xref: /linux/net/ipv4/udp.c (revision cd65cd95128781ca59d06611270fcbd9b4a7cf8d)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The User Datagram Protocol (UDP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
12  *		Hirokazu Takahashi, <taka@valinux.co.jp>
13  *
14  * Fixes:
15  *		Alan Cox	:	verify_area() calls
16  *		Alan Cox	: 	stopped close while in use off icmp
17  *					messages. Not a fix but a botch that
18  *					for udp at least is 'valid'.
19  *		Alan Cox	:	Fixed icmp handling properly
20  *		Alan Cox	: 	Correct error for oversized datagrams
21  *		Alan Cox	:	Tidied select() semantics.
22  *		Alan Cox	:	udp_err() fixed properly, also now
23  *					select and read wake correctly on errors
24  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
25  *		Alan Cox	:	UDP can count its memory
26  *		Alan Cox	:	send to an unknown connection causes
27  *					an ECONNREFUSED off the icmp, but
28  *					does NOT close.
29  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
30  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
31  *					bug no longer crashes it.
32  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
33  *		Alan Cox	:	Uses skb_free_datagram
34  *		Alan Cox	:	Added get/set sockopt support.
35  *		Alan Cox	:	Broadcasting without option set returns EACCES.
36  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
37  *		Alan Cox	:	Use ip_tos and ip_ttl
38  *		Alan Cox	:	SNMP Mibs
39  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
40  *		Matt Dillon	:	UDP length checks.
41  *		Alan Cox	:	Smarter af_inet used properly.
42  *		Alan Cox	:	Use new kernel side addressing.
43  *		Alan Cox	:	Incorrect return on truncated datagram receive.
44  *	Arnt Gulbrandsen 	:	New udp_send and stuff
45  *		Alan Cox	:	Cache last socket
46  *		Alan Cox	:	Route cache
47  *		Jon Peatfield	:	Minor efficiency fix to sendto().
48  *		Mike Shaver	:	RFC1122 checks.
49  *		Alan Cox	:	Nonblocking error fix.
50  *	Willy Konynenberg	:	Transparent proxying support.
51  *		Mike McLagan	:	Routing by source
52  *		David S. Miller	:	New socket lookup architecture.
53  *					Last socket cache retained as it
54  *					does have a high hit rate.
55  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
56  *		Andi Kleen	:	Some cleanups, cache destination entry
57  *					for connect.
58  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
59  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
60  *					return ENOTCONN for unconnected sockets (POSIX)
61  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
62  *					bound-to-device socket
63  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
64  *					datagrams.
65  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
66  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
67  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
68  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
69  *					a single port at the same time.
70  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71  *	James Chapman		:	Add L2TP encapsulation type.
72  *
73  *
74  *		This program is free software; you can redistribute it and/or
75  *		modify it under the terms of the GNU General Public License
76  *		as published by the Free Software Foundation; either version
77  *		2 of the License, or (at your option) any later version.
78  */
79 
80 #define pr_fmt(fmt) "UDP: " fmt
81 
82 #include <linux/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/bootmem.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
93 #include <linux/inetdevice.h>
94 #include <linux/in.h>
95 #include <linux/errno.h>
96 #include <linux/timer.h>
97 #include <linux/mm.h>
98 #include <linux/inet.h>
99 #include <linux/netdevice.h>
100 #include <linux/slab.h>
101 #include <net/tcp_states.h>
102 #include <linux/skbuff.h>
103 #include <linux/proc_fs.h>
104 #include <linux/seq_file.h>
105 #include <net/net_namespace.h>
106 #include <net/icmp.h>
107 #include <net/inet_hashtables.h>
108 #include <net/route.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <trace/events/udp.h>
112 #include <linux/static_key.h>
113 #include <trace/events/skb.h>
114 #include <net/busy_poll.h>
115 #include "udp_impl.h"
116 #include <net/sock_reuseport.h>
117 #include <net/addrconf.h>
118 
119 struct udp_table udp_table __read_mostly;
120 EXPORT_SYMBOL(udp_table);
121 
122 long sysctl_udp_mem[3] __read_mostly;
123 EXPORT_SYMBOL(sysctl_udp_mem);
124 
125 atomic_long_t udp_memory_allocated;
126 EXPORT_SYMBOL(udp_memory_allocated);
127 
128 #define MAX_UDP_PORTS 65536
129 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
130 
131 /* IPCB reference means this can not be used from early demux */
132 static bool udp_lib_exact_dif_match(struct net *net, struct sk_buff *skb)
133 {
134 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
135 	if (!net->ipv4.sysctl_udp_l3mdev_accept &&
136 	    skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
137 		return true;
138 #endif
139 	return false;
140 }
141 
142 static int udp_lib_lport_inuse(struct net *net, __u16 num,
143 			       const struct udp_hslot *hslot,
144 			       unsigned long *bitmap,
145 			       struct sock *sk, unsigned int log)
146 {
147 	struct sock *sk2;
148 	kuid_t uid = sock_i_uid(sk);
149 
150 	sk_for_each(sk2, &hslot->head) {
151 		if (net_eq(sock_net(sk2), net) &&
152 		    sk2 != sk &&
153 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
154 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
155 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
156 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
157 		    inet_rcv_saddr_equal(sk, sk2, true)) {
158 			if (sk2->sk_reuseport && sk->sk_reuseport &&
159 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
160 			    uid_eq(uid, sock_i_uid(sk2))) {
161 				if (!bitmap)
162 					return 0;
163 			} else {
164 				if (!bitmap)
165 					return 1;
166 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
167 					  bitmap);
168 			}
169 		}
170 	}
171 	return 0;
172 }
173 
174 /*
175  * Note: we still hold spinlock of primary hash chain, so no other writer
176  * can insert/delete a socket with local_port == num
177  */
178 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
179 				struct udp_hslot *hslot2,
180 				struct sock *sk)
181 {
182 	struct sock *sk2;
183 	kuid_t uid = sock_i_uid(sk);
184 	int res = 0;
185 
186 	spin_lock(&hslot2->lock);
187 	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
188 		if (net_eq(sock_net(sk2), net) &&
189 		    sk2 != sk &&
190 		    (udp_sk(sk2)->udp_port_hash == num) &&
191 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
192 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
193 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
194 		    inet_rcv_saddr_equal(sk, sk2, true)) {
195 			if (sk2->sk_reuseport && sk->sk_reuseport &&
196 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
197 			    uid_eq(uid, sock_i_uid(sk2))) {
198 				res = 0;
199 			} else {
200 				res = 1;
201 			}
202 			break;
203 		}
204 	}
205 	spin_unlock(&hslot2->lock);
206 	return res;
207 }
208 
209 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
210 {
211 	struct net *net = sock_net(sk);
212 	kuid_t uid = sock_i_uid(sk);
213 	struct sock *sk2;
214 
215 	sk_for_each(sk2, &hslot->head) {
216 		if (net_eq(sock_net(sk2), net) &&
217 		    sk2 != sk &&
218 		    sk2->sk_family == sk->sk_family &&
219 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
220 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
221 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
222 		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
223 		    inet_rcv_saddr_equal(sk, sk2, false)) {
224 			return reuseport_add_sock(sk, sk2);
225 		}
226 	}
227 
228 	return reuseport_alloc(sk);
229 }
230 
231 /**
232  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
233  *
234  *  @sk:          socket struct in question
235  *  @snum:        port number to look up
236  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
237  *                   with NULL address
238  */
239 int udp_lib_get_port(struct sock *sk, unsigned short snum,
240 		     unsigned int hash2_nulladdr)
241 {
242 	struct udp_hslot *hslot, *hslot2;
243 	struct udp_table *udptable = sk->sk_prot->h.udp_table;
244 	int    error = 1;
245 	struct net *net = sock_net(sk);
246 
247 	if (!snum) {
248 		int low, high, remaining;
249 		unsigned int rand;
250 		unsigned short first, last;
251 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
252 
253 		inet_get_local_port_range(net, &low, &high);
254 		remaining = (high - low) + 1;
255 
256 		rand = prandom_u32();
257 		first = reciprocal_scale(rand, remaining) + low;
258 		/*
259 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
260 		 */
261 		rand = (rand | 1) * (udptable->mask + 1);
262 		last = first + udptable->mask + 1;
263 		do {
264 			hslot = udp_hashslot(udptable, net, first);
265 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
266 			spin_lock_bh(&hslot->lock);
267 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
268 					    udptable->log);
269 
270 			snum = first;
271 			/*
272 			 * Iterate on all possible values of snum for this hash.
273 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
274 			 * give us randomization and full range coverage.
