1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * The User Datagram Protocol (UDP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 12 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 13 * Hirokazu Takahashi, <taka@valinux.co.jp> 14 * 15 * Fixes: 16 * Alan Cox : verify_area() calls 17 * Alan Cox : stopped close while in use off icmp 18 * messages. Not a fix but a botch that 19 * for udp at least is 'valid'. 20 * Alan Cox : Fixed icmp handling properly 21 * Alan Cox : Correct error for oversized datagrams 22 * Alan Cox : Tidied select() semantics. 23 * Alan Cox : udp_err() fixed properly, also now 24 * select and read wake correctly on errors 25 * Alan Cox : udp_send verify_area moved to avoid mem leak 26 * Alan Cox : UDP can count its memory 27 * Alan Cox : send to an unknown connection causes 28 * an ECONNREFUSED off the icmp, but 29 * does NOT close. 30 * Alan Cox : Switched to new sk_buff handlers. No more backlog! 31 * Alan Cox : Using generic datagram code. Even smaller and the PEEK 32 * bug no longer crashes it. 33 * Fred Van Kempen : Net2e support for sk->broadcast. 34 * Alan Cox : Uses skb_free_datagram 35 * Alan Cox : Added get/set sockopt support. 36 * Alan Cox : Broadcasting without option set returns EACCES. 37 * Alan Cox : No wakeup calls. Instead we now use the callbacks. 38 * Alan Cox : Use ip_tos and ip_ttl 39 * Alan Cox : SNMP Mibs 40 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support. 41 * Matt Dillon : UDP length checks. 42 * Alan Cox : Smarter af_inet used properly. 43 * Alan Cox : Use new kernel side addressing. 44 * Alan Cox : Incorrect return on truncated datagram receive. 45 * Arnt Gulbrandsen : New udp_send and stuff 46 * Alan Cox : Cache last socket 47 * Alan Cox : Route cache 48 * Jon Peatfield : Minor efficiency fix to sendto(). 49 * Mike Shaver : RFC1122 checks. 50 * Alan Cox : Nonblocking error fix. 51 * Willy Konynenberg : Transparent proxying support. 52 * Mike McLagan : Routing by source 53 * David S. Miller : New socket lookup architecture. 54 * Last socket cache retained as it 55 * does have a high hit rate. 56 * Olaf Kirch : Don't linearise iovec on sendmsg. 57 * Andi Kleen : Some cleanups, cache destination entry 58 * for connect. 59 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 60 * Melvin Smith : Check msg_name not msg_namelen in sendto(), 61 * return ENOTCONN for unconnected sockets (POSIX) 62 * Janos Farkas : don't deliver multi/broadcasts to a different 63 * bound-to-device socket 64 * Hirokazu Takahashi : HW checksumming for outgoing UDP 65 * datagrams. 66 * Hirokazu Takahashi : sendfile() on UDP works now. 67 * Arnaldo C. Melo : convert /proc/net/udp to seq_file 68 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 69 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind 70 * a single port at the same time. 71 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support 72 * James Chapman : Add L2TP encapsulation type. 73 */ 74 75 #define pr_fmt(fmt) "UDP: " fmt 76 77 #include <linux/bpf-cgroup.h> 78 #include <linux/uaccess.h> 79 #include <asm/ioctls.h> 80 #include <linux/memblock.h> 81 #include <linux/highmem.h> 82 #include <linux/types.h> 83 #include <linux/fcntl.h> 84 #include <linux/module.h> 85 #include <linux/socket.h> 86 #include <linux/sockios.h> 87 #include <linux/igmp.h> 88 #include <linux/inetdevice.h> 89 #include <linux/in.h> 90 #include <linux/errno.h> 91 #include <linux/timer.h> 92 #include <linux/mm.h> 93 #include <linux/inet.h> 94 #include <linux/netdevice.h> 95 #include <linux/slab.h> 96 #include <linux/sock_diag.h> 97 #include <net/tcp_states.h> 98 #include <linux/skbuff.h> 99 #include <linux/proc_fs.h> 100 #include <linux/seq_file.h> 101 #include <net/net_namespace.h> 102 #include <net/icmp.h> 103 #include <net/inet_hashtables.h> 104 #include <net/ip.h> 105 #include <net/ip_tunnels.h> 106 #include <net/route.h> 107 #include <net/checksum.h> 108 #include <net/gso.h> 109 #include <net/xfrm.h> 110 #include <trace/events/udp.h> 111 #include <linux/static_key.h> 112 #include <linux/btf_ids.h> 113 #include <trace/events/skb.h> 114 #include <net/busy_poll.h> 115 #include "udp_impl.h" 116 #include <net/sock_reuseport.h> 117 #include <net/addrconf.h> 118 #include <net/udp_tunnel.h> 119 #include <net/gro.h> 120 #if IS_ENABLED(CONFIG_IPV6) 121 #include <net/ipv6_stubs.h> 122 #endif 123 #include <net/rps.h> 124 125 struct udp_table udp_table __read_mostly; 126 127 long sysctl_udp_mem[3] __read_mostly; 128 EXPORT_IPV6_MOD(sysctl_udp_mem); 129 130 atomic_long_t udp_memory_allocated ____cacheline_aligned_in_smp; 131 EXPORT_IPV6_MOD(udp_memory_allocated); 132 DEFINE_PER_CPU(int, udp_memory_per_cpu_fw_alloc); 133 EXPORT_PER_CPU_SYMBOL_GPL(udp_memory_per_cpu_fw_alloc); 134 135 #define MAX_UDP_PORTS 65536 136 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN_PERNET) 137 138 static struct udp_table *udp_get_table_prot(struct sock *sk) 139 { 140 return sk->sk_prot->h.udp_table ? : sock_net(sk)->ipv4.udp_table; 141 } 142 143 static int udp_lib_lport_inuse(struct net *net, __u16 num, 144 const struct udp_hslot *hslot, 145 unsigned long *bitmap, 146 struct sock *sk, unsigned int log) 147 { 148 kuid_t uid = sk_uid(sk); 149 struct sock *sk2; 150 151 sk_for_each(sk2, &hslot->head) { 152 if (net_eq(sock_net(sk2), net) && 153 sk2 != sk && 154 (bitmap || udp_sk(sk2)->udp_port_hash == num) && 155 (!sk2->sk_reuse || !sk->sk_reuse) && 156 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 157 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 158 inet_rcv_saddr_equal(sk, sk2, true)) { 159 if (sk2->sk_reuseport && sk->sk_reuseport && 160 !rcu_access_pointer(sk->sk_reuseport_cb) && 161 uid_eq(uid, sk_uid(sk2))) { 162 if (!bitmap) 163 return 0; 164 } else { 165 if (!bitmap) 166 return 1; 167 __set_bit(udp_sk(sk2)->udp_port_hash >> log, 168 bitmap); 169 } 170 } 171 } 172 return 0; 173 } 174 175 /* 176 * Note: we still hold spinlock of primary hash chain, so no other writer 177 * can insert/delete a socket with local_port == num 178 */ 179 static int udp_lib_lport_inuse2(struct net *net, __u16 num, 180 struct udp_hslot *hslot2, 181 struct sock *sk) 182 { 183 kuid_t uid = sk_uid(sk); 184 struct sock *sk2; 185 int res = 0; 186 187 spin_lock(&hslot2->lock); 188 udp_portaddr_for_each_entry(sk2, &hslot2->head) { 189 if (net_eq(sock_net(sk2), net) && 190 sk2 != sk && 191 (udp_sk(sk2)->udp_port_hash == num) && 192 (!sk2->sk_reuse || !sk->sk_reuse) && 193 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 194 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 195 inet_rcv_saddr_equal(sk, sk2, true)) { 196 if (sk2->sk_reuseport && sk->sk_reuseport && 197 !rcu_access_pointer(sk->sk_reuseport_cb) && 198 uid_eq(uid, sk_uid(sk2))) { 199 res = 0; 200 } else { 201 res = 1; 202 } 203 break; 204 } 205 } 206 spin_unlock(&hslot2->lock); 207 return res; 208 } 209 210 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot) 211 { 212 struct net *net = sock_net(sk); 213 kuid_t uid = sk_uid(sk); 214 struct sock *sk2; 215 216 sk_for_each(sk2, &hslot->head) { 217 if (net_eq(sock_net(sk2), net) && 218 sk2 != sk && 219 sk2->sk_family == sk->sk_family && 220 ipv6_only_sock(sk2) == ipv6_only_sock(sk) && 221 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) && 222 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 223 sk2->sk_reuseport && uid_eq(uid, sk_uid(sk2)) && 224 inet_rcv_saddr_equal(sk, sk2, false)) { 225 return reuseport_add_sock(sk, sk2, 226 inet_rcv_saddr_any(sk)); 227 } 228 } 229 230 return reuseport_alloc(sk, inet_rcv_saddr_any(sk)); 231 } 232 233 /** 234 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6 235 * 236 * @sk: socket struct in question 237 * @snum: port number to look up 238 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains, 239 * with NULL address 240 */ 241 int udp_lib_get_port(struct sock *sk, unsigned short snum, 242 unsigned int hash2_nulladdr) 243 { 244 struct udp_table *udptable = udp_get_table_prot(sk); 245 struct udp_hslot *hslot, *hslot2; 246 struct net *net = sock_net(sk); 247 int error = -EADDRINUSE; 248 249 if (!snum) { 250 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN); 251 unsigned short first, last; 252 int low, high, remaining; 253 unsigned int rand; 254 255 inet_sk_get_local_port_range(sk, &low, &high); 256 remaining = (high - low) + 1; 257 258 rand = get_random_u32(); 259 first = reciprocal_scale(rand, remaining) + low; 260 /* 261 * force rand to be an odd multiple of UDP_HTABLE_SIZE 262 */ 263 rand = (rand | 1) * (udptable->mask + 1); 264 last = first + udptable->mask + 1; 265 do { 266 hslot = udp_hashslot(udptable, net, first); 267 bitmap_zero(bitmap, PORTS_PER_CHAIN); 268 spin_lock_bh(&hslot->lock); 269 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk, 270 udptable->log); 271 272 snum = first; 273 /* 274 * Iterate on all possible values of snum for this hash. 275 * Using steps of an odd multiple of UDP_HTABLE_SIZE 276 * give us randomization and full range coverage. 277 */ 278 do { 279 if (low <= snum && snum <= high && 280 !test_bit(snum >> udptable->log, bitmap) && 281 !inet_is_local_reserved_port(net, snum)) 282 goto found; 283 snum += rand; 284 } while (snum != first); 285 spin_unlock_bh(&hslot->lock); 286 cond_resched(); 287 } while (++first != last); 288 goto fail; 289 } else { 290 hslot = udp_hashslot(udptable, net, snum); 291 spin_lock_bh(&hslot->lock); 292 if (hslot->count > 10) { 293 int exist; 294 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum; 295 296 slot2 &= udptable->mask; 297 hash2_nulladdr &= udptable->mask; 298 299 hslot2 = udp_hashslot2(udptable, slot2); 300 if (hslot->count < hslot2->count) 301 goto scan_primary_hash; 302 303 exist = udp_lib_lport_inuse2(net, snum, hslot2, sk); 304 if (!exist && (hash2_nulladdr != slot2)) { 305 hslot2 = udp_hashslot2(udptable, hash2_nulladdr); 306 exist = udp_lib_lport_inuse2(net, snum, hslot2, 307 sk); 308 } 309 if (exist) 310 goto fail_unlock; 311 else 312 goto found; 313 } 314 scan_primary_hash: 315 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0)) 316 goto fail_unlock; 317 } 318 found: 319 inet_sk(sk)->inet_num = snum; 320 udp_sk(sk)->udp_port_hash = snum; 321 udp_sk(sk)->udp_portaddr_hash ^= snum; 322 if (sk_unhashed(sk)) { 323 if (sk->sk_reuseport && 324 udp_reuseport_add_sock(sk, hslot)) { 325 inet_sk(sk)->inet_num = 0; 326 udp_sk(sk)->udp_port_hash = 0; 327 udp_sk(sk)->udp_portaddr_hash ^= snum; 328 goto fail_unlock; 329 } 330 331 sock_set_flag(sk, SOCK_RCU_FREE); 332 333 sk_add_node_rcu(sk, &hslot->head); 334 hslot->count++; 335 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 336 337 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 338 spin_lock(&hslot2->lock); 339 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 340 sk->sk_family == AF_INET6) 341 hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node, 342 &hslot2->head); 343 else 344 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 345 &hslot2->head); 346 hslot2->count++; 347 spin_unlock(&hslot2->lock); 348 } 349 350 error = 0; 351 fail_unlock: 352 spin_unlock_bh(&hslot->lock); 353 fail: 354 return error; 355 } 356 EXPORT_IPV6_MOD(udp_lib_get_port); 357 358 int udp_v4_get_port(struct sock *sk, unsigned short snum) 359 { 360 unsigned int hash2_nulladdr = 361 ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum); 362 unsigned int hash2_partial = 363 ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0); 364 365 /* precompute partial secondary hash */ 366 udp_sk(sk)->udp_portaddr_hash = hash2_partial; 367 return udp_lib_get_port(sk, snum, hash2_nulladdr); 368 } 369 370 static int compute_score(struct sock *sk, const struct net *net, 371 __be32 saddr, __be16 sport, 372 __be32 daddr, unsigned short hnum, 373 int dif, int sdif) 374 { 375 int score; 376 struct inet_sock *inet; 377 bool dev_match; 378 379 if (!net_eq(sock_net(sk), net) || 380 udp_sk(sk)->udp_port_hash != hnum || 381 ipv6_only_sock(sk)) 382 return -1; 383 384 if (sk->sk_rcv_saddr != daddr) 385 return -1; 386 387 score = (sk->sk_family == PF_INET) ? 2 : 1; 388 389 inet = inet_sk(sk); 390 if (inet->inet_daddr) { 391 if (inet->inet_daddr != saddr) 392 return -1; 393 score += 4; 394 } 395 396 if (inet->inet_dport) { 397 if (inet->inet_dport != sport) 398 return -1; 399 score += 4; 400 } 401 402 dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, 403 dif, sdif); 404 if (!dev_match) 405 return -1; 406 if (sk->sk_bound_dev_if) 407 score += 4; 408 409 if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id()) 410 score++; 411 return score; 412 } 413 414 u32 udp_ehashfn(const struct net *net, const __be32 laddr, const __u16 lport, 415 const __be32 faddr, const __be16 fport) 416 { 417 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret)); 418 419 return __inet_ehashfn(laddr, lport, faddr, fport, 420 udp_ehash_secret + net_hash_mix(net)); 421 } 422 EXPORT_IPV6_MOD(udp_ehashfn); 423 424 /** 425 * udp4_lib_lookup1() - Simplified lookup using primary hash (destination port) 426 * @net: Network namespace 427 * @saddr: Source address, network order 428 * @sport: Source port, network order 429 * @daddr: Destination address, network order 430 * @hnum: Destination port, host order 431 * @dif: Destination interface index 432 * @sdif: Destination bridge port index, if relevant 433 * @udptable: Set of UDP hash tables 434 * 435 * Simplified lookup to be used as fallback if no sockets are found due to a 436 * potential race between (receive) address change, and lookup happening before 437 * the rehash operation. This function ignores SO_REUSEPORT groups while scoring 438 * result sockets, because if we have one, we don't need the fallback at all. 439 * 440 * Called under rcu_read_lock(). 