xref: /linux/net/ipv4/udp.c (revision d39d0ed196aa1685bb24771e92f78633c66ac9cb)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The User Datagram Protocol (UDP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
12  *		Hirokazu Takahashi, <taka@valinux.co.jp>
13  *
14  * Fixes:
15  *		Alan Cox	:	verify_area() calls
16  *		Alan Cox	: 	stopped close while in use off icmp
17  *					messages. Not a fix but a botch that
18  *					for udp at least is 'valid'.
19  *		Alan Cox	:	Fixed icmp handling properly
20  *		Alan Cox	: 	Correct error for oversized datagrams
21  *		Alan Cox	:	Tidied select() semantics.
22  *		Alan Cox	:	udp_err() fixed properly, also now
23  *					select and read wake correctly on errors
24  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
25  *		Alan Cox	:	UDP can count its memory
26  *		Alan Cox	:	send to an unknown connection causes
27  *					an ECONNREFUSED off the icmp, but
28  *					does NOT close.
29  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
30  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
31  *					bug no longer crashes it.
32  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
33  *		Alan Cox	:	Uses skb_free_datagram
34  *		Alan Cox	:	Added get/set sockopt support.
35  *		Alan Cox	:	Broadcasting without option set returns EACCES.
36  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
37  *		Alan Cox	:	Use ip_tos and ip_ttl
38  *		Alan Cox	:	SNMP Mibs
39  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
40  *		Matt Dillon	:	UDP length checks.
41  *		Alan Cox	:	Smarter af_inet used properly.
42  *		Alan Cox	:	Use new kernel side addressing.
43  *		Alan Cox	:	Incorrect return on truncated datagram receive.
44  *	Arnt Gulbrandsen 	:	New udp_send and stuff
45  *		Alan Cox	:	Cache last socket
46  *		Alan Cox	:	Route cache
47  *		Jon Peatfield	:	Minor efficiency fix to sendto().
48  *		Mike Shaver	:	RFC1122 checks.
49  *		Alan Cox	:	Nonblocking error fix.
50  *	Willy Konynenberg	:	Transparent proxying support.
51  *		Mike McLagan	:	Routing by source
52  *		David S. Miller	:	New socket lookup architecture.
53  *					Last socket cache retained as it
54  *					does have a high hit rate.
55  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
56  *		Andi Kleen	:	Some cleanups, cache destination entry
57  *					for connect.
58  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
59  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
60  *					return ENOTCONN for unconnected sockets (POSIX)
61  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
62  *					bound-to-device socket
63  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
64  *					datagrams.
65  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
66  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
67  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
68  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
69  *					a single port at the same time.
70  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71  *	James Chapman		:	Add L2TP encapsulation type.
72  *
73  *
74  *		This program is free software; you can redistribute it and/or
75  *		modify it under the terms of the GNU General Public License
76  *		as published by the Free Software Foundation; either version
77  *		2 of the License, or (at your option) any later version.
78  */
79 
80 #include <asm/system.h>
81 #include <asm/uaccess.h>
82 #include <asm/ioctls.h>
83 #include <linux/bootmem.h>
84 #include <linux/highmem.h>
85 #include <linux/swap.h>
86 #include <linux/types.h>
87 #include <linux/fcntl.h>
88 #include <linux/module.h>
89 #include <linux/socket.h>
90 #include <linux/sockios.h>
91 #include <linux/igmp.h>
92 #include <linux/in.h>
93 #include <linux/errno.h>
94 #include <linux/timer.h>
95 #include <linux/mm.h>
96 #include <linux/inet.h>
97 #include <linux/netdevice.h>
98 #include <linux/slab.h>
99 #include <net/tcp_states.h>
100 #include <linux/skbuff.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <net/net_namespace.h>
104 #include <net/icmp.h>
105 #include <net/route.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include "udp_impl.h"
109 
110 struct udp_table udp_table __read_mostly;
111 EXPORT_SYMBOL(udp_table);
112 
113 int sysctl_udp_mem[3] __read_mostly;
114 EXPORT_SYMBOL(sysctl_udp_mem);
115 
116 int sysctl_udp_rmem_min __read_mostly;
117 EXPORT_SYMBOL(sysctl_udp_rmem_min);
118 
119 int sysctl_udp_wmem_min __read_mostly;
120 EXPORT_SYMBOL(sysctl_udp_wmem_min);
121 
122 atomic_t udp_memory_allocated;
123 EXPORT_SYMBOL(udp_memory_allocated);
124 
125 #define MAX_UDP_PORTS 65536
126 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
127 
128 static int udp_lib_lport_inuse(struct net *net, __u16 num,
129 			       const struct udp_hslot *hslot,
130 			       unsigned long *bitmap,
131 			       struct sock *sk,
132 			       int (*saddr_comp)(const struct sock *sk1,
133 						 const struct sock *sk2),
134 			       unsigned int log)
135 {
136 	struct sock *sk2;
137 	struct hlist_nulls_node *node;
138 
139 	sk_nulls_for_each(sk2, node, &hslot->head)
140 		if (net_eq(sock_net(sk2), net) &&
141 		    sk2 != sk &&
142 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
143 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
144 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
145 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
146 		    (*saddr_comp)(sk, sk2)) {
147 			if (bitmap)
148 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
149 					  bitmap);
150 			else
151 				return 1;
152 		}
153 	return 0;
154 }
155 
156 /*
157  * Note: we still hold spinlock of primary hash chain, so no other writer
158  * can insert/delete a socket with local_port == num
159  */
160 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
161 			       struct udp_hslot *hslot2,
162 			       struct sock *sk,
163 			       int (*saddr_comp)(const struct sock *sk1,
164 						 const struct sock *sk2))
165 {
166 	struct sock *sk2;
167 	struct hlist_nulls_node *node;
168 	int res = 0;
169 
170 	spin_lock(&hslot2->lock);
171 	udp_portaddr_for_each_entry(sk2, node, &hslot2->head)
172 		if (net_eq(sock_net(sk2), net) &&
173 		    sk2 != sk &&
174 		    (udp_sk(sk2)->udp_port_hash == num) &&
175 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
176 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
177 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
178 		    (*saddr_comp)(sk, sk2)) {
179 			res = 1;
180 			break;
181 		}
182 	spin_unlock(&hslot2->lock);
183 	return res;
184 }
185 
186 /**
187  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
188  *
189  *  @sk:          socket struct in question
190  *  @snum:        port number to look up
191  *  @saddr_comp:  AF-dependent comparison of bound local IP addresses
192  *  @hash2_nulladdr: AF-dependant hash value in secondary hash chains,
193  *                   with NULL address
194  */
195 int udp_lib_get_port(struct sock *sk, unsigned short snum,
196 		       int (*saddr_comp)(const struct sock *sk1,
197 					 const struct sock *sk2),
198 		     unsigned int hash2_nulladdr)
199 {
200 	struct udp_hslot *hslot, *hslot2;
201 	struct udp_table *udptable = sk->sk_prot->h.udp_table;
202 	int    error = 1;
203 	struct net *net = sock_net(sk);
204 
205 	if (!snum) {
206 		int low, high, remaining;
207 		unsigned rand;
208 		unsigned short first, last;
209 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
210 
211 		inet_get_local_port_range(&low, &high);
212 		remaining = (high - low) + 1;
213 
214 		rand = net_random();
215 		first = (((u64)rand * remaining) >> 32) + low;
216 		/*
217 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
218 		 */
219 		rand = (rand | 1) * (udptable->mask + 1);
220 		last = first + udptable->mask + 1;
221 		do {
222 			hslot = udp_hashslot(udptable, net, first);
223 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
224 			spin_lock_bh(&hslot->lock);
225 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
226 					    saddr_comp, udptable->log);
227 
228 			snum = first;
229 			/*
230 			 * Iterate on all possible values of snum for this hash.
231 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
232 			 * give us randomization and full range coverage.