275 			 */
276 			do {
277 				if (low <= snum && snum <= high &&
278 				    !test_bit(snum >> udptable->log, bitmap) &&
279 				    !inet_is_local_reserved_port(net, snum))
280 					goto found;
281 				snum += rand;
282 			} while (snum != first);
283 			spin_unlock_bh(&hslot->lock);
284 			cond_resched();
285 		} while (++first != last);
286 		goto fail;
287 	} else {
288 		hslot = udp_hashslot(udptable, net, snum);
289 		spin_lock_bh(&hslot->lock);
290 		if (hslot->count > 10) {
291 			int exist;
292 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
293 
294 			slot2          &= udptable->mask;
295 			hash2_nulladdr &= udptable->mask;
296 
297 			hslot2 = udp_hashslot2(udptable, slot2);
298 			if (hslot->count < hslot2->count)
299 				goto scan_primary_hash;
300 
301 			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
302 			if (!exist && (hash2_nulladdr != slot2)) {
303 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
304 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
305 							     sk);
306 			}
307 			if (exist)
308 				goto fail_unlock;
309 			else
310 				goto found;
311 		}
312 scan_primary_hash:
313 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
314 			goto fail_unlock;
315 	}
316 found:
317 	inet_sk(sk)->inet_num = snum;
318 	udp_sk(sk)->udp_port_hash = snum;
319 	udp_sk(sk)->udp_portaddr_hash ^= snum;
320 	if (sk_unhashed(sk)) {
321 		if (sk->sk_reuseport &&
322 		    udp_reuseport_add_sock(sk, hslot)) {
323 			inet_sk(sk)->inet_num = 0;
324 			udp_sk(sk)->udp_port_hash = 0;
325 			udp_sk(sk)->udp_portaddr_hash ^= snum;
326 			goto fail_unlock;
327 		}
328 
329 		sk_add_node_rcu(sk, &hslot->head);
330 		hslot->count++;
331 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
332 
333 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
334 		spin_lock(&hslot2->lock);
335 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
336 		    sk->sk_family == AF_INET6)
337 			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
338 					   &hslot2->head);
339 		else
340 			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
341 					   &hslot2->head);
342 		hslot2->count++;
343 		spin_unlock(&hslot2->lock);
344 	}
345 	sock_set_flag(sk, SOCK_RCU_FREE);
346 	error = 0;
347 fail_unlock:
348 	spin_unlock_bh(&hslot->lock);
349 fail:
350 	return error;
351 }
352 EXPORT_SYMBOL(udp_lib_get_port);
353 
354 int udp_v4_get_port(struct sock *sk, unsigned short snum)
355 {
356 	unsigned int hash2_nulladdr =
357 		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
358 	unsigned int hash2_partial =
359 		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
360 
361 	/* precompute partial secondary hash */
362 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
363 	return udp_lib_get_port(sk, snum, hash2_nulladdr);
364 }
365 
366 static int compute_score(struct sock *sk, struct net *net,
367 			 __be32 saddr, __be16 sport,
368 			 __be32 daddr, unsigned short hnum,
369 			 int dif, int sdif, bool exact_dif)
370 {
371 	int score;
372 	struct inet_sock *inet;
373 
374 	if (!net_eq(sock_net(sk), net) ||
375 	    udp_sk(sk)->udp_port_hash != hnum ||
376 	    ipv6_only_sock(sk))
377 		return -1;
378 
379 	score = (sk->sk_family == PF_INET) ? 2 : 1;
380 	inet = inet_sk(sk);
381 
382 	if (inet->inet_rcv_saddr) {
383 		if (inet->inet_rcv_saddr != daddr)
384 			return -1;
385 		score += 4;
386 	}
387 
388 	if (inet->inet_daddr) {
389 		if (inet->inet_daddr != saddr)
390 			return -1;
391 		score += 4;
392 	}
393 
394 	if (inet->inet_dport) {
395 		if (inet->inet_dport != sport)
396 			return -1;
397 		score += 4;
398 	}
399 
400 	if (sk->sk_bound_dev_if || exact_dif) {
401 		bool dev_match = (sk->sk_bound_dev_if == dif ||
402 				  sk->sk_bound_dev_if == sdif);
403 
404 		if (exact_dif && !dev_match)
405 			return -1;
406 		if (sk->sk_bound_dev_if && dev_match)
407 			score += 4;
408 	}
409 
410 	if (sk->sk_incoming_cpu == raw_smp_processor_id())
411 		score++;
412 	return score;
413 }
414 
415 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
416 		       const __u16 lport, const __be32 faddr,
417 		       const __be16 fport)
418 {
419 	static u32 udp_ehash_secret __read_mostly;
420 
421 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
422 
423 	return __inet_ehashfn(laddr, lport, faddr, fport,
424 			      udp_ehash_secret + net_hash_mix(net));
425 }
426 
427 /* called with rcu_read_lock() */
428 static struct sock *udp4_lib_lookup2(struct net *net,
429 				     __be32 saddr, __be16 sport,
430 				     __be32 daddr, unsigned int hnum,
431 				     int dif, int sdif, bool exact_dif,
432 				     struct udp_hslot *hslot2,
433 				     struct sk_buff *skb)
434 {
435 	struct sock *sk, *result;
436 	int score, badness;
437 	u32 hash = 0;
438 
439 	result = NULL;
440 	badness = 0;
441 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
442 		score = compute_score(sk, net, saddr, sport,
443 				      daddr, hnum, dif, sdif, exact_dif);
444 		if (score > badness) {
445 			if (sk->sk_reuseport) {
446 				hash = udp_ehashfn(net, daddr, hnum,
447 						   saddr, sport);
448 				result = reuseport_select_sock(sk, hash, skb,
449 							sizeof(struct udphdr));
450 				if (result)
451 					return result;
452 			}
453 			badness = score;
454 			result = sk;
455 		}
456 	}
457 	return result;
458 }
459 
460 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
461  * harder than this. -DaveM
462  */
463 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
464 		__be16 sport, __be32 daddr, __be16 dport, int dif,
465 		int sdif, struct udp_table *udptable, struct sk_buff *skb)
466 {
467 	struct sock *sk, *result;
468 	unsigned short hnum = ntohs(dport);
469 	unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
470 	struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
471 	bool exact_dif = udp_lib_exact_dif_match(net, skb);
472 	int score, badness;
473 	u32 hash = 0;
474 
475 	if (hslot->count > 10) {
476 		hash2 = ipv4_portaddr_hash(net, daddr, hnum);
477 		slot2 = hash2 & udptable->mask;
478 		hslot2 = &udptable->hash2[slot2];
479 		if (hslot->count < hslot2->count)
480 			goto begin;
481 
482 		result = udp4_lib_lookup2(net, saddr, sport,
483 					  daddr, hnum, dif, sdif,
484 					  exact_dif, hslot2, skb);
485 		if (!result) {
486 			unsigned int old_slot2 = slot2;
487 			hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
488 			slot2 = hash2 & udptable->mask;
489 			/* avoid searching the same slot again. */
490 			if (unlikely(slot2 == old_slot2))
491 				return result;
492 
493 			hslot2 = &udptable->hash2[slot2];
494 			if (hslot->count < hslot2->count)
495 				goto begin;
496 
497 			result = udp4_lib_lookup2(net, saddr, sport,
498 						  daddr, hnum, dif, sdif,
499 						  exact_dif, hslot2, skb);
500 		}
501 		return result;
502 	}
503 begin:
504 	result = NULL;
505 	badness = 0;
506 	sk_for_each_rcu(sk, &hslot->head) {
507 		score = compute_score(sk, net, saddr, sport,
508 				      daddr, hnum, dif, sdif, exact_dif);
509 		if (score > badness) {
510 			if (sk->sk_reuseport) {
511 				hash = udp_ehashfn(net, daddr, hnum,
512 						   saddr, sport);
513 				result = reuseport_select_sock(sk, hash, skb,
514 							sizeof(struct udphdr));
515 				if (result)
516 					return result;
517 			}
518 			result = sk;
519 			badness = score;
520 		}
521 	}
522 	return result;
523 }
524 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
525 
526 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
527 						 __be16 sport, __be16 dport,
528 						 struct udp_table *udptable)
529 {
530 	const struct iphdr *iph = ip_hdr(skb);
531 
532 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
533 				 iph->daddr, dport, inet_iif(skb),
534 				 inet_sdif(skb), udptable, skb);
535 }
536 
537 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb,
538 				 __be16 sport, __be16 dport)
539 {
540 	return __udp4_lib_lookup_skb(skb, sport, dport, &udp_table);
541 }
542 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb);
543 
544 /* Must be called under rcu_read_lock().
545  * Does increment socket refcount.
546  */
547 #if IS_ENABLED(CONFIG_NETFILTER_XT_MATCH_SOCKET) || \
548     IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TPROXY) || \
549     IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
550 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
551 			     __be32 daddr, __be16 dport, int dif)
552 {
553 	struct sock *sk;
554 
555 	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
556 			       dif, 0, &udp_table, NULL);
557 	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
558 		sk = NULL;
559 	return sk;
560 }
561 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
562 #endif
563 
564 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
565 				       __be16 loc_port, __be32 loc_addr,
566 				       __be16 rmt_port, __be32 rmt_addr,
567 				       int dif, int sdif, unsigned short hnum)
568 {
569 	struct inet_sock *inet = inet_sk(sk);
570 
571 	if (!net_eq(sock_net(sk), net) ||
572 	    udp_sk(sk)->udp_port_hash != hnum ||
573 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
574 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
575 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
576 	    ipv6_only_sock(sk) ||
577 	    (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif &&
578 	     sk->sk_bound_dev_if != sdif))
579 		return false;
580 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
581 		return false;
582 	return true;
583 }
584 
585 /*
586  * This routine is called by the ICMP module when it gets some
587  * sort of error condition.  If err < 0 then the socket should
588  * be closed and the error returned to the user.  If err > 0
589  * it's just the icmp type << 8 | icmp code.
590  * Header points to the ip header of the error packet. We move
591  * on past this. Then (as it used to claim before adjustment)
592  * header points to the first 8 bytes of the udp header.  We need
593  * to find the appropriate port.
594  */
595 
596 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
597 {
598 	struct inet_sock *inet;
599 	const struct iphdr *iph = (const struct iphdr *)skb->data;
600 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
601 	const int type = icmp_hdr(skb)->type;
602 	const int code = icmp_hdr(skb)->code;
603 	struct sock *sk;
604 	int harderr;
605 	int err;
606 	struct net *net = dev_net(skb->dev);
607 
608 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
609 			       iph->saddr, uh->source, skb->dev->ifindex, 0,
610 			       udptable, NULL);
611 	if (!sk) {
612 		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
613 		return;	/* No socket for error */
614 	}
615 
616 	err = 0;
617 	harderr = 0;
618 	inet = inet_sk(sk);
619 
620 	switch (type) {
621 	default:
622 	case ICMP_TIME_EXCEEDED:
623 		err = EHOSTUNREACH;
624 		break;
625 	case ICMP_SOURCE_QUENCH:
626 		goto out;
627 	case ICMP_PARAMETERPROB:
628 		err = EPROTO;
629 		harderr = 1;
630 		break;
631 	case ICMP_DEST_UNREACH:
632 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
633 			ipv4_sk_update_pmtu(skb, sk, info);
634 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
635 				err = EMSGSIZE;
636 				harderr = 1;
637 				break;
638 			}
639 			goto out;
640 		}
641 		err = EHOSTUNREACH;
642 		if (code <= NR_ICMP_UNREACH) {
643 			harderr = icmp_err_convert[code].fatal;
644 			err = icmp_err_convert[code].errno;
645 		}
646 		break;
647 	case ICMP_REDIRECT:
648 		ipv4_sk_redirect(skb, sk);
649 		goto out;
650 	}
651 
652 	/*
653 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
654 	 *	4.1.3.3.
655 	 */
656 	if (!inet->recverr) {
657 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
658 			goto out;
659 	} else
660 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
661 
662 	sk->sk_err = err;
663 	sk->sk_error_report(sk);
664 out:
665 	return;
666 }
667 
668 void udp_err(struct sk_buff *skb, u32 info)
669 {
670 	__udp4_lib_err(skb, info, &udp_table);
671 }
672 
673 /*
674  * Throw away all pending data and cancel the corking. Socket is locked.
675  */
676 void udp_flush_pending_frames(struct sock *sk)
677 {
678 	struct udp_sock *up = udp_sk(sk);
679 
680 	if (up->pending) {
681 		up->len = 0;
682 		up->pending = 0;
683 		ip_flush_pending_frames(sk);
684 	}
685 }
686 EXPORT_SYMBOL(udp_flush_pending_frames);
687 
688 /**
689  * 	udp4_hwcsum  -  handle outgoing HW checksumming
690  * 	@skb: 	sk_buff containing the filled-in UDP header
691  * 	        (checksum field must be zeroed out)
692  *	@src:	source IP address
693  *	@dst:	destination IP address
694  */
695 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
696 {
697 	struct udphdr *uh = udp_hdr(skb);
698 	int offset = skb_transport_offset(skb);
699 	int len = skb->len - offset;
700 	int hlen = len;
701 	__wsum csum = 0;
702 
703 	if (!skb_has_frag_list(skb)) {
704 		/*
705 		 * Only one fragment on the socket.
706 		 */
707 		skb->csum_start = skb_transport_header(skb) - skb->head;
708 		skb->csum_offset = offsetof(struct udphdr, check);
709 		uh->check = ~csum_tcpudp_magic(src, dst, len,
710 					       IPPROTO_UDP, 0);
711 	} else {
712 		struct sk_buff *frags;
713 
714 		/*
715 		 * HW-checksum won't work as there are two or more
716 		 * fragments on the socket so that all csums of sk_buffs
717 		 * should be together
718 		 */
719 		skb_walk_frags(skb, frags) {
720 			csum = csum_add(csum, frags->csum);
721 			hlen -= frags->len;
722 		}
723 
724 		csum = skb_checksum(skb, offset, hlen, csum);
725 		skb->ip_summed = CHECKSUM_NONE;
726 
727 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
728 		if (uh->check == 0)
729 			uh->check = CSUM_MANGLED_0;
730 	}
731 }
732 EXPORT_SYMBOL_GPL(udp4_hwcsum);
733 
734 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
735  * for the simple case like when setting the checksum for a UDP tunnel.
