xref: /linux/net/ipv4/udp.c (revision d457a0e329b0bfd3a1450e0b1a18cd2b47a25a08)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		The User Datagram Protocol (UDP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
12  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
13  *		Hirokazu Takahashi, <taka@valinux.co.jp>
14  *
15  * Fixes:
16  *		Alan Cox	:	verify_area() calls
17  *		Alan Cox	: 	stopped close while in use off icmp
18  *					messages. Not a fix but a botch that
19  *					for udp at least is 'valid'.
20  *		Alan Cox	:	Fixed icmp handling properly
21  *		Alan Cox	: 	Correct error for oversized datagrams
22  *		Alan Cox	:	Tidied select() semantics.
23  *		Alan Cox	:	udp_err() fixed properly, also now
24  *					select and read wake correctly on errors
25  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
26  *		Alan Cox	:	UDP can count its memory
27  *		Alan Cox	:	send to an unknown connection causes
28  *					an ECONNREFUSED off the icmp, but
29  *					does NOT close.
30  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
31  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
32  *					bug no longer crashes it.
33  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
34  *		Alan Cox	:	Uses skb_free_datagram
35  *		Alan Cox	:	Added get/set sockopt support.
36  *		Alan Cox	:	Broadcasting without option set returns EACCES.
37  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
38  *		Alan Cox	:	Use ip_tos and ip_ttl
39  *		Alan Cox	:	SNMP Mibs
40  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
41  *		Matt Dillon	:	UDP length checks.
42  *		Alan Cox	:	Smarter af_inet used properly.
43  *		Alan Cox	:	Use new kernel side addressing.
44  *		Alan Cox	:	Incorrect return on truncated datagram receive.
45  *	Arnt Gulbrandsen 	:	New udp_send and stuff
46  *		Alan Cox	:	Cache last socket
47  *		Alan Cox	:	Route cache
48  *		Jon Peatfield	:	Minor efficiency fix to sendto().
49  *		Mike Shaver	:	RFC1122 checks.
50  *		Alan Cox	:	Nonblocking error fix.
51  *	Willy Konynenberg	:	Transparent proxying support.
52  *		Mike McLagan	:	Routing by source
53  *		David S. Miller	:	New socket lookup architecture.
54  *					Last socket cache retained as it
55  *					does have a high hit rate.
56  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
57  *		Andi Kleen	:	Some cleanups, cache destination entry
58  *					for connect.
59  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
60  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
61  *					return ENOTCONN for unconnected sockets (POSIX)
62  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
63  *					bound-to-device socket
64  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
65  *					datagrams.
66  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
67  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
68  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
69  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
70  *					a single port at the same time.
71  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
72  *	James Chapman		:	Add L2TP encapsulation type.
73  */
74 
75 #define pr_fmt(fmt) "UDP: " fmt
76 
77 #include <linux/bpf-cgroup.h>
78 #include <linux/uaccess.h>
79 #include <asm/ioctls.h>
80 #include <linux/memblock.h>
81 #include <linux/highmem.h>
82 #include <linux/types.h>
83 #include <linux/fcntl.h>
84 #include <linux/module.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/igmp.h>
88 #include <linux/inetdevice.h>
89 #include <linux/in.h>
90 #include <linux/errno.h>
91 #include <linux/timer.h>
92 #include <linux/mm.h>
93 #include <linux/inet.h>
94 #include <linux/netdevice.h>
95 #include <linux/slab.h>
96 #include <net/tcp_states.h>
97 #include <linux/skbuff.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <net/net_namespace.h>
101 #include <net/icmp.h>
102 #include <net/inet_hashtables.h>
103 #include <net/ip_tunnels.h>
104 #include <net/route.h>
105 #include <net/checksum.h>
106 #include <net/gso.h>
107 #include <net/xfrm.h>
108 #include <trace/events/udp.h>
109 #include <linux/static_key.h>
110 #include <linux/btf_ids.h>
111 #include <trace/events/skb.h>
112 #include <net/busy_poll.h>
113 #include "udp_impl.h"
114 #include <net/sock_reuseport.h>
115 #include <net/addrconf.h>
116 #include <net/udp_tunnel.h>
117 #if IS_ENABLED(CONFIG_IPV6)
118 #include <net/ipv6_stubs.h>
119 #endif
120 
121 struct udp_table udp_table __read_mostly;
122 EXPORT_SYMBOL(udp_table);
123 
124 long sysctl_udp_mem[3] __read_mostly;
125 EXPORT_SYMBOL(sysctl_udp_mem);
126 
127 atomic_long_t udp_memory_allocated ____cacheline_aligned_in_smp;
128 EXPORT_SYMBOL(udp_memory_allocated);
129 DEFINE_PER_CPU(int, udp_memory_per_cpu_fw_alloc);
130 EXPORT_PER_CPU_SYMBOL_GPL(udp_memory_per_cpu_fw_alloc);
131 
132 #define MAX_UDP_PORTS 65536
133 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN_PERNET)
134 
135 static struct udp_table *udp_get_table_prot(struct sock *sk)
136 {
137 	return sk->sk_prot->h.udp_table ? : sock_net(sk)->ipv4.udp_table;
138 }
139 
140 static int udp_lib_lport_inuse(struct net *net, __u16 num,
141 			       const struct udp_hslot *hslot,
142 			       unsigned long *bitmap,
143 			       struct sock *sk, unsigned int log)
144 {
145 	struct sock *sk2;
146 	kuid_t uid = sock_i_uid(sk);
147 
148 	sk_for_each(sk2, &hslot->head) {
149 		if (net_eq(sock_net(sk2), net) &&
150 		    sk2 != sk &&
151 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
152 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
153 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
154 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
155 		    inet_rcv_saddr_equal(sk, sk2, true)) {
156 			if (sk2->sk_reuseport && sk->sk_reuseport &&
157 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
158 			    uid_eq(uid, sock_i_uid(sk2))) {
159 				if (!bitmap)
160 					return 0;
161 			} else {
162 				if (!bitmap)
163 					return 1;
164 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
165 					  bitmap);
166 			}
167 		}
168 	}
169 	return 0;
170 }
171 
172 /*
173  * Note: we still hold spinlock of primary hash chain, so no other writer
174  * can insert/delete a socket with local_port == num
175  */
176 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
177 				struct udp_hslot *hslot2,
178 				struct sock *sk)
179 {
180 	struct sock *sk2;
181 	kuid_t uid = sock_i_uid(sk);
182 	int res = 0;
183 
184 	spin_lock(&hslot2->lock);
185 	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
186 		if (net_eq(sock_net(sk2), net) &&
187 		    sk2 != sk &&
188 		    (udp_sk(sk2)->udp_port_hash == num) &&
189 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
190 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
191 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
192 		    inet_rcv_saddr_equal(sk, sk2, true)) {
193 			if (sk2->sk_reuseport && sk->sk_reuseport &&
194 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
195 			    uid_eq(uid, sock_i_uid(sk2))) {
196 				res = 0;
197 			} else {
198 				res = 1;
199 			}
200 			break;
201 		}
202 	}
203 	spin_unlock(&hslot2->lock);
204 	return res;
205 }
206 
207 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
208 {
209 	struct net *net = sock_net(sk);
210 	kuid_t uid = sock_i_uid(sk);
211 	struct sock *sk2;
212 
213 	sk_for_each(sk2, &hslot->head) {
214 		if (net_eq(sock_net(sk2), net) &&
215 		    sk2 != sk &&
216 		    sk2->sk_family == sk->sk_family &&
217 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
218 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
219 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
220 		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
221 		    inet_rcv_saddr_equal(sk, sk2, false)) {
222 			return reuseport_add_sock(sk, sk2,
223 						  inet_rcv_saddr_any(sk));
224 		}
225 	}
226 
227 	return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
228 }
229 
230 /**
231  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
232  *
233  *  @sk:          socket struct in question
234  *  @snum:        port number to look up
235  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
236  *                   with NULL address
237  */
238 int udp_lib_get_port(struct sock *sk, unsigned short snum,
239 		     unsigned int hash2_nulladdr)
240 {
241 	struct udp_table *udptable = udp_get_table_prot(sk);
242 	struct udp_hslot *hslot, *hslot2;
243 	struct net *net = sock_net(sk);
244 	int error = -EADDRINUSE;
245 
246 	if (!snum) {
247 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
248 		unsigned short first, last;
249 		int low, high, remaining;
250 		unsigned int rand;
251 
252 		inet_sk_get_local_port_range(sk, &low, &high);
253 		remaining = (high - low) + 1;
254 
255 		rand = get_random_u32();
256 		first = reciprocal_scale(rand, remaining) + low;
257 		/*
258 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
259 		 */
260 		rand = (rand | 1) * (udptable->mask + 1);
261 		last = first + udptable->mask + 1;
262 		do {
263 			hslot = udp_hashslot(udptable, net, first);
264 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
265 			spin_lock_bh(&hslot->lock);
266 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
267 					    udptable->log);
268 
269 			snum = first;
270 			/*
271 			 * Iterate on all possible values of snum for this hash.
272 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
273 			 * give us randomization and full range coverage.
274 			 */
275 			do {
276 				if (low <= snum && snum <= high &&
277 				    !test_bit(snum >> udptable->log, bitmap) &&
278 				    !inet_is_local_reserved_port(net, snum))
279 					goto found;
280 				snum += rand;
281 			} while (snum != first);
282 			spin_unlock_bh(&hslot->lock);
283 			cond_resched();
284 		} while (++first != last);
285 		goto fail;
286 	} else {
287 		hslot = udp_hashslot(udptable, net, snum);
288 		spin_lock_bh(&hslot->lock);
289 		if (hslot->count > 10) {
290 			int exist;
291 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
292 
293 			slot2          &= udptable->mask;
294 			hash2_nulladdr &= udptable->mask;
295 
296 			hslot2 = udp_hashslot2(udptable, slot2);
297 			if (hslot->count < hslot2->count)
298 				goto scan_primary_hash;
299 
300 			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
301 			if (!exist && (hash2_nulladdr != slot2)) {
302 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
303 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
304 							     sk);
305 			}
306 			if (exist)
307 				goto fail_unlock;
308 			else
309 				goto found;
310 		}
311 scan_primary_hash:
312 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
313 			goto fail_unlock;
314 	}
315 found:
316 	inet_sk(sk)->inet_num = snum;
317 	udp_sk(sk)->udp_port_hash = snum;
318 	udp_sk(sk)->udp_portaddr_hash ^= snum;
319 	if (sk_unhashed(sk)) {
320 		if (sk->sk_reuseport &&
321 		    udp_reuseport_add_sock(sk, hslot)) {
322 			inet_sk(sk)->inet_num = 0;
323 			udp_sk(sk)->udp_port_hash = 0;
324 			udp_sk(sk)->udp_portaddr_hash ^= snum;
325 			goto fail_unlock;
326 		}
327 
328 		sk_add_node_rcu(sk, &hslot->head);
329 		hslot->count++;
330 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
331 
332 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
333 		spin_lock(&hslot2->lock);
334 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
335 		    sk->sk_family == AF_INET6)
336 			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
337 					   &hslot2->head);
338 		else
339 			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
340 					   &hslot2->head);
341 		hslot2->count++;
342 		spin_unlock(&hslot2->lock);
343 	}
344 	sock_set_flag(sk, SOCK_RCU_FREE);
345 	error = 0;
346 fail_unlock:
347 	spin_unlock_bh(&hslot->lock);
348 fail:
349 	return error;
350 }
351 EXPORT_SYMBOL(udp_lib_get_port);
352 
353 int udp_v4_get_port(struct sock *sk, unsigned short snum)
354 {
355 	unsigned int hash2_nulladdr =
356 		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
357 	unsigned int hash2_partial =
358 		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
359 
360 	/* precompute partial secondary hash */
361 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
362 	return udp_lib_get_port(sk, snum, hash2_nulladdr);
363 }
364 
365 static int compute_score(struct sock *sk, struct net *net,
366 			 __be32 saddr, __be16 sport,
367 			 __be32 daddr, unsigned short hnum,
368 			 int dif, int sdif)
369 {
370 	int score;
371 	struct inet_sock *inet;
372 	bool dev_match;
373 
374 	if (!net_eq(sock_net(sk), net) ||
375 	    udp_sk(sk)->udp_port_hash != hnum ||
376 	    ipv6_only_sock(sk))
377 		return -1;
378 
379 	if (sk->sk_rcv_saddr != daddr)
380 		return -1;
381 
382 	score = (sk->sk_family == PF_INET) ? 2 : 1;
383 
384 	inet = inet_sk(sk);
385 	if (inet->inet_daddr) {
386 		if (inet->inet_daddr != saddr)
387 			return -1;
388 		score += 4;
389 	}
390 
391 	if (inet->inet_dport) {
392 		if (inet->inet_dport != sport)
393 			return -1;
394 		score += 4;
395 	}
396 
397 	dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
398 					dif, sdif);
399 	if (!dev_match)
400 		return -1;
401 	if (sk->sk_bound_dev_if)
402 		score += 4;
403 
404 	if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
405 		score++;
406 	return score;
407 }
408 
409 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
410 		       const __u16 lport, const __be32 faddr,
411 		       const __be16 fport)
412 {
413 	static u32 udp_ehash_secret __read_mostly;
414 
415 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
416 
417 	return __inet_ehashfn(laddr, lport, faddr, fport,
418 			      udp_ehash_secret + net_hash_mix(net));
419 }
420 
421 static struct sock *lookup_reuseport(struct net *net, struct sock *sk,
422 				     struct sk_buff *skb,
423 				     __be32 saddr, __be16 sport,
424 				     __be32 daddr, unsigned short hnum)
425 {
426 	struct sock *reuse_sk = NULL;
427 	u32 hash;
428 
429 	if (sk->sk_reuseport && sk->sk_state != TCP_ESTABLISHED) {
430 		hash = udp_ehashfn(net, daddr, hnum, saddr, sport);
431 		reuse_sk = reuseport_select_sock(sk, hash, skb,
432 						 sizeof(struct udphdr));
433 	}
434 	return reuse_sk;
435 }
436 
437 /* called with rcu_read_lock() */
438 static struct sock *udp4_lib_lookup2(struct net *net,
439 				     __be32 saddr, __be16 sport,
440 				     __be32 daddr, unsigned int hnum,
441 				     int dif, int sdif,
442 				     struct udp_hslot *hslot2,
443 				     struct sk_buff *skb)
444 {
445 	struct sock *sk, *result;
446 	int score, badness;
447 
448 	result = NULL;
449 	badness = 0;
450 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
451 		score = compute_score(sk, net, saddr, sport,
452 				      daddr, hnum, dif, sdif);
453 		if (score > badness) {
454 			result = lookup_reuseport(net, sk, skb,
455 						  saddr, sport, daddr, hnum);
456 			/* Fall back to scoring if group has connections */
457 			if (result && !reuseport_has_conns(sk))
458 				return result;
459 
460 			result = result ? : sk;
461 			badness = score;
462 		}
463 	}
464 	return result;
465 }
466 
467 static struct sock *udp4_lookup_run_bpf(struct net *net,
468 					struct udp_table *udptable,
469 					struct sk_buff *skb,
470 					__be32 saddr, __be16 sport,
471 					__be32 daddr, u16 hnum, const int dif)
472 {
473 	struct sock *sk, *reuse_sk;
474 	bool no_reuseport;
475 
476 	if (udptable != net->ipv4.udp_table)
477 		return NULL; /* only UDP is supported */
478 
479 	no_reuseport = bpf_sk_lookup_run_v4(net, IPPROTO_UDP, saddr, sport,
480 					    daddr, hnum, dif, &sk);
481 	if (no_reuseport || IS_ERR_OR_NULL(sk))
482 		return sk;
483 
484 	reuse_sk = lookup_reuseport(net, sk, skb, saddr, sport, daddr, hnum);
485 	if (reuse_sk)
486 		sk = reuse_sk;
487 	return sk;
488 }
489 
490 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
491  * harder than this. -DaveM
492  */
493 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
494 		__be16 sport, __be32 daddr, __be16 dport, int dif,
495 		int sdif, struct udp_table *udptable, struct sk_buff *skb)
496 {
497 	unsigned short hnum = ntohs(dport);
498 	unsigned int hash2, slot2;
499 	struct udp_hslot *hslot2;
500 	struct sock *result, *sk;
501 
502 	hash2 = ipv4_portaddr_hash(net, daddr, hnum);
503 	slot2 = hash2 & udptable->mask;
504 	hslot2 = &udptable->hash2[slot2];
505 
506 	/* Lookup connected or non-wildcard socket */
507 	result = udp4_lib_lookup2(net, saddr, sport,
508 				  daddr, hnum, dif, sdif,
509 				  hslot2, skb);
510 	if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED)
511 		goto done;
512 
513 	/* Lookup redirect from BPF */
514 	if (static_branch_unlikely(&bpf_sk_lookup_enabled)) {
515 		sk = udp4_lookup_run_bpf(net, udptable, skb,
516 					 saddr, sport, daddr, hnum, dif);
517 		if (sk) {
518 			result = sk;
519 			goto done;
520 		}
521 	}
522 
523 	/* Got non-wildcard socket or error on first lookup */
524 	if (result)
525 		goto done;
526 
527 	/* Lookup wildcard sockets */
528 	hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
529 	slot2 = hash2 & udptable->mask;
530 	hslot2 = &udptable->hash2[slot2];
531 
532 	result = udp4_lib_lookup2(net, saddr, sport,
533 				  htonl(INADDR_ANY), hnum, dif, sdif,
534 				  hslot2, skb);
535 done:
536 	if (IS_ERR(result))
537 		return NULL;
538 	return result;
539 }
540 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
541 
542 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
543 						 __be16 sport, __be16 dport,
544 						 struct udp_table *udptable)
545 {
546 	const struct iphdr *iph = ip_hdr(skb);
547 
548 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
549 				 iph->daddr, dport, inet_iif(skb),
550 				 inet_sdif(skb), udptable, skb);
551 }
552 
553 struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb,
554 				 __be16 sport, __be16 dport)
555 {
556 	const struct iphdr *iph = ip_hdr(skb);
557 	struct net *net = dev_net(skb->dev);
558 
559 	return __udp4_lib_lookup(net, iph->saddr, sport,
560 				 iph->daddr, dport, inet_iif(skb),
561 				 inet_sdif(skb), net->ipv4.udp_table, NULL);
562 }
563 
564 /* Must be called under rcu_read_lock().
