1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * The User Datagram Protocol (UDP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 12 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 13 * Hirokazu Takahashi, <taka@valinux.co.jp> 14 * 15 * Fixes: 16 * Alan Cox : verify_area() calls 17 * Alan Cox : stopped close while in use off icmp 18 * messages. Not a fix but a botch that 19 * for udp at least is 'valid'. 20 * Alan Cox : Fixed icmp handling properly 21 * Alan Cox : Correct error for oversized datagrams 22 * Alan Cox : Tidied select() semantics. 23 * Alan Cox : udp_err() fixed properly, also now 24 * select and read wake correctly on errors 25 * Alan Cox : udp_send verify_area moved to avoid mem leak 26 * Alan Cox : UDP can count its memory 27 * Alan Cox : send to an unknown connection causes 28 * an ECONNREFUSED off the icmp, but 29 * does NOT close. 30 * Alan Cox : Switched to new sk_buff handlers. No more backlog! 31 * Alan Cox : Using generic datagram code. Even smaller and the PEEK 32 * bug no longer crashes it. 33 * Fred Van Kempen : Net2e support for sk->broadcast. 34 * Alan Cox : Uses skb_free_datagram 35 * Alan Cox : Added get/set sockopt support. 36 * Alan Cox : Broadcasting without option set returns EACCES. 37 * Alan Cox : No wakeup calls. Instead we now use the callbacks. 38 * Alan Cox : Use ip_tos and ip_ttl 39 * Alan Cox : SNMP Mibs 40 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support. 41 * Matt Dillon : UDP length checks. 42 * Alan Cox : Smarter af_inet used properly. 43 * Alan Cox : Use new kernel side addressing. 44 * Alan Cox : Incorrect return on truncated datagram receive. 45 * Arnt Gulbrandsen : New udp_send and stuff 46 * Alan Cox : Cache last socket 47 * Alan Cox : Route cache 48 * Jon Peatfield : Minor efficiency fix to sendto(). 49 * Mike Shaver : RFC1122 checks. 50 * Alan Cox : Nonblocking error fix. 51 * Willy Konynenberg : Transparent proxying support. 52 * Mike McLagan : Routing by source 53 * David S. Miller : New socket lookup architecture. 54 * Last socket cache retained as it 55 * does have a high hit rate. 56 * Olaf Kirch : Don't linearise iovec on sendmsg. 57 * Andi Kleen : Some cleanups, cache destination entry 58 * for connect. 59 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 60 * Melvin Smith : Check msg_name not msg_namelen in sendto(), 61 * return ENOTCONN for unconnected sockets (POSIX) 62 * Janos Farkas : don't deliver multi/broadcasts to a different 63 * bound-to-device socket 64 * Hirokazu Takahashi : HW checksumming for outgoing UDP 65 * datagrams. 66 * Hirokazu Takahashi : sendfile() on UDP works now. 67 * Arnaldo C. Melo : convert /proc/net/udp to seq_file 68 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 69 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind 70 * a single port at the same time. 71 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support 72 * James Chapman : Add L2TP encapsulation type. 73 */ 74 75 #define pr_fmt(fmt) "UDP: " fmt 76 77 #include <linux/bpf-cgroup.h> 78 #include <linux/uaccess.h> 79 #include <asm/ioctls.h> 80 #include <linux/memblock.h> 81 #include <linux/highmem.h> 82 #include <linux/types.h> 83 #include <linux/fcntl.h> 84 #include <linux/module.h> 85 #include <linux/socket.h> 86 #include <linux/sockios.h> 87 #include <linux/igmp.h> 88 #include <linux/inetdevice.h> 89 #include <linux/in.h> 90 #include <linux/errno.h> 91 #include <linux/timer.h> 92 #include <linux/mm.h> 93 #include <linux/inet.h> 94 #include <linux/netdevice.h> 95 #include <linux/slab.h> 96 #include <net/tcp_states.h> 97 #include <linux/skbuff.h> 98 #include <linux/proc_fs.h> 99 #include <linux/seq_file.h> 100 #include <net/net_namespace.h> 101 #include <net/icmp.h> 102 #include <net/inet_hashtables.h> 103 #include <net/ip_tunnels.h> 104 #include <net/route.h> 105 #include <net/checksum.h> 106 #include <net/gso.h> 107 #include <net/xfrm.h> 108 #include <trace/events/udp.h> 109 #include <linux/static_key.h> 110 #include <linux/btf_ids.h> 111 #include <trace/events/skb.h> 112 #include <net/busy_poll.h> 113 #include "udp_impl.h" 114 #include <net/sock_reuseport.h> 115 #include <net/addrconf.h> 116 #include <net/udp_tunnel.h> 117 #include <net/gro.h> 118 #include <net/inet_dscp.h> 119 #if IS_ENABLED(CONFIG_IPV6) 120 #include <net/ipv6_stubs.h> 121 #endif 122 123 struct udp_table udp_table __read_mostly; 124 EXPORT_SYMBOL(udp_table); 125 126 long sysctl_udp_mem[3] __read_mostly; 127 EXPORT_SYMBOL(sysctl_udp_mem); 128 129 atomic_long_t udp_memory_allocated ____cacheline_aligned_in_smp; 130 EXPORT_SYMBOL(udp_memory_allocated); 131 DEFINE_PER_CPU(int, udp_memory_per_cpu_fw_alloc); 132 EXPORT_PER_CPU_SYMBOL_GPL(udp_memory_per_cpu_fw_alloc); 133 134 #define MAX_UDP_PORTS 65536 135 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN_PERNET) 136 137 static struct udp_table *udp_get_table_prot(struct sock *sk) 138 { 139 return sk->sk_prot->h.udp_table ? : sock_net(sk)->ipv4.udp_table; 140 } 141 142 static int udp_lib_lport_inuse(struct net *net, __u16 num, 143 const struct udp_hslot *hslot, 144 unsigned long *bitmap, 145 struct sock *sk, unsigned int log) 146 { 147 struct sock *sk2; 148 kuid_t uid = sock_i_uid(sk); 149 150 sk_for_each(sk2, &hslot->head) { 151 if (net_eq(sock_net(sk2), net) && 152 sk2 != sk && 153 (bitmap || udp_sk(sk2)->udp_port_hash == num) && 154 (!sk2->sk_reuse || !sk->sk_reuse) && 155 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 156 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 157 inet_rcv_saddr_equal(sk, sk2, true)) { 158 if (sk2->sk_reuseport && sk->sk_reuseport && 159 !rcu_access_pointer(sk->sk_reuseport_cb) && 160 uid_eq(uid, sock_i_uid(sk2))) { 161 if (!bitmap) 162 return 0; 163 } else { 164 if (!bitmap) 165 return 1; 166 __set_bit(udp_sk(sk2)->udp_port_hash >> log, 167 bitmap); 168 } 169 } 170 } 171 return 0; 172 } 173 174 /* 175 * Note: we still hold spinlock of primary hash chain, so no other writer 176 * can insert/delete a socket with local_port == num 177 */ 178 static int udp_lib_lport_inuse2(struct net *net, __u16 num, 179 struct udp_hslot *hslot2, 180 struct sock *sk) 181 { 182 struct sock *sk2; 183 kuid_t uid = sock_i_uid(sk); 184 int res = 0; 185 186 spin_lock(&hslot2->lock); 187 udp_portaddr_for_each_entry(sk2, &hslot2->head) { 188 if (net_eq(sock_net(sk2), net) && 189 sk2 != sk && 190 (udp_sk(sk2)->udp_port_hash == num) && 191 (!sk2->sk_reuse || !sk->sk_reuse) && 192 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 193 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 194 inet_rcv_saddr_equal(sk, sk2, true)) { 195 if (sk2->sk_reuseport && sk->sk_reuseport && 196 !rcu_access_pointer(sk->sk_reuseport_cb) && 197 uid_eq(uid, sock_i_uid(sk2))) { 198 res = 0; 199 } else { 200 res = 1; 201 } 202 break; 203 } 204 } 205 spin_unlock(&hslot2->lock); 206 return res; 207 } 208 209 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot) 210 { 211 struct net *net = sock_net(sk); 212 kuid_t uid = sock_i_uid(sk); 213 struct sock *sk2; 214 215 sk_for_each(sk2, &hslot->head) { 216 if (net_eq(sock_net(sk2), net) && 217 sk2 != sk && 218 sk2->sk_family == sk->sk_family && 219 ipv6_only_sock(sk2) == ipv6_only_sock(sk) && 220 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) && 221 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 222 sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) && 223 inet_rcv_saddr_equal(sk, sk2, false)) { 224 return reuseport_add_sock(sk, sk2, 225 inet_rcv_saddr_any(sk)); 226 } 227 } 228 229 return reuseport_alloc(sk, inet_rcv_saddr_any(sk)); 230 } 231 232 /** 233 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6 234 * 235 * @sk: socket struct in question 236 * @snum: port number to look up 237 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains, 238 * with NULL address 239 */ 240 int udp_lib_get_port(struct sock *sk, unsigned short snum, 241 unsigned int hash2_nulladdr) 242 { 243 struct udp_table *udptable = udp_get_table_prot(sk); 244 struct udp_hslot *hslot, *hslot2; 245 struct net *net = sock_net(sk); 246 int error = -EADDRINUSE; 247 248 if (!snum) { 249 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN); 250 unsigned short first, last; 251 int low, high, remaining; 252 unsigned int rand; 253 254 inet_sk_get_local_port_range(sk, &low, &high); 255 remaining = (high - low) + 1; 256 257 rand = get_random_u32(); 258 first = reciprocal_scale(rand, remaining) + low; 259 /* 260 * force rand to be an odd multiple of UDP_HTABLE_SIZE 261 */ 262 rand = (rand | 1) * (udptable->mask + 1); 263 last = first + udptable->mask + 1; 264 do { 265 hslot = udp_hashslot(udptable, net, first); 266 bitmap_zero(bitmap, PORTS_PER_CHAIN); 267 spin_lock_bh(&hslot->lock); 268 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk, 269 udptable->log); 270 271 snum = first; 272 /* 273 * Iterate on all possible values of snum for this hash. 274 * Using steps of an odd multiple of UDP_HTABLE_SIZE 275 * give us randomization and full range coverage. 276 */ 277 do { 278 if (low <= snum && snum <= high && 279 !test_bit(snum >> udptable->log, bitmap) && 280 !inet_is_local_reserved_port(net, snum)) 281 goto found; 282 snum += rand; 283 } while (snum != first); 284 spin_unlock_bh(&hslot->lock); 285 cond_resched(); 286 } while (++first != last); 287 goto fail; 288 } else { 289 hslot = udp_hashslot(udptable, net, snum); 290 spin_lock_bh(&hslot->lock); 291 if (hslot->count > 10) { 292 int exist; 293 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum; 294 295 slot2 &= udptable->mask; 296 hash2_nulladdr &= udptable->mask; 297 298 hslot2 = udp_hashslot2(udptable, slot2); 299 if (hslot->count < hslot2->count) 300 goto scan_primary_hash; 301 302 exist = udp_lib_lport_inuse2(net, snum, hslot2, sk); 303 if (!exist && (hash2_nulladdr != slot2)) { 304 hslot2 = udp_hashslot2(udptable, hash2_nulladdr); 305 exist = udp_lib_lport_inuse2(net, snum, hslot2, 306 sk); 307 } 308 if (exist) 309 goto fail_unlock; 310 else 311 goto found; 312 } 313 scan_primary_hash: 314 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0)) 315 goto fail_unlock; 316 } 317 found: 318 inet_sk(sk)->inet_num = snum; 319 udp_sk(sk)->udp_port_hash = snum; 320 udp_sk(sk)->udp_portaddr_hash ^= snum; 321 if (sk_unhashed(sk)) { 322 if (sk->sk_reuseport && 323 udp_reuseport_add_sock(sk, hslot)) { 324 inet_sk(sk)->inet_num = 0; 325 udp_sk(sk)->udp_port_hash = 0; 326 udp_sk(sk)->udp_portaddr_hash ^= snum; 327 goto fail_unlock; 328 } 329 330 sock_set_flag(sk, SOCK_RCU_FREE); 331 332 sk_add_node_rcu(sk, &hslot->head); 333 hslot->count++; 334 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 335 336 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 337 spin_lock(&hslot2->lock); 338 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 339 sk->sk_family == AF_INET6) 340 hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node, 341 &hslot2->head); 342 else 343 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 344 &hslot2->head); 345 hslot2->count++; 346 spin_unlock(&hslot2->lock); 347 } 348 349 error = 0; 350 fail_unlock: 351 spin_unlock_bh(&hslot->lock); 352 fail: 353 return error; 354 } 355 EXPORT_SYMBOL(udp_lib_get_port); 356 357 int udp_v4_get_port(struct sock *sk, unsigned short snum) 358 { 359 unsigned int hash2_nulladdr = 360 ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum); 361 unsigned int hash2_partial = 362 ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0); 363 364 /* precompute partial secondary hash */ 365 udp_sk(sk)->udp_portaddr_hash = hash2_partial; 366 return udp_lib_get_port(sk, snum, hash2_nulladdr); 367 } 368 369 static int compute_score(struct sock *sk, const struct net *net, 370 __be32 saddr, __be16 sport, 371 __be32 daddr, unsigned short hnum, 372 int dif, int sdif) 373 { 374 int score; 375 struct inet_sock *inet; 376 bool dev_match; 377 378 if (!net_eq(sock_net(sk), net) || 379 udp_sk(sk)->udp_port_hash != hnum || 380 ipv6_only_sock(sk)) 381 return -1; 382 383 if (sk->sk_rcv_saddr != daddr) 384 return -1; 385 386 score = (sk->sk_family == PF_INET) ? 