xref: /linux/net/ipv4/udp.c (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		The User Datagram Protocol (UDP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
12  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
13  *		Hirokazu Takahashi, <taka@valinux.co.jp>
14  *
15  * Fixes:
16  *		Alan Cox	:	verify_area() calls
17  *		Alan Cox	: 	stopped close while in use off icmp
18  *					messages. Not a fix but a botch that
19  *					for udp at least is 'valid'.
20  *		Alan Cox	:	Fixed icmp handling properly
21  *		Alan Cox	: 	Correct error for oversized datagrams
22  *		Alan Cox	:	Tidied select() semantics.
23  *		Alan Cox	:	udp_err() fixed properly, also now
24  *					select and read wake correctly on errors
25  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
26  *		Alan Cox	:	UDP can count its memory
27  *		Alan Cox	:	send to an unknown connection causes
28  *					an ECONNREFUSED off the icmp, but
29  *					does NOT close.
30  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
31  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
32  *					bug no longer crashes it.
33  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
34  *		Alan Cox	:	Uses skb_free_datagram
35  *		Alan Cox	:	Added get/set sockopt support.
36  *		Alan Cox	:	Broadcasting without option set returns EACCES.
37  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
38  *		Alan Cox	:	Use ip_tos and ip_ttl
39  *		Alan Cox	:	SNMP Mibs
40  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
41  *		Matt Dillon	:	UDP length checks.
42  *		Alan Cox	:	Smarter af_inet used properly.
43  *		Alan Cox	:	Use new kernel side addressing.
44  *		Alan Cox	:	Incorrect return on truncated datagram receive.
45  *	Arnt Gulbrandsen 	:	New udp_send and stuff
46  *		Alan Cox	:	Cache last socket
47  *		Alan Cox	:	Route cache
48  *		Jon Peatfield	:	Minor efficiency fix to sendto().
49  *		Mike Shaver	:	RFC1122 checks.
50  *		Alan Cox	:	Nonblocking error fix.
51  *	Willy Konynenberg	:	Transparent proxying support.
52  *		Mike McLagan	:	Routing by source
53  *		David S. Miller	:	New socket lookup architecture.
54  *					Last socket cache retained as it
55  *					does have a high hit rate.
56  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
57  *		Andi Kleen	:	Some cleanups, cache destination entry
58  *					for connect.
59  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
60  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
61  *					return ENOTCONN for unconnected sockets (POSIX)
62  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
63  *					bound-to-device socket
64  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
65  *					datagrams.
66  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
67  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
68  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
69  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
70  *					a single port at the same time.
71  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
72  *	James Chapman		:	Add L2TP encapsulation type.
73  */
74 
75 #define pr_fmt(fmt) "UDP: " fmt
76 
77 #include <linux/bpf-cgroup.h>
78 #include <linux/uaccess.h>
79 #include <asm/ioctls.h>
80 #include <linux/memblock.h>
81 #include <linux/highmem.h>
82 #include <linux/types.h>
83 #include <linux/fcntl.h>
84 #include <linux/module.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/igmp.h>
88 #include <linux/inetdevice.h>
89 #include <linux/in.h>
90 #include <linux/errno.h>
91 #include <linux/timer.h>
92 #include <linux/mm.h>
93 #include <linux/inet.h>
94 #include <linux/netdevice.h>
95 #include <linux/slab.h>
96 #include <net/tcp_states.h>
97 #include <linux/skbuff.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <net/net_namespace.h>
101 #include <net/icmp.h>
102 #include <net/inet_hashtables.h>
103 #include <net/ip_tunnels.h>
104 #include <net/route.h>
105 #include <net/checksum.h>
106 #include <net/gso.h>
107 #include <net/xfrm.h>
108 #include <trace/events/udp.h>
109 #include <linux/static_key.h>
110 #include <linux/btf_ids.h>
111 #include <trace/events/skb.h>
112 #include <net/busy_poll.h>
113 #include "udp_impl.h"
114 #include <net/sock_reuseport.h>
115 #include <net/addrconf.h>
116 #include <net/udp_tunnel.h>
117 #include <net/gro.h>
118 #include <net/inet_dscp.h>
119 #if IS_ENABLED(CONFIG_IPV6)
120 #include <net/ipv6_stubs.h>
121 #endif
122 
123 struct udp_table udp_table __read_mostly;
124 EXPORT_SYMBOL(udp_table);
125 
126 long sysctl_udp_mem[3] __read_mostly;
127 EXPORT_SYMBOL(sysctl_udp_mem);
128 
129 atomic_long_t udp_memory_allocated ____cacheline_aligned_in_smp;
130 EXPORT_SYMBOL(udp_memory_allocated);
131 DEFINE_PER_CPU(int, udp_memory_per_cpu_fw_alloc);