233 			 */
234 			do {
235 				if (low <= snum && snum <= high &&
236 				    !test_bit(snum >> udptable->log, bitmap) &&
237 				    !inet_is_reserved_local_port(snum))
238 					goto found;
239 				snum += rand;
240 			} while (snum != first);
241 			spin_unlock_bh(&hslot->lock);
242 		} while (++first != last);
243 		goto fail;
244 	} else {
245 		hslot = udp_hashslot(udptable, net, snum);
246 		spin_lock_bh(&hslot->lock);
247 		if (hslot->count > 10) {
248 			int exist;
249 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
250 
251 			slot2          &= udptable->mask;
252 			hash2_nulladdr &= udptable->mask;
253 
254 			hslot2 = udp_hashslot2(udptable, slot2);
255 			if (hslot->count < hslot2->count)
256 				goto scan_primary_hash;
257 
258 			exist = udp_lib_lport_inuse2(net, snum, hslot2,
259 						     sk, saddr_comp);
260 			if (!exist && (hash2_nulladdr != slot2)) {
261 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
262 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
263 							     sk, saddr_comp);
264 			}
265 			if (exist)
266 				goto fail_unlock;
267 			else
268 				goto found;
269 		}
270 scan_primary_hash:
271 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk,
272 					saddr_comp, 0))
273 			goto fail_unlock;
274 	}
275 found:
276 	inet_sk(sk)->inet_num = snum;
277 	udp_sk(sk)->udp_port_hash = snum;
278 	udp_sk(sk)->udp_portaddr_hash ^= snum;
279 	if (sk_unhashed(sk)) {
280 		sk_nulls_add_node_rcu(sk, &hslot->head);
281 		hslot->count++;
282 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
283 
284 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
285 		spin_lock(&hslot2->lock);
286 		hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
287 					 &hslot2->head);
288 		hslot2->count++;
289 		spin_unlock(&hslot2->lock);
290 	}
291 	error = 0;
292 fail_unlock:
293 	spin_unlock_bh(&hslot->lock);
294 fail:
295 	return error;
296 }
297 EXPORT_SYMBOL(udp_lib_get_port);
298 
299 static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
300 {
301 	struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
302 
303 	return 	(!ipv6_only_sock(sk2)  &&
304 		 (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr ||
305 		   inet1->inet_rcv_saddr == inet2->inet_rcv_saddr));
306 }
307 
308 static unsigned int udp4_portaddr_hash(struct net *net, __be32 saddr,
309 				       unsigned int port)
310 {
311 	return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
312 }
313 
314 int udp_v4_get_port(struct sock *sk, unsigned short snum)
315 {
316 	unsigned int hash2_nulladdr =
317 		udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
318 	unsigned int hash2_partial =
319 		udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
320 
321 	/* precompute partial secondary hash */
322 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
323 	return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr);
324 }
325 
326 static inline int compute_score(struct sock *sk, struct net *net, __be32 saddr,
327 			 unsigned short hnum,
328 			 __be16 sport, __be32 daddr, __be16 dport, int dif)
329 {
330 	int score = -1;
331 
332 	if (net_eq(sock_net(sk), net) && udp_sk(sk)->udp_port_hash == hnum &&
333 			!ipv6_only_sock(sk)) {
334 		struct inet_sock *inet = inet_sk(sk);
335 
336 		score = (sk->sk_family == PF_INET ? 1 : 0);
337 		if (inet->inet_rcv_saddr) {
338 			if (inet->inet_rcv_saddr != daddr)
339 				return -1;
340 			score += 2;
341 		}
342 		if (inet->inet_daddr) {
343 			if (inet->inet_daddr != saddr)
344 				return -1;
345 			score += 2;
346 		}
347 		if (inet->inet_dport) {
348 			if (inet->inet_dport != sport)
349 				return -1;
350 			score += 2;
351 		}
352 		if (sk->sk_bound_dev_if) {
353 			if (sk->sk_bound_dev_if != dif)
354 				return -1;
355 			score += 2;
356 		}
357 	}
358 	return score;
359 }
360 
361 /*
362  * In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num)
363  */
364 #define SCORE2_MAX (1 + 2 + 2 + 2)
365 static inline int compute_score2(struct sock *sk, struct net *net,
366 				 __be32 saddr, __be16 sport,
367 				 __be32 daddr, unsigned int hnum, int dif)
368 {
369 	int score = -1;
370 
371 	if (net_eq(sock_net(sk), net) && !ipv6_only_sock(sk)) {
372 		struct inet_sock *inet = inet_sk(sk);
373 
374 		if (inet->inet_rcv_saddr != daddr)
375 			return -1;
376 		if (inet->inet_num != hnum)
377 			return -1;
378 
379 		score = (sk->sk_family == PF_INET ? 1 : 0);
380 		if (inet->inet_daddr) {
381 			if (inet->inet_daddr != saddr)
382 				return -1;
383 			score += 2;
384 		}
385 		if (inet->inet_dport) {
386 			if (inet->inet_dport != sport)
387 				return -1;
388 			score += 2;
389 		}
390 		if (sk->sk_bound_dev_if) {
391 			if (sk->sk_bound_dev_if != dif)
392 				return -1;
393 			score += 2;
394 		}
395 	}
396 	return score;
397 }
398 
399 
400 /* called with read_rcu_lock() */
401 static struct sock *udp4_lib_lookup2(struct net *net,
402 		__be32 saddr, __be16 sport,
403 		__be32 daddr, unsigned int hnum, int dif,
404 		struct udp_hslot *hslot2, unsigned int slot2)
405 {
406 	struct sock *sk, *result;
407 	struct hlist_nulls_node *node;
408 	int score, badness;
409 
410 begin:
411 	result = NULL;
412 	badness = -1;
413 	udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
414 		score = compute_score2(sk, net, saddr, sport,
415 				      daddr, hnum, dif);
416 		if (score > badness) {
417 			result = sk;
418 			badness = score;
419 			if (score == SCORE2_MAX)
420 				goto exact_match;
421 		}
422 	}
423 	/*
424 	 * if the nulls value we got at the end of this lookup is
425 	 * not the expected one, we must restart lookup.
426 	 * We probably met an item that was moved to another chain.
427 	 */
428 	if (get_nulls_value(node) != slot2)
429 		goto begin;
430 
431 	if (result) {
432 exact_match:
433 		if (unlikely(!atomic_inc_not_zero(&result->sk_refcnt)))
434 			result = NULL;
435 		else if (unlikely(compute_score2(result, net, saddr, sport,
436 				  daddr, hnum, dif) < badness)) {
437 			sock_put(result);
438 			goto begin;
439 		}
440 	}
441 	return result;
442 }
443 
444 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
445  * harder than this. -DaveM
446  */
447 static struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
448 		__be16 sport, __be32 daddr, __be16 dport,
449 		int dif, struct udp_table *udptable)
450 {
451 	struct sock *sk, *result;
452 	struct hlist_nulls_node *node;
453 	unsigned short hnum = ntohs(dport);
454 	unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
455 	struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
456 	int score, badness;
457 
458 	rcu_read_lock();
459 	if (hslot->count > 10) {
460 		hash2 = udp4_portaddr_hash(net, daddr, hnum);
461 		slot2 = hash2 & udptable->mask;
462 		hslot2 = &udptable->hash2[slot2];
463 		if (hslot->count < hslot2->count)
464 			goto begin;
465 
466 		result = udp4_lib_lookup2(net, saddr, sport,
467 					  daddr, hnum, dif,
468 					  hslot2, slot2);
469 		if (!result) {
470 			hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
471 			slot2 = hash2 & udptable->mask;
472 			hslot2 = &udptable->hash2[slot2];
473 			if (hslot->count < hslot2->count)
474 				goto begin;
475 
476 			result = udp4_lib_lookup2(net, saddr, sport,
477 						  htonl(INADDR_ANY), hnum, dif,
478 						  hslot2, slot2);
479 		}
480 		rcu_read_unlock();
481 		return result;
482 	}
483 begin:
484 	result = NULL;
485 	badness = -1;
486 	sk_nulls_for_each_rcu(sk, node, &hslot->head) {
487 		score = compute_score(sk, net, saddr, hnum, sport,
488 				      daddr, dport, dif);
489 		if (score > badness) {
490 			result = sk;
491 			badness = score;
492 		}
493 	}
494 	/*
495 	 * if the nulls value we got at the end of this lookup is
496 	 * not the expected one, we must restart lookup.
497 	 * We probably met an item that was moved to another chain.
498 	 */
499 	if (get_nulls_value(node) != slot)
500 		goto begin;
501 
502 	if (result) {
503 		if (unlikely(!atomic_inc_not_zero(&result->sk_refcnt)))
504 			result = NULL;
505 		else if (unlikely(compute_score(result, net, saddr, hnum, sport,
506 				  daddr, dport, dif) < badness)) {
507 			sock_put(result);
508 			goto begin;
509 		}
510 	}
511 	rcu_read_unlock();
512 	return result;
513 }
514 
515 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
516 						 __be16 sport, __be16 dport,
517 						 struct udp_table *udptable)
518 {
519 	struct sock *sk;
520 	const struct iphdr *iph = ip_hdr(skb);
521 
522 	if (unlikely(sk = skb_steal_sock(skb)))
523 		return sk;
524 	else
525 		return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport,
526 					 iph->daddr, dport, inet_iif(skb),
527 					 udptable);
528 }
529 
530 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
531 			     __be32 daddr, __be16 dport, int dif)
532 {
533 	return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif, &udp_table);
534 }
535 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
536 
537 static inline struct sock *udp_v4_mcast_next(struct net *net, struct sock *sk,
538 					     __be16 loc_port, __be32 loc_addr,
539 					     __be16 rmt_port, __be32 rmt_addr,
540 					     int dif)
541 {
542 	struct hlist_nulls_node *node;
543 	struct sock *s = sk;
544 	unsigned short hnum = ntohs(loc_port);
545 
546 	sk_nulls_for_each_from(s, node) {
547 		struct inet_sock *inet = inet_sk(s);
548 
549 		if (!net_eq(sock_net(s), net) ||
550 		    udp_sk(s)->udp_port_hash != hnum ||
551 		    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
552 		    (inet->inet_dport != rmt_port && inet->inet_dport) ||
553 		    (inet->inet_rcv_saddr &&
554 		     inet->inet_rcv_saddr != loc_addr) ||
555 		    ipv6_only_sock(s) ||
556 		    (s->sk_bound_dev_if && s->sk_bound_dev_if != dif))
557 			continue;
558 		if (!ip_mc_sf_allow(s, loc_addr, rmt_addr, dif))
559 			continue;
560 		goto found;
561 	}
562 	s = NULL;
563 found:
564 	return s;
565 }
566 
567 /*
568  * This routine is called by the ICMP module when it gets some
569  * sort of error condition.  If err < 0 then the socket should
570  * be closed and the error returned to the user.  If err > 0
571  * it's just the icmp type << 8 | icmp code.
