTU then receiver will complain
2167 		 * that it wants x while sender emits packets of smaller size y.
2168 		 * Therefore the above ...()->partial_cov statement is essential.
2169 		 */
2170 		if (UDP_SKB_CB(skb)->cscov < pcrlen) {
2171 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2172 					    UDP_SKB_CB(skb)->cscov, pcrlen);
2173 			goto drop;
2174 		}
2175 	}
2176 
2177 	prefetch(&sk->sk_rmem_alloc);
2178 	if (rcu_access_pointer(sk->sk_filter) &&
2179 	    udp_lib_checksum_complete(skb))
2180 			goto csum_error;
2181 
2182 	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) {
2183 		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2184 		goto drop;
2185 	}
2186 
2187 	udp_csum_pull_header(skb);
2188 
2189 	ipv4_pktinfo_prepare(sk, skb, true);
2190 	return __udp_queue_rcv_skb(sk, skb);
2191 
2192 csum_error:
2193 	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2194 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2195 drop:
2196 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2197 	atomic_inc(&sk->sk_drops);
2198 	sk_skb_reason_drop(sk, skb, drop_reason);
2199 	return -1;
2200 }
2201 
2202 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2203 {
2204 	struct sk_buff *next, *segs;
2205 	int ret;
2206 
2207 	if (likely(!udp_unexpected_gso(sk, skb)))
2208 		return udp_queue_rcv_one_skb(sk, skb);
2209 
2210 	BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET);
2211 	__skb_push(skb, -skb_mac_offset(skb));
2212 	segs = udp_rcv_segment(sk, skb, true);
2213 	skb_list_walk_safe(segs, skb, next) {
2214 		__skb_pull(skb, skb_transport_offset(skb));
2215 
2216 		udp_post_segment_fix_csum(skb);
2217 		ret = udp_queue_rcv_one_skb(sk, skb);
2218 		if (ret > 0)
2219 			ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret);
2220 	}
2221 	return 0;
2222 }
2223 
2224 /* For TCP sockets, sk_rx_dst is protected by socket lock
2225  * For UDP, we use xchg() to guard against concurrent changes.
2226  */
2227 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2228 {
2229 	struct dst_entry *old;
2230 
2231 	if (dst_hold_safe(dst)) {
2232 		old = unrcu_pointer(xchg(&sk->sk_rx_dst, RCU_INITIALIZER(dst)));
2233 		dst_release(old);
2234 		return old != dst;
2235 	}
2236 	return false;
2237 }
2238 EXPORT_SYMBOL(udp_sk_rx_dst_set);
2239 
2240 /*
2241  *	Multicasts and broadcasts go to each listener.
2242  *
2243  *	Note: called only from the BH handler context.
2244  */
2245 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2246 				    struct udphdr  *uh,
2247 				    __be32 saddr, __be32 daddr,
2248 				    struct udp_table *udptable,
2249 				    int proto)
2250 {
2251 	struct sock *sk, *first = NULL;
2252 	unsigned short hnum = ntohs(uh->dest);
2253 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2254 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2255 	unsigned int offset = offsetof(typeof(*sk), sk_node);
2256 	int dif = skb->dev->ifindex;
2257 	int sdif = inet_sdif(skb);
2258 	struct hlist_node *node;
2259 	struct sk_buff *nskb;
2260 
2261 	if (use_hash2) {
2262 		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2263 			    udptable->mask;
2264 		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2265 start_lookup:
2266 		hslot = &udptable->hash2[hash2];
2267 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2268 	}
2269 
2270 	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2271 		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2272 					 uh->source, saddr, dif, sdif, hnum))
2273 			continue;
2274 
2275 		if (!first) {
2276 			first = sk;
2277 			continue;
2278 		}
2279 		nskb = skb_clone(skb, GFP_ATOMIC);
2280 
2281 		if (unlikely(!nskb)) {
2282 			atomic_inc(&sk->sk_drops);
2283 			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2284 					IS_UDPLITE(sk));
2285 			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
2286 					IS_UDPLITE(sk));
2287 			continue;
2288 		}
2289 		if (udp_queue_rcv_skb(sk, nskb) > 0)
2290 			consume_skb(nskb);
2291 	}
2292 
2293 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2294 	if (use_hash2 && hash2 != hash2_any) {
2295 		hash2 = hash2_any;
2296 		goto start_lookup;
2297 	}
2298 
2299 	if (first) {
2300 		if (udp_queue_rcv_skb(first, skb) > 0)
2301 			consume_skb(skb);
2302 	} else {
2303 		kfree_skb(skb);
2304 		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2305 				proto == IPPROTO_UDPLITE);
2306 	}
2307 	return 0;
2308 }
2309 
2310 /* Initialize UDP checksum. If exited with zero value (success),
2311  * CHECKSUM_UNNECESSARY means, that no more checks are required.
2312  * Otherwise, csum completion requires checksumming packet body,
2313  * including udp header and folding it to skb->csum.
2314  */
2315 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2316 				 int proto)
2317 {
2318 	int err;
2319 
2320 	UDP_SKB_CB(skb)->partial_cov = 0;
2321 	UDP_SKB_CB(skb)->cscov = skb->len;
2322 
2323 	if (proto == IPPROTO_UDPLITE) {
2324 		err = udplite_checksum_init(skb, uh);
2325 		if (err)
2326 			return err;
2327 
2328 		if (UDP_SKB_CB(skb)->partial_cov) {
2329 			skb->csum = inet_compute_pseudo(skb, proto);
2330 			return 0;
2331 		}
2332 	}
2333 
2334 	/* Note, we are only interested in != 0 or == 0, thus the
2335 	 * force to int.
2336 	 */
2337 	err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2338 							inet_compute_pseudo);
2339 	if (err)
2340 		return err;
2341 
2342 	if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2343 		/* If SW calculated the value, we know it's bad */
2344 		if (skb->csum_complete_sw)
2345 			return 1;
2346 
2347 		/* HW says the value is bad. Let's validate that.
2348 		 * skb->csum is no longer the full packet checksum,
2349 		 * so don't treat it as such.
2350 		 */
2351 		skb_checksum_complete_unset(skb);
2352 	}
2353 
2354 	return 0;
2355 }
2356 
2357 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2358  * return code conversion for ip layer consumption
2359  */
2360 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2361 			       struct udphdr *uh)
2362 {
2363 	int ret;
2364 
2365 	if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2366 		skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2367 
2368 	ret = udp_queue_rcv_skb(sk, skb);
2369 
2370 	/* a return value > 0 means to resubmit the input, but
2371 	 * it wants the return to be -protocol, or 0
2372 	 */
2373 	if (ret > 0)
2374 		return -ret;
2375 	return 0;
2376 }
2377 
2378 /*
2379  *	All we need to do is get the socket, and then do a checksum.