132 EXPORT_PER_CPU_SYMBOL_GPL(udp_memory_per_cpu_fw_alloc);
133 
134 #define MAX_UDP_PORTS 65536
135 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN_PERNET)
136 
137 static struct udp_table *udp_get_table_prot(struct sock *sk)
138 {
139 	return sk->sk_prot->h.udp_table ? : sock_net(sk)->ipv4.udp_table;
140 }
141 
142 static int udp_lib_lport_inuse(struct net *net, __u16 num,
143 			       const struct udp_hslot *hslot,
144 			       unsigned long *bitmap,
145 			       struct sock *sk, unsigned int log)
146 {
147 	struct sock *sk2;
148 	kuid_t uid = sock_i_uid(sk);
149 
150 	sk_for_each(sk2, &hslot->head) {
151 		if (net_eq(sock_net(sk2), net) &&
152 		    sk2 != sk &&
153 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
154 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
155 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
156 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
157 		    inet_rcv_saddr_equal(sk, sk2, true)) {
158 			if (sk2->sk_reuseport && sk->sk_reuseport &&
159 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
160 			    uid_eq(uid, sock_i_uid(sk2))) {
161 				if (!bitmap)
162 					return 0;
163 			} else {
164 				if (!bitmap)
165 					return 1;
166 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
167 					  bitmap);
168 			}
169 		}
170 	}
171 	return 0;
172 }
173 
174 /*
175  * Note: we still hold spinlock of primary hash chain, so no other writer
176  * can insert/delete a socket with local_port == num
177  */
178 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
179 				struct udp_hslot *hslot2,
180 				struct sock *sk)
181 {
182 	struct sock *sk2;
183 	kuid_t uid = sock_i_uid(sk);
184 	int res = 0;
185 
186 	spin_lock(&hslot2->lock);
187 	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
188 		if (net_eq(sock_net(sk2), net) &&
189 		    sk2 != sk &&
190 		    (udp_sk(sk2)->udp_port_hash == num) &&
191 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
192 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
193 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
194 		    inet_rcv_saddr_equal(sk, sk2, true)) {
195 			if (sk2->sk_reuseport && sk->sk_reuseport &&
196 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
197 			    uid_eq(uid, sock_i_uid(sk2))) {
198 				res = 0;
199 			} else {
200 				res = 1;
201 			}
202 			break;
203 		}
204 	}
205 	spin_unlock(&hslot2->lock);
206 	return res;
207 }
208 
209 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
210 {
211 	struct net *net = sock_net(sk);
212 	kuid_t uid = sock_i_uid(sk);
213 	struct sock *sk2;
214 
215 	sk_for_each(sk2, &hslot->head) {
216 		if (net_eq(sock_net(sk2), net) &&
217 		    sk2 != sk &&
218 		    sk2->sk_family == sk->sk_family &&
219 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
220 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
221 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
222 		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
223 		    inet_rcv_saddr_equal(sk, sk2, false)) {
224 			return reuseport_add_sock(sk, sk2,
225 						  inet_rcv_saddr_any(sk));
226 		}
227 	}
228 
229 	return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
230 }
231 
232 /**
233  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
234  *
235  *  @sk:          socket struct in question
236  *  @snum:        port number to look up
237  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
238  *                   with NULL address
239  */
240 int udp_lib_get_port(struct sock *sk, unsigned short snum,
241 		     unsigned int hash2_nulladdr)
242 {
243 	struct udp_table *udptable = udp_get_table_prot(sk);
244 	struct udp_hslot *hslot, *hslot2;
245 	struct net *net = sock_net(sk);
246 	int error = -EADDRINUSE;
247 
248 	if (!snum) {
249 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
250 		unsigned short first, last;
251 		int low, high, remaining;
252 		unsigned int rand;
253 
254 		inet_sk_get_local_port_range(sk, &low, &high);
255 		remaining = (high - low) + 1;
256 
257 		rand = get_random_u32();
258 		first = reciprocal_scale(rand, remaining) + low;
259 		/*
260 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
261 		 */
262 		rand = (rand | 1) * (udptable->mask + 1);
263 		last = first + udptable->mask + 1;
264 		do {
265 			hslot = udp_hashslot(udptable, net, first);
266 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
267 			spin_lock_bh(&hslot->lock);
268 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
269 					    udptable->log);
270 
271 			snum = first;
272 			/*
273 			 * Iterate on all possible values of snum for this hash.
274 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
275 			 * give us randomization and full range coverage.