736  */
737 void udp_set_csum(bool nocheck, struct sk_buff *skb,
738 		  __be32 saddr, __be32 daddr, int len)
739 {
740 	struct udphdr *uh = udp_hdr(skb);
741 
742 	if (nocheck) {
743 		uh->check = 0;
744 	} else if (skb_is_gso(skb)) {
745 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
746 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
747 		uh->check = 0;
748 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
749 		if (uh->check == 0)
750 			uh->check = CSUM_MANGLED_0;
751 	} else {
752 		skb->ip_summed = CHECKSUM_PARTIAL;
753 		skb->csum_start = skb_transport_header(skb) - skb->head;
754 		skb->csum_offset = offsetof(struct udphdr, check);
755 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
756 	}
757 }
758 EXPORT_SYMBOL(udp_set_csum);
759 
760 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
761 			struct inet_cork *cork)
762 {
763 	struct sock *sk = skb->sk;
764 	struct inet_sock *inet = inet_sk(sk);
765 	struct udphdr *uh;
766 	int err = 0;
767 	int is_udplite = IS_UDPLITE(sk);
768 	int offset = skb_transport_offset(skb);
769 	int len = skb->len - offset;
770 	__wsum csum = 0;
771 
772 	/*
773 	 * Create a UDP header
774 	 */
775 	uh = udp_hdr(skb);
776 	uh->source = inet->inet_sport;
777 	uh->dest = fl4->fl4_dport;
778 	uh->len = htons(len);
779 	uh->check = 0;
780 
781 	if (cork->gso_size) {
782 		const int hlen = skb_network_header_len(skb) +
783 				 sizeof(struct udphdr);
784 
785 		if (hlen + cork->gso_size > cork->fragsize)
786 			return -EINVAL;
787 		if (skb->len > cork->gso_size * UDP_MAX_SEGMENTS)
788 			return -EINVAL;
789 		if (sk->sk_no_check_tx)
790 			return -EINVAL;
791 		if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite)
792 			return -EIO;
793 
794 		skb_shinfo(skb)->gso_size = cork->gso_size;
795 		skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
796 		goto csum_partial;
797 	}
798 
799 	if (is_udplite)  				 /*     UDP-Lite      */
800 		csum = udplite_csum(skb);
801 
802 	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
803 
804 		skb->ip_summed = CHECKSUM_NONE;
805 		goto send;
806 
807 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
808 csum_partial:
809 
810 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
811 		goto send;
812 
813 	} else
814 		csum = udp_csum(skb);
815 
816 	/* add protocol-dependent pseudo-header */
817 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
818 				      sk->sk_protocol, csum);
819 	if (uh->check == 0)
820 		uh->check = CSUM_MANGLED_0;
821 
822 send:
823 	err = ip_send_skb(sock_net(sk), skb);
824 	if (err) {
825 		if (err == -ENOBUFS && !inet->recverr) {
826 			UDP_INC_STATS(sock_net(sk),
827 				      UDP_MIB_SNDBUFERRORS, is_udplite);
828 			err = 0;
829 		}
830 	} else
831 		UDP_INC_STATS(sock_net(sk),
832 			      UDP_MIB_OUTDATAGRAMS, is_udplite);
833 	return err;
834 }
835 
836 /*
837  * Push out all pending data as one UDP datagram. Socket is locked.
838  */
839 int udp_push_pending_frames(struct sock *sk)
840 {
841 	struct udp_sock  *up = udp_sk(sk);
842 	struct inet_sock *inet = inet_sk(sk);
843 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
844 	struct sk_buff *skb;
845 	int err = 0;
846 
847 	skb = ip_finish_skb(sk, fl4);
848 	if (!skb)
849 		goto out;
850 
851 	err = udp_send_skb(skb, fl4, &inet->cork.base);
852 
853 out:
854 	up->len = 0;
855 	up->pending = 0;
856 	return err;
857 }
858 EXPORT_SYMBOL(udp_push_pending_frames);
859 
860 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
861 {
862 	switch (cmsg->cmsg_type) {
863 	case UDP_SEGMENT:
864 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
865 			return -EINVAL;
866 		*gso_size = *(__u16 *)CMSG_DATA(cmsg);
867 		return 0;
868 	default:
869 		return -EINVAL;
870 	}
871 }
872 
873 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
874 {
875 	struct cmsghdr *cmsg;
876 	bool need_ip = false;
877 	int err;
878 
879 	for_each_cmsghdr(cmsg, msg) {
880 		if (!CMSG_OK(msg, cmsg))
881 			return -EINVAL;
882 
883 		if (cmsg->cmsg_level != SOL_UDP) {
884 			need_ip = true;
885 			continue;
886 		}
887 
888 		err = __udp_cmsg_send(cmsg, gso_size);
889 		if (err)
890 			return err;
891 	}
892 
893 	return need_ip;
894 }
895 EXPORT_SYMBOL_GPL(udp_cmsg_send);
896 
897 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
898 {
899 	struct inet_sock *inet = inet_sk(sk);
900 	struct udp_sock *up = udp_sk(sk);
901 	struct flowi4 fl4_stack;
902 	struct flowi4 *fl4;
903 	int ulen = len;
904 	struct ipcm_cookie ipc;
905 	struct rtable *rt = NULL;
906 	int free = 0;
907 	int connected = 0;
908 	__be32 daddr, faddr, saddr;
909 	__be16 dport;
910 	u8  tos;
911 	int err, is_udplite = IS_UDPLITE(sk);
912 	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
913 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
914 	struct sk_buff *skb;
915 	struct ip_options_data opt_copy;
916 
917 	if (len > 0xFFFF)
918 		return -EMSGSIZE;
919 
920 	/*
921 	 *	Check the flags.
922 	 */
923 
924 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
925 		return -EOPNOTSUPP;
926 
927 	ipc.opt = NULL;
928 	ipc.tx_flags = 0;
929 	ipc.ttl = 0;
930 	ipc.tos = -1;
931 
932 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
933 
934 	fl4 = &inet->cork.fl.u.ip4;
935 	if (up->pending) {
936 		/*
937 		 * There are pending frames.
938 		 * The socket lock must be held while it's corked.
939 		 */
940 		lock_sock(sk);
941 		if (likely(up->pending)) {
942 			if (unlikely(up->pending != AF_INET)) {
943 				release_sock(sk);
944 				return -EINVAL;
945 			}
946 			goto do_append_data;
947 		}
948 		release_sock(sk);
949 	}
950 	ulen += sizeof(struct udphdr);
951 
952 	/*
953 	 *	Get and verify the address.
954 	 */
955 	if (msg->msg_name) {
956 		DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
957 		if (msg->msg_namelen < sizeof(*usin))
958 			return -EINVAL;
959 		if (usin->sin_family != AF_INET) {
960 			if (usin->sin_family != AF_UNSPEC)
961 				return -EAFNOSUPPORT;
962 		}
963 
964 		daddr = usin->sin_addr.s_addr;
965 		dport = usin->sin_port;
966 		if (dport == 0)
967 			return -EINVAL;
968 	} else {
969 		if (sk->sk_state != TCP_ESTABLISHED)
970 			return -EDESTADDRREQ;
971 		daddr = inet->inet_daddr;
972 		dport = inet->inet_dport;
973 		/* Open fast path for connected socket.
974 		   Route will not be used, if at least one option is set.
975 		 */
976 		connected = 1;
977 	}
978 
979 	ipc.sockc.tsflags = sk->sk_tsflags;
980 	ipc.addr = inet->inet_saddr;
981 	ipc.oif = sk->sk_bound_dev_if;
982 	ipc.gso_size = up->gso_size;
983 
984 	if (msg->msg_controllen) {
985 		err = udp_cmsg_send(sk, msg, &ipc.gso_size);
986 		if (err > 0)
987 			err = ip_cmsg_send(sk, msg, &ipc,
988 					   sk->sk_family == AF_INET6);
989 		if (unlikely(err < 0)) {
990 			kfree(ipc.opt);
991 			return err;
992 		}
993 		if (ipc.opt)
994 			free = 1;
995 		connected = 0;
996 	}
997 	if (!ipc.opt) {
998 		struct ip_options_rcu *inet_opt;
999 
1000 		rcu_read_lock();
1001 		inet_opt = rcu_dereference(inet->inet_opt);
1002 		if (inet_opt) {
1003 			memcpy(&opt_copy, inet_opt,
1004 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
1005 			ipc.opt = &opt_copy.opt;
1006 		}
1007 		rcu_read_unlock();
1008 	}
1009 
1010 	saddr = ipc.addr;
1011 	ipc.addr = faddr = daddr;
1012 
1013 	sock_tx_timestamp(sk, ipc.sockc.tsflags, &ipc.tx_flags);
1014 
1015 	if (ipc.opt && ipc.opt->opt.srr) {
1016 		if (!daddr)
1017 			return -EINVAL;
1018 		faddr = ipc.opt->opt.faddr;
1019 		connected = 0;
1020 	}
1021 	tos = get_rttos(&ipc, inet);
1022 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
1023 	    (msg->msg_flags & MSG_DONTROUTE) ||
1024 	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
1025 		tos |= RTO_ONLINK;
1026 		connected = 0;
1027 	}
1028 
1029 	if (ipv4_is_multicast(daddr)) {
1030 		if (!ipc.oif)
1031 			ipc.oif = inet->mc_index;
1032 		if (!saddr)
1033 			saddr = inet->mc_addr;
1034 		connected = 0;
1035 	} else if (!ipc.oif) {
1036 		ipc.oif = inet->uc_index;
1037 	} else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
1038 		/* oif is set, packet is to local broadcast and
1039 		 * and uc_index is set. oif is most likely set
1040 		 * by sk_bound_dev_if. If uc_index != oif check if the
1041 		 * oif is an L3 master and uc_index is an L3 slave.
1042 		 * If so, we want to allow the send using the uc_index.
1043 		 */
1044 		if (ipc.oif != inet->uc_index &&
1045 		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1046 							      inet->uc_index)) {
1047 			ipc.oif = inet->uc_index;
1048 		}
1049 	}
1050 
1051 	if (connected)
1052 		rt = (struct rtable *)sk_dst_check(sk, 0);
1053 
1054 	if (!rt) {
1055 		struct net *net = sock_net(sk);
1056 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1057 
1058 		fl4 = &fl4_stack;
1059 
1060 		flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
1061 				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
1062 				   flow_flags,
1063 				   faddr, saddr, dport, inet->inet_sport,
1064 				   sk->sk_uid);
1065 
1066 		security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1067 		rt = ip_route_output_flow(net, fl4, sk);
1068 		if (IS_ERR(rt)) {
1069 			err = PTR_ERR(rt);
1070 			rt = NULL;
1071 			if (err == -ENETUNREACH)
1072 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1073 			goto out;
1074 		}
1075 
1076 		err = -EACCES;
1077 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1078 		    !sock_flag(sk, SOCK_BROADCAST))
1079 			goto out;
1080 		if (connected)
1081 			sk_dst_set(sk, dst_clone(&rt->dst));
1082 	}
1083 
1084 	if (msg->msg_flags&MSG_CONFIRM)
1085 		goto do_confirm;
1086 back_from_confirm:
1087 
1088 	saddr = fl4->saddr;
1089 	if (!ipc.addr)
1090 		daddr = ipc.addr = fl4->daddr;
1091 
1092 	/* Lockless fast path for the non-corking case. */
1093 	if (!corkreq) {
1094 		struct inet_cork cork;
1095 
1096 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1097 				  sizeof(struct udphdr), &ipc, &rt,
1098 				  &cork, msg->msg_flags);
1099 		err = PTR_ERR(skb);
1100 		if (!IS_ERR_OR_NULL(skb))
1101 			err = udp_send_skb(skb, fl4, &cork);
1102 		goto out;
1103 	}
1104 
1105 	lock_sock(sk);
1106 	if (unlikely(up->pending)) {
1107 		/* The socket is already corked while preparing it. */
1108 		/* ... which is an evident application bug. --ANK */
1109 		release_sock(sk);
1110 
1111 		net_dbg_ratelimited("socket already corked\n");
1112 		err = -EINVAL;
1113 		goto out;
1114 	}
1115 	/*
1116 	 *	Now cork the socket to pend data.
1117 	 */
1118 	fl4 = &inet->cork.fl.u.ip4;
1119 	fl4->daddr = daddr;
1120 	fl4->saddr = saddr;
1121 	fl4->fl4_dport = dport;
1122 	fl4->fl4_sport = inet->inet_sport;
1123 	up->pending = AF_INET;
1124 
1125 do_append_data:
1126 	up->len += ulen;
1127 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1128 			     sizeof(struct udphdr), &ipc, &rt,
1129 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1130 	if (err)
1131 		udp_flush_pending_frames(sk);
1132 	else if (!corkreq)
1133 		err = udp_push_pending_frames(sk);
1134 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1135 		up->pending = 0;
1136 	release_sock(sk);
1137 
1138 out:
1139 	ip_rt_put(rt);
1140 	if (free)
1141 		kfree(ipc.opt);
1142 	if (!err)
1143 		return len;
1144 	/*
1145 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1146 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1147 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1148 	 * things).  We could add another new stat but at least for now that
1149 	 * seems like overkill.