565  * Does increment socket refcount.
566  */
567 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
568 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
569 			     __be32 daddr, __be16 dport, int dif)
570 {
571 	struct sock *sk;
572 
573 	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
574 			       dif, 0, net->ipv4.udp_table, NULL);
575 	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
576 		sk = NULL;
577 	return sk;
578 }
579 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
580 #endif
581 
582 static inline bool __udp_is_mcast_sock(struct net *net, const struct sock *sk,
583 				       __be16 loc_port, __be32 loc_addr,
584 				       __be16 rmt_port, __be32 rmt_addr,
585 				       int dif, int sdif, unsigned short hnum)
586 {
587 	const struct inet_sock *inet = inet_sk(sk);
588 
589 	if (!net_eq(sock_net(sk), net) ||
590 	    udp_sk(sk)->udp_port_hash != hnum ||
591 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
592 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
593 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
594 	    ipv6_only_sock(sk) ||
595 	    !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
596 		return false;
597 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
598 		return false;
599 	return true;
600 }
601 
602 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
603 void udp_encap_enable(void)
604 {
605 	static_branch_inc(&udp_encap_needed_key);
606 }
607 EXPORT_SYMBOL(udp_encap_enable);
608 
609 void udp_encap_disable(void)
610 {
611 	static_branch_dec(&udp_encap_needed_key);
612 }
613 EXPORT_SYMBOL(udp_encap_disable);
614 
615 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go
616  * through error handlers in encapsulations looking for a match.
617  */
618 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
619 {
620 	int i;
621 
622 	for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
623 		int (*handler)(struct sk_buff *skb, u32 info);
624 		const struct ip_tunnel_encap_ops *encap;
625 
626 		encap = rcu_dereference(iptun_encaps[i]);
627 		if (!encap)
628 			continue;
629 		handler = encap->err_handler;
630 		if (handler && !handler(skb, info))
631 			return 0;
632 	}
633 
634 	return -ENOENT;
635 }
636 
637 /* Try to match ICMP errors to UDP tunnels by looking up a socket without
638  * reversing source and destination port: this will match tunnels that force the
639  * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
640  * lwtunnels might actually break this assumption by being configured with
641  * different destination ports on endpoints, in this case we won't be able to
642  * trace ICMP messages back to them.
643  *
644  * If this doesn't match any socket, probe tunnels with arbitrary destination
645  * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
646  * we've sent packets to won't necessarily match the local destination port.
647  *
648  * Then ask the tunnel implementation to match the error against a valid
649  * association.
650  *
651  * Return an error if we can't find a match, the socket if we need further
652  * processing, zero otherwise.
653  */
654 static struct sock *__udp4_lib_err_encap(struct net *net,
655 					 const struct iphdr *iph,
656 					 struct udphdr *uh,
657 					 struct udp_table *udptable,
658 					 struct sock *sk,
659 					 struct sk_buff *skb, u32 info)
660 {
661 	int (*lookup)(struct sock *sk, struct sk_buff *skb);
662 	int network_offset, transport_offset;
663 	struct udp_sock *up;
664 
665 	network_offset = skb_network_offset(skb);
666 	transport_offset = skb_transport_offset(skb);
667 
668 	/* Network header needs to point to the outer IPv4 header inside ICMP */
669 	skb_reset_network_header(skb);
670 
671 	/* Transport header needs to point to the UDP header */
672 	skb_set_transport_header(skb, iph->ihl << 2);
673 
674 	if (sk) {
675 		up = udp_sk(sk);
676 
677 		lookup = READ_ONCE(up->encap_err_lookup);
678 		if (lookup && lookup(sk, skb))
679 			sk = NULL;
680 
681 		goto out;
682 	}
683 
684 	sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
685 			       iph->saddr, uh->dest, skb->dev->ifindex, 0,
686 			       udptable, NULL);
687 	if (sk) {
688 		up = udp_sk(sk);
689 
690 		lookup = READ_ONCE(up->encap_err_lookup);
691 		if (!lookup || lookup(sk, skb))
692 			sk = NULL;
693 	}
694 
695 out:
696 	if (!sk)
697 		sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
698 
699 	skb_set_transport_header(skb, transport_offset);
700 	skb_set_network_header(skb, network_offset);
701 
702 	return sk;
703 }
704 
705 /*
706  * This routine is called by the ICMP module when it gets some
707  * sort of error condition.  If err < 0 then the socket should
708  * be closed and the error returned to the user.  If err > 0
709  * it's just the icmp type << 8 | icmp code.
710  * Header points to the ip header of the error packet. We move
711  * on past this. Then (as it used to claim before adjustment)
712  * header points to the first 8 bytes of the udp header.  We need
713  * to find the appropriate port.
714  */
715 
716 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
717 {
718 	struct inet_sock *inet;
719 	const struct iphdr *iph = (const struct iphdr *)skb->data;
720 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
721 	const int type = icmp_hdr(skb)->type;
722 	const int code = icmp_hdr(skb)->code;
723 	bool tunnel = false;
724 	struct sock *sk;
725 	int harderr;
726 	int err;
727 	struct net *net = dev_net(skb->dev);
728 
729 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
730 			       iph->saddr, uh->source, skb->dev->ifindex,
731 			       inet_sdif(skb), udptable, NULL);
732 
733 	if (!sk || udp_sk(sk)->encap_type) {
734 		/* No socket for error: try tunnels before discarding */
735 		if (static_branch_unlikely(&udp_encap_needed_key)) {
736 			sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb,
737 						  info);
738 			if (!sk)
739 				return 0;
740 		} else
741 			sk = ERR_PTR(-ENOENT);
742 
743 		if (IS_ERR(sk)) {
744 			__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
745 			return PTR_ERR(sk);
746 		}
747 
748 		tunnel = true;
749 	}
750 
751 	err = 0;
752 	harderr = 0;
753 	inet = inet_sk(sk);
754 
755 	switch (type) {
756 	default:
757 	case ICMP_TIME_EXCEEDED:
758 		err = EHOSTUNREACH;
759 		break;
760 	case ICMP_SOURCE_QUENCH:
761 		goto out;
762 	case ICMP_PARAMETERPROB:
763 		err = EPROTO;
764 		harderr = 1;
765 		break;
766 	case ICMP_DEST_UNREACH:
767 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
768 			ipv4_sk_update_pmtu(skb, sk, info);
769 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
770 				err = EMSGSIZE;
771 				harderr = 1;
772 				break;
773 			}
774 			goto out;
775 		}
776 		err = EHOSTUNREACH;
777 		if (code <= NR_ICMP_UNREACH) {
778 			harderr = icmp_err_convert[code].fatal;
779 			err = icmp_err_convert[code].errno;
780 		}
781 		break;
782 	case ICMP_REDIRECT:
783 		ipv4_sk_redirect(skb, sk);
784 		goto out;
785 	}
786 
787 	/*
788 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
789 	 *	4.1.3.3.
790 	 */
791 	if (tunnel) {
792 		/* ...not for tunnels though: we don't have a sending socket */
793 		if (udp_sk(sk)->encap_err_rcv)
794 			udp_sk(sk)->encap_err_rcv(sk, skb, err, uh->dest, info,
795 						  (u8 *)(uh+1));
796 		goto out;
797 	}
798 	if (!inet->recverr) {
799 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
800 			goto out;
801 	} else
802 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
803 
804 	sk->sk_err = err;
805 	sk_error_report(sk);
806 out:
807 	return 0;
808 }
809 
810 int udp_err(struct sk_buff *skb, u32 info)
811 {
812 	return __udp4_lib_err(skb, info, dev_net(skb->dev)->ipv4.udp_table);
813 }
814 
815 /*
816  * Throw away all pending data and cancel the corking. Socket is locked.
817  */
818 void udp_flush_pending_frames(struct sock *sk)
819 {
820 	struct udp_sock *up = udp_sk(sk);
821 
822 	if (up->pending) {
823 		up->len = 0;
824 		up->pending = 0;
825 		ip_flush_pending_frames(sk);
826 	}
827 }
828 EXPORT_SYMBOL(udp_flush_pending_frames);
829 
830 /**
831  * 	udp4_hwcsum  -  handle outgoing HW checksumming
832  * 	@skb: 	sk_buff containing the filled-in UDP header
833  * 	        (checksum field must be zeroed out)
834  *	@src:	source IP address
835  *	@dst:	destination IP address
836  */
837 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
838 {
839 	struct udphdr *uh = udp_hdr(skb);
840 	int offset = skb_transport_offset(skb);
841 	int len = skb->len - offset;
842 	int hlen = len;
843 	__wsum csum = 0;
844 
845 	if (!skb_has_frag_list(skb)) {
846 		/*
847 		 * Only one fragment on the socket.
848 		 */
849 		skb->csum_start = skb_transport_header(skb) - skb->head;
850 		skb->csum_offset = offsetof(struct udphdr, check);
851 		uh->check = ~csum_tcpudp_magic(src, dst, len,
852 					       IPPROTO_UDP, 0);
853 	} else {
854 		struct sk_buff *frags;
855 
856 		/*
857 		 * HW-checksum won't work as there are two or more
858 		 * fragments on the socket so that all csums of sk_buffs
859 		 * should be together
860 		 */
861 		skb_walk_frags(skb, frags) {
862 			csum = csum_add(csum, frags->csum);
863 			hlen -= frags->len;
864 		}
865 
866 		csum = skb_checksum(skb, offset, hlen, csum);
867 		skb->ip_summed = CHECKSUM_NONE;
868 
869 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
870 		if (uh->check == 0)
871 			uh->check = CSUM_MANGLED_0;
872 	}
873 }
874 EXPORT_SYMBOL_GPL(udp4_hwcsum);
875 
876 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
877  * for the simple case like when setting the checksum for a UDP tunnel.
878  */
879 void udp_set_csum(bool nocheck, struct sk_buff *skb,
880 		  __be32 saddr, __be32 daddr, int len)
881 {
882 	struct udphdr *uh = udp_hdr(skb);
883 
884 	if (nocheck) {
885 		uh->check = 0;
886 	} else if (skb_is_gso(skb)) {
887 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
888 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
889 		uh->check = 0;
890 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
891 		if (uh->check == 0)
892 			uh->check = CSUM_MANGLED_0;
893 	} else {
894 		skb->ip_summed = CHECKSUM_PARTIAL;
895 		skb->csum_start = skb_transport_header(skb) - skb->head;
896 		skb->csum_offset = offsetof(struct udphdr, check);
897 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
898 	}
899 }
900 EXPORT_SYMBOL(udp_set_csum);
901 
902 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
903 			struct inet_cork *cork)
904 {
905 	struct sock *sk = skb->sk;
906 	struct inet_sock *inet = inet_sk(sk);
907 	struct udphdr *uh;
908 	int err;
909 	int is_udplite = IS_UDPLITE(sk);
910 	int offset = skb_transport_offset(skb);
911 	int len = skb->len - offset;
912 	int datalen = len - sizeof(*uh);
913 	__wsum csum = 0;
914 
915 	/*
916 	 * Create a UDP header
917 	 */
918 	uh = udp_hdr(skb);
919 	uh->source = inet->inet_sport;
920 	uh->dest = fl4->fl4_dport;
921 	uh->len = htons(len);
922 	uh->check = 0;
923 
924 	if (cork->gso_size) {
925 		const int hlen = skb_network_header_len(skb) +
926 				 sizeof(struct udphdr);
927 
928 		if (hlen + cork->gso_size > cork->fragsize) {
929 			kfree_skb(skb);
930 			return -EINVAL;
931 		}
932 		if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) {
933 			kfree_skb(skb);
934 			return -EINVAL;
935 		}
936 		if (sk->sk_no_check_tx) {
937 			kfree_skb(skb);
938 			return -EINVAL;
939 		}
940 		if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
941 		    dst_xfrm(skb_dst(skb))) {
942 			kfree_skb(skb);
943 			return -EIO;
944 		}
945 
946 		if (datalen > cork->gso_size) {
947 			skb_shinfo(skb)->gso_size = cork->gso_size;
948 			skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
949 			skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
950 								 cork->gso_size);
951 		}
952 		goto csum_partial;
953 	}
954 
955 	if (is_udplite)  				 /*     UDP-Lite      */
956 		csum = udplite_csum(skb);
957 
958 	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
959 
960 		skb->ip_summed = CHECKSUM_NONE;
961 		goto send;
962 
963 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
964 csum_partial:
965 
966 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
967 		goto send;
968 
969 	} else
970 		csum = udp_csum(skb);
971 
972 	/* add protocol-dependent pseudo-header */
973 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
974 				      sk->sk_protocol, csum);
975 	if (uh->check == 0)
976 		uh->check = CSUM_MANGLED_0;
977 
978 send:
979 	err = ip_send_skb(sock_net(sk), skb);
980 	if (err) {
981 		if (err == -ENOBUFS && !inet->recverr) {
982 			UDP_INC_STATS(sock_net(sk),
983 				      UDP_MIB_SNDBUFERRORS, is_udplite);
984 			err = 0;
985 		}
986 	} else
987 		UDP_INC_STATS(sock_net(sk),
988 			      UDP_MIB_OUTDATAGRAMS, is_udplite);
989 	return err;
990 }
991 
992 /*
993  * Push out all pending data as one UDP datagram. Socket is locked.