441 * 442 * Return: socket with highest matching score if any, NULL if none 443 */ 444 static struct sock *udp4_lib_lookup1(const struct net *net, 445 __be32 saddr, __be16 sport, 446 __be32 daddr, unsigned int hnum, 447 int dif, int sdif, 448 const struct udp_table *udptable) 449 { 450 unsigned int slot = udp_hashfn(net, hnum, udptable->mask); 451 struct udp_hslot *hslot = &udptable->hash[slot]; 452 struct sock *sk, *result = NULL; 453 int score, badness = 0; 454 455 sk_for_each_rcu(sk, &hslot->head) { 456 score = compute_score(sk, net, 457 saddr, sport, daddr, hnum, dif, sdif); 458 if (score > badness) { 459 result = sk; 460 badness = score; 461 } 462 } 463 464 return result; 465 } 466 467 /* called with rcu_read_lock() */ 468 static struct sock *udp4_lib_lookup2(const struct net *net, 469 __be32 saddr, __be16 sport, 470 __be32 daddr, unsigned int hnum, 471 int dif, int sdif, 472 struct udp_hslot *hslot2, 473 struct sk_buff *skb) 474 { 475 struct sock *sk, *result; 476 int score, badness; 477 bool need_rescore; 478 479 result = NULL; 480 badness = 0; 481 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 482 need_rescore = false; 483 rescore: 484 score = compute_score(need_rescore ? result : sk, net, saddr, 485 sport, daddr, hnum, dif, sdif); 486 if (score > badness) { 487 badness = score; 488 489 if (need_rescore) 490 continue; 491 492 if (sk->sk_state == TCP_ESTABLISHED) { 493 result = sk; 494 continue; 495 } 496 497 result = inet_lookup_reuseport(net, sk, skb, sizeof(struct udphdr), 498 saddr, sport, daddr, hnum, udp_ehashfn); 499 if (!result) { 500 result = sk; 501 continue; 502 } 503 504 /* Fall back to scoring if group has connections */ 505 if (!reuseport_has_conns(sk)) 506 return result; 507 508 /* Reuseport logic returned an error, keep original score. */ 509 if (IS_ERR(result)) 510 continue; 511 512 /* compute_score is too long of a function to be 513 * inlined, and calling it again here yields 514 * measureable overhead for some 515 * workloads. Work around it by jumping 516 * backwards to rescore 'result'. 517 */ 518 need_rescore = true; 519 goto rescore; 520 } 521 } 522 return result; 523 } 524 525 #if IS_ENABLED(CONFIG_BASE_SMALL) 526 static struct sock *udp4_lib_lookup4(const struct net *net, 527 __be32 saddr, __be16 sport, 528 __be32 daddr, unsigned int hnum, 529 int dif, int sdif, 530 struct udp_table *udptable) 531 { 532 return NULL; 533 } 534 535 static void udp_rehash4(struct udp_table *udptable, struct sock *sk, 536 u16 newhash4) 537 { 538 } 539 540 static void udp_unhash4(struct udp_table *udptable, struct sock *sk) 541 { 542 } 543 #else /* !CONFIG_BASE_SMALL */ 544 static struct sock *udp4_lib_lookup4(const struct net *net, 545 __be32 saddr, __be16 sport, 546 __be32 daddr, unsigned int hnum, 547 int dif, int sdif, 548 struct udp_table *udptable) 549 { 550 const __portpair ports = INET_COMBINED_PORTS(sport, hnum); 551 const struct hlist_nulls_node *node; 552 struct udp_hslot *hslot4; 553 unsigned int hash4, slot; 554 struct udp_sock *up; 555 struct sock *sk; 556 557 hash4 = udp_ehashfn(net, daddr, hnum, saddr, sport); 558 slot = hash4 & udptable->mask; 559 hslot4 = &udptable->hash4[slot]; 560 INET_ADDR_COOKIE(acookie, saddr, daddr); 561 562 begin: 563 /* SLAB_TYPESAFE_BY_RCU not used, so we don't need to touch sk_refcnt */ 564 udp_lrpa_for_each_entry_rcu(up, node, &hslot4->nulls_head) { 565 sk = (struct sock *)up; 566 if (inet_match(net, sk, acookie, ports, dif, sdif)) 567 return sk; 568 } 569 570 /* if the nulls value we got at the end of this lookup is not the 571 * expected one, we must restart lookup. We probably met an item that 572 * was moved to another chain due to rehash. 573 */ 574 if (get_nulls_value(node) != slot) 575 goto begin; 576 577 return NULL; 578 } 579 580 /* udp_rehash4() only checks hslot4, and hash4_cnt is not processed. */ 581 static void udp_rehash4(struct udp_table *udptable, struct sock *sk, 582 u16 newhash4) 583 { 584 struct udp_hslot *hslot4, *nhslot4; 585 586 hslot4 = udp_hashslot4(udptable, udp_sk(sk)->udp_lrpa_hash); 587 nhslot4 = udp_hashslot4(udptable, newhash4); 588 udp_sk(sk)->udp_lrpa_hash = newhash4; 589 590 if (hslot4 != nhslot4) { 591 spin_lock_bh(&hslot4->lock); 592 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_lrpa_node); 593 hslot4->count--; 594 spin_unlock_bh(&hslot4->lock); 595 596 spin_lock_bh(&nhslot4->lock); 597 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_lrpa_node, 598 &nhslot4->nulls_head); 599 nhslot4->count++; 600 spin_unlock_bh(&nhslot4->lock); 601 } 602 } 603 604 static void udp_unhash4(struct udp_table *udptable, struct sock *sk) 605 { 606 struct udp_hslot *hslot2, *hslot4; 607 608 if (udp_hashed4(sk)) { 609 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 610 hslot4 = udp_hashslot4(udptable, udp_sk(sk)->udp_lrpa_hash); 611 612 spin_lock(&hslot4->lock); 613 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_lrpa_node); 614 hslot4->count--; 615 spin_unlock(&hslot4->lock); 616 617 spin_lock(&hslot2->lock); 618 udp_hash4_dec(hslot2); 619 spin_unlock(&hslot2->lock); 620 } 621 } 622 623 void udp_lib_hash4(struct sock *sk, u16 hash) 624 { 625 struct udp_hslot *hslot, *hslot2, *hslot4; 626 struct net *net = sock_net(sk); 627 struct udp_table *udptable; 628 629 /* Connected udp socket can re-connect to another remote address, which 630 * will be handled by rehash. Thus no need to redo hash4 here. 631 */ 632 if (udp_hashed4(sk)) 633 return; 634 635 udptable = net->ipv4.udp_table; 636 hslot = udp_hashslot(udptable, net, udp_sk(sk)->udp_port_hash); 637 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 638 hslot4 = udp_hashslot4(udptable, hash); 639 udp_sk(sk)->udp_lrpa_hash = hash; 640 641 spin_lock_bh(&hslot->lock); 642 if (rcu_access_pointer(sk->sk_reuseport_cb)) 643 reuseport_detach_sock(sk); 644 645 spin_lock(&hslot4->lock); 646 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_lrpa_node, 647 &hslot4->nulls_head); 648 hslot4->count++; 649 spin_unlock(&hslot4->lock); 650 651 spin_lock(&hslot2->lock); 652 udp_hash4_inc(hslot2); 653 spin_unlock(&hslot2->lock); 654 655 spin_unlock_bh(&hslot->lock); 656 } 657 EXPORT_IPV6_MOD(udp_lib_hash4); 658 659 /* call with sock lock */ 660 void udp4_hash4(struct sock *sk) 661 { 662 struct net *net = sock_net(sk); 663 unsigned int hash; 664 665 if (sk_unhashed(sk) || sk->sk_rcv_saddr == htonl(INADDR_ANY)) 666 return; 667 668 hash = udp_ehashfn(net, sk->sk_rcv_saddr, sk->sk_num, 669 sk->sk_daddr, sk->sk_dport); 670 671 udp_lib_hash4(sk, hash); 672 } 673 EXPORT_IPV6_MOD(udp4_hash4); 674 #endif /* CONFIG_BASE_SMALL */ 675 676 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try 677 * harder than this. -DaveM 678 */ 679 struct sock *__udp4_lib_lookup(const struct net *net, __be32 saddr, 680 __be16 sport, __be32 daddr, __be16 dport, int dif, 681 int sdif, struct udp_table *udptable, struct sk_buff *skb) 682 { 683 unsigned short hnum = ntohs(dport); 684 struct udp_hslot *hslot2; 685 struct sock *result, *sk; 686 unsigned int hash2; 687 688 hash2 = ipv4_portaddr_hash(net, daddr, hnum); 689 hslot2 = udp_hashslot2(udptable, hash2); 690 691 if (udp_has_hash4(hslot2)) { 692 result = udp4_lib_lookup4(net, saddr, sport, daddr, hnum, 693 dif, sdif, udptable); 694 if (result) /* udp4_lib_lookup4 return sk or NULL */ 695 return result; 696 } 697 698 /* Lookup connected or non-wildcard socket */ 699 result = udp4_lib_lookup2(net, saddr, sport, 700 daddr, hnum, dif, sdif, 701 hslot2, skb); 702 if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED) 703 goto done; 704 705 /* Lookup redirect from BPF */ 706 if (static_branch_unlikely(&bpf_sk_lookup_enabled) && 707 udptable == net->ipv4.udp_table) { 708 sk = inet_lookup_run_sk_lookup(net, IPPROTO_UDP, skb, sizeof(struct udphdr), 709 saddr, sport, daddr, hnum, dif, 710 udp_ehashfn); 711 if (sk) { 712 result = sk; 713 goto done; 714 } 715 } 716 717 /* Got non-wildcard socket or error on first lookup */ 718 if (result) 719 goto done; 720 721 /* Lookup wildcard sockets */ 722 hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum); 723 hslot2 = udp_hashslot2(udptable, hash2); 724 725 result = udp4_lib_lookup2(net, saddr, sport, 726 htonl(INADDR_ANY), hnum, dif, sdif, 727 hslot2, skb); 728 if (!IS_ERR_OR_NULL(result)) 729 goto done; 730 731 /* Primary hash (destination port) lookup as fallback for this race: 732 * 1. __ip4_datagram_connect() sets sk_rcv_saddr 733 * 2. lookup (this function): new sk_rcv_saddr, hashes not updated yet 734 * 3. rehash operation updating _secondary and four-tuple_ hashes 735 * The primary hash doesn't need an update after 1., so, thanks to this 736 * further step, 1. and 3. don't need to be atomic against the lookup. 737 */ 738 result = udp4_lib_lookup1(net, saddr, sport, daddr, hnum, dif, sdif, 739 udptable); 740 741 done: 742 if (IS_ERR(result)) 743 return NULL; 744 return result; 745 } 746 EXPORT_SYMBOL_GPL(__udp4_lib_lookup); 747 748 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb, 749 __be16 sport, __be16 dport, 750 struct udp_table *udptable) 751 { 752 const struct iphdr *iph = ip_hdr(skb); 753 754 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport, 755 iph->daddr, dport, inet_iif(skb), 756 inet_sdif(skb), udptable, skb); 757 } 758 759 struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb, 760 __be16 sport, __be16 dport) 761 { 762 const u16 offset = NAPI_GRO_CB(skb)->network_offsets[skb->encapsulation]; 763 const struct iphdr *iph = (struct iphdr *)(skb->data + offset); 764 struct net *net = dev_net(skb->dev); 765 int iif, sdif; 766 767 inet_get_iif_sdif(skb, &iif, &sdif); 768 769 return __udp4_lib_lookup(net, iph->saddr, sport, 770 iph->daddr, dport, iif, 771 sdif, net->ipv4.udp_table, NULL); 772 } 773 774 /* Must be called under rcu_read_lock(). 775 * Does increment socket refcount. 776 */ 777 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4) 778 struct sock *udp4_lib_lookup(const struct net *net, __be32 saddr, __be16 sport, 779 __be32 daddr, __be16 dport, int dif) 780 { 781 struct sock *sk; 782 783 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport, 784 dif, 0, net->ipv4.udp_table, NULL); 785 if (sk && !refcount_inc_not_zero(&sk->sk_refcnt)) 786 sk = NULL; 787 return sk; 788 } 789 EXPORT_SYMBOL_GPL(udp4_lib_lookup); 790 #endif 791 792 static inline bool __udp_is_mcast_sock(struct net *net, const struct sock *sk, 793 __be16 loc_port, __be32 loc_addr, 794 __be16 rmt_port, __be32 rmt_addr, 795 int dif, int sdif, unsigned short hnum) 796 { 797 const struct inet_sock *inet = inet_sk(sk); 798 799 if (!net_eq(sock_net(sk), net) || 800 udp_sk(sk)->udp_port_hash != hnum || 801 (inet->inet_daddr && inet->inet_daddr != rmt_addr) || 802 (inet->inet_dport != rmt_port && inet->inet_dport) || 803 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) || 804 ipv6_only_sock(sk) || 805 !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif)) 806 return false; 807 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif)) 808 return false; 809 return true; 810 } 811 812 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key); 813 EXPORT_IPV6_MOD(udp_encap_needed_key); 814 815 #if IS_ENABLED(CONFIG_IPV6) 816 DEFINE_STATIC_KEY_FALSE(udpv6_encap_needed_key); 817 EXPORT_IPV6_MOD(udpv6_encap_needed_key); 818 #endif 819 820 void udp_encap_enable(void) 821 { 822 static_branch_inc(&udp_encap_needed_key); 823 } 824 EXPORT_SYMBOL(udp_encap_enable); 825 826 void udp_encap_disable(void) 827 { 828 static_branch_dec(&udp_encap_needed_key); 829 } 830 EXPORT_SYMBOL(udp_encap_disable); 831 832 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go 833 * through error handlers in encapsulations looking for a match. 834 */ 835 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info) 836 { 837 int i; 838 839 for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) { 840 int (*handler)(struct sk_buff *skb, u32 info); 841 const struct ip_tunnel_encap_ops *encap; 842 843 encap = rcu_dereference(iptun_encaps[i]); 844 if (!encap) 845 continue; 846 handler = encap->err_handler; 847 if (handler && !handler(skb, info)) 848 return 0; 849 } 850 851 return -ENOENT; 852 } 853 854 /* Try to match ICMP errors to UDP tunnels by looking up a socket without 855 * reversing source and destination port: this will match tunnels that force the 856 * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that 857 * lwtunnels might actually break this assumption by being configured with 858 * different destination ports on endpoints, in this case we won't be able to 859 * trace ICMP messages back to them. 860 * 861 * If this doesn't match any socket, probe tunnels with arbitrary destination 862 * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port 863 * we've sent packets to won't necessarily match the local destination port. 864 * 865 * Then ask the tunnel implementation to match the error against a valid 866 * association. 867 * 868 * Return an error if we can't find a match, the socket if we need further 869 * processing, zero otherwise. 870 */ 871 static struct sock *__udp4_lib_err_encap(struct net *net, 872 const struct iphdr *iph, 873 struct udphdr *uh, 874 struct udp_table *udptable, 875 struct sock *sk, 876 struct sk_buff *skb, u32 info) 877 { 878 int (*lookup)(struct sock *sk, struct sk_buff *skb); 879 int network_offset, transport_offset; 880 struct udp_sock *up; 881 882 network_offset = skb_network_offset(skb); 883 transport_offset = skb_transport_offset(skb); 884 885 /* Network header needs to point to the outer IPv4 header inside ICMP */ 886 skb_reset_network_header(skb); 887 888 /* Transport header needs to point to the UDP header */ 889 skb_set_transport_header(skb, iph->ihl << 2); 890 891 if (sk) { 892 up = udp_sk(sk); 893 894 lookup = READ_ONCE(up->encap_err_lookup); 895 if (lookup && lookup(sk, skb)) 896 sk = NULL; 897 898 goto out; 899 } 900 901 sk = __udp4_lib_lookup(net, iph->daddr, uh->source, 902 iph->saddr, uh->dest, skb->dev->ifindex, 0, 903 udptable, NULL); 904 if (sk) { 905 up = udp_sk(sk); 906 907 lookup = READ_ONCE(up->encap_err_lookup); 908 if (!lookup || lookup(sk, skb)) 909 sk = NULL; 910 } 911 912 out: 913 if (!sk) 914 sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info)); 915 916 skb_set_transport_header(skb, transport_offset); 917 skb_set_network_header(skb, network_offset); 918 919 return sk; 920 } 921 922 /* 923 * This routine is called by the ICMP module when it gets some 924 * sort of error condition. If err < 0 then the socket should 925 * be closed and the error returned to the user. If err > 0 926 * it's just the icmp type << 8 | icmp code. 927 * Header points to the ip header of the error packet. We move 928 * on past this. Then (as it used to claim before adjustment) 929 * header points to the first 8 bytes of the udp header. We need 930 * to find the appropriate port. 931 */ 932 933 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable) 934 { 935 struct inet_sock *inet; 936 const struct iphdr *iph = (const struct iphdr *)skb->data; 937 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2)); 938 const int type = icmp_hdr(skb)->type; 939 const int code = icmp_hdr(skb)->code; 940 bool tunnel = false; 941 struct sock *sk; 942 int harderr; 943 int err; 944 struct net *net = dev_net(skb->dev); 945 946 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest, 947 iph->saddr, uh->source, skb->dev->ifindex, 948 inet_sdif(skb), udptable, NULL); 949 950 if (!sk || READ_ONCE(udp_sk(sk)->encap_type)) { 951 /* No socket for error: try tunnels before discarding */ 952 if (static_branch_unlikely(&udp_encap_needed_key)) { 953 sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb, 954 info); 955 if (!sk) 956 return 0; 957 } else 958 sk = ERR_PTR(-ENOENT); 959 960 if (IS_ERR(sk)) { 961 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); 962 return PTR_ERR(sk); 963 } 964 965 tunnel = true; 966 } 967 968 err = 0; 969 harderr = 0; 970 inet = inet_sk(sk); 971 972 switch (type) { 973 default: 974 case ICMP_TIME_EXCEEDED: 975 err = EHOSTUNREACH; 976 break; 977 case ICMP_SOURCE_QUENCH: 978 goto out; 979 case ICMP_PARAMETERPROB: 980 err = EPROTO; 981 harderr = 1; 982 break; 983 case ICMP_DEST_UNREACH: 984 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */ 985 ipv4_sk_update_pmtu(skb, sk, info); 986 if (READ_ONCE(inet->pmtudisc) != IP_PMTUDISC_DONT) { 987 err = EMSGSIZE; 988 harderr = 1; 989 break; 990 } 991 goto out; 992 } 993 err = EHOSTUNREACH; 994 if (code <= NR_ICMP_UNREACH) { 995 harderr = icmp_err_convert[code].fatal; 996 err = icmp_err_convert[code].errno; 997 } 998 break; 999 case ICMP_REDIRECT: 1000 ipv4_sk_redirect(skb, sk); 1001 goto out; 1002 } 1003 1004 /* 1005 * RFC1122: OK. Passes ICMP errors back to application, as per 1006 * 4.1.3.3. 