572  * Header points to the ip header of the error packet. We move
573  * on past this. Then (as it used to claim before adjustment)
574  * header points to the first 8 bytes of the udp header.  We need
575  * to find the appropriate port.
576  */
577 
578 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
579 {
580 	struct inet_sock *inet;
581 	struct iphdr *iph = (struct iphdr *)skb->data;
582 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
583 	const int type = icmp_hdr(skb)->type;
584 	const int code = icmp_hdr(skb)->code;
585 	struct sock *sk;
586 	int harderr;
587 	int err;
588 	struct net *net = dev_net(skb->dev);
589 
590 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
591 			iph->saddr, uh->source, skb->dev->ifindex, udptable);
592 	if (sk == NULL) {
593 		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
594 		return;	/* No socket for error */
595 	}
596 
597 	err = 0;
598 	harderr = 0;
599 	inet = inet_sk(sk);
600 
601 	switch (type) {
602 	default:
603 	case ICMP_TIME_EXCEEDED:
604 		err = EHOSTUNREACH;
605 		break;
606 	case ICMP_SOURCE_QUENCH:
607 		goto out;
608 	case ICMP_PARAMETERPROB:
609 		err = EPROTO;
610 		harderr = 1;
611 		break;
612 	case ICMP_DEST_UNREACH:
613 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
614 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
615 				err = EMSGSIZE;
616 				harderr = 1;
617 				break;
618 			}
619 			goto out;
620 		}
621 		err = EHOSTUNREACH;
622 		if (code <= NR_ICMP_UNREACH) {
623 			harderr = icmp_err_convert[code].fatal;
624 			err = icmp_err_convert[code].errno;
625 		}
626 		break;
627 	}
628 
629 	/*
630 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
631 	 *	4.1.3.3.
632 	 */
633 	if (!inet->recverr) {
634 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
635 			goto out;
636 	} else
637 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
638 
639 	sk->sk_err = err;
640 	sk->sk_error_report(sk);
641 out:
642 	sock_put(sk);
643 }
644 
645 void udp_err(struct sk_buff *skb, u32 info)
646 {
647 	__udp4_lib_err(skb, info, &udp_table);
648 }
649 
650 /*
651  * Throw away all pending data and cancel the corking. Socket is locked.
652  */
653 void udp_flush_pending_frames(struct sock *sk)
654 {
655 	struct udp_sock *up = udp_sk(sk);
656 
657 	if (up->pending) {
658 		up->len = 0;
659 		up->pending = 0;
660 		ip_flush_pending_frames(sk);
661 	}
662 }
663 EXPORT_SYMBOL(udp_flush_pending_frames);
664 
665 /**
666  * 	udp4_hwcsum_outgoing  -  handle outgoing HW checksumming
667  * 	@sk: 	socket we are sending on
668  * 	@skb: 	sk_buff containing the filled-in UDP header
669  * 	        (checksum field must be zeroed out)
670  */
671 static void udp4_hwcsum_outgoing(struct sock *sk, struct sk_buff *skb,
672 				 __be32 src, __be32 dst, int len)
673 {
674 	unsigned int offset;
675 	struct udphdr *uh = udp_hdr(skb);
676 	__wsum csum = 0;
677 
678 	if (skb_queue_len(&sk->sk_write_queue) == 1) {
679 		/*
680 		 * Only one fragment on the socket.
681 		 */
682 		skb->csum_start = skb_transport_header(skb) - skb->head;
683 		skb->csum_offset = offsetof(struct udphdr, check);
684 		uh->check = ~csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, 0);
685 	} else {
686 		/*
687 		 * HW-checksum won't work as there are two or more
688 		 * fragments on the socket so that all csums of sk_buffs
689 		 * should be together
690 		 */
691 		offset = skb_transport_offset(skb);
692 		skb->csum = skb_checksum(skb, offset, skb->len - offset, 0);
693 
694 		skb->ip_summed = CHECKSUM_NONE;
695 
696 		skb_queue_walk(&sk->sk_write_queue, skb) {
697 			csum = csum_add(csum, skb->csum);
698 		}
699 
700 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
701 		if (uh->check == 0)
702 			uh->check = CSUM_MANGLED_0;
703 	}
704 }
705 
706 /*
707  * Push out all pending data as one UDP datagram. Socket is locked.
708  */
709 static int udp_push_pending_frames(struct sock *sk)
710 {
711 	struct udp_sock  *up = udp_sk(sk);
712 	struct inet_sock *inet = inet_sk(sk);
713 	struct flowi *fl = &inet->cork.fl;
714 	struct sk_buff *skb;
715 	struct udphdr *uh;
716 	int err = 0;
717 	int is_udplite = IS_UDPLITE(sk);
718 	__wsum csum = 0;
719 
720 	/* Grab the skbuff where UDP header space exists. */
721 	if ((skb = skb_peek(&sk->sk_write_queue)) == NULL)
722 		goto out;
723 
724 	/*
725 	 * Create a UDP header
726 	 */
727 	uh = udp_hdr(skb);
728 	uh->source = fl->fl_ip_sport;
729 	uh->dest = fl->fl_ip_dport;
730 	uh->len = htons(up->len);
731 	uh->check = 0;
732 
733 	if (is_udplite)  				 /*     UDP-Lite      */
734 		csum  = udplite_csum_outgoing(sk, skb);
735 
736 	else if (sk->sk_no_check == UDP_CSUM_NOXMIT) {   /* UDP csum disabled */
737 
738 		skb->ip_summed = CHECKSUM_NONE;
739 		goto send;
740 
741 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
742 
743 		udp4_hwcsum_outgoing(sk, skb, fl->fl4_src, fl->fl4_dst, up->len);
744 		goto send;
745 
746 	} else						 /*   `normal' UDP    */
747 		csum = udp_csum_outgoing(sk, skb);
748 
749 	/* add protocol-dependent pseudo-header */
750 	uh->check = csum_tcpudp_magic(fl->fl4_src, fl->fl4_dst, up->len,
751 				      sk->sk_protocol, csum);
752 	if (uh->check == 0)
753 		uh->check = CSUM_MANGLED_0;
754 
755 send:
756 	err = ip_push_pending_frames(sk);
757 	if (err) {
758 		if (err == -ENOBUFS && !inet->recverr) {
759 			UDP_INC_STATS_USER(sock_net(sk),
760 					   UDP_MIB_SNDBUFERRORS, is_udplite);
761 			err = 0;
762 		}
763 	} else
764 		UDP_INC_STATS_USER(sock_net(sk),
765 				   UDP_MIB_OUTDATAGRAMS, is_udplite);
766 out:
767 	up->len = 0;
768 	up->pending = 0;
769 	return err;
770 }
771 
772 int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
773 		size_t len)
774 {
775 	struct inet_sock *inet = inet_sk(sk);
776 	struct udp_sock *up = udp_sk(sk);
777 	int ulen = len;
778 	struct ipcm_cookie ipc;
779 	struct rtable *rt = NULL;
780 	int free = 0;
781 	int connected = 0;
782 	__be32 daddr, faddr, saddr;
783 	__be16 dport;
784 	u8  tos;
785 	int err, is_udplite = IS_UDPLITE(sk);
786 	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
787 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
788 
789 	if (len > 0xFFFF)
790 		return -EMSGSIZE;
791 
792 	/*
793 	 *	Check the flags.
794 	 */
795 
796 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
797 		return -EOPNOTSUPP;
798 
799 	ipc.opt = NULL;
800 	ipc.shtx.flags = 0;
801 
802 	if (up->pending) {
803 		/*
804 		 * There are pending frames.
805 		 * The socket lock must be held while it's corked.
806 		 */
807 		lock_sock(sk);
808 		if (likely(up->pending)) {
809 			if (unlikely(up->pending != AF_INET)) {
810 				release_sock(sk);
811 				return -EINVAL;
812 			}
813 			goto do_append_data;
814 		}
815 		release_sock(sk);
816 	}
817 	ulen += sizeof(struct udphdr);
818 
819 	/*
820 	 *	Get and verify the address.
821 	 */
822 	if (msg->msg_name) {
823 		struct sockaddr_in * usin = (struct sockaddr_in *)msg->msg_name;
824 		if (msg->msg_namelen < sizeof(*usin))
825 			return -EINVAL;
826 		if (usin->sin_family != AF_INET) {
827 			if (usin->sin_family != AF_UNSPEC)
828 				return -EAFNOSUPPORT;
829 		}
830 
831 		daddr = usin->sin_addr.s_addr;
832 		dport = usin->sin_port;
833 		if (dport == 0)
834 			return -EINVAL;
835 	} else {
836 		if (sk->sk_state != TCP_ESTABLISHED)
837 			return -EDESTADDRREQ;
838 		daddr = inet->inet_daddr;
839 		dport = inet->inet_dport;
840 		/* Open fast path for connected socket.