994  */
995 int udp_push_pending_frames(struct sock *sk)
996 {
997 	struct udp_sock  *up = udp_sk(sk);
998 	struct inet_sock *inet = inet_sk(sk);
999 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
1000 	struct sk_buff *skb;
1001 	int err = 0;
1002 
1003 	skb = ip_finish_skb(sk, fl4);
1004 	if (!skb)
1005 		goto out;
1006 
1007 	err = udp_send_skb(skb, fl4, &inet->cork.base);
1008 
1009 out:
1010 	up->len = 0;
1011 	up->pending = 0;
1012 	return err;
1013 }
1014 EXPORT_SYMBOL(udp_push_pending_frames);
1015 
1016 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
1017 {
1018 	switch (cmsg->cmsg_type) {
1019 	case UDP_SEGMENT:
1020 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
1021 			return -EINVAL;
1022 		*gso_size = *(__u16 *)CMSG_DATA(cmsg);
1023 		return 0;
1024 	default:
1025 		return -EINVAL;
1026 	}
1027 }
1028 
1029 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
1030 {
1031 	struct cmsghdr *cmsg;
1032 	bool need_ip = false;
1033 	int err;
1034 
1035 	for_each_cmsghdr(cmsg, msg) {
1036 		if (!CMSG_OK(msg, cmsg))
1037 			return -EINVAL;
1038 
1039 		if (cmsg->cmsg_level != SOL_UDP) {
1040 			need_ip = true;
1041 			continue;
1042 		}
1043 
1044 		err = __udp_cmsg_send(cmsg, gso_size);
1045 		if (err)
1046 			return err;
1047 	}
1048 
1049 	return need_ip;
1050 }
1051 EXPORT_SYMBOL_GPL(udp_cmsg_send);
1052 
1053 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1054 {
1055 	struct inet_sock *inet = inet_sk(sk);
1056 	struct udp_sock *up = udp_sk(sk);
1057 	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1058 	struct flowi4 fl4_stack;
1059 	struct flowi4 *fl4;
1060 	int ulen = len;
1061 	struct ipcm_cookie ipc;
1062 	struct rtable *rt = NULL;
1063 	int free = 0;
1064 	int connected = 0;
1065 	__be32 daddr, faddr, saddr;
1066 	u8 tos, scope;
1067 	__be16 dport;
1068 	int err, is_udplite = IS_UDPLITE(sk);
1069 	int corkreq = READ_ONCE(up->corkflag) || msg->msg_flags&MSG_MORE;
1070 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
1071 	struct sk_buff *skb;
1072 	struct ip_options_data opt_copy;
1073 
1074 	if (len > 0xFFFF)
1075 		return -EMSGSIZE;
1076 
1077 	/*
1078 	 *	Check the flags.
1079 	 */
1080 
1081 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1082 		return -EOPNOTSUPP;
1083 
1084 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1085 
1086 	fl4 = &inet->cork.fl.u.ip4;
1087 	if (up->pending) {
1088 		/*
1089 		 * There are pending frames.
1090 		 * The socket lock must be held while it's corked.
1091 		 */
1092 		lock_sock(sk);
1093 		if (likely(up->pending)) {
1094 			if (unlikely(up->pending != AF_INET)) {
1095 				release_sock(sk);
1096 				return -EINVAL;
1097 			}
1098 			goto do_append_data;
1099 		}
1100 		release_sock(sk);
1101 	}
1102 	ulen += sizeof(struct udphdr);
1103 
1104 	/*
1105 	 *	Get and verify the address.
1106 	 */
1107 	if (usin) {
1108 		if (msg->msg_namelen < sizeof(*usin))
1109 			return -EINVAL;
1110 		if (usin->sin_family != AF_INET) {
1111 			if (usin->sin_family != AF_UNSPEC)
1112 				return -EAFNOSUPPORT;
1113 		}
1114 
1115 		daddr = usin->sin_addr.s_addr;
1116 		dport = usin->sin_port;
1117 		if (dport == 0)
1118 			return -EINVAL;
1119 	} else {
1120 		if (sk->sk_state != TCP_ESTABLISHED)
1121 			return -EDESTADDRREQ;
1122 		daddr = inet->inet_daddr;
1123 		dport = inet->inet_dport;
1124 		/* Open fast path for connected socket.
1125 		   Route will not be used, if at least one option is set.
1126 		 */
1127 		connected = 1;
1128 	}
1129 
1130 	ipcm_init_sk(&ipc, inet);
1131 	ipc.gso_size = READ_ONCE(up->gso_size);
1132 
1133 	if (msg->msg_controllen) {
1134 		err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1135 		if (err > 0)
1136 			err = ip_cmsg_send(sk, msg, &ipc,
1137 					   sk->sk_family == AF_INET6);
1138 		if (unlikely(err < 0)) {
1139 			kfree(ipc.opt);
1140 			return err;
1141 		}
1142 		if (ipc.opt)
1143 			free = 1;
1144 		connected = 0;
1145 	}
1146 	if (!ipc.opt) {
1147 		struct ip_options_rcu *inet_opt;
1148 
1149 		rcu_read_lock();
1150 		inet_opt = rcu_dereference(inet->inet_opt);
1151 		if (inet_opt) {
1152 			memcpy(&opt_copy, inet_opt,
1153 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
1154 			ipc.opt = &opt_copy.opt;
1155 		}
1156 		rcu_read_unlock();
1157 	}
1158 
1159 	if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) {
1160 		err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1161 					    (struct sockaddr *)usin, &ipc.addr);
1162 		if (err)
1163 			goto out_free;
1164 		if (usin) {
1165 			if (usin->sin_port == 0) {
1166 				/* BPF program set invalid port. Reject it. */
1167 				err = -EINVAL;
1168 				goto out_free;
1169 			}
1170 			daddr = usin->sin_addr.s_addr;
1171 			dport = usin->sin_port;
1172 		}
1173 	}
1174 
1175 	saddr = ipc.addr;
1176 	ipc.addr = faddr = daddr;
1177 
1178 	if (ipc.opt && ipc.opt->opt.srr) {
1179 		if (!daddr) {
1180 			err = -EINVAL;
1181 			goto out_free;
1182 		}
1183 		faddr = ipc.opt->opt.faddr;
1184 		connected = 0;
1185 	}
1186 	tos = get_rttos(&ipc, inet);
1187 	scope = ip_sendmsg_scope(inet, &ipc, msg);
1188 	if (scope == RT_SCOPE_LINK)
1189 		connected = 0;
1190 
1191 	if (ipv4_is_multicast(daddr)) {
1192 		if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1193 			ipc.oif = inet->mc_index;
1194 		if (!saddr)
1195 			saddr = inet->mc_addr;
1196 		connected = 0;
1197 	} else if (!ipc.oif) {
1198 		ipc.oif = inet->uc_index;
1199 	} else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
1200 		/* oif is set, packet is to local broadcast and
1201 		 * uc_index is set. oif is most likely set
1202 		 * by sk_bound_dev_if. If uc_index != oif check if the
1203 		 * oif is an L3 master and uc_index is an L3 slave.
1204 		 * If so, we want to allow the send using the uc_index.
1205 		 */
1206 		if (ipc.oif != inet->uc_index &&
1207 		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1208 							      inet->uc_index)) {
1209 			ipc.oif = inet->uc_index;
1210 		}
1211 	}
1212 
1213 	if (connected)
1214 		rt = (struct rtable *)sk_dst_check(sk, 0);
1215 
1216 	if (!rt) {
1217 		struct net *net = sock_net(sk);
1218 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1219 
1220 		fl4 = &fl4_stack;
1221 
1222 		flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos, scope,
1223 				   sk->sk_protocol, flow_flags, faddr, saddr,
1224 				   dport, inet->inet_sport, sk->sk_uid);
1225 
1226 		security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
1227 		rt = ip_route_output_flow(net, fl4, sk);
1228 		if (IS_ERR(rt)) {
1229 			err = PTR_ERR(rt);
1230 			rt = NULL;
1231 			if (err == -ENETUNREACH)
1232 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1233 			goto out;
1234 		}
1235 
1236 		err = -EACCES;
1237 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1238 		    !sock_flag(sk, SOCK_BROADCAST))
1239 			goto out;
1240 		if (connected)
1241 			sk_dst_set(sk, dst_clone(&rt->dst));
1242 	}
1243 
1244 	if (msg->msg_flags&MSG_CONFIRM)
1245 		goto do_confirm;
1246 back_from_confirm:
1247 
1248 	saddr = fl4->saddr;
1249 	if (!ipc.addr)
1250 		daddr = ipc.addr = fl4->daddr;
1251 
1252 	/* Lockless fast path for the non-corking case. */
1253 	if (!corkreq) {
1254 		struct inet_cork cork;
1255 
1256 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1257 				  sizeof(struct udphdr), &ipc, &rt,
1258 				  &cork, msg->msg_flags);
1259 		err = PTR_ERR(skb);
1260 		if (!IS_ERR_OR_NULL(skb))
1261 			err = udp_send_skb(skb, fl4, &cork);
1262 		goto out;
1263 	}
1264 
1265 	lock_sock(sk);
1266 	if (unlikely(up->pending)) {
1267 		/* The socket is already corked while preparing it. */
1268 		/* ... which is an evident application bug. --ANK */
1269 		release_sock(sk);
1270 
1271 		net_dbg_ratelimited("socket already corked\n");
1272 		err = -EINVAL;
1273 		goto out;
1274 	}
1275 	/*
1276 	 *	Now cork the socket to pend data.
1277 	 */
1278 	fl4 = &inet->cork.fl.u.ip4;
1279 	fl4->daddr = daddr;
1280 	fl4->saddr = saddr;
1281 	fl4->fl4_dport = dport;
1282 	fl4->fl4_sport = inet->inet_sport;
1283 	up->pending = AF_INET;
1284 
1285 do_append_data:
1286 	up->len += ulen;
1287 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1288 			     sizeof(struct udphdr), &ipc, &rt,
1289 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1290 	if (err)
1291 		udp_flush_pending_frames(sk);
1292 	else if (!corkreq)
1293 		err = udp_push_pending_frames(sk);
1294 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1295 		up->pending = 0;
1296 	release_sock(sk);
1297 
1298 out:
1299 	ip_rt_put(rt);
1300 out_free:
1301 	if (free)
1302 		kfree(ipc.opt);
1303 	if (!err)
1304 		return len;
1305 	/*
1306 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1307 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1308 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1309 	 * things).  We could add another new stat but at least for now that
1310 	 * seems like overkill.
1311 	 */
1312 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1313 		UDP_INC_STATS(sock_net(sk),
1314 			      UDP_MIB_SNDBUFERRORS, is_udplite);
1315 	}
1316 	return err;
1317 
1318 do_confirm:
1319 	if (msg->msg_flags & MSG_PROBE)
1320 		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1321 	if (!(msg->msg_flags&MSG_PROBE) || len)
1322 		goto back_from_confirm;
1323 	err = 0;
1324 	goto out;
1325 }
1326 EXPORT_SYMBOL(udp_sendmsg);
1327 
1328 void udp_splice_eof(struct socket *sock)
1329 {
1330 	struct sock *sk = sock->sk;
1331 	struct udp_sock *up = udp_sk(sk);
1332 
1333 	if (!up->pending || READ_ONCE(up->corkflag))
1334 		return;
1335 
1336 	lock_sock(sk);
1337 	if (up->pending && !READ_ONCE(up->corkflag))
1338 		udp_push_pending_frames(sk);
1339 	release_sock(sk);
1340 }
1341 EXPORT_SYMBOL_GPL(udp_splice_eof);
1342 
1343 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1344 		 size_t size, int flags)
1345 {
1346 	struct bio_vec bvec;
1347 	struct msghdr msg = { .msg_flags = flags | MSG_SPLICE_PAGES };
1348 
1349 	if (flags & MSG_SENDPAGE_NOTLAST)
1350 		msg.msg_flags |= MSG_MORE;
1351 
1352 	bvec_set_page(&bvec, page, size, offset);
1353 	iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, size);
1354 	return udp_sendmsg(sk, &msg, size);
1355 }
1356 
1357 #define UDP_SKB_IS_STATELESS 0x80000000
1358 
1359 /* all head states (dst, sk, nf conntrack) except skb extensions are
1360  * cleared by udp_rcv().
1361  *
1362  * We need to preserve secpath, if present, to eventually process
1363  * IP_CMSG_PASSSEC at recvmsg() time.
1364  *
1365  * Other extensions can be cleared.
1366  */
1367 static bool udp_try_make_stateless(struct sk_buff *skb)
1368 {
1369 	if (!skb_has_extensions(skb))
1370 		return true;
1371 
1372 	if (!secpath_exists(skb)) {
1373 		skb_ext_reset(skb);
1374 		return true;
1375 	}
1376 
1377 	return false;
1378 }
1379 
1380 static void udp_set_dev_scratch(struct sk_buff *skb)
1381 {
1382 	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1383 
1384 	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1385 	scratch->_tsize_state = skb->truesize;
1386 #if BITS_PER_LONG == 64
1387 	scratch->len = skb->len;
1388 	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1389 	scratch->is_linear = !skb_is_nonlinear(skb);
1390 #endif
1391 	if (udp_try_make_stateless(skb))
1392 		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1393 }
1394 
1395 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1396 {
1397 	/* We come here after udp_lib_checksum_complete() returned 0.
1398 	 * This means that __skb_checksum_complete() might have
1399 	 * set skb->csum_valid to 1.
1400 	 * On 64bit platforms, we can set csum_unnecessary
1401 	 * to true, but only if the skb is not shared.