2380  */
2381 
2382 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2383 		   int proto)
2384 {
2385 	struct sock *sk = NULL;
2386 	struct udphdr *uh;
2387 	unsigned short ulen;
2388 	struct rtable *rt = skb_rtable(skb);
2389 	__be32 saddr, daddr;
2390 	struct net *net = dev_net(skb->dev);
2391 	bool refcounted;
2392 	int drop_reason;
2393 
2394 	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2395 
2396 	/*
2397 	 *  Validate the packet.
2398 	 */
2399 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2400 		goto drop;		/* No space for header. */
2401 
2402 	uh   = udp_hdr(skb);
2403 	ulen = ntohs(uh->len);
2404 	saddr = ip_hdr(skb)->saddr;
2405 	daddr = ip_hdr(skb)->daddr;
2406 
2407 	if (ulen > skb->len)
2408 		goto short_packet;
2409 
2410 	if (proto == IPPROTO_UDP) {
2411 		/* UDP validates ulen. */
2412 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2413 			goto short_packet;
2414 		uh = udp_hdr(skb);
2415 	}
2416 
2417 	if (udp4_csum_init(skb, uh, proto))
2418 		goto csum_error;
2419 
2420 	sk = inet_steal_sock(net, skb, sizeof(struct udphdr), saddr, uh->source, daddr, uh->dest,
2421 			     &refcounted, udp_ehashfn);
2422 	if (IS_ERR(sk))
2423 		goto no_sk;
2424 
2425 	if (sk) {
2426 		struct dst_entry *dst = skb_dst(skb);
2427 		int ret;
2428 
2429 		if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst))
2430 			udp_sk_rx_dst_set(sk, dst);
2431 
2432 		ret = udp_unicast_rcv_skb(sk, skb, uh);
2433 		if (refcounted)
2434 			sock_put(sk);
2435 		return ret;
2436 	}
2437 
2438 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2439 		return __udp4_lib_mcast_deliver(net, skb, uh,
2440 						saddr, daddr, udptable, proto);
2441 
2442 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2443 	if (sk)
2444 		return udp_unicast_rcv_skb(sk, skb, uh);
2445 no_sk:
2446 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2447 		goto drop;
2448 	nf_reset_ct(skb);
2449 
2450 	/* No socket. Drop packet silently, if checksum is wrong */
2451 	if (udp_lib_checksum_complete(skb))
2452 		goto csum_error;
2453 
2454 	drop_reason = SKB_DROP_REASON_NO_SOCKET;
2455 	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2456 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2457 
2458 	/*
2459 	 * Hmm.  We got an UDP packet to a port to which we
2460 	 * don't wanna listen.  Ignore it.
2461 	 */
2462 	sk_skb_reason_drop(sk, skb, drop_reason);
2463 	return 0;
2464 
2465 short_packet:
2466 	drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
2467 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2468 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2469 			    &saddr, ntohs(uh->source),
2470 			    ulen, skb->len,
2471 			    &daddr, ntohs(uh->dest));
2472 	goto drop;
2473 
2474 csum_error:
2475 	/*
2476 	 * RFC1122: OK.  Discards the bad packet silently (as far as
2477 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2478 	 */
2479 	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2480 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2481 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2482 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2483 			    ulen);
2484 	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2485 drop:
2486 	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2487 	sk_skb_reason_drop(sk, skb, drop_reason);
2488 	return 0;
2489 }
2490 
2491 /* We can only early demux multicast if there is a single matching socket.
2492  * If more than one socket found returns NULL
2493  */
2494 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2495 						  __be16 loc_port, __be32 loc_addr,
2496 						  __be16 rmt_port, __be32 rmt_addr,
2497 						  int dif, int sdif)
2498 {
2499 	struct udp_table *udptable = net->ipv4.udp_table;
2500 	unsigned short hnum = ntohs(loc_port);
2501 	struct sock *sk, *result;
2502 	struct udp_hslot *hslot;
2503 	unsigned int slot;
2504 
2505 	slot = udp_hashfn(net, hnum, udptable->mask);
2506 	hslot = &udptable->hash[slot];
2507 
2508 	/* Do not bother scanning a too big list */
2509 	if (hslot->count > 10)
2510 		return NULL;
2511 
2512 	result = NULL;
2513 	sk_for_each_rcu(sk, &hslot->head) {
2514 		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2515 					rmt_port, rmt_addr, dif, sdif, hnum)) {
2516 			if (result)
2517 				return NULL;
2518 			result = sk;
2519 		}
2520 	}
2521 
2522 	return result;
2523 }
2524 
2525 /* For unicast we should only early demux connected sockets or we can
2526  * break forwarding setups.  The chains here can be long so only check
2527  * if the first socket is an exact match and if not move on.
2528  */
2529 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2530 					    __be16 loc_port, __be32 loc_addr,
2531 					    __be16 rmt_port, __be32 rmt_addr,
2532 					    int dif, int sdif)
2533 {
2534 	struct udp_table *udptable = net->ipv4.udp_table;
2535 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2536 	unsigned short hnum = ntohs(loc_port);
2537 	unsigned int hash2, slot2;
2538 	struct udp_hslot *hslot2;
2539 	__portpair ports;
2540 	struct sock *sk;
2541 
2542 	hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2543 	slot2 = hash2 & udptable->mask;
2544 	hslot2 = &udptable->hash2[slot2];
2545 	ports = INET_COMBINED_PORTS(rmt_port, hnum);
2546 
2547 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2548 		if (inet_match(net, sk, acookie, ports, dif, sdif))
2549 			return sk;
2550 		/* Only check first socket in chain */
2551 		break;
2552 	}
2553 	return NULL;
2554 }
2555 
2556 int udp_v4_early_demux(struct sk_buff *skb)
2557 {
2558 	struct net *net = dev_net(skb->dev);
2559 	struct in_device *in_dev = NULL;
2560 	const struct iphdr *iph;
2561 	const struct udphdr *uh;
2562 	struct sock *sk = NULL;
2563 	struct dst_entry *dst;
2564 	int dif = skb->dev->ifindex;
2565 	int sdif = inet_sdif(skb);
2566 	int ours;
2567 
2568 	/* validate the packet */
2569 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2570 		return 0;
2571 
2572 	iph = ip_hdr(skb);
2573 	uh = udp_hdr(skb);
2574 
2575 	if (skb->pkt_type == PACKET_MULTICAST) {
2576 		in_dev = __in_dev_get_rcu(skb->dev);
2577 
2578 		if (!in_dev)
2579 			return 0;
2580 
2581 		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2582 				       iph->protocol);
2583 		if (!ours)
2584 			return 0;
2585 
2586 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2587 						   uh->source, iph->saddr,
2588 						   dif, sdif);
2589 	} else if (skb->pkt_type == PACKET_HOST) {
2590 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2591 					     uh->source, iph->saddr, dif, sdif);
2592 	}
2593 
2594 	if (!sk)
2595 		return 0;
2596 
2597 	skb->sk = sk;
2598 	DEBUG_NET_WARN_ON_ONCE(sk_is_refcounted(sk));
2599 	skb->destructor = sock_pfree;
2600 	dst = rcu_dereference(sk->sk_rx_dst);
2601 
2602 	if (dst)
2603 		dst = dst_check(dst, 0);
2604 	if (dst) {
2605 		u32 itag = 0;
2606 
2607 		/* set noref for now.