2 : 1; 387 388 inet = inet_sk(sk); 389 if (inet->inet_daddr) { 390 if (inet->inet_daddr != saddr) 391 return -1; 392 score += 4; 393 } 394 395 if (inet->inet_dport) { 396 if (inet->inet_dport != sport) 397 return -1; 398 score += 4; 399 } 400 401 dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, 402 dif, sdif); 403 if (!dev_match) 404 return -1; 405 if (sk->sk_bound_dev_if) 406 score += 4; 407 408 if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id()) 409 score++; 410 return score; 411 } 412 413 INDIRECT_CALLABLE_SCOPE 414 u32 udp_ehashfn(const struct net *net, const __be32 laddr, const __u16 lport, 415 const __be32 faddr, const __be16 fport) 416 { 417 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret)); 418 419 return __inet_ehashfn(laddr, lport, faddr, fport, 420 udp_ehash_secret + net_hash_mix(net)); 421 } 422 423 /* called with rcu_read_lock() */ 424 static struct sock *udp4_lib_lookup2(const struct net *net, 425 __be32 saddr, __be16 sport, 426 __be32 daddr, unsigned int hnum, 427 int dif, int sdif, 428 struct udp_hslot *hslot2, 429 struct sk_buff *skb) 430 { 431 struct sock *sk, *result; 432 int score, badness; 433 bool need_rescore; 434 435 result = NULL; 436 badness = 0; 437 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 438 need_rescore = false; 439 rescore: 440 score = compute_score(need_rescore ? result : sk, net, saddr, 441 sport, daddr, hnum, dif, sdif); 442 if (score > badness) { 443 badness = score; 444 445 if (need_rescore) 446 continue; 447 448 if (sk->sk_state == TCP_ESTABLISHED) { 449 result = sk; 450 continue; 451 } 452 453 result = inet_lookup_reuseport(net, sk, skb, sizeof(struct udphdr), 454 saddr, sport, daddr, hnum, udp_ehashfn); 455 if (!result) { 456 result = sk; 457 continue; 458 } 459 460 /* Fall back to scoring if group has connections */ 461 if (!reuseport_has_conns(sk)) 462 return result; 463 464 /* Reuseport logic returned an error, keep original score. */ 465 if (IS_ERR(result)) 466 continue; 467 468 /* compute_score is too long of a function to be 469 * inlined, and calling it again here yields 470 * measureable overhead for some 471 * workloads. Work around it by jumping 472 * backwards to rescore 'result'. 473 */ 474 need_rescore = true; 475 goto rescore; 476 } 477 } 478 return result; 479 } 480 481 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try 482 * harder than this. -DaveM 483 */ 484 struct sock *__udp4_lib_lookup(const struct net *net, __be32 saddr, 485 __be16 sport, __be32 daddr, __be16 dport, int dif, 486 int sdif, struct udp_table *udptable, struct sk_buff *skb) 487 { 488 unsigned short hnum = ntohs(dport); 489 unsigned int hash2, slot2; 490 struct udp_hslot *hslot2; 491 struct sock *result, *sk; 492 493 hash2 = ipv4_portaddr_hash(net, daddr, hnum); 494 slot2 = hash2 & udptable->mask; 495 hslot2 = &udptable->hash2[slot2]; 496 497 /* Lookup connected or non-wildcard socket */ 498 result = udp4_lib_lookup2(net, saddr, sport, 499 daddr, hnum, dif, sdif, 500 hslot2, skb); 501 if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED) 502 goto done; 503 504 /* Lookup redirect from BPF */ 505 if (static_branch_unlikely(&bpf_sk_lookup_enabled) && 506 udptable == net->ipv4.udp_table) { 507 sk = inet_lookup_run_sk_lookup(net, IPPROTO_UDP, skb, sizeof(struct udphdr), 508 saddr, sport, daddr, hnum, dif, 509 udp_ehashfn); 510 if (sk) { 511 result = sk; 512 goto done; 513 } 514 } 515 516 /* Got non-wildcard socket or error on first lookup */ 517 if (result) 518 goto done; 519 520 /* Lookup wildcard sockets */ 521 hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum); 522 slot2 = hash2 & udptable->mask; 523 hslot2 = &udptable->hash2[slot2]; 524 525 result = udp4_lib_lookup2(net, saddr, sport, 526 htonl(INADDR_ANY), hnum, dif, sdif, 527 hslot2, skb); 528 done: 529 if (IS_ERR(result)) 530 return NULL; 531 return result; 532 } 533 EXPORT_SYMBOL_GPL(__udp4_lib_lookup); 534 535 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb, 536 __be16 sport, __be16 dport, 537 struct udp_table *udptable) 538 { 539 const struct iphdr *iph = ip_hdr(skb); 540 541 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport, 542 iph->daddr, dport, inet_iif(skb), 543 inet_sdif(skb), udptable, skb); 544 } 545 546 struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb, 547 __be16 sport, __be16 dport) 548 { 549 const u16 offset = NAPI_GRO_CB(skb)->network_offsets[skb->encapsulation]; 550 const struct iphdr *iph = (struct iphdr *)(skb->data + offset); 551 struct net *net = dev_net(skb->dev); 552 int iif, sdif; 553 554 inet_get_iif_sdif(skb, &iif, &sdif); 555 556 return __udp4_lib_lookup(net, iph->saddr, sport, 557 iph->daddr, dport, iif, 558 sdif, net->ipv4.udp_table, NULL); 559 } 560 561 /* Must be called under rcu_read_lock(). 562 * Does increment socket refcount. 563 */ 564 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4) 565 struct sock *udp4_lib_lookup(const struct net *net, __be32 saddr, __be16 sport, 566 __be32 daddr, __be16 dport, int dif) 567 { 568 struct sock *sk; 569 570 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport, 571 dif, 0, net->ipv4.udp_table, NULL); 572 if (sk && !refcount_inc_not_zero(&sk->sk_refcnt)) 573 sk = NULL; 574 return sk; 575 } 576 EXPORT_SYMBOL_GPL(udp4_lib_lookup); 577 #endif 578 579 static inline bool __udp_is_mcast_sock(struct net *net, const struct sock *sk, 580 __be16 loc_port, __be32 loc_addr, 581 __be16 rmt_port, __be32 rmt_addr, 582 int dif, int sdif, unsigned short hnum) 583 { 584 const struct inet_sock *inet = inet_sk(sk); 585 586 if (!net_eq(sock_net(sk), net) || 587 udp_sk(sk)->udp_port_hash != hnum || 588 (inet->inet_daddr && inet->inet_daddr != rmt_addr) || 589 (inet->inet_dport != rmt_port && inet->inet_dport) || 590 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) || 591 ipv6_only_sock(sk) || 592 !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif)) 593 return false; 594 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif)) 595 return false; 596 return true; 597 } 598 599 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key); 600 EXPORT_SYMBOL(udp_encap_needed_key); 601 602 #if IS_ENABLED(CONFIG_IPV6) 603 DEFINE_STATIC_KEY_FALSE(udpv6_encap_needed_key); 604 EXPORT_SYMBOL(udpv6_encap_needed_key); 605 #endif 606 607 void udp_encap_enable(void) 608 { 609 static_branch_inc(&udp_encap_needed_key); 610 } 611 EXPORT_SYMBOL(udp_encap_enable); 612 613 void udp_encap_disable(void) 614 { 615 static_branch_dec(&udp_encap_needed_key); 616 } 617 EXPORT_SYMBOL(udp_encap_disable); 618 619 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go 620 * through error handlers in encapsulations looking for a match. 621 */ 622 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info) 623 { 624 int i; 625 626 for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) { 627 int (*handler)(struct sk_buff *skb, u32 info); 628 const struct ip_tunnel_encap_ops *encap; 629 630 encap = rcu_dereference(iptun_encaps[i]); 631 if (!encap) 632 continue; 633 handler = encap->err_handler; 634 if (handler && !handler(skb, info)) 635 return 0; 636 } 637 638 return -ENOENT; 639 } 640 641 /* Try to match ICMP errors to UDP tunnels by looking up a socket without 642 * reversing source and destination port: this will match tunnels that force the 643 * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that 644 * lwtunnels might actually break this assumption by being configured with 645 * different destination ports on endpoints, in this case we won't be able to 646 * trace ICMP messages back to them. 647 * 648 * If this doesn't match any socket, probe tunnels with arbitrary destination 649 * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port 650 * we've sent packets to won't necessarily match the local destination port. 651 * 652 * Then ask the tunnel implementation to match the error against a valid 653 * association. 654 * 655 * Return an error if we can't find a match, the socket if we need further 656 * processing, zero otherwise. 657 */ 658 static struct sock *__udp4_lib_err_encap(struct net *net, 659 const struct iphdr *iph, 660 struct udphdr *uh, 661 struct udp_table *udptable, 662 struct sock *sk, 663 struct sk_buff *skb, u32 info) 664 { 665 int (*lookup)(struct sock *sk, struct sk_buff *skb); 666 int network_offset, transport_offset; 667 struct udp_sock *up; 668 669 network_offset = skb_network_offset(skb); 670 transport_offset = skb_transport_offset(skb); 671 672 /* Network header needs to point to the outer IPv4 header inside ICMP */ 673 skb_reset_network_header(skb); 674 675 /* Transport header needs to point to the UDP header */ 676 skb_set_transport_header(skb, iph->ihl << 2); 677 678 if (sk) { 679 up = udp_sk(sk); 680 681 lookup = READ_ONCE(up->encap_err_lookup); 682 if (lookup && lookup(sk, skb)) 683 sk = NULL; 684 685 goto out; 686 } 687 688 sk = __udp4_lib_lookup(net, iph->daddr, uh->source, 689 iph->saddr, uh->dest, skb->dev->ifindex, 0, 690 udptable, NULL); 691 if (sk) { 692 up = udp_sk(sk); 693 694 lookup = READ_ONCE(up->encap_err_lookup); 695 if (!lookup || lookup(sk, skb)) 696 sk = NULL; 697 } 698 699 out: 700 if (!sk) 701 sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info)); 702 703 skb_set_transport_header(skb, transport_offset); 704 skb_set_network_header(skb, network_offset); 705 706 return sk; 707 } 708 709 /* 710 * This routine is called by the ICMP module when it gets some 711 * sort of error condition. If err < 0 then the socket should 712 * be closed and the error returned to the user. If err > 0 713 * it's just the icmp type << 8 | icmp code. 714 * Header points to the ip header of the error packet. We move 715 * on past this. Then (as it used to claim before adjustment) 716 * header points to the first 8 bytes of the udp header. We need 717 * to find the appropriate port. 718 */ 719 720 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable) 721 { 722 struct inet_sock *inet; 723 const struct iphdr *iph = (const struct iphdr *)skb->data; 724 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2)); 725 const int type = icmp_hdr(skb)->type; 726 const int code = icmp_hdr(skb)->code; 727 bool tunnel = false; 728 struct sock *sk; 729 int harderr; 730 int err; 731 struct net *net = dev_net(skb->dev); 732 733 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest, 734 iph->saddr, uh->source, skb->dev->ifindex, 735 inet_sdif(skb), udptable, NULL); 736 737 if (!sk || READ_ONCE(udp_sk(sk)->encap_type)) { 738 /* No socket for error: try tunnels before discarding */ 739 if (static_branch_unlikely(&udp_encap_needed_key)) { 740 sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb, 741 info); 742 if (!sk) 743 return 0; 744 } else 745 sk = ERR_PTR(-ENOENT); 746 747 if (IS_ERR(sk)) { 748 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); 749 return PTR_ERR(sk); 750 } 751 752 tunnel = true; 753 } 754 755 err = 0; 756 harderr = 0; 757 inet = inet_sk(sk); 758 759 switch (type) { 760 default: 761 case ICMP_TIME_EXCEEDED: 762 err = EHOSTUNREACH; 763 break; 764 case ICMP_SOURCE_QUENCH: 765 goto out; 766 case ICMP_PARAMETERPROB: 767 err = EPROTO; 768 harderr = 1; 769 break; 770 case ICMP_DEST_UNREACH: 771 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */ 772 ipv4_sk_update_pmtu(skb, sk, info); 773 if (READ_ONCE(inet->pmtudisc) != IP_PMTUDISC_DONT) { 774 err = EMSGSIZE; 775 harderr = 1; 776 break; 777 } 778 goto out; 779 } 780 err = EHOSTUNREACH; 781 if (code <= NR_ICMP_UNREACH) { 782 harderr = icmp_err_convert[code].fatal; 783 err = icmp_err_convert[code].errno; 784 } 785 break; 786 case ICMP_REDIRECT: 787 ipv4_sk_redirect(skb, sk); 788 goto out; 789 } 790 791 /* 792 * RFC1122: OK. Passes ICMP errors back to application, as per 793 * 4.1.3.3. 794 */ 795 if (tunnel) { 796 /* ...not for tunnels though: we don't have a sending socket */ 797 if (udp_sk(sk)->encap_err_rcv) 798 udp_sk(sk)->encap_err_rcv(sk, skb, err, uh->dest, info, 799 (u8 *)(uh+1)); 800 goto out; 801 } 802 if (!inet_test_bit(RECVERR, sk)) { 803 if (!harderr || sk->sk_state != TCP_ESTABLISHED) 804 goto out; 805 } else 806 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1)); 807 808 sk->sk_err = err; 809 sk_error_report(sk); 810 out: 811 return 0; 812 } 813 814 int udp_err(struct sk_buff *skb, u32 info) 815 { 816 return __udp4_lib_err(skb, info, dev_net(skb->dev)->ipv4.udp_table); 817 } 818 819 /* 820 * Throw away all pending data and cancel the corking. Socket is locked. 821 */ 822 void udp_flush_pending_frames(struct sock *sk) 823 { 824 struct udp_sock *up = udp_sk(sk); 825 826 if (up->pending) { 827 up->len = 0; 828 WRITE_ONCE(up->pending, 0); 829 ip_flush_pending_frames(sk); 830 } 831 } 832 EXPORT_SYMBOL(udp_flush_pending_frames); 833 834 /** 835 * udp4_hwcsum - handle outgoing HW checksumming 836 * @skb: sk_buff containing the filled-in UDP header 837 * (checksum field must be zeroed out) 838 * @src: source IP address 839 * @dst: destination IP address 840 */ 841 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst) 842 { 843 struct udphdr *uh = udp_hdr(skb); 844 int offset = skb_transport_offset(skb); 845 int len = skb->len - offset; 846 int hlen = len; 847 __wsum csum = 0; 848 849 if (!skb_has_frag_list(skb)) { 850 /* 851 * Only one fragment on the socket. 852 */ 853 skb->csum_start = skb_transport_header(skb) - skb->head; 854 skb->csum_offset = offsetof(struct udphdr, check); 855 uh->check = ~csum_tcpudp_magic(src, dst, len, 856 IPPROTO_UDP, 0); 857 } else { 858 struct sk_buff *frags; 859 860 /* 861 * HW-checksum won't work as there are two or more 862 * fragments on the socket so that all csums of sk_buffs 863 * should be together 864 */ 865 skb_walk_frags(skb, frags) { 866 csum = csum_add(csum, frags->csum); 867 hlen -= frags->len; 868 } 869 870 csum = skb_checksum(skb, offset, hlen, csum); 871 skb->ip_summed = CHECKSUM_NONE; 872 873 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum); 874 if (uh->check == 0) 875 uh->check = CSUM_MANGLED_0; 876 } 877 } 878 EXPORT_SYMBOL_GPL(udp4_hwcsum); 879 880 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended 881 * for the simple case like when setting the checksum for a UDP tunnel. 