1150 	 */
1151 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1152 		UDP_INC_STATS(sock_net(sk),
1153 			      UDP_MIB_SNDBUFERRORS, is_udplite);
1154 	}
1155 	return err;
1156 
1157 do_confirm:
1158 	if (msg->msg_flags & MSG_PROBE)
1159 		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1160 	if (!(msg->msg_flags&MSG_PROBE) || len)
1161 		goto back_from_confirm;
1162 	err = 0;
1163 	goto out;
1164 }
1165 EXPORT_SYMBOL(udp_sendmsg);
1166 
1167 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1168 		 size_t size, int flags)
1169 {
1170 	struct inet_sock *inet = inet_sk(sk);
1171 	struct udp_sock *up = udp_sk(sk);
1172 	int ret;
1173 
1174 	if (flags & MSG_SENDPAGE_NOTLAST)
1175 		flags |= MSG_MORE;
1176 
1177 	if (!up->pending) {
1178 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1179 
1180 		/* Call udp_sendmsg to specify destination address which
1181 		 * sendpage interface can't pass.
1182 		 * This will succeed only when the socket is connected.
1183 		 */
1184 		ret = udp_sendmsg(sk, &msg, 0);
1185 		if (ret < 0)
1186 			return ret;
1187 	}
1188 
1189 	lock_sock(sk);
1190 
1191 	if (unlikely(!up->pending)) {
1192 		release_sock(sk);
1193 
1194 		net_dbg_ratelimited("cork failed\n");
1195 		return -EINVAL;
1196 	}
1197 
1198 	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1199 			     page, offset, size, flags);
1200 	if (ret == -EOPNOTSUPP) {
1201 		release_sock(sk);
1202 		return sock_no_sendpage(sk->sk_socket, page, offset,
1203 					size, flags);
1204 	}
1205 	if (ret < 0) {
1206 		udp_flush_pending_frames(sk);
1207 		goto out;
1208 	}
1209 
1210 	up->len += size;
1211 	if (!(up->corkflag || (flags&MSG_MORE)))
1212 		ret = udp_push_pending_frames(sk);
1213 	if (!ret)
1214 		ret = size;
1215 out:
1216 	release_sock(sk);
1217 	return ret;
1218 }
1219 
1220 #define UDP_SKB_IS_STATELESS 0x80000000
1221 
1222 static void udp_set_dev_scratch(struct sk_buff *skb)
1223 {
1224 	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1225 
1226 	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1227 	scratch->_tsize_state = skb->truesize;
1228 #if BITS_PER_LONG == 64
1229 	scratch->len = skb->len;
1230 	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1231 	scratch->is_linear = !skb_is_nonlinear(skb);
1232 #endif
1233 	/* all head states execept sp (dst, sk, nf) are always cleared by
1234 	 * udp_rcv() and we need to preserve secpath, if present, to eventually
1235 	 * process IP_CMSG_PASSSEC at recvmsg() time
1236 	 */
1237 	if (likely(!skb_sec_path(skb)))
1238 		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1239 }
1240 
1241 static int udp_skb_truesize(struct sk_buff *skb)
1242 {
1243 	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1244 }
1245 
1246 static bool udp_skb_has_head_state(struct sk_buff *skb)
1247 {
1248 	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1249 }
1250 
1251 /* fully reclaim rmem/fwd memory allocated for skb */
1252 static void udp_rmem_release(struct sock *sk, int size, int partial,
1253 			     bool rx_queue_lock_held)
1254 {
1255 	struct udp_sock *up = udp_sk(sk);
1256 	struct sk_buff_head *sk_queue;
1257 	int amt;
1258 
1259 	if (likely(partial)) {
1260 		up->forward_deficit += size;
1261 		size = up->forward_deficit;
1262 		if (size < (sk->sk_rcvbuf >> 2))
1263 			return;
1264 	} else {
1265 		size += up->forward_deficit;
1266 	}
1267 	up->forward_deficit = 0;
1268 
1269 	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1270 	 * if the called don't held it already
1271 	 */
1272 	sk_queue = &sk->sk_receive_queue;
1273 	if (!rx_queue_lock_held)
1274 		spin_lock(&sk_queue->lock);
1275 
1276 
1277 	sk->sk_forward_alloc += size;
1278 	amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1);
1279 	sk->sk_forward_alloc -= amt;
1280 
1281 	if (amt)
1282 		__sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT);
1283 
1284 	atomic_sub(size, &sk->sk_rmem_alloc);
1285 
1286 	/* this can save us from acquiring the rx queue lock on next receive */
1287 	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1288 
1289 	if (!rx_queue_lock_held)
1290 		spin_unlock(&sk_queue->lock);
1291 }
1292 
1293 /* Note: called with reader_queue.lock held.
1294  * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1295  * This avoids a cache line miss while receive_queue lock is held.
1296  * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1297  */
1298 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1299 {
1300 	prefetch(&skb->data);
1301 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1302 }
1303 EXPORT_SYMBOL(udp_skb_destructor);
1304 
1305 /* as above, but the caller held the rx queue lock, too */
1306 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1307 {
1308 	prefetch(&skb->data);
1309 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1310 }
1311 
1312 /* Idea of busylocks is to let producers grab an extra spinlock
1313  * to relieve pressure on the receive_queue spinlock shared by consumer.
1314  * Under flood, this means that only one producer can be in line
1315  * trying to acquire the receive_queue spinlock.
1316  * These busylock can be allocated on a per cpu manner, instead of a
1317  * per socket one (that would consume a cache line per socket)
1318  */
1319 static int udp_busylocks_log __read_mostly;
1320 static spinlock_t *udp_busylocks __read_mostly;
1321 
1322 static spinlock_t *busylock_acquire(void *ptr)
1323 {
1324 	spinlock_t *busy;
1325 
1326 	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1327 	spin_lock(busy);
1328 	return busy;
1329 }
1330 
1331 static void busylock_release(spinlock_t *busy)
1332 {
1333 	if (busy)
1334 		spin_unlock(busy);
1335 }
1336 
1337 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1338 {
1339 	struct sk_buff_head *list = &sk->sk_receive_queue;
1340 	int rmem, delta, amt, err = -ENOMEM;
1341 	spinlock_t *busy = NULL;
1342 	int size;
1343 
1344 	/* try to avoid the costly atomic add/sub pair when the receive
1345 	 * queue is full; always allow at least a packet
1346 	 */
1347 	rmem = atomic_read(&sk->sk_rmem_alloc);
1348 	if (rmem > sk->sk_rcvbuf)
1349 		goto drop;
1350 
1351 	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1352 	 * having linear skbs :
1353 	 * - Reduce memory overhead and thus increase receive queue capacity
1354 	 * - Less cache line misses at copyout() time
1355 	 * - Less work at consume_skb() (less alien page frag freeing)
1356 	 */
1357 	if (rmem > (sk->sk_rcvbuf >> 1)) {
1358 		skb_condense(skb);
1359 
1360 		busy = busylock_acquire(sk);
1361 	}
1362 	size = skb->truesize;
1363 	udp_set_dev_scratch(skb);
1364 
1365 	/* we drop only if the receive buf is full and the receive
1366 	 * queue contains some other skb
1367 	 */
1368 	rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1369 	if (rmem > (size + sk->sk_rcvbuf))
1370 		goto uncharge_drop;
1371 
1372 	spin_lock(&list->lock);
1373 	if (size >= sk->sk_forward_alloc) {
1374 		amt = sk_mem_pages(size);
1375 		delta = amt << SK_MEM_QUANTUM_SHIFT;
1376 		if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) {
1377 			err = -ENOBUFS;
1378 			spin_unlock(&list->lock);
1379 			goto uncharge_drop;
1380 		}
1381 
1382 		sk->sk_forward_alloc += delta;
1383 	}
1384 
1385 	sk->sk_forward_alloc -= size;
1386 
1387 	/* no need to setup a destructor, we will explicitly release the
1388 	 * forward allocated memory on dequeue
1389 	 */
1390 	sock_skb_set_dropcount(sk, skb);
1391 
1392 	__skb_queue_tail(list, skb);
1393 	spin_unlock(&list->lock);
1394 
1395 	if (!sock_flag(sk, SOCK_DEAD))
1396 		sk->sk_data_ready(sk);
1397 
1398 	busylock_release(busy);
1399 	return 0;
1400 
1401 uncharge_drop:
1402 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1403 
1404 drop:
1405 	atomic_inc(&sk->sk_drops);
1406 	busylock_release(busy);
1407 	return err;
1408 }
1409 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1410 
1411 void udp_destruct_sock(struct sock *sk)
1412 {
1413 	/* reclaim completely the forward allocated memory */
1414 	struct udp_sock *up = udp_sk(sk);
1415 	unsigned int total = 0;
1416 	struct sk_buff *skb;
1417 
1418 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1419 	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1420 		total += skb->truesize;
1421 		kfree_skb(skb);
1422 	}
1423 	udp_rmem_release(sk, total, 0, true);
1424 
1425 	inet_sock_destruct(sk);
1426 }
1427 EXPORT_SYMBOL_GPL(udp_destruct_sock);
1428 
1429 int udp_init_sock(struct sock *sk)
1430 {
1431 	skb_queue_head_init(&udp_sk(sk)->reader_queue);
1432 	sk->sk_destruct = udp_destruct_sock;
1433 	return 0;
1434 }
1435 EXPORT_SYMBOL_GPL(udp_init_sock);
1436 
1437 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1438 {
1439 	if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1440 		bool slow = lock_sock_fast(sk);
1441 
1442 		sk_peek_offset_bwd(sk, len);
1443 		unlock_sock_fast(sk, slow);
1444 	}
1445 
1446 	if (!skb_unref(skb))
1447 		return;
1448 
1449 	/* In the more common cases we cleared the head states previously,
1450 	 * see __udp_queue_rcv_skb().
1451 	 */
1452 	if (unlikely(udp_skb_has_head_state(skb)))
1453 		skb_release_head_state(skb);
1454 	__consume_stateless_skb(skb);
1455 }
1456 EXPORT_SYMBOL_GPL(skb_consume_udp);
1457 
1458 static struct sk_buff *__first_packet_length(struct sock *sk,
1459 					     struct sk_buff_head *rcvq,
1460 					     int *total)
1461 {
1462 	struct sk_buff *skb;
1463 
1464 	while ((skb = skb_peek(rcvq)) != NULL) {
1465 		if (udp_lib_checksum_complete(skb)) {
1466 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1467 					IS_UDPLITE(sk));
1468 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1469 					IS_UDPLITE(sk));
1470 			atomic_inc(&sk->sk_drops);
1471 			__skb_unlink(skb, rcvq);
1472 			*total += skb->truesize;
1473 			kfree_skb(skb);
1474 		} else {
1475 			/* the csum related bits could be changed, refresh
1476 			 * the scratch area
1477 			 */
1478 			udp_set_dev_scratch(skb);
1479 			break;
1480 		}
1481 	}
1482 	return skb;
1483 }
1484 
1485 /**
1486  *	first_packet_length	- return length of first packet in receive queue
1487  *	@sk: socket
1488  *
1489  *	Drops all bad checksum frames, until a valid one is found.
1490  *	Returns the length of found skb, or -1 if none is found.