2608 		 * any place which wants to hold dst has to call
2609 		 * dst_hold_safe()
2610 		 */
2611 		skb_dst_set_noref(skb, dst);
2612 
2613 		/* for unconnected multicast sockets we need to validate
2614 		 * the source on each packet
2615 		 */
2616 		if (!inet_sk(sk)->inet_daddr && in_dev)
2617 			return ip_mc_validate_source(skb, iph->daddr,
2618 						     iph->saddr,
2619 						     iph->tos & IPTOS_RT_MASK,
2620 						     skb->dev, in_dev, &itag);
2621 	}
2622 	return 0;
2623 }
2624 
2625 int udp_rcv(struct sk_buff *skb)
2626 {
2627 	return __udp4_lib_rcv(skb, dev_net(skb->dev)->ipv4.udp_table, IPPROTO_UDP);
2628 }
2629 
2630 void udp_destroy_sock(struct sock *sk)
2631 {
2632 	struct udp_sock *up = udp_sk(sk);
2633 	bool slow = lock_sock_fast(sk);
2634 
2635 	/* protects from races with udp_abort() */
2636 	sock_set_flag(sk, SOCK_DEAD);
2637 	udp_flush_pending_frames(sk);
2638 	unlock_sock_fast(sk, slow);
2639 	if (static_branch_unlikely(&udp_encap_needed_key)) {
2640 		if (up->encap_type) {
2641 			void (*encap_destroy)(struct sock *sk);
2642 			encap_destroy = READ_ONCE(up->encap_destroy);
2643 			if (encap_destroy)
2644 				encap_destroy(sk);
2645 		}
2646 		if (udp_test_bit(ENCAP_ENABLED, sk))
2647 			static_branch_dec(&udp_encap_needed_key);
2648 	}
2649 }
2650 
2651 static void set_xfrm_gro_udp_encap_rcv(__u16 encap_type, unsigned short family,
2652 				       struct sock *sk)
2653 {
2654 #ifdef CONFIG_XFRM
2655 	if (udp_test_bit(GRO_ENABLED, sk) && encap_type == UDP_ENCAP_ESPINUDP) {
2656 		if (family == AF_INET)
2657 			WRITE_ONCE(udp_sk(sk)->gro_receive, xfrm4_gro_udp_encap_rcv);
2658 		else if (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6)
2659 			WRITE_ONCE(udp_sk(sk)->gro_receive, ipv6_stub->xfrm6_gro_udp_encap_rcv);
2660 	}
2661 #endif
2662 }
2663 
2664 /*
2665  *	Socket option code for UDP
2666  */
2667 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2668 		       sockptr_t optval, unsigned int optlen,
2669 		       int (*push_pending_frames)(struct sock *))
2670 {
2671 	struct udp_sock *up = udp_sk(sk);
2672 	int val, valbool;
2673 	int err = 0;
2674 	int is_udplite = IS_UDPLITE(sk);
2675 
2676 	if (level == SOL_SOCKET) {
2677 		err = sk_setsockopt(sk, level, optname, optval, optlen);
2678 
2679 		if (optname == SO_RCVBUF || optname == SO_RCVBUFFORCE) {
2680 			sockopt_lock_sock(sk);
2681 			/* paired with READ_ONCE in udp_rmem_release() */
2682 			WRITE_ONCE(up->forward_threshold, sk->sk_rcvbuf >> 2);
2683 			sockopt_release_sock(sk);
2684 		}
2685 		return err;
2686 	}
2687 
2688 	if (optlen < sizeof(int))
2689 		return -EINVAL;
2690 
2691 	if (copy_from_sockptr(&val, optval, sizeof(val)))
2692 		return -EFAULT;
2693 
2694 	valbool = val ? 1 : 0;
2695 
2696 	switch (optname) {
2697 	case UDP_CORK:
2698 		if (val != 0) {
2699 			udp_set_bit(CORK, sk);
2700 		} else {
2701 			udp_clear_bit(CORK, sk);
2702 			lock_sock(sk);
2703 			push_pending_frames(sk);
2704 			release_sock(sk);
2705 		}
2706 		break;
2707 
2708 	case UDP_ENCAP:
2709 		switch (val) {
2710 		case 0:
2711 #ifdef CONFIG_XFRM
2712 		case UDP_ENCAP_ESPINUDP:
2713 			set_xfrm_gro_udp_encap_rcv(val, sk->sk_family, sk);
2714 #if IS_ENABLED(CONFIG_IPV6)
2715 			if (sk->sk_family == AF_INET6)
2716 				WRITE_ONCE(up->encap_rcv,
2717 					   ipv6_stub->xfrm6_udp_encap_rcv);
2718 			else
2719 #endif
2720 				WRITE_ONCE(up->encap_rcv,
2721 					   xfrm4_udp_encap_rcv);
2722 #endif
2723 			fallthrough;
2724 		case UDP_ENCAP_L2TPINUDP:
2725 			WRITE_ONCE(up->encap_type, val);
2726 			udp_tunnel_encap_enable(sk);
2727 			break;
2728 		default:
2729 			err = -ENOPROTOOPT;
2730 			break;
2731 		}
2732 		break;
2733 
2734 	case UDP_NO_CHECK6_TX:
2735 		udp_set_no_check6_tx(sk, valbool);
2736 		break;
2737 
2738 	case UDP_NO_CHECK6_RX:
2739 		udp_set_no_check6_rx(sk, valbool);
2740 		break;
2741 
2742 	case UDP_SEGMENT:
2743 		if (val < 0 || val > USHRT_MAX)
2744 			return -EINVAL;
2745 		WRITE_ONCE(up->gso_size, val);
2746 		break;
2747 
2748 	case UDP_GRO:
2749 
2750 		/* when enabling GRO, accept the related GSO packet type */
2751 		if (valbool)
2752 			udp_tunnel_encap_enable(sk);
2753 		udp_assign_bit(GRO_ENABLED, sk, valbool);
2754 		udp_assign_bit(ACCEPT_L4, sk, valbool);
2755 		set_xfrm_gro_udp_encap_rcv(up->encap_type, sk->sk_family, sk);
2756 		break;
2757 
2758 	/*
2759 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2760 	 */
2761 	/* The sender sets actual checksum coverage length via this option.