1007 */ 1008 if (tunnel) { 1009 /* ...not for tunnels though: we don't have a sending socket */ 1010 if (udp_sk(sk)->encap_err_rcv) 1011 udp_sk(sk)->encap_err_rcv(sk, skb, err, uh->dest, info, 1012 (u8 *)(uh+1)); 1013 goto out; 1014 } 1015 if (!inet_test_bit(RECVERR, sk)) { 1016 if (!harderr || sk->sk_state != TCP_ESTABLISHED) 1017 goto out; 1018 } else 1019 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1)); 1020 1021 sk->sk_err = err; 1022 sk_error_report(sk); 1023 out: 1024 return 0; 1025 } 1026 1027 int udp_err(struct sk_buff *skb, u32 info) 1028 { 1029 return __udp4_lib_err(skb, info, dev_net(skb->dev)->ipv4.udp_table); 1030 } 1031 1032 /* 1033 * Throw away all pending data and cancel the corking. Socket is locked. 1034 */ 1035 void udp_flush_pending_frames(struct sock *sk) 1036 { 1037 struct udp_sock *up = udp_sk(sk); 1038 1039 if (up->pending) { 1040 up->len = 0; 1041 WRITE_ONCE(up->pending, 0); 1042 ip_flush_pending_frames(sk); 1043 } 1044 } 1045 EXPORT_IPV6_MOD(udp_flush_pending_frames); 1046 1047 /** 1048 * udp4_hwcsum - handle outgoing HW checksumming 1049 * @skb: sk_buff containing the filled-in UDP header 1050 * (checksum field must be zeroed out) 1051 * @src: source IP address 1052 * @dst: destination IP address 1053 */ 1054 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst) 1055 { 1056 struct udphdr *uh = udp_hdr(skb); 1057 int offset = skb_transport_offset(skb); 1058 int len = skb->len - offset; 1059 int hlen = len; 1060 __wsum csum = 0; 1061 1062 if (!skb_has_frag_list(skb)) { 1063 /* 1064 * Only one fragment on the socket. 1065 */ 1066 skb->csum_start = skb_transport_header(skb) - skb->head; 1067 skb->csum_offset = offsetof(struct udphdr, check); 1068 uh->check = ~csum_tcpudp_magic(src, dst, len, 1069 IPPROTO_UDP, 0); 1070 } else { 1071 struct sk_buff *frags; 1072 1073 /* 1074 * HW-checksum won't work as there are two or more 1075 * fragments on the socket so that all csums of sk_buffs 1076 * should be together 1077 */ 1078 skb_walk_frags(skb, frags) { 1079 csum = csum_add(csum, frags->csum); 1080 hlen -= frags->len; 1081 } 1082 1083 csum = skb_checksum(skb, offset, hlen, csum); 1084 skb->ip_summed = CHECKSUM_NONE; 1085 1086 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum); 1087 if (uh->check == 0) 1088 uh->check = CSUM_MANGLED_0; 1089 } 1090 } 1091 EXPORT_SYMBOL_GPL(udp4_hwcsum); 1092 1093 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended 1094 * for the simple case like when setting the checksum for a UDP tunnel. 1095 */ 1096 void udp_set_csum(bool nocheck, struct sk_buff *skb, 1097 __be32 saddr, __be32 daddr, int len) 1098 { 1099 struct udphdr *uh = udp_hdr(skb); 1100 1101 if (nocheck) { 1102 uh->check = 0; 1103 } else if (skb_is_gso(skb)) { 1104 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 1105 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 1106 uh->check = 0; 1107 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb)); 1108 if (uh->check == 0) 1109 uh->check = CSUM_MANGLED_0; 1110 } else { 1111 skb->ip_summed = CHECKSUM_PARTIAL; 1112 skb->csum_start = skb_transport_header(skb) - skb->head; 1113 skb->csum_offset = offsetof(struct udphdr, check); 1114 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 1115 } 1116 } 1117 EXPORT_SYMBOL(udp_set_csum); 1118 1119 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4, 1120 struct inet_cork *cork) 1121 { 1122 struct sock *sk = skb->sk; 1123 struct inet_sock *inet = inet_sk(sk); 1124 struct udphdr *uh; 1125 int err; 1126 int is_udplite = IS_UDPLITE(sk); 1127 int offset = skb_transport_offset(skb); 1128 int len = skb->len - offset; 1129 int datalen = len - sizeof(*uh); 1130 __wsum csum = 0; 1131 1132 /* 1133 * Create a UDP header 1134 */ 1135 uh = udp_hdr(skb); 1136 uh->source = inet->inet_sport; 1137 uh->dest = fl4->fl4_dport; 1138 uh->len = htons(len); 1139 uh->check = 0; 1140 1141 if (cork->gso_size) { 1142 const int hlen = skb_network_header_len(skb) + 1143 sizeof(struct udphdr); 1144 1145 if (hlen + min(datalen, cork->gso_size) > cork->fragsize) { 1146 kfree_skb(skb); 1147 return -EMSGSIZE; 1148 } 1149 if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) { 1150 kfree_skb(skb); 1151 return -EINVAL; 1152 } 1153 if (sk->sk_no_check_tx) { 1154 kfree_skb(skb); 1155 return -EINVAL; 1156 } 1157 if (is_udplite || dst_xfrm(skb_dst(skb))) { 1158 kfree_skb(skb); 1159 return -EIO; 1160 } 1161 1162 if (datalen > cork->gso_size) { 1163 skb_shinfo(skb)->gso_size = cork->gso_size; 1164 skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4; 1165 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen, 1166 cork->gso_size); 1167 1168 /* Don't checksum the payload, skb will get segmented */ 1169 goto csum_partial; 1170 } 1171 } 1172 1173 if (is_udplite) /* UDP-Lite */ 1174 csum = udplite_csum(skb); 1175 1176 else if (sk->sk_no_check_tx) { /* UDP csum off */ 1177 1178 skb->ip_summed = CHECKSUM_NONE; 1179 goto send; 1180 1181 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */ 1182 csum_partial: 1183 1184 udp4_hwcsum(skb, fl4->saddr, fl4->daddr); 1185 goto send; 1186 1187 } else 1188 csum = udp_csum(skb); 1189 1190 /* add protocol-dependent pseudo-header */ 1191 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len, 1192 sk->sk_protocol, csum); 1193 if (uh->check == 0) 1194 uh->check = CSUM_MANGLED_0; 1195 1196 send: 1197 err = ip_send_skb(sock_net(sk), skb); 1198 if (err) { 1199 if (err == -ENOBUFS && 1200 !inet_test_bit(RECVERR, sk)) { 1201 UDP_INC_STATS(sock_net(sk), 1202 UDP_MIB_SNDBUFERRORS, is_udplite); 1203 err = 0; 1204 } 1205 } else 1206 UDP_INC_STATS(sock_net(sk), 1207 UDP_MIB_OUTDATAGRAMS, is_udplite); 1208 return err; 1209 } 1210 1211 /* 1212 * Push out all pending data as one UDP datagram. Socket is locked. 1213 */ 1214 int udp_push_pending_frames(struct sock *sk) 1215 { 1216 struct udp_sock *up = udp_sk(sk); 1217 struct inet_sock *inet = inet_sk(sk); 1218 struct flowi4 *fl4 = &inet->cork.fl.u.ip4; 1219 struct sk_buff *skb; 1220 int err = 0; 1221 1222 skb = ip_finish_skb(sk, fl4); 1223 if (!skb) 1224 goto out; 1225 1226 err = udp_send_skb(skb, fl4, &inet->cork.base); 1227 1228 out: 1229 up->len = 0; 1230 WRITE_ONCE(up->pending, 0); 1231 return err; 1232 } 1233 EXPORT_IPV6_MOD(udp_push_pending_frames); 1234 1235 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size) 1236 { 1237 switch (cmsg->cmsg_type) { 1238 case UDP_SEGMENT: 1239 if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16))) 1240 return -EINVAL; 1241 *gso_size = *(__u16 *)CMSG_DATA(cmsg); 1242 return 0; 1243 default: 1244 return -EINVAL; 1245 } 1246 } 1247 1248 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size) 1249 { 1250 struct cmsghdr *cmsg; 1251 bool need_ip = false; 1252 int err; 1253 1254 for_each_cmsghdr(cmsg, msg) { 1255 if (!CMSG_OK(msg, cmsg)) 1256 return -EINVAL; 1257 1258 if (cmsg->cmsg_level != SOL_UDP) { 1259 need_ip = true; 1260 continue; 1261 } 1262 1263 err = __udp_cmsg_send(cmsg, gso_size); 1264 if (err) 1265 return err; 1266 } 1267 1268 return need_ip; 1269 } 1270 EXPORT_IPV6_MOD_GPL(udp_cmsg_send); 1271 1272 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1273 { 1274 struct inet_sock *inet = inet_sk(sk); 1275 struct udp_sock *up = udp_sk(sk); 1276 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name); 1277 struct flowi4 fl4_stack; 1278 struct flowi4 *fl4; 1279 int ulen = len; 1280 struct ipcm_cookie ipc; 1281 struct rtable *rt = NULL; 1282 int free = 0; 1283 int connected = 0; 1284 __be32 daddr, faddr, saddr; 1285 u8 scope; 1286 __be16 dport; 1287 int err, is_udplite = IS_UDPLITE(sk); 1288 int corkreq = udp_test_bit(CORK, sk) || msg->msg_flags & MSG_MORE; 1289 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *); 1290 struct sk_buff *skb; 1291 struct ip_options_data opt_copy; 1292 int uc_index; 1293 1294 if (len > 0xFFFF) 1295 return -EMSGSIZE; 1296 1297 /* 1298 * Check the flags. 1299 */ 1300 1301 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */ 1302 return -EOPNOTSUPP; 1303 1304 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag; 1305 1306 fl4 = &inet->cork.fl.u.ip4; 1307 if (READ_ONCE(up->pending)) { 1308 /* 1309 * There are pending frames. 1310 * The socket lock must be held while it's corked. 1311 */ 1312 lock_sock(sk); 1313 if (likely(up->pending)) { 1314 if (unlikely(up->pending != AF_INET)) { 1315 release_sock(sk); 1316 return -EINVAL; 1317 } 1318 goto do_append_data; 1319 } 1320 release_sock(sk); 1321 } 1322 ulen += sizeof(struct udphdr); 1323 1324 /* 1325 * Get and verify the address. 1326 */ 1327 if (usin) { 1328 if (msg->msg_namelen < sizeof(*usin)) 1329 return -EINVAL; 1330 if (usin->sin_family != AF_INET) { 1331 if (usin->sin_family != AF_UNSPEC) 1332 return -EAFNOSUPPORT; 1333 } 1334 1335 daddr = usin->sin_addr.s_addr; 1336 dport = usin->sin_port; 1337 if (dport == 0) 1338 return -EINVAL; 1339 } else { 1340 if (sk->sk_state != TCP_ESTABLISHED) 1341 return -EDESTADDRREQ; 1342 daddr = inet->inet_daddr; 1343 dport = inet->inet_dport; 1344 /* Open fast path for connected socket. 1345 Route will not be used, if at least one option is set. 1346 */ 1347 connected = 1; 1348 } 1349 1350 ipcm_init_sk(&ipc, inet); 1351 ipc.gso_size = READ_ONCE(up->gso_size); 1352 1353 if (msg->msg_controllen) { 1354 err = udp_cmsg_send(sk, msg, &ipc.gso_size); 1355 if (err > 0) { 1356 err = ip_cmsg_send(sk, msg, &ipc, 1357 sk->sk_family == AF_INET6); 1358 connected = 0; 1359 } 1360 if (unlikely(err < 0)) { 1361 kfree(ipc.opt); 1362 return err; 1363 } 1364 if (ipc.opt) 1365 free = 1; 1366 } 1367 if (!ipc.opt) { 1368 struct ip_options_rcu *inet_opt; 1369 1370 rcu_read_lock(); 1371 inet_opt = rcu_dereference(inet->inet_opt); 1372 if (inet_opt) { 1373 memcpy(&opt_copy, inet_opt, 1374 sizeof(*inet_opt) + inet_opt->opt.optlen); 1375 ipc.opt = &opt_copy.opt; 1376 } 1377 rcu_read_unlock(); 1378 } 1379 1380 if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) { 1381 err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk, 1382 (struct sockaddr *)usin, 1383 &msg->msg_namelen, 1384 &ipc.addr); 1385 if (err) 1386 goto out_free; 1387 if (usin) { 1388 if (usin->sin_port == 0) { 1389 /* BPF program set invalid port. Reject it. */ 1390 err = -EINVAL; 1391 goto out_free; 1392 } 1393 daddr = usin->sin_addr.s_addr; 1394 dport = usin->sin_port; 1395 } 1396 } 1397 1398 saddr = ipc.addr; 1399 ipc.addr = faddr = daddr; 1400 1401 if (ipc.opt && ipc.opt->opt.srr) { 1402 if (!daddr) { 1403 err = -EINVAL; 1404 goto out_free; 1405 } 1406 faddr = ipc.opt->opt.faddr; 1407 connected = 0; 1408 } 1409 scope = ip_sendmsg_scope(inet, &ipc, msg); 1410 if (scope == RT_SCOPE_LINK) 1411 connected = 0; 1412 1413 uc_index = READ_ONCE(inet->uc_index); 1414 if (ipv4_is_multicast(daddr)) { 1415 if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif)) 1416 ipc.oif = READ_ONCE(inet->mc_index); 1417 if (!saddr) 1418 saddr = READ_ONCE(inet->mc_addr); 1419 connected = 0; 1420 } else if (!ipc.oif) { 1421 ipc.oif = uc_index; 1422 } else if (ipv4_is_lbcast(daddr) && uc_index) { 1423 /* oif is set, packet is to local broadcast and 1424 * uc_index is set. oif is most likely set 1425 * by sk_bound_dev_if. If uc_index != oif check if the 1426 * oif is an L3 master and uc_index is an L3 slave. 1427 * If so, we want to allow the send using the uc_index. 1428 */ 1429 if (ipc.oif != uc_index && 1430 ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk), 1431 uc_index)) { 1432 ipc.oif = uc_index; 1433 } 1434 } 1435 1436 if (connected) 1437 rt = dst_rtable(sk_dst_check(sk, 0)); 1438 1439 if (!rt) { 1440 struct net *net = sock_net(sk); 1441 __u8 flow_flags = inet_sk_flowi_flags(sk); 1442 1443 fl4 = &fl4_stack; 1444 1445 flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, 1446 ipc.tos & INET_DSCP_MASK, scope, 1447 sk->sk_protocol, flow_flags, faddr, saddr, 1448 dport, inet->inet_sport, 1449 sk_uid(sk)); 1450 1451 security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4)); 1452 rt = ip_route_output_flow(net, fl4, sk); 1453 if (IS_ERR(rt)) { 1454 err = PTR_ERR(rt); 1455 rt = NULL; 1456 if (err == -ENETUNREACH) 1457 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 1458 goto out; 1459 } 1460 1461 err = -EACCES; 1462 if ((rt->rt_flags & RTCF_BROADCAST) && 1463 !sock_flag(sk, SOCK_BROADCAST)) 1464 goto out; 1465 if (connected) 1466 sk_dst_set(sk, dst_clone(&rt->dst)); 1467 } 1468 1469 if (msg->msg_flags&MSG_CONFIRM) 1470 goto do_confirm; 1471 back_from_confirm: 1472 1473 saddr = fl4->saddr; 1474 if (!ipc.addr) 1475 daddr = ipc.addr = fl4->daddr; 1476 1477 /* Lockless fast path for the non-corking case. */ 1478 if (!corkreq) { 1479 struct inet_cork cork; 1480 1481 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen, 1482 sizeof(struct udphdr), &ipc, &rt, 1483 &cork, msg->msg_flags); 1484 err = PTR_ERR(skb); 1485 if (!IS_ERR_OR_NULL(skb)) 1486 err = udp_send_skb(skb, fl4, &cork); 1487 goto out; 1488 } 1489 1490 lock_sock(sk); 1491 if (unlikely(up->pending)) { 1492 /* The socket is already corked while preparing it. */ 1493 /* ... which is an evident application bug. --ANK */ 1494 release_sock(sk); 1495 1496 net_dbg_ratelimited("socket already corked\n"); 1497 err = -EINVAL; 1498 goto out; 1499 } 1500 /* 1501 * Now cork the socket to pend data. 1502 */ 1503 fl4 = &inet->cork.fl.u.ip4; 1504 fl4->daddr = daddr; 1505 fl4->saddr = saddr; 1506 fl4->fl4_dport = dport; 1507 fl4->fl4_sport = inet->inet_sport; 1508 WRITE_ONCE(up->pending, AF_INET); 1509 1510 do_append_data: 1511 up->len += ulen; 1512 err = ip_append_data(sk, fl4, getfrag, msg, ulen, 1513 sizeof(struct udphdr), &ipc, &rt, 1514 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags); 1515 if (err) 1516 udp_flush_pending_frames(sk); 1517 else if (!corkreq) 1518 err = udp_push_pending_frames(sk); 1519 else if (unlikely(skb_queue_empty(&sk->sk_write_queue))) 1520 WRITE_ONCE(up->pending, 0); 1521 release_sock(sk); 1522 1523 out: 1524 ip_rt_put(rt); 1525 out_free: 1526 if (free) 1527 kfree(ipc.opt); 1528 if (!err) 1529 return len; 1530 /* 1531 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting 1532 * ENOBUFS might not be good (it's not tunable per se), but otherwise 1533 * we don't have a good statistic (IpOutDiscards but it can be too many 1534 * things). We could add another new stat but at least for now that 1535 * seems like overkill. 