882 */ 883 void udp_set_csum(bool nocheck, struct sk_buff *skb, 884 __be32 saddr, __be32 daddr, int len) 885 { 886 struct udphdr *uh = udp_hdr(skb); 887 888 if (nocheck) { 889 uh->check = 0; 890 } else if (skb_is_gso(skb)) { 891 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 892 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 893 uh->check = 0; 894 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb)); 895 if (uh->check == 0) 896 uh->check = CSUM_MANGLED_0; 897 } else { 898 skb->ip_summed = CHECKSUM_PARTIAL; 899 skb->csum_start = skb_transport_header(skb) - skb->head; 900 skb->csum_offset = offsetof(struct udphdr, check); 901 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 902 } 903 } 904 EXPORT_SYMBOL(udp_set_csum); 905 906 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4, 907 struct inet_cork *cork) 908 { 909 struct sock *sk = skb->sk; 910 struct inet_sock *inet = inet_sk(sk); 911 struct udphdr *uh; 912 int err; 913 int is_udplite = IS_UDPLITE(sk); 914 int offset = skb_transport_offset(skb); 915 int len = skb->len - offset; 916 int datalen = len - sizeof(*uh); 917 __wsum csum = 0; 918 919 /* 920 * Create a UDP header 921 */ 922 uh = udp_hdr(skb); 923 uh->source = inet->inet_sport; 924 uh->dest = fl4->fl4_dport; 925 uh->len = htons(len); 926 uh->check = 0; 927 928 if (cork->gso_size) { 929 const int hlen = skb_network_header_len(skb) + 930 sizeof(struct udphdr); 931 932 if (hlen + cork->gso_size > cork->fragsize) { 933 kfree_skb(skb); 934 return -EINVAL; 935 } 936 if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) { 937 kfree_skb(skb); 938 return -EINVAL; 939 } 940 if (sk->sk_no_check_tx) { 941 kfree_skb(skb); 942 return -EINVAL; 943 } 944 if (is_udplite || dst_xfrm(skb_dst(skb))) { 945 kfree_skb(skb); 946 return -EIO; 947 } 948 949 if (datalen > cork->gso_size) { 950 skb_shinfo(skb)->gso_size = cork->gso_size; 951 skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4; 952 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen, 953 cork->gso_size); 954 955 /* Don't checksum the payload, skb will get segmented */ 956 goto csum_partial; 957 } 958 } 959 960 if (is_udplite) /* UDP-Lite */ 961 csum = udplite_csum(skb); 962 963 else if (sk->sk_no_check_tx) { /* UDP csum off */ 964 965 skb->ip_summed = CHECKSUM_NONE; 966 goto send; 967 968 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */ 969 csum_partial: 970 971 udp4_hwcsum(skb, fl4->saddr, fl4->daddr); 972 goto send; 973 974 } else 975 csum = udp_csum(skb); 976 977 /* add protocol-dependent pseudo-header */ 978 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len, 979 sk->sk_protocol, csum); 980 if (uh->check == 0) 981 uh->check = CSUM_MANGLED_0; 982 983 send: 984 err = ip_send_skb(sock_net(sk), skb); 985 if (err) { 986 if (err == -ENOBUFS && 987 !inet_test_bit(RECVERR, sk)) { 988 UDP_INC_STATS(sock_net(sk), 989 UDP_MIB_SNDBUFERRORS, is_udplite); 990 err = 0; 991 } 992 } else 993 UDP_INC_STATS(sock_net(sk), 994 UDP_MIB_OUTDATAGRAMS, is_udplite); 995 return err; 996 } 997 998 /* 999 * Push out all pending data as one UDP datagram. Socket is locked. 1000 */ 1001 int udp_push_pending_frames(struct sock *sk) 1002 { 1003 struct udp_sock *up = udp_sk(sk); 1004 struct inet_sock *inet = inet_sk(sk); 1005 struct flowi4 *fl4 = &inet->cork.fl.u.ip4; 1006 struct sk_buff *skb; 1007 int err = 0; 1008 1009 skb = ip_finish_skb(sk, fl4); 1010 if (!skb) 1011 goto out; 1012 1013 err = udp_send_skb(skb, fl4, &inet->cork.base); 1014 1015 out: 1016 up->len = 0; 1017 WRITE_ONCE(up->pending, 0); 1018 return err; 1019 } 1020 EXPORT_SYMBOL(udp_push_pending_frames); 1021 1022 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size) 1023 { 1024 switch (cmsg->cmsg_type) { 1025 case UDP_SEGMENT: 1026 if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16))) 1027 return -EINVAL; 1028 *gso_size = *(__u16 *)CMSG_DATA(cmsg); 1029 return 0; 1030 default: 1031 return -EINVAL; 1032 } 1033 } 1034 1035 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size) 1036 { 1037 struct cmsghdr *cmsg; 1038 bool need_ip = false; 1039 int err; 1040 1041 for_each_cmsghdr(cmsg, msg) { 1042 if (!CMSG_OK(msg, cmsg)) 1043 return -EINVAL; 1044 1045 if (cmsg->cmsg_level != SOL_UDP) { 1046 need_ip = true; 1047 continue; 1048 } 1049 1050 err = __udp_cmsg_send(cmsg, gso_size); 1051 if (err) 1052 return err; 1053 } 1054 1055 return need_ip; 1056 } 1057 EXPORT_SYMBOL_GPL(udp_cmsg_send); 1058 1059 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1060 { 1061 struct inet_sock *inet = inet_sk(sk); 1062 struct udp_sock *up = udp_sk(sk); 1063 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name); 1064 struct flowi4 fl4_stack; 1065 struct flowi4 *fl4; 1066 int ulen = len; 1067 struct ipcm_cookie ipc; 1068 struct rtable *rt = NULL; 1069 int free = 0; 1070 int connected = 0; 1071 __be32 daddr, faddr, saddr; 1072 u8 tos, scope; 1073 __be16 dport; 1074 int err, is_udplite = IS_UDPLITE(sk); 1075 int corkreq = udp_test_bit(CORK, sk) || msg->msg_flags & MSG_MORE; 1076 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *); 1077 struct sk_buff *skb; 1078 struct ip_options_data opt_copy; 1079 int uc_index; 1080 1081 if (len > 0xFFFF) 1082 return -EMSGSIZE; 1083 1084 /* 1085 * Check the flags. 1086 */ 1087 1088 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */ 1089 return -EOPNOTSUPP; 1090 1091 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag; 1092 1093 fl4 = &inet->cork.fl.u.ip4; 1094 if (READ_ONCE(up->pending)) { 1095 /* 1096 * There are pending frames. 1097 * The socket lock must be held while it's corked. 1098 */ 1099 lock_sock(sk); 1100 if (likely(up->pending)) { 1101 if (unlikely(up->pending != AF_INET)) { 1102 release_sock(sk); 1103 return -EINVAL; 1104 } 1105 goto do_append_data; 1106 } 1107 release_sock(sk); 1108 } 1109 ulen += sizeof(struct udphdr); 1110 1111 /* 1112 * Get and verify the address. 1113 */ 1114 if (usin) { 1115 if (msg->msg_namelen < sizeof(*usin)) 1116 return -EINVAL; 1117 if (usin->sin_family != AF_INET) { 1118 if (usin->sin_family != AF_UNSPEC) 1119 return -EAFNOSUPPORT; 1120 } 1121 1122 daddr = usin->sin_addr.s_addr; 1123 dport = usin->sin_port; 1124 if (dport == 0) 1125 return -EINVAL; 1126 } else { 1127 if (sk->sk_state != TCP_ESTABLISHED) 1128 return -EDESTADDRREQ; 1129 daddr = inet->inet_daddr; 1130 dport = inet->inet_dport; 1131 /* Open fast path for connected socket. 1132 Route will not be used, if at least one option is set. 1133 */ 1134 connected = 1; 1135 } 1136 1137 ipcm_init_sk(&ipc, inet); 1138 ipc.gso_size = READ_ONCE(up->gso_size); 1139 1140 if (msg->msg_controllen) { 1141 err = udp_cmsg_send(sk, msg, &ipc.gso_size); 1142 if (err > 0) { 1143 err = ip_cmsg_send(sk, msg, &ipc, 1144 sk->sk_family == AF_INET6); 1145 connected = 0; 1146 } 1147 if (unlikely(err < 0)) { 1148 kfree(ipc.opt); 1149 return err; 1150 } 1151 if (ipc.opt) 1152 free = 1; 1153 } 1154 if (!ipc.opt) { 1155 struct ip_options_rcu *inet_opt; 1156 1157 rcu_read_lock(); 1158 inet_opt = rcu_dereference(inet->inet_opt); 1159 if (inet_opt) { 1160 memcpy(&opt_copy, inet_opt, 1161 sizeof(*inet_opt) + inet_opt->opt.optlen); 1162 ipc.opt = &opt_copy.opt; 1163 } 1164 rcu_read_unlock(); 1165 } 1166 1167 if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) { 1168 err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk, 1169 (struct sockaddr *)usin, 1170 &msg->msg_namelen, 1171 &ipc.addr); 1172 if (err) 1173 goto out_free; 1174 if (usin) { 1175 if (usin->sin_port == 0) { 1176 /* BPF program set invalid port. Reject it. */ 1177 err = -EINVAL; 1178 goto out_free; 1179 } 1180 daddr = usin->sin_addr.s_addr; 1181 dport = usin->sin_port; 1182 } 1183 } 1184 1185 saddr = ipc.addr; 1186 ipc.addr = faddr = daddr; 1187 1188 if (ipc.opt && ipc.opt->opt.srr) { 1189 if (!daddr) { 1190 err = -EINVAL; 1191 goto out_free; 1192 } 1193 faddr = ipc.opt->opt.faddr; 1194 connected = 0; 1195 } 1196 tos = get_rttos(&ipc, inet); 1197 scope = ip_sendmsg_scope(inet, &ipc, msg); 1198 if (scope == RT_SCOPE_LINK) 1199 connected = 0; 1200 1201 uc_index = READ_ONCE(inet->uc_index); 1202 if (ipv4_is_multicast(daddr)) { 1203 if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif)) 1204 ipc.oif = READ_ONCE(inet->mc_index); 1205 if (!saddr) 1206 saddr = READ_ONCE(inet->mc_addr); 1207 connected = 0; 1208 } else if (!ipc.oif) { 1209 ipc.oif = uc_index; 1210 } else if (ipv4_is_lbcast(daddr) && uc_index) { 1211 /* oif is set, packet is to local broadcast and 1212 * uc_index is set. oif is most likely set 1213 * by sk_bound_dev_if. If uc_index != oif check if the 1214 * oif is an L3 master and uc_index is an L3 slave. 1215 * If so, we want to allow the send using the uc_index. 1216 */ 1217 if (ipc.oif != uc_index && 1218 ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk), 1219 uc_index)) { 1220 ipc.oif = uc_index; 1221 } 1222 } 1223 1224 if (connected) 1225 rt = dst_rtable(sk_dst_check(sk, 0)); 1226 1227 if (!rt) { 1228 struct net *net = sock_net(sk); 1229 __u8 flow_flags = inet_sk_flowi_flags(sk); 1230 1231 fl4 = &fl4_stack; 1232 1233 flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos, scope, 1234 sk->sk_protocol, flow_flags, faddr, saddr, 1235 dport, inet->inet_sport, sk->sk_uid); 1236 1237 security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4)); 1238 rt = ip_route_output_flow(net, fl4, sk); 1239 if (IS_ERR(rt)) { 1240 err = PTR_ERR(rt); 1241 rt = NULL; 1242 if (err == -ENETUNREACH) 1243 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 1244 goto out; 1245 } 1246 1247 err = -EACCES; 1248 if ((rt->rt_flags & RTCF_BROADCAST) && 1249 !sock_flag(sk, SOCK_BROADCAST)) 1250 goto out; 1251 if (connected) 1252 sk_dst_set(sk, dst_clone(&rt->dst)); 1253 } 1254 1255 if (msg->msg_flags&MSG_CONFIRM) 1256 goto do_confirm; 1257 back_from_confirm: 1258 1259 saddr = fl4->saddr; 1260 if (!ipc.addr) 1261 daddr = ipc.addr = fl4->daddr; 1262 1263 /* Lockless fast path for the non-corking case. */ 1264 if (!corkreq) { 1265 struct inet_cork cork; 1266 1267 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen, 1268 sizeof(struct udphdr), &ipc, &rt, 1269 &cork, msg->msg_flags); 1270 err = PTR_ERR(skb); 1271 if (!IS_ERR_OR_NULL(skb)) 1272 err = udp_send_skb(skb, fl4, &cork); 1273 goto out; 1274 } 1275 1276 lock_sock(sk); 1277 if (unlikely(up->pending)) { 1278 /* The socket is already corked while preparing it. */ 1279 /* ... which is an evident application bug. --ANK */ 1280 release_sock(sk); 1281 1282 net_dbg_ratelimited("socket already corked\n"); 1283 err = -EINVAL; 1284 goto out; 1285 } 1286 /* 1287 * Now cork the socket to pend data. 1288 */ 1289 fl4 = &inet->cork.fl.u.ip4; 1290 fl4->daddr = daddr; 1291 fl4->saddr = saddr; 1292 fl4->fl4_dport = dport; 1293 fl4->fl4_sport = inet->inet_sport; 1294 WRITE_ONCE(up->pending, AF_INET); 1295 1296 do_append_data: 1297 up->len += ulen; 1298 err = ip_append_data(sk, fl4, getfrag, msg, ulen, 1299 sizeof(struct udphdr), &ipc, &rt, 1300 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags); 1301 if (err) 1302 udp_flush_pending_frames(sk); 1303 else if (!corkreq) 1304 err = udp_push_pending_frames(sk); 1305 else if (unlikely(skb_queue_empty(&sk->sk_write_queue))) 1306 WRITE_ONCE(up->pending, 0); 1307 release_sock(sk); 1308 1309 out: 1310 ip_rt_put(rt); 1311 out_free: 1312 if (free) 1313 kfree(ipc.opt); 1314 if (!err) 1315 return len; 1316 /* 1317 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting 1318 * ENOBUFS might not be good (it's not tunable per se), but otherwise 1319 * we don't have a good statistic (IpOutDiscards but it can be too many 1320 * things). We could add another new stat but at least for now that 1321 * seems like overkill. 1322 */ 1323 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1324 UDP_INC_STATS(sock_net(sk), 1325 UDP_MIB_SNDBUFERRORS, is_udplite); 1326 } 1327 return err; 1328 1329 do_confirm: 1330 if (msg->msg_flags & MSG_PROBE) 1331 dst_confirm_neigh(&rt->dst, &fl4->daddr); 1332 if (!(msg->msg_flags&MSG_PROBE) || len) 1333 goto back_from_confirm; 1334 err = 0; 1335 goto out; 1336 } 1337 EXPORT_SYMBOL(udp_sendmsg); 1338 1339 void udp_splice_eof(struct socket *sock) 1340 { 1341 struct sock *sk = sock->sk; 1342 struct udp_sock *up = udp_sk(sk); 1343 1344 if (!READ_ONCE(up->pending) || udp_test_bit(CORK, sk)) 1345 return; 1346 1347 lock_sock(sk); 1348 if (up->pending && !udp_test_bit(CORK, sk)) 1349 udp_push_pending_frames(sk); 1350 release_sock(sk); 1351 } 1352 EXPORT_SYMBOL_GPL(udp_splice_eof); 1353 1354 #define UDP_SKB_IS_STATELESS 0x80000000 1355 1356 /* all head states (dst, sk, nf conntrack) except skb extensions are 1357 * cleared by udp_rcv(). 1358 * 1359 * We need to preserve secpath, if present, to eventually process 1360 * IP_CMSG_PASSSEC at recvmsg() time. 1361 * 1362 * Other extensions can be cleared. 