2762 	 * The case coverage > packet length is handled by send module. */
2763 	case UDPLITE_SEND_CSCOV:
2764 		if (!is_udplite)         /* Disable the option on UDP sockets */
2765 			return -ENOPROTOOPT;
2766 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2767 			val = 8;
2768 		else if (val > USHRT_MAX)
2769 			val = USHRT_MAX;
2770 		WRITE_ONCE(up->pcslen, val);
2771 		udp_set_bit(UDPLITE_SEND_CC, sk);
2772 		break;
2773 
2774 	/* The receiver specifies a minimum checksum coverage value. To make
2775 	 * sense, this should be set to at least 8 (as done below). If zero is
2776 	 * used, this again means full checksum coverage.                     */
2777 	case UDPLITE_RECV_CSCOV:
2778 		if (!is_udplite)         /* Disable the option on UDP sockets */
2779 			return -ENOPROTOOPT;
2780 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2781 			val = 8;
2782 		else if (val > USHRT_MAX)
2783 			val = USHRT_MAX;
2784 		WRITE_ONCE(up->pcrlen, val);
2785 		udp_set_bit(UDPLITE_RECV_CC, sk);
2786 		break;
2787 
2788 	default:
2789 		err = -ENOPROTOOPT;
2790 		break;
2791 	}
2792 
2793 	return err;
2794 }
2795 EXPORT_SYMBOL(udp_lib_setsockopt);
2796 
2797 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
2798 		   unsigned int optlen)
2799 {
2800 	if (level == SOL_UDP  ||  level == SOL_UDPLITE || level == SOL_SOCKET)
2801 		return udp_lib_setsockopt(sk, level, optname,
2802 					  optval, optlen,
2803 					  udp_push_pending_frames);
2804 	return ip_setsockopt(sk, level, optname, optval, optlen);
2805 }
2806 
2807 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2808 		       char __user *optval, int __user *optlen)
2809 {
2810 	struct udp_sock *up = udp_sk(sk);
2811 	int val, len;
2812 
2813 	if (get_user(len, optlen))
2814 		return -EFAULT;
2815 
2816 	if (len < 0)
2817 		return -EINVAL;
2818 
2819 	len = min_t(unsigned int, len, sizeof(int));
2820 
2821 	switch (optname) {
2822 	case UDP_CORK:
2823 		val = udp_test_bit(CORK, sk);
2824 		break;
2825 
2826 	case UDP_ENCAP:
2827 		val = READ_ONCE(up->encap_type);
2828 		break;
2829 
2830 	case UDP_NO_CHECK6_TX:
2831 		val = udp_get_no_check6_tx(sk);
2832 		break;
2833 
2834 	case UDP_NO_CHECK6_RX:
2835 		val = udp_get_no_check6_rx(sk);
2836 		break;
2837 
2838 	case UDP_SEGMENT:
2839 		val = READ_ONCE(up->gso_size);
2840 		break;
2841 
2842 	case UDP_GRO:
2843 		val = udp_test_bit(GRO_ENABLED, sk);
2844 		break;
2845 
2846 	/* The following two cannot be changed on UDP sockets, the return is
2847 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2848 	case UDPLITE_SEND_CSCOV:
2849 		val = READ_ONCE(up->pcslen);
2850 		break;
2851 
2852 	case UDPLITE_RECV_CSCOV:
2853 		val = READ_ONCE(up->pcrlen);
2854 		break;
2855 
2856 	default:
2857 		return -ENOPROTOOPT;
2858 	}
2859 
2860 	if (put_user(len, optlen))
2861 		return -EFAULT;
2862 	if (copy_to_user(optval, &val, len))
2863 		return -EFAULT;
2864 	return 0;
2865 }
2866 EXPORT_SYMBOL(udp_lib_getsockopt);
2867 
2868 int udp_getsockopt(struct sock *sk, int level, int optname,
2869 		   char __user *optval, int __user *optlen)
2870 {
2871 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2872 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2873 	return ip_getsockopt(sk, level, optname, optval, optlen);
2874 }
2875 
2876 /**
2877  * 	udp_poll - wait for a UDP event.
2878  *	@file: - file struct
2879  *	@sock: - socket
2880  *	@wait: - poll table
2881  *
2882  *	This is same as datagram poll, except for the special case of
2883  *	blocking sockets. If application is using a blocking fd
2884  *	and a packet with checksum error is in the queue;
2885  *	then it could get return from select indicating data available
2886  *	but then block when reading it. Add special case code
2887  *	to work around these arguably broken applications.