1536 */ 1537 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1538 UDP_INC_STATS(sock_net(sk), 1539 UDP_MIB_SNDBUFERRORS, is_udplite); 1540 } 1541 return err; 1542 1543 do_confirm: 1544 if (msg->msg_flags & MSG_PROBE) 1545 dst_confirm_neigh(&rt->dst, &fl4->daddr); 1546 if (!(msg->msg_flags&MSG_PROBE) || len) 1547 goto back_from_confirm; 1548 err = 0; 1549 goto out; 1550 } 1551 EXPORT_SYMBOL(udp_sendmsg); 1552 1553 void udp_splice_eof(struct socket *sock) 1554 { 1555 struct sock *sk = sock->sk; 1556 struct udp_sock *up = udp_sk(sk); 1557 1558 if (!READ_ONCE(up->pending) || udp_test_bit(CORK, sk)) 1559 return; 1560 1561 lock_sock(sk); 1562 if (up->pending && !udp_test_bit(CORK, sk)) 1563 udp_push_pending_frames(sk); 1564 release_sock(sk); 1565 } 1566 EXPORT_IPV6_MOD_GPL(udp_splice_eof); 1567 1568 #define UDP_SKB_IS_STATELESS 0x80000000 1569 1570 /* all head states (dst, sk, nf conntrack) except skb extensions are 1571 * cleared by udp_rcv(). 1572 * 1573 * We need to preserve secpath, if present, to eventually process 1574 * IP_CMSG_PASSSEC at recvmsg() time. 1575 * 1576 * Other extensions can be cleared. 1577 */ 1578 static bool udp_try_make_stateless(struct sk_buff *skb) 1579 { 1580 if (!skb_has_extensions(skb)) 1581 return true; 1582 1583 if (!secpath_exists(skb)) { 1584 skb_ext_reset(skb); 1585 return true; 1586 } 1587 1588 return false; 1589 } 1590 1591 static void udp_set_dev_scratch(struct sk_buff *skb) 1592 { 1593 struct udp_dev_scratch *scratch = udp_skb_scratch(skb); 1594 1595 BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long)); 1596 scratch->_tsize_state = skb->truesize; 1597 #if BITS_PER_LONG == 64 1598 scratch->len = skb->len; 1599 scratch->csum_unnecessary = !!skb_csum_unnecessary(skb); 1600 scratch->is_linear = !skb_is_nonlinear(skb); 1601 #endif 1602 if (udp_try_make_stateless(skb)) 1603 scratch->_tsize_state |= UDP_SKB_IS_STATELESS; 1604 } 1605 1606 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb) 1607 { 1608 /* We come here after udp_lib_checksum_complete() returned 0. 1609 * This means that __skb_checksum_complete() might have 1610 * set skb->csum_valid to 1. 1611 * On 64bit platforms, we can set csum_unnecessary 1612 * to true, but only if the skb is not shared. 1613 */ 1614 #if BITS_PER_LONG == 64 1615 if (!skb_shared(skb)) 1616 udp_skb_scratch(skb)->csum_unnecessary = true; 1617 #endif 1618 } 1619 1620 static int udp_skb_truesize(struct sk_buff *skb) 1621 { 1622 return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS; 1623 } 1624 1625 static bool udp_skb_has_head_state(struct sk_buff *skb) 1626 { 1627 return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS); 1628 } 1629 1630 /* fully reclaim rmem/fwd memory allocated for skb */ 1631 static void udp_rmem_release(struct sock *sk, unsigned int size, 1632 int partial, bool rx_queue_lock_held) 1633 { 1634 struct udp_sock *up = udp_sk(sk); 1635 struct sk_buff_head *sk_queue; 1636 unsigned int amt; 1637 1638 if (likely(partial)) { 1639 up->forward_deficit += size; 1640 size = up->forward_deficit; 1641 if (size < READ_ONCE(up->forward_threshold) && 1642 !skb_queue_empty(&up->reader_queue)) 1643 return; 1644 } else { 1645 size += up->forward_deficit; 1646 } 1647 up->forward_deficit = 0; 1648 1649 /* acquire the sk_receive_queue for fwd allocated memory scheduling, 1650 * if the called don't held it already 1651 */ 1652 sk_queue = &sk->sk_receive_queue; 1653 if (!rx_queue_lock_held) 1654 spin_lock(&sk_queue->lock); 1655 1656 amt = (size + sk->sk_forward_alloc - partial) & ~(PAGE_SIZE - 1); 1657 sk_forward_alloc_add(sk, size - amt); 1658 1659 if (amt) 1660 __sk_mem_reduce_allocated(sk, amt >> PAGE_SHIFT); 1661 1662 atomic_sub(size, &sk->sk_rmem_alloc); 1663 1664 /* this can save us from acquiring the rx queue lock on next receive */ 1665 skb_queue_splice_tail_init(sk_queue, &up->reader_queue); 1666 1667 if (!rx_queue_lock_held) 1668 spin_unlock(&sk_queue->lock); 1669 } 1670 1671 /* Note: called with reader_queue.lock held. 1672 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch 1673 * This avoids a cache line miss while receive_queue lock is held. 1674 * Look at __udp_enqueue_schedule_skb() to find where this copy is done. 1675 */ 1676 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb) 1677 { 1678 prefetch(&skb->data); 1679 udp_rmem_release(sk, udp_skb_truesize(skb), 1, false); 1680 } 1681 EXPORT_IPV6_MOD(udp_skb_destructor); 1682 1683 /* as above, but the caller held the rx queue lock, too */ 1684 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb) 1685 { 1686 prefetch(&skb->data); 1687 udp_rmem_release(sk, udp_skb_truesize(skb), 1, true); 1688 } 1689 1690 /* Idea of busylocks is to let producers grab an extra spinlock 1691 * to relieve pressure on the receive_queue spinlock shared by consumer. 1692 * Under flood, this means that only one producer can be in line 1693 * trying to acquire the receive_queue spinlock. 1694 * These busylock can be allocated on a per cpu manner, instead of a 1695 * per socket one (that would consume a cache line per socket) 1696 */ 1697 static int udp_busylocks_log __read_mostly; 1698 static spinlock_t *udp_busylocks __read_mostly; 1699 1700 static spinlock_t *busylock_acquire(void *ptr) 1701 { 1702 spinlock_t *busy; 1703 1704 busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log); 1705 spin_lock(busy); 1706 return busy; 1707 } 1708 1709 static void busylock_release(spinlock_t *busy) 1710 { 1711 if (busy) 1712 spin_unlock(busy); 1713 } 1714 1715 static int udp_rmem_schedule(struct sock *sk, int size) 1716 { 1717 int delta; 1718 1719 delta = size - sk->sk_forward_alloc; 1720 if (delta > 0 && !__sk_mem_schedule(sk, delta, SK_MEM_RECV)) 1721 return -ENOBUFS; 1722 1723 return 0; 1724 } 1725 1726 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb) 1727 { 1728 struct sk_buff_head *list = &sk->sk_receive_queue; 1729 unsigned int rmem, rcvbuf; 1730 spinlock_t *busy = NULL; 1731 int size, err = -ENOMEM; 1732 1733 rmem = atomic_read(&sk->sk_rmem_alloc); 1734 rcvbuf = READ_ONCE(sk->sk_rcvbuf); 1735 size = skb->truesize; 1736 1737 /* Immediately drop when the receive queue is full. 1738 * Cast to unsigned int performs the boundary check for INT_MAX. 1739 */ 1740 if (rmem + size > rcvbuf) { 1741 if (rcvbuf > INT_MAX >> 1) 1742 goto drop; 1743 1744 /* Always allow at least one packet for small buffer. */ 1745 if (rmem > rcvbuf) 1746 goto drop; 1747 } 1748 1749 /* Under mem pressure, it might be helpful to help udp_recvmsg() 1750 * having linear skbs : 1751 * - Reduce memory overhead and thus increase receive queue capacity 1752 * - Less cache line misses at copyout() time 1753 * - Less work at consume_skb() (less alien page frag freeing) 1754 */ 1755 if (rmem > (rcvbuf >> 1)) { 1756 skb_condense(skb); 1757 size = skb->truesize; 1758 busy = busylock_acquire(sk); 1759 } 1760 1761 udp_set_dev_scratch(skb); 1762 1763 atomic_add(size, &sk->sk_rmem_alloc); 1764 1765 spin_lock(&list->lock); 1766 err = udp_rmem_schedule(sk, size); 1767 if (err) { 1768 spin_unlock(&list->lock); 1769 goto uncharge_drop; 1770 } 1771 1772 sk_forward_alloc_add(sk, -size); 1773 1774 /* no need to setup a destructor, we will explicitly release the 1775 * forward allocated memory on dequeue 1776 */ 1777 sock_skb_set_dropcount(sk, skb); 1778 1779 __skb_queue_tail(list, skb); 1780 spin_unlock(&list->lock); 1781 1782 if (!sock_flag(sk, SOCK_DEAD)) 1783 INDIRECT_CALL_1(sk->sk_data_ready, sock_def_readable, sk); 1784 1785 busylock_release(busy); 1786 return 0; 1787 1788 uncharge_drop: 1789 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 1790 1791 drop: 1792 atomic_inc(&sk->sk_drops); 1793 busylock_release(busy); 1794 return err; 1795 } 1796 EXPORT_IPV6_MOD_GPL(__udp_enqueue_schedule_skb); 1797 1798 void udp_destruct_common(struct sock *sk) 1799 { 1800 /* reclaim completely the forward allocated memory */ 1801 struct udp_sock *up = udp_sk(sk); 1802 unsigned int total = 0; 1803 struct sk_buff *skb; 1804 1805 skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue); 1806 while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) { 1807 total += skb->truesize; 1808 kfree_skb(skb); 1809 } 1810 udp_rmem_release(sk, total, 0, true); 1811 } 1812 EXPORT_IPV6_MOD_GPL(udp_destruct_common); 1813 1814 static void udp_destruct_sock(struct sock *sk) 1815 { 1816 udp_destruct_common(sk); 1817 inet_sock_destruct(sk); 1818 } 1819 1820 int udp_init_sock(struct sock *sk) 1821 { 1822 udp_lib_init_sock(sk); 1823 sk->sk_destruct = udp_destruct_sock; 1824 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); 1825 return 0; 1826 } 1827 1828 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len) 1829 { 1830 if (unlikely(READ_ONCE(udp_sk(sk)->peeking_with_offset))) 1831 sk_peek_offset_bwd(sk, len); 1832 1833 if (!skb_unref(skb)) 1834 return; 1835 1836 /* In the more common cases we cleared the head states previously, 1837 * see __udp_queue_rcv_skb(). 1838 */ 1839 if (unlikely(udp_skb_has_head_state(skb))) 1840 skb_release_head_state(skb); 1841 __consume_stateless_skb(skb); 1842 } 1843 EXPORT_IPV6_MOD_GPL(skb_consume_udp); 1844 1845 static struct sk_buff *__first_packet_length(struct sock *sk, 1846 struct sk_buff_head *rcvq, 1847 unsigned int *total) 1848 { 1849 struct sk_buff *skb; 1850 1851 while ((skb = skb_peek(rcvq)) != NULL) { 1852 if (udp_lib_checksum_complete(skb)) { 1853 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, 1854 IS_UDPLITE(sk)); 1855 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, 1856 IS_UDPLITE(sk)); 1857 atomic_inc(&sk->sk_drops); 1858 __skb_unlink(skb, rcvq); 1859 *total += skb->truesize; 1860 kfree_skb_reason(skb, SKB_DROP_REASON_UDP_CSUM); 1861 } else { 1862 udp_skb_csum_unnecessary_set(skb); 1863 break; 1864 } 1865 } 1866 return skb; 1867 } 1868 1869 /** 1870 * first_packet_length - return length of first packet in receive queue 1871 * @sk: socket 1872 * 1873 * Drops all bad checksum frames, until a valid one is found. 1874 * Returns the length of found skb, or -1 if none is found. 1875 */ 1876 static int first_packet_length(struct sock *sk) 1877 { 1878 struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue; 1879 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1880 unsigned int total = 0; 1881 struct sk_buff *skb; 1882 int res; 1883 1884 spin_lock_bh(&rcvq->lock); 1885 skb = __first_packet_length(sk, rcvq, &total); 1886 if (!skb && !skb_queue_empty_lockless(sk_queue)) { 1887 spin_lock(&sk_queue->lock); 1888 skb_queue_splice_tail_init(sk_queue, rcvq); 1889 spin_unlock(&sk_queue->lock); 1890 1891 skb = __first_packet_length(sk, rcvq, &total); 1892 } 1893 res = skb ? skb->len : -1; 1894 if (total) 1895 udp_rmem_release(sk, total, 1, false); 1896 spin_unlock_bh(&rcvq->lock); 1897 return res; 1898 } 1899 1900 /* 1901 * IOCTL requests applicable to the UDP protocol 1902 */ 1903 1904 int udp_ioctl(struct sock *sk, int cmd, int *karg) 1905 { 1906 switch (cmd) { 1907 case SIOCOUTQ: 1908 { 1909 *karg = sk_wmem_alloc_get(sk); 1910 return 0; 1911 } 1912 1913 case SIOCINQ: 1914 { 1915 *karg = max_t(int, 0, first_packet_length(sk)); 1916 return 0; 1917 } 1918 1919 default: 1920 return -ENOIOCTLCMD; 1921 } 1922 1923 return 0; 1924 } 1925 EXPORT_IPV6_MOD(udp_ioctl); 1926 1927 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags, 1928 int *off, int *err) 1929 { 1930 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1931 struct sk_buff_head *queue; 1932 struct sk_buff *last; 1933 long timeo; 1934 int error; 1935 1936 queue = &udp_sk(sk)->reader_queue; 1937 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1938 do { 1939 struct sk_buff *skb; 1940 1941 error = sock_error(sk); 1942 if (error) 1943 break; 1944 1945 error = -EAGAIN; 1946 do { 1947 spin_lock_bh(&queue->lock); 1948 skb = __skb_try_recv_from_queue(queue, flags, off, err, 1949 &last); 1950 if (skb) { 1951 if (!(flags & MSG_PEEK)) 1952 udp_skb_destructor(sk, skb); 1953 spin_unlock_bh(&queue->lock); 1954 return skb; 1955 } 1956 1957 if (skb_queue_empty_lockless(sk_queue)) { 1958 spin_unlock_bh(&queue->lock); 1959 goto busy_check; 1960 } 1961 1962 /* refill the reader queue and walk it again 1963 * keep both queues locked to avoid re-acquiring 1964 * the sk_receive_queue lock if fwd memory scheduling 1965 * is needed. 1966 */ 1967 spin_lock(&sk_queue->lock); 1968 skb_queue_splice_tail_init(sk_queue, queue); 1969 1970 skb = __skb_try_recv_from_queue(queue, flags, off, err, 1971 &last); 1972 if (skb && !