1402 	 */
1403 #if BITS_PER_LONG == 64
1404 	if (!skb_shared(skb))
1405 		udp_skb_scratch(skb)->csum_unnecessary = true;
1406 #endif
1407 }
1408 
1409 static int udp_skb_truesize(struct sk_buff *skb)
1410 {
1411 	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1412 }
1413 
1414 static bool udp_skb_has_head_state(struct sk_buff *skb)
1415 {
1416 	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1417 }
1418 
1419 /* fully reclaim rmem/fwd memory allocated for skb */
1420 static void udp_rmem_release(struct sock *sk, int size, int partial,
1421 			     bool rx_queue_lock_held)
1422 {
1423 	struct udp_sock *up = udp_sk(sk);
1424 	struct sk_buff_head *sk_queue;
1425 	int amt;
1426 
1427 	if (likely(partial)) {
1428 		up->forward_deficit += size;
1429 		size = up->forward_deficit;
1430 		if (size < READ_ONCE(up->forward_threshold) &&
1431 		    !skb_queue_empty(&up->reader_queue))
1432 			return;
1433 	} else {
1434 		size += up->forward_deficit;
1435 	}
1436 	up->forward_deficit = 0;
1437 
1438 	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1439 	 * if the called don't held it already
1440 	 */
1441 	sk_queue = &sk->sk_receive_queue;
1442 	if (!rx_queue_lock_held)
1443 		spin_lock(&sk_queue->lock);
1444 
1445 
1446 	sk->sk_forward_alloc += size;
1447 	amt = (sk->sk_forward_alloc - partial) & ~(PAGE_SIZE - 1);
1448 	sk->sk_forward_alloc -= amt;
1449 
1450 	if (amt)
1451 		__sk_mem_reduce_allocated(sk, amt >> PAGE_SHIFT);
1452 
1453 	atomic_sub(size, &sk->sk_rmem_alloc);
1454 
1455 	/* this can save us from acquiring the rx queue lock on next receive */
1456 	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1457 
1458 	if (!rx_queue_lock_held)
1459 		spin_unlock(&sk_queue->lock);
1460 }
1461 
1462 /* Note: called with reader_queue.lock held.
1463  * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1464  * This avoids a cache line miss while receive_queue lock is held.
1465  * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1466  */
1467 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1468 {
1469 	prefetch(&skb->data);
1470 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1471 }
1472 EXPORT_SYMBOL(udp_skb_destructor);
1473 
1474 /* as above, but the caller held the rx queue lock, too */
1475 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1476 {
1477 	prefetch(&skb->data);
1478 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1479 }
1480 
1481 /* Idea of busylocks is to let producers grab an extra spinlock
1482  * to relieve pressure on the receive_queue spinlock shared by consumer.
1483  * Under flood, this means that only one producer can be in line
1484  * trying to acquire the receive_queue spinlock.
1485  * These busylock can be allocated on a per cpu manner, instead of a
1486  * per socket one (that would consume a cache line per socket)
1487  */
1488 static int udp_busylocks_log __read_mostly;
1489 static spinlock_t *udp_busylocks __read_mostly;
1490 
1491 static spinlock_t *busylock_acquire(void *ptr)
1492 {
1493 	spinlock_t *busy;
1494 
1495 	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1496 	spin_lock(busy);
1497 	return busy;
1498 }
1499 
1500 static void busylock_release(spinlock_t *busy)
1501 {
1502 	if (busy)
1503 		spin_unlock(busy);
1504 }
1505 
1506 static int udp_rmem_schedule(struct sock *sk, int size)
1507 {
1508 	int delta;
1509 
1510 	delta = size - sk->sk_forward_alloc;
1511 	if (delta > 0 && !__sk_mem_schedule(sk, delta, SK_MEM_RECV))
1512 		return -ENOBUFS;
1513 
1514 	return 0;
1515 }
1516 
1517 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1518 {
1519 	struct sk_buff_head *list = &sk->sk_receive_queue;
1520 	int rmem, err = -ENOMEM;
1521 	spinlock_t *busy = NULL;
1522 	int size;
1523 
1524 	/* try to avoid the costly atomic add/sub pair when the receive
1525 	 * queue is full; always allow at least a packet
1526 	 */
1527 	rmem = atomic_read(&sk->sk_rmem_alloc);
1528 	if (rmem > sk->sk_rcvbuf)
1529 		goto drop;
1530 
1531 	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1532 	 * having linear skbs :
1533 	 * - Reduce memory overhead and thus increase receive queue capacity
1534 	 * - Less cache line misses at copyout() time
1535 	 * - Less work at consume_skb() (less alien page frag freeing)
1536 	 */
1537 	if (rmem > (sk->sk_rcvbuf >> 1)) {
1538 		skb_condense(skb);
1539 
1540 		busy = busylock_acquire(sk);
1541 	}
1542 	size = skb->truesize;
1543 	udp_set_dev_scratch(skb);
1544 
1545 	/* we drop only if the receive buf is full and the receive
1546 	 * queue contains some other skb
1547 	 */
1548 	rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1549 	if (rmem > (size + (unsigned int)sk->sk_rcvbuf))
1550 		goto uncharge_drop;
1551 
1552 	spin_lock(&list->lock);
1553 	err = udp_rmem_schedule(sk, size);
1554 	if (err) {
1555 		spin_unlock(&list->lock);
1556 		goto uncharge_drop;
1557 	}
1558 
1559 	sk->sk_forward_alloc -= size;
1560 
1561 	/* no need to setup a destructor, we will explicitly release the
1562 	 * forward allocated memory on dequeue
1563 	 */
1564 	sock_skb_set_dropcount(sk, skb);
1565 
1566 	__skb_queue_tail(list, skb);
1567 	spin_unlock(&list->lock);
1568 
1569 	if (!sock_flag(sk, SOCK_DEAD))
1570 		sk->sk_data_ready(sk);
1571 
1572 	busylock_release(busy);
1573 	return 0;
1574 
1575 uncharge_drop:
1576 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1577 
1578 drop:
1579 	atomic_inc(&sk->sk_drops);
1580 	busylock_release(busy);
1581 	return err;
1582 }
1583 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1584 
1585 void udp_destruct_common(struct sock *sk)
1586 {
1587 	/* reclaim completely the forward allocated memory */
1588 	struct udp_sock *up = udp_sk(sk);
1589 	unsigned int total = 0;
1590 	struct sk_buff *skb;
1591 
1592 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1593 	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1594 		total += skb->truesize;
1595 		kfree_skb(skb);
1596 	}
1597 	udp_rmem_release(sk, total, 0, true);
1598 }
1599 EXPORT_SYMBOL_GPL(udp_destruct_common);
1600 
1601 static void udp_destruct_sock(struct sock *sk)
1602 {
1603 	udp_destruct_common(sk);
1604 	inet_sock_destruct(sk);
1605 }
1606 
1607 int udp_init_sock(struct sock *sk)
1608 {
1609 	udp_lib_init_sock(sk);
1610 	sk->sk_destruct = udp_destruct_sock;
1611 	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1612 	return 0;
1613 }
1614 
1615 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1616 {
1617 	if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1618 		bool slow = lock_sock_fast(sk);
1619 
1620 		sk_peek_offset_bwd(sk, len);
1621 		unlock_sock_fast(sk, slow);
1622 	}
1623 
1624 	if (!skb_unref(skb))
1625 		return;
1626 
1627 	/* In the more common cases we cleared the head states previously,
1628 	 * see __udp_queue_rcv_skb().
1629 	 */
1630 	if (unlikely(udp_skb_has_head_state(skb)))
1631 		skb_release_head_state(skb);
1632 	__consume_stateless_skb(skb);
1633 }
1634 EXPORT_SYMBOL_GPL(skb_consume_udp);
1635 
1636 static struct sk_buff *__first_packet_length(struct sock *sk,
1637 					     struct sk_buff_head *rcvq,
1638 					     int *total)
1639 {
1640 	struct sk_buff *skb;
1641 
1642 	while ((skb = skb_peek(rcvq)) != NULL) {
1643 		if (udp_lib_checksum_complete(skb)) {
1644 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1645 					IS_UDPLITE(sk));
1646 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1647 					IS_UDPLITE(sk));
1648 			atomic_inc(&sk->sk_drops);
1649 			__skb_unlink(skb, rcvq);
1650 			*total += skb->truesize;
1651 			kfree_skb(skb);
1652 		} else {
1653 			udp_skb_csum_unnecessary_set(skb);
1654 			break;
1655 		}
1656 	}
1657 	return skb;
1658 }
1659 
1660 /**
1661  *	first_packet_length	- return length of first packet in receive queue
1662  *	@sk: socket
1663  *
1664  *	Drops all bad checksum frames, until a valid one is found.
1665  *	Returns the length of found skb, or -1 if none is found.
1666  */
1667 static int first_packet_length(struct sock *sk)
1668 {
1669 	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1670 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1671 	struct sk_buff *skb;
1672 	int total = 0;
1673 	int res;
1674 
1675 	spin_lock_bh(&rcvq->lock);
1676 	skb = __first_packet_length(sk, rcvq, &total);
1677 	if (!skb && !skb_queue_empty_lockless(sk_queue)) {
1678 		spin_lock(&sk_queue->lock);
1679 		skb_queue_splice_tail_init(sk_queue, rcvq);
1680 		spin_unlock(&sk_queue->lock);
1681 
1682 		skb = __first_packet_length(sk, rcvq, &total);
1683 	}
1684 	res = skb ? skb->len : -1;
1685 	if (total)
1686 		udp_rmem_release(sk, total, 1, false);
1687 	spin_unlock_bh(&rcvq->lock);
1688 	return res;
1689 }
1690 
1691 /*
1692  *	IOCTL requests applicable to the UDP protocol
1693  */
1694 
1695 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1696 {
1697 	switch (cmd) {
1698 	case SIOCOUTQ:
1699 	{
1700 		int amount = sk_wmem_alloc_get(sk);
1701 
1702 		return put_user(amount, (int __user *)arg);
1703 	}
1704 
1705 	case SIOCINQ:
1706 	{
1707 		int amount = max_t(int, 0, first_packet_length(sk));
1708 
1709 		return put_user(amount, (int __user *)arg);
1710 	}
1711 
1712 	default:
1713 		return -ENOIOCTLCMD;
1714 	}
1715 
1716 	return 0;
1717 }
1718 EXPORT_SYMBOL(udp_ioctl);
1719 
1720 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1721 			       int *off, int *err)
1722 {
1723 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1724 	struct sk_buff_head *queue;
1725 	struct sk_buff *last;
1726 	long timeo;
1727 	int error;
1728 
1729 	queue = &udp_sk(sk)->reader_queue;
1730 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1731 	do {
1732 		struct sk_buff *skb;
1733 
1734 		error = sock_error(sk);
1735 		if (error)
1736 			break;
1737 
1738 		error = -EAGAIN;
1739 		do {
1740 			spin_lock_bh(&queue->lock);
1741 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1742 							err, &last);
1743 			if (skb) {
1744 				if (!(flags & MSG_PEEK))
1745 					udp_skb_destructor(sk, skb);
1746 				spin_unlock_bh(&queue->lock);
1747 				return skb;
1748 			}
1749 
1750 			if (skb_queue_empty_lockless(sk_queue)) {
1751 				spin_unlock_bh(&queue->lock);
1752 				goto busy_check;
1753 			}
1754 
1755 			/* refill the reader queue and walk it again
1756 			 * keep both queues locked to avoid re-acquiring
1757 			 * the sk_receive_queue lock if fwd memory scheduling
1758 			 * is needed.
1759 			 */
1760 			spin_lock(&sk_queue->lock);
1761 			skb_queue_splice_tail_init(sk_queue, queue);
1762 
1763 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1764 							err, &last);
1765 			if (skb && !(flags & MSG_PEEK))
1766 				udp_skb_dtor_locked(sk, skb);
1767 			spin_unlock(&sk_queue->lock);
1768 			spin_unlock_bh(&queue->lock);
1769 			if (skb)
1770 				return skb;
1771 
1772 busy_check:
1773 			if (!sk_can_busy_loop(sk))
1774 				break;
1775 
1776 			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1777 		} while (!skb_queue_empty_lockless(sk_queue));
1778 
1779 		/* sk_queue is empty, reader_queue may contain peeked packets */
1780 	} while (timeo &&
1781 		 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
1782 					      &error, &timeo,
1783 					      (struct sk_buff *)sk_queue));
1784 
1785 	*err = error;
1786 	return NULL;
1787 }
1788 EXPORT_SYMBOL(__skb_recv_udp);
1789 
1790 int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1791 {
1792 	struct sk_buff *skb;
1793 	int err;
1794 
1795 try_again:
1796 	skb = skb_recv_udp(sk, MSG_DONTWAIT, &err);
1797 	if (!skb)
1798 		return err;
1799 
1800 	if (udp_lib_checksum_complete(skb)) {
1801 		int is_udplite = IS_UDPLITE(sk);
1802 		struct net *net = sock_net(sk);
1803 
1804 		__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, is_udplite);
1805 		__UDP_INC_STATS(net, UDP_MIB_INERRORS, is_udplite);
1806 		atomic_inc(&sk->sk_drops);
1807 		kfree_skb(skb);
1808 		goto try_again;
1809 	}
1810 
1811 	WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1812 	return recv_actor(sk, skb);
1813 }
1814 EXPORT_SYMBOL(udp_read_skb);
1815 
1816 /*
1817  * 	This should be easy, if there is something there we
1818  * 	return it, otherwise we block.
1819  */
1820 
1821 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
1822 		int *addr_len)
1823 {
1824 	struct inet_sock *inet = inet_sk(sk);
1825 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1826 	struct sk_buff *skb;
1827 	unsigned int ulen, copied;
1828 	int off, err, peeking = flags & MSG_PEEK;
1829 	int is_udplite = IS_UDPLITE(sk);
1830 	bool checksum_valid = false;
1831 
1832 	if (flags & MSG_ERRQUEUE)
1833 		return ip_recv_error(sk, msg, len, addr_len);
1834 
1835 try_again:
1836 	off = sk_peek_offset(sk, flags);
1837 	skb = __skb_recv_udp(sk, flags, &off, &err);
1838 	if (!skb)
1839 		return err;
1840 
1841 	ulen = udp_skb_len(skb);
1842 	copied = len;
1843 	if (copied > ulen - off)
1844 		copied = ulen - off;
1845 	else if (copied < ulen)
1846 		msg->msg_flags |= MSG_TRUNC;
1847 
1848 	/*
1849 	 * If checksum is needed at all, try to do it while copying the
1850 	 * data.  If the data is truncated, or if we only want a partial
1851 	 * coverage checksum (UDP-Lite), do it before the copy.