841 		   Route will not be used, if at least one option is set.
842 		 */
843 		connected = 1;
844 	}
845 	ipc.addr = inet->inet_saddr;
846 
847 	ipc.oif = sk->sk_bound_dev_if;
848 	err = sock_tx_timestamp(msg, sk, &ipc.shtx);
849 	if (err)
850 		return err;
851 	if (msg->msg_controllen) {
852 		err = ip_cmsg_send(sock_net(sk), msg, &ipc);
853 		if (err)
854 			return err;
855 		if (ipc.opt)
856 			free = 1;
857 		connected = 0;
858 	}
859 	if (!ipc.opt)
860 		ipc.opt = inet->opt;
861 
862 	saddr = ipc.addr;
863 	ipc.addr = faddr = daddr;
864 
865 	if (ipc.opt && ipc.opt->srr) {
866 		if (!daddr)
867 			return -EINVAL;
868 		faddr = ipc.opt->faddr;
869 		connected = 0;
870 	}
871 	tos = RT_TOS(inet->tos);
872 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
873 	    (msg->msg_flags & MSG_DONTROUTE) ||
874 	    (ipc.opt && ipc.opt->is_strictroute)) {
875 		tos |= RTO_ONLINK;
876 		connected = 0;
877 	}
878 
879 	if (ipv4_is_multicast(daddr)) {
880 		if (!ipc.oif)
881 			ipc.oif = inet->mc_index;
882 		if (!saddr)
883 			saddr = inet->mc_addr;
884 		connected = 0;
885 	}
886 
887 	if (connected)
888 		rt = (struct rtable *)sk_dst_check(sk, 0);
889 
890 	if (rt == NULL) {
891 		struct flowi fl = { .oif = ipc.oif,
892 				    .mark = sk->sk_mark,
893 				    .nl_u = { .ip4_u =
894 					      { .daddr = faddr,
895 						.saddr = saddr,
896 						.tos = tos } },
897 				    .proto = sk->sk_protocol,
898 				    .flags = inet_sk_flowi_flags(sk),
899 				    .uli_u = { .ports =
900 					       { .sport = inet->inet_sport,
901 						 .dport = dport } } };
902 		struct net *net = sock_net(sk);
903 
904 		security_sk_classify_flow(sk, &fl);
905 		err = ip_route_output_flow(net, &rt, &fl, sk, 1);
906 		if (err) {
907 			if (err == -ENETUNREACH)
908 				IP_INC_STATS_BH(net, IPSTATS_MIB_OUTNOROUTES);
909 			goto out;
910 		}
911 
912 		err = -EACCES;
913 		if ((rt->rt_flags & RTCF_BROADCAST) &&
914 		    !sock_flag(sk, SOCK_BROADCAST))
915 			goto out;
916 		if (connected)
917 			sk_dst_set(sk, dst_clone(&rt->dst));
918 	}
919 
920 	if (msg->msg_flags&MSG_CONFIRM)
921 		goto do_confirm;
922 back_from_confirm:
923 
924 	saddr = rt->rt_src;
925 	if (!ipc.addr)
926 		daddr = ipc.addr = rt->rt_dst;
927 
928 	lock_sock(sk);
929 	if (unlikely(up->pending)) {
930 		/* The socket is already corked while preparing it. */
931 		/* ... which is an evident application bug. --ANK */
932 		release_sock(sk);
933 
934 		LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 2\n");
935 		err = -EINVAL;
936 		goto out;
937 	}
938 	/*
939 	 *	Now cork the socket to pend data.
940 	 */
941 	inet->cork.fl.fl4_dst = daddr;
942 	inet->cork.fl.fl_ip_dport = dport;
943 	inet->cork.fl.fl4_src = saddr;
944 	inet->cork.fl.fl_ip_sport = inet->inet_sport;
945 	up->pending = AF_INET;
946 
947 do_append_data:
948 	up->len += ulen;
949 	getfrag  =  is_udplite ?  udplite_getfrag : ip_generic_getfrag;
950 	err = ip_append_data(sk, getfrag, msg->msg_iov, ulen,
951 			sizeof(struct udphdr), &ipc, &rt,
952 			corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
953 	if (err)
954 		udp_flush_pending_frames(sk);
955 	else if (!corkreq)
956 		err = udp_push_pending_frames(sk);
957 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
958 		up->pending = 0;
959 	release_sock(sk);
960 
961 out:
962 	ip_rt_put(rt);
963 	if (free)
964 		kfree(ipc.opt);
965 	if (!err)
966 		return len;
967 	/*
968 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
969 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
970 	 * we don't have a good statistic (IpOutDiscards but it can be too many
971 	 * things).  We could add another new stat but at least for now that
972 	 * seems like overkill.
973 	 */
974 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
975 		UDP_INC_STATS_USER(sock_net(sk),
976 				UDP_MIB_SNDBUFERRORS, is_udplite);
977 	}
978 	return err;
979 
980 do_confirm:
981 	dst_confirm(&rt->dst);
982 	if (!(msg->msg_flags&MSG_PROBE) || len)
983 		goto back_from_confirm;
984 	err = 0;
985 	goto out;
986 }
987 EXPORT_SYMBOL(udp_sendmsg);
988 
989 int udp_sendpage(struct sock *sk, struct page *page, int offset,
990 		 size_t size, int flags)
991 {
992 	struct udp_sock *up = udp_sk(sk);
993 	int ret;
994 
995 	if (!up->pending) {
996 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
997 
998 		/* Call udp_sendmsg to specify destination address which
999 		 * sendpage interface can't pass.
1000 		 * This will succeed only when the socket is connected.
1001 		 */
1002 		ret = udp_sendmsg(NULL, sk, &msg, 0);
1003 		if (ret < 0)
1004 			return ret;
1005 	}
1006 
1007 	lock_sock(sk);
1008 
1009 	if (unlikely(!up->pending)) {
1010 		release_sock(sk);
1011 
1012 		LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 3\n");
1013 		return -EINVAL;
1014 	}
1015 
1016 	ret = ip_append_page(sk, page, offset, size, flags);
1017 	if (ret == -EOPNOTSUPP) {
1018 		release_sock(sk);
1019 		return sock_no_sendpage(sk->sk_socket, page, offset,
1020 					size, flags);
1021 	}
1022 	if (ret < 0) {
1023 		udp_flush_pending_frames(sk);
1024 		goto out;
1025 	}
1026 
1027 	up->len += size;
1028 	if (!(up->corkflag || (flags&MSG_MORE)))
1029 		ret = udp_push_pending_frames(sk);
1030 	if (!ret)
1031 		ret = size;
1032 out:
1033 	release_sock(sk);
1034 	return ret;
1035 }
1036 
1037 
1038 /**
1039  *	first_packet_length	- return length of first packet in receive queue
1040  *	@sk: socket
1041  *
1042  *	Drops all bad checksum frames, until a valid one is found.
1043  *	Returns the length of found skb, or 0 if none is found.
1044  */
1045 static unsigned int first_packet_length(struct sock *sk)
1046 {
1047 	struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue;
1048 	struct sk_buff *skb;
1049 	unsigned int res;
1050 
1051 	__skb_queue_head_init(&list_kill);
1052 
1053 	spin_lock_bh(&rcvq->lock);
1054 	while ((skb = skb_peek(rcvq)) != NULL &&
1055 		udp_lib_checksum_complete(skb)) {
1056 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1057 				 IS_UDPLITE(sk));
1058 		atomic_inc(&sk->sk_drops);
1059 		__skb_unlink(skb, rcvq);
1060 		__skb_queue_tail(&list_kill, skb);
1061 	}
1062 	res = skb ? skb->len : 0;
1063 	spin_unlock_bh(&rcvq->lock);
1064 
1065 	if (!skb_queue_empty(&list_kill)) {
1066 		bool slow = lock_sock_fast(sk);
1067 
1068 		__skb_queue_purge(&list_kill);
1069 		sk_mem_reclaim_partial(sk);
1070 		unlock_sock_fast(sk, slow);
1071 	}
1072 	return res;
1073 }
1074 
1075 /*
1076  *	IOCTL requests applicable to the UDP protocol
1077  */
1078 
1079 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1080 {
1081 	switch (cmd) {
1082 	case SIOCOUTQ:
1083 	{
1084 		int amount = sk_wmem_alloc_get(sk);
1085 
1086 		return put_user(amount, (int __user *)arg);
1087 	}
1088 
1089 	case SIOCINQ:
1090 	{
1091 		unsigned int amount = first_packet_length(sk);
1092 
1093 		if (amount)
1094 			/*
1095 			 * We will only return the amount
1096 			 * of this packet since that is all
1097 			 * that will be read.
1098 			 */
1099 			amount -= sizeof(struct udphdr);
1100 
1101 		return put_user(amount, (int __user *)arg);
1102 	}
1103 
1104 	default:
1105 		return -ENOIOCTLCMD;
1106 	}
1107 
1108 	return 0;
1109 }
1110 EXPORT_SYMBOL(udp_ioctl);
1111 
1112 /*
1113  * 	This should be easy, if there is something there we
1114  * 	return it, otherwise we block.