(flags & MSG_PEEK)) 1973 udp_skb_dtor_locked(sk, skb); 1974 spin_unlock(&sk_queue->lock); 1975 spin_unlock_bh(&queue->lock); 1976 if (skb) 1977 return skb; 1978 1979 busy_check: 1980 if (!sk_can_busy_loop(sk)) 1981 break; 1982 1983 sk_busy_loop(sk, flags & MSG_DONTWAIT); 1984 } while (!skb_queue_empty_lockless(sk_queue)); 1985 1986 /* sk_queue is empty, reader_queue may contain peeked packets */ 1987 } while (timeo && 1988 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue, 1989 &error, &timeo, 1990 (struct sk_buff *)sk_queue)); 1991 1992 *err = error; 1993 return NULL; 1994 } 1995 EXPORT_SYMBOL(__skb_recv_udp); 1996 1997 int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor) 1998 { 1999 struct sk_buff *skb; 2000 int err; 2001 2002 try_again: 2003 skb = skb_recv_udp(sk, MSG_DONTWAIT, &err); 2004 if (!skb) 2005 return err; 2006 2007 if (udp_lib_checksum_complete(skb)) { 2008 int is_udplite = IS_UDPLITE(sk); 2009 struct net *net = sock_net(sk); 2010 2011 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, is_udplite); 2012 __UDP_INC_STATS(net, UDP_MIB_INERRORS, is_udplite); 2013 atomic_inc(&sk->sk_drops); 2014 kfree_skb_reason(skb, SKB_DROP_REASON_UDP_CSUM); 2015 goto try_again; 2016 } 2017 2018 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk)); 2019 return recv_actor(sk, skb); 2020 } 2021 EXPORT_IPV6_MOD(udp_read_skb); 2022 2023 /* 2024 * This should be easy, if there is something there we 2025 * return it, otherwise we block. 2026 */ 2027 2028 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, 2029 int *addr_len) 2030 { 2031 struct inet_sock *inet = inet_sk(sk); 2032 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name); 2033 struct sk_buff *skb; 2034 unsigned int ulen, copied; 2035 int off, err, peeking = flags & MSG_PEEK; 2036 int is_udplite = IS_UDPLITE(sk); 2037 bool checksum_valid = false; 2038 2039 if (flags & MSG_ERRQUEUE) 2040 return ip_recv_error(sk, msg, len, addr_len); 2041 2042 try_again: 2043 off = sk_peek_offset(sk, flags); 2044 skb = __skb_recv_udp(sk, flags, &off, &err); 2045 if (!skb) 2046 return err; 2047 2048 ulen = udp_skb_len(skb); 2049 copied = len; 2050 if (copied > ulen - off) 2051 copied = ulen - off; 2052 else if (copied < ulen) 2053 msg->msg_flags |= MSG_TRUNC; 2054 2055 /* 2056 * If checksum is needed at all, try to do it while copying the 2057 * data. If the data is truncated, or if we only want a partial 2058 * coverage checksum (UDP-Lite), do it before the copy. 2059 */ 2060 2061 if (copied < ulen || peeking || 2062 (is_udplite && UDP_SKB_CB(skb)->partial_cov)) { 2063 checksum_valid = udp_skb_csum_unnecessary(skb) || 2064 !__udp_lib_checksum_complete(skb); 2065 if (!checksum_valid) 2066 goto csum_copy_err; 2067 } 2068 2069 if (checksum_valid || udp_skb_csum_unnecessary(skb)) { 2070 if (udp_skb_is_linear(skb)) 2071 err = copy_linear_skb(skb, copied, off, &msg->msg_iter); 2072 else 2073 err = skb_copy_datagram_msg(skb, off, msg, copied); 2074 } else { 2075 err = skb_copy_and_csum_datagram_msg(skb, off, msg); 2076 2077 if (err == -EINVAL) 2078 goto csum_copy_err; 2079 } 2080 2081 if (unlikely(err)) { 2082 if (!peeking) { 2083 atomic_inc(&sk->sk_drops); 2084 UDP_INC_STATS(sock_net(sk), 2085 UDP_MIB_INERRORS, is_udplite); 2086 } 2087 kfree_skb(skb); 2088 return err; 2089 } 2090 2091 if (!peeking) 2092 UDP_INC_STATS(sock_net(sk), 2093 UDP_MIB_INDATAGRAMS, is_udplite); 2094 2095 sock_recv_cmsgs(msg, sk, skb); 2096 2097 /* Copy the address. */ 2098 if (sin) { 2099 sin->sin_family = AF_INET; 2100 sin->sin_port = udp_hdr(skb)->source; 2101 sin->sin_addr.s_addr = ip_hdr(skb)->saddr; 2102 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 2103 *addr_len = sizeof(*sin); 2104 2105 BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk, 2106 (struct sockaddr *)sin, 2107 addr_len); 2108 } 2109 2110 if (udp_test_bit(GRO_ENABLED, sk)) 2111 udp_cmsg_recv(msg, sk, skb); 2112 2113 if (inet_cmsg_flags(inet)) 2114 ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off); 2115 2116 err = copied; 2117 if (flags & MSG_TRUNC) 2118 err = ulen; 2119 2120 skb_consume_udp(sk, skb, peeking ? -err : err); 2121 return err; 2122 2123 csum_copy_err: 2124 if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags, 2125 udp_skb_destructor)) { 2126 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 2127 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 2128 } 2129 kfree_skb_reason(skb, SKB_DROP_REASON_UDP_CSUM); 2130 2131 /* starting over for a new packet, but check if we need to yield */ 2132 cond_resched(); 2133 msg->msg_flags &= ~MSG_TRUNC; 2134 goto try_again; 2135 } 2136 2137 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 2138 { 2139 /* This check is replicated from __ip4_datagram_connect() and 2140 * intended to prevent BPF program called below from accessing bytes 2141 * that are out of the bound specified by user in addr_len. 2142 */ 2143 if (addr_len < sizeof(struct sockaddr_in)) 2144 return -EINVAL; 2145 2146 return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr, &addr_len); 2147 } 2148 EXPORT_IPV6_MOD(udp_pre_connect); 2149 2150 static int udp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 2151 { 2152 int res; 2153 2154 lock_sock(sk); 2155 res = __ip4_datagram_connect(sk, uaddr, addr_len); 2156 if (!res) 2157 udp4_hash4(sk); 2158 release_sock(sk); 2159 return res; 2160 } 2161 2162 int __udp_disconnect(struct sock *sk, int flags) 2163 { 2164 struct inet_sock *inet = inet_sk(sk); 2165 /* 2166 * 1003.1g - break association. 2167 */ 2168 2169 sk->sk_state = TCP_CLOSE; 2170 inet->inet_daddr = 0; 2171 inet->inet_dport = 0; 2172 sock_rps_reset_rxhash(sk); 2173 sk->sk_bound_dev_if = 0; 2174 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) { 2175 inet_reset_saddr(sk); 2176 if (sk->sk_prot->rehash && 2177 (sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2178 sk->sk_prot->rehash(sk); 2179 } 2180 2181 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) { 2182 sk->sk_prot->unhash(sk); 2183 inet->inet_sport = 0; 2184 } 2185 sk_dst_reset(sk); 2186 return 0; 2187 } 2188 EXPORT_SYMBOL(__udp_disconnect); 2189 2190 int udp_disconnect(struct sock *sk, int flags) 2191 { 2192 lock_sock(sk); 2193 __udp_disconnect(sk, flags); 2194 release_sock(sk); 2195 return 0; 2196 } 2197 EXPORT_IPV6_MOD(udp_disconnect); 2198 2199 void udp_lib_unhash(struct sock *sk) 2200 { 2201 if (sk_hashed(sk)) { 2202 struct udp_table *udptable = udp_get_table_prot(sk); 2203 struct udp_hslot *hslot, *hslot2; 2204 2205 sock_rps_delete_flow(sk); 2206 hslot = udp_hashslot(udptable, sock_net(sk), 2207 udp_sk(sk)->udp_port_hash); 2208 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 2209 2210 spin_lock_bh(&hslot->lock); 2211 if (rcu_access_pointer(sk->sk_reuseport_cb)) 2212 reuseport_detach_sock(sk); 2213 if (sk_del_node_init_rcu(sk)) { 2214 hslot->count--; 2215 inet_sk(sk)->inet_num = 0; 2216 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 2217 2218 spin_lock(&hslot2->lock); 2219 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 2220 hslot2->count--; 2221 spin_unlock(&hslot2->lock); 2222 2223 udp_unhash4(udptable, sk); 2224 } 2225 spin_unlock_bh(&hslot->lock); 2226 } 2227 } 2228 EXPORT_IPV6_MOD(udp_lib_unhash); 2229 2230 /* 2231 * inet_rcv_saddr was changed, we must rehash secondary hash 2232 */ 2233 void udp_lib_rehash(struct sock *sk, u16 newhash, u16 newhash4) 2234 { 2235 if (sk_hashed(sk)) { 2236 struct udp_table *udptable = udp_get_table_prot(sk); 2237 struct udp_hslot *hslot, *hslot2, *nhslot2; 2238 2239 hslot = udp_hashslot(udptable, sock_net(sk), 2240 udp_sk(sk)->udp_port_hash); 2241 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 2242 nhslot2 = udp_hashslot2(udptable, newhash); 2243 udp_sk(sk)->udp_portaddr_hash = newhash; 2244 2245 if (hslot2 != nhslot2 || 2246 rcu_access_pointer(sk->sk_reuseport_cb)) { 2247 /* we must lock primary chain too */ 2248 spin_lock_bh(&hslot->lock); 2249 if (rcu_access_pointer(sk->sk_reuseport_cb)) 2250 reuseport_detach_sock(sk); 2251 2252 if (hslot2 != nhslot2) { 2253 spin_lock(&hslot2->lock); 2254 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 2255 hslot2->count--; 2256 spin_unlock(&hslot2->lock); 2257 2258 spin_lock(&nhslot2->lock); 2259 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 2260 &nhslot2->head); 2261 nhslot2->count++; 2262 spin_unlock(&nhslot2->lock); 2263 } 2264 2265 spin_unlock_bh(&hslot->lock); 2266 } 2267 2268 /* Now process hash4 if necessary: 2269 * (1) update hslot4; 2270 * (2) update hslot2->hash4_cnt. 2271 * Note that hslot2/hslot4 should be checked separately, as 2272 * either of them may change with the other unchanged. 2273 */ 2274 if (udp_hashed4(sk)) { 2275 spin_lock_bh(&hslot->lock); 2276 2277 udp_rehash4(udptable, sk, newhash4); 2278 if (hslot2 != nhslot2) { 2279 spin_lock(&hslot2->lock); 2280 udp_hash4_dec(hslot2); 2281 spin_unlock(&hslot2->lock); 2282 2283 spin_lock(&nhslot2->lock); 2284 udp_hash4_inc(nhslot2); 2285 spin_unlock(&nhslot2->lock); 2286 } 2287 2288 spin_unlock_bh(&hslot->lock); 2289 } 2290 } 2291 } 2292 EXPORT_IPV6_MOD(udp_lib_rehash); 2293 2294 void udp_v4_rehash(struct sock *sk) 2295 { 2296 u16 new_hash = ipv4_portaddr_hash(sock_net(sk), 2297 inet_sk(sk)->inet_rcv_saddr, 2298 inet_sk(sk)->inet_num); 2299 u16 new_hash4 = udp_ehashfn(sock_net(sk), 2300 sk->sk_rcv_saddr, sk->sk_num, 2301 sk->sk_daddr, sk->sk_dport); 2302 2303 udp_lib_rehash(sk, new_hash, new_hash4); 2304 } 2305 2306 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 2307 { 2308 int rc; 2309 2310 if (inet_sk(sk)->inet_daddr) { 2311 sock_rps_save_rxhash(sk, skb); 2312 sk_mark_napi_id(sk, skb); 2313 sk_incoming_cpu_update(sk); 2314 } else { 2315 sk_mark_napi_id_once(sk, skb); 2316 } 2317 2318 rc = __udp_enqueue_schedule_skb(sk, skb); 2319 if (rc < 0) { 2320 int is_udplite = IS_UDPLITE(sk); 2321 int drop_reason; 2322 2323 /* Note that an ENOMEM error is charged twice */ 2324 if (rc == -ENOMEM) { 2325 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS, 2326 is_udplite); 2327 drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF; 2328 } else { 2329 UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS, 2330 is_udplite); 2331 drop_reason = SKB_DROP_REASON_PROTO_MEM; 2332 } 2333 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 2334 trace_udp_fail_queue_rcv_skb(rc, sk, skb); 2335 sk_skb_reason_drop(sk, skb, drop_reason); 2336 return -1; 2337 } 2338 2339 return 0; 2340 } 2341 2342 /* returns: 2343 * -1: error 2344 * 0: success 2345 * >0: "udp encap" protocol resubmission 2346 * 2347 * Note that in the success and error cases, the skb is assumed to 2348 * have either been requeued or freed. 2349 */ 2350 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb) 2351 { 2352 int drop_reason = SKB_DROP_REASON_NOT_SPECIFIED; 2353 struct udp_sock *up = udp_sk(sk); 2354 int is_udplite = IS_UDPLITE(sk); 2355 2356 /* 2357 * Charge it to the socket, dropping if the queue is full. 2358 */ 2359 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) { 2360 drop_reason = SKB_DROP_REASON_XFRM_POLICY; 2361 goto drop; 2362 } 2363 nf_reset_ct(skb); 2364 2365 if (static_branch_unlikely(&udp_encap_needed_key) && 2366 READ_ONCE(up->encap_type)) { 2367 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb); 2368 2369 /* 2370 * This is an encapsulation socket so pass the skb to 2371 * the socket's udp_encap_rcv() hook. Otherwise, just 2372 * fall through and pass this up the UDP socket. 2373 * up->encap_rcv() returns the following value: 2374 * =0 if skb was successfully passed to the encap 2375 * handler or was discarded by it. 2376 * >0 if skb should be passed on to UDP. 2377 * <0 if skb should be resubmitted as proto -N 2378 */ 2379 2380 /* if we're overly short, let UDP handle it */ 2381 encap_rcv = READ_ONCE(up->encap_rcv); 2382 if (encap_rcv) { 2383 int ret; 2384 2385 /* Verify checksum before giving to encap */ 2386 if (udp_lib_checksum_complete(skb)) 2387 goto csum_error; 2388 2389 ret = encap_rcv(sk, skb); 2390 if (ret <= 0) { 2391 __UDP_INC_STATS(sock_net(sk), 2392 UDP_MIB_INDATAGRAMS, 2393 is_udplite); 2394 return -ret; 2395 } 2396 } 2397 2398 /* FALLTHROUGH -- it's a UDP Packet */ 2399 } 2400 2401 /* 2402 * UDP-Lite specific tests, ignored on UDP sockets 2403 */ 2404 if (udp_test_bit(UDPLITE_RECV_CC, sk) && UDP_SKB_CB(skb)->partial_cov) { 2405 u16 pcrlen = READ_ONCE(up->pcrlen); 2406 2407 /* 2408 * MIB statistics other than incrementing the error count are 2409 * disabled for the following two types of errors: these depend 2410 * on the application settings, not on the functioning of the 2411 * protocol stack as such. 2412 * 2413 * RFC 3828 here recommends (sec 3.3): "There should also be a 2414 * way ... to ... at least let the receiving application block 2415 * delivery of packets with coverage values less than a value 2416 * provided by the application." 2417 */ 2418 if (pcrlen == 0) { /* full coverage was set */ 2419 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n", 2420 UDP_SKB_CB(skb)->cscov, skb->len); 2421 goto drop; 2422 } 2423 /* The next case involves violating the min. coverage requested 2424 * by the receiver. This is subtle: if receiver wants x and x is 2425 * greater than the buffersize/MTU then receiver will complain 2426 * that it wants x while sender emits packets of smaller size y. 2427 * Therefore the above ...()->partial_cov statement is essential. 2428 */ 2429 if (UDP_SKB_CB(skb)->cscov < pcrlen) { 2430 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n", 2431 UDP_SKB_CB(skb)->cscov, pcrlen); 2432 goto drop; 2433 } 2434 } 2435 2436 prefetch(&sk->sk_rmem_alloc); 2437 if (rcu_access_pointer(sk->sk_filter) && 2438 udp_lib_checksum_complete(skb)) 2439 goto csum_error; 2440 2441 if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) { 2442 drop_reason = SKB_DROP_REASON_SOCKET_FILTER; 2443 goto drop; 2444 } 2445 2446 udp_csum_pull_header(skb); 2447 2448 ipv4_pktinfo_prepare(sk, skb, true); 2449 return __udp_queue_rcv_skb(sk, skb); 2450 2451 csum_error: 2452 drop_reason = SKB_DROP_REASON_UDP_CSUM; 2453 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 2454 drop: 2455 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 2456 atomic_inc(&sk->sk_drops); 2457 sk_skb_reason_drop(sk, skb, drop_reason); 2458 return -1; 2459 } 2460 2461 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 2462 { 2463 struct sk_buff *next, *segs; 2464 int ret; 2465 2466 if (likely(!udp_unexpected_gso(sk, skb))) 2467 return udp_queue_rcv_one_skb(sk, skb); 2468 2469 BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET); 2470 __skb_push(skb, -skb_mac_offset(skb)); 2471 segs = udp_rcv_segment(sk, skb, true); 2472 skb_list_walk_safe(segs, skb, next) { 2473 __skb_pull(skb, skb_transport_offset(skb)); 2474 2475 udp_post_segment_fix_csum(skb); 2476 ret = udp_queue_rcv_one_skb(sk, skb); 2477 if (ret > 0) 2478 ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret); 2479 } 2480 return 0; 2481 } 2482 2483 /* For TCP sockets, sk_rx_dst is protected by socket lock 2484 * For UDP, we use xchg() to guard against concurrent changes. 