1852 	 */
1853 
1854 	if (copied < ulen || peeking ||
1855 	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1856 		checksum_valid = udp_skb_csum_unnecessary(skb) ||
1857 				!__udp_lib_checksum_complete(skb);
1858 		if (!checksum_valid)
1859 			goto csum_copy_err;
1860 	}
1861 
1862 	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1863 		if (udp_skb_is_linear(skb))
1864 			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1865 		else
1866 			err = skb_copy_datagram_msg(skb, off, msg, copied);
1867 	} else {
1868 		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1869 
1870 		if (err == -EINVAL)
1871 			goto csum_copy_err;
1872 	}
1873 
1874 	if (unlikely(err)) {
1875 		if (!peeking) {
1876 			atomic_inc(&sk->sk_drops);
1877 			UDP_INC_STATS(sock_net(sk),
1878 				      UDP_MIB_INERRORS, is_udplite);
1879 		}
1880 		kfree_skb(skb);
1881 		return err;
1882 	}
1883 
1884 	if (!peeking)
1885 		UDP_INC_STATS(sock_net(sk),
1886 			      UDP_MIB_INDATAGRAMS, is_udplite);
1887 
1888 	sock_recv_cmsgs(msg, sk, skb);
1889 
1890 	/* Copy the address. */
1891 	if (sin) {
1892 		sin->sin_family = AF_INET;
1893 		sin->sin_port = udp_hdr(skb)->source;
1894 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1895 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1896 		*addr_len = sizeof(*sin);
1897 
1898 		BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
1899 						      (struct sockaddr *)sin);
1900 	}
1901 
1902 	if (udp_sk(sk)->gro_enabled)
1903 		udp_cmsg_recv(msg, sk, skb);
1904 
1905 	if (inet->cmsg_flags)
1906 		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1907 
1908 	err = copied;
1909 	if (flags & MSG_TRUNC)
1910 		err = ulen;
1911 
1912 	skb_consume_udp(sk, skb, peeking ? -err : err);
1913 	return err;
1914 
1915 csum_copy_err:
1916 	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1917 				 udp_skb_destructor)) {
1918 		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1919 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1920 	}
1921 	kfree_skb(skb);
1922 
1923 	/* starting over for a new packet, but check if we need to yield */
1924 	cond_resched();
1925 	msg->msg_flags &= ~MSG_TRUNC;
1926 	goto try_again;
1927 }
1928 
1929 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1930 {
1931 	/* This check is replicated from __ip4_datagram_connect() and
1932 	 * intended to prevent BPF program called below from accessing bytes
1933 	 * that are out of the bound specified by user in addr_len.
1934 	 */
1935 	if (addr_len < sizeof(struct sockaddr_in))
1936 		return -EINVAL;
1937 
1938 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr);
1939 }
1940 EXPORT_SYMBOL(udp_pre_connect);
1941 
1942 int __udp_disconnect(struct sock *sk, int flags)
1943 {
1944 	struct inet_sock *inet = inet_sk(sk);
1945 	/*
1946 	 *	1003.1g - break association.
1947 	 */
1948 
1949 	sk->sk_state = TCP_CLOSE;
1950 	inet->inet_daddr = 0;
1951 	inet->inet_dport = 0;
1952 	sock_rps_reset_rxhash(sk);
1953 	sk->sk_bound_dev_if = 0;
1954 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) {
1955 		inet_reset_saddr(sk);
1956 		if (sk->sk_prot->rehash &&
1957 		    (sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1958 			sk->sk_prot->rehash(sk);
1959 	}
1960 
1961 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1962 		sk->sk_prot->unhash(sk);
1963 		inet->inet_sport = 0;
1964 	}
1965 	sk_dst_reset(sk);
1966 	return 0;
1967 }
1968 EXPORT_SYMBOL(__udp_disconnect);
1969 
1970 int udp_disconnect(struct sock *sk, int flags)
1971 {
1972 	lock_sock(sk);
1973 	__udp_disconnect(sk, flags);
1974 	release_sock(sk);
1975 	return 0;
1976 }
1977 EXPORT_SYMBOL(udp_disconnect);
1978 
1979 void udp_lib_unhash(struct sock *sk)
1980 {
1981 	if (sk_hashed(sk)) {
1982 		struct udp_table *udptable = udp_get_table_prot(sk);
1983 		struct udp_hslot *hslot, *hslot2;
1984 
1985 		hslot  = udp_hashslot(udptable, sock_net(sk),
1986 				      udp_sk(sk)->udp_port_hash);
1987 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1988 
1989 		spin_lock_bh(&hslot->lock);
1990 		if (rcu_access_pointer(sk->sk_reuseport_cb))
1991 			reuseport_detach_sock(sk);
1992 		if (sk_del_node_init_rcu(sk)) {
1993 			hslot->count--;
1994 			inet_sk(sk)->inet_num = 0;
1995 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1996 
1997 			spin_lock(&hslot2->lock);
1998 			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1999 			hslot2->count--;
2000 			spin_unlock(&hslot2->lock);
2001 		}
2002 		spin_unlock_bh(&hslot->lock);
2003 	}
2004 }
2005 EXPORT_SYMBOL(udp_lib_unhash);
2006 
2007 /*
2008  * inet_rcv_saddr was changed, we must rehash secondary hash
2009  */
2010 void udp_lib_rehash(struct sock *sk, u16 newhash)
2011 {
2012 	if (sk_hashed(sk)) {
2013 		struct udp_table *udptable = udp_get_table_prot(sk);
2014 		struct udp_hslot *hslot, *hslot2, *nhslot2;
2015 
2016 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2017 		nhslot2 = udp_hashslot2(udptable, newhash);
2018 		udp_sk(sk)->udp_portaddr_hash = newhash;
2019 
2020 		if (hslot2 != nhslot2 ||
2021 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
2022 			hslot = udp_hashslot(udptable, sock_net(sk),
2023 					     udp_sk(sk)->udp_port_hash);
2024 			/* we must lock primary chain too */
2025 			spin_lock_bh(&hslot->lock);
2026 			if (rcu_access_pointer(sk->sk_reuseport_cb))
2027 				reuseport_detach_sock(sk);
2028 
2029 			if (hslot2 != nhslot2) {
2030 				spin_lock(&hslot2->lock);
2031 				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2032 				hslot2->count--;
2033 				spin_unlock(&hslot2->lock);
2034 
2035 				spin_lock(&nhslot2->lock);
2036 				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
2037 							 &nhslot2->head);
2038 				nhslot2->count++;
2039 				spin_unlock(&nhslot2->lock);
2040 			}
2041 
2042 			spin_unlock_bh(&hslot->lock);
2043 		}
2044 	}
2045 }
2046 EXPORT_SYMBOL(udp_lib_rehash);
2047 
2048 void udp_v4_rehash(struct sock *sk)
2049 {
2050 	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
2051 					  inet_sk(sk)->inet_rcv_saddr,
2052 					  inet_sk(sk)->inet_num);
2053 	udp_lib_rehash(sk, new_hash);
2054 }
2055 
2056 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2057 {
2058 	int rc;
2059 
2060 	if (inet_sk(sk)->inet_daddr) {
2061 		sock_rps_save_rxhash(sk, skb);
2062 		sk_mark_napi_id(sk, skb);
2063 		sk_incoming_cpu_update(sk);
2064 	} else {
2065 		sk_mark_napi_id_once(sk, skb);
2066 	}
2067 
2068 	rc = __udp_enqueue_schedule_skb(sk, skb);
2069 	if (rc < 0) {
2070 		int is_udplite = IS_UDPLITE(sk);
2071 		int drop_reason;
2072 
2073 		/* Note that an ENOMEM error is charged twice */
2074 		if (rc == -ENOMEM) {
2075 			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
2076 					is_udplite);
2077 			drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
2078 		} else {
2079 			UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS,
2080 				      is_udplite);
2081 			drop_reason = SKB_DROP_REASON_PROTO_MEM;
2082 		}
2083 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2084 		kfree_skb_reason(skb, drop_reason);
2085 		trace_udp_fail_queue_rcv_skb(rc, sk);
2086 		return -1;
2087 	}
2088 
2089 	return 0;
2090 }
2091 
2092 /* returns:
2093  *  -1: error
2094  *   0: success
2095  *  >0: "udp encap" protocol resubmission
2096  *
2097  * Note that in the success and error cases, the skb is assumed to
2098  * have either been requeued or freed.
2099  */
2100 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
2101 {
2102 	int drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2103 	struct udp_sock *up = udp_sk(sk);
2104 	int is_udplite = IS_UDPLITE(sk);
2105 
2106 	/*
2107 	 *	Charge it to the socket, dropping if the queue is full.
2108 	 */
2109 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
2110 		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2111 		goto drop;
2112 	}
2113 	nf_reset_ct(skb);
2114 
2115 	if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) {
2116 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2117 
2118 		/*
2119 		 * This is an encapsulation socket so pass the skb to
2120 		 * the socket's udp_encap_rcv() hook. Otherwise, just
2121 		 * fall through and pass this up the UDP socket.
2122 		 * up->encap_rcv() returns the following value:
2123 		 * =0 if skb was successfully passed to the encap
2124 		 *    handler or was discarded by it.
2125 		 * >0 if skb should be passed on to UDP.
2126 		 * <0 if skb should be resubmitted as proto -N
2127 		 */
2128 
2129 		/* if we're overly short, let UDP handle it */
2130 		encap_rcv = READ_ONCE(up->encap_rcv);
2131 		if (encap_rcv) {
2132 			int ret;
2133 
2134 			/* Verify checksum before giving to encap */
2135 			if (udp_lib_checksum_complete(skb))
2136 				goto csum_error;
2137 
2138 			ret = encap_rcv(sk, skb);
2139 			if (ret <= 0) {
2140 				__UDP_INC_STATS(sock_net(sk),
2141 						UDP_MIB_INDATAGRAMS,
2142 						is_udplite);
2143 				return -ret;
2144 			}
2145 		}
2146 
2147 		/* FALLTHROUGH -- it's a UDP Packet */
2148 	}
2149 
2150 	/*
2151 	 * 	UDP-Lite specific tests, ignored on UDP sockets
2152 	 */
2153 	if ((up->pcflag & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
2154 
2155 		/*
2156 		 * MIB statistics other than incrementing the error count are
2157 		 * disabled for the following two types of errors: these depend
2158 		 * on the application settings, not on the functioning of the
2159 		 * protocol stack as such.
2160 		 *
2161 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
2162 		 * way ... to ... at least let the receiving application block
2163 		 * delivery of packets with coverage values less than a value
2164 		 * provided by the application."
2165 		 */
2166 		if (up->pcrlen == 0) {          /* full coverage was set  */
2167 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2168 					    UDP_SKB_CB(skb)->cscov, skb->len);
2169 			goto drop;
2170 		}
2171 		/* The next case involves violating the min. coverage requested
2172 		 * by the receiver. This is subtle: if receiver wants x and x is
2173 		 * greater than the buffersize/MTU then receiver will complain
2174 		 * that it wants x while sender emits packets of smaller size y.
2175 		 * Therefore the above ...()->partial_cov statement is essential.
2176 		 */
2177 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
2178 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2179 					    UDP_SKB_CB(skb)->cscov, up->pcrlen);
2180 			goto drop;
2181 		}
2182 	}
2183 
2184 	prefetch(&sk->sk_rmem_alloc);
2185 	if (rcu_access_pointer(sk->sk_filter) &&
2186 	    udp_lib_checksum_complete(skb))
2187 			goto csum_error;
2188 
2189 	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) {
2190 		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2191 		goto drop;
2192 	}
2193 
2194 	udp_csum_pull_header(skb);
2195 
2196 	ipv4_pktinfo_prepare(sk, skb);
2197 	return __udp_queue_rcv_skb(sk, skb);
2198 
2199 csum_error:
2200 	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2201 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2202 drop:
2203 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2204 	atomic_inc(&sk->sk_drops);
2205 	kfree_skb_reason(skb, drop_reason);
2206 	return -1;
2207 }
2208 
2209 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2210 {
2211 	struct sk_buff *next, *segs;
2212 	int ret;
2213 
2214 	if (likely(!udp_unexpected_gso(sk, skb)))
2215 		return udp_queue_rcv_one_skb(sk, skb);
2216 
2217 	BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET);
2218 	__skb_push(skb, -skb_mac_offset(skb));
2219 	segs = udp_rcv_segment(sk, skb, true);
2220 	skb_list_walk_safe(segs, skb, next) {
2221 		__skb_pull(skb, skb_transport_offset(skb));
2222 
2223 		udp_post_segment_fix_csum(skb);
2224 		ret = udp_queue_rcv_one_skb(sk, skb);
2225 		if (ret > 0)
2226 			ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret);
2227 	}
2228 	return 0;
2229 }
2230 
2231 /* For TCP sockets, sk_rx_dst is protected by socket lock
2232  * For UDP, we use xchg() to guard against concurrent changes.
2233  */
2234 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2235 {
2236 	struct dst_entry *old;
2237 
2238 	if (dst_hold_safe(dst)) {
2239 		old = xchg((__force struct dst_entry **)&sk->sk_rx_dst, dst);
2240 		dst_release(old);
2241 		return old != dst;
2242 	}
2243 	return false;
2244 }
2245 EXPORT_SYMBOL(udp_sk_rx_dst_set);
2246 
2247 /*
2248  *	Multicasts and broadcasts go to each listener.
2249  *
2250  *	Note: called only from the BH handler context.
2251  */
2252 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2253 				    struct udphdr  *uh,
2254 				    __be32 saddr, __be32 daddr,
2255 				    struct udp_table *udptable,
2256 				    int proto)
2257 {
2258 	struct sock *sk, *first = NULL;
2259 	unsigned short hnum = ntohs(uh->dest);
2260 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2261 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2262 	unsigned int offset = offsetof(typeof(*sk), sk_node);
2263 	int dif = skb->dev->ifindex;
2264 	int sdif = inet_sdif(skb);
2265 	struct hlist_node *node;
2266 	struct sk_buff *nskb;
2267 
2268 	if (use_hash2) {
2269 		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2270 			    udptable->mask;
2271 		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2272 start_lookup:
2273 		hslot = &udptable->hash2[hash2];
2274 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2275 	}
2276 
2277 	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2278 		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2279 					 uh->source, saddr, dif, sdif, hnum))
2280 			continue;
2281 
2282 		if (!first) {
2283 			first = sk;
2284 			continue;
2285 		}
2286 		nskb = skb_clone(skb, GFP_ATOMIC);
2287 
2288 		if (unlikely(!nskb)) {
2289 			atomic_inc(&sk->sk_drops);
2290 			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2291 					IS_UDPLITE(sk));
2292 			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
2293 					IS_UDPLITE(sk));
2294 			continue;
2295 		}
2296 		if (udp_queue_rcv_skb(sk, nskb) > 0)
2297 			consume_skb(nskb);
2298 	}
2299 
2300 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2301 	if (use_hash2 && hash2 != hash2_any) {
2302 		hash2 = hash2_any;
2303 		goto start_lookup;
2304 	}
2305 
2306 	if (first) {
2307 		if (udp_queue_rcv_skb(first, skb) > 0)
2308 			consume_skb(skb);
2309 	} else {
2310 		kfree_skb(skb);
2311 		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2312 				proto == IPPROTO_UDPLITE);
2313 	}
2314 	return 0;
2315 }
2316 
2317 /* Initialize UDP checksum. If exited with zero value (success),
2318  * CHECKSUM_UNNECESSARY means, that no more checks are required.
2319  * Otherwise, csum completion requires checksumming packet body,
2320  * including udp header and folding it to skb->csum.
2321  */
2322 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2323 				 int proto)
2324 {
2325 	int err;
2326 
2327 	UDP_SKB_CB(skb)->partial_cov = 0;
2328 	UDP_SKB_CB(skb)->cscov = skb->len;
2329 
2330 	if (proto == IPPROTO_UDPLITE) {
2331 		err = udplite_checksum_init(skb, uh);
2332 		if (err)
2333 			return err;
2334 
2335 		if (UDP_SKB_CB(skb)->partial_cov) {
2336 			skb->csum = inet_compute_pseudo(skb, proto);
2337 			return 0;
2338 		}
2339 	}
2340 
2341 	/* Note, we are only interested in != 0 or == 0, thus the
2342 	 * force to int.