1363 */ 1364 static bool udp_try_make_stateless(struct sk_buff *skb) 1365 { 1366 if (!skb_has_extensions(skb)) 1367 return true; 1368 1369 if (!secpath_exists(skb)) { 1370 skb_ext_reset(skb); 1371 return true; 1372 } 1373 1374 return false; 1375 } 1376 1377 static void udp_set_dev_scratch(struct sk_buff *skb) 1378 { 1379 struct udp_dev_scratch *scratch = udp_skb_scratch(skb); 1380 1381 BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long)); 1382 scratch->_tsize_state = skb->truesize; 1383 #if BITS_PER_LONG == 64 1384 scratch->len = skb->len; 1385 scratch->csum_unnecessary = !!skb_csum_unnecessary(skb); 1386 scratch->is_linear = !skb_is_nonlinear(skb); 1387 #endif 1388 if (udp_try_make_stateless(skb)) 1389 scratch->_tsize_state |= UDP_SKB_IS_STATELESS; 1390 } 1391 1392 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb) 1393 { 1394 /* We come here after udp_lib_checksum_complete() returned 0. 1395 * This means that __skb_checksum_complete() might have 1396 * set skb->csum_valid to 1. 1397 * On 64bit platforms, we can set csum_unnecessary 1398 * to true, but only if the skb is not shared. 1399 */ 1400 #if BITS_PER_LONG == 64 1401 if (!skb_shared(skb)) 1402 udp_skb_scratch(skb)->csum_unnecessary = true; 1403 #endif 1404 } 1405 1406 static int udp_skb_truesize(struct sk_buff *skb) 1407 { 1408 return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS; 1409 } 1410 1411 static bool udp_skb_has_head_state(struct sk_buff *skb) 1412 { 1413 return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS); 1414 } 1415 1416 /* fully reclaim rmem/fwd memory allocated for skb */ 1417 static void udp_rmem_release(struct sock *sk, int size, int partial, 1418 bool rx_queue_lock_held) 1419 { 1420 struct udp_sock *up = udp_sk(sk); 1421 struct sk_buff_head *sk_queue; 1422 int amt; 1423 1424 if (likely(partial)) { 1425 up->forward_deficit += size; 1426 size = up->forward_deficit; 1427 if (size < READ_ONCE(up->forward_threshold) && 1428 !skb_queue_empty(&up->reader_queue)) 1429 return; 1430 } else { 1431 size += up->forward_deficit; 1432 } 1433 up->forward_deficit = 0; 1434 1435 /* acquire the sk_receive_queue for fwd allocated memory scheduling, 1436 * if the called don't held it already 1437 */ 1438 sk_queue = &sk->sk_receive_queue; 1439 if (!rx_queue_lock_held) 1440 spin_lock(&sk_queue->lock); 1441 1442 1443 sk_forward_alloc_add(sk, size); 1444 amt = (sk->sk_forward_alloc - partial) & ~(PAGE_SIZE - 1); 1445 sk_forward_alloc_add(sk, -amt); 1446 1447 if (amt) 1448 __sk_mem_reduce_allocated(sk, amt >> PAGE_SHIFT); 1449 1450 atomic_sub(size, &sk->sk_rmem_alloc); 1451 1452 /* this can save us from acquiring the rx queue lock on next receive */ 1453 skb_queue_splice_tail_init(sk_queue, &up->reader_queue); 1454 1455 if (!rx_queue_lock_held) 1456 spin_unlock(&sk_queue->lock); 1457 } 1458 1459 /* Note: called with reader_queue.lock held. 1460 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch 1461 * This avoids a cache line miss while receive_queue lock is held. 1462 * Look at __udp_enqueue_schedule_skb() to find where this copy is done. 1463 */ 1464 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb) 1465 { 1466 prefetch(&skb->data); 1467 udp_rmem_release(sk, udp_skb_truesize(skb), 1, false); 1468 } 1469 EXPORT_SYMBOL(udp_skb_destructor); 1470 1471 /* as above, but the caller held the rx queue lock, too */ 1472 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb) 1473 { 1474 prefetch(&skb->data); 1475 udp_rmem_release(sk, udp_skb_truesize(skb), 1, true); 1476 } 1477 1478 /* Idea of busylocks is to let producers grab an extra spinlock 1479 * to relieve pressure on the receive_queue spinlock shared by consumer. 1480 * Under flood, this means that only one producer can be in line 1481 * trying to acquire the receive_queue spinlock. 1482 * These busylock can be allocated on a per cpu manner, instead of a 1483 * per socket one (that would consume a cache line per socket) 1484 */ 1485 static int udp_busylocks_log __read_mostly; 1486 static spinlock_t *udp_busylocks __read_mostly; 1487 1488 static spinlock_t *busylock_acquire(void *ptr) 1489 { 1490 spinlock_t *busy; 1491 1492 busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log); 1493 spin_lock(busy); 1494 return busy; 1495 } 1496 1497 static void busylock_release(spinlock_t *busy) 1498 { 1499 if (busy) 1500 spin_unlock(busy); 1501 } 1502 1503 static int udp_rmem_schedule(struct sock *sk, int size) 1504 { 1505 int delta; 1506 1507 delta = size - sk->sk_forward_alloc; 1508 if (delta > 0 && !__sk_mem_schedule(sk, delta, SK_MEM_RECV)) 1509 return -ENOBUFS; 1510 1511 return 0; 1512 } 1513 1514 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb) 1515 { 1516 struct sk_buff_head *list = &sk->sk_receive_queue; 1517 int rmem, err = -ENOMEM; 1518 spinlock_t *busy = NULL; 1519 bool becomes_readable; 1520 int size, rcvbuf; 1521 1522 /* Immediately drop when the receive queue is full. 1523 * Always allow at least one packet. 1524 */ 1525 rmem = atomic_read(&sk->sk_rmem_alloc); 1526 rcvbuf = READ_ONCE(sk->sk_rcvbuf); 1527 if (rmem > rcvbuf) 1528 goto drop; 1529 1530 /* Under mem pressure, it might be helpful to help udp_recvmsg() 1531 * having linear skbs : 1532 * - Reduce memory overhead and thus increase receive queue capacity 1533 * - Less cache line misses at copyout() time 1534 * - Less work at consume_skb() (less alien page frag freeing) 1535 */ 1536 if (rmem > (rcvbuf >> 1)) { 1537 skb_condense(skb); 1538 1539 busy = busylock_acquire(sk); 1540 } 1541 size = skb->truesize; 1542 udp_set_dev_scratch(skb); 1543 1544 atomic_add(size, &sk->sk_rmem_alloc); 1545 1546 spin_lock(&list->lock); 1547 err = udp_rmem_schedule(sk, size); 1548 if (err) { 1549 spin_unlock(&list->lock); 1550 goto uncharge_drop; 1551 } 1552 1553 sk_forward_alloc_add(sk, -size); 1554 1555 /* no need to setup a destructor, we will explicitly release the 1556 * forward allocated memory on dequeue 1557 */ 1558 sock_skb_set_dropcount(sk, skb); 1559 1560 becomes_readable = skb_queue_empty(list); 1561 __skb_queue_tail(list, skb); 1562 spin_unlock(&list->lock); 1563 1564 if (!sock_flag(sk, SOCK_DEAD)) { 1565 if (becomes_readable || 1566 sk->sk_data_ready != sock_def_readable || 1567 READ_ONCE(sk->sk_peek_off) >= 0) 1568 INDIRECT_CALL_1(sk->sk_data_ready, 1569 sock_def_readable, sk); 1570 else 1571 sk_wake_async_rcu(sk, SOCK_WAKE_WAITD, POLL_IN); 1572 } 1573 busylock_release(busy); 1574 return 0; 1575 1576 uncharge_drop: 1577 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 1578 1579 drop: 1580 atomic_inc(&sk->sk_drops); 1581 busylock_release(busy); 1582 return err; 1583 } 1584 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb); 1585 1586 void udp_destruct_common(struct sock *sk) 1587 { 1588 /* reclaim completely the forward allocated memory */ 1589 struct udp_sock *up = udp_sk(sk); 1590 unsigned int total = 0; 1591 struct sk_buff *skb; 1592 1593 skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue); 1594 while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) { 1595 total += skb->truesize; 1596 kfree_skb(skb); 1597 } 1598 udp_rmem_release(sk, total, 0, true); 1599 } 1600 EXPORT_SYMBOL_GPL(udp_destruct_common); 1601 1602 static void udp_destruct_sock(struct sock *sk) 1603 { 1604 udp_destruct_common(sk); 1605 inet_sock_destruct(sk); 1606 } 1607 1608 int udp_init_sock(struct sock *sk) 1609 { 1610 udp_lib_init_sock(sk); 1611 sk->sk_destruct = udp_destruct_sock; 1612 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); 1613 return 0; 1614 } 1615 1616 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len) 1617 { 1618 if (unlikely(READ_ONCE(udp_sk(sk)->peeking_with_offset))) 1619 sk_peek_offset_bwd(sk, len); 1620 1621 if (!skb_unref(skb)) 1622 return; 1623 1624 /* In the more common cases we cleared the head states previously, 1625 * see __udp_queue_rcv_skb(). 1626 */ 1627 if (unlikely(udp_skb_has_head_state(skb))) 1628 skb_release_head_state(skb); 1629 __consume_stateless_skb(skb); 1630 } 1631 EXPORT_SYMBOL_GPL(skb_consume_udp); 1632 1633 static struct sk_buff *__first_packet_length(struct sock *sk, 1634 struct sk_buff_head *rcvq, 1635 int *total) 1636 { 1637 struct sk_buff *skb; 1638 1639 while ((skb = skb_peek(rcvq)) != NULL) { 1640 if (udp_lib_checksum_complete(skb)) { 1641 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, 1642 IS_UDPLITE(sk)); 1643 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, 1644 IS_UDPLITE(sk)); 1645 atomic_inc(&sk->sk_drops); 1646 __skb_unlink(skb, rcvq); 1647 *total += skb->truesize; 1648 kfree_skb(skb); 1649 } else { 1650 udp_skb_csum_unnecessary_set(skb); 1651 break; 1652 } 1653 } 1654 return skb; 1655 } 1656 1657 /** 1658 * first_packet_length - return length of first packet in receive queue 1659 * @sk: socket 1660 * 1661 * Drops all bad checksum frames, until a valid one is found. 1662 * Returns the length of found skb, or -1 if none is found. 1663 */ 1664 static int first_packet_length(struct sock *sk) 1665 { 1666 struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue; 1667 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1668 struct sk_buff *skb; 1669 int total = 0; 1670 int res; 1671 1672 spin_lock_bh(&rcvq->lock); 1673 skb = __first_packet_length(sk, rcvq, &total); 1674 if (!skb && !skb_queue_empty_lockless(sk_queue)) { 1675 spin_lock(&sk_queue->lock); 1676 skb_queue_splice_tail_init(sk_queue, rcvq); 1677 spin_unlock(&sk_queue->lock); 1678 1679 skb = __first_packet_length(sk, rcvq, &total); 1680 } 1681 res = skb ? skb->len : -1; 1682 if (total) 1683 udp_rmem_release(sk, total, 1, false); 1684 spin_unlock_bh(&rcvq->lock); 1685 return res; 1686 } 1687 1688 /* 1689 * IOCTL requests applicable to the UDP protocol 1690 */ 1691 1692 int udp_ioctl(struct sock *sk, int cmd, int *karg) 1693 { 1694 switch (cmd) { 1695 case SIOCOUTQ: 1696 { 1697 *karg = sk_wmem_alloc_get(sk); 1698 return 0; 1699 } 1700 1701 case SIOCINQ: 1702 { 1703 *karg = max_t(int, 0, first_packet_length(sk)); 1704 return 0; 1705 } 1706 1707 default: 1708 return -ENOIOCTLCMD; 1709 } 1710 1711 return 0; 1712 } 1713 EXPORT_SYMBOL(udp_ioctl); 1714 1715 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags, 1716 int *off, int *err) 1717 { 1718 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1719 struct sk_buff_head *queue; 1720 struct sk_buff *last; 1721 long timeo; 1722 int error; 1723 1724 queue = &udp_sk(sk)->reader_queue; 1725 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1726 do { 1727 struct sk_buff *skb; 1728 1729 error = sock_error(sk); 1730 if (error) 1731 break; 1732 1733 error = -EAGAIN; 1734 do { 1735 spin_lock_bh(&queue->lock); 1736 skb = __skb_try_recv_from_queue(sk, queue, flags, off, 1737 err, &last); 1738 if (skb) { 1739 if (!(flags & MSG_PEEK)) 1740 udp_skb_destructor(sk, skb); 1741 spin_unlock_bh(&queue->lock); 1742 return skb; 1743 } 1744 1745 if (skb_queue_empty_lockless(sk_queue)) { 1746 spin_unlock_bh(&queue->lock); 1747 goto busy_check; 1748 } 1749 1750 /* refill the reader queue and walk it again 1751 * keep both queues locked to avoid re-acquiring 1752 * the sk_receive_queue lock if fwd memory scheduling 1753 * is needed. 1754 */ 1755 spin_lock(&sk_queue->lock); 1756 skb_queue_splice_tail_init(sk_queue, queue); 1757 1758 skb = __skb_try_recv_from_queue(sk, queue, flags, off, 1759 err, &last); 1760 if (skb && !(flags & MSG_PEEK)) 1761 udp_skb_dtor_locked(sk, skb); 1762 spin_unlock(&sk_queue->lock); 1763 spin_unlock_bh(&queue->lock); 1764 if (skb) 1765 return skb; 1766 1767 busy_check: 1768 if (!sk_can_busy_loop(sk)) 1769 break; 1770 1771 sk_busy_loop(sk, flags & MSG_DONTWAIT); 1772 } while (!skb_queue_empty_lockless(sk_queue)); 1773 1774 /* sk_queue is empty, reader_queue may contain peeked packets */ 1775 } while (timeo && 1776 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue, 1777 &error, &timeo, 1778 (struct sk_buff *)sk_queue)); 1779 1780 *err = error; 1781 return NULL; 1782 } 1783 EXPORT_SYMBOL(__skb_recv_udp); 1784 1785 int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor) 1786 { 1787 struct sk_buff *skb; 1788 int err; 1789 1790 try_again: 1791 skb = skb_recv_udp(sk, MSG_DONTWAIT, &err); 1792 if (!skb) 1793 return err; 1794 1795 if (udp_lib_checksum_complete(skb)) { 1796 int is_udplite = IS_UDPLITE(sk); 1797 struct net *net = sock_net(sk); 1798 1799 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, is_udplite); 1800 __UDP_INC_STATS(net, UDP_MIB_INERRORS, is_udplite); 1801 atomic_inc(&sk->sk_drops); 1802 kfree_skb(skb); 1803 goto try_again; 1804 } 1805 1806 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk)); 1807 return recv_actor(sk, skb); 1808 } 1809 EXPORT_SYMBOL(udp_read_skb); 1810 1811 /* 1812 * This should be easy, if there is something there we 1813 * return it, otherwise we block. 