276 			 */
277 			do {
278 				if (low <= snum && snum <= high &&
279 				    !test_bit(snum >> udptable->log, bitmap) &&
280 				    !inet_is_local_reserved_port(net, snum))
281 					goto found;
282 				snum += rand;
283 			} while (snum != first);
284 			spin_unlock_bh(&hslot->lock);
285 			cond_resched();
286 		} while (++first != last);
287 		goto fail;
288 	} else {
289 		hslot = udp_hashslot(udptable, net, snum);
290 		spin_lock_bh(&hslot->lock);
291 		if (hslot->count > 10) {
292 			int exist;
293 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
294 
295 			slot2          &= udptable->mask;
296 			hash2_nulladdr &= udptable->mask;
297 
298 			hslot2 = udp_hashslot2(udptable, slot2);
299 			if (hslot->count < hslot2->count)
300 				goto scan_primary_hash;
301 
302 			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
303 			if (!exist && (hash2_nulladdr != slot2)) {
304 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
305 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
306 							     sk);
307 			}
308 			if (exist)
309 				goto fail_unlock;
310 			else
311 				goto found;
312 		}
313 scan_primary_hash:
314 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
315 			goto fail_unlock;
316 	}
317 found:
318 	inet_sk(sk)->inet_num = snum;
319 	udp_sk(sk)->udp_port_hash = snum;
320 	udp_sk(sk)->udp_portaddr_hash ^= snum;
321 	if (sk_unhashed(sk)) {
322 		if (sk->sk_reuseport &&
323 		    udp_reuseport_add_sock(sk, hslot)) {
324 			inet_sk(sk)->inet_num = 0;
325 			udp_sk(sk)->udp_port_hash = 0;
326 			udp_sk(sk)->udp_portaddr_hash ^= snum;
327 			goto fail_unlock;
328 		}
329 
330 		sock_set_flag(sk, SOCK_RCU_FREE);
331 
332 		sk_add_node_rcu(sk, &hslot->head);
333 		hslot->count++;
334 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
335 
336 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
337 		spin_lock(&hslot2->lock);
338 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
339 		    sk->sk_family == AF_INET6)
340 			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
341 					   &hslot2->head);
342 		else
343 			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
344 					   &hslot2->head);
345 		hslot2->count++;
346 		spin_unlock(&hslot2->lock);
347 	}
348 
349 	error = 0;
350 fail_unlock:
351 	spin_unlock_bh(&hslot->lock);
352 fail:
353 	return error;
354 }
355 EXPORT_SYMBOL(udp_lib_get_port);
356 
357 int udp_v4_get_port(struct sock *sk, unsigned short snum)
358 {
359 	unsigned int hash2_nulladdr =
360 		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
361 	unsigned int hash2_partial =
362 		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
363 
364 	/* precompute partial secondary hash */
365 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
366 	return udp_lib_get_port(sk, snum, hash2_nulladdr);
367 }
368 
369 static int compute_score(struct sock *sk, const struct net *net,
370 			 __be32 saddr, __be16 sport,
371 			 __be32 daddr, unsigned short hnum,
372 			 int dif, int sdif)
373 {
374 	int score;
375 	struct inet_sock *inet;
376 	bool dev_match;
377 
378 	if (!net_eq(sock_net(sk), net) ||
379 	    udp_sk(sk)->udp_port_hash != hnum ||
380 	    ipv6_only_sock(sk))
381 		return -1;
382 
383 	if (sk->sk_rcv_saddr != daddr)
384 		return -1;
385 
386 	score = (sk->sk_family == PF_INET) ? 2 : 1;
387 
388 	inet = inet_sk(sk);
389 	if (inet->inet_daddr) {
390 		if (inet->inet_daddr != saddr)
391 			return -1;
392 		score += 4;
393 	}
394 
395 	if (inet->inet_dport) {
396 		if (inet->inet_dport != sport)
397 			return -1;
398 		score += 4;
399 	}
400 
401 	dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
402 					dif, sdif);
403 	if (!dev_match)
404 		return -1;
405 	if (sk->sk_bound_dev_if)
406 		score += 4;
407 
408 	if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
409 		score++;
410 	return score;
411 }
412 
413 INDIRECT_CALLABLE_SCOPE
414 u32 udp_ehashfn(const struct net *net, const __be32 laddr, const __u16 lport,
415 		const __be32 faddr, const __be16 fport)
416 {
417 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
418 
419 	return __inet_ehashfn(laddr, lport, faddr, fport,
420 			      udp_ehash_secret + net_hash_mix(net));
421 }
422 
423 /* called with rcu_read_lock() */
424 static struct sock *udp4_lib_lookup2(const struct net *net,
425 				     __be32 saddr, __be16 sport,
426 				     __be32 daddr, unsigned int hnum,
427 				     int dif, int sdif,
428 				     struct udp_hslot *hslot2,
429 				     struct sk_buff *skb)
430 {
431 	struct sock *sk, *result;
432 	int score, badness;
433 	bool need_rescore;
434 
435 	result = NULL;
436 	badness = 0;
437 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
438 		need_rescore = false;
439 rescore:
440 		score = compute_score(need_rescore ? result : sk, net, saddr,
441 				      sport, daddr, hnum, dif, sdif);
442 		if (score > badness) {
443 			badness = score;
444 
445 			if (need_rescore)
446 				continue;
447 
448 			if (sk->sk_state == TCP_ESTABLISHED) {
449 				result = sk;
450 				continue;
451 			}
452 
453 			result = inet_lookup_reuseport(net, sk, skb, sizeof(struct udphdr),
454 						       saddr, sport, daddr, hnum, udp_ehashfn);
455 			if (!result) {
456 				result = sk;
457 				continue;
458 			}
459 
460 			/* Fall back to scoring if group has connections */
461 			if (!reuseport_has_conns(sk))
462 				return result;
463 
464 			/* Reuseport logic returned an error, keep original score. */
465 			if (IS_ERR(result))
466 				continue;
467 
468 			/* compute_score is too long of a function to be
469 			 * inlined, and calling it again here yields
470 			 * measureable overhead for some
471 			 * workloads. Work around it by jumping
472 			 * backwards to rescore 'result'.