2343 	 */
2344 	err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2345 							inet_compute_pseudo);
2346 	if (err)
2347 		return err;
2348 
2349 	if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2350 		/* If SW calculated the value, we know it's bad */
2351 		if (skb->csum_complete_sw)
2352 			return 1;
2353 
2354 		/* HW says the value is bad. Let's validate that.
2355 		 * skb->csum is no longer the full packet checksum,
2356 		 * so don't treat it as such.
2357 		 */
2358 		skb_checksum_complete_unset(skb);
2359 	}
2360 
2361 	return 0;
2362 }
2363 
2364 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2365  * return code conversion for ip layer consumption
2366  */
2367 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2368 			       struct udphdr *uh)
2369 {
2370 	int ret;
2371 
2372 	if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2373 		skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2374 
2375 	ret = udp_queue_rcv_skb(sk, skb);
2376 
2377 	/* a return value > 0 means to resubmit the input, but
2378 	 * it wants the return to be -protocol, or 0
2379 	 */
2380 	if (ret > 0)
2381 		return -ret;
2382 	return 0;
2383 }
2384 
2385 /*
2386  *	All we need to do is get the socket, and then do a checksum.
2387  */
2388 
2389 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2390 		   int proto)
2391 {
2392 	struct sock *sk;
2393 	struct udphdr *uh;
2394 	unsigned short ulen;
2395 	struct rtable *rt = skb_rtable(skb);
2396 	__be32 saddr, daddr;
2397 	struct net *net = dev_net(skb->dev);
2398 	bool refcounted;
2399 	int drop_reason;
2400 
2401 	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2402 
2403 	/*
2404 	 *  Validate the packet.
2405 	 */
2406 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2407 		goto drop;		/* No space for header. */
2408 
2409 	uh   = udp_hdr(skb);
2410 	ulen = ntohs(uh->len);
2411 	saddr = ip_hdr(skb)->saddr;
2412 	daddr = ip_hdr(skb)->daddr;
2413 
2414 	if (ulen > skb->len)
2415 		goto short_packet;
2416 
2417 	if (proto == IPPROTO_UDP) {
2418 		/* UDP validates ulen. */
2419 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2420 			goto short_packet;
2421 		uh = udp_hdr(skb);
2422 	}
2423 
2424 	if (udp4_csum_init(skb, uh, proto))
2425 		goto csum_error;
2426 
2427 	sk = skb_steal_sock(skb, &refcounted);
2428 	if (sk) {
2429 		struct dst_entry *dst = skb_dst(skb);
2430 		int ret;
2431 
2432 		if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst))
2433 			udp_sk_rx_dst_set(sk, dst);
2434 
2435 		ret = udp_unicast_rcv_skb(sk, skb, uh);
2436 		if (refcounted)
2437 			sock_put(sk);
2438 		return ret;
2439 	}
2440 
2441 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2442 		return __udp4_lib_mcast_deliver(net, skb, uh,
2443 						saddr, daddr, udptable, proto);
2444 
2445 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2446 	if (sk)
2447 		return udp_unicast_rcv_skb(sk, skb, uh);
2448 
2449 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2450 		goto drop;
2451 	nf_reset_ct(skb);
2452 
2453 	/* No socket. Drop packet silently, if checksum is wrong */
2454 	if (udp_lib_checksum_complete(skb))
2455 		goto csum_error;
2456 
2457 	drop_reason = SKB_DROP_REASON_NO_SOCKET;
2458 	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2459 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2460 
2461 	/*
2462 	 * Hmm.  We got an UDP packet to a port to which we
2463 	 * don't wanna listen.  Ignore it.
2464 	 */
2465 	kfree_skb_reason(skb, drop_reason);
2466 	return 0;
2467 
2468 short_packet:
2469 	drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
2470 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2471 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2472 			    &saddr, ntohs(uh->source),
2473 			    ulen, skb->len,
2474 			    &daddr, ntohs(uh->dest));
2475 	goto drop;
2476 
2477 csum_error:
2478 	/*
2479 	 * RFC1122: OK.  Discards the bad packet silently (as far as
2480 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2481 	 */
2482 	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2483 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2484 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2485 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2486 			    ulen);
2487 	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2488 drop:
2489 	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2490 	kfree_skb_reason(skb, drop_reason);
2491 	return 0;
2492 }
2493 
2494 /* We can only early demux multicast if there is a single matching socket.
2495  * If more than one socket found returns NULL
2496  */
2497 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2498 						  __be16 loc_port, __be32 loc_addr,
2499 						  __be16 rmt_port, __be32 rmt_addr,
2500 						  int dif, int sdif)
2501 {
2502 	struct udp_table *udptable = net->ipv4.udp_table;
2503 	unsigned short hnum = ntohs(loc_port);
2504 	struct sock *sk, *result;
2505 	struct udp_hslot *hslot;
2506 	unsigned int slot;
2507 
2508 	slot = udp_hashfn(net, hnum, udptable->mask);
2509 	hslot = &udptable->hash[slot];
2510 
2511 	/* Do not bother scanning a too big list */
2512 	if (hslot->count > 10)
2513 		return NULL;
2514 
2515 	result = NULL;
2516 	sk_for_each_rcu(sk, &hslot->head) {
2517 		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2518 					rmt_port, rmt_addr, dif, sdif, hnum)) {
2519 			if (result)
2520 				return NULL;
2521 			result = sk;
2522 		}
2523 	}
2524 
2525 	return result;
2526 }
2527 
2528 /* For unicast we should only early demux connected sockets or we can
2529  * break forwarding setups.  The chains here can be long so only check
2530  * if the first socket is an exact match and if not move on.
2531  */
2532 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2533 					    __be16 loc_port, __be32 loc_addr,
2534 					    __be16 rmt_port, __be32 rmt_addr,
2535 					    int dif, int sdif)
2536 {
2537 	struct udp_table *udptable = net->ipv4.udp_table;
2538 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2539 	unsigned short hnum = ntohs(loc_port);
2540 	unsigned int hash2, slot2;
2541 	struct udp_hslot *hslot2;
2542 	__portpair ports;
2543 	struct sock *sk;
2544 
2545 	hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2546 	slot2 = hash2 & udptable->mask;
2547 	hslot2 = &udptable->hash2[slot2];
2548 	ports = INET_COMBINED_PORTS(rmt_port, hnum);
2549 
2550 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2551 		if (inet_match(net, sk, acookie, ports, dif, sdif))
2552 			return sk;
2553 		/* Only check first socket in chain */
2554 		break;
2555 	}
2556 	return NULL;
2557 }
2558 
2559 int udp_v4_early_demux(struct sk_buff *skb)
2560 {
2561 	struct net *net = dev_net(skb->dev);
2562 	struct in_device *in_dev = NULL;
2563 	const struct iphdr *iph;
2564 	const struct udphdr *uh;
2565 	struct sock *sk = NULL;
2566 	struct dst_entry *dst;
2567 	int dif = skb->dev->ifindex;
2568 	int sdif = inet_sdif(skb);
2569 	int ours;
2570 
2571 	/* validate the packet */
2572 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2573 		return 0;
2574 
2575 	iph = ip_hdr(skb);
2576 	uh = udp_hdr(skb);
2577 
2578 	if (skb->pkt_type == PACKET_MULTICAST) {
2579 		in_dev = __in_dev_get_rcu(skb->dev);
2580 
2581 		if (!in_dev)
2582 			return 0;
2583 
2584 		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2585 				       iph->protocol);
2586 		if (!ours)
2587 			return 0;
2588 
2589 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2590 						   uh->source, iph->saddr,
2591 						   dif, sdif);
2592 	} else if (skb->pkt_type == PACKET_HOST) {
2593 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2594 					     uh->source, iph->saddr, dif, sdif);
2595 	}
2596 
2597 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2598 		return 0;
2599 
2600 	skb->sk = sk;
2601 	skb->destructor = sock_efree;
2602 	dst = rcu_dereference(sk->sk_rx_dst);
2603 
2604 	if (dst)
2605 		dst = dst_check(dst, 0);
2606 	if (dst) {
2607 		u32 itag = 0;
2608 
2609 		/* set noref for now.
2610 		 * any place which wants to hold dst has to call
2611 		 * dst_hold_safe()
2612 		 */
2613 		skb_dst_set_noref(skb, dst);
2614 
2615 		/* for unconnected multicast sockets we need to validate
2616 		 * the source on each packet
2617 		 */
2618 		if (!inet_sk(sk)->inet_daddr && in_dev)
2619 			return ip_mc_validate_source(skb, iph->daddr,
2620 						     iph->saddr,
2621 						     iph->tos & IPTOS_RT_MASK,
2622 						     skb->dev, in_dev, &itag);
2623 	}
2624 	return 0;
2625 }
2626 
2627 int udp_rcv(struct sk_buff *skb)
2628 {
2629 	return __udp4_lib_rcv(skb, dev_net(skb->dev)->ipv4.udp_table, IPPROTO_UDP);
2630 }
2631 
2632 void udp_destroy_sock(struct sock *sk)
2633 {
2634 	struct udp_sock *up = udp_sk(sk);
2635 	bool slow = lock_sock_fast(sk);
2636 
2637 	/* protects from races with udp_abort() */
2638 	sock_set_flag(sk, SOCK_DEAD);
2639 	udp_flush_pending_frames(sk);
2640 	unlock_sock_fast(sk, slow);
2641 	if (static_branch_unlikely(&udp_encap_needed_key)) {
2642 		if (up->encap_type) {
2643 			void (*encap_destroy)(struct sock *sk);
2644 			encap_destroy = READ_ONCE(up->encap_destroy);
2645 			if (encap_destroy)
2646 				encap_destroy(sk);
2647 		}
2648 		if (up->encap_enabled)
2649 			static_branch_dec(&udp_encap_needed_key);
2650 	}
2651 }
2652 
2653 /*
2654  *	Socket option code for UDP
2655  */
2656 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2657 		       sockptr_t optval, unsigned int optlen,
2658 		       int (*push_pending_frames)(struct sock *))
2659 {
2660 	struct udp_sock *up = udp_sk(sk);
2661 	int val, valbool;
2662 	int err = 0;
2663 	int is_udplite = IS_UDPLITE(sk);
2664 
2665 	if (level == SOL_SOCKET) {
2666 		err = sk_setsockopt(sk, level, optname, optval, optlen);
2667 
2668 		if (optname == SO_RCVBUF || optname == SO_RCVBUFFORCE) {
2669 			sockopt_lock_sock(sk);
2670 			/* paired with READ_ONCE in udp_rmem_release() */
2671 			WRITE_ONCE(up->forward_threshold, sk->sk_rcvbuf >> 2);
2672 			sockopt_release_sock(sk);
2673 		}
2674 		return err;
2675 	}
2676 
2677 	if (optlen < sizeof(int))
2678 		return -EINVAL;
2679 
2680 	if (copy_from_sockptr(&val, optval, sizeof(val)))
2681 		return -EFAULT;
2682 
2683 	valbool = val ? 1 : 0;
2684 
2685 	switch (optname) {
2686 	case UDP_CORK:
2687 		if (val != 0) {
2688 			WRITE_ONCE(up->corkflag, 1);
2689 		} else {
2690 			WRITE_ONCE(up->corkflag, 0);
2691 			lock_sock(sk);
2692 			push_pending_frames(sk);
2693 			release_sock(sk);
2694 		}
2695 		break;
2696 
2697 	case UDP_ENCAP:
2698 		switch (val) {
2699 		case 0:
2700 #ifdef CONFIG_XFRM
2701 		case UDP_ENCAP_ESPINUDP:
2702 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2703 #if IS_ENABLED(CONFIG_IPV6)
2704 			if (sk->sk_family == AF_INET6)
2705 				up->encap_rcv = ipv6_stub->xfrm6_udp_encap_rcv;
2706 			else
2707 #endif
2708 				up->encap_rcv = xfrm4_udp_encap_rcv;
2709 #endif
2710 			fallthrough;
2711 		case UDP_ENCAP_L2TPINUDP:
2712 			up->encap_type = val;
2713 			lock_sock(sk);
2714 			udp_tunnel_encap_enable(sk->sk_socket);
2715 			release_sock(sk);
2716 			break;
2717 		default:
2718 			err = -ENOPROTOOPT;
2719 			break;
2720 		}
2721 		break;
2722 
2723 	case UDP_NO_CHECK6_TX:
2724 		up->no_check6_tx = valbool;
2725 		break;
2726 
2727 	case UDP_NO_CHECK6_RX:
2728 		up->no_check6_rx = valbool;
2729 		break;
2730 
2731 	case UDP_SEGMENT:
2732 		if (val < 0 || val > USHRT_MAX)
2733 			return -EINVAL;
2734 		WRITE_ONCE(up->gso_size, val);
2735 		break;
2736 
2737 	case UDP_GRO:
2738 		lock_sock(sk);
2739 
2740 		/* when enabling GRO, accept the related GSO packet type */
2741 		if (valbool)
2742 			udp_tunnel_encap_enable(sk->sk_socket);
2743 		up->gro_enabled = valbool;
2744 		up->accept_udp_l4 = valbool;
2745 		release_sock(sk);
2746 		break;
2747 
2748 	/*
2749 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2750 	 */
2751 	/* The sender sets actual checksum coverage length via this option.