1814 */ 1815 1816 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, 1817 int *addr_len) 1818 { 1819 struct inet_sock *inet = inet_sk(sk); 1820 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name); 1821 struct sk_buff *skb; 1822 unsigned int ulen, copied; 1823 int off, err, peeking = flags & MSG_PEEK; 1824 int is_udplite = IS_UDPLITE(sk); 1825 bool checksum_valid = false; 1826 1827 if (flags & MSG_ERRQUEUE) 1828 return ip_recv_error(sk, msg, len, addr_len); 1829 1830 try_again: 1831 off = sk_peek_offset(sk, flags); 1832 skb = __skb_recv_udp(sk, flags, &off, &err); 1833 if (!skb) 1834 return err; 1835 1836 ulen = udp_skb_len(skb); 1837 copied = len; 1838 if (copied > ulen - off) 1839 copied = ulen - off; 1840 else if (copied < ulen) 1841 msg->msg_flags |= MSG_TRUNC; 1842 1843 /* 1844 * If checksum is needed at all, try to do it while copying the 1845 * data. If the data is truncated, or if we only want a partial 1846 * coverage checksum (UDP-Lite), do it before the copy. 1847 */ 1848 1849 if (copied < ulen || peeking || 1850 (is_udplite && UDP_SKB_CB(skb)->partial_cov)) { 1851 checksum_valid = udp_skb_csum_unnecessary(skb) || 1852 !__udp_lib_checksum_complete(skb); 1853 if (!checksum_valid) 1854 goto csum_copy_err; 1855 } 1856 1857 if (checksum_valid || udp_skb_csum_unnecessary(skb)) { 1858 if (udp_skb_is_linear(skb)) 1859 err = copy_linear_skb(skb, copied, off, &msg->msg_iter); 1860 else 1861 err = skb_copy_datagram_msg(skb, off, msg, copied); 1862 } else { 1863 err = skb_copy_and_csum_datagram_msg(skb, off, msg); 1864 1865 if (err == -EINVAL) 1866 goto csum_copy_err; 1867 } 1868 1869 if (unlikely(err)) { 1870 if (!peeking) { 1871 atomic_inc(&sk->sk_drops); 1872 UDP_INC_STATS(sock_net(sk), 1873 UDP_MIB_INERRORS, is_udplite); 1874 } 1875 kfree_skb(skb); 1876 return err; 1877 } 1878 1879 if (!peeking) 1880 UDP_INC_STATS(sock_net(sk), 1881 UDP_MIB_INDATAGRAMS, is_udplite); 1882 1883 sock_recv_cmsgs(msg, sk, skb); 1884 1885 /* Copy the address. */ 1886 if (sin) { 1887 sin->sin_family = AF_INET; 1888 sin->sin_port = udp_hdr(skb)->source; 1889 sin->sin_addr.s_addr = ip_hdr(skb)->saddr; 1890 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 1891 *addr_len = sizeof(*sin); 1892 1893 BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk, 1894 (struct sockaddr *)sin, 1895 addr_len); 1896 } 1897 1898 if (udp_test_bit(GRO_ENABLED, sk)) 1899 udp_cmsg_recv(msg, sk, skb); 1900 1901 if (inet_cmsg_flags(inet)) 1902 ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off); 1903 1904 err = copied; 1905 if (flags & MSG_TRUNC) 1906 err = ulen; 1907 1908 skb_consume_udp(sk, skb, peeking ? -err : err); 1909 return err; 1910 1911 csum_copy_err: 1912 if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags, 1913 udp_skb_destructor)) { 1914 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 1915 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1916 } 1917 kfree_skb(skb); 1918 1919 /* starting over for a new packet, but check if we need to yield */ 1920 cond_resched(); 1921 msg->msg_flags &= ~MSG_TRUNC; 1922 goto try_again; 1923 } 1924 1925 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 1926 { 1927 /* This check is replicated from __ip4_datagram_connect() and 1928 * intended to prevent BPF program called below from accessing bytes 1929 * that are out of the bound specified by user in addr_len. 1930 */ 1931 if (addr_len < sizeof(struct sockaddr_in)) 1932 return -EINVAL; 1933 1934 return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr, &addr_len); 1935 } 1936 EXPORT_SYMBOL(udp_pre_connect); 1937 1938 int __udp_disconnect(struct sock *sk, int flags) 1939 { 1940 struct inet_sock *inet = inet_sk(sk); 1941 /* 1942 * 1003.1g - break association. 1943 */ 1944 1945 sk->sk_state = TCP_CLOSE; 1946 inet->inet_daddr = 0; 1947 inet->inet_dport = 0; 1948 sock_rps_reset_rxhash(sk); 1949 sk->sk_bound_dev_if = 0; 1950 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) { 1951 inet_reset_saddr(sk); 1952 if (sk->sk_prot->rehash && 1953 (sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 1954 sk->sk_prot->rehash(sk); 1955 } 1956 1957 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) { 1958 sk->sk_prot->unhash(sk); 1959 inet->inet_sport = 0; 1960 } 1961 sk_dst_reset(sk); 1962 return 0; 1963 } 1964 EXPORT_SYMBOL(__udp_disconnect); 1965 1966 int udp_disconnect(struct sock *sk, int flags) 1967 { 1968 lock_sock(sk); 1969 __udp_disconnect(sk, flags); 1970 release_sock(sk); 1971 return 0; 1972 } 1973 EXPORT_SYMBOL(udp_disconnect); 1974 1975 void udp_lib_unhash(struct sock *sk) 1976 { 1977 if (sk_hashed(sk)) { 1978 struct udp_table *udptable = udp_get_table_prot(sk); 1979 struct udp_hslot *hslot, *hslot2; 1980 1981 hslot = udp_hashslot(udptable, sock_net(sk), 1982 udp_sk(sk)->udp_port_hash); 1983 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1984 1985 spin_lock_bh(&hslot->lock); 1986 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1987 reuseport_detach_sock(sk); 1988 if (sk_del_node_init_rcu(sk)) { 1989 hslot->count--; 1990 inet_sk(sk)->inet_num = 0; 1991 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 1992 1993 spin_lock(&hslot2->lock); 1994 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 1995 hslot2->count--; 1996 spin_unlock(&hslot2->lock); 1997 } 1998 spin_unlock_bh(&hslot->lock); 1999 } 2000 } 2001 EXPORT_SYMBOL(udp_lib_unhash); 2002 2003 /* 2004 * inet_rcv_saddr was changed, we must rehash secondary hash 2005 */ 2006 void udp_lib_rehash(struct sock *sk, u16 newhash) 2007 { 2008 if (sk_hashed(sk)) { 2009 struct udp_table *udptable = udp_get_table_prot(sk); 2010 struct udp_hslot *hslot, *hslot2, *nhslot2; 2011 2012 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 2013 nhslot2 = udp_hashslot2(udptable, newhash); 2014 udp_sk(sk)->udp_portaddr_hash = newhash; 2015 2016 if (hslot2 != nhslot2 || 2017 rcu_access_pointer(sk->sk_reuseport_cb)) { 2018 hslot = udp_hashslot(udptable, sock_net(sk), 2019 udp_sk(sk)->udp_port_hash); 2020 /* we must lock primary chain too */ 2021 spin_lock_bh(&hslot->lock); 2022 if (rcu_access_pointer(sk->sk_reuseport_cb)) 2023 reuseport_detach_sock(sk); 2024 2025 if (hslot2 != nhslot2) { 2026 spin_lock(&hslot2->lock); 2027 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 2028 hslot2->count--; 2029 spin_unlock(&hslot2->lock); 2030 2031 spin_lock(&nhslot2->lock); 2032 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 2033 &nhslot2->head); 2034 nhslot2->count++; 2035 spin_unlock(&nhslot2->lock); 2036 } 2037 2038 spin_unlock_bh(&hslot->lock); 2039 } 2040 } 2041 } 2042 EXPORT_SYMBOL(udp_lib_rehash); 2043 2044 void udp_v4_rehash(struct sock *sk) 2045 { 2046 u16 new_hash = ipv4_portaddr_hash(sock_net(sk), 2047 inet_sk(sk)->inet_rcv_saddr, 2048 inet_sk(sk)->inet_num); 2049 udp_lib_rehash(sk, new_hash); 2050 } 2051 2052 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 2053 { 2054 int rc; 2055 2056 if (inet_sk(sk)->inet_daddr) { 2057 sock_rps_save_rxhash(sk, skb); 2058 sk_mark_napi_id(sk, skb); 2059 sk_incoming_cpu_update(sk); 2060 } else { 2061 sk_mark_napi_id_once(sk, skb); 2062 } 2063 2064 rc = __udp_enqueue_schedule_skb(sk, skb); 2065 if (rc < 0) { 2066 int is_udplite = IS_UDPLITE(sk); 2067 int drop_reason; 2068 2069 /* Note that an ENOMEM error is charged twice */ 2070 if (rc == -ENOMEM) { 2071 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS, 2072 is_udplite); 2073 drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF; 2074 } else { 2075 UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS, 2076 is_udplite); 2077 drop_reason = SKB_DROP_REASON_PROTO_MEM; 2078 } 2079 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 2080 trace_udp_fail_queue_rcv_skb(rc, sk, skb); 2081 sk_skb_reason_drop(sk, skb, drop_reason); 2082 return -1; 2083 } 2084 2085 return 0; 2086 } 2087 2088 /* returns: 2089 * -1: error 2090 * 0: success 2091 * >0: "udp encap" protocol resubmission 2092 * 2093 * Note that in the success and error cases, the skb is assumed to 2094 * have either been requeued or freed. 2095 */ 2096 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb) 2097 { 2098 int drop_reason = SKB_DROP_REASON_NOT_SPECIFIED; 2099 struct udp_sock *up = udp_sk(sk); 2100 int is_udplite = IS_UDPLITE(sk); 2101 2102 /* 2103 * Charge it to the socket, dropping if the queue is full. 2104 */ 2105 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) { 2106 drop_reason = SKB_DROP_REASON_XFRM_POLICY; 2107 goto drop; 2108 } 2109 nf_reset_ct(skb); 2110 2111 if (static_branch_unlikely(&udp_encap_needed_key) && 2112 READ_ONCE(up->encap_type)) { 2113 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb); 2114 2115 /* 2116 * This is an encapsulation socket so pass the skb to 2117 * the socket's udp_encap_rcv() hook. Otherwise, just 2118 * fall through and pass this up the UDP socket. 2119 * up->encap_rcv() returns the following value: 2120 * =0 if skb was successfully passed to the encap 2121 * handler or was discarded by it. 2122 * >0 if skb should be passed on to UDP. 2123 * <0 if skb should be resubmitted as proto -N 2124 */ 2125 2126 /* if we're overly short, let UDP handle it */ 2127 encap_rcv = READ_ONCE(up->encap_rcv); 2128 if (encap_rcv) { 2129 int ret; 2130 2131 /* Verify checksum before giving to encap */ 2132 if (udp_lib_checksum_complete(skb)) 2133 goto csum_error; 2134 2135 ret = encap_rcv(sk, skb); 2136 if (ret <= 0) { 2137 __UDP_INC_STATS(sock_net(sk), 2138 UDP_MIB_INDATAGRAMS, 2139 is_udplite); 2140 return -ret; 2141 } 2142 } 2143 2144 /* FALLTHROUGH -- it's a UDP Packet */ 2145 } 2146 2147 /* 2148 * UDP-Lite specific tests, ignored on UDP sockets 2149 */ 2150 if (udp_test_bit(UDPLITE_RECV_CC, sk) && UDP_SKB_CB(skb)->partial_cov) { 2151 u16 pcrlen = READ_ONCE(up->pcrlen); 2152 2153 /* 2154 * MIB statistics other than incrementing the error count are 2155 * disabled for the following two types of errors: these depend 2156 * on the application settings, not on the functioning of the 2157 * protocol stack as such. 2158 * 2159 * RFC 3828 here recommends (sec 3.3): "There should also be a 2160 * way ... to ... at least let the receiving application block 2161 * delivery of packets with coverage values less than a value 2162 * provided by the application." 2163 */ 2164 if (pcrlen == 0) { /* full coverage was set */ 2165 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n", 2166 UDP_SKB_CB(skb)->cscov, skb->len); 2167 goto drop; 2168 } 2169 /* The next case involves violating the min. coverage requested 2170 * by the receiver. This is subtle: if receiver wants x and x is 2171 * greater than the buffersize/MTU then receiver will complain 2172 * that it wants x while sender emits packets of smaller size y. 2173 * Therefore the above ...()->partial_cov statement is essential. 2174 */ 2175 if (UDP_SKB_CB(skb)->cscov < pcrlen) { 2176 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n", 2177 UDP_SKB_CB(skb)->cscov, pcrlen); 2178 goto drop; 2179 } 2180 } 2181 2182 prefetch(&sk->sk_rmem_alloc); 2183 if (rcu_access_pointer(sk->sk_filter) && 2184 udp_lib_checksum_complete(skb)) 2185 goto csum_error; 2186 2187 if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) { 2188 drop_reason = SKB_DROP_REASON_SOCKET_FILTER; 2189 goto drop; 2190 } 2191 2192 udp_csum_pull_header(skb); 2193 2194 ipv4_pktinfo_prepare(sk, skb, true); 2195 return __udp_queue_rcv_skb(sk, skb); 2196 2197 csum_error: 2198 drop_reason = SKB_DROP_REASON_UDP_CSUM; 2199 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 2200 drop: 2201 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 2202 atomic_inc(&sk->sk_drops); 2203 sk_skb_reason_drop(sk, skb, drop_reason); 2204 return -1; 2205 } 2206 2207 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 2208 { 2209 struct sk_buff *next, *segs; 2210 int ret; 2211 2212 if (likely(!udp_unexpected_gso(sk, skb))) 2213 return udp_queue_rcv_one_skb(sk, skb); 2214 2215 BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET); 2216 __skb_push(skb, -skb_mac_offset(skb)); 2217 segs = udp_rcv_segment(sk, skb, true); 2218 skb_list_walk_safe(segs, skb, next) { 2219 __skb_pull(skb, skb_transport_offset(skb)); 2220 2221 udp_post_segment_fix_csum(skb); 2222 ret = udp_queue_rcv_one_skb(sk, skb); 2223 if (ret > 0) 2224 ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret); 2225 } 2226 return 0; 2227 } 2228 2229 /* For TCP sockets, sk_rx_dst is protected by socket lock 2230 * For UDP, we use xchg() to guard against concurrent changes. 2231 */ 2232 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst) 2233 { 2234 struct dst_entry *old; 2235 2236 if (dst_hold_safe(dst)) { 2237 old = unrcu_pointer(xchg(&sk->sk_rx_dst, RCU_INITIALIZER(dst))); 2238 dst_release(old); 2239 return old != dst; 2240 } 2241 return false; 2242 } 2243 EXPORT_SYMBOL(udp_sk_rx_dst_set); 2244 2245 /* 2246 * Multicasts and broadcasts go to each listener. 2247 * 2248 * Note: called only from the BH handler context. 