1491  */
1492 static int first_packet_length(struct sock *sk)
1493 {
1494 	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1495 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1496 	struct sk_buff *skb;
1497 	int total = 0;
1498 	int res;
1499 
1500 	spin_lock_bh(&rcvq->lock);
1501 	skb = __first_packet_length(sk, rcvq, &total);
1502 	if (!skb && !skb_queue_empty(sk_queue)) {
1503 		spin_lock(&sk_queue->lock);
1504 		skb_queue_splice_tail_init(sk_queue, rcvq);
1505 		spin_unlock(&sk_queue->lock);
1506 
1507 		skb = __first_packet_length(sk, rcvq, &total);
1508 	}
1509 	res = skb ? skb->len : -1;
1510 	if (total)
1511 		udp_rmem_release(sk, total, 1, false);
1512 	spin_unlock_bh(&rcvq->lock);
1513 	return res;
1514 }
1515 
1516 /*
1517  *	IOCTL requests applicable to the UDP protocol
1518  */
1519 
1520 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1521 {
1522 	switch (cmd) {
1523 	case SIOCOUTQ:
1524 	{
1525 		int amount = sk_wmem_alloc_get(sk);
1526 
1527 		return put_user(amount, (int __user *)arg);
1528 	}
1529 
1530 	case SIOCINQ:
1531 	{
1532 		int amount = max_t(int, 0, first_packet_length(sk));
1533 
1534 		return put_user(amount, (int __user *)arg);
1535 	}
1536 
1537 	default:
1538 		return -ENOIOCTLCMD;
1539 	}
1540 
1541 	return 0;
1542 }
1543 EXPORT_SYMBOL(udp_ioctl);
1544 
1545 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1546 			       int noblock, int *peeked, int *off, int *err)
1547 {
1548 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1549 	struct sk_buff_head *queue;
1550 	struct sk_buff *last;
1551 	long timeo;
1552 	int error;
1553 
1554 	queue = &udp_sk(sk)->reader_queue;
1555 	flags |= noblock ? MSG_DONTWAIT : 0;
1556 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1557 	do {
1558 		struct sk_buff *skb;
1559 
1560 		error = sock_error(sk);
1561 		if (error)
1562 			break;
1563 
1564 		error = -EAGAIN;
1565 		*peeked = 0;
1566 		do {
1567 			spin_lock_bh(&queue->lock);
1568 			skb = __skb_try_recv_from_queue(sk, queue, flags,
1569 							udp_skb_destructor,
1570 							peeked, off, err,
1571 							&last);
1572 			if (skb) {
1573 				spin_unlock_bh(&queue->lock);
1574 				return skb;
1575 			}
1576 
1577 			if (skb_queue_empty(sk_queue)) {
1578 				spin_unlock_bh(&queue->lock);
1579 				goto busy_check;
1580 			}
1581 
1582 			/* refill the reader queue and walk it again
1583 			 * keep both queues locked to avoid re-acquiring
1584 			 * the sk_receive_queue lock if fwd memory scheduling
1585 			 * is needed.
1586 			 */
1587 			spin_lock(&sk_queue->lock);
1588 			skb_queue_splice_tail_init(sk_queue, queue);
1589 
1590 			skb = __skb_try_recv_from_queue(sk, queue, flags,
1591 							udp_skb_dtor_locked,
1592 							peeked, off, err,
1593 							&last);
1594 			spin_unlock(&sk_queue->lock);
1595 			spin_unlock_bh(&queue->lock);
1596 			if (skb)
1597 				return skb;
1598 
1599 busy_check:
1600 			if (!sk_can_busy_loop(sk))
1601 				break;
1602 
1603 			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1604 		} while (!skb_queue_empty(sk_queue));
1605 
1606 		/* sk_queue is empty, reader_queue may contain peeked packets */
1607 	} while (timeo &&
1608 		 !__skb_wait_for_more_packets(sk, &error, &timeo,
1609 					      (struct sk_buff *)sk_queue));
1610 
1611 	*err = error;
1612 	return NULL;
1613 }
1614 EXPORT_SYMBOL_GPL(__skb_recv_udp);
1615 
1616 /*
1617  * 	This should be easy, if there is something there we
1618  * 	return it, otherwise we block.
1619  */
1620 
1621 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1622 		int flags, int *addr_len)
1623 {
1624 	struct inet_sock *inet = inet_sk(sk);
1625 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1626 	struct sk_buff *skb;
1627 	unsigned int ulen, copied;
1628 	int peeked, peeking, off;
1629 	int err;
1630 	int is_udplite = IS_UDPLITE(sk);
1631 	bool checksum_valid = false;
1632 
1633 	if (flags & MSG_ERRQUEUE)
1634 		return ip_recv_error(sk, msg, len, addr_len);
1635 
1636 try_again:
1637 	peeking = flags & MSG_PEEK;
1638 	off = sk_peek_offset(sk, flags);
1639 	skb = __skb_recv_udp(sk, flags, noblock, &peeked, &off, &err);
1640 	if (!skb)
1641 		return err;
1642 
1643 	ulen = udp_skb_len(skb);
1644 	copied = len;
1645 	if (copied > ulen - off)
1646 		copied = ulen - off;
1647 	else if (copied < ulen)
1648 		msg->msg_flags |= MSG_TRUNC;
1649 
1650 	/*
1651 	 * If checksum is needed at all, try to do it while copying the
1652 	 * data.  If the data is truncated, or if we only want a partial
1653 	 * coverage checksum (UDP-Lite), do it before the copy.
1654 	 */
1655 
1656 	if (copied < ulen || peeking ||
1657 	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1658 		checksum_valid = udp_skb_csum_unnecessary(skb) ||
1659 				!__udp_lib_checksum_complete(skb);
1660 		if (!checksum_valid)
1661 			goto csum_copy_err;
1662 	}
1663 
1664 	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1665 		if (udp_skb_is_linear(skb))
1666 			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1667 		else
1668 			err = skb_copy_datagram_msg(skb, off, msg, copied);
1669 	} else {
1670 		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1671 
1672 		if (err == -EINVAL)
1673 			goto csum_copy_err;
1674 	}
1675 
1676 	if (unlikely(err)) {
1677 		if (!peeked) {
1678 			atomic_inc(&sk->sk_drops);
1679 			UDP_INC_STATS(sock_net(sk),
1680 				      UDP_MIB_INERRORS, is_udplite);
1681 		}
1682 		kfree_skb(skb);
1683 		return err;
1684 	}
1685 
1686 	if (!peeked)
1687 		UDP_INC_STATS(sock_net(sk),
1688 			      UDP_MIB_INDATAGRAMS, is_udplite);
1689 
1690 	sock_recv_ts_and_drops(msg, sk, skb);
1691 
1692 	/* Copy the address. */
1693 	if (sin) {
1694 		sin->sin_family = AF_INET;
1695 		sin->sin_port = udp_hdr(skb)->source;
1696 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1697 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1698 		*addr_len = sizeof(*sin);
1699 	}
1700 	if (inet->cmsg_flags)
1701 		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1702 
1703 	err = copied;
1704 	if (flags & MSG_TRUNC)
1705 		err = ulen;
1706 
1707 	skb_consume_udp(sk, skb, peeking ? -err : err);
1708 	return err;
1709 
1710 csum_copy_err:
1711 	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1712 				 udp_skb_destructor)) {
1713 		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1714 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1715 	}
1716 	kfree_skb(skb);
1717 
1718 	/* starting over for a new packet, but check if we need to yield */
1719 	cond_resched();
1720 	msg->msg_flags &= ~MSG_TRUNC;
1721 	goto try_again;
1722 }
1723 
1724 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1725 {
1726 	/* This check is replicated from __ip4_datagram_connect() and
1727 	 * intended to prevent BPF program called below from accessing bytes
1728 	 * that are out of the bound specified by user in addr_len.
1729 	 */
1730 	if (addr_len < sizeof(struct sockaddr_in))
1731 		return -EINVAL;
1732 
1733 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr);
1734 }
1735 EXPORT_SYMBOL(udp_pre_connect);
1736 
1737 int __udp_disconnect(struct sock *sk, int flags)
1738 {
1739 	struct inet_sock *inet = inet_sk(sk);
1740 	/*
1741 	 *	1003.1g - break association.
1742 	 */
1743 
1744 	sk->sk_state = TCP_CLOSE;
1745 	inet->inet_daddr = 0;
1746 	inet->inet_dport = 0;
1747 	sock_rps_reset_rxhash(sk);
1748 	sk->sk_bound_dev_if = 0;
1749 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1750 		inet_reset_saddr(sk);
1751 
1752 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1753 		sk->sk_prot->unhash(sk);
1754 		inet->inet_sport = 0;
1755 	}
1756 	sk_dst_reset(sk);
1757 	return 0;
1758 }
1759 EXPORT_SYMBOL(__udp_disconnect);
1760 
1761 int udp_disconnect(struct sock *sk, int flags)
1762 {
1763 	lock_sock(sk);
1764 	__udp_disconnect(sk, flags);
1765 	release_sock(sk);
1766 	return 0;
1767 }
1768 EXPORT_SYMBOL(udp_disconnect);
1769 
1770 void udp_lib_unhash(struct sock *sk)
1771 {
1772 	if (sk_hashed(sk)) {
1773 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1774 		struct udp_hslot *hslot, *hslot2;
1775 
1776 		hslot  = udp_hashslot(udptable, sock_net(sk),
1777 				      udp_sk(sk)->udp_port_hash);
1778 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1779 
1780 		spin_lock_bh(&hslot->lock);
1781 		if (rcu_access_pointer(sk->sk_reuseport_cb))
1782 			reuseport_detach_sock(sk);
1783 		if (sk_del_node_init_rcu(sk)) {
1784 			hslot->count--;
1785 			inet_sk(sk)->inet_num = 0;
1786 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1787 
1788 			spin_lock(&hslot2->lock);
1789 			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1790 			hslot2->count--;
1791 			spin_unlock(&hslot2->lock);
1792 		}
1793 		spin_unlock_bh(&hslot->lock);
1794 	}
1795 }
1796 EXPORT_SYMBOL(udp_lib_unhash);
1797 
1798 /*
1799  * inet_rcv_saddr was changed, we must rehash secondary hash
1800  */
1801 void udp_lib_rehash(struct sock *sk, u16 newhash)
1802 {
1803 	if (sk_hashed(sk)) {
1804 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1805 		struct udp_hslot *hslot, *hslot2, *nhslot2;
1806 
1807 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1808 		nhslot2 = udp_hashslot2(udptable, newhash);
1809 		udp_sk(sk)->udp_portaddr_hash = newhash;
1810 
1811 		if (hslot2 != nhslot2 ||
1812 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
1813 			hslot = udp_hashslot(udptable, sock_net(sk),
1814 					     udp_sk(sk)->udp_port_hash);
1815 			/* we must lock primary chain too */
1816 			spin_lock_bh(&hslot->lock);
1817 			if (rcu_access_pointer(sk->sk_reuseport_cb))
1818 				reuseport_detach_sock(sk);
1819 
1820 			if (hslot2 != nhslot2) {
1821 				spin_lock(&hslot2->lock);
1822 				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1823 				hslot2->count--;
1824 				spin_unlock(&hslot2->lock);
1825 
1826 				spin_lock(&nhslot2->lock);
1827 				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1828 							 &nhslot2->head);
1829 				nhslot2->count++;
1830 				spin_unlock(&nhslot2->lock);
1831 			}
1832 
1833 			spin_unlock_bh(&hslot->lock);
1834 		}
1835 	}
1836 }
1837 EXPORT_SYMBOL(udp_lib_rehash);
1838 
1839 static void udp_v4_rehash(struct sock *sk)
1840 {
1841 	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
1842 					  inet_sk(sk)->inet_rcv_saddr,
1843 					  inet_sk(sk)->inet_num);
1844 	udp_lib_rehash(sk, new_hash);
1845 }
1846 
1847 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1848 {
1849 	int rc;
1850 
1851 	if (inet_sk(sk)->inet_daddr) {
1852 		sock_rps_save_rxhash(sk, skb);
1853 		sk_mark_napi_id(sk, skb);
1854 		sk_incoming_cpu_update(sk);
1855 	} else {
1856 		sk_mark_napi_id_once(sk, skb);
1857 	}
1858 
1859 	rc = __udp_enqueue_schedule_skb(sk, skb);
1860 	if (rc < 0) {
1861 		int is_udplite = IS_UDPLITE(sk);
1862 
1863 		/* Note that an ENOMEM error is charged twice */
1864 		if (rc == -ENOMEM)
1865 			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1866 					is_udplite);
1867 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1868 		kfree_skb(skb);
1869 		trace_udp_fail_queue_rcv_skb(rc, sk);
1870 		return -1;
1871 	}
1872 
1873 	return 0;
1874 }
1875 
1876 static struct static_key udp_encap_needed __read_mostly;
1877 void udp_encap_enable(void)
1878 {
1879 	static_key_enable(&udp_encap_needed);
1880 }
1881 EXPORT_SYMBOL(udp_encap_enable);
1882 
1883 /* returns:
1884  *  -1: error
1885  *   0: success
1886  *  >0: "udp encap" protocol resubmission
1887  *
1888  * Note that in the success and error cases, the skb is assumed to
1889  * have either been requeued or freed.