2752 	 * The case coverage > packet length is handled by send module. */
2753 	case UDPLITE_SEND_CSCOV:
2754 		if (!is_udplite)         /* Disable the option on UDP sockets */
2755 			return -ENOPROTOOPT;
2756 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2757 			val = 8;
2758 		else if (val > USHRT_MAX)
2759 			val = USHRT_MAX;
2760 		up->pcslen = val;
2761 		up->pcflag |= UDPLITE_SEND_CC;
2762 		break;
2763 
2764 	/* The receiver specifies a minimum checksum coverage value. To make
2765 	 * sense, this should be set to at least 8 (as done below). If zero is
2766 	 * used, this again means full checksum coverage.                     */
2767 	case UDPLITE_RECV_CSCOV:
2768 		if (!is_udplite)         /* Disable the option on UDP sockets */
2769 			return -ENOPROTOOPT;
2770 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2771 			val = 8;
2772 		else if (val > USHRT_MAX)
2773 			val = USHRT_MAX;
2774 		up->pcrlen = val;
2775 		up->pcflag |= UDPLITE_RECV_CC;
2776 		break;
2777 
2778 	default:
2779 		err = -ENOPROTOOPT;
2780 		break;
2781 	}
2782 
2783 	return err;
2784 }
2785 EXPORT_SYMBOL(udp_lib_setsockopt);
2786 
2787 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
2788 		   unsigned int optlen)
2789 {
2790 	if (level == SOL_UDP  ||  level == SOL_UDPLITE || level == SOL_SOCKET)
2791 		return udp_lib_setsockopt(sk, level, optname,
2792 					  optval, optlen,
2793 					  udp_push_pending_frames);
2794 	return ip_setsockopt(sk, level, optname, optval, optlen);
2795 }
2796 
2797 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2798 		       char __user *optval, int __user *optlen)
2799 {
2800 	struct udp_sock *up = udp_sk(sk);
2801 	int val, len;
2802 
2803 	if (get_user(len, optlen))
2804 		return -EFAULT;
2805 
2806 	len = min_t(unsigned int, len, sizeof(int));
2807 
2808 	if (len < 0)
2809 		return -EINVAL;
2810 
2811 	switch (optname) {
2812 	case UDP_CORK:
2813 		val = READ_ONCE(up->corkflag);
2814 		break;
2815 
2816 	case UDP_ENCAP:
2817 		val = up->encap_type;
2818 		break;
2819 
2820 	case UDP_NO_CHECK6_TX:
2821 		val = up->no_check6_tx;
2822 		break;
2823 
2824 	case UDP_NO_CHECK6_RX:
2825 		val = up->no_check6_rx;
2826 		break;
2827 
2828 	case UDP_SEGMENT:
2829 		val = READ_ONCE(up->gso_size);
2830 		break;
2831 
2832 	case UDP_GRO:
2833 		val = up->gro_enabled;
2834 		break;
2835 
2836 	/* The following two cannot be changed on UDP sockets, the return is
2837 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2838 	case UDPLITE_SEND_CSCOV:
2839 		val = up->pcslen;
2840 		break;
2841 
2842 	case UDPLITE_RECV_CSCOV:
2843 		val = up->pcrlen;
2844 		break;
2845 
2846 	default:
2847 		return -ENOPROTOOPT;
2848 	}
2849 
2850 	if (put_user(len, optlen))
2851 		return -EFAULT;
2852 	if (copy_to_user(optval, &val, len))
2853 		return -EFAULT;
2854 	return 0;
2855 }
2856 EXPORT_SYMBOL(udp_lib_getsockopt);
2857 
2858 int udp_getsockopt(struct sock *sk, int level, int optname,
2859 		   char __user *optval, int __user *optlen)
2860 {
2861 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2862 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2863 	return ip_getsockopt(sk, level, optname, optval, optlen);
2864 }
2865 
2866 /**
2867  * 	udp_poll - wait for a UDP event.
2868  *	@file: - file struct
2869  *	@sock: - socket
2870  *	@wait: - poll table
2871  *
2872  *	This is same as datagram poll, except for the special case of
2873  *	blocking sockets. If application is using a blocking fd
2874  *	and a packet with checksum error is in the queue;
2875  *	then it could get return from select indicating data available
2876  *	but then block when reading it. Add special case code
2877  *	to work around these arguably broken applications.
2878  */
2879 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2880 {
2881 	__poll_t mask = datagram_poll(file, sock, wait);
2882 	struct sock *sk = sock->sk;
2883 
2884 	if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
2885 		mask |= EPOLLIN | EPOLLRDNORM;
2886 
2887 	/* Check for false positives due to checksum errors */
2888 	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2889 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2890 		mask &= ~(EPOLLIN | EPOLLRDNORM);
2891 
2892 	/* psock ingress_msg queue should not contain any bad checksum frames */
2893 	if (sk_is_readable(sk))
2894 		mask |= EPOLLIN | EPOLLRDNORM;
2895 	return mask;
2896 
2897 }
2898 EXPORT_SYMBOL(udp_poll);
2899 
2900 int udp_abort(struct sock *sk, int err)
2901 {
2902 	if (!has_current_bpf_ctx())
2903 		lock_sock(sk);
2904 
2905 	/* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing
2906 	 * with close()
2907 	 */
2908 	if (sock_flag(sk, SOCK_DEAD))
2909 		goto out;
2910 
2911 	sk->sk_err = err;
2912 	sk_error_report(sk);
2913 	__udp_disconnect(sk, 0);
2914 
2915 out:
2916 	if (!has_current_bpf_ctx())
2917 		release_sock(sk);
2918 
2919 	return 0;
2920 }
2921 EXPORT_SYMBOL_GPL(udp_abort);
2922 
2923 struct proto udp_prot = {
2924 	.name			= "UDP",
2925 	.owner			= THIS_MODULE,
2926 	.close			= udp_lib_close,
2927 	.pre_connect		= udp_pre_connect,
2928 	.connect		= ip4_datagram_connect,
2929 	.disconnect		= udp_disconnect,
2930 	.ioctl			= udp_ioctl,
2931 	.init			= udp_init_sock,
2932 	.destroy		= udp_destroy_sock,
2933 	.setsockopt		= udp_setsockopt,
2934 	.getsockopt		= udp_getsockopt,
2935 	.sendmsg		= udp_sendmsg,
2936 	.recvmsg		= udp_recvmsg,
2937 	.splice_eof		= udp_splice_eof,
2938 	.sendpage		= udp_sendpage,
2939 	.release_cb		= ip4_datagram_release_cb,
2940 	.hash			= udp_lib_hash,
2941 	.unhash			= udp_lib_unhash,
2942 	.rehash			= udp_v4_rehash,
2943 	.get_port		= udp_v4_get_port,
2944 	.put_port		= udp_lib_unhash,
2945 #ifdef CONFIG_BPF_SYSCALL
2946 	.psock_update_sk_prot	= udp_bpf_update_proto,
2947 #endif
2948 	.memory_allocated	= &udp_memory_allocated,
2949 	.per_cpu_fw_alloc	= &udp_memory_per_cpu_fw_alloc,
2950 
2951 	.sysctl_mem		= sysctl_udp_mem,
2952 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2953 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2954 	.obj_size		= sizeof(struct udp_sock),
2955 	.h.udp_table		= NULL,
2956 	.diag_destroy		= udp_abort,
2957 };
2958 EXPORT_SYMBOL(udp_prot);
2959 
2960 /* ------------------------------------------------------------------------ */
2961 #ifdef CONFIG_PROC_FS
2962 
2963 static unsigned short seq_file_family(const struct seq_file *seq);
2964 static bool seq_sk_match(struct seq_file *seq, const struct sock *sk)
2965 {
2966 	unsigned short family = seq_file_family(seq);
2967 
2968 	/* AF_UNSPEC is used as a match all */
2969 	return ((family == AF_UNSPEC || family == sk->sk_family) &&
2970 		net_eq(sock_net(sk), seq_file_net(seq)));
2971 }
2972 
2973 #ifdef CONFIG_BPF_SYSCALL
2974 static const struct seq_operations bpf_iter_udp_seq_ops;
2975 #endif
2976 static struct udp_table *udp_get_table_seq(struct seq_file *seq,
2977 					   struct net *net)
2978 {
2979 	const struct udp_seq_afinfo *afinfo;
2980 
2981 #ifdef CONFIG_BPF_SYSCALL
2982 	if (seq->op == &bpf_iter_udp_seq_ops)
2983 		return net->ipv4.udp_table;
2984 #endif
2985 
2986 	afinfo = pde_data(file_inode(seq->file));
2987 	return afinfo->udp_table ? : net->ipv4.udp_table;
2988 }
2989 
2990 static struct sock *udp_get_first(struct seq_file *seq, int start)
2991 {
2992 	struct udp_iter_state *state = seq->private;
2993 	struct net *net = seq_file_net(seq);
2994 	struct udp_table *udptable;
2995 	struct sock *sk;
2996 
2997 	udptable = udp_get_table_seq(seq, net);
2998 
2999 	for (state->bucket = start; state->bucket <= udptable->mask;
3000 	     ++state->bucket) {
3001 		struct udp_hslot *hslot = &udptable->hash[state->bucket];
3002 
3003 		if (hlist_empty(&hslot->head))
3004 			continue;
3005 
3006 		spin_lock_bh(&hslot->lock);
3007 		sk_for_each(sk, &hslot->head) {
3008 			if (seq_sk_match(seq, sk))
3009 				goto found;
3010 		}
3011 		spin_unlock_bh(&hslot->lock);
3012 	}
3013 	sk = NULL;
3014 found:
3015 	return sk;
3016 }
3017 
3018 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
3019 {
3020 	struct udp_iter_state *state = seq->private;
3021 	struct net *net = seq_file_net(seq);
3022 	struct udp_table *udptable;
3023 
3024 	do {
3025 		sk = sk_next(sk);
3026 	} while (sk && !seq_sk_match(seq, sk));
3027 
3028 	if (!sk) {
3029 		udptable = udp_get_table_seq(seq, net);
3030 
3031 		if (state->bucket <= udptable->mask)
3032 			spin_unlock_bh(&udptable->hash[state->bucket].lock);
3033 
3034 		return udp_get_first(seq, state->bucket + 1);
3035 	}
3036 	return sk;
3037 }
3038 
3039 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
3040 {
3041 	struct sock *sk = udp_get_first(seq, 0);
3042 
3043 	if (sk)
3044 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
3045 			--pos;
3046 	return pos ? NULL : sk;
3047 }
3048 
3049 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
3050 {
3051 	struct udp_iter_state *state = seq->private;
3052 	state->bucket = MAX_UDP_PORTS;
3053 
3054 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
3055 }
3056 EXPORT_SYMBOL(udp_seq_start);
3057 
3058 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3059 {
3060 	struct sock *sk;
3061 
3062 	if (v == SEQ_START_TOKEN)
3063 		sk = udp_get_idx(seq, 0);
3064 	else
3065 		sk = udp_get_next(seq, v);
3066 
3067 	++*pos;
3068 	return sk;
3069 }
3070 EXPORT_SYMBOL(udp_seq_next);
3071 
3072 void udp_seq_stop(struct seq_file *seq, void *v)
3073 {
3074 	struct udp_iter_state *state = seq->private;
3075 	struct udp_table *udptable;
3076 
3077 	udptable = udp_get_table_seq(seq, seq_file_net(seq));
3078 
3079 	if (state->bucket <= udptable->mask)
3080 		spin_unlock_bh(&udptable->hash[state->bucket].lock);
3081 }
3082 EXPORT_SYMBOL(udp_seq_stop);
3083 
3084 /* ------------------------------------------------------------------------ */
3085 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
3086 		int bucket)
3087 {
3088 	struct inet_sock *inet = inet_sk(sp);
3089 	__be32 dest = inet->inet_daddr;
3090 	__be32 src  = inet->inet_rcv_saddr;
3091 	__u16 destp	  = ntohs(inet->inet_dport);
3092 	__u16 srcp	  = ntohs(inet->inet_sport);
3093 
3094 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
3095 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
3096 		bucket, src, srcp, dest, destp, sp->sk_state,
3097 		sk_wmem_alloc_get(sp),
3098 		udp_rqueue_get(sp),
3099 		0, 0L, 0,
3100 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
3101 		0, sock_i_ino(sp),
3102 		refcount_read(&sp->sk_refcnt), sp,
3103 		atomic_read(&sp->sk_drops));
3104 }
3105 
3106 int udp4_seq_show(struct seq_file *seq, void *v)
3107 {
3108 	seq_setwidth(seq, 127);
3109 	if (v == SEQ_START_TOKEN)
3110 		seq_puts(seq, "   sl  local_address rem_address   st tx_queue "
3111 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
3112 			   "inode ref pointer drops");
3113 	else {
3114 		struct udp_iter_state *state = seq->private;
3115 
3116 		udp4_format_sock(v, seq, state->bucket);
3117 	}
3118 	seq_pad(seq, '\n');
3119 	return 0;
3120 }
3121 
3122 #ifdef CONFIG_BPF_SYSCALL
3123 struct bpf_iter__udp {
3124 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
3125 	__bpf_md_ptr(struct udp_sock *, udp_sk);
3126 	uid_t uid __aligned(8);
3127 	int bucket __aligned(8);
3128 };
3129 
3130 struct bpf_udp_iter_state {
3131 	struct udp_iter_state state;
3132 	unsigned int cur_sk;
3133 	unsigned int end_sk;
3134 	unsigned int max_sk;
3135 	int offset;
3136 	struct sock **batch;
3137 	bool st_bucket_done;
3138 };
3139 
3140 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3141 				      unsigned int new_batch_sz);
3142 static struct sock *bpf_iter_udp_batch(struct seq_file *seq)
3143 {
3144 	struct bpf_udp_iter_state *iter = seq->private;
3145 	struct udp_iter_state *state = &iter->state;
3146 	struct net *net = seq_file_net(seq);
3147 	struct udp_table *udptable;
3148 	unsigned int batch_sks = 0;
3149 	bool resized = false;
3150 	struct sock *sk;
3151 
3152 	/* The current batch is done, so advance the bucket. */
3153 	if (iter->st_bucket_done) {
3154 		state->bucket++;
3155 		iter->offset = 0;
3156 	}
3157 
3158 	udptable = udp_get_table_seq(seq, net);
3159 
3160 again:
3161 	/* New batch for the next bucket.
3162 	 * Iterate over the hash table to find a bucket with sockets matching
3163 	 * the iterator attributes, and return the first matching socket from
3164 	 * the bucket. The remaining matched sockets from the bucket are batched
3165 	 * before releasing the bucket lock. This allows BPF programs that are
3166 	 * called in seq_show to acquire the bucket lock if needed.
3167 	 */
3168 	iter->cur_sk = 0;
3169 	iter->end_sk = 0;
3170 	iter->st_bucket_done = false;
3171 	batch_sks = 0;
3172 
3173 	for (; state->bucket <= udptable->mask; state->bucket++) {
3174 		struct udp_hslot *hslot2 = &udptable->hash2[state->bucket];
3175 
3176 		if (hlist_empty(&hslot2->head)) {
3177 			iter->offset = 0;
3178 			continue;
3179 		}
3180 
3181 		spin_lock_bh(&hslot2->lock);
3182 		udp_portaddr_for_each_entry(sk, &hslot2->head) {
3183 			if (seq_sk_match(seq, sk)) {
3184 				/* Resume from the last iterated socket at the
3185 				 * offset in the bucket before iterator was stopped.
3186 				 */
3187 				if (iter->offset) {
3188 					--iter->offset;
3189 					continue;
3190 				}
3191 				if (iter->end_sk < iter->max_sk) {
3192 					sock_hold(sk);
3193 					iter->batch[iter->end_sk++] = sk;
3194 				}
3195 				batch_sks++;
3196 			}
3197 		}
3198 		spin_unlock_bh(&hslot2->lock);
3199 
3200 		if (iter->end_sk)
3201 			break;
3202 
3203 		/* Reset the current bucket's offset before moving to the next bucket. */
3204 		iter->offset = 0;
3205 	}
3206 
3207 	/* All done: no batch made. */
3208 	if (!iter->end_sk)
3209 		return NULL;
3210 
3211 	if (iter->end_sk == batch_sks) {
3212 		/* Batching is done for the current bucket; return the first
3213 		 * socket to be iterated from the batch.
3214 		 */
3215 		iter->st_bucket_done = true;
3216 		goto done;
3217 	}
3218 	if (!resized && !bpf_iter_udp_realloc_batch(iter, batch_sks * 3 / 2)) {
3219 		resized = true;
3220 		/* After allocating a larger batch, retry one more time to grab
3221 		 * the whole bucket.
3222 		 */
3223 		state->bucket--;
3224 		goto again;
3225 	}
3226 done:
3227 	return iter->batch[0];
3228 }
3229 
3230 static void *bpf_iter_udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3231 {
3232 	struct bpf_udp_iter_state *iter = seq->private;
3233 	struct sock *sk;
3234 
3235 	/* Whenever seq_next() is called, the iter->cur_sk is
3236 	 * done with seq_show(), so unref the iter->cur_sk.