2485 */ 2486 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst) 2487 { 2488 struct dst_entry *old; 2489 2490 if (dst_hold_safe(dst)) { 2491 old = unrcu_pointer(xchg(&sk->sk_rx_dst, RCU_INITIALIZER(dst))); 2492 dst_release(old); 2493 return old != dst; 2494 } 2495 return false; 2496 } 2497 EXPORT_IPV6_MOD(udp_sk_rx_dst_set); 2498 2499 /* 2500 * Multicasts and broadcasts go to each listener. 2501 * 2502 * Note: called only from the BH handler context. 2503 */ 2504 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb, 2505 struct udphdr *uh, 2506 __be32 saddr, __be32 daddr, 2507 struct udp_table *udptable, 2508 int proto) 2509 { 2510 struct sock *sk, *first = NULL; 2511 unsigned short hnum = ntohs(uh->dest); 2512 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum); 2513 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10); 2514 unsigned int offset = offsetof(typeof(*sk), sk_node); 2515 int dif = skb->dev->ifindex; 2516 int sdif = inet_sdif(skb); 2517 struct hlist_node *node; 2518 struct sk_buff *nskb; 2519 2520 if (use_hash2) { 2521 hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) & 2522 udptable->mask; 2523 hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask; 2524 start_lookup: 2525 hslot = &udptable->hash2[hash2].hslot; 2526 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node); 2527 } 2528 2529 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) { 2530 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr, 2531 uh->source, saddr, dif, sdif, hnum)) 2532 continue; 2533 2534 if (!first) { 2535 first = sk; 2536 continue; 2537 } 2538 nskb = skb_clone(skb, GFP_ATOMIC); 2539 2540 if (unlikely(!nskb)) { 2541 atomic_inc(&sk->sk_drops); 2542 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS, 2543 IS_UDPLITE(sk)); 2544 __UDP_INC_STATS(net, UDP_MIB_INERRORS, 2545 IS_UDPLITE(sk)); 2546 continue; 2547 } 2548 if (udp_queue_rcv_skb(sk, nskb) > 0) 2549 consume_skb(nskb); 2550 } 2551 2552 /* Also lookup *:port if we are using hash2 and haven't done so yet. */ 2553 if (use_hash2 && hash2 != hash2_any) { 2554 hash2 = hash2_any; 2555 goto start_lookup; 2556 } 2557 2558 if (first) { 2559 if (udp_queue_rcv_skb(first, skb) > 0) 2560 consume_skb(skb); 2561 } else { 2562 kfree_skb(skb); 2563 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI, 2564 proto == IPPROTO_UDPLITE); 2565 } 2566 return 0; 2567 } 2568 2569 /* Initialize UDP checksum. If exited with zero value (success), 2570 * CHECKSUM_UNNECESSARY means, that no more checks are required. 2571 * Otherwise, csum completion requires checksumming packet body, 2572 * including udp header and folding it to skb->csum. 2573 */ 2574 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh, 2575 int proto) 2576 { 2577 int err; 2578 2579 UDP_SKB_CB(skb)->partial_cov = 0; 2580 UDP_SKB_CB(skb)->cscov = skb->len; 2581 2582 if (proto == IPPROTO_UDPLITE) { 2583 err = udplite_checksum_init(skb, uh); 2584 if (err) 2585 return err; 2586 2587 if (UDP_SKB_CB(skb)->partial_cov) { 2588 skb->csum = inet_compute_pseudo(skb, proto); 2589 return 0; 2590 } 2591 } 2592 2593 /* Note, we are only interested in != 0 or == 0, thus the 2594 * force to int. 2595 */ 2596 err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check, 2597 inet_compute_pseudo); 2598 if (err) 2599 return err; 2600 2601 if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) { 2602 /* If SW calculated the value, we know it's bad */ 2603 if (skb->csum_complete_sw) 2604 return 1; 2605 2606 /* HW says the value is bad. Let's validate that. 2607 * skb->csum is no longer the full packet checksum, 2608 * so don't treat it as such. 2609 */ 2610 skb_checksum_complete_unset(skb); 2611 } 2612 2613 return 0; 2614 } 2615 2616 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and 2617 * return code conversion for ip layer consumption 2618 */ 2619 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb, 2620 struct udphdr *uh) 2621 { 2622 int ret; 2623 2624 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk)) 2625 skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo); 2626 2627 ret = udp_queue_rcv_skb(sk, skb); 2628 2629 /* a return value > 0 means to resubmit the input, but 2630 * it wants the return to be -protocol, or 0 2631 */ 2632 if (ret > 0) 2633 return -ret; 2634 return 0; 2635 } 2636 2637 /* 2638 * All we need to do is get the socket, and then do a checksum. 2639 */ 2640 2641 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable, 2642 int proto) 2643 { 2644 struct sock *sk = NULL; 2645 struct udphdr *uh; 2646 unsigned short ulen; 2647 struct rtable *rt = skb_rtable(skb); 2648 __be32 saddr, daddr; 2649 struct net *net = dev_net(skb->dev); 2650 bool refcounted; 2651 int drop_reason; 2652 2653 drop_reason = SKB_DROP_REASON_NOT_SPECIFIED; 2654 2655 /* 2656 * Validate the packet. 2657 */ 2658 if (!pskb_may_pull(skb, sizeof(struct udphdr))) 2659 goto drop; /* No space for header. */ 2660 2661 uh = udp_hdr(skb); 2662 ulen = ntohs(uh->len); 2663 saddr = ip_hdr(skb)->saddr; 2664 daddr = ip_hdr(skb)->daddr; 2665 2666 if (ulen > skb->len) 2667 goto short_packet; 2668 2669 if (proto == IPPROTO_UDP) { 2670 /* UDP validates ulen. */ 2671 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen)) 2672 goto short_packet; 2673 uh = udp_hdr(skb); 2674 } 2675 2676 if (udp4_csum_init(skb, uh, proto)) 2677 goto csum_error; 2678 2679 sk = inet_steal_sock(net, skb, sizeof(struct udphdr), saddr, uh->source, daddr, uh->dest, 2680 &refcounted, udp_ehashfn); 2681 if (IS_ERR(sk)) 2682 goto no_sk; 2683 2684 if (sk) { 2685 struct dst_entry *dst = skb_dst(skb); 2686 int ret; 2687 2688 if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst)) 2689 udp_sk_rx_dst_set(sk, dst); 2690 2691 ret = udp_unicast_rcv_skb(sk, skb, uh); 2692 if (refcounted) 2693 sock_put(sk); 2694 return ret; 2695 } 2696 2697 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST)) 2698 return __udp4_lib_mcast_deliver(net, skb, uh, 2699 saddr, daddr, udptable, proto); 2700 2701 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable); 2702 if (sk) 2703 return udp_unicast_rcv_skb(sk, skb, uh); 2704 no_sk: 2705 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 2706 goto drop; 2707 nf_reset_ct(skb); 2708 2709 /* No socket. Drop packet silently, if checksum is wrong */ 2710 if (udp_lib_checksum_complete(skb)) 2711 goto csum_error; 2712 2713 drop_reason = SKB_DROP_REASON_NO_SOCKET; 2714 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE); 2715 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0); 2716 2717 /* 2718 * Hmm. We got an UDP packet to a port to which we 2719 * don't wanna listen. Ignore it. 2720 */ 2721 sk_skb_reason_drop(sk, skb, drop_reason); 2722 return 0; 2723 2724 short_packet: 2725 drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL; 2726 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n", 2727 proto == IPPROTO_UDPLITE ? "Lite" : "", 2728 &saddr, ntohs(uh->source), 2729 ulen, skb->len, 2730 &daddr, ntohs(uh->dest)); 2731 goto drop; 2732 2733 csum_error: 2734 /* 2735 * RFC1122: OK. Discards the bad packet silently (as far as 2736 * the network is concerned, anyway) as per 4.1.3.4 (MUST). 2737 */ 2738 drop_reason = SKB_DROP_REASON_UDP_CSUM; 2739 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n", 2740 proto == IPPROTO_UDPLITE ? "Lite" : "", 2741 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest), 2742 ulen); 2743 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE); 2744 drop: 2745 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE); 2746 sk_skb_reason_drop(sk, skb, drop_reason); 2747 return 0; 2748 } 2749 2750 /* We can only early demux multicast if there is a single matching socket. 2751 * If more than one socket found returns NULL 2752 */ 2753 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net, 2754 __be16 loc_port, __be32 loc_addr, 2755 __be16 rmt_port, __be32 rmt_addr, 2756 int dif, int sdif) 2757 { 2758 struct udp_table *udptable = net->ipv4.udp_table; 2759 unsigned short hnum = ntohs(loc_port); 2760 struct sock *sk, *result; 2761 struct udp_hslot *hslot; 2762 unsigned int slot; 2763 2764 slot = udp_hashfn(net, hnum, udptable->mask); 2765 hslot = &udptable->hash[slot]; 2766 2767 /* Do not bother scanning a too big list */ 2768 if (hslot->count > 10) 2769 return NULL; 2770 2771 result = NULL; 2772 sk_for_each_rcu(sk, &hslot->head) { 2773 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr, 2774 rmt_port, rmt_addr, dif, sdif, hnum)) { 2775 if (result) 2776 return NULL; 2777 result = sk; 2778 } 2779 } 2780 2781 return result; 2782 } 2783 2784 /* For unicast we should only early demux connected sockets or we can 2785 * break forwarding setups. The chains here can be long so only check 2786 * if the first socket is an exact match and if not move on. 2787 */ 2788 static struct sock *__udp4_lib_demux_lookup(struct net *net, 2789 __be16 loc_port, __be32 loc_addr, 2790 __be16 rmt_port, __be32 rmt_addr, 2791 int dif, int sdif) 2792 { 2793 struct udp_table *udptable = net->ipv4.udp_table; 2794 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr); 2795 unsigned short hnum = ntohs(loc_port); 2796 struct udp_hslot *hslot2; 2797 unsigned int hash2; 2798 __portpair ports; 2799 struct sock *sk; 2800 2801 hash2 = ipv4_portaddr_hash(net, loc_addr, hnum); 2802 hslot2 = udp_hashslot2(udptable, hash2); 2803 ports = INET_COMBINED_PORTS(rmt_port, hnum); 2804 2805 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 2806 if (inet_match(net, sk, acookie, ports, dif, sdif)) 2807 return sk; 2808 /* Only check first socket in chain */ 2809 break; 2810 } 2811 return NULL; 2812 } 2813 2814 int udp_v4_early_demux(struct sk_buff *skb) 2815 { 2816 struct net *net = dev_net(skb->dev); 2817 struct in_device *in_dev = NULL; 2818 const struct iphdr *iph; 2819 const struct udphdr *uh; 2820 struct sock *sk = NULL; 2821 struct dst_entry *dst; 2822 int dif = skb->dev->ifindex; 2823 int sdif = inet_sdif(skb); 2824 int ours; 2825 2826 /* validate the packet */ 2827 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr))) 2828 return 0; 2829 2830 iph = ip_hdr(skb); 2831 uh = udp_hdr(skb); 2832 2833 if (skb->pkt_type == PACKET_MULTICAST) { 2834 in_dev = __in_dev_get_rcu(skb->dev); 2835 2836 if (!in_dev) 2837 return 0; 2838 2839 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr, 2840 iph->protocol); 2841 if (!ours) 2842 return 0; 2843 2844 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr, 2845 uh->source, iph->saddr, 2846 dif, sdif); 2847 } else if (skb->pkt_type == PACKET_HOST) { 2848 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr, 2849 uh->source, iph->saddr, dif, sdif); 2850 } 2851 2852 if (!sk) 2853 return 0; 2854 2855 skb->sk = sk; 2856 DEBUG_NET_WARN_ON_ONCE(sk_is_refcounted(sk)); 2857 skb->destructor = sock_pfree; 2858 dst = rcu_dereference(sk->sk_rx_dst); 2859 2860 if (dst) 2861 dst = dst_check(dst, 0); 2862 if (dst) { 2863 u32 itag = 0; 2864 2865 /* set noref for now. 2866 * any place which wants to hold dst has to call 2867 * dst_hold_safe() 2868 */ 2869 skb_dst_set_noref(skb, dst); 2870 2871 /* for unconnected multicast sockets we need to validate 2872 * the source on each packet 2873 */ 2874 if (!inet_sk(sk)->inet_daddr && in_dev) 2875 return ip_mc_validate_source(skb, iph->daddr, 2876 iph->saddr, 2877 ip4h_dscp(iph), 2878 skb->dev, in_dev, &itag); 2879 } 2880 return 0; 2881 } 2882 2883 int udp_rcv(struct sk_buff *skb) 2884 { 2885 return __udp4_lib_rcv(skb, dev_net(skb->dev)->ipv4.udp_table, IPPROTO_UDP); 2886 } 2887 2888 void udp_destroy_sock(struct sock *sk) 2889 { 2890 struct udp_sock *up = udp_sk(sk); 2891 bool slow = lock_sock_fast(sk); 2892 2893 /* protects from races with udp_abort() */ 2894 sock_set_flag(sk, SOCK_DEAD); 2895 udp_flush_pending_frames(sk); 2896 unlock_sock_fast(sk, slow); 2897 if (static_branch_unlikely(&udp_encap_needed_key)) { 2898 if (up->encap_type) { 2899 void (*encap_destroy)(struct sock *sk); 2900 encap_destroy = READ_ONCE(up->encap_destroy); 2901 if (encap_destroy) 2902 encap_destroy(sk); 2903 } 2904 if (udp_test_bit(ENCAP_ENABLED, sk)) { 2905 static_branch_dec(&udp_encap_needed_key); 2906 udp_tunnel_cleanup_gro(sk); 2907 } 2908 } 2909 } 2910 2911 typedef struct sk_buff *(*udp_gro_receive_t)(struct sock *sk, 2912 struct list_head *head, 2913 struct sk_buff *skb); 2914 2915 static void set_xfrm_gro_udp_encap_rcv(__u16 encap_type, unsigned short family, 2916 struct sock *sk) 2917 { 2918 #ifdef CONFIG_XFRM 2919 udp_gro_receive_t new_gro_receive; 2920 2921 if (udp_test_bit(GRO_ENABLED, sk) && encap_type == UDP_ENCAP_ESPINUDP) { 2922 if (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6) 2923 new_gro_receive = ipv6_stub->xfrm6_gro_udp_encap_rcv; 2924 else 2925 new_gro_receive = xfrm4_gro_udp_encap_rcv; 2926 2927 if (udp_sk(sk)->gro_receive != new_gro_receive) { 2928 /* 2929 * With IPV6_ADDRFORM the gro callback could change 2930 * after being set, unregister the old one, if valid. 2931 */ 2932 if (udp_sk(sk)->gro_receive) 2933 udp_tunnel_update_gro_rcv(sk, false); 2934 2935 WRITE_ONCE(udp_sk(sk)->gro_receive, new_gro_receive); 2936 udp_tunnel_update_gro_rcv(sk, true); 2937 } 2938 } 2939 #endif 2940 } 2941 2942 /* 2943 * Socket option code for UDP 2944 */ 2945 int udp_lib_setsockopt(struct sock *sk, int level, int optname, 2946 sockptr_t optval, unsigned int optlen, 2947 int (*push_pending_frames)(struct sock *)) 2948 { 2949 struct udp_sock *up = udp_sk(sk); 2950 int val, valbool; 2951 int err = 0; 2952 int is_udplite = IS_UDPLITE(sk); 2953 2954 if (level == SOL_SOCKET) { 2955 err = sk_setsockopt(sk, level, optname, optval, optlen); 2956 2957 if (optname == SO_RCVBUF || optname == SO_RCVBUFFORCE) { 2958 sockopt_lock_sock(sk); 2959 /* paired with READ_ONCE in udp_rmem_release() */ 2960 WRITE_ONCE(up->forward_threshold, sk->sk_rcvbuf >> 2); 2961 sockopt_release_sock(sk); 2962 } 2963 return err; 2964 } 2965 2966 if (optlen < sizeof(int)) 2967 return -EINVAL; 2968 2969 if (copy_from_sockptr(&val, optval, sizeof(val))) 2970 return -EFAULT; 2971 2972 valbool = val ? 