1115  */
1116 
1117 int udp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1118 		size_t len, int noblock, int flags, int *addr_len)
1119 {
1120 	struct inet_sock *inet = inet_sk(sk);
1121 	struct sockaddr_in *sin = (struct sockaddr_in *)msg->msg_name;
1122 	struct sk_buff *skb;
1123 	unsigned int ulen;
1124 	int peeked;
1125 	int err;
1126 	int is_udplite = IS_UDPLITE(sk);
1127 	bool slow;
1128 
1129 	/*
1130 	 *	Check any passed addresses
1131 	 */
1132 	if (addr_len)
1133 		*addr_len = sizeof(*sin);
1134 
1135 	if (flags & MSG_ERRQUEUE)
1136 		return ip_recv_error(sk, msg, len);
1137 
1138 try_again:
1139 	skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
1140 				  &peeked, &err);
1141 	if (!skb)
1142 		goto out;
1143 
1144 	ulen = skb->len - sizeof(struct udphdr);
1145 	if (len > ulen)
1146 		len = ulen;
1147 	else if (len < ulen)
1148 		msg->msg_flags |= MSG_TRUNC;
1149 
1150 	/*
1151 	 * If checksum is needed at all, try to do it while copying the
1152 	 * data.  If the data is truncated, or if we only want a partial
1153 	 * coverage checksum (UDP-Lite), do it before the copy.
1154 	 */
1155 
1156 	if (len < ulen || UDP_SKB_CB(skb)->partial_cov) {
1157 		if (udp_lib_checksum_complete(skb))
1158 			goto csum_copy_err;
1159 	}
1160 
1161 	if (skb_csum_unnecessary(skb))
1162 		err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr),
1163 					      msg->msg_iov, len);
1164 	else {
1165 		err = skb_copy_and_csum_datagram_iovec(skb,
1166 						       sizeof(struct udphdr),
1167 						       msg->msg_iov);
1168 
1169 		if (err == -EINVAL)
1170 			goto csum_copy_err;
1171 	}
1172 
1173 	if (err)
1174 		goto out_free;
1175 
1176 	if (!peeked)
1177 		UDP_INC_STATS_USER(sock_net(sk),
1178 				UDP_MIB_INDATAGRAMS, is_udplite);
1179 
1180 	sock_recv_ts_and_drops(msg, sk, skb);
1181 
1182 	/* Copy the address. */
1183 	if (sin) {
1184 		sin->sin_family = AF_INET;
1185 		sin->sin_port = udp_hdr(skb)->source;
1186 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1187 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1188 	}
1189 	if (inet->cmsg_flags)
1190 		ip_cmsg_recv(msg, skb);
1191 
1192 	err = len;
1193 	if (flags & MSG_TRUNC)
1194 		err = ulen;
1195 
1196 out_free:
1197 	skb_free_datagram_locked(sk, skb);
1198 out:
1199 	return err;
1200 
1201 csum_copy_err:
1202 	slow = lock_sock_fast(sk);
1203 	if (!skb_kill_datagram(sk, skb, flags))
1204 		UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1205 	unlock_sock_fast(sk, slow);
1206 
1207 	if (noblock)
1208 		return -EAGAIN;
1209 	goto try_again;
1210 }
1211 
1212 
1213 int udp_disconnect(struct sock *sk, int flags)
1214 {
1215 	struct inet_sock *inet = inet_sk(sk);
1216 	/*
1217 	 *	1003.1g - break association.
1218 	 */
1219 
1220 	sk->sk_state = TCP_CLOSE;
1221 	inet->inet_daddr = 0;
1222 	inet->inet_dport = 0;
1223 	sock_rps_save_rxhash(sk, 0);
1224 	sk->sk_bound_dev_if = 0;
1225 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1226 		inet_reset_saddr(sk);
1227 
1228 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1229 		sk->sk_prot->unhash(sk);
1230 		inet->inet_sport = 0;
1231 	}
1232 	sk_dst_reset(sk);
1233 	return 0;
1234 }
1235 EXPORT_SYMBOL(udp_disconnect);
1236 
1237 void udp_lib_unhash(struct sock *sk)
1238 {
1239 	if (sk_hashed(sk)) {
1240 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1241 		struct udp_hslot *hslot, *hslot2;
1242 
1243 		hslot  = udp_hashslot(udptable, sock_net(sk),
1244 				      udp_sk(sk)->udp_port_hash);
1245 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1246 
1247 		spin_lock_bh(&hslot->lock);
1248 		if (sk_nulls_del_node_init_rcu(sk)) {
1249 			hslot->count--;
1250 			inet_sk(sk)->inet_num = 0;
1251 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1252 
1253 			spin_lock(&hslot2->lock);
1254 			hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1255 			hslot2->count--;
1256 			spin_unlock(&hslot2->lock);
1257 		}
1258 		spin_unlock_bh(&hslot->lock);
1259 	}
1260 }
1261 EXPORT_SYMBOL(udp_lib_unhash);
1262 
1263 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1264 {
1265 	int rc;
1266 
1267 	if (inet_sk(sk)->inet_daddr)
1268 		sock_rps_save_rxhash(sk, skb->rxhash);
1269 
1270 	rc = ip_queue_rcv_skb(sk, skb);
1271 	if (rc < 0) {
1272 		int is_udplite = IS_UDPLITE(sk);
1273 
1274 		/* Note that an ENOMEM error is charged twice */
1275 		if (rc == -ENOMEM)
1276 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1277 					 is_udplite);
1278 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1279 		kfree_skb(skb);
1280 		return -1;
1281 	}
1282 
1283 	return 0;
1284 
1285 }
1286 
1287 /* returns:
1288  *  -1: error
1289  *   0: success
1290  *  >0: "udp encap" protocol resubmission
1291  *
1292  * Note that in the success and error cases, the skb is assumed to
1293  * have either been requeued or freed.
1294  */
1295 int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1296 {
1297 	struct udp_sock *up = udp_sk(sk);
1298 	int rc;
1299 	int is_udplite = IS_UDPLITE(sk);
1300 
1301 	/*
1302 	 *	Charge it to the socket, dropping if the queue is full.
1303 	 */
1304 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1305 		goto drop;
1306 	nf_reset(skb);
1307 
1308 	if (up->encap_type) {
1309 		/*
1310 		 * This is an encapsulation socket so pass the skb to
1311 		 * the socket's udp_encap_rcv() hook. Otherwise, just
1312 		 * fall through and pass this up the UDP socket.
1313 		 * up->encap_rcv() returns the following value:
1314 		 * =0 if skb was successfully passed to the encap
1315 		 *    handler or was discarded by it.
1316 		 * >0 if skb should be passed on to UDP.
1317 		 * <0 if skb should be resubmitted as proto -N
1318 		 */
1319 
1320 		/* if we're overly short, let UDP handle it */
1321 		if (skb->len > sizeof(struct udphdr) &&
1322 		    up->encap_rcv != NULL) {
1323 			int ret;
1324 
1325 			ret = (*up->encap_rcv)(sk, skb);
1326 			if (ret <= 0) {
1327 				UDP_INC_STATS_BH(sock_net(sk),
1328 						 UDP_MIB_INDATAGRAMS,
1329 						 is_udplite);
1330 				return -ret;
1331 			}
1332 		}
1333 
1334 		/* FALLTHROUGH -- it's a UDP Packet */
1335 	}
1336 
1337 	/*
1338 	 * 	UDP-Lite specific tests, ignored on UDP sockets
1339 	 */
1340 	if ((is_udplite & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
1341 
1342 		/*
1343 		 * MIB statistics other than incrementing the error count are
1344 		 * disabled for the following two types of errors: these depend
1345 		 * on the application settings, not on the functioning of the
1346 		 * protocol stack as such.
1347 		 *
1348 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
1349 		 * way ... to ... at least let the receiving application block
1350 		 * delivery of packets with coverage values less than a value
1351 		 * provided by the application."
1352 		 */
1353 		if (up->pcrlen == 0) {          /* full coverage was set  */
1354 			LIMIT_NETDEBUG(KERN_WARNING "UDPLITE: partial coverage "
1355 				"%d while full coverage %d requested\n",
1356 				UDP_SKB_CB(skb)->cscov, skb->len);
1357 			goto drop;
1358 		}
1359 		/* The next case involves violating the min. coverage requested
1360 		 * by the receiver. This is subtle: if receiver wants x and x is
1361 		 * greater than the buffersize/MTU then receiver will complain
1362 		 * that it wants x while sender emits packets of smaller size y.
1363 		 * Therefore the above ...()->partial_cov statement is essential.