1890  */
1891 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1892 {
1893 	struct udp_sock *up = udp_sk(sk);
1894 	int is_udplite = IS_UDPLITE(sk);
1895 
1896 	/*
1897 	 *	Charge it to the socket, dropping if the queue is full.
1898 	 */
1899 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1900 		goto drop;
1901 	nf_reset(skb);
1902 
1903 	if (static_key_false(&udp_encap_needed) && up->encap_type) {
1904 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1905 
1906 		/*
1907 		 * This is an encapsulation socket so pass the skb to
1908 		 * the socket's udp_encap_rcv() hook. Otherwise, just
1909 		 * fall through and pass this up the UDP socket.
1910 		 * up->encap_rcv() returns the following value:
1911 		 * =0 if skb was successfully passed to the encap
1912 		 *    handler or was discarded by it.
1913 		 * >0 if skb should be passed on to UDP.
1914 		 * <0 if skb should be resubmitted as proto -N
1915 		 */
1916 
1917 		/* if we're overly short, let UDP handle it */
1918 		encap_rcv = READ_ONCE(up->encap_rcv);
1919 		if (encap_rcv) {
1920 			int ret;
1921 
1922 			/* Verify checksum before giving to encap */
1923 			if (udp_lib_checksum_complete(skb))
1924 				goto csum_error;
1925 
1926 			ret = encap_rcv(sk, skb);
1927 			if (ret <= 0) {
1928 				__UDP_INC_STATS(sock_net(sk),
1929 						UDP_MIB_INDATAGRAMS,
1930 						is_udplite);
1931 				return -ret;
1932 			}
1933 		}
1934 
1935 		/* FALLTHROUGH -- it's a UDP Packet */
1936 	}
1937 
1938 	/*
1939 	 * 	UDP-Lite specific tests, ignored on UDP sockets
1940 	 */
1941 	if ((is_udplite & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
1942 
1943 		/*
1944 		 * MIB statistics other than incrementing the error count are
1945 		 * disabled for the following two types of errors: these depend
1946 		 * on the application settings, not on the functioning of the
1947 		 * protocol stack as such.
1948 		 *
1949 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
1950 		 * way ... to ... at least let the receiving application block
1951 		 * delivery of packets with coverage values less than a value
1952 		 * provided by the application."
1953 		 */
1954 		if (up->pcrlen == 0) {          /* full coverage was set  */
1955 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
1956 					    UDP_SKB_CB(skb)->cscov, skb->len);
1957 			goto drop;
1958 		}
1959 		/* The next case involves violating the min. coverage requested
1960 		 * by the receiver. This is subtle: if receiver wants x and x is
1961 		 * greater than the buffersize/MTU then receiver will complain
1962 		 * that it wants x while sender emits packets of smaller size y.
1963 		 * Therefore the above ...()->partial_cov statement is essential.
1964 		 */
1965 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
1966 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
1967 					    UDP_SKB_CB(skb)->cscov, up->pcrlen);
1968 			goto drop;
1969 		}
1970 	}
1971 
1972 	prefetch(&sk->sk_rmem_alloc);
1973 	if (rcu_access_pointer(sk->sk_filter) &&
1974 	    udp_lib_checksum_complete(skb))
1975 			goto csum_error;
1976 
1977 	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr)))
1978 		goto drop;
1979 
1980 	udp_csum_pull_header(skb);
1981 
1982 	ipv4_pktinfo_prepare(sk, skb);
1983 	return __udp_queue_rcv_skb(sk, skb);
1984 
1985 csum_error:
1986 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1987 drop:
1988 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1989 	atomic_inc(&sk->sk_drops);
1990 	kfree_skb(skb);
1991 	return -1;
1992 }
1993 
1994 /* For TCP sockets, sk_rx_dst is protected by socket lock
1995  * For UDP, we use xchg() to guard against concurrent changes.
1996  */
1997 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
1998 {
1999 	struct dst_entry *old;
2000 
2001 	if (dst_hold_safe(dst)) {
2002 		old = xchg(&sk->sk_rx_dst, dst);
2003 		dst_release(old);
2004 		return old != dst;
2005 	}
2006 	return false;
2007 }
2008 EXPORT_SYMBOL(udp_sk_rx_dst_set);
2009 
2010 /*
2011  *	Multicasts and broadcasts go to each listener.
2012  *
2013  *	Note: called only from the BH handler context.
2014  */
2015 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2016 				    struct udphdr  *uh,
2017 				    __be32 saddr, __be32 daddr,
2018 				    struct udp_table *udptable,
2019 				    int proto)
2020 {
2021 	struct sock *sk, *first = NULL;
2022 	unsigned short hnum = ntohs(uh->dest);
2023 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2024 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2025 	unsigned int offset = offsetof(typeof(*sk), sk_node);
2026 	int dif = skb->dev->ifindex;
2027 	int sdif = inet_sdif(skb);
2028 	struct hlist_node *node;
2029 	struct sk_buff *nskb;
2030 
2031 	if (use_hash2) {
2032 		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2033 			    udptable->mask;
2034 		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2035 start_lookup:
2036 		hslot = &udptable->hash2[hash2];
2037 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2038 	}
2039 
2040 	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2041 		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2042 					 uh->source, saddr, dif, sdif, hnum))
2043 			continue;
2044 
2045 		if (!first) {
2046 			first = sk;
2047 			continue;
2048 		}
2049 		nskb = skb_clone(skb, GFP_ATOMIC);
2050 
2051 		if (unlikely(!nskb)) {
2052 			atomic_inc(&sk->sk_drops);
2053 			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2054 					IS_UDPLITE(sk));
2055 			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
2056 					IS_UDPLITE(sk));
2057 			continue;
2058 		}
2059 		if (udp_queue_rcv_skb(sk, nskb) > 0)
2060 			consume_skb(nskb);
2061 	}
2062 
2063 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2064 	if (use_hash2 && hash2 != hash2_any) {
2065 		hash2 = hash2_any;
2066 		goto start_lookup;
2067 	}
2068 
2069 	if (first) {
2070 		if (udp_queue_rcv_skb(first, skb) > 0)
2071 			consume_skb(skb);
2072 	} else {
2073 		kfree_skb(skb);
2074 		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2075 				proto == IPPROTO_UDPLITE);
2076 	}
2077 	return 0;
2078 }
2079 
2080 /* Initialize UDP checksum. If exited with zero value (success),
2081  * CHECKSUM_UNNECESSARY means, that no more checks are required.
2082  * Otherwise, csum completion requires chacksumming packet body,
2083  * including udp header and folding it to skb->csum.
2084  */
2085 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2086 				 int proto)
2087 {
2088 	int err;
2089 
2090 	UDP_SKB_CB(skb)->partial_cov = 0;
2091 	UDP_SKB_CB(skb)->cscov = skb->len;
2092 
2093 	if (proto == IPPROTO_UDPLITE) {
2094 		err = udplite_checksum_init(skb, uh);
2095 		if (err)
2096 			return err;
2097 
2098 		if (UDP_SKB_CB(skb)->partial_cov) {
2099 			skb->csum = inet_compute_pseudo(skb, proto);
2100 			return 0;
2101 		}
2102 	}
2103 
2104 	/* Note, we are only interested in != 0 or == 0, thus the
2105 	 * force to int.
2106 	 */
2107 	return (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2108 							 inet_compute_pseudo);
2109 }
2110 
2111 /*
2112  *	All we need to do is get the socket, and then do a checksum.
2113  */
2114 
2115 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2116 		   int proto)
2117 {
2118 	struct sock *sk;
2119 	struct udphdr *uh;
2120 	unsigned short ulen;
2121 	struct rtable *rt = skb_rtable(skb);
2122 	__be32 saddr, daddr;
2123 	struct net *net = dev_net(skb->dev);
2124 
2125 	/*
2126 	 *  Validate the packet.
2127 	 */
2128 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2129 		goto drop;		/* No space for header. */
2130 
2131 	uh   = udp_hdr(skb);
2132 	ulen = ntohs(uh->len);
2133 	saddr = ip_hdr(skb)->saddr;
2134 	daddr = ip_hdr(skb)->daddr;
2135 
2136 	if (ulen > skb->len)
2137 		goto short_packet;
2138 
2139 	if (proto == IPPROTO_UDP) {
2140 		/* UDP validates ulen. */
2141 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2142 			goto short_packet;
2143 		uh = udp_hdr(skb);
2144 	}
2145 
2146 	if (udp4_csum_init(skb, uh, proto))
2147 		goto csum_error;
2148 
2149 	sk = skb_steal_sock(skb);
2150 	if (sk) {
2151 		struct dst_entry *dst = skb_dst(skb);
2152 		int ret;
2153 
2154 		if (unlikely(sk->sk_rx_dst != dst))
2155 			udp_sk_rx_dst_set(sk, dst);
2156 
2157 		ret = udp_queue_rcv_skb(sk, skb);
2158 		sock_put(sk);
2159 		/* a return value > 0 means to resubmit the input, but
2160 		 * it wants the return to be -protocol, or 0
2161 		 */
2162 		if (ret > 0)
2163 			return -ret;
2164 		return 0;
2165 	}
2166 
2167 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2168 		return __udp4_lib_mcast_deliver(net, skb, uh,
2169 						saddr, daddr, udptable, proto);
2170 
2171 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2172 	if (sk) {
2173 		int ret;
2174 
2175 		if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2176 			skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check,
2177 						 inet_compute_pseudo);
2178 
2179 		ret = udp_queue_rcv_skb(sk, skb);
2180 
2181 		/* a return value > 0 means to resubmit the input, but
2182 		 * it wants the return to be -protocol, or 0
2183 		 */
2184 		if (ret > 0)
2185 			return -ret;
2186 		return 0;
2187 	}
2188 
2189 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2190 		goto drop;
2191 	nf_reset(skb);
2192 
2193 	/* No socket. Drop packet silently, if checksum is wrong */
2194 	if (udp_lib_checksum_complete(skb))
2195 		goto csum_error;
2196 
2197 	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2198 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2199 
2200 	/*
2201 	 * Hmm.  We got an UDP packet to a port to which we
2202 	 * don't wanna listen.  Ignore it.
2203 	 */
2204 	kfree_skb(skb);
2205 	return 0;
2206 
2207 short_packet:
2208 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2209 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2210 			    &saddr, ntohs(uh->source),
2211 			    ulen, skb->len,
2212 			    &daddr, ntohs(uh->dest));
2213 	goto drop;
2214 
2215 csum_error:
2216 	/*
2217 	 * RFC1122: OK.  Discards the bad packet silently (as far as
2218 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2219 	 */
2220 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2221 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2222 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2223 			    ulen);
2224 	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2225 drop:
2226 	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2227 	kfree_skb(skb);
2228 	return 0;
2229 }
2230 
2231 /* We can only early demux multicast if there is a single matching socket.