2888  */
2889 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2890 {
2891 	__poll_t mask = datagram_poll(file, sock, wait);
2892 	struct sock *sk = sock->sk;
2893 
2894 	if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
2895 		mask |= EPOLLIN | EPOLLRDNORM;
2896 
2897 	/* Check for false positives due to checksum errors */
2898 	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2899 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2900 		mask &= ~(EPOLLIN | EPOLLRDNORM);
2901 
2902 	/* psock ingress_msg queue should not contain any bad checksum frames */
2903 	if (sk_is_readable(sk))
2904 		mask |= EPOLLIN | EPOLLRDNORM;
2905 	return mask;
2906 
2907 }
2908 EXPORT_SYMBOL(udp_poll);
2909 
2910 int udp_abort(struct sock *sk, int err)
2911 {
2912 	if (!has_current_bpf_ctx())
2913 		lock_sock(sk);
2914 
2915 	/* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing
2916 	 * with close()
2917 	 */
2918 	if (sock_flag(sk, SOCK_DEAD))
2919 		goto out;
2920 
2921 	sk->sk_err = err;
2922 	sk_error_report(sk);
2923 	__udp_disconnect(sk, 0);
2924 
2925 out:
2926 	if (!has_current_bpf_ctx())
2927 		release_sock(sk);
2928 
2929 	return 0;
2930 }
2931 EXPORT_SYMBOL_GPL(udp_abort);
2932 
2933 struct proto udp_prot = {
2934 	.name			= "UDP",
2935 	.owner			= THIS_MODULE,
2936 	.close			= udp_lib_close,
2937 	.pre_connect		= udp_pre_connect,
2938 	.connect		= ip4_datagram_connect,
2939 	.disconnect		= udp_disconnect,
2940 	.ioctl			= udp_ioctl,
2941 	.init			= udp_init_sock,
2942 	.destroy		= udp_destroy_sock,
2943 	.setsockopt		= udp_setsockopt,
2944 	.getsockopt		= udp_getsockopt,
2945 	.sendmsg		= udp_sendmsg,
2946 	.recvmsg		= udp_recvmsg,
2947 	.splice_eof		= udp_splice_eof,
2948 	.release_cb		= ip4_datagram_release_cb,
2949 	.hash			= udp_lib_hash,
2950 	.unhash			= udp_lib_unhash,
2951 	.rehash			= udp_v4_rehash,
2952 	.get_port		= udp_v4_get_port,
2953 	.put_port		= udp_lib_unhash,
2954 #ifdef CONFIG_BPF_SYSCALL
2955 	.psock_update_sk_prot	= udp_bpf_update_proto,
2956 #endif
2957 	.memory_allocated	= &udp_memory_allocated,
2958 	.per_cpu_fw_alloc	= &udp_memory_per_cpu_fw_alloc,
2959 
2960 	.sysctl_mem		= sysctl_udp_mem,
2961 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2962 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2963 	.obj_size		= sizeof(struct udp_sock),
2964 	.h.udp_table		= NULL,
2965 	.diag_destroy		= udp_abort,
2966 };
2967 EXPORT_SYMBOL(udp_prot);
2968 
2969 /* ------------------------------------------------------------------------ */
2970 #ifdef CONFIG_PROC_FS
2971 
2972 static unsigned short seq_file_family(const struct seq_file *seq);
2973 static bool seq_sk_match(struct seq_file *seq, const struct sock *sk)
2974 {
2975 	unsigned short family = seq_file_family(seq);
2976 
2977 	/* AF_UNSPEC is used as a match all */
2978 	return ((family == AF_UNSPEC || family == sk->sk_family) &&
2979 		net_eq(sock_net(sk), seq_file_net(seq)));
2980 }
2981 
2982 #ifdef CONFIG_BPF_SYSCALL
2983 static const struct seq_operations bpf_iter_udp_seq_ops;
2984 #endif
2985 static struct udp_table *udp_get_table_seq(struct seq_file *seq,
2986 					   struct net *net)
2987 {
2988 	const struct udp_seq_afinfo *afinfo;
2989 
2990 #ifdef CONFIG_BPF_SYSCALL
2991 	if (seq->op == &bpf_iter_udp_seq_ops)
2992 		return net->ipv4.udp_table;
2993 #endif
2994 
2995 	afinfo = pde_data(file_inode(seq->file));
2996 	return afinfo->udp_table ? : net->ipv4.udp_table;
2997 }
2998 
2999 static struct sock *udp_get_first(struct seq_file *seq, int start)
3000 {
3001 	struct udp_iter_state *state = seq->private;
3002 	struct net *net = seq_file_net(seq);
3003 	struct udp_table *udptable;
3004 	struct sock *sk;
3005 
3006 	udptable = udp_get_table_seq(seq, net);
3007 
3008 	for (state->bucket = start; state->bucket <= udptable->mask;
3009 	     ++state->bucket) {
3010 		struct udp_hslot *hslot = &udptable->hash[state->bucket];
3011 
3012 		if (hlist_empty(&hslot->head))
3013 			continue;
3014 
3015 		spin_lock_bh(&hslot->lock);
3016 		sk_for_each(sk, &hslot->head) {
3017 			if (seq_sk_match(seq, sk))
3018 				goto found;
3019 		}
3020 		spin_unlock_bh(&hslot->lock);
3021 	}
3022 	sk = NULL;
3023 found:
3024 	return sk;
3025 }
3026 
3027 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
3028 {
3029 	struct udp_iter_state *state = seq->private;
3030 	struct net *net = seq_file_net(seq);
3031 	struct udp_table *udptable;
3032 
3033 	do {
3034 		sk = sk_next(sk);
3035 	} while (sk && !seq_sk_match(seq, sk));
3036 
3037 	if (!sk) {
3038 		udptable = udp_get_table_seq(seq, net);
3039 
3040 		if (state->bucket <= udptable->mask)
3041 			spin_unlock_bh(&udptable->hash[state->bucket].lock);
3042 
3043 		return udp_get_first(seq, state->bucket + 1);
3044 	}
3045 	return sk;
3046 }
3047 
3048 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
3049 {
3050 	struct sock *sk = udp_get_first(seq, 0);
3051 
3052 	if (sk)
3053 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
3054 			--pos;
3055 	return pos ? NULL : sk;
3056 }
3057 
3058 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
3059 {
3060 	struct udp_iter_state *state = seq->private;
3061 	state->bucket = MAX_UDP_PORTS;
3062 
3063 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
3064 }
3065 EXPORT_SYMBOL(udp_seq_start);
3066 
3067 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3068 {
3069 	struct sock *sk;
3070 
3071 	if (v == SEQ_START_TOKEN)
3072 		sk = udp_get_idx(seq, 0);
3073 	else
3074 		sk = udp_get_next(seq, v);
3075 
3076 	++*pos;
3077 	return sk;
3078 }
3079 EXPORT_SYMBOL(udp_seq_next);
3080 
3081 void udp_seq_stop(struct seq_file *seq, void *v)
3082 {
3083 	struct udp_iter_state *state = seq->private;
3084 	struct udp_table *udptable;
3085 
3086 	udptable = udp_get_table_seq(seq, seq_file_net(seq));
3087 
3088 	if (state->bucket <= udptable->mask)
3089 		spin_unlock_bh(&udptable->hash[state->bucket].lock);
3090 }
3091 EXPORT_SYMBOL(udp_seq_stop);
3092 
3093 /* ------------------------------------------------------------------------ */
3094 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
3095 		int bucket)
3096 {
3097 	struct inet_sock *inet = inet_sk(sp);
3098 	__be32 dest = inet->inet_daddr;
3099 	__be32 src  = inet->inet_rcv_saddr;
3100 	__u16 destp	  = ntohs(inet->inet_dport);
3101 	__u16 srcp	  = ntohs(inet->inet_sport);
3102 
3103 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
3104 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
3105 		bucket, src, srcp, dest, destp, sp->sk_state,
3106 		sk_wmem_alloc_get(sp),
3107 		udp_rqueue_get(sp),
3108 		0, 0L, 0,
3109 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
3110 		0, sock_i_ino(sp),
3111 		refcount_read(&sp->sk_refcnt), sp,
3112 		atomic_read(&sp->sk_drops));
3113 }
3114 
3115 int udp4_seq_show(struct seq_file *seq, void *v)
3116 {
3117 	seq_setwidth(seq, 127);
3118 	if (v == SEQ_START_TOKEN)
3119 		seq_puts(seq, "   sl  local_address rem_address   st tx_queue "
3120 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
3121 			   "inode ref pointer drops");
3122 	else {
3123 		struct udp_iter_state *state = seq->private;
3124 
3125 		udp4_format_sock(v, seq, state->bucket);
3126 	}
3127 	seq_pad(seq, '\n');
3128 	return 0;
3129 }
3130 
3131 #ifdef CONFIG_BPF_SYSCALL
3132 struct bpf_iter__udp {
3133 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
3134 	__bpf_md_ptr(struct udp_sock *, udp_sk);
3135 	uid_t uid __aligned(8);
3136 	int bucket __aligned(8);
3137 };
3138 
3139 struct bpf_udp_iter_state {
3140 	struct udp_iter_state state;
3141 	unsigned int cur_sk;
3142 	unsigned int end_sk;
3143 	unsigned int max_sk;
3144 	int offset;
3145 	struct sock **batch;
3146 	bool st_bucket_done;
3147 };
3148 
3149 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3150 				      unsigned int new_batch_sz);
3151 static struct sock *bpf_iter_udp_batch(struct seq_file *seq)
3152 {
3153 	struct bpf_udp_iter_state *iter = seq->private;
3154 	struct udp_iter_state *state = &iter->state;
3155 	struct net *net = seq_file_net(seq);
3156 	int resume_bucket, resume_offset;
3157 	struct udp_table *udptable;
3158 	unsigned int batch_sks = 0;
3159 	bool resized = false;
3160 	struct sock *sk;
3161 
3162 	resume_bucket = state->bucket;
3163 	resume_offset = iter->offset;
3164 
3165 	/* The current batch is done, so advance the bucket. */
3166 	if (iter->st_bucket_done)
3167 		state->bucket++;
3168 
3169 	udptable = udp_get_table_seq(seq, net);
3170 
3171 again:
3172 	/* New batch for the next bucket.