473 			 */
474 			need_rescore = true;
475 			goto rescore;
476 		}
477 	}
478 	return result;
479 }
480 
481 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
482  * harder than this. -DaveM
483  */
484 struct sock *__udp4_lib_lookup(const struct net *net, __be32 saddr,
485 		__be16 sport, __be32 daddr, __be16 dport, int dif,
486 		int sdif, struct udp_table *udptable, struct sk_buff *skb)
487 {
488 	unsigned short hnum = ntohs(dport);
489 	unsigned int hash2, slot2;
490 	struct udp_hslot *hslot2;
491 	struct sock *result, *sk;
492 
493 	hash2 = ipv4_portaddr_hash(net, daddr, hnum);
494 	slot2 = hash2 & udptable->mask;
495 	hslot2 = &udptable->hash2[slot2];
496 
497 	/* Lookup connected or non-wildcard socket */
498 	result = udp4_lib_lookup2(net, saddr, sport,
499 				  daddr, hnum, dif, sdif,
500 				  hslot2, skb);
501 	if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED)
502 		goto done;
503 
504 	/* Lookup redirect from BPF */
505 	if (static_branch_unlikely(&bpf_sk_lookup_enabled) &&
506 	    udptable == net->ipv4.udp_table) {
507 		sk = inet_lookup_run_sk_lookup(net, IPPROTO_UDP, skb, sizeof(struct udphdr),
508 					       saddr, sport, daddr, hnum, dif,
509 					       udp_ehashfn);
510 		if (sk) {
511 			result = sk;
512 			goto done;
513 		}
514 	}
515 
516 	/* Got non-wildcard socket or error on first lookup */
517 	if (result)
518 		goto done;
519 
520 	/* Lookup wildcard sockets */
521 	hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
522 	slot2 = hash2 & udptable->mask;
523 	hslot2 = &udptable->hash2[slot2];
524 
525 	result = udp4_lib_lookup2(net, saddr, sport,
526 				  htonl(INADDR_ANY), hnum, dif, sdif,
527 				  hslot2, skb);
528 done:
529 	if (IS_ERR(result))
530 		return NULL;
531 	return result;
532 }
533 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
534 
535 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
536 						 __be16 sport, __be16 dport,
537 						 struct udp_table *udptable)
538 {
539 	const struct iphdr *iph = ip_hdr(skb);
540 
541 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
542 				 iph->daddr, dport, inet_iif(skb),
543 				 inet_sdif(skb), udptable, skb);
544 }
545 
546 struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb,
547 				 __be16 sport, __be16 dport)
548 {
549 	const u16 offset = NAPI_GRO_CB(skb)->network_offsets[skb->encapsulation];
550 	const struct iphdr *iph = (struct iphdr *)(skb->data + offset);
551 	struct net *net = dev_net(skb->dev);
552 	int iif, sdif;
553 
554 	inet_get_iif_sdif(skb, &iif, &sdif);
555 
556 	return __udp4_lib_lookup(net, iph->saddr, sport,
557 				 iph->daddr, dport, iif,
558 				 sdif, net->ipv4.udp_table, NULL);
559 }
560 
561 /* Must be called under rcu_read_lock().
562  * Does increment socket refcount.