2249 */ 2250 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb, 2251 struct udphdr *uh, 2252 __be32 saddr, __be32 daddr, 2253 struct udp_table *udptable, 2254 int proto) 2255 { 2256 struct sock *sk, *first = NULL; 2257 unsigned short hnum = ntohs(uh->dest); 2258 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum); 2259 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10); 2260 unsigned int offset = offsetof(typeof(*sk), sk_node); 2261 int dif = skb->dev->ifindex; 2262 int sdif = inet_sdif(skb); 2263 struct hlist_node *node; 2264 struct sk_buff *nskb; 2265 2266 if (use_hash2) { 2267 hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) & 2268 udptable->mask; 2269 hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask; 2270 start_lookup: 2271 hslot = &udptable->hash2[hash2]; 2272 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node); 2273 } 2274 2275 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) { 2276 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr, 2277 uh->source, saddr, dif, sdif, hnum)) 2278 continue; 2279 2280 if (!first) { 2281 first = sk; 2282 continue; 2283 } 2284 nskb = skb_clone(skb, GFP_ATOMIC); 2285 2286 if (unlikely(!nskb)) { 2287 atomic_inc(&sk->sk_drops); 2288 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS, 2289 IS_UDPLITE(sk)); 2290 __UDP_INC_STATS(net, UDP_MIB_INERRORS, 2291 IS_UDPLITE(sk)); 2292 continue; 2293 } 2294 if (udp_queue_rcv_skb(sk, nskb) > 0) 2295 consume_skb(nskb); 2296 } 2297 2298 /* Also lookup *:port if we are using hash2 and haven't done so yet. */ 2299 if (use_hash2 && hash2 != hash2_any) { 2300 hash2 = hash2_any; 2301 goto start_lookup; 2302 } 2303 2304 if (first) { 2305 if (udp_queue_rcv_skb(first, skb) > 0) 2306 consume_skb(skb); 2307 } else { 2308 kfree_skb(skb); 2309 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI, 2310 proto == IPPROTO_UDPLITE); 2311 } 2312 return 0; 2313 } 2314 2315 /* Initialize UDP checksum. If exited with zero value (success), 2316 * CHECKSUM_UNNECESSARY means, that no more checks are required. 2317 * Otherwise, csum completion requires checksumming packet body, 2318 * including udp header and folding it to skb->csum. 2319 */ 2320 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh, 2321 int proto) 2322 { 2323 int err; 2324 2325 UDP_SKB_CB(skb)->partial_cov = 0; 2326 UDP_SKB_CB(skb)->cscov = skb->len; 2327 2328 if (proto == IPPROTO_UDPLITE) { 2329 err = udplite_checksum_init(skb, uh); 2330 if (err) 2331 return err; 2332 2333 if (UDP_SKB_CB(skb)->partial_cov) { 2334 skb->csum = inet_compute_pseudo(skb, proto); 2335 return 0; 2336 } 2337 } 2338 2339 /* Note, we are only interested in != 0 or == 0, thus the 2340 * force to int. 2341 */ 2342 err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check, 2343 inet_compute_pseudo); 2344 if (err) 2345 return err; 2346 2347 if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) { 2348 /* If SW calculated the value, we know it's bad */ 2349 if (skb->csum_complete_sw) 2350 return 1; 2351 2352 /* HW says the value is bad. Let's validate that. 2353 * skb->csum is no longer the full packet checksum, 2354 * so don't treat it as such. 2355 */ 2356 skb_checksum_complete_unset(skb); 2357 } 2358 2359 return 0; 2360 } 2361 2362 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and 2363 * return code conversion for ip layer consumption 2364 */ 2365 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb, 2366 struct udphdr *uh) 2367 { 2368 int ret; 2369 2370 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk)) 2371 skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo); 2372 2373 ret = udp_queue_rcv_skb(sk, skb); 2374 2375 /* a return value > 0 means to resubmit the input, but 2376 * it wants the return to be -protocol, or 0 2377 */ 2378 if (ret > 0) 2379 return -ret; 2380 return 0; 2381 } 2382 2383 /* 2384 * All we need to do is get the socket, and then do a checksum. 2385 */ 2386 2387 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable, 2388 int proto) 2389 { 2390 struct sock *sk = NULL; 2391 struct udphdr *uh; 2392 unsigned short ulen; 2393 struct rtable *rt = skb_rtable(skb); 2394 __be32 saddr, daddr; 2395 struct net *net = dev_net(skb->dev); 2396 bool refcounted; 2397 int drop_reason; 2398 2399 drop_reason = SKB_DROP_REASON_NOT_SPECIFIED; 2400 2401 /* 2402 * Validate the packet. 2403 */ 2404 if (!pskb_may_pull(skb, sizeof(struct udphdr))) 2405 goto drop; /* No space for header. */ 2406 2407 uh = udp_hdr(skb); 2408 ulen = ntohs(uh->len); 2409 saddr = ip_hdr(skb)->saddr; 2410 daddr = ip_hdr(skb)->daddr; 2411 2412 if (ulen > skb->len) 2413 goto short_packet; 2414 2415 if (proto == IPPROTO_UDP) { 2416 /* UDP validates ulen. */ 2417 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen)) 2418 goto short_packet; 2419 uh = udp_hdr(skb); 2420 } 2421 2422 if (udp4_csum_init(skb, uh, proto)) 2423 goto csum_error; 2424 2425 sk = inet_steal_sock(net, skb, sizeof(struct udphdr), saddr, uh->source, daddr, uh->dest, 2426 &refcounted, udp_ehashfn); 2427 if (IS_ERR(sk)) 2428 goto no_sk; 2429 2430 if (sk) { 2431 struct dst_entry *dst = skb_dst(skb); 2432 int ret; 2433 2434 if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst)) 2435 udp_sk_rx_dst_set(sk, dst); 2436 2437 ret = udp_unicast_rcv_skb(sk, skb, uh); 2438 if (refcounted) 2439 sock_put(sk); 2440 return ret; 2441 } 2442 2443 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST)) 2444 return __udp4_lib_mcast_deliver(net, skb, uh, 2445 saddr, daddr, udptable, proto); 2446 2447 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable); 2448 if (sk) 2449 return udp_unicast_rcv_skb(sk, skb, uh); 2450 no_sk: 2451 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 2452 goto drop; 2453 nf_reset_ct(skb); 2454 2455 /* No socket. Drop packet silently, if checksum is wrong */ 2456 if (udp_lib_checksum_complete(skb)) 2457 goto csum_error; 2458 2459 drop_reason = SKB_DROP_REASON_NO_SOCKET; 2460 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE); 2461 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0); 2462 2463 /* 2464 * Hmm. We got an UDP packet to a port to which we 2465 * don't wanna listen. Ignore it. 2466 */ 2467 sk_skb_reason_drop(sk, skb, drop_reason); 2468 return 0; 2469 2470 short_packet: 2471 drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL; 2472 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n", 2473 proto == IPPROTO_UDPLITE ? "Lite" : "", 2474 &saddr, ntohs(uh->source), 2475 ulen, skb->len, 2476 &daddr, ntohs(uh->dest)); 2477 goto drop; 2478 2479 csum_error: 2480 /* 2481 * RFC1122: OK. Discards the bad packet silently (as far as 2482 * the network is concerned, anyway) as per 4.1.3.4 (MUST). 2483 */ 2484 drop_reason = SKB_DROP_REASON_UDP_CSUM; 2485 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n", 2486 proto == IPPROTO_UDPLITE ? "Lite" : "", 2487 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest), 2488 ulen); 2489 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE); 2490 drop: 2491 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE); 2492 sk_skb_reason_drop(sk, skb, drop_reason); 2493 return 0; 2494 } 2495 2496 /* We can only early demux multicast if there is a single matching socket. 2497 * If more than one socket found returns NULL 2498 */ 2499 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net, 2500 __be16 loc_port, __be32 loc_addr, 2501 __be16 rmt_port, __be32 rmt_addr, 2502 int dif, int sdif) 2503 { 2504 struct udp_table *udptable = net->ipv4.udp_table; 2505 unsigned short hnum = ntohs(loc_port); 2506 struct sock *sk, *result; 2507 struct udp_hslot *hslot; 2508 unsigned int slot; 2509 2510 slot = udp_hashfn(net, hnum, udptable->mask); 2511 hslot = &udptable->hash[slot]; 2512 2513 /* Do not bother scanning a too big list */ 2514 if (hslot->count > 10) 2515 return NULL; 2516 2517 result = NULL; 2518 sk_for_each_rcu(sk, &hslot->head) { 2519 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr, 2520 rmt_port, rmt_addr, dif, sdif, hnum)) { 2521 if (result) 2522 return NULL; 2523 result = sk; 2524 } 2525 } 2526 2527 return result; 2528 } 2529 2530 /* For unicast we should only early demux connected sockets or we can 2531 * break forwarding setups. The chains here can be long so only check 2532 * if the first socket is an exact match and if not move on. 2533 */ 2534 static struct sock *__udp4_lib_demux_lookup(struct net *net, 2535 __be16 loc_port, __be32 loc_addr, 2536 __be16 rmt_port, __be32 rmt_addr, 2537 int dif, int sdif) 2538 { 2539 struct udp_table *udptable = net->ipv4.udp_table; 2540 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr); 2541 unsigned short hnum = ntohs(loc_port); 2542 unsigned int hash2, slot2; 2543 struct udp_hslot *hslot2; 2544 __portpair ports; 2545 struct sock *sk; 2546 2547 hash2 = ipv4_portaddr_hash(net, loc_addr, hnum); 2548 slot2 = hash2 & udptable->mask; 2549 hslot2 = &udptable->hash2[slot2]; 2550 ports = INET_COMBINED_PORTS(rmt_port, hnum); 2551 2552 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 2553 if (inet_match(net, sk, acookie, ports, dif, sdif)) 2554 return sk; 2555 /* Only check first socket in chain */ 2556 break; 2557 } 2558 return NULL; 2559 } 2560 2561 int udp_v4_early_demux(struct sk_buff *skb) 2562 { 2563 struct net *net = dev_net(skb->dev); 2564 struct in_device *in_dev = NULL; 2565 const struct iphdr *iph; 2566 const struct udphdr *uh; 2567 struct sock *sk = NULL; 2568 struct dst_entry *dst; 2569 int dif = skb->dev->ifindex; 2570 int sdif = inet_sdif(skb); 2571 int ours; 2572 2573 /* validate the packet */ 2574 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr))) 2575 return 0; 2576 2577 iph = ip_hdr(skb); 2578 uh = udp_hdr(skb); 2579 2580 if (skb->pkt_type == PACKET_MULTICAST) { 2581 in_dev = __in_dev_get_rcu(skb->dev); 2582 2583 if (!in_dev) 2584 return 0; 2585 2586 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr, 2587 iph->protocol); 2588 if (!ours) 2589 return 0; 2590 2591 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr, 2592 uh->source, iph->saddr, 2593 dif, sdif); 2594 } else if (skb->pkt_type == PACKET_HOST) { 2595 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr, 2596 uh->source, iph->saddr, dif, sdif); 2597 } 2598 2599 if (!sk) 2600 return 0; 2601 2602 skb->sk = sk; 2603 DEBUG_NET_WARN_ON_ONCE(sk_is_refcounted(sk)); 2604 skb->destructor = sock_pfree; 2605 dst = rcu_dereference(sk->sk_rx_dst); 2606 2607 if (dst) 2608 dst = dst_check(dst, 0); 2609 if (dst) { 2610 u32 itag = 0; 2611 2612 /* set noref for now. 2613 * any place which wants to hold dst has to call 2614 * dst_hold_safe() 2615 */ 2616 skb_dst_set_noref(skb, dst); 2617 2618 /* for unconnected multicast sockets we need to validate 2619 * the source on each packet 2620 */ 2621 if (!inet_sk(sk)->inet_daddr && in_dev) 2622 return ip_mc_validate_source(skb, iph->daddr, 2623 iph->saddr, 2624 iph->tos & INET_DSCP_MASK, 2625 skb->dev, in_dev, &itag); 2626 } 2627 return 0; 2628 } 2629 2630 int udp_rcv(struct sk_buff *skb) 2631 { 2632 return __udp4_lib_rcv(skb, dev_net(skb->dev)->ipv4.udp_table, IPPROTO_UDP); 2633 } 2634 2635 void udp_destroy_sock(struct sock *sk) 2636 { 2637 struct udp_sock *up = udp_sk(sk); 2638 bool slow = lock_sock_fast(sk); 2639 2640 /* protects from races with udp_abort() */ 2641 sock_set_flag(sk, SOCK_DEAD); 2642 udp_flush_pending_frames(sk); 2643 unlock_sock_fast(sk, slow); 2644 if (static_branch_unlikely(&udp_encap_needed_key)) { 2645 if (up->encap_type) { 2646 void (*encap_destroy)(struct sock *sk); 2647 encap_destroy = READ_ONCE(up->encap_destroy); 2648 if (encap_destroy) 2649 encap_destroy(sk); 2650 } 2651 if (udp_test_bit(ENCAP_ENABLED, sk)) 2652 static_branch_dec(&udp_encap_needed_key); 2653 } 2654 } 2655 2656 static void set_xfrm_gro_udp_encap_rcv(__u16 encap_type, unsigned short family, 2657 struct sock *sk) 2658 { 2659 #ifdef CONFIG_XFRM 2660 if (udp_test_bit(GRO_ENABLED, sk) && encap_type == UDP_ENCAP_ESPINUDP) { 2661 if (family == AF_INET) 2662 WRITE_ONCE(udp_sk(sk)->gro_receive, xfrm4_gro_udp_encap_rcv); 2663 else if (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6) 2664 WRITE_ONCE(udp_sk(sk)->gro_receive, ipv6_stub->xfrm6_gro_udp_encap_rcv); 2665 } 2666 #endif 2667 } 2668 2669 /* 2670 * Socket option code for UDP 2671 */ 2672 int udp_lib_setsockopt(struct sock *sk, int level, int optname, 2673 sockptr_t optval, unsigned int optlen, 2674 int (*push_pending_frames)(struct sock *)) 2675 { 2676 struct udp_sock *up = udp_sk(sk); 2677 int val, valbool; 2678 int err = 0; 2679 int is_udplite = IS_UDPLITE(sk); 2680 2681 if (level == SOL_SOCKET) { 2682 err = sk_setsockopt(sk, level, optname, optval, optlen); 2683 2684 if (optname == SO_RCVBUF || optname == SO_RCVBUFFORCE) { 2685 sockopt_lock_sock(sk); 2686 /* paired with READ_ONCE in udp_rmem_release() */ 2687 WRITE_ONCE(up->forward_threshold, sk->sk_rcvbuf >> 2); 2688 sockopt_release_sock(sk); 2689 } 2690 return err; 2691 } 2692 2693 if (optlen < sizeof(int)) 2694 return -EINVAL; 2695 2696 if (copy_from_sockptr(&val, optval, sizeof(val))) 2697 return -EFAULT; 2698 2699 valbool = val ? 