3237 	 */
3238 	if (iter->cur_sk < iter->end_sk) {
3239 		sock_put(iter->batch[iter->cur_sk++]);
3240 		++iter->offset;
3241 	}
3242 
3243 	/* After updating iter->cur_sk, check if there are more sockets
3244 	 * available in the current bucket batch.
3245 	 */
3246 	if (iter->cur_sk < iter->end_sk)
3247 		sk = iter->batch[iter->cur_sk];
3248 	else
3249 		/* Prepare a new batch. */
3250 		sk = bpf_iter_udp_batch(seq);
3251 
3252 	++*pos;
3253 	return sk;
3254 }
3255 
3256 static void *bpf_iter_udp_seq_start(struct seq_file *seq, loff_t *pos)
3257 {
3258 	/* bpf iter does not support lseek, so it always
3259 	 * continue from where it was stop()-ped.
3260 	 */
3261 	if (*pos)
3262 		return bpf_iter_udp_batch(seq);
3263 
3264 	return SEQ_START_TOKEN;
3265 }
3266 
3267 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3268 			     struct udp_sock *udp_sk, uid_t uid, int bucket)
3269 {
3270 	struct bpf_iter__udp ctx;
3271 
3272 	meta->seq_num--;  /* skip SEQ_START_TOKEN */
3273 	ctx.meta = meta;
3274 	ctx.udp_sk = udp_sk;
3275 	ctx.uid = uid;
3276 	ctx.bucket = bucket;
3277 	return bpf_iter_run_prog(prog, &ctx);
3278 }
3279 
3280 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v)
3281 {
3282 	struct udp_iter_state *state = seq->private;
3283 	struct bpf_iter_meta meta;
3284 	struct bpf_prog *prog;
3285 	struct sock *sk = v;
3286 	uid_t uid;
3287 	int ret;
3288 
3289 	if (v == SEQ_START_TOKEN)
3290 		return 0;
3291 
3292 	lock_sock(sk);
3293 
3294 	if (unlikely(sk_unhashed(sk))) {
3295 		ret = SEQ_SKIP;
3296 		goto unlock;
3297 	}
3298 
3299 	uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3300 	meta.seq = seq;
3301 	prog = bpf_iter_get_info(&meta, false);
3302 	ret = udp_prog_seq_show(prog, &meta, v, uid, state->bucket);
3303 
3304 unlock:
3305 	release_sock(sk);
3306 	return ret;
3307 }
3308 
3309 static void bpf_iter_udp_put_batch(struct bpf_udp_iter_state *iter)
3310 {
3311 	while (iter->cur_sk < iter->end_sk)
3312 		sock_put(iter->batch[iter->cur_sk++]);
3313 }
3314 
3315 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v)
3316 {
3317 	struct bpf_udp_iter_state *iter = seq->private;
3318 	struct bpf_iter_meta meta;
3319 	struct bpf_prog *prog;
3320 
3321 	if (!v) {
3322 		meta.seq = seq;
3323 		prog = bpf_iter_get_info(&meta, true);
3324 		if (prog)
3325 			(void)udp_prog_seq_show(prog, &meta, v, 0, 0);
3326 	}
3327 
3328 	if (iter->cur_sk < iter->end_sk) {
3329 		bpf_iter_udp_put_batch(iter);
3330 		iter->st_bucket_done = false;
3331 	}
3332 }
3333 
3334 static const struct seq_operations bpf_iter_udp_seq_ops = {
3335 	.start		= bpf_iter_udp_seq_start,
3336 	.next		= bpf_iter_udp_seq_next,
3337 	.stop		= bpf_iter_udp_seq_stop,
3338 	.show		= bpf_iter_udp_seq_show,
3339 };
3340 #endif
3341 
3342 static unsigned short seq_file_family(const struct seq_file *seq)
3343 {
3344 	const struct udp_seq_afinfo *afinfo;
3345 
3346 #ifdef CONFIG_BPF_SYSCALL
3347 	/* BPF iterator: bpf programs to filter sockets. */
3348 	if (seq->op == &bpf_iter_udp_seq_ops)
3349 		return AF_UNSPEC;
3350 #endif
3351 
3352 	/* Proc fs iterator */
3353 	afinfo = pde_data(file_inode(seq->file));
3354 	return afinfo->family;
3355 }
3356 
3357 const struct seq_operations udp_seq_ops = {
3358 	.start		= udp_seq_start,
3359 	.next		= udp_seq_next,
3360 	.stop		= udp_seq_stop,
3361 	.show		= udp4_seq_show,
3362 };
3363 EXPORT_SYMBOL(udp_seq_ops);
3364 
3365 static struct udp_seq_afinfo udp4_seq_afinfo = {
3366 	.family		= AF_INET,
3367 	.udp_table	= NULL,
3368 };
3369 
3370 static int __net_init udp4_proc_init_net(struct net *net)
3371 {
3372 	if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
3373 			sizeof(struct udp_iter_state), &udp4_seq_afinfo))
3374 		return -ENOMEM;
3375 	return 0;
3376 }
3377 
3378 static void __net_exit udp4_proc_exit_net(struct net *net)
3379 {
3380 	remove_proc_entry("udp", net->proc_net);
3381 }
3382 
3383 static struct pernet_operations udp4_net_ops = {
3384 	.init = udp4_proc_init_net,
3385 	.exit = udp4_proc_exit_net,
3386 };
3387 
3388 int __init udp4_proc_init(void)
3389 {
3390 	return register_pernet_subsys(&udp4_net_ops);
3391 }
3392 
3393 void udp4_proc_exit(void)
3394 {
3395 	unregister_pernet_subsys(&udp4_net_ops);
3396 }
3397 #endif /* CONFIG_PROC_FS */
3398 
3399 static __initdata unsigned long uhash_entries;
3400 static int __init set_uhash_entries(char *str)
3401 {
3402 	ssize_t ret;
3403 
3404 	if (!str)
3405 		return 0;
3406 
3407 	ret = kstrtoul(str, 0, &uhash_entries);
3408 	if (ret)
3409 		return 0;
3410 
3411 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
3412 		uhash_entries = UDP_HTABLE_SIZE_MIN;
3413 	return 1;
3414 }
3415 __setup("uhash_entries=", set_uhash_entries);
3416 
3417 void __init udp_table_init(struct udp_table *table, const char *name)
3418 {
3419 	unsigned int i;
3420 
3421 	table->hash = alloc_large_system_hash(name,
3422 					      2 * sizeof(struct udp_hslot),
3423 					      uhash_entries,
3424 					      21, /* one slot per 2 MB */
3425 					      0,
3426 					      &table->log,
3427 					      &table->mask,
3428 					      UDP_HTABLE_SIZE_MIN,
3429 					      UDP_HTABLE_SIZE_MAX);
3430 
3431 	table->hash2 = table->hash + (table->mask + 1);
3432 	for (i = 0; i <= table->mask; i++) {
3433 		INIT_HLIST_HEAD(&table->hash[i].head);
3434 		table->hash[i].count = 0;
3435 		spin_lock_init(&table->hash[i].lock);
3436 	}
3437 	for (i = 0; i <= table->mask; i++) {
3438 		INIT_HLIST_HEAD(&table->hash2[i].head);
3439 		table->hash2[i].count = 0;
3440 		spin_lock_init(&table->hash2[i].lock);
3441 	}
3442 }
3443 
3444 u32 udp_flow_hashrnd(void)
3445 {
3446 	static u32 hashrnd __read_mostly;
3447 
3448 	net_get_random_once(&hashrnd, sizeof(hashrnd));
3449 
3450 	return hashrnd;
3451 }
3452 EXPORT_SYMBOL(udp_flow_hashrnd);
3453 
3454 static void __net_init udp_sysctl_init(struct net *net)
3455 {
3456 	net->ipv4.sysctl_udp_rmem_min = PAGE_SIZE;
3457 	net->ipv4.sysctl_udp_wmem_min = PAGE_SIZE;
3458 
3459 #ifdef CONFIG_NET_L3_MASTER_DEV
3460 	net->ipv4.sysctl_udp_l3mdev_accept = 0;
3461 #endif
3462 }
3463 
3464 static struct udp_table __net_init *udp_pernet_table_alloc(unsigned int hash_entries)
3465 {
3466 	struct udp_table *udptable;
3467 	int i;
3468 
3469 	udptable = kmalloc(sizeof(*udptable), GFP_KERNEL);
3470 	if (!udptable)
3471 		goto out;
3472 
3473 	udptable->hash = vmalloc_huge(hash_entries * 2 * sizeof(struct udp_hslot),
3474 				      GFP_KERNEL_ACCOUNT);
3475 	if (!udptable->hash)
3476 		goto free_table;
3477 
3478 	udptable->hash2 = udptable->hash + hash_entries;
3479 	udptable->mask = hash_entries - 1;
3480 	udptable->log = ilog2(hash_entries);
3481 
3482 	for (i = 0; i < hash_entries; i++) {
3483 		INIT_HLIST_HEAD(&udptable->hash[i].head);
3484 		udptable->hash[i].count = 0;
3485 		spin_lock_init(&udptable->hash[i].lock);
3486 
3487 		INIT_HLIST_HEAD(&udptable->hash2[i].head);
3488 		udptable->hash2[i].count = 0;
3489 		spin_lock_init(&udptable->hash2[i].lock);
3490 	}
3491 
3492 	return udptable;
3493 
3494 free_table:
3495 	kfree(udptable);
3496 out:
3497 	return NULL;
3498 }
3499 
3500 static void __net_exit udp_pernet_table_free(struct net *net)
3501 {
3502 	struct udp_table *udptable = net->ipv4.udp_table;
3503 
3504 	if (udptable == &udp_table)
3505 		return;
3506 
3507 	kvfree(udptable->hash);
3508 	kfree(udptable);
3509 }
3510 
3511 static void __net_init udp_set_table(struct net *net)
3512 {
3513 	struct udp_table *udptable;
3514 	unsigned int hash_entries;
3515 	struct net *old_net;
3516 
3517 	if (net_eq(net, &init_net))
3518 		goto fallback;
3519 
3520 	old_net = current->nsproxy->net_ns;
3521 	hash_entries = READ_ONCE(old_net->ipv4.sysctl_udp_child_hash_entries);
3522 	if (!hash_entries)
3523 		goto fallback;
3524 
3525 	/* Set min to keep the bitmap on stack in udp_lib_get_port() */
3526 	if (hash_entries < UDP_HTABLE_SIZE_MIN_PERNET)
3527 		hash_entries = UDP_HTABLE_SIZE_MIN_PERNET;
3528 	else
3529 		hash_entries = roundup_pow_of_two(hash_entries);
3530 
3531 	udptable = udp_pernet_table_alloc(hash_entries);
3532 	if (udptable) {
3533 		net->ipv4.udp_table = udptable;
3534 	} else {
3535 		pr_warn("Failed to allocate UDP hash table (entries: %u) "
3536 			"for a netns, fallback to the global one\n",
3537 			hash_entries);
3538 fallback:
3539 		net->ipv4.udp_table = &udp_table;
3540 	}
3541 }
3542 
3543 static int __net_init udp_pernet_init(struct net *net)
3544 {
3545 	udp_sysctl_init(net);
3546 	udp_set_table(net);
3547 
3548 	return 0;
3549 }
3550 
3551 static void __net_exit udp_pernet_exit(struct net *net)
3552 {
3553 	udp_pernet_table_free(net);
3554 }
3555 
3556 static struct pernet_operations __net_initdata udp_sysctl_ops = {
3557 	.init	= udp_pernet_init,
3558 	.exit	= udp_pernet_exit,
3559 };
3560 
3561 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3562 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta,
3563 		     struct udp_sock *udp_sk, uid_t uid, int bucket)
3564 
3565 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3566 				      unsigned int new_batch_sz)
3567 {
3568 	struct sock **new_batch;
3569 
3570 	new_batch = kvmalloc_array(new_batch_sz, sizeof(*new_batch),
3571 				   GFP_USER | __GFP_NOWARN);
3572 	if (!new_batch)
3573 		return -ENOMEM;
3574 
3575 	bpf_iter_udp_put_batch(iter);
3576 	kvfree(iter->batch);
3577 	iter->batch = new_batch;
3578 	iter->max_sk = new_batch_sz;
3579 
3580 	return 0;
3581 }
3582 
3583 #define INIT_BATCH_SZ 16
3584 
3585 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux)
3586 {
3587 	struct bpf_udp_iter_state *iter = priv_data;
3588 	int ret;
3589 
3590 	ret = bpf_iter_init_seq_net(priv_data, aux);
3591 	if (ret)
3592 		return ret;
3593 
3594 	ret = bpf_iter_udp_realloc_batch(iter, INIT_BATCH_SZ);
3595 	if (ret)
3596 		bpf_iter_fini_seq_net(priv_data);
3597 
3598 	return ret;
3599 }
3600 
3601 static void bpf_iter_fini_udp(void *priv_data)
3602 {
3603 	struct bpf_udp_iter_state *iter = priv_data;
3604 
3605 	bpf_iter_fini_seq_net(priv_data);
3606 	kvfree(iter->batch);
3607 }
3608 
3609 static const struct bpf_iter_seq_info udp_seq_info = {
3610 	.seq_ops		= &bpf_iter_udp_seq_ops,
3611 	.init_seq_private	= bpf_iter_init_udp,
3612 	.fini_seq_private	= bpf_iter_fini_udp,
3613 	.seq_priv_size		= sizeof(struct bpf_udp_iter_state),
3614 };
3615 
3616 static struct bpf_iter_reg udp_reg_info = {
3617 	.target			= "udp",
3618 	.ctx_arg_info_size	= 1,
3619 	.ctx_arg_info		= {
3620 		{ offsetof(struct bpf_iter__udp, udp_sk),
3621 		  PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED },
3622 	},
3623 	.seq_info		= &udp_seq_info,
3624 };
3625 
3626 static void __init bpf_iter_register(void)
3627 {
3628 	udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP];
3629 	if (bpf_iter_reg_target(&udp_reg_info))
3630 		pr_warn("Warning: could not register bpf iterator udp\n");
3631 }
3632 #endif
3633 
3634 void __init udp_init(void)
3635 {
3636 	unsigned long limit;
3637 	unsigned int i;
3638 
3639 	udp_table_init(&udp_table, "UDP");
3640 	limit = nr_free_buffer_pages() / 8;
3641 	limit = max(limit, 128UL);
3642 	sysctl_udp_mem[0] = limit / 4 * 3;
3643 	sysctl_udp_mem[1] = limit;
3644 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3645 
3646 	/* 16 spinlocks per cpu */
3647 	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3648 	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3649 				GFP_KERNEL);
3650 	if (!udp_busylocks)
3651 		panic("UDP: failed to alloc udp_busylocks\n");
3652 	for (i = 0; i < (1U << udp_busylocks_log); i++)
3653 		spin_lock_init(udp_busylocks + i);
3654 
3655 	if (register_pernet_subsys(&udp_sysctl_ops))
3656 		panic("UDP: failed to init sysctl parameters.\n");
3657 
3658 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3659 	bpf_iter_register();
3660 #endif
3661 }
3662