1364 		 */
1365 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
1366 			LIMIT_NETDEBUG(KERN_WARNING
1367 				"UDPLITE: coverage %d too small, need min %d\n",
1368 				UDP_SKB_CB(skb)->cscov, up->pcrlen);
1369 			goto drop;
1370 		}
1371 	}
1372 
1373 	if (sk->sk_filter) {
1374 		if (udp_lib_checksum_complete(skb))
1375 			goto drop;
1376 	}
1377 
1378 
1379 	if (sk_rcvqueues_full(sk, skb))
1380 		goto drop;
1381 
1382 	rc = 0;
1383 
1384 	bh_lock_sock(sk);
1385 	if (!sock_owned_by_user(sk))
1386 		rc = __udp_queue_rcv_skb(sk, skb);
1387 	else if (sk_add_backlog(sk, skb)) {
1388 		bh_unlock_sock(sk);
1389 		goto drop;
1390 	}
1391 	bh_unlock_sock(sk);
1392 
1393 	return rc;
1394 
1395 drop:
1396 	UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1397 	atomic_inc(&sk->sk_drops);
1398 	kfree_skb(skb);
1399 	return -1;
1400 }
1401 
1402 
1403 static void flush_stack(struct sock **stack, unsigned int count,
1404 			struct sk_buff *skb, unsigned int final)
1405 {
1406 	unsigned int i;
1407 	struct sk_buff *skb1 = NULL;
1408 	struct sock *sk;
1409 
1410 	for (i = 0; i < count; i++) {
1411 		sk = stack[i];
1412 		if (likely(skb1 == NULL))
1413 			skb1 = (i == final) ? skb : skb_clone(skb, GFP_ATOMIC);
1414 
1415 		if (!skb1) {
1416 			atomic_inc(&sk->sk_drops);
1417 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1418 					 IS_UDPLITE(sk));
1419 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1420 					 IS_UDPLITE(sk));
1421 		}
1422 
1423 		if (skb1 && udp_queue_rcv_skb(sk, skb1) <= 0)
1424 			skb1 = NULL;
1425 	}
1426 	if (unlikely(skb1))
1427 		kfree_skb(skb1);
1428 }
1429 
1430 /*
1431  *	Multicasts and broadcasts go to each listener.
1432  *
1433  *	Note: called only from the BH handler context.
1434  */
1435 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1436 				    struct udphdr  *uh,
1437 				    __be32 saddr, __be32 daddr,
1438 				    struct udp_table *udptable)
1439 {
1440 	struct sock *sk, *stack[256 / sizeof(struct sock *)];
1441 	struct udp_hslot *hslot = udp_hashslot(udptable, net, ntohs(uh->dest));
1442 	int dif;
1443 	unsigned int i, count = 0;
1444 
1445 	spin_lock(&hslot->lock);
1446 	sk = sk_nulls_head(&hslot->head);
1447 	dif = skb->dev->ifindex;
1448 	sk = udp_v4_mcast_next(net, sk, uh->dest, daddr, uh->source, saddr, dif);
1449 	while (sk) {
1450 		stack[count++] = sk;
1451 		sk = udp_v4_mcast_next(net, sk_nulls_next(sk), uh->dest,
1452 				       daddr, uh->source, saddr, dif);
1453 		if (unlikely(count == ARRAY_SIZE(stack))) {
1454 			if (!sk)
1455 				break;
1456 			flush_stack(stack, count, skb, ~0);
1457 			count = 0;
1458 		}
1459 	}
1460 	/*
1461 	 * before releasing chain lock, we must take a reference on sockets
1462 	 */
1463 	for (i = 0; i < count; i++)
1464 		sock_hold(stack[i]);
1465 
1466 	spin_unlock(&hslot->lock);
1467 
1468 	/*
1469 	 * do the slow work with no lock held
1470 	 */
1471 	if (count) {
1472 		flush_stack(stack, count, skb, count - 1);
1473 
1474 		for (i = 0; i < count; i++)
1475 			sock_put(stack[i]);
1476 	} else {
1477 		kfree_skb(skb);
1478 	}
1479 	return 0;
1480 }
1481 
1482 /* Initialize UDP checksum. If exited with zero value (success),
1483  * CHECKSUM_UNNECESSARY means, that no more checks are required.
1484  * Otherwise, csum completion requires chacksumming packet body,
1485  * including udp header and folding it to skb->csum.
1486  */
1487 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1488 				 int proto)
1489 {
1490 	const struct iphdr *iph;
1491 	int err;
1492 
1493 	UDP_SKB_CB(skb)->partial_cov = 0;
1494 	UDP_SKB_CB(skb)->cscov = skb->len;
1495 
1496 	if (proto == IPPROTO_UDPLITE) {
1497 		err = udplite_checksum_init(skb, uh);
1498 		if (err)
1499 			return err;
1500 	}
1501 
1502 	iph = ip_hdr(skb);
1503 	if (uh->check == 0) {
1504 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1505 	} else if (skb->ip_summed == CHECKSUM_COMPLETE) {
1506 		if (!csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
1507 				      proto, skb->csum))
1508 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1509 	}
1510 	if (!skb_csum_unnecessary(skb))
1511 		skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1512 					       skb->len, proto, 0);
1513 	/* Probably, we should checksum udp header (it should be in cache
1514 	 * in any case) and data in tiny packets (< rx copybreak).
1515 	 */
1516 
1517 	return 0;
1518 }
1519 
1520 /*
1521  *	All we need to do is get the socket, and then do a checksum.
1522  */
1523 
1524 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
1525 		   int proto)
1526 {
1527 	struct sock *sk;
1528 	struct udphdr *uh;
1529 	unsigned short ulen;
1530 	struct rtable *rt = skb_rtable(skb);
1531 	__be32 saddr, daddr;
1532 	struct net *net = dev_net(skb->dev);
1533 
1534 	/*
1535 	 *  Validate the packet.
1536 	 */
1537 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1538 		goto drop;		/* No space for header. */
1539 
1540 	uh   = udp_hdr(skb);
1541 	ulen = ntohs(uh->len);
1542 	saddr = ip_hdr(skb)->saddr;
1543 	daddr = ip_hdr(skb)->daddr;
1544 
1545 	if (ulen > skb->len)
1546 		goto short_packet;
1547 
1548 	if (proto == IPPROTO_UDP) {
1549 		/* UDP validates ulen. */
1550 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1551 			goto short_packet;
1552 		uh = udp_hdr(skb);
1553 	}
1554 
1555 	if (udp4_csum_init(skb, uh, proto))
1556 		goto csum_error;
1557 
1558 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1559 		return __udp4_lib_mcast_deliver(net, skb, uh,
1560 				saddr, daddr, udptable);
1561 
1562 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
1563 
1564 	if (sk != NULL) {
1565 		int ret = udp_queue_rcv_skb(sk, skb);
1566 		sock_put(sk);
1567 
1568 		/* a return value > 0 means to resubmit the input, but
1569 		 * it wants the return to be -protocol, or 0
1570 		 */
1571 		if (ret > 0)
1572 			return -ret;
1573 		return 0;
1574 	}
1575 
1576 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1577 		goto drop;
1578 	nf_reset(skb);
1579 
1580 	/* No socket. Drop packet silently, if checksum is wrong */
1581 	if (udp_lib_checksum_complete(skb))
1582 		goto csum_error;
1583 
1584 	UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1585 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1586 
1587 	/*
1588 	 * Hmm.  We got an UDP packet to a port to which we
1589 	 * don't wanna listen.  Ignore it.
1590 	 */
1591 	kfree_skb(skb);
1592 	return 0;
1593 
1594 short_packet:
1595 	LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
1596 		       proto == IPPROTO_UDPLITE ? "-Lite" : "",
1597 		       &saddr,
1598 		       ntohs(uh->source),
1599 		       ulen,
1600 		       skb->len,
1601 		       &daddr,
1602 		       ntohs(uh->dest));
1603 	goto drop;
1604 
1605 csum_error:
1606 	/*
1607 	 * RFC1122: OK.  Discards the bad packet silently (as far as
1608 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1609 	 */
1610 	LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
1611 		       proto == IPPROTO_UDPLITE ? "-Lite" : "",
1612 		       &saddr,
1613 		       ntohs(uh->source),
1614 		       &daddr,
1615 		       ntohs(uh->dest),
1616 		       ulen);
1617 drop:
1618 	UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1619 	kfree_skb(skb);
1620 	return 0;
1621 }
1622 
1623 int udp_rcv(struct sk_buff *skb)
1624 {
1625 	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
1626 }
1627 
1628 void udp_destroy_sock(struct sock *sk)
1629 {
1630 	bool slow = lock_sock_fast(sk);
1631 	udp_flush_pending_frames(sk);
1632 	unlock_sock_fast(sk, slow);
1633 }
1634 
1635 /*
1636  *	Socket option code for UDP
1637  */
1638 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
1639 		       char __user *optval, unsigned int optlen,
1640 		       int (*push_pending_frames)(struct sock *))
1641 {
1642 	struct udp_sock *up = udp_sk(sk);
1643 	int val;
1644 	int err = 0;
1645 	int is_udplite = IS_UDPLITE(sk);
1646 
1647 	if (optlen < sizeof(int))
1648 		return -EINVAL;
1649 
1650 	if (get_user(val, (int __user *)optval))
1651 		return -EFAULT;
1652 
1653 	switch (optname) {
1654 	case UDP_CORK:
1655 		if (val != 0) {
1656 			up->corkflag = 1;
1657 		} else {
1658 			up->corkflag = 0;
1659 			lock_sock(sk);
1660 			(*push_pending_frames)(sk);
1661 			release_sock(sk);
1662 		}
1663 		break;
1664 
1665 	case UDP_ENCAP:
1666 		switch (val) {
1667 		case 0:
1668 		case UDP_ENCAP_ESPINUDP:
1669 		case UDP_ENCAP_ESPINUDP_NON_IKE:
1670 			up->encap_rcv = xfrm4_udp_encap_rcv;
1671 			/* FALLTHROUGH */
1672 		case UDP_ENCAP_L2TPINUDP:
1673 			up->encap_type = val;
1674 			break;
1675 		default:
1676 			err = -ENOPROTOOPT;
1677 			break;
1678 		}
1679 		break;
1680 
1681 	/*
1682 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
1683 	 */
1684 	/* The sender sets actual checksum coverage length via this option.