563  */
564 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
565 struct sock *udp4_lib_lookup(const struct net *net, __be32 saddr, __be16 sport,
566 			     __be32 daddr, __be16 dport, int dif)
567 {
568 	struct sock *sk;
569 
570 	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
571 			       dif, 0, net->ipv4.udp_table, NULL);
572 	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
573 		sk = NULL;
574 	return sk;
575 }
576 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
577 #endif
578 
579 static inline bool __udp_is_mcast_sock(struct net *net, const struct sock *sk,
580 				       __be16 loc_port, __be32 loc_addr,
581 				       __be16 rmt_port, __be32 rmt_addr,
582 				       int dif, int sdif, unsigned short hnum)
583 {
584 	const struct inet_sock *inet = inet_sk(sk);
585 
586 	if (!net_eq(sock_net(sk), net) ||
587 	    udp_sk(sk)->udp_port_hash != hnum ||
588 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
589 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
590 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
591 	    ipv6_only_sock(sk) ||
592 	    !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
593 		return false;
594 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
595 		return false;
596 	return true;
597 }
598 
599 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
600 EXPORT_SYMBOL(udp_encap_needed_key);
601 
602 #if IS_ENABLED(CONFIG_IPV6)
603 DEFINE_STATIC_KEY_FALSE(udpv6_encap_needed_key);
604 EXPORT_SYMBOL(udpv6_encap_needed_key);
605 #endif
606 
607 void udp_encap_enable(void)
608 {
609 	static_branch_inc(&udp_encap_needed_key);
610 }
611 EXPORT_SYMBOL(udp_encap_enable);
612 
613 void udp_encap_disable(void)
614 {
615 	static_branch_dec(&udp_encap_needed_key);
616 }
617 EXPORT_SYMBOL(udp_encap_disable);
618 
619 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go
620  * through error handlers in encapsulations looking for a match.
621  */
622 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
623 {
624 	int i;
625 
626 	for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
627 		int (*handler)(struct sk_buff *skb, u32 info);
628 		const struct ip_tunnel_encap_ops *encap;
629 
630 		encap = rcu_dereference(iptun_encaps[i]);
631 		if (!encap)
632 			continue;
633 		handler = encap->err_handler;
634 		if (handler && !handler(skb, info))
635 			return 0;
636 	}
637 
638 	return -ENOENT;
639 }
640 
641 /* Try to match ICMP errors to UDP tunnels by looking up a socket without
642  * reversing source and destination port: this will match tunnels that force the
643  * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
644  * lwtunnels might actually break this assumption by being configured with
645  * different destination ports on endpoints, in this case we won't be able to
646  * trace ICMP messages back to them.
647  *
648  * If this doesn't match any socket, probe tunnels with arbitrary destination
649  * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
650  * we've sent packets to won't necessarily match the local destination port.
651  *
652  * Then ask the tunnel implementation to match the error against a valid
653  * association.
654  *
655  * Return an error if we can't find a match, the socket if we need further
656  * processing, zero otherwise.
657  */
658 static struct sock *__udp4_lib_err_encap(struct net *net,
659 					 const struct iphdr *iph,
660 					 struct udphdr *uh,
661 					 struct udp_table *udptable,
662 					 struct sock *sk,
663 					 struct sk_buff *skb, u32 info)
664 {
665 	int (*lookup)(struct sock *sk, struct sk_buff *skb);
666 	int network_offset, transport_offset;
667 	struct udp_sock *up;
668 
669 	network_offset = skb_network_offset(skb);
670 	transport_offset = skb_transport_offset(skb);
671 
672 	/* Network header needs to point to the outer IPv4 header inside ICMP */
673 	skb_reset_network_header(skb);
674 
675 	/* Transport header needs to point to the UDP header */
676 	skb_set_transport_header(skb, iph->ihl << 2);
677 
678 	if (sk) {
679 		up = udp_sk(sk);
680 
681 		lookup = READ_ONCE(up->encap_err_lookup);
682 		if (lookup && lookup(sk, skb))
683 			sk = NULL;
684 
685 		goto out;
686 	}
687 
688 	sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
689 			       iph->saddr, uh->dest, skb->dev->ifindex, 0,
690 			       udptable, NULL);
691 	if (sk) {
692 		up = udp_sk(sk);
693 
694 		lookup = READ_ONCE(up->encap_err_lookup);
695 		if (!lookup || lookup(sk, skb))
696 			sk = NULL;
697 	}
698 
699 out:
700 	if (!sk)
701 		sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
702 
703 	skb_set_transport_header(skb, transport_offset);
704 	skb_set_network_header(skb, network_offset);
705 
706 	return sk;
707 }
708 
709 /*
710  * This routine is called by the ICMP module when it gets some
711  * sort of error condition.  If err < 0 then the socket should
712  * be closed and the error returned to the user.  If err > 0
713  * it's just the icmp type << 8 | icmp code.