1 : 0; 2700 2701 switch (optname) { 2702 case UDP_CORK: 2703 if (val != 0) { 2704 udp_set_bit(CORK, sk); 2705 } else { 2706 udp_clear_bit(CORK, sk); 2707 lock_sock(sk); 2708 push_pending_frames(sk); 2709 release_sock(sk); 2710 } 2711 break; 2712 2713 case UDP_ENCAP: 2714 switch (val) { 2715 case 0: 2716 #ifdef CONFIG_XFRM 2717 case UDP_ENCAP_ESPINUDP: 2718 set_xfrm_gro_udp_encap_rcv(val, sk->sk_family, sk); 2719 #if IS_ENABLED(CONFIG_IPV6) 2720 if (sk->sk_family == AF_INET6) 2721 WRITE_ONCE(up->encap_rcv, 2722 ipv6_stub->xfrm6_udp_encap_rcv); 2723 else 2724 #endif 2725 WRITE_ONCE(up->encap_rcv, 2726 xfrm4_udp_encap_rcv); 2727 #endif 2728 fallthrough; 2729 case UDP_ENCAP_L2TPINUDP: 2730 WRITE_ONCE(up->encap_type, val); 2731 udp_tunnel_encap_enable(sk); 2732 break; 2733 default: 2734 err = -ENOPROTOOPT; 2735 break; 2736 } 2737 break; 2738 2739 case UDP_NO_CHECK6_TX: 2740 udp_set_no_check6_tx(sk, valbool); 2741 break; 2742 2743 case UDP_NO_CHECK6_RX: 2744 udp_set_no_check6_rx(sk, valbool); 2745 break; 2746 2747 case UDP_SEGMENT: 2748 if (val < 0 || val > USHRT_MAX) 2749 return -EINVAL; 2750 WRITE_ONCE(up->gso_size, val); 2751 break; 2752 2753 case UDP_GRO: 2754 2755 /* when enabling GRO, accept the related GSO packet type */ 2756 if (valbool) 2757 udp_tunnel_encap_enable(sk); 2758 udp_assign_bit(GRO_ENABLED, sk, valbool); 2759 udp_assign_bit(ACCEPT_L4, sk, valbool); 2760 set_xfrm_gro_udp_encap_rcv(up->encap_type, sk->sk_family, sk); 2761 break; 2762 2763 /* 2764 * UDP-Lite's partial checksum coverage (RFC 3828). 2765 */ 2766 /* The sender sets actual checksum coverage length via this option. 2767 * The case coverage > packet length is handled by send module. */ 2768 case UDPLITE_SEND_CSCOV: 2769 if (!is_udplite) /* Disable the option on UDP sockets */ 2770 return -ENOPROTOOPT; 2771 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */ 2772 val = 8; 2773 else if (val > USHRT_MAX) 2774 val = USHRT_MAX; 2775 WRITE_ONCE(up->pcslen, val); 2776 udp_set_bit(UDPLITE_SEND_CC, sk); 2777 break; 2778 2779 /* The receiver specifies a minimum checksum coverage value. To make 2780 * sense, this should be set to at least 8 (as done below). If zero is 2781 * used, this again means full checksum coverage. */ 2782 case UDPLITE_RECV_CSCOV: 2783 if (!is_udplite) /* Disable the option on UDP sockets */ 2784 return -ENOPROTOOPT; 2785 if (val != 0 && val < 8) /* Avoid silly minimal values. */ 2786 val = 8; 2787 else if (val > USHRT_MAX) 2788 val = USHRT_MAX; 2789 WRITE_ONCE(up->pcrlen, val); 2790 udp_set_bit(UDPLITE_RECV_CC, sk); 2791 break; 2792 2793 default: 2794 err = -ENOPROTOOPT; 2795 break; 2796 } 2797 2798 return err; 2799 } 2800 EXPORT_SYMBOL(udp_lib_setsockopt); 2801 2802 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 2803 unsigned int optlen) 2804 { 2805 if (level == SOL_UDP || level == SOL_UDPLITE || level == SOL_SOCKET) 2806 return udp_lib_setsockopt(sk, level, optname, 2807 optval, optlen, 2808 udp_push_pending_frames); 2809 return ip_setsockopt(sk, level, optname, optval, optlen); 2810 } 2811 2812 int udp_lib_getsockopt(struct sock *sk, int level, int optname, 2813 char __user *optval, int __user *optlen) 2814 { 2815 struct udp_sock *up = udp_sk(sk); 2816 int val, len; 2817 2818 if (get_user(len, optlen)) 2819 return -EFAULT; 2820 2821 if (len < 0) 2822 return -EINVAL; 2823 2824 len = min_t(unsigned int, len, sizeof(int)); 2825 2826 switch (optname) { 2827 case UDP_CORK: 2828 val = udp_test_bit(CORK, sk); 2829 break; 2830 2831 case UDP_ENCAP: 2832 val = READ_ONCE(up->encap_type); 2833 break; 2834 2835 case UDP_NO_CHECK6_TX: 2836 val = udp_get_no_check6_tx(sk); 2837 break; 2838 2839 case UDP_NO_CHECK6_RX: 2840 val = udp_get_no_check6_rx(sk); 2841 break; 2842 2843 case UDP_SEGMENT: 2844 val = READ_ONCE(up->gso_size); 2845 break; 2846 2847 case UDP_GRO: 2848 val = udp_test_bit(GRO_ENABLED, sk); 2849 break; 2850 2851 /* The following two cannot be changed on UDP sockets, the return is 2852 * always 0 (which corresponds to the full checksum coverage of UDP). */ 2853 case UDPLITE_SEND_CSCOV: 2854 val = READ_ONCE(up->pcslen); 2855 break; 2856 2857 case UDPLITE_RECV_CSCOV: 2858 val = READ_ONCE(up->pcrlen); 2859 break; 2860 2861 default: 2862 return -ENOPROTOOPT; 2863 } 2864 2865 if (put_user(len, optlen)) 2866 return -EFAULT; 2867 if (copy_to_user(optval, &val, len)) 2868 return -EFAULT; 2869 return 0; 2870 } 2871 EXPORT_SYMBOL(udp_lib_getsockopt); 2872 2873 int udp_getsockopt(struct sock *sk, int level, int optname, 2874 char __user *optval, int __user *optlen) 2875 { 2876 if (level == SOL_UDP || level == SOL_UDPLITE) 2877 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 2878 return ip_getsockopt(sk, level, optname, optval, optlen); 2879 } 2880 2881 /** 2882 * udp_poll - wait for a UDP event. 2883 * @file: - file struct 2884 * @sock: - socket 2885 * @wait: - poll table 2886 * 2887 * This is same as datagram poll, except for the special case of 2888 * blocking sockets. If application is using a blocking fd 2889 * and a packet with checksum error is in the queue; 2890 * then it could get return from select indicating data available 2891 * but then block when reading it. Add special case code 2892 * to work around these arguably broken applications. 2893 */ 2894 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait) 2895 { 2896 __poll_t mask = datagram_poll(file, sock, wait); 2897 struct sock *sk = sock->sk; 2898 2899 if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue)) 2900 mask |= EPOLLIN | EPOLLRDNORM; 2901 2902 /* Check for false positives due to checksum errors */ 2903 if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) && 2904 !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1) 2905 mask &= ~(EPOLLIN | EPOLLRDNORM); 2906 2907 /* psock ingress_msg queue should not contain any bad checksum frames */ 2908 if (sk_is_readable(sk)) 2909 mask |= EPOLLIN | EPOLLRDNORM; 2910 return mask; 2911 2912 } 2913 EXPORT_SYMBOL(udp_poll); 2914 2915 int udp_abort(struct sock *sk, int err) 2916 { 2917 if (!has_current_bpf_ctx()) 2918 lock_sock(sk); 2919 2920 /* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing 2921 * with close() 2922 */ 2923 if (sock_flag(sk, SOCK_DEAD)) 2924 goto out; 2925 2926 sk->sk_err = err; 2927 sk_error_report(sk); 2928 __udp_disconnect(sk, 0); 2929 2930 out: 2931 if (!has_current_bpf_ctx()) 2932 release_sock(sk); 2933 2934 return 0; 2935 } 2936 EXPORT_SYMBOL_GPL(udp_abort); 2937 2938 struct proto udp_prot = { 2939 .name = "UDP", 2940 .owner = THIS_MODULE, 2941 .close = udp_lib_close, 2942 .pre_connect = udp_pre_connect, 2943 .connect = ip4_datagram_connect, 2944 .disconnect = udp_disconnect, 2945 .ioctl = udp_ioctl, 2946 .init = udp_init_sock, 2947 .destroy = udp_destroy_sock, 2948 .setsockopt = udp_setsockopt, 2949 .getsockopt = udp_getsockopt, 2950 .sendmsg = udp_sendmsg, 2951 .recvmsg = udp_recvmsg, 2952 .splice_eof = udp_splice_eof, 2953 .release_cb = ip4_datagram_release_cb, 2954 .hash = udp_lib_hash, 2955 .unhash = udp_lib_unhash, 2956 .rehash = udp_v4_rehash, 2957 .get_port = udp_v4_get_port, 2958 .put_port = udp_lib_unhash, 2959 #ifdef CONFIG_BPF_SYSCALL 2960 .psock_update_sk_prot = udp_bpf_update_proto, 2961 #endif 2962 .memory_allocated = &udp_memory_allocated, 2963 .per_cpu_fw_alloc = &udp_memory_per_cpu_fw_alloc, 2964 2965 .sysctl_mem = sysctl_udp_mem, 2966 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_udp_wmem_min), 2967 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_udp_rmem_min), 2968 .obj_size = sizeof(struct udp_sock), 2969 .h.udp_table = NULL, 2970 .diag_destroy = udp_abort, 2971 }; 2972 EXPORT_SYMBOL(udp_prot); 2973 2974 /* ------------------------------------------------------------------------ */ 2975 #ifdef CONFIG_PROC_FS 2976 2977 static unsigned short seq_file_family(const struct seq_file *seq); 2978 static bool seq_sk_match(struct seq_file *seq, const struct sock *sk) 2979 { 2980 unsigned short family = seq_file_family(seq); 2981 2982 /* AF_UNSPEC is used as a match all */ 2983 return ((family == AF_UNSPEC || family == sk->sk_family) && 2984 net_eq(sock_net(sk), seq_file_net(seq))); 2985 } 2986 2987 #ifdef CONFIG_BPF_SYSCALL 2988 static const struct seq_operations bpf_iter_udp_seq_ops; 2989 #endif 2990 static struct udp_table *udp_get_table_seq(struct seq_file *seq, 2991 struct net *net) 2992 { 2993 const struct udp_seq_afinfo *afinfo; 2994 2995 #ifdef CONFIG_BPF_SYSCALL 2996 if (seq->op == &bpf_iter_udp_seq_ops) 2997 return net->ipv4.udp_table; 2998 #endif 2999 3000 afinfo = pde_data(file_inode(seq->file)); 3001 return afinfo->udp_table ? : net->ipv4.udp_table; 3002 } 3003 3004 static struct sock *udp_get_first(struct seq_file *seq, int start) 3005 { 3006 struct udp_iter_state *state = seq->private; 3007 struct net *net = seq_file_net(seq); 3008 struct udp_table *udptable; 3009 struct sock *sk; 3010 3011 udptable = udp_get_table_seq(seq, net); 3012 3013 for (state->bucket = start; state->bucket <= udptable->mask; 3014 ++state->bucket) { 3015 struct udp_hslot *hslot = &udptable->hash[state->bucket]; 3016 3017 if (hlist_empty(&hslot->head)) 3018 continue; 3019 3020 spin_lock_bh(&hslot->lock); 3021 sk_for_each(sk, &hslot->head) { 3022 if (seq_sk_match(seq, sk)) 3023 goto found; 3024 } 3025 spin_unlock_bh(&hslot->lock); 3026 } 3027 sk = NULL; 3028 found: 3029 return sk; 3030 } 3031 3032 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk) 3033 { 3034 struct udp_iter_state *state = seq->private; 3035 struct net *net = seq_file_net(seq); 3036 struct udp_table *udptable; 3037 3038 do { 3039 sk = sk_next(sk); 3040 } while (sk && !seq_sk_match(seq, sk)); 3041 3042 if (!sk) { 3043 udptable = udp_get_table_seq(seq, net); 3044 3045 if (state->bucket <= udptable->mask) 3046 spin_unlock_bh(&udptable->hash[state->bucket].lock); 3047 3048 return udp_get_first(seq, state->bucket + 1); 3049 } 3050 return sk; 3051 } 3052 3053 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos) 3054 { 3055 struct sock *sk = udp_get_first(seq, 0); 3056 3057 if (sk) 3058 while (pos && (sk = udp_get_next(seq, sk)) != NULL) 3059 --pos; 3060 return pos ? NULL : sk; 3061 } 3062 3063 void *udp_seq_start(struct seq_file *seq, loff_t *pos) 3064 { 3065 struct udp_iter_state *state = seq->private; 3066 state->bucket = MAX_UDP_PORTS; 3067 3068 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN; 3069 } 3070 EXPORT_SYMBOL(udp_seq_start); 3071 3072 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3073 { 3074 struct sock *sk; 3075 3076 if (v == SEQ_START_TOKEN) 3077 sk = udp_get_idx(seq, 0); 3078 else 3079 sk = udp_get_next(seq, v); 3080 3081 ++*pos; 3082 return sk; 3083 } 3084 EXPORT_SYMBOL(udp_seq_next); 3085 3086 void udp_seq_stop(struct seq_file *seq, void *v) 3087 { 3088 struct udp_iter_state *state = seq->private; 3089 struct udp_table *udptable; 3090 3091 udptable = udp_get_table_seq(seq, seq_file_net(seq)); 3092 3093 if (state->bucket <= udptable->mask) 3094 spin_unlock_bh(&udptable->hash[state->bucket].lock); 3095 } 3096 EXPORT_SYMBOL(udp_seq_stop); 3097 3098 /* ------------------------------------------------------------------------ */ 3099 static void udp4_format_sock(struct sock *sp, struct seq_file *f, 3100 int bucket) 3101 { 3102 struct inet_sock *inet = inet_sk(sp); 3103 __be32 dest = inet->inet_daddr; 3104 __be32 src = inet->inet_rcv_saddr; 3105 __u16 destp = ntohs(inet->inet_dport); 3106 __u16 srcp = ntohs(inet->inet_sport); 3107 3108 seq_printf(f, "%5d: %08X:%04X %08X:%04X" 3109 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u", 3110 bucket, src, srcp, dest, destp, sp->sk_state, 3111 sk_wmem_alloc_get(sp), 3112 udp_rqueue_get(sp), 3113 0, 0L, 0, 3114 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)), 3115 0, sock_i_ino(sp), 3116 refcount_read(&sp->sk_refcnt), sp, 3117 atomic_read(&sp->sk_drops)); 3118 } 3119 3120 int udp4_seq_show(struct seq_file *seq, void *v) 3121 { 3122 seq_setwidth(seq, 127); 3123 if (v == SEQ_START_TOKEN) 3124 seq_puts(seq, " sl local_address rem_address st tx_queue " 3125 "rx_queue tr tm->when retrnsmt uid timeout " 3126 "inode ref pointer drops"); 3127 else { 3128 struct udp_iter_state *state = seq->private; 3129 3130 udp4_format_sock(v, seq, state->bucket); 3131 } 3132 seq_pad(seq, '\n'); 3133 return 0; 3134 } 3135 3136 #ifdef CONFIG_BPF_SYSCALL 3137 struct bpf_iter__udp { 3138 __bpf_md_ptr(struct bpf_iter_meta *, meta); 3139 __bpf_md_ptr(struct udp_sock *, udp_sk); 3140 uid_t uid __aligned(8); 3141 int bucket __aligned(8); 3142 }; 3143 3144 struct bpf_udp_iter_state { 3145 struct udp_iter_state state; 3146 unsigned int cur_sk; 3147 unsigned int end_sk; 3148 unsigned int max_sk; 3149 int offset; 3150 struct sock **batch; 3151 bool st_bucket_done; 3152 }; 3153 3154 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter, 3155 unsigned int new_batch_sz); 3156 static struct sock *bpf_iter_udp_batch(struct seq_file *seq) 3157 { 3158 struct bpf_udp_iter_state *iter = seq->private; 3159 struct udp_iter_state *state = &iter->state; 3160 struct net *net = seq_file_net(seq); 3161 int resume_bucket, resume_offset; 3162 struct udp_table *udptable; 3163 unsigned int batch_sks = 0; 3164 bool resized = false; 3165 struct sock *sk; 3166 3167 resume_bucket = state->bucket; 3168 resume_offset = iter->offset; 3169 3170 /* The current batch is done, so advance the bucket. */ 3171 if (iter->st_bucket_done) 3172 state->bucket++; 3173 3174 udptable = udp_get_table_seq(seq, net); 3175 3176 again: 3177 /* New batch for the next bucket. 3178 * Iterate over the hash table to find a bucket with sockets matching 3179 * the iterator attributes, and return the first matching socket from 3180 * the bucket. The remaining matched sockets from the bucket are batched 3181 * before releasing the bucket lock. This allows BPF programs that are 3182 * called in seq_show to acquire the bucket lock if needed. 