3173 	 * Iterate over the hash table to find a bucket with sockets matching
3174 	 * the iterator attributes, and return the first matching socket from
3175 	 * the bucket. The remaining matched sockets from the bucket are batched
3176 	 * before releasing the bucket lock. This allows BPF programs that are
3177 	 * called in seq_show to acquire the bucket lock if needed.
3178 	 */
3179 	iter->cur_sk = 0;
3180 	iter->end_sk = 0;
3181 	iter->st_bucket_done = false;
3182 	batch_sks = 0;
3183 
3184 	for (; state->bucket <= udptable->mask; state->bucket++) {
3185 		struct udp_hslot *hslot2 = &udptable->hash2[state->bucket];
3186 
3187 		if (hlist_empty(&hslot2->head))
3188 			continue;
3189 
3190 		iter->offset = 0;
3191 		spin_lock_bh(&hslot2->lock);
3192 		udp_portaddr_for_each_entry(sk, &hslot2->head) {
3193 			if (seq_sk_match(seq, sk)) {
3194 				/* Resume from the last iterated socket at the
3195 				 * offset in the bucket before iterator was stopped.
3196 				 */
3197 				if (state->bucket == resume_bucket &&
3198 				    iter->offset < resume_offset) {
3199 					++iter->offset;
3200 					continue;
3201 				}
3202 				if (iter->end_sk < iter->max_sk) {
3203 					sock_hold(sk);
3204 					iter->batch[iter->end_sk++] = sk;
3205 				}
3206 				batch_sks++;
3207 			}
3208 		}
3209 		spin_unlock_bh(&hslot2->lock);
3210 
3211 		if (iter->end_sk)
3212 			break;
3213 	}
3214 
3215 	/* All done: no batch made. */
3216 	if (!iter->end_sk)
3217 		return NULL;
3218 
3219 	if (iter->end_sk == batch_sks) {
3220 		/* Batching is done for the current bucket; return the first
3221 		 * socket to be iterated from the batch.
3222 		 */
3223 		iter->st_bucket_done = true;
3224 		goto done;
3225 	}
3226 	if (!resized && !bpf_iter_udp_realloc_batch(iter, batch_sks * 3 / 2)) {
3227 		resized = true;
3228 		/* After allocating a larger batch, retry one more time to grab
3229 		 * the whole bucket.
3230 		 */
3231 		goto again;
3232 	}
3233 done:
3234 	return iter->batch[0];
3235 }
3236 
3237 static void *bpf_iter_udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3238 {
3239 	struct bpf_udp_iter_state *iter = seq->private;
3240 	struct sock *sk;
3241 
3242 	/* Whenever seq_next() is called, the iter->cur_sk is
3243 	 * done with seq_show(), so unref the iter->cur_sk.
3244 	 */
3245 	if (iter->cur_sk < iter->end_sk) {
3246 		sock_put(iter->batch[iter->cur_sk++]);
3247 		++iter->offset;
3248 	}
3249 
3250 	/* After updating iter->cur_sk, check if there are more sockets
3251 	 * available in the current bucket batch.
3252 	 */
3253 	if (iter->cur_sk < iter->end_sk)
3254 		sk = iter->batch[iter->cur_sk];
3255 	else
3256 		/* Prepare a new batch. */
3257 		sk = bpf_iter_udp_batch(seq);
3258 
3259 	++*pos;
3260 	return sk;
3261 }
3262 
3263 static void *bpf_iter_udp_seq_start(struct seq_file *seq, loff_t *pos)
3264 {
3265 	/* bpf iter does not support lseek, so it always
3266 	 * continue from where it was stop()-ped.