714  * Header points to the ip header of the error packet. We move
715  * on past this. Then (as it used to claim before adjustment)
716  * header points to the first 8 bytes of the udp header.  We need
717  * to find the appropriate port.
718  */
719 
720 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
721 {
722 	struct inet_sock *inet;
723 	const struct iphdr *iph = (const struct iphdr *)skb->data;
724 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
725 	const int type = icmp_hdr(skb)->type;
726 	const int code = icmp_hdr(skb)->code;
727 	bool tunnel = false;
728 	struct sock *sk;
729 	int harderr;
730 	int err;
731 	struct net *net = dev_net(skb->dev);
732 
733 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
734 			       iph->saddr, uh->source, skb->dev->ifindex,
735 			       inet_sdif(skb), udptable, NULL);
736 
737 	if (!sk || READ_ONCE(udp_sk(sk)->encap_type)) {
738 		/* No socket for error: try tunnels before discarding */
739 		if (static_branch_unlikely(&udp_encap_needed_key)) {
740 			sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb,
741 						  info);
742 			if (!sk)
743 				return 0;
744 		} else
745 			sk = ERR_PTR(-ENOENT);
746 
747 		if (IS_ERR(sk)) {
748 			__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
749 			return PTR_ERR(sk);
750 		}
751 
752 		tunnel = true;
753 	}
754 
755 	err = 0;
756 	harderr = 0;
757 	inet = inet_sk(sk);
758 
759 	switch (type) {
760 	default:
761 	case ICMP_TIME_EXCEEDED:
762 		err = EHOSTUNREACH;
763 		break;
764 	case ICMP_SOURCE_QUENCH:
765 		goto out;
766 	case ICMP_PARAMETERPROB:
767 		err = EPROTO;
768 		harderr = 1;
769 		break;
770 	case ICMP_DEST_UNREACH:
771 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
772 			ipv4_sk_update_pmtu(skb, sk, info);
773 			if (READ_ONCE(inet->pmtudisc) != IP_PMTUDISC_DONT) {
774 				err = EMSGSIZE;
775 				harderr = 1;
776 				break;
777 			}
778 			goto out;
779 		}
780 		err = EHOSTUNREACH;
781 		if (code <= NR_ICMP_UNREACH) {
782 			harderr = icmp_err_convert[code].fatal;
783 			err = icmp_err_convert[code].errno;
784 		}
785 		break;
786 	case ICMP_REDIRECT:
787 		ipv4_sk_redirect(skb, sk);
788 		goto out;
789 	}
790 
791 	/*
792 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
793 	 *	4.1.3.3.
794 	 */
795 	if (tunnel) {
796 		/* ...not for tunnels though: we don't have a sending socket */
797 		if (udp_sk(sk)->encap_err_rcv)
798 			udp_sk(sk)->encap_err_rcv(sk, skb, err, uh->dest, info,
799 						  (u8 *)(uh+1));
800 		goto out;
801 	}
802 	if (!inet_test_bit(RECVERR, sk)) {
803 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
804 			goto out;
805 	} else
806 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
807 
808 	sk->sk_err = err;
809 	sk_error_report(sk);
810 out:
811 	return 0;
812 }
813 
814 int udp_err(struct sk_buff *skb, u32 info)
815 {
816 	return __udp4_lib_err(skb, info, dev_net(skb->dev)->ipv4.udp_table);
817 }
818 
819 /*
820  * Throw away all pending data and cancel the corking. Socket is locked.
821  */
822 void udp_flush_pending_frames(struct sock *sk)
823 {
824 	struct udp_sock *up = udp_sk(sk);
825 
826 	if (up->pending) {
827 		up->len = 0;
828 		WRITE_ONCE(up->pending, 0);
829 		ip_flush_pending_frames(sk);
830 	}
831 }
832 EXPORT_SYMBOL(udp_flush_pending_frames);
833 
834 /**
835  * 	udp4_hwcsum  -  handle outgoing HW checksumming
836  * 	@skb: 	sk_buff containing the filled-in UDP header
837  * 	        (checksum field must be zeroed out)
838  *	@src:	source IP address
839  *	@dst:	destination IP address
840  */
841 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
842 {
843 	struct udphdr *uh = udp_hdr(skb);
844 	int offset = skb_transport_offset(skb);
845 	int len = skb->len - offset;
846 	int hlen = len;
847 	__wsum csum = 0;
848 
849 	if (!skb_has_frag_list(skb)) {
850 		/*
851 		 * Only one fragment on the socket.