1685 	 * The case coverage > packet length is handled by send module. */
1686 	case UDPLITE_SEND_CSCOV:
1687 		if (!is_udplite)         /* Disable the option on UDP sockets */
1688 			return -ENOPROTOOPT;
1689 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
1690 			val = 8;
1691 		else if (val > USHRT_MAX)
1692 			val = USHRT_MAX;
1693 		up->pcslen = val;
1694 		up->pcflag |= UDPLITE_SEND_CC;
1695 		break;
1696 
1697 	/* The receiver specifies a minimum checksum coverage value. To make
1698 	 * sense, this should be set to at least 8 (as done below). If zero is
1699 	 * used, this again means full checksum coverage.                     */
1700 	case UDPLITE_RECV_CSCOV:
1701 		if (!is_udplite)         /* Disable the option on UDP sockets */
1702 			return -ENOPROTOOPT;
1703 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
1704 			val = 8;
1705 		else if (val > USHRT_MAX)
1706 			val = USHRT_MAX;
1707 		up->pcrlen = val;
1708 		up->pcflag |= UDPLITE_RECV_CC;
1709 		break;
1710 
1711 	default:
1712 		err = -ENOPROTOOPT;
1713 		break;
1714 	}
1715 
1716 	return err;
1717 }
1718 EXPORT_SYMBOL(udp_lib_setsockopt);
1719 
1720 int udp_setsockopt(struct sock *sk, int level, int optname,
1721 		   char __user *optval, unsigned int optlen)
1722 {
1723 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1724 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1725 					  udp_push_pending_frames);
1726 	return ip_setsockopt(sk, level, optname, optval, optlen);
1727 }
1728 
1729 #ifdef CONFIG_COMPAT
1730 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
1731 			  char __user *optval, unsigned int optlen)
1732 {
1733 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1734 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1735 					  udp_push_pending_frames);
1736 	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
1737 }
1738 #endif
1739 
1740 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
1741 		       char __user *optval, int __user *optlen)
1742 {
1743 	struct udp_sock *up = udp_sk(sk);
1744 	int val, len;
1745 
1746 	if (get_user(len, optlen))
1747 		return -EFAULT;
1748 
1749 	len = min_t(unsigned int, len, sizeof(int));
1750 
1751 	if (len < 0)
1752 		return -EINVAL;
1753 
1754 	switch (optname) {
1755 	case UDP_CORK:
1756 		val = up->corkflag;
1757 		break;
1758 
1759 	case UDP_ENCAP:
1760 		val = up->encap_type;
1761 		break;
1762 
1763 	/* The following two cannot be changed on UDP sockets, the return is
1764 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
1765 	case UDPLITE_SEND_CSCOV:
1766 		val = up->pcslen;
1767 		break;
1768 
1769 	case UDPLITE_RECV_CSCOV:
1770 		val = up->pcrlen;
1771 		break;
1772 
1773 	default:
1774 		return -ENOPROTOOPT;
1775 	}
1776 
1777 	if (put_user(len, optlen))
1778 		return -EFAULT;
1779 	if (copy_to_user(optval, &val, len))
1780 		return -EFAULT;
1781 	return 0;
1782 }
1783 EXPORT_SYMBOL(udp_lib_getsockopt);
1784 
1785 int udp_getsockopt(struct sock *sk, int level, int optname,
1786 		   char __user *optval, int __user *optlen)
1787 {
1788 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1789 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1790 	return ip_getsockopt(sk, level, optname, optval, optlen);
1791 }
1792 
1793 #ifdef CONFIG_COMPAT
1794 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
1795 				 char __user *optval, int __user *optlen)
1796 {
1797 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1798 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1799 	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
1800 }
1801 #endif
1802 /**
1803  * 	udp_poll - wait for a UDP event.
1804  *	@file - file struct
1805  *	@sock - socket
1806  *	@wait - poll table
1807  *
1808  *	This is same as datagram poll, except for the special case of
1809  *	blocking sockets. If application is using a blocking fd
1810  *	and a packet with checksum error is in the queue;
1811  *	then it could get return from select indicating data available
1812  *	but then block when reading it. Add special case code
1813  *	to work around these arguably broken applications.
1814  */
1815 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
1816 {
1817 	unsigned int mask = datagram_poll(file, sock, wait);
1818 	struct sock *sk = sock->sk;
1819 
1820 	/* Check for false positives due to checksum errors */
1821 	if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
1822 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk))
1823 		mask &= ~(POLLIN | POLLRDNORM);
1824 
1825 	return mask;
1826 
1827 }
1828 EXPORT_SYMBOL(udp_poll);
1829 
1830 struct proto udp_prot = {
1831 	.name		   = "UDP",
1832 	.owner		   = THIS_MODULE,
1833 	.close		   = udp_lib_close,
1834 	.connect	   = ip4_datagram_connect,
1835 	.disconnect	   = udp_disconnect,
1836 	.ioctl		   = udp_ioctl,
1837 	.destroy	   = udp_destroy_sock,
1838 	.setsockopt	   = udp_setsockopt,
1839 	.getsockopt	   = udp_getsockopt,
1840 	.sendmsg	   = udp_sendmsg,
1841 	.recvmsg	   = udp_recvmsg,
1842 	.sendpage	   = udp_sendpage,
1843 	.backlog_rcv	   = __udp_queue_rcv_skb,
1844 	.hash		   = udp_lib_hash,
1845 	.unhash		   = udp_lib_unhash,
1846 	.get_port	   = udp_v4_get_port,
1847 	.memory_allocated  = &udp_memory_allocated,
1848 	.sysctl_mem	   = sysctl_udp_mem,
1849 	.sysctl_wmem	   = &sysctl_udp_wmem_min,
1850 	.sysctl_rmem	   = &sysctl_udp_rmem_min,
1851 	.obj_size	   = sizeof(struct udp_sock),
1852 	.slab_flags	   = SLAB_DESTROY_BY_RCU,
1853 	.h.udp_table	   = &udp_table,
1854 #ifdef CONFIG_COMPAT
1855 	.compat_setsockopt = compat_udp_setsockopt,
1856 	.compat_getsockopt = compat_udp_getsockopt,
1857 #endif
1858 };
1859 EXPORT_SYMBOL(udp_prot);
1860 
1861 /* ------------------------------------------------------------------------ */
1862 #ifdef CONFIG_PROC_FS
1863 
1864 static struct sock *udp_get_first(struct seq_file *seq, int start)
1865 {
1866 	struct sock *sk;
1867 	struct udp_iter_state *state = seq->private;
1868 	struct net *net = seq_file_net(seq);
1869 
1870 	for (state->bucket = start; state->bucket <= state->udp_table->mask;
1871 	     ++state->bucket) {
1872 		struct hlist_nulls_node *node;
1873 		struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
1874 
1875 		if (hlist_nulls_empty(&hslot->head))
1876 			continue;
1877 
1878 		spin_lock_bh(&hslot->lock);
1879 		sk_nulls_for_each(sk, node, &hslot->head) {
1880 			if (!net_eq(sock_net(sk), net))
1881 				continue;
1882 			if (sk->sk_family == state->family)
1883 				goto found;
1884 		}
1885 		spin_unlock_bh(&hslot->lock);
1886 	}
1887 	sk = NULL;
1888 found:
1889 	return sk;
1890 }
1891 
1892 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
1893 {
1894 	struct udp_iter_state *state = seq->private;
1895 	struct net *net = seq_file_net(seq);
1896 
1897 	do {
1898 		sk = sk_nulls_next(sk);
1899 	} while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
1900 
1901 	if (!sk) {
1902 		if (state->bucket <= state->udp_table->mask)
1903 			spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
1904 		return udp_get_first(seq, state->bucket + 1);
1905 	}
1906 	return sk;
1907 }
1908 
1909 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
1910 {
1911 	struct sock *sk = udp_get_first(seq, 0);
1912 
1913 	if (sk)
1914 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
1915 			--pos;
1916 	return pos ? NULL : sk;
1917 }
1918 
1919 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
1920 {
1921 	struct udp_iter_state *state = seq->private;
1922 	state->bucket = MAX_UDP_PORTS;
1923 
1924 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
1925 }
1926 
1927 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1928 {
1929 	struct sock *sk;
1930 
1931 	if (v == SEQ_START_TOKEN)
1932 		sk = udp_get_idx(seq, 0);
1933 	else
1934 		sk = udp_get_next(seq, v);
1935 
1936 	++*pos;
1937 	return sk;
1938 }
1939 
1940 static void udp_seq_stop(struct seq_file *seq, void *v)
1941 {
1942 	struct udp_iter_state *state = seq->private;
1943 
1944 	if (state->bucket <= state->udp_table->mask)