2232  * If more than one socket found returns NULL
2233  */
2234 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2235 						  __be16 loc_port, __be32 loc_addr,
2236 						  __be16 rmt_port, __be32 rmt_addr,
2237 						  int dif, int sdif)
2238 {
2239 	struct sock *sk, *result;
2240 	unsigned short hnum = ntohs(loc_port);
2241 	unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
2242 	struct udp_hslot *hslot = &udp_table.hash[slot];
2243 
2244 	/* Do not bother scanning a too big list */
2245 	if (hslot->count > 10)
2246 		return NULL;
2247 
2248 	result = NULL;
2249 	sk_for_each_rcu(sk, &hslot->head) {
2250 		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2251 					rmt_port, rmt_addr, dif, sdif, hnum)) {
2252 			if (result)
2253 				return NULL;
2254 			result = sk;
2255 		}
2256 	}
2257 
2258 	return result;
2259 }
2260 
2261 /* For unicast we should only early demux connected sockets or we can
2262  * break forwarding setups.  The chains here can be long so only check
2263  * if the first socket is an exact match and if not move on.
2264  */
2265 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2266 					    __be16 loc_port, __be32 loc_addr,
2267 					    __be16 rmt_port, __be32 rmt_addr,
2268 					    int dif, int sdif)
2269 {
2270 	unsigned short hnum = ntohs(loc_port);
2271 	unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2272 	unsigned int slot2 = hash2 & udp_table.mask;
2273 	struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
2274 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2275 	const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
2276 	struct sock *sk;
2277 
2278 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2279 		if (INET_MATCH(sk, net, acookie, rmt_addr,
2280 			       loc_addr, ports, dif, sdif))
2281 			return sk;
2282 		/* Only check first socket in chain */
2283 		break;
2284 	}
2285 	return NULL;
2286 }
2287 
2288 int udp_v4_early_demux(struct sk_buff *skb)
2289 {
2290 	struct net *net = dev_net(skb->dev);
2291 	struct in_device *in_dev = NULL;
2292 	const struct iphdr *iph;
2293 	const struct udphdr *uh;
2294 	struct sock *sk = NULL;
2295 	struct dst_entry *dst;
2296 	int dif = skb->dev->ifindex;
2297 	int sdif = inet_sdif(skb);
2298 	int ours;
2299 
2300 	/* validate the packet */
2301 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2302 		return 0;
2303 
2304 	iph = ip_hdr(skb);
2305 	uh = udp_hdr(skb);
2306 
2307 	if (skb->pkt_type == PACKET_MULTICAST) {
2308 		in_dev = __in_dev_get_rcu(skb->dev);
2309 
2310 		if (!in_dev)
2311 			return 0;
2312 
2313 		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2314 				       iph->protocol);
2315 		if (!ours)
2316 			return 0;
2317 
2318 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2319 						   uh->source, iph->saddr,
2320 						   dif, sdif);
2321 	} else if (skb->pkt_type == PACKET_HOST) {
2322 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2323 					     uh->source, iph->saddr, dif, sdif);
2324 	}
2325 
2326 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2327 		return 0;
2328 
2329 	skb->sk = sk;
2330 	skb->destructor = sock_efree;
2331 	dst = READ_ONCE(sk->sk_rx_dst);
2332 
2333 	if (dst)
2334 		dst = dst_check(dst, 0);
2335 	if (dst) {
2336 		u32 itag = 0;
2337 
2338 		/* set noref for now.
2339 		 * any place which wants to hold dst has to call
2340 		 * dst_hold_safe()
2341 		 */
2342 		skb_dst_set_noref(skb, dst);
2343 
2344 		/* for unconnected multicast sockets we need to validate
2345 		 * the source on each packet
2346 		 */
2347 		if (!inet_sk(sk)->inet_daddr && in_dev)
2348 			return ip_mc_validate_source(skb, iph->daddr,
2349 						     iph->saddr, iph->tos,
2350 						     skb->dev, in_dev, &itag);
2351 	}
2352 	return 0;
2353 }
2354 
2355 int udp_rcv(struct sk_buff *skb)
2356 {
2357 	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2358 }
2359 
2360 void udp_destroy_sock(struct sock *sk)
2361 {
2362 	struct udp_sock *up = udp_sk(sk);
2363 	bool slow = lock_sock_fast(sk);
2364 	udp_flush_pending_frames(sk);
2365 	unlock_sock_fast(sk, slow);
2366 	if (static_key_false(&udp_encap_needed) && up->encap_type) {
2367 		void (*encap_destroy)(struct sock *sk);
2368 		encap_destroy = READ_ONCE(up->encap_destroy);
2369 		if (encap_destroy)
2370 			encap_destroy(sk);
2371 	}
2372 }
2373 
2374 /*
2375  *	Socket option code for UDP
2376  */
2377 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2378 		       char __user *optval, unsigned int optlen,
2379 		       int (*push_pending_frames)(struct sock *))
2380 {
2381 	struct udp_sock *up = udp_sk(sk);
2382 	int val, valbool;
2383 	int err = 0;
2384 	int is_udplite = IS_UDPLITE(sk);
2385 
2386 	if (optlen < sizeof(int))
2387 		return -EINVAL;
2388 
2389 	if (get_user(val, (int __user *)optval))
2390 		return -EFAULT;
2391 
2392 	valbool = val ? 1 : 0;
2393 
2394 	switch (optname) {
2395 	case UDP_CORK:
2396 		if (val != 0) {
2397 			up->corkflag = 1;
2398 		} else {
2399 			up->corkflag = 0;
2400 			lock_sock(sk);
2401 			push_pending_frames(sk);
2402 			release_sock(sk);
2403 		}
2404 		break;
2405 
2406 	case UDP_ENCAP:
2407 		switch (val) {
2408 		case 0:
2409 		case UDP_ENCAP_ESPINUDP:
2410 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2411 			up->encap_rcv = xfrm4_udp_encap_rcv;
2412 			/* FALLTHROUGH */
2413 		case UDP_ENCAP_L2TPINUDP:
2414 			up->encap_type = val;
2415 			udp_encap_enable();
2416 			break;
2417 		default:
2418 			err = -ENOPROTOOPT;
2419 			break;
2420 		}
2421 		break;
2422 
2423 	case UDP_NO_CHECK6_TX:
2424 		up->no_check6_tx = valbool;
2425 		break;
2426 
2427 	case UDP_NO_CHECK6_RX:
2428 		up->no_check6_rx = valbool;
2429 		break;
2430 
2431 	case UDP_SEGMENT:
2432 		if (val < 0 || val > USHRT_MAX)
2433 			return -EINVAL;
2434 		up->gso_size = val;
2435 		break;
2436 
2437 	/*
2438 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2439 	 */
2440 	/* The sender sets actual checksum coverage length via this option.
2441 	 * The case coverage > packet length is handled by send module. */
2442 	case UDPLITE_SEND_CSCOV:
2443 		if (!is_udplite)         /* Disable the option on UDP sockets */
2444 			return -ENOPROTOOPT;
2445 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2446 			val = 8;
2447 		else if (val > USHRT_MAX)
2448 			val = USHRT_MAX;
2449 		up->pcslen = val;
2450 		up->pcflag |= UDPLITE_SEND_CC;
2451 		break;
2452 
2453 	/* The receiver specifies a minimum checksum coverage value. To make
2454 	 * sense, this should be set to at least 8 (as done below). If zero is
2455 	 * used, this again means full checksum coverage.                     */
2456 	case UDPLITE_RECV_CSCOV:
2457 		if (!is_udplite)         /* Disable the option on UDP sockets */
2458 			return -ENOPROTOOPT;
2459 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2460 			val = 8;
2461 		else if (val > USHRT_MAX)
2462 			val = USHRT_MAX;
2463 		up->pcrlen = val;
2464 		up->pcflag |= UDPLITE_RECV_CC;
2465 		break;
2466 
2467 	default:
2468 		err = -ENOPROTOOPT;
2469 		break;
2470 	}
2471 
2472 	return err;
2473 }
2474 EXPORT_SYMBOL(udp_lib_setsockopt);
2475 
2476 int udp_setsockopt(struct sock *sk, int level, int optname,
2477 		   char __user *optval, unsigned int optlen)
2478 {
2479 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2480 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2481 					  udp_push_pending_frames);
2482 	return ip_setsockopt(sk, level, optname, optval, optlen);
2483 }
2484 
2485 #ifdef CONFIG_COMPAT
2486 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2487 			  char __user *optval, unsigned int optlen)
2488 {
2489 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2490 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2491 					  udp_push_pending_frames);
2492 	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2493 }
2494 #endif
2495 
2496 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2497 		       char __user *optval, int __user *optlen)
2498 {
2499 	struct udp_sock *up = udp_sk(sk);
2500 	int val, len;
2501 
2502 	if (get_user(len, optlen))
2503 		return -EFAULT;
2504 
2505 	len = min_t(unsigned int, len, sizeof(int));
2506 
2507 	if (len < 0)
2508 		return -EINVAL;
2509 
2510 	switch (optname) {
2511 	case UDP_CORK:
2512 		val = up->corkflag;
2513 		break;
2514 
2515 	case UDP_ENCAP:
2516 		val = up->encap_type;
2517 		break;
2518 
2519 	case UDP_NO_CHECK6_TX:
2520 		val = up->no_check6_tx;
2521 		break;
2522 
2523 	case UDP_NO_CHECK6_RX:
2524 		val = up->no_check6_rx;
2525 		break;
2526 
2527 	case UDP_SEGMENT:
2528 		val = up->gso_size;
2529 		break;
2530 
2531 	/* The following two cannot be changed on UDP sockets, the return is
2532 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2533 	case UDPLITE_SEND_CSCOV:
2534 		val = up->pcslen;
2535 		break;
2536 
2537 	case UDPLITE_RECV_CSCOV:
2538 		val = up->pcrlen;
2539 		break;
2540 
2541 	default:
2542 		return -ENOPROTOOPT;
2543 	}
2544 
2545 	if (put_user(len, optlen))
2546 		return -EFAULT;
2547 	if (copy_to_user(optval, &val, len))
2548 		return -EFAULT;
2549 	return 0;
2550 }
2551 EXPORT_SYMBOL(udp_lib_getsockopt);
2552 
2553 int udp_getsockopt(struct sock *sk, int level, int optname,
2554 		   char __user *optval, int __user *optlen)
2555 {
2556 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2557 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2558 	return ip_getsockopt(sk, level, optname, optval, optlen);
2559 }
2560 
2561 #ifdef CONFIG_COMPAT
2562 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2563 				 char __user *optval, int __user *optlen)
2564 {
2565 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2566 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2567 	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2568 }
2569 #endif
2570 /**
2571  * 	udp_poll - wait for a UDP event.
2572  *	@file - file struct
2573  *	@sock - socket
2574  *	@wait - poll table
2575  *
2576  *	This is same as datagram poll, except for the special case of
2577  *	blocking sockets. If application is using a blocking fd
2578  *	and a packet with checksum error is in the queue;
2579  *	then it could get return from select indicating data available
2580  *	but then block when reading it. Add special case code
2581  *	to work around these arguably broken applications.