852 		 */
853 		skb->csum_start = skb_transport_header(skb) - skb->head;
854 		skb->csum_offset = offsetof(struct udphdr, check);
855 		uh->check = ~csum_tcpudp_magic(src, dst, len,
856 					       IPPROTO_UDP, 0);
857 	} else {
858 		struct sk_buff *frags;
859 
860 		/*
861 		 * HW-checksum won't work as there are two or more
862 		 * fragments on the socket so that all csums of sk_buffs
863 		 * should be together
864 		 */
865 		skb_walk_frags(skb, frags) {
866 			csum = csum_add(csum, frags->csum);
867 			hlen -= frags->len;
868 		}
869 
870 		csum = skb_checksum(skb, offset, hlen, csum);
871 		skb->ip_summed = CHECKSUM_NONE;
872 
873 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
874 		if (uh->check == 0)
875 			uh->check = CSUM_MANGLED_0;
876 	}
877 }
878 EXPORT_SYMBOL_GPL(udp4_hwcsum);
879 
880 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
881  * for the simple case like when setting the checksum for a UDP tunnel.
882  */
883 void udp_set_csum(bool nocheck, struct sk_buff *skb,
884 		  __be32 saddr, __be32 daddr, int len)
885 {
886 	struct udphdr *uh = udp_hdr(skb);
887 
888 	if (nocheck) {
889 		uh->check = 0;
890 	} else if (skb_is_gso(skb)) {
891 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
892 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
893 		uh->check = 0;
894 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
895 		if (uh->check == 0)
896 			uh->check = CSUM_MANGLED_0;
897 	} else {
898 		skb->ip_summed = CHECKSUM_PARTIAL;
899 		skb->csum_start = skb_transport_header(skb) - skb->head;
900 		skb->csum_offset = offsetof(struct udphdr, check);
901 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
902 	}
903 }
904 EXPORT_SYMBOL(udp_set_csum);
905 
906 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
907 			struct inet_cork *cork)
908 {
909 	struct sock *sk = skb->sk;
910 	struct inet_sock *inet = inet_sk(sk);
911 	struct udphdr *uh;
912 	int err;
913 	int is_udplite = IS_UDPLITE(sk);
914 	int offset = skb_transport_offset(skb);
915 	int len = skb->len - offset;
916 	int datalen = len - sizeof(*uh);
917 	__wsum csum = 0;
918 
919 	/*
920 	 * Create a UDP header
921 	 */
922 	uh = udp_hdr(skb);
923 	uh->source = inet->inet_sport;
924 	uh->dest = fl4->fl4_dport;
925 	uh->len = htons(len);
926 	uh->check = 0;
927 
928 	if (cork->gso_size) {
929 		const int hlen = skb_network_header_len(skb) +
930 				 sizeof(struct udphdr);
931 
932 		if (hlen + cork->gso_size > cork->fragsize) {
933 			kfree_skb(skb);
934 			return -EINVAL;
935 		}
936 		if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) {
937 			kfree_skb(skb);
938 			return -EINVAL;
939 		}
940 		if (sk->sk_no_check_tx) {
941 			kfree_skb(skb);
942 			return -EINVAL;
943 		}
944 		if (is_udplite || dst_xfrm(skb_dst(skb))) {
945 			kfree_skb(skb);
946 			return -EIO;
947 		}
948 
949 		if (datalen > cork->gso_size) {
950 			skb_shinfo(skb)->gso_size = cork->gso_size;
951 			skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
952 			skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
953 								 cork->gso_size);
954 
955 			/* Don't checksum the payload, skb will get segmented */
956 			goto csum_partial;
957 		}
958 	}
959 
960 	if (is_udplite)  				 /*     UDP-Lite      */
961 		csum = udplite_csum(skb);
962 
963 	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
964 
965 		skb->ip_summed = CHECKSUM_NONE;
966 		goto send;
967 
968 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
969 csum_partial:
970 
971 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
972 		goto send;
973 
974 	} else
975 		csum = udp_csum(skb);
976 
977 	/* add protocol-dependent pseudo-header */
978 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
979 				      sk->sk_protocol, csum);
980 	if (uh->check == 0)
981 		uh->check = CSUM_MANGLED_0;
982 
983 send:
984 	err = ip_send_skb(sock_net(sk), skb);
985 	if (err) {
986 		if (err == -ENOBUFS &&
987 		    !inet_test_bit(RECVERR, sk)) {
988 			UDP_INC_STATS(sock_net(sk),
989 				      UDP_MIB_SNDBUFERRORS, is_udplite);
990 			err = 0;
991 		}
992 	} else
993 		UDP_INC_STATS(sock_net(sk),
994 			      UDP_MIB_OUTDATAGRAMS, is_udplite);
995 	return err;
996 }
997 
998 /*
999  * Push out all pending data as one UDP datagram. Socket is locked.