3267 	 */
3268 	if (*pos)
3269 		return bpf_iter_udp_batch(seq);
3270 
3271 	return SEQ_START_TOKEN;
3272 }
3273 
3274 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3275 			     struct udp_sock *udp_sk, uid_t uid, int bucket)
3276 {
3277 	struct bpf_iter__udp ctx;
3278 
3279 	meta->seq_num--;  /* skip SEQ_START_TOKEN */
3280 	ctx.meta = meta;
3281 	ctx.udp_sk = udp_sk;
3282 	ctx.uid = uid;
3283 	ctx.bucket = bucket;
3284 	return bpf_iter_run_prog(prog, &ctx);
3285 }
3286 
3287 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v)
3288 {
3289 	struct udp_iter_state *state = seq->private;
3290 	struct bpf_iter_meta meta;
3291 	struct bpf_prog *prog;
3292 	struct sock *sk = v;
3293 	uid_t uid;
3294 	int ret;
3295 
3296 	if (v == SEQ_START_TOKEN)
3297 		return 0;
3298 
3299 	lock_sock(sk);
3300 
3301 	if (unlikely(sk_unhashed(sk))) {
3302 		ret = SEQ_SKIP;
3303 		goto unlock;
3304 	}
3305 
3306 	uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3307 	meta.seq = seq;
3308 	prog = bpf_iter_get_info(&meta, false);
3309 	ret = udp_prog_seq_show(prog, &meta, v, uid, state->bucket);
3310 
3311 unlock:
3312 	release_sock(sk);
3313 	return ret;
3314 }
3315 
3316 static void bpf_iter_udp_put_batch(struct bpf_udp_iter_state *iter)
3317 {
3318 	while (iter->cur_sk < iter->end_sk)
3319 		sock_put(iter->batch[iter->cur_sk++]);
3320 }
3321 
3322 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v)
3323 {
3324 	struct bpf_udp_iter_state *iter = seq->private;
3325 	struct bpf_iter_meta meta;
3326 	struct bpf_prog *prog;
3327 
3328 	if (!v) {
3329 		meta.seq = seq;
3330 		prog = bpf_iter_get_info(&meta, true);
3331 		if (prog)
3332 			(void)udp_prog_seq_show(prog, &meta, v, 0, 0);
3333 	}
3334 
3335 	if (iter->cur_sk < iter->end_sk) {
3336 		bpf_iter_udp_put_batch(iter);
3337 		iter->st_bucket_done = false;
3338 	}
3339 }
3340 
3341 static const struct seq_operations bpf_iter_udp_seq_ops = {
3342 	.start		= bpf_iter_udp_seq_start,
3343 	.next		= bpf_iter_udp_seq_next,
3344 	.stop		= bpf_iter_udp_seq_stop,
3345 	.show		= bpf_iter_udp_seq_show,
3346 };
3347 #endif
3348 
3349 static unsigned short seq_file_family(const struct seq_file *seq)
3350 {
3351 	const struct udp_seq_afinfo *afinfo;
3352 
3353 #ifdef CONFIG_BPF_SYSCALL
3354 	/* BPF iterator: bpf programs to filter sockets. */
3355 	if (seq->op == &bpf_iter_udp_seq_ops)
3356 		return AF_UNSPEC;
3357 #endif
3358 
3359 	/* Proc fs iterator */
3360 	afinfo = pde_data(file_inode(seq->file));
3361 	return afinfo->family;
3362 }
3363 
3364 const struct seq_operations udp_seq_ops = {
3365 	.start		= udp_seq_start,
3366 	.next		= udp_seq_next,
3367 	.stop		= udp_seq_stop,
3368 	.show		= udp4_seq_show,
3369 };
3370 EXPORT_SYMBOL(udp_seq_ops);
3371 
3372 static struct udp_seq_afinfo udp4_seq_afinfo = {
3373 	.family		= AF_INET,
3374 	.udp_table	= NULL,
3375 };
3376 
3377 static int __net_init udp4_proc_init_net(struct net *net)
3378 {
3379 	if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
3380 			sizeof(struct udp_iter_state), &udp4_seq_afinfo))
3381 		return -ENOMEM;
3382 	return 0;
3383 }
3384 
3385 static void __net_exit udp4_proc_exit_net(struct net *net)
3386 {
3387 	remove_proc_entry("udp", net->proc_net);
3388 }
3389 
3390 static struct pernet_operations udp4_net_ops = {
3391 	.init = udp4_proc_init_net,
3392 	.exit = udp4_proc_exit_net,
3393 };
3394 
3395 int __init udp4_proc_init(void)
3396 {
3397 	return register_pernet_subsys(&udp4_net_ops);
3398 }
3399 
3400 void udp4_proc_exit(void)
3401 {
3402 	unregister_pernet_subsys(&udp4_net_ops);
3403 }
3404 #endif /* CONFIG_PROC_FS */
3405 
3406 static __initdata unsigned long uhash_entries;
3407 static int __init set_uhash_entries(char *str)
3408 {
3409 	ssize_t ret;
3410 
3411 	if (!str)
3412 		return 0;
3413 
3414 	ret = kstrtoul(str, 0, &uhash_entries);
3415 	if (ret)
3416 		return 0;
3417 
3418 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
3419 		uhash_entries = UDP_HTABLE_SIZE_MIN;
3420 	return 1;
3421 }
3422 __setup("uhash_entries=", set_uhash_entries);
3423 
3424 void __init udp_table_init(struct udp_table *table, const char *name)
3425 {
3426 	unsigned int i;
3427 
3428 	table->hash = alloc_large_system_hash(name,
3429 					      2 * sizeof(struct udp_hslot),
3430 					      uhash_entries,
3431 					      21, /* one slot per 2 MB */
3432 					      0,
3433 					      &table->log,
3434 					      &table->mask,
3435 					      UDP_HTABLE_SIZE_MIN,
3436 					      UDP_HTABLE_SIZE_MAX);
3437 
3438 	table->hash2 = table->hash + (table->mask + 1);
3439 	for (i = 0; i <= table->mask; i++) {
3440 		INIT_HLIST_HEAD(&table->hash[i].head);
3441 		table->hash[i].count = 0;
3442 		spin_lock_init(&table->hash[i].lock);
3443 	}
3444 	for (i = 0; i <= table->mask; i++) {
3445 		INIT_HLIST_HEAD(&table->hash2[i].head);
3446 		table->hash2[i].count = 0;
3447 		spin_lock_init(&table->hash2[i].lock);
3448 	}
3449 }
3450 
3451 u32 udp_flow_hashrnd(void)
3452 {
3453 	static u32 hashrnd __read_mostly;
3454 
3455 	net_get_random_once(&hashrnd, sizeof(hashrnd));
3456 
3457 	return hashrnd;
3458 }
3459 EXPORT_SYMBOL(udp_flow_hashrnd);
3460 
3461 static void __net_init udp_sysctl_init(struct net *net)
3462 {
3463 	net->ipv4.sysctl_udp_rmem_min = PAGE_SIZE;
3464 	net->ipv4.sysctl_udp_wmem_min = PAGE_SIZE;
3465 
3466 #ifdef CONFIG_NET_L3_MASTER_DEV
3467 	net->ipv4.sysctl_udp_l3mdev_accept = 0;
3468 #endif
3469 }
3470 
3471 static struct udp_table __net_init *udp_pernet_table_alloc(unsigned int hash_entries)
3472 {
3473 	struct udp_table *udptable;
3474 	int i;
3475 