2582  */
2583 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2584 {
2585 	__poll_t mask = datagram_poll(file, sock, wait);
2586 	struct sock *sk = sock->sk;
2587 
2588 	if (!skb_queue_empty(&udp_sk(sk)->reader_queue))
2589 		mask |= EPOLLIN | EPOLLRDNORM;
2590 
2591 	/* Check for false positives due to checksum errors */
2592 	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2593 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2594 		mask &= ~(EPOLLIN | EPOLLRDNORM);
2595 
2596 	return mask;
2597 
2598 }
2599 EXPORT_SYMBOL(udp_poll);
2600 
2601 int udp_abort(struct sock *sk, int err)
2602 {
2603 	lock_sock(sk);
2604 
2605 	sk->sk_err = err;
2606 	sk->sk_error_report(sk);
2607 	__udp_disconnect(sk, 0);
2608 
2609 	release_sock(sk);
2610 
2611 	return 0;
2612 }
2613 EXPORT_SYMBOL_GPL(udp_abort);
2614 
2615 struct proto udp_prot = {
2616 	.name			= "UDP",
2617 	.owner			= THIS_MODULE,
2618 	.close			= udp_lib_close,
2619 	.pre_connect		= udp_pre_connect,
2620 	.connect		= ip4_datagram_connect,
2621 	.disconnect		= udp_disconnect,
2622 	.ioctl			= udp_ioctl,
2623 	.init			= udp_init_sock,
2624 	.destroy		= udp_destroy_sock,
2625 	.setsockopt		= udp_setsockopt,
2626 	.getsockopt		= udp_getsockopt,
2627 	.sendmsg		= udp_sendmsg,
2628 	.recvmsg		= udp_recvmsg,
2629 	.sendpage		= udp_sendpage,
2630 	.release_cb		= ip4_datagram_release_cb,
2631 	.hash			= udp_lib_hash,
2632 	.unhash			= udp_lib_unhash,
2633 	.rehash			= udp_v4_rehash,
2634 	.get_port		= udp_v4_get_port,
2635 	.memory_allocated	= &udp_memory_allocated,
2636 	.sysctl_mem		= sysctl_udp_mem,
2637 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2638 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2639 	.obj_size		= sizeof(struct udp_sock),
2640 	.h.udp_table		= &udp_table,
2641 #ifdef CONFIG_COMPAT
2642 	.compat_setsockopt	= compat_udp_setsockopt,
2643 	.compat_getsockopt	= compat_udp_getsockopt,
2644 #endif
2645 	.diag_destroy		= udp_abort,
2646 };
2647 EXPORT_SYMBOL(udp_prot);
2648 
2649 /* ------------------------------------------------------------------------ */
2650 #ifdef CONFIG_PROC_FS
2651 
2652 static struct sock *udp_get_first(struct seq_file *seq, int start)
2653 {
2654 	struct sock *sk;
2655 	struct udp_iter_state *state = seq->private;
2656 	struct net *net = seq_file_net(seq);
2657 
2658 	for (state->bucket = start; state->bucket <= state->udp_table->mask;
2659 	     ++state->bucket) {
2660 		struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
2661 
2662 		if (hlist_empty(&hslot->head))
2663 			continue;
2664 
2665 		spin_lock_bh(&hslot->lock);
2666 		sk_for_each(sk, &hslot->head) {
2667 			if (!net_eq(sock_net(sk), net))
2668 				continue;
2669 			if (sk->sk_family == state->family)
2670 				goto found;
2671 		}
2672 		spin_unlock_bh(&hslot->lock);
2673 	}
2674 	sk = NULL;
2675 found:
2676 	return sk;
2677 }
2678 
2679 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2680 {
2681 	struct udp_iter_state *state = seq->private;
2682 	struct net *net = seq_file_net(seq);
2683 
2684 	do {
2685 		sk = sk_next(sk);
2686 	} while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
2687 
2688 	if (!sk) {
2689 		if (state->bucket <= state->udp_table->mask)
2690 			spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2691 		return udp_get_first(seq, state->bucket + 1);
2692 	}
2693 	return sk;
2694 }
2695 
2696 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2697 {
2698 	struct sock *sk = udp_get_first(seq, 0);
2699 
2700 	if (sk)
2701 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2702 			--pos;
2703 	return pos ? NULL : sk;
2704 }
2705 
2706 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2707 {
2708 	struct udp_iter_state *state = seq->private;
2709 	state->bucket = MAX_UDP_PORTS;
2710 
2711 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2712 }
2713 
2714 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2715 {
2716 	struct sock *sk;
2717 
2718 	if (v == SEQ_START_TOKEN)
2719 		sk = udp_get_idx(seq, 0);
2720 	else
2721 		sk = udp_get_next(seq, v);
2722 
2723 	++*pos;
2724 	return sk;
2725 }
2726 
2727 static void udp_seq_stop(struct seq_file *seq, void *v)
2728 {
2729 	struct udp_iter_state *state = seq->private;
2730 
2731 	if (state->bucket <= state->udp_table->mask)
2732 		spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2733 }
2734 
2735 int udp_seq_open(struct inode *inode, struct file *file)
2736 {
2737 	struct udp_seq_afinfo *afinfo = PDE_DATA(inode);
2738 	struct udp_iter_state *s;
2739 	int err;
2740 
2741 	err = seq_open_net(inode, file, &afinfo->seq_ops,
2742 			   sizeof(struct udp_iter_state));
2743 	if (err < 0)
2744 		return err;
2745 
2746 	s = ((struct seq_file *)file->private_data)->private;
2747 	s->family		= afinfo->family;
2748 	s->udp_table		= afinfo->udp_table;
2749 	return err;
2750 }
2751 EXPORT_SYMBOL(udp_seq_open);
2752 
2753 /* ------------------------------------------------------------------------ */
2754 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2755 {
2756 	struct proc_dir_entry *p;
2757 	int rc = 0;
2758 
2759 	afinfo->seq_ops.start		= udp_seq_start;
2760 	afinfo->seq_ops.next		= udp_seq_next;
2761 	afinfo->seq_ops.stop		= udp_seq_stop;
2762 
2763 	p = proc_create_data(afinfo->name, 0444, net->proc_net,
2764 			     afinfo->seq_fops, afinfo);
2765 	if (!p)
2766 		rc = -ENOMEM;
2767 	return rc;
2768 }
2769 EXPORT_SYMBOL(udp_proc_register);
2770 
2771 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2772 {
2773 	remove_proc_entry(afinfo->name, net->proc_net);
2774 }
2775 EXPORT_SYMBOL(udp_proc_unregister);
2776 
2777 /* ------------------------------------------------------------------------ */
2778 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2779 		int bucket)
2780 {
2781 	struct inet_sock *inet = inet_sk(sp);
2782 	__be32 dest = inet->inet_daddr;
2783 	__be32 src  = inet->inet_rcv_saddr;
2784 	__u16 destp	  = ntohs(inet->inet_dport);
2785 	__u16 srcp	  = ntohs(inet->inet_sport);
2786 
2787 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2788 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d",
2789 		bucket, src, srcp, dest, destp, sp->sk_state,
2790 		sk_wmem_alloc_get(sp),
2791 		sk_rmem_alloc_get(sp),
2792 		0, 0L, 0,
2793 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2794 		0, sock_i_ino(sp),
2795 		refcount_read(&sp->sk_refcnt), sp,
2796 		atomic_read(&sp->sk_drops));
2797 }
2798 
2799 int udp4_seq_show(struct seq_file *seq, void *v)
2800 {
2801 	seq_setwidth(seq, 127);
2802 	if (v == SEQ_START_TOKEN)
2803 		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2804 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2805 			   "inode ref pointer drops");
2806 	else {
2807 		struct udp_iter_state *state = seq->private;
2808 
2809 		udp4_format_sock(v, seq, state->bucket);
2810 	}
2811 	seq_pad(seq, '\n');
2812 	return 0;
2813 }
2814 
2815 static const struct file_operations udp_afinfo_seq_fops = {
2816 	.open     = udp_seq_open,
2817 	.read     = seq_read,
2818 	.llseek   = seq_lseek,
2819 	.release  = seq_release_net
2820 };
2821 
2822 /* ------------------------------------------------------------------------ */
2823 static struct udp_seq_afinfo udp4_seq_afinfo = {
2824 	.name		= "udp",
2825 	.family		= AF_INET,
2826 	.udp_table	= &udp_table,
2827 	.seq_fops	= &udp_afinfo_seq_fops,
2828 	.seq_ops	= {
2829 		.show		= udp4_seq_show,
2830 	},
2831 };
2832 
2833 static int __net_init udp4_proc_init_net(struct net *net)
2834 {
2835 	return udp_proc_register(net, &udp4_seq_afinfo);
2836 }
2837 
2838 static void __net_exit udp4_proc_exit_net(struct net *net)
2839 {
2840 	udp_proc_unregister(net, &udp4_seq_afinfo);
2841 }
2842 
2843 static struct pernet_operations udp4_net_ops = {
2844 	.init = udp4_proc_init_net,
2845 	.exit = udp4_proc_exit_net,
2846 };
2847 
2848 int __init udp4_proc_init(void)
2849 {
2850 	return register_pernet_subsys(&udp4_net_ops);
2851 }
2852 
2853 void udp4_proc_exit(void)
2854 {
2855 	unregister_pernet_subsys(&udp4_net_ops);
2856 }
2857 #endif /* CONFIG_PROC_FS */
2858 
2859 static __initdata unsigned long uhash_entries;
2860 static int __init set_uhash_entries(char *str)
2861 {
2862 	ssize_t ret;
2863 
2864 	if (!str)
2865 		return 0;
2866 
2867 	ret = kstrtoul(str, 0, &uhash_entries);
2868 	if (ret)
2869 		return 0;
2870 
2871 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2872 		uhash_entries = UDP_HTABLE_SIZE_MIN;
2873 	return 1;
2874 }
2875 __setup("uhash_entries=", set_uhash_entries);
2876 
2877 void __init udp_table_init(struct udp_table *table, const char *name)
2878 {
2879 	unsigned int i;
2880 
2881 	table->hash = alloc_large_system_hash(name,
2882 					      2 * sizeof(struct udp_hslot),
2883 					      uhash_entries,
2884 					      21, /* one slot per 2 MB */
2885 					      0,
2886 					      &table->log,
2887 					      &table->mask,
2888 					      UDP_HTABLE_SIZE_MIN,
2889 					      64 * 1024);
2890 
2891 	table->hash2 = table->hash + (table->mask + 1);
2892 	for (i = 0; i <= table->mask; i++) {
2893 		INIT_HLIST_HEAD(&table->hash[i].head);
2894 		table->hash[i].count = 0;
2895 		spin_lock_init(&table->hash[i].lock);
2896 	}
2897 	for (i = 0; i <= table->mask; i++) {
2898 		INIT_HLIST_HEAD(&table->hash2[i].head);
2899 		table->hash2[i].count = 0;
2900 		spin_lock_init(&table->hash2[i].lock);
2901 	}
2902 }
2903 
2904 u32 udp_flow_hashrnd(void)
2905 {
2906 	static u32 hashrnd __read_mostly;
2907 
2908 	net_get_random_once(&hashrnd, sizeof(hashrnd));
2909 
2910 	return hashrnd;
2911 }
2912 EXPORT_SYMBOL(udp_flow_hashrnd);
2913 
2914 static void __udp_sysctl_init(struct net *net)
2915 {
2916 	net->ipv4.sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2917 	net->ipv4.sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2918 
2919 #ifdef CONFIG_NET_L3_MASTER_DEV
2920 	net->ipv4.sysctl_udp_l3mdev_accept = 0;
2921 #endif
2922 }
2923 
2924 static int __net_init udp_sysctl_init(struct net *net)
2925 {
2926 	__udp_sysctl_init(net);
2927 	return 0;
2928 }
2929 
2930 static struct pernet_operations __net_initdata udp_sysctl_ops = {
2931 	.init	= udp_sysctl_init,
2932 };
2933 
2934 void __init udp_init(void)
2935 {
2936 	unsigned long limit;
2937 	unsigned int i;
2938 
2939 	udp_table_init(&udp_table, "UDP");
2940 	limit = nr_free_buffer_pages() / 8;
2941 	limit = max(limit, 128UL);
2942 	sysctl_udp_mem[0] = limit / 4 * 3;
2943 	sysctl_udp_mem[1] = limit;
2944 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2945 
2946 	__udp_sysctl_init(&init_net);
2947 
2948 	/* 16 spinlocks per cpu */
2949 	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
2950 	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
2951 				GFP_KERNEL);
2952 	if (!udp_busylocks)
2953 		panic("UDP: failed to alloc udp_busylocks\n");
2954 	for (i = 0; i < (1U << udp_busylocks_log); i++)
2955 		spin_lock_init(udp_busylocks + i);
2956 
2957 	if (register_pernet_subsys(&udp_sysctl_ops))
2958 		panic("UDP: failed to init sysctl parameters.\n");
2959 }
2960