3183 */ 3184 iter->cur_sk = 0; 3185 iter->end_sk = 0; 3186 iter->st_bucket_done = false; 3187 batch_sks = 0; 3188 3189 for (; state->bucket <= udptable->mask; state->bucket++) { 3190 struct udp_hslot *hslot2 = &udptable->hash2[state->bucket]; 3191 3192 if (hlist_empty(&hslot2->head)) 3193 continue; 3194 3195 iter->offset = 0; 3196 spin_lock_bh(&hslot2->lock); 3197 udp_portaddr_for_each_entry(sk, &hslot2->head) { 3198 if (seq_sk_match(seq, sk)) { 3199 /* Resume from the last iterated socket at the 3200 * offset in the bucket before iterator was stopped. 3201 */ 3202 if (state->bucket == resume_bucket && 3203 iter->offset < resume_offset) { 3204 ++iter->offset; 3205 continue; 3206 } 3207 if (iter->end_sk < iter->max_sk) { 3208 sock_hold(sk); 3209 iter->batch[iter->end_sk++] = sk; 3210 } 3211 batch_sks++; 3212 } 3213 } 3214 spin_unlock_bh(&hslot2->lock); 3215 3216 if (iter->end_sk) 3217 break; 3218 } 3219 3220 /* All done: no batch made. */ 3221 if (!iter->end_sk) 3222 return NULL; 3223 3224 if (iter->end_sk == batch_sks) { 3225 /* Batching is done for the current bucket; return the first 3226 * socket to be iterated from the batch. 3227 */ 3228 iter->st_bucket_done = true; 3229 goto done; 3230 } 3231 if (!resized && !bpf_iter_udp_realloc_batch(iter, batch_sks * 3 / 2)) { 3232 resized = true; 3233 /* After allocating a larger batch, retry one more time to grab 3234 * the whole bucket. 3235 */ 3236 goto again; 3237 } 3238 done: 3239 return iter->batch[0]; 3240 } 3241 3242 static void *bpf_iter_udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3243 { 3244 struct bpf_udp_iter_state *iter = seq->private; 3245 struct sock *sk; 3246 3247 /* Whenever seq_next() is called, the iter->cur_sk is 3248 * done with seq_show(), so unref the iter->cur_sk. 3249 */ 3250 if (iter->cur_sk < iter->end_sk) { 3251 sock_put(iter->batch[iter->cur_sk++]); 3252 ++iter->offset; 3253 } 3254 3255 /* After updating iter->cur_sk, check if there are more sockets 3256 * available in the current bucket batch. 3257 */ 3258 if (iter->cur_sk < iter->end_sk) 3259 sk = iter->batch[iter->cur_sk]; 3260 else 3261 /* Prepare a new batch. */ 3262 sk = bpf_iter_udp_batch(seq); 3263 3264 ++*pos; 3265 return sk; 3266 } 3267 3268 static void *bpf_iter_udp_seq_start(struct seq_file *seq, loff_t *pos) 3269 { 3270 /* bpf iter does not support lseek, so it always 3271 * continue from where it was stop()-ped. 3272 */ 3273 if (*pos) 3274 return bpf_iter_udp_batch(seq); 3275 3276 return SEQ_START_TOKEN; 3277 } 3278 3279 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta, 3280 struct udp_sock *udp_sk, uid_t uid, int bucket) 3281 { 3282 struct bpf_iter__udp ctx; 3283 3284 meta->seq_num--; /* skip SEQ_START_TOKEN */ 3285 ctx.meta = meta; 3286 ctx.udp_sk = udp_sk; 3287 ctx.uid = uid; 3288 ctx.bucket = bucket; 3289 return bpf_iter_run_prog(prog, &ctx); 3290 } 3291 3292 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v) 3293 { 3294 struct udp_iter_state *state = seq->private; 3295 struct bpf_iter_meta meta; 3296 struct bpf_prog *prog; 3297 struct sock *sk = v; 3298 uid_t uid; 3299 int ret; 3300 3301 if (v == SEQ_START_TOKEN) 3302 return 0; 3303 3304 lock_sock(sk); 3305 3306 if (unlikely(sk_unhashed(sk))) { 3307 ret = SEQ_SKIP; 3308 goto unlock; 3309 } 3310 3311 uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk)); 3312 meta.seq = seq; 3313 prog = bpf_iter_get_info(&meta, false); 3314 ret = udp_prog_seq_show(prog, &meta, v, uid, state->bucket); 3315 3316 unlock: 3317 release_sock(sk); 3318 return ret; 3319 } 3320 3321 static void bpf_iter_udp_put_batch(struct bpf_udp_iter_state *iter) 3322 { 3323 while (iter->cur_sk < iter->end_sk) 3324 sock_put(iter->batch[iter->cur_sk++]); 3325 } 3326 3327 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v) 3328 { 3329 struct bpf_udp_iter_state *iter = seq->private; 3330 struct bpf_iter_meta meta; 3331 struct bpf_prog *prog; 3332 3333 if (!v) { 3334 meta.seq = seq; 3335 prog = bpf_iter_get_info(&meta, true); 3336 if (prog) 3337 (void)udp_prog_seq_show(prog, &meta, v, 0, 0); 3338 } 3339 3340 if (iter->cur_sk < iter->end_sk) { 3341 bpf_iter_udp_put_batch(iter); 3342 iter->st_bucket_done = false; 3343 } 3344 } 3345 3346 static const struct seq_operations bpf_iter_udp_seq_ops = { 3347 .start = bpf_iter_udp_seq_start, 3348 .next = bpf_iter_udp_seq_next, 3349 .stop = bpf_iter_udp_seq_stop, 3350 .show = bpf_iter_udp_seq_show, 3351 }; 3352 #endif 3353 3354 static unsigned short seq_file_family(const struct seq_file *seq) 3355 { 3356 const struct udp_seq_afinfo *afinfo; 3357 3358 #ifdef CONFIG_BPF_SYSCALL 3359 /* BPF iterator: bpf programs to filter sockets. */ 3360 if (seq->op == &bpf_iter_udp_seq_ops) 3361 return AF_UNSPEC; 3362 #endif 3363 3364 /* Proc fs iterator */ 3365 afinfo = pde_data(file_inode(seq->file)); 3366 return afinfo->family; 3367 } 3368 3369 const struct seq_operations udp_seq_ops = { 3370 .start = udp_seq_start, 3371 .next = udp_seq_next, 3372 .stop = udp_seq_stop, 3373 .show = udp4_seq_show, 3374 }; 3375 EXPORT_SYMBOL(udp_seq_ops); 3376 3377 static struct udp_seq_afinfo udp4_seq_afinfo = { 3378 .family = AF_INET, 3379 .udp_table = NULL, 3380 }; 3381 3382 static int __net_init udp4_proc_init_net(struct net *net) 3383 { 3384 if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops, 3385 sizeof(struct udp_iter_state), &udp4_seq_afinfo)) 3386 return -ENOMEM; 3387 return 0; 3388 } 3389 3390 static void __net_exit udp4_proc_exit_net(struct net *net) 3391 { 3392 remove_proc_entry("udp", net->proc_net); 3393 } 3394 3395 static struct pernet_operations udp4_net_ops = { 3396 .init = udp4_proc_init_net, 3397 .exit = udp4_proc_exit_net, 3398 }; 3399 3400 int __init udp4_proc_init(void) 3401 { 3402 return register_pernet_subsys(&udp4_net_ops); 3403 } 3404 3405 void udp4_proc_exit(void) 3406 { 3407 unregister_pernet_subsys(&udp4_net_ops); 3408 } 3409 #endif /* CONFIG_PROC_FS */ 3410 3411 static __initdata unsigned long uhash_entries; 3412 static int __init set_uhash_entries(char *str) 3413 { 3414 ssize_t ret; 3415 3416 if (!str) 3417 return 0; 3418 3419 ret = kstrtoul(str, 0, &uhash_entries); 3420 if (ret) 3421 return 0; 3422 3423 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN) 3424 uhash_entries = UDP_HTABLE_SIZE_MIN; 3425 return 1; 3426 } 3427 __setup("uhash_entries=", set_uhash_entries); 3428 3429 void __init udp_table_init(struct udp_table *table, const char *name) 3430 { 3431 unsigned int i; 3432 3433 table->hash = alloc_large_system_hash(name, 3434 2 * sizeof(struct udp_hslot), 3435 uhash_entries, 3436 21, /* one slot per 2 MB */ 3437 0, 3438 &table->log, 3439 &table->mask, 3440 UDP_HTABLE_SIZE_MIN, 3441 UDP_HTABLE_SIZE_MAX); 3442 3443 table->hash2 = table->hash + (table->mask + 1); 3444 for (i = 0; i <= table->mask; i++) { 3445 INIT_HLIST_HEAD(&table->hash[i].head); 3446 table->hash[i].count = 0; 3447 spin_lock_init(&table->hash[i].lock); 3448 } 3449 for (i = 0; i <= table->mask; i++) { 3450 INIT_HLIST_HEAD(&table->hash2[i].head); 3451 table->hash2[i].count = 0; 3452 spin_lock_init(&table->hash2[i].lock); 3453 } 3454 } 3455 3456 u32 udp_flow_hashrnd(void) 3457 { 3458 static u32 hashrnd __read_mostly; 3459 3460 net_get_random_once(&hashrnd, sizeof(hashrnd)); 3461 3462 return hashrnd; 3463 } 3464 EXPORT_SYMBOL(udp_flow_hashrnd); 3465 3466 static void __net_init udp_sysctl_init(struct net *net) 3467 { 3468 net->ipv4.sysctl_udp_rmem_min = PAGE_SIZE; 3469 net->ipv4.sysctl_udp_wmem_min = PAGE_SIZE; 3470 3471 #ifdef CONFIG_NET_L3_MASTER_DEV 3472 net->ipv4.sysctl_udp_l3mdev_accept = 0; 3473 #endif 3474 } 3475 3476 static struct udp_table __net_init *udp_pernet_table_alloc(unsigned int hash_entries) 3477 { 3478 struct udp_table *udptable; 3479 int i; 3480 3481 udptable = kmalloc(sizeof(*udptable), GFP_KERNEL); 3482 if (!udptable) 3483 goto out; 3484 3485 udptable->hash = vmalloc_huge(hash_entries * 2 * sizeof(struct udp_hslot), 3486 GFP_KERNEL_ACCOUNT); 3487 if (!udptable->hash) 3488 goto free_table; 3489 3490 udptable->hash2 = udptable->hash + hash_entries; 3491 udptable->mask = hash_entries - 1; 3492 udptable->log = ilog2(hash_entries); 3493 3494 for (i = 0; i < hash_entries; i++) { 3495 INIT_HLIST_HEAD(&udptable->hash[i].head); 3496 udptable->hash[i].count = 0; 3497 spin_lock_init(&udptable->hash[i].lock); 3498 3499 INIT_HLIST_HEAD(&udptable->hash2[i].head); 3500 udptable->hash2[i].count = 0; 3501 spin_lock_init(&udptable->hash2[i].lock); 3502 } 3503 3504 return udptable; 3505 3506 free_table: 3507 kfree(udptable); 3508 out: 3509 return NULL; 3510 } 3511 3512 static void __net_exit udp_pernet_table_free(struct net *net) 3513 { 3514 struct udp_table *udptable = net->ipv4.udp_table; 3515 3516 if (udptable == &udp_table) 3517 return; 3518 3519 kvfree(udptable->hash); 3520 kfree(udptable); 3521 } 3522 3523 static void __net_init udp_set_table(struct net *net) 3524 { 3525 struct udp_table *udptable; 3526 unsigned int hash_entries; 3527 struct net *old_net; 3528 3529 if (net_eq(net, &init_net)) 3530 goto fallback; 3531 3532 old_net = current->nsproxy->net_ns; 3533 hash_entries = READ_ONCE(old_net->ipv4.sysctl_udp_child_hash_entries); 3534 if (!hash_entries) 3535 goto fallback; 3536 3537 /* Set min to keep the bitmap on stack in udp_lib_get_port() */ 3538 if (hash_entries < UDP_HTABLE_SIZE_MIN_PERNET) 3539 hash_entries = UDP_HTABLE_SIZE_MIN_PERNET; 3540 else 3541 hash_entries = roundup_pow_of_two(hash_entries); 3542 3543 udptable = udp_pernet_table_alloc(hash_entries); 3544 if (udptable) { 3545 net->ipv4.udp_table = udptable; 3546 } else { 3547 pr_warn("Failed to allocate UDP hash table (entries: %u) " 3548 "for a netns, fallback to the global one\n", 3549 hash_entries); 3550 fallback: 3551 net->ipv4.udp_table = &udp_table; 3552 } 3553 } 3554 3555 static int __net_init udp_pernet_init(struct net *net) 3556 { 3557 udp_sysctl_init(net); 3558 udp_set_table(net); 3559 3560 return 0; 3561 } 3562 3563 static void __net_exit udp_pernet_exit(struct net *net) 3564 { 3565 udp_pernet_table_free(net); 3566 } 3567 3568 static struct pernet_operations __net_initdata udp_sysctl_ops = { 3569 .init = udp_pernet_init, 3570 .exit = udp_pernet_exit, 3571 }; 3572 3573 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3574 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta, 3575 struct udp_sock *udp_sk, uid_t uid, int bucket) 3576 3577 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter, 3578 unsigned int new_batch_sz) 3579 { 3580 struct sock **new_batch; 3581 3582 new_batch = kvmalloc_array(new_batch_sz, sizeof(*new_batch), 3583 GFP_USER | __GFP_NOWARN); 3584 if (!new_batch) 3585 return -ENOMEM; 3586 3587 bpf_iter_udp_put_batch(iter); 3588 kvfree(iter->batch); 3589 iter->batch = new_batch; 3590 iter->max_sk = new_batch_sz; 3591 3592 return 0; 3593 } 3594 3595 #define INIT_BATCH_SZ 16 3596 3597 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux) 3598 { 3599 struct bpf_udp_iter_state *iter = priv_data; 3600 int ret; 3601 3602 ret = bpf_iter_init_seq_net(priv_data, aux); 3603 if (ret) 3604 return ret; 3605 3606 ret = bpf_iter_udp_realloc_batch(iter, INIT_BATCH_SZ); 3607 if (ret) 3608 bpf_iter_fini_seq_net(priv_data); 3609 3610 return ret; 3611 } 3612 3613 static void bpf_iter_fini_udp(void *priv_data) 3614 { 3615 struct bpf_udp_iter_state *iter = priv_data; 3616 3617 bpf_iter_fini_seq_net(priv_data); 3618 kvfree(iter->batch); 3619 } 3620 3621 static const struct bpf_iter_seq_info udp_seq_info = { 3622 .seq_ops = &bpf_iter_udp_seq_ops, 3623 .init_seq_private = bpf_iter_init_udp, 3624 .fini_seq_private = bpf_iter_fini_udp, 3625 .seq_priv_size = sizeof(struct bpf_udp_iter_state), 3626 }; 3627 3628 static struct bpf_iter_reg udp_reg_info = { 3629 .target = "udp", 3630 .ctx_arg_info_size = 1, 3631 .ctx_arg_info = { 3632 { offsetof(struct bpf_iter__udp, udp_sk), 3633 PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED }, 3634 }, 3635 .seq_info = &udp_seq_info, 3636 }; 3637 3638 static void __init bpf_iter_register(void) 3639 { 3640 udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP]; 3641 if (bpf_iter_reg_target(&udp_reg_info)) 3642 pr_warn("Warning: could not register bpf iterator udp\n"); 3643 } 3644 #endif 3645 3646 void __init udp_init(void) 3647 { 3648 unsigned long limit; 3649 unsigned int i; 3650 3651 udp_table_init(&udp_table, "UDP"); 3652 limit = nr_free_buffer_pages() / 8; 3653 limit = max(limit, 128UL); 3654 sysctl_udp_mem[0] = limit / 4 * 3; 3655 sysctl_udp_mem[1] = limit; 3656 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2; 3657 3658 /* 16 spinlocks per cpu */ 3659 udp_busylocks_log = ilog2(nr_cpu_ids) + 4; 3660 udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log, 3661 GFP_KERNEL); 3662 if (!udp_busylocks) 3663 panic("UDP: failed to alloc udp_busylocks\n"); 3664 for (i = 0; i < (1U << udp_busylocks_log); i++) 3665 spin_lock_init(udp_busylocks + i); 3666 3667 if (register_pernet_subsys(&udp_sysctl_ops)) 3668 panic("UDP: failed to init sysctl parameters.\n"); 3669 3670 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3671 bpf_iter_register(); 3672 #endif 3673 } 3674