3476 	udptable = kmalloc(sizeof(*udptable), GFP_KERNEL);
3477 	if (!udptable)
3478 		goto out;
3479 
3480 	udptable->hash = vmalloc_huge(hash_entries * 2 * sizeof(struct udp_hslot),
3481 				      GFP_KERNEL_ACCOUNT);
3482 	if (!udptable->hash)
3483 		goto free_table;
3484 
3485 	udptable->hash2 = udptable->hash + hash_entries;
3486 	udptable->mask = hash_entries - 1;
3487 	udptable->log = ilog2(hash_entries);
3488 
3489 	for (i = 0; i < hash_entries; i++) {
3490 		INIT_HLIST_HEAD(&udptable->hash[i].head);
3491 		udptable->hash[i].count = 0;
3492 		spin_lock_init(&udptable->hash[i].lock);
3493 
3494 		INIT_HLIST_HEAD(&udptable->hash2[i].head);
3495 		udptable->hash2[i].count = 0;
3496 		spin_lock_init(&udptable->hash2[i].lock);
3497 	}
3498 
3499 	return udptable;
3500 
3501 free_table:
3502 	kfree(udptable);
3503 out:
3504 	return NULL;
3505 }
3506 
3507 static void __net_exit udp_pernet_table_free(struct net *net)
3508 {
3509 	struct udp_table *udptable = net->ipv4.udp_table;
3510 
3511 	if (udptable == &udp_table)
3512 		return;
3513 
3514 	kvfree(udptable->hash);
3515 	kfree(udptable);
3516 }
3517 
3518 static void __net_init udp_set_table(struct net *net)
3519 {
3520 	struct udp_table *udptable;
3521 	unsigned int hash_entries;
3522 	struct net *old_net;
3523 
3524 	if (net_eq(net, &init_net))
3525 		goto fallback;
3526 
3527 	old_net = current->nsproxy->net_ns;
3528 	hash_entries = READ_ONCE(old_net->ipv4.sysctl_udp_child_hash_entries);
3529 	if (!hash_entries)
3530 		goto fallback;
3531 
3532 	/* Set min to keep the bitmap on stack in udp_lib_get_port() */
3533 	if (hash_entries < UDP_HTABLE_SIZE_MIN_PERNET)
3534 		hash_entries = UDP_HTABLE_SIZE_MIN_PERNET;
3535 	else
3536 		hash_entries = roundup_pow_of_two(hash_entries);
3537 
3538 	udptable = udp_pernet_table_alloc(hash_entries);
3539 	if (udptable) {
3540 		net->ipv4.udp_table = udptable;
3541 	} else {
3542 		pr_warn("Failed to allocate UDP hash table (entries: %u) "
3543 			"for a netns, fallback to the global one\n",
3544 			hash_entries);
3545 fallback:
3546 		net->ipv4.udp_table = &udp_table;
3547 	}
3548 }
3549 
3550 static int __net_init udp_pernet_init(struct net *net)
3551 {
3552 	udp_sysctl_init(net);
3553 	udp_set_table(net);
3554 
3555 	return 0;
3556 }
3557 
3558 static void __net_exit udp_pernet_exit(struct net *net)
3559 {
3560 	udp_pernet_table_free(net);
3561 }
3562 
3563 static struct pernet_operations __net_initdata udp_sysctl_ops = {
3564 	.init	= udp_pernet_init,
3565 	.exit	= udp_pernet_exit,
3566 };
3567 
3568 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3569 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta,
3570 		     struct udp_sock *udp_sk, uid_t uid, int bucket)
3571 
3572 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3573 				      unsigned int new_batch_sz)
3574 {
3575 	struct sock **new_batch;
3576 
3577 	new_batch = kvmalloc_array(new_batch_sz, sizeof(*new_batch),
3578 				   GFP_USER | __GFP_NOWARN);
3579 	if (!new_batch)
3580 		return -ENOMEM;
3581 
3582 	bpf_iter_udp_put_batch(iter);
3583 	kvfree(iter->batch);
3584 	iter->batch = new_batch;
3585 	iter->max_sk = new_batch_sz;
3586 
3587 	return 0;
3588 }
3589 
3590 #define INIT_BATCH_SZ 16
3591 
3592 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux)
3593 {
3594 	struct bpf_udp_iter_state *iter = priv_data;
3595 	int ret;
3596 
3597 	ret = bpf_iter_init_seq_net(priv_data, aux);
3598 	if (ret)
3599 		return ret;
3600 
3601 	ret = bpf_iter_udp_realloc_batch(iter, INIT_BATCH_SZ);
3602 	if (ret)
3603 		bpf_iter_fini_seq_net(priv_data);
3604 
3605 	return ret;
3606 }
3607 
3608 static void bpf_iter_fini_udp(void *priv_data)
3609 {
3610 	struct bpf_udp_iter_state *iter = priv_data;
3611 
3612 	bpf_iter_fini_seq_net(priv_data);
3613 	kvfree(iter->batch);
3614 }
3615 
3616 static const struct bpf_iter_seq_info udp_seq_info = {
3617 	.seq_ops		= &bpf_iter_udp_seq_ops,
3618 	.init_seq_private	= bpf_iter_init_udp,
3619 	.fini_seq_private	= bpf_iter_fini_udp,
3620 	.seq_priv_size		= sizeof(struct bpf_udp_iter_state),
3621 };
3622 
3623 static struct bpf_iter_reg udp_reg_info = {
3624 	.target			= "udp",
3625 	.ctx_arg_info_size	= 1,
3626 	.ctx_arg_info		= {
3627 		{ offsetof(struct bpf_iter__udp, udp_sk),
3628 		  PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED },
3629 	},
3630 	.seq_info		= &udp_seq_info,
3631 };
3632 
3633 static void __init bpf_iter_register(void)
3634 {
3635 	udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP];
3636 	if (bpf_iter_reg_target(&udp_reg_info))
3637 		pr_warn("Warning: could not register bpf iterator udp\n");
3638 }
3639 #endif
3640 
3641 void __init udp_init(void)
3642 {
3643 	unsigned long limit;
3644 	unsigned int i;
3645 
3646 	udp_table_init(&udp_table, "UDP");
3647 	limit = nr_free_buffer_pages() / 8;
3648 	limit = max(limit, 128UL);
3649 	sysctl_udp_mem[0] = limit / 4 * 3;
3650 	sysctl_udp_mem[1] = limit;
3651 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3652 
3653 	/* 16 spinlocks per cpu */
3654 	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3655 	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3656 				GFP_KERNEL);
3657 	if (!udp_busylocks)
3658 		panic("UDP: failed to alloc udp_busylocks\n");
3659 	for (i = 0; i < (1U << udp_busylocks_log); i++)
3660 		spin_lock_init(udp_busylocks + i);
3661 
3662 	if (register_pernet_subsys(&udp_sysctl_ops))
3663 		panic("UDP: failed to init sysctl parameters.\n");
3664 
3665 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3666 	bpf_iter_register();
3667 #endif
3668 }
3669