1 : 0; 2973 2974 switch (optname) { 2975 case UDP_CORK: 2976 if (val != 0) { 2977 udp_set_bit(CORK, sk); 2978 } else { 2979 udp_clear_bit(CORK, sk); 2980 lock_sock(sk); 2981 push_pending_frames(sk); 2982 release_sock(sk); 2983 } 2984 break; 2985 2986 case UDP_ENCAP: 2987 sockopt_lock_sock(sk); 2988 switch (val) { 2989 case 0: 2990 #ifdef CONFIG_XFRM 2991 case UDP_ENCAP_ESPINUDP: 2992 set_xfrm_gro_udp_encap_rcv(val, sk->sk_family, sk); 2993 #if IS_ENABLED(CONFIG_IPV6) 2994 if (sk->sk_family == AF_INET6) 2995 WRITE_ONCE(up->encap_rcv, 2996 ipv6_stub->xfrm6_udp_encap_rcv); 2997 else 2998 #endif 2999 WRITE_ONCE(up->encap_rcv, 3000 xfrm4_udp_encap_rcv); 3001 #endif 3002 fallthrough; 3003 case UDP_ENCAP_L2TPINUDP: 3004 WRITE_ONCE(up->encap_type, val); 3005 udp_tunnel_encap_enable(sk); 3006 break; 3007 default: 3008 err = -ENOPROTOOPT; 3009 break; 3010 } 3011 sockopt_release_sock(sk); 3012 break; 3013 3014 case UDP_NO_CHECK6_TX: 3015 udp_set_no_check6_tx(sk, valbool); 3016 break; 3017 3018 case UDP_NO_CHECK6_RX: 3019 udp_set_no_check6_rx(sk, valbool); 3020 break; 3021 3022 case UDP_SEGMENT: 3023 if (val < 0 || val > USHRT_MAX) 3024 return -EINVAL; 3025 WRITE_ONCE(up->gso_size, val); 3026 break; 3027 3028 case UDP_GRO: 3029 sockopt_lock_sock(sk); 3030 /* when enabling GRO, accept the related GSO packet type */ 3031 if (valbool) 3032 udp_tunnel_encap_enable(sk); 3033 udp_assign_bit(GRO_ENABLED, sk, valbool); 3034 udp_assign_bit(ACCEPT_L4, sk, valbool); 3035 set_xfrm_gro_udp_encap_rcv(up->encap_type, sk->sk_family, sk); 3036 sockopt_release_sock(sk); 3037 break; 3038 3039 /* 3040 * UDP-Lite's partial checksum coverage (RFC 3828). 3041 */ 3042 /* The sender sets actual checksum coverage length via this option. 3043 * The case coverage > packet length is handled by send module. */ 3044 case UDPLITE_SEND_CSCOV: 3045 if (!is_udplite) /* Disable the option on UDP sockets */ 3046 return -ENOPROTOOPT; 3047 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */ 3048 val = 8; 3049 else if (val > USHRT_MAX) 3050 val = USHRT_MAX; 3051 WRITE_ONCE(up->pcslen, val); 3052 udp_set_bit(UDPLITE_SEND_CC, sk); 3053 break; 3054 3055 /* The receiver specifies a minimum checksum coverage value. To make 3056 * sense, this should be set to at least 8 (as done below). If zero is 3057 * used, this again means full checksum coverage. */ 3058 case UDPLITE_RECV_CSCOV: 3059 if (!is_udplite) /* Disable the option on UDP sockets */ 3060 return -ENOPROTOOPT; 3061 if (val != 0 && val < 8) /* Avoid silly minimal values. */ 3062 val = 8; 3063 else if (val > USHRT_MAX) 3064 val = USHRT_MAX; 3065 WRITE_ONCE(up->pcrlen, val); 3066 udp_set_bit(UDPLITE_RECV_CC, sk); 3067 break; 3068 3069 default: 3070 err = -ENOPROTOOPT; 3071 break; 3072 } 3073 3074 return err; 3075 } 3076 EXPORT_IPV6_MOD(udp_lib_setsockopt); 3077 3078 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 3079 unsigned int optlen) 3080 { 3081 if (level == SOL_UDP || level == SOL_UDPLITE || level == SOL_SOCKET) 3082 return udp_lib_setsockopt(sk, level, optname, 3083 optval, optlen, 3084 udp_push_pending_frames); 3085 return ip_setsockopt(sk, level, optname, optval, optlen); 3086 } 3087 3088 int udp_lib_getsockopt(struct sock *sk, int level, int optname, 3089 char __user *optval, int __user *optlen) 3090 { 3091 struct udp_sock *up = udp_sk(sk); 3092 int val, len; 3093 3094 if (get_user(len, optlen)) 3095 return -EFAULT; 3096 3097 if (len < 0) 3098 return -EINVAL; 3099 3100 len = min_t(unsigned int, len, sizeof(int)); 3101 3102 switch (optname) { 3103 case UDP_CORK: 3104 val = udp_test_bit(CORK, sk); 3105 break; 3106 3107 case UDP_ENCAP: 3108 val = READ_ONCE(up->encap_type); 3109 break; 3110 3111 case UDP_NO_CHECK6_TX: 3112 val = udp_get_no_check6_tx(sk); 3113 break; 3114 3115 case UDP_NO_CHECK6_RX: 3116 val = udp_get_no_check6_rx(sk); 3117 break; 3118 3119 case UDP_SEGMENT: 3120 val = READ_ONCE(up->gso_size); 3121 break; 3122 3123 case UDP_GRO: 3124 val = udp_test_bit(GRO_ENABLED, sk); 3125 break; 3126 3127 /* The following two cannot be changed on UDP sockets, the return is 3128 * always 0 (which corresponds to the full checksum coverage of UDP). */ 3129 case UDPLITE_SEND_CSCOV: 3130 val = READ_ONCE(up->pcslen); 3131 break; 3132 3133 case UDPLITE_RECV_CSCOV: 3134 val = READ_ONCE(up->pcrlen); 3135 break; 3136 3137 default: 3138 return -ENOPROTOOPT; 3139 } 3140 3141 if (put_user(len, optlen)) 3142 return -EFAULT; 3143 if (copy_to_user(optval, &val, len)) 3144 return -EFAULT; 3145 return 0; 3146 } 3147 EXPORT_IPV6_MOD(udp_lib_getsockopt); 3148 3149 int udp_getsockopt(struct sock *sk, int level, int optname, 3150 char __user *optval, int __user *optlen) 3151 { 3152 if (level == SOL_UDP || level == SOL_UDPLITE) 3153 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 3154 return ip_getsockopt(sk, level, optname, optval, optlen); 3155 } 3156 3157 /** 3158 * udp_poll - wait for a UDP event. 3159 * @file: - file struct 3160 * @sock: - socket 3161 * @wait: - poll table 3162 * 3163 * This is same as datagram poll, except for the special case of 3164 * blocking sockets. If application is using a blocking fd 3165 * and a packet with checksum error is in the queue; 3166 * then it could get return from select indicating data available 3167 * but then block when reading it. Add special case code 3168 * to work around these arguably broken applications. 3169 */ 3170 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait) 3171 { 3172 __poll_t mask = datagram_poll(file, sock, wait); 3173 struct sock *sk = sock->sk; 3174 3175 if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue)) 3176 mask |= EPOLLIN | EPOLLRDNORM; 3177 3178 /* Check for false positives due to checksum errors */ 3179 if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) && 3180 !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1) 3181 mask &= ~(EPOLLIN | EPOLLRDNORM); 3182 3183 /* psock ingress_msg queue should not contain any bad checksum frames */ 3184 if (sk_is_readable(sk)) 3185 mask |= EPOLLIN | EPOLLRDNORM; 3186 return mask; 3187 3188 } 3189 EXPORT_IPV6_MOD(udp_poll); 3190 3191 int udp_abort(struct sock *sk, int err) 3192 { 3193 if (!has_current_bpf_ctx()) 3194 lock_sock(sk); 3195 3196 /* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing 3197 * with close() 3198 */ 3199 if (sock_flag(sk, SOCK_DEAD)) 3200 goto out; 3201 3202 sk->sk_err = err; 3203 sk_error_report(sk); 3204 __udp_disconnect(sk, 0); 3205 3206 out: 3207 if (!has_current_bpf_ctx()) 3208 release_sock(sk); 3209 3210 return 0; 3211 } 3212 EXPORT_IPV6_MOD_GPL(udp_abort); 3213 3214 struct proto udp_prot = { 3215 .name = "UDP", 3216 .owner = THIS_MODULE, 3217 .close = udp_lib_close, 3218 .pre_connect = udp_pre_connect, 3219 .connect = udp_connect, 3220 .disconnect = udp_disconnect, 3221 .ioctl = udp_ioctl, 3222 .init = udp_init_sock, 3223 .destroy = udp_destroy_sock, 3224 .setsockopt = udp_setsockopt, 3225 .getsockopt = udp_getsockopt, 3226 .sendmsg = udp_sendmsg, 3227 .recvmsg = udp_recvmsg, 3228 .splice_eof = udp_splice_eof, 3229 .release_cb = ip4_datagram_release_cb, 3230 .hash = udp_lib_hash, 3231 .unhash = udp_lib_unhash, 3232 .rehash = udp_v4_rehash, 3233 .get_port = udp_v4_get_port, 3234 .put_port = udp_lib_unhash, 3235 #ifdef CONFIG_BPF_SYSCALL 3236 .psock_update_sk_prot = udp_bpf_update_proto, 3237 #endif 3238 .memory_allocated = &udp_memory_allocated, 3239 .per_cpu_fw_alloc = &udp_memory_per_cpu_fw_alloc, 3240 3241 .sysctl_mem = sysctl_udp_mem, 3242 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_udp_wmem_min), 3243 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_udp_rmem_min), 3244 .obj_size = sizeof(struct udp_sock), 3245 .h.udp_table = NULL, 3246 .diag_destroy = udp_abort, 3247 }; 3248 EXPORT_SYMBOL(udp_prot); 3249 3250 /* ------------------------------------------------------------------------ */ 3251 #ifdef CONFIG_PROC_FS 3252 3253 static unsigned short seq_file_family(const struct seq_file *seq); 3254 static bool seq_sk_match(struct seq_file *seq, const struct sock *sk) 3255 { 3256 unsigned short family = seq_file_family(seq); 3257 3258 /* AF_UNSPEC is used as a match all */ 3259 return ((family == AF_UNSPEC || family == sk->sk_family) && 3260 net_eq(sock_net(sk), seq_file_net(seq))); 3261 } 3262 3263 #ifdef CONFIG_BPF_SYSCALL 3264 static const struct seq_operations bpf_iter_udp_seq_ops; 3265 #endif 3266 static struct udp_table *udp_get_table_seq(struct seq_file *seq, 3267 struct net *net) 3268 { 3269 const struct udp_seq_afinfo *afinfo; 3270 3271 #ifdef CONFIG_BPF_SYSCALL 3272 if (seq->op == &bpf_iter_udp_seq_ops) 3273 return net->ipv4.udp_table; 3274 #endif 3275 3276 afinfo = pde_data(file_inode(seq->file)); 3277 return afinfo->udp_table ? : net->ipv4.udp_table; 3278 } 3279 3280 static struct sock *udp_get_first(struct seq_file *seq, int start) 3281 { 3282 struct udp_iter_state *state = seq->private; 3283 struct net *net = seq_file_net(seq); 3284 struct udp_table *udptable; 3285 struct sock *sk; 3286 3287 udptable = udp_get_table_seq(seq, net); 3288 3289 for (state->bucket = start; state->bucket <= udptable->mask; 3290 ++state->bucket) { 3291 struct udp_hslot *hslot = &udptable->hash[state->bucket]; 3292 3293 if (hlist_empty(&hslot->head)) 3294 continue; 3295 3296 spin_lock_bh(&hslot->lock); 3297 sk_for_each(sk, &hslot->head) { 3298 if (seq_sk_match(seq, sk)) 3299 goto found; 3300 } 3301 spin_unlock_bh(&hslot->lock); 3302 } 3303 sk = NULL; 3304 found: 3305 return sk; 3306 } 3307 3308 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk) 3309 { 3310 struct udp_iter_state *state = seq->private; 3311 struct net *net = seq_file_net(seq); 3312 struct udp_table *udptable; 3313 3314 do { 3315 sk = sk_next(sk); 3316 } while (sk && !seq_sk_match(seq, sk)); 3317 3318 if (!sk) { 3319 udptable = udp_get_table_seq(seq, net); 3320 3321 if (state->bucket <= udptable->mask) 3322 spin_unlock_bh(&udptable->hash[state->bucket].lock); 3323 3324 return udp_get_first(seq, state->bucket + 1); 3325 } 3326 return sk; 3327 } 3328 3329 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos) 3330 { 3331 struct sock *sk = udp_get_first(seq, 0); 3332 3333 if (sk) 3334 while (pos && (sk = udp_get_next(seq, sk)) != NULL) 3335 --pos; 3336 return pos ? NULL : sk; 3337 } 3338 3339 void *udp_seq_start(struct seq_file *seq, loff_t *pos) 3340 { 3341 struct udp_iter_state *state = seq->private; 3342 state->bucket = MAX_UDP_PORTS; 3343 3344 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN; 3345 } 3346 EXPORT_IPV6_MOD(udp_seq_start); 3347 3348 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3349 { 3350 struct sock *sk; 3351 3352 if (v == SEQ_START_TOKEN) 3353 sk = udp_get_idx(seq, 0); 3354 else 3355 sk = udp_get_next(seq, v); 3356 3357 ++*pos; 3358 return sk; 3359 } 3360 EXPORT_IPV6_MOD(udp_seq_next); 3361 3362 void udp_seq_stop(struct seq_file *seq, void *v) 3363 { 3364 struct udp_iter_state *state = seq->private; 3365 struct udp_table *udptable; 3366 3367 udptable = udp_get_table_seq(seq, seq_file_net(seq)); 3368 3369 if (state->bucket <= udptable->mask) 3370 spin_unlock_bh(&udptable->hash[state->bucket].lock); 3371 } 3372 EXPORT_IPV6_MOD(udp_seq_stop); 3373 3374 /* ------------------------------------------------------------------------ */ 3375 static void udp4_format_sock(struct sock *sp, struct seq_file *f, 3376 int bucket) 3377 { 3378 struct inet_sock *inet = inet_sk(sp); 3379 __be32 dest = inet->inet_daddr; 3380 __be32 src = inet->inet_rcv_saddr; 3381 __u16 destp = ntohs(inet->inet_dport); 3382 __u16 srcp = ntohs(inet->inet_sport); 3383 3384 seq_printf(f, "%5d: %08X:%04X %08X:%04X" 3385 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u", 3386 bucket, src, srcp, dest, destp, sp->sk_state, 3387 sk_wmem_alloc_get(sp), 3388 udp_rqueue_get(sp), 3389 0, 0L, 0, 3390 from_kuid_munged(seq_user_ns(f), sk_uid(sp)), 3391 0, sock_i_ino(sp), 3392 refcount_read(&sp->sk_refcnt), sp, 3393 atomic_read(&sp->sk_drops)); 3394 } 3395 3396 int udp4_seq_show(struct seq_file *seq, void *v) 3397 { 3398 seq_setwidth(seq, 127); 3399 if (v == SEQ_START_TOKEN) 3400 seq_puts(seq, " sl local_address rem_address st tx_queue " 3401 "rx_queue tr tm->when retrnsmt uid timeout " 3402 "inode ref pointer drops"); 3403 else { 3404 struct udp_iter_state *state = seq->private; 3405 3406 udp4_format_sock(v, seq, state->bucket); 3407 } 3408 seq_pad(seq, '\n'); 3409 return 0; 3410 } 3411 3412 #ifdef CONFIG_BPF_SYSCALL 3413 struct bpf_iter__udp { 3414 __bpf_md_ptr(struct bpf_iter_meta *, meta); 3415 __bpf_md_ptr(struct udp_sock *, udp_sk); 3416 uid_t uid __aligned(8); 3417 int bucket __aligned(8); 3418 }; 3419 3420 union bpf_udp_iter_batch_item { 3421 struct sock *sk; 3422 __u64 cookie; 3423 }; 3424 3425 struct bpf_udp_iter_state { 3426 struct udp_iter_state state; 3427 unsigned int cur_sk; 3428 unsigned int end_sk; 3429 unsigned int max_sk; 3430 union bpf_udp_iter_batch_item *batch; 3431 }; 3432 3433 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter, 3434 unsigned int new_batch_sz, gfp_t flags); 3435 static struct sock *bpf_iter_udp_resume(struct sock *first_sk, 3436 union bpf_udp_iter_batch_item *cookies, 3437 int n_cookies) 3438 { 3439 struct sock *sk = NULL; 3440 int i; 3441 3442 for (i = 0; i < n_cookies; i++) { 3443 sk = first_sk; 3444 udp_portaddr_for_each_entry_from(sk) 3445 if (cookies[i].cookie == atomic64_read(&sk->sk_cookie)) 3446 goto done; 3447 } 3448 done: 3449 return sk; 3450 } 3451 3452 static struct sock *bpf_iter_udp_batch(struct seq_file *seq) 3453 { 3454 struct bpf_udp_iter_state *iter = seq->private; 3455 struct udp_iter_state *state = &iter->state; 3456 unsigned int find_cookie, end_cookie; 3457 struct net *net = seq_file_net(seq); 3458 struct udp_table *udptable; 3459 unsigned int batch_sks = 0; 3460 int resume_bucket; 3461 int resizes = 0; 3462 struct sock *sk; 3463 int err = 0; 3464 3465 resume_bucket = state->bucket; 3466 3467 /* The current batch is done, so advance the bucket. */ 3468 if (iter->cur_sk == iter->end_sk) 3469 state->bucket++; 3470 3471 udptable = udp_get_table_seq(seq, net); 3472 3473 again: 3474 /* New batch for the next bucket. 3475 * Iterate over the hash table to find a bucket with sockets matching 3476 * the iterator attributes, and return the first matching socket from 3477 * the bucket. The remaining matched sockets from the bucket are batched 3478 * before releasing the bucket lock. This allows BPF programs that are 3479 * called in seq_show to acquire the bucket lock if needed. 3480 */ 3481 find_cookie = iter->cur_sk; 3482 end_cookie = iter->end_sk; 3483 iter->cur_sk = 0; 3484 iter->end_sk = 0; 3485 batch_sks = 0; 3486 3487 for (; state->bucket <= udptable->mask; state->bucket++) { 3488 struct udp_hslot *hslot2 = &udptable->hash2[state->bucket].hslot; 3489 3490 if (hlist_empty(&hslot2->head)) 3491 goto next_bucket; 3492 3493 spin_lock_bh(&hslot2->lock); 3494 sk = hlist_entry_safe(hslot2->head.first, struct sock, 3495 __sk_common.skc_portaddr_node); 3496 /* Resume from the first (in iteration order) unseen socket from 3497 * the last batch that still exists in resume_bucket. Most of 3498 * the time this will just be where the last iteration left off 3499 * in resume_bucket unless that socket disappeared between 3500 * reads. 