1945 		spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
1946 }
1947 
1948 static int udp_seq_open(struct inode *inode, struct file *file)
1949 {
1950 	struct udp_seq_afinfo *afinfo = PDE(inode)->data;
1951 	struct udp_iter_state *s;
1952 	int err;
1953 
1954 	err = seq_open_net(inode, file, &afinfo->seq_ops,
1955 			   sizeof(struct udp_iter_state));
1956 	if (err < 0)
1957 		return err;
1958 
1959 	s = ((struct seq_file *)file->private_data)->private;
1960 	s->family		= afinfo->family;
1961 	s->udp_table		= afinfo->udp_table;
1962 	return err;
1963 }
1964 
1965 /* ------------------------------------------------------------------------ */
1966 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
1967 {
1968 	struct proc_dir_entry *p;
1969 	int rc = 0;
1970 
1971 	afinfo->seq_fops.open		= udp_seq_open;
1972 	afinfo->seq_fops.read		= seq_read;
1973 	afinfo->seq_fops.llseek		= seq_lseek;
1974 	afinfo->seq_fops.release	= seq_release_net;
1975 
1976 	afinfo->seq_ops.start		= udp_seq_start;
1977 	afinfo->seq_ops.next		= udp_seq_next;
1978 	afinfo->seq_ops.stop		= udp_seq_stop;
1979 
1980 	p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
1981 			     &afinfo->seq_fops, afinfo);
1982 	if (!p)
1983 		rc = -ENOMEM;
1984 	return rc;
1985 }
1986 EXPORT_SYMBOL(udp_proc_register);
1987 
1988 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
1989 {
1990 	proc_net_remove(net, afinfo->name);
1991 }
1992 EXPORT_SYMBOL(udp_proc_unregister);
1993 
1994 /* ------------------------------------------------------------------------ */
1995 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
1996 		int bucket, int *len)
1997 {
1998 	struct inet_sock *inet = inet_sk(sp);
1999 	__be32 dest = inet->inet_daddr;
2000 	__be32 src  = inet->inet_rcv_saddr;
2001 	__u16 destp	  = ntohs(inet->inet_dport);
2002 	__u16 srcp	  = ntohs(inet->inet_sport);
2003 
2004 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2005 		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %lu %d %p %d%n",
2006 		bucket, src, srcp, dest, destp, sp->sk_state,
2007 		sk_wmem_alloc_get(sp),
2008 		sk_rmem_alloc_get(sp),
2009 		0, 0L, 0, sock_i_uid(sp), 0, sock_i_ino(sp),
2010 		atomic_read(&sp->sk_refcnt), sp,
2011 		atomic_read(&sp->sk_drops), len);
2012 }
2013 
2014 int udp4_seq_show(struct seq_file *seq, void *v)
2015 {
2016 	if (v == SEQ_START_TOKEN)
2017 		seq_printf(seq, "%-127s\n",
2018 			   "  sl  local_address rem_address   st tx_queue "
2019 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2020 			   "inode ref pointer drops");
2021 	else {
2022 		struct udp_iter_state *state = seq->private;
2023 		int len;
2024 
2025 		udp4_format_sock(v, seq, state->bucket, &len);
2026 		seq_printf(seq, "%*s\n", 127 - len, "");
2027 	}
2028 	return 0;
2029 }
2030 
2031 /* ------------------------------------------------------------------------ */
2032 static struct udp_seq_afinfo udp4_seq_afinfo = {
2033 	.name		= "udp",
2034 	.family		= AF_INET,
2035 	.udp_table	= &udp_table,
2036 	.seq_fops	= {
2037 		.owner	=	THIS_MODULE,
2038 	},
2039 	.seq_ops	= {
2040 		.show		= udp4_seq_show,
2041 	},
2042 };
2043 
2044 static int __net_init udp4_proc_init_net(struct net *net)
2045 {
2046 	return udp_proc_register(net, &udp4_seq_afinfo);
2047 }
2048 
2049 static void __net_exit udp4_proc_exit_net(struct net *net)
2050 {
2051 	udp_proc_unregister(net, &udp4_seq_afinfo);
2052 }
2053 
2054 static struct pernet_operations udp4_net_ops = {
2055 	.init = udp4_proc_init_net,
2056 	.exit = udp4_proc_exit_net,
2057 };
2058 
2059 int __init udp4_proc_init(void)
2060 {
2061 	return register_pernet_subsys(&udp4_net_ops);
2062 }
2063 
2064 void udp4_proc_exit(void)
2065 {
2066 	unregister_pernet_subsys(&udp4_net_ops);
2067 }
2068 #endif /* CONFIG_PROC_FS */
2069 
2070 static __initdata unsigned long uhash_entries;
2071 static int __init set_uhash_entries(char *str)
2072 {
2073 	if (!str)
2074 		return 0;
2075 	uhash_entries = simple_strtoul(str, &str, 0);
2076 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2077 		uhash_entries = UDP_HTABLE_SIZE_MIN;
2078 	return 1;
2079 }
2080 __setup("uhash_entries=", set_uhash_entries);
2081 
2082 void __init udp_table_init(struct udp_table *table, const char *name)
2083 {
2084 	unsigned int i;
2085 
2086 	if (!CONFIG_BASE_SMALL)
2087 		table->hash = alloc_large_system_hash(name,
2088 			2 * sizeof(struct udp_hslot),
2089 			uhash_entries,
2090 			21, /* one slot per 2 MB */
2091 			0,
2092 			&table->log,
2093 			&table->mask,
2094 			64 * 1024);
2095 	/*
2096 	 * Make sure hash table has the minimum size
2097 	 */
2098 	if (CONFIG_BASE_SMALL || table->mask < UDP_HTABLE_SIZE_MIN - 1) {
2099 		table->hash = kmalloc(UDP_HTABLE_SIZE_MIN *
2100 				      2 * sizeof(struct udp_hslot), GFP_KERNEL);
2101 		if (!table->hash)
2102 			panic(name);
2103 		table->log = ilog2(UDP_HTABLE_SIZE_MIN);
2104 		table->mask = UDP_HTABLE_SIZE_MIN - 1;
2105 	}
2106 	table->hash2 = table->hash + (table->mask + 1);
2107 	for (i = 0; i <= table->mask; i++) {
2108 		INIT_HLIST_NULLS_HEAD(&table->hash[i].head, i);
2109 		table->hash[i].count = 0;
2110 		spin_lock_init(&table->hash[i].lock);
2111 	}
2112 	for (i = 0; i <= table->mask; i++) {
2113 		INIT_HLIST_NULLS_HEAD(&table->hash2[i].head, i);
2114 		table->hash2[i].count = 0;
2115 		spin_lock_init(&table->hash2[i].lock);
2116 	}
2117 }
2118 
2119 void __init udp_init(void)
2120 {
2121 	unsigned long nr_pages, limit;
2122 
2123 	udp_table_init(&udp_table, "UDP");
2124 	/* Set the pressure threshold up by the same strategy of TCP. It is a
2125 	 * fraction of global memory that is up to 1/2 at 256 MB, decreasing
2126 	 * toward zero with the amount of memory, with a floor of 128 pages.
2127 	 */
2128 	nr_pages = totalram_pages - totalhigh_pages;
2129 	limit = min(nr_pages, 1UL<<(28-PAGE_SHIFT)) >> (20-PAGE_SHIFT);
2130 	limit = (limit * (nr_pages >> (20-PAGE_SHIFT))) >> (PAGE_SHIFT-11);
2131 	limit = max(limit, 128UL);
2132 	sysctl_udp_mem[0] = limit / 4 * 3;
2133 	sysctl_udp_mem[1] = limit;
2134 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2135 
2136 	sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2137 	sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2138 }
2139 
2140 int udp4_ufo_send_check(struct sk_buff *skb)
2141 {
2142 	const struct iphdr *iph;
2143 	struct udphdr *uh;
2144 
2145 	if (!pskb_may_pull(skb, sizeof(*uh)))
2146 		return -EINVAL;
2147 
2148 	iph = ip_hdr(skb);
2149 	uh = udp_hdr(skb);
2150 
2151 	uh->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
2152 				       IPPROTO_UDP, 0);
2153 	skb->csum_start = skb_transport_header(skb) - skb->head;
2154 	skb->csum_offset = offsetof(struct udphdr, check);
2155 	skb->ip_summed = CHECKSUM_PARTIAL;
2156 	return 0;
2157 }
2158 
2159 struct sk_buff *udp4_ufo_fragment(struct sk_buff *skb, int features)
2160 {
2161 	struct sk_buff *segs = ERR_PTR(-EINVAL);
2162 	unsigned int mss;
2163 	int offset;
2164 	__wsum csum;
2165 
2166 	mss = skb_shinfo(skb)->gso_size;
2167 	if (unlikely(skb->len <= mss))
2168 		goto out;
2169 
2170 	if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
2171 		/* Packet is from an untrusted source, reset gso_segs. */
2172 		int type = skb_shinfo(skb)->gso_type;
2173 
2174 		if (unlikely(type & ~(SKB_GSO_UDP | SKB_GSO_DODGY) ||
2175 			     !(type & (SKB_GSO_UDP))))
2176 			goto out;
2177 
2178 		skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
2179 
2180 		segs = NULL;
2181 		goto out;
2182 	}
2183 
2184 	/* Do software UFO. Complete and fill in the UDP checksum as HW cannot
2185 	 * do checksum of UDP packets sent as multiple IP fragments.
2186 	 */
2187 	offset = skb->csum_start - skb_headroom(skb);
2188 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2189 	offset += skb->csum_offset;
2190 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
2191 	skb->ip_summed = CHECKSUM_NONE;
2192 
2193 	/* Fragment the skb. IP headers of the fragments are updated in
2194 	 * inet_gso_segment()
2195 	 */
2196 	segs = skb_segment(skb, features);
2197 out:
2198 	return segs;
2199 }
2200 
2201