3501 */ 3502 if (state->bucket == resume_bucket) 3503 sk = bpf_iter_udp_resume(sk, &iter->batch[find_cookie], 3504 end_cookie - find_cookie); 3505 fill_batch: 3506 udp_portaddr_for_each_entry_from(sk) { 3507 if (seq_sk_match(seq, sk)) { 3508 if (iter->end_sk < iter->max_sk) { 3509 sock_hold(sk); 3510 iter->batch[iter->end_sk++].sk = sk; 3511 } 3512 batch_sks++; 3513 } 3514 } 3515 3516 /* Allocate a larger batch and try again. */ 3517 if (unlikely(resizes <= 1 && iter->end_sk && 3518 iter->end_sk != batch_sks)) { 3519 resizes++; 3520 3521 /* First, try with GFP_USER to maximize the chances of 3522 * grabbing more memory. 3523 */ 3524 if (resizes == 1) { 3525 spin_unlock_bh(&hslot2->lock); 3526 err = bpf_iter_udp_realloc_batch(iter, 3527 batch_sks * 3 / 2, 3528 GFP_USER); 3529 if (err) 3530 return ERR_PTR(err); 3531 /* Start over. */ 3532 goto again; 3533 } 3534 3535 /* Next, hold onto the lock, so the bucket doesn't 3536 * change while we get the rest of the sockets. 3537 */ 3538 err = bpf_iter_udp_realloc_batch(iter, batch_sks, 3539 GFP_NOWAIT); 3540 if (err) { 3541 spin_unlock_bh(&hslot2->lock); 3542 return ERR_PTR(err); 3543 } 3544 3545 /* Pick up where we left off. */ 3546 sk = iter->batch[iter->end_sk - 1].sk; 3547 sk = hlist_entry_safe(sk->__sk_common.skc_portaddr_node.next, 3548 struct sock, 3549 __sk_common.skc_portaddr_node); 3550 batch_sks = iter->end_sk; 3551 goto fill_batch; 3552 } 3553 3554 spin_unlock_bh(&hslot2->lock); 3555 3556 if (iter->end_sk) 3557 break; 3558 next_bucket: 3559 resizes = 0; 3560 } 3561 3562 WARN_ON_ONCE(iter->end_sk != batch_sks); 3563 return iter->end_sk ? iter->batch[0].sk : NULL; 3564 } 3565 3566 static void *bpf_iter_udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3567 { 3568 struct bpf_udp_iter_state *iter = seq->private; 3569 struct sock *sk; 3570 3571 /* Whenever seq_next() is called, the iter->cur_sk is 3572 * done with seq_show(), so unref the iter->cur_sk. 3573 */ 3574 if (iter->cur_sk < iter->end_sk) 3575 sock_put(iter->batch[iter->cur_sk++].sk); 3576 3577 /* After updating iter->cur_sk, check if there are more sockets 3578 * available in the current bucket batch. 3579 */ 3580 if (iter->cur_sk < iter->end_sk) 3581 sk = iter->batch[iter->cur_sk].sk; 3582 else 3583 /* Prepare a new batch. */ 3584 sk = bpf_iter_udp_batch(seq); 3585 3586 ++*pos; 3587 return sk; 3588 } 3589 3590 static void *bpf_iter_udp_seq_start(struct seq_file *seq, loff_t *pos) 3591 { 3592 /* bpf iter does not support lseek, so it always 3593 * continue from where it was stop()-ped. 3594 */ 3595 if (*pos) 3596 return bpf_iter_udp_batch(seq); 3597 3598 return SEQ_START_TOKEN; 3599 } 3600 3601 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta, 3602 struct udp_sock *udp_sk, uid_t uid, int bucket) 3603 { 3604 struct bpf_iter__udp ctx; 3605 3606 meta->seq_num--; /* skip SEQ_START_TOKEN */ 3607 ctx.meta = meta; 3608 ctx.udp_sk = udp_sk; 3609 ctx.uid = uid; 3610 ctx.bucket = bucket; 3611 return bpf_iter_run_prog(prog, &ctx); 3612 } 3613 3614 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v) 3615 { 3616 struct udp_iter_state *state = seq->private; 3617 struct bpf_iter_meta meta; 3618 struct bpf_prog *prog; 3619 struct sock *sk = v; 3620 uid_t uid; 3621 int ret; 3622 3623 if (v == SEQ_START_TOKEN) 3624 return 0; 3625 3626 lock_sock(sk); 3627 3628 if (unlikely(sk_unhashed(sk))) { 3629 ret = SEQ_SKIP; 3630 goto unlock; 3631 } 3632 3633 uid = from_kuid_munged(seq_user_ns(seq), sk_uid(sk)); 3634 meta.seq = seq; 3635 prog = bpf_iter_get_info(&meta, false); 3636 ret = udp_prog_seq_show(prog, &meta, v, uid, state->bucket); 3637 3638 unlock: 3639 release_sock(sk); 3640 return ret; 3641 } 3642 3643 static void bpf_iter_udp_put_batch(struct bpf_udp_iter_state *iter) 3644 { 3645 union bpf_udp_iter_batch_item *item; 3646 unsigned int cur_sk = iter->cur_sk; 3647 __u64 cookie; 3648 3649 /* Remember the cookies of the sockets we haven't seen yet, so we can 3650 * pick up where we left off next time around. 3651 */ 3652 while (cur_sk < iter->end_sk) { 3653 item = &iter->batch[cur_sk++]; 3654 cookie = sock_gen_cookie(item->sk); 3655 sock_put(item->sk); 3656 item->cookie = cookie; 3657 } 3658 } 3659 3660 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v) 3661 { 3662 struct bpf_udp_iter_state *iter = seq->private; 3663 struct bpf_iter_meta meta; 3664 struct bpf_prog *prog; 3665 3666 if (!v) { 3667 meta.seq = seq; 3668 prog = bpf_iter_get_info(&meta, true); 3669 if (prog) 3670 (void)udp_prog_seq_show(prog, &meta, v, 0, 0); 3671 } 3672 3673 if (iter->cur_sk < iter->end_sk) 3674 bpf_iter_udp_put_batch(iter); 3675 } 3676 3677 static const struct seq_operations bpf_iter_udp_seq_ops = { 3678 .start = bpf_iter_udp_seq_start, 3679 .next = bpf_iter_udp_seq_next, 3680 .stop = bpf_iter_udp_seq_stop, 3681 .show = bpf_iter_udp_seq_show, 3682 }; 3683 #endif 3684 3685 static unsigned short seq_file_family(const struct seq_file *seq) 3686 { 3687 const struct udp_seq_afinfo *afinfo; 3688 3689 #ifdef CONFIG_BPF_SYSCALL 3690 /* BPF iterator: bpf programs to filter sockets. */ 3691 if (seq->op == &bpf_iter_udp_seq_ops) 3692 return AF_UNSPEC; 3693 #endif 3694 3695 /* Proc fs iterator */ 3696 afinfo = pde_data(file_inode(seq->file)); 3697 return afinfo->family; 3698 } 3699 3700 const struct seq_operations udp_seq_ops = { 3701 .start = udp_seq_start, 3702 .next = udp_seq_next, 3703 .stop = udp_seq_stop, 3704 .show = udp4_seq_show, 3705 }; 3706 EXPORT_IPV6_MOD(udp_seq_ops); 3707 3708 static struct udp_seq_afinfo udp4_seq_afinfo = { 3709 .family = AF_INET, 3710 .udp_table = NULL, 3711 }; 3712 3713 static int __net_init udp4_proc_init_net(struct net *net) 3714 { 3715 if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops, 3716 sizeof(struct udp_iter_state), &udp4_seq_afinfo)) 3717 return -ENOMEM; 3718 return 0; 3719 } 3720 3721 static void __net_exit udp4_proc_exit_net(struct net *net) 3722 { 3723 remove_proc_entry("udp", net->proc_net); 3724 } 3725 3726 static struct pernet_operations udp4_net_ops = { 3727 .init = udp4_proc_init_net, 3728 .exit = udp4_proc_exit_net, 3729 }; 3730 3731 int __init udp4_proc_init(void) 3732 { 3733 return register_pernet_subsys(&udp4_net_ops); 3734 } 3735 3736 void udp4_proc_exit(void) 3737 { 3738 unregister_pernet_subsys(&udp4_net_ops); 3739 } 3740 #endif /* CONFIG_PROC_FS */ 3741 3742 static __initdata unsigned long uhash_entries; 3743 static int __init set_uhash_entries(char *str) 3744 { 3745 ssize_t ret; 3746 3747 if (!str) 3748 return 0; 3749 3750 ret = kstrtoul(str, 0, &uhash_entries); 3751 if (ret) 3752 return 0; 3753 3754 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN) 3755 uhash_entries = UDP_HTABLE_SIZE_MIN; 3756 return 1; 3757 } 3758 __setup("uhash_entries=", set_uhash_entries); 3759 3760 void __init udp_table_init(struct udp_table *table, const char *name) 3761 { 3762 unsigned int i, slot_size; 3763 3764 slot_size = sizeof(struct udp_hslot) + sizeof(struct udp_hslot_main) + 3765 udp_hash4_slot_size(); 3766 table->hash = alloc_large_system_hash(name, 3767 slot_size, 3768 uhash_entries, 3769 21, /* one slot per 2 MB */ 3770 0, 3771 &table->log, 3772 &table->mask, 3773 UDP_HTABLE_SIZE_MIN, 3774 UDP_HTABLE_SIZE_MAX); 3775 3776 table->hash2 = (void *)(table->hash + (table->mask + 1)); 3777 for (i = 0; i <= table->mask; i++) { 3778 INIT_HLIST_HEAD(&table->hash[i].head); 3779 table->hash[i].count = 0; 3780 spin_lock_init(&table->hash[i].lock); 3781 } 3782 for (i = 0; i <= table->mask; i++) { 3783 INIT_HLIST_HEAD(&table->hash2[i].hslot.head); 3784 table->hash2[i].hslot.count = 0; 3785 spin_lock_init(&table->hash2[i].hslot.lock); 3786 } 3787 udp_table_hash4_init(table); 3788 } 3789 3790 u32 udp_flow_hashrnd(void) 3791 { 3792 static u32 hashrnd __read_mostly; 3793 3794 net_get_random_once(&hashrnd, sizeof(hashrnd)); 3795 3796 return hashrnd; 3797 } 3798 EXPORT_SYMBOL(udp_flow_hashrnd); 3799 3800 static void __net_init udp_sysctl_init(struct net *net) 3801 { 3802 net->ipv4.sysctl_udp_rmem_min = PAGE_SIZE; 3803 net->ipv4.sysctl_udp_wmem_min = PAGE_SIZE; 3804 3805 #ifdef CONFIG_NET_L3_MASTER_DEV 3806 net->ipv4.sysctl_udp_l3mdev_accept = 0; 3807 #endif 3808 } 3809 3810 static struct udp_table __net_init *udp_pernet_table_alloc(unsigned int hash_entries) 3811 { 3812 struct udp_table *udptable; 3813 unsigned int slot_size; 3814 int i; 3815 3816 udptable = kmalloc(sizeof(*udptable), GFP_KERNEL); 3817 if (!udptable) 3818 goto out; 3819 3820 slot_size = sizeof(struct udp_hslot) + sizeof(struct udp_hslot_main) + 3821 udp_hash4_slot_size(); 3822 udptable->hash = vmalloc_huge(hash_entries * slot_size, 3823 GFP_KERNEL_ACCOUNT); 3824 if (!udptable->hash) 3825 goto free_table; 3826 3827 udptable->hash2 = (void *)(udptable->hash + hash_entries); 3828 udptable->mask = hash_entries - 1; 3829 udptable->log = ilog2(hash_entries); 3830 3831 for (i = 0; i < hash_entries; i++) { 3832 INIT_HLIST_HEAD(&udptable->hash[i].head); 3833 udptable->hash[i].count = 0; 3834 spin_lock_init(&udptable->hash[i].lock); 3835 3836 INIT_HLIST_HEAD(&udptable->hash2[i].hslot.head); 3837 udptable->hash2[i].hslot.count = 0; 3838 spin_lock_init(&udptable->hash2[i].hslot.lock); 3839 } 3840 udp_table_hash4_init(udptable); 3841 3842 return udptable; 3843 3844 free_table: 3845 kfree(udptable); 3846 out: 3847 return NULL; 3848 } 3849 3850 static void __net_exit udp_pernet_table_free(struct net *net) 3851 { 3852 struct udp_table *udptable = net->ipv4.udp_table; 3853 3854 if (udptable == &udp_table) 3855 return; 3856 3857 kvfree(udptable->hash); 3858 kfree(udptable); 3859 } 3860 3861 static void __net_init udp_set_table(struct net *net) 3862 { 3863 struct udp_table *udptable; 3864 unsigned int hash_entries; 3865 struct net *old_net; 3866 3867 if (net_eq(net, &init_net)) 3868 goto fallback; 3869 3870 old_net = current->nsproxy->net_ns; 3871 hash_entries = READ_ONCE(old_net->ipv4.sysctl_udp_child_hash_entries); 3872 if (!hash_entries) 3873 goto fallback; 3874 3875 /* Set min to keep the bitmap on stack in udp_lib_get_port() */ 3876 if (hash_entries < UDP_HTABLE_SIZE_MIN_PERNET) 3877 hash_entries = UDP_HTABLE_SIZE_MIN_PERNET; 3878 else 3879 hash_entries = roundup_pow_of_two(hash_entries); 3880 3881 udptable = udp_pernet_table_alloc(hash_entries); 3882 if (udptable) { 3883 net->ipv4.udp_table = udptable; 3884 } else { 3885 pr_warn("Failed to allocate UDP hash table (entries: %u) " 3886 "for a netns, fallback to the global one\n", 3887 hash_entries); 3888 fallback: 3889 net->ipv4.udp_table = &udp_table; 3890 } 3891 } 3892 3893 static int __net_init udp_pernet_init(struct net *net) 3894 { 3895 #if IS_ENABLED(CONFIG_NET_UDP_TUNNEL) 3896 int i; 3897 3898 /* No tunnel is configured */ 3899 for (i = 0; i < ARRAY_SIZE(net->ipv4.udp_tunnel_gro); ++i) { 3900 INIT_HLIST_HEAD(&net->ipv4.udp_tunnel_gro[i].list); 3901 RCU_INIT_POINTER(net->ipv4.udp_tunnel_gro[i].sk, NULL); 3902 } 3903 #endif 3904 udp_sysctl_init(net); 3905 udp_set_table(net); 3906 3907 return 0; 3908 } 3909 3910 static void __net_exit udp_pernet_exit(struct net *net) 3911 { 3912 udp_pernet_table_free(net); 3913 } 3914 3915 static struct pernet_operations __net_initdata udp_sysctl_ops = { 3916 .init = udp_pernet_init, 3917 .exit = udp_pernet_exit, 3918 }; 3919 3920 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3921 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta, 3922 struct udp_sock *udp_sk, uid_t uid, int bucket) 3923 3924 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter, 3925 unsigned int new_batch_sz, gfp_t flags) 3926 { 3927 union bpf_udp_iter_batch_item *new_batch; 3928 3929 new_batch = kvmalloc_array(new_batch_sz, sizeof(*new_batch), 3930 flags | __GFP_NOWARN); 3931 if (!new_batch) 3932 return -ENOMEM; 3933 3934 if (flags != GFP_NOWAIT) 3935 bpf_iter_udp_put_batch(iter); 3936 3937 memcpy(new_batch, iter->batch, sizeof(*iter->batch) * iter->end_sk); 3938 kvfree(iter->batch); 3939 iter->batch = new_batch; 3940 iter->max_sk = new_batch_sz; 3941 3942 return 0; 3943 } 3944 3945 #define INIT_BATCH_SZ 16 3946 3947 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux) 3948 { 3949 struct bpf_udp_iter_state *iter = priv_data; 3950 int ret; 3951 3952 ret = bpf_iter_init_seq_net(priv_data, aux); 3953 if (ret) 3954 return ret; 3955 3956 ret = bpf_iter_udp_realloc_batch(iter, INIT_BATCH_SZ, GFP_USER); 3957 if (ret) 3958 bpf_iter_fini_seq_net(priv_data); 3959 3960 iter->state.bucket = -1; 3961 3962 return ret; 3963 } 3964 3965 static void bpf_iter_fini_udp(void *priv_data) 3966 { 3967 struct bpf_udp_iter_state *iter = priv_data; 3968 3969 bpf_iter_fini_seq_net(priv_data); 3970 kvfree(iter->batch); 3971 } 3972 3973 static const struct bpf_iter_seq_info udp_seq_info = { 3974 .seq_ops = &bpf_iter_udp_seq_ops, 3975 .init_seq_private = bpf_iter_init_udp, 3976 .fini_seq_private = bpf_iter_fini_udp, 3977 .seq_priv_size = sizeof(struct bpf_udp_iter_state), 3978 }; 3979 3980 static struct bpf_iter_reg udp_reg_info = { 3981 .target = "udp", 3982 .ctx_arg_info_size = 1, 3983 .ctx_arg_info = { 3984 { offsetof(struct bpf_iter__udp, udp_sk), 3985 PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED }, 3986 }, 3987 .seq_info = &udp_seq_info, 3988 }; 3989 3990 static void __init bpf_iter_register(void) 3991 { 3992 udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP]; 3993 if (bpf_iter_reg_target(&udp_reg_info)) 3994 pr_warn("Warning: could not register bpf iterator udp\n"); 3995 } 3996 #endif 3997 3998 void __init udp_init(void) 3999 { 4000 unsigned long limit; 4001 unsigned int i; 4002 4003 udp_table_init(&udp_table, "UDP"); 4004 limit = nr_free_buffer_pages() / 8; 4005 limit = max(limit, 128UL); 4006 sysctl_udp_mem[0] = limit / 4 * 3; 4007 sysctl_udp_mem[1] = limit; 4008 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2; 4009 4010 /* 16 spinlocks per cpu */ 4011 udp_busylocks_log = ilog2(nr_cpu_ids) + 4; 4012 udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log, 4013 GFP_KERNEL); 4014 if (!udp_busylocks) 4015 panic("UDP: failed to alloc udp_busylocks\n"); 4016 for (i = 0; i < (1U << udp_busylocks_log); i++) 4017 spin_lock_init(udp_busylocks + i); 4018 4019 if (register_pernet_subsys(&udp_sysctl_ops)) 4020 panic("UDP: failed to init sysctl parameters.\n"); 4021 4022 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 4023 bpf_iter_register(); 4024 #endif 4025 } 4026