1000  */
1001 int udp_push_pending_frames(struct sock *sk)
1002 {
1003 	struct udp_sock  *up = udp_sk(sk);
1004 	struct inet_sock *inet = inet_sk(sk);
1005 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
1006 	struct sk_buff *skb;
1007 	int err = 0;
1008 
1009 	skb = ip_finish_skb(sk, fl4);
1010 	if (!skb)
1011 		goto out;
1012 
1013 	err = udp_send_skb(skb, fl4, &inet->cork.base);
1014 
1015 out:
1016 	up->len = 0;
1017 	WRITE_ONCE(up->pending, 0);
1018 	return err;
1019 }
1020 EXPORT_SYMBOL(udp_push_pending_frames);
1021 
1022 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
1023 {
1024 	switch (cmsg->cmsg_type) {
1025 	case UDP_SEGMENT:
1026 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
1027 			return -EINVAL;
1028 		*gso_size = *(__u16 *)CMSG_DATA(cmsg);
1029 		return 0;
1030 	default:
1031 		return -EINVAL;
1032 	}
1033 }
1034 
1035 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
1036 {
1037 	struct cmsghdr *cmsg;
1038 	bool need_ip = false;
1039 	int err;
1040 
1041 	for_each_cmsghdr(cmsg, msg) {
1042 		if (!CMSG_OK(msg, cmsg))
1043 			return -EINVAL;
1044 
1045 		if (cmsg->cmsg_level != SOL_UDP) {
1046 			need_ip = true;
1047 			continue;
1048 		}
1049 
1050 		err = __udp_cmsg_send(cmsg, gso_size);
1051 		if (err)
1052 			return err;
1053 	}
1054 
1055 	return need_ip;
1056 }
1057 EXPORT_SYMBOL_GPL(udp_cmsg_send);
1058 
1059 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1060 {
1061 	struct inet_sock *inet = inet_sk(sk);
1062 	struct udp_sock *up = udp_sk(sk);
1063 	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1064 	struct flowi4 fl4_stack;
1065 	struct flowi4 *fl4;
1066 	int ulen = len;
1067 	struct ipcm_cookie ipc;
1068 	struct rtable *rt = NULL;
1069 	int free = 0;
1070 	int connected = 0;
1071 	__be32 daddr, faddr, saddr;
1072 	u8 tos, scope;
1073 	__be16 dport;
1074 	int err, is_udplite = IS_UDPLITE(sk);
1075 	int corkreq = udp_test_bit(CORK, sk) || msg->msg_flags & MSG_MORE;
1076 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
1077 	struct sk_buff *skb;
1078 	struct ip_options_data opt_copy;
1079 	int uc_index;
1080 
1081 	if (len > 0xFFFF)
1082 		return -EMSGSIZE;
1083 
1084 	/*
1085 	 *	Check the flags.
1086 	 */
1087 
1088 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1089 		return -EOPNOTSUPP;
1090 
1091 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1092 
1093 	fl4 = &inet->cork.fl.u.ip4;
1094 	if (READ_ONCE(up->pending)) {
1095 		/*
1096 		 * There are pending frames.
1097 		 * The socket lock must be held while it's corked.
1098 		 */
1099 		lock_sock(sk);
1100 		if (likely(up->pending)) {
1101 			if (unlikely(up->pending != AF_INET)) {
1102 				release_sock(sk);
1103 				return -EINVAL;
1104 			}
1105 			goto do_append_data;
1106 		}
1107 		release_sock(sk);
1108 	}
1109 	ulen += sizeof(struct udphdr);
1110 
1111 	/*
1112 	 *	Get and verify the address.
1113 	 */
1114 	if (usin) {
1115 		if (msg->msg_namelen < sizeof(*usin))
1116 			return -EINVAL;
1117 		if (usin->sin_family != AF_INET) {
1118 			if (usin->sin_family != AF_UNSPEC)
1119 				return -EAFNOSUPPORT;
1120 		}
1121 
1122 		daddr = usin->sin_addr.s_addr;
1123 		dport = usin->sin_port;
1124 		if (dport == 0)
1125 			return -EINVAL;
1126 	} else {
1127 		if (sk->sk_state != TCP_ESTABLISHED)
1128 			return -EDESTADDRREQ;
1129 		daddr = inet->inet_daddr;
1130 		dport = inet->inet_dport;
1131 		/* Open fast path for connected socket.
1132 		   Route will not be used, if at least one option is set.
1133 		 */
1134 		connected = 1;
1135 	}
1136 
1137 	ipcm_init_sk(&ipc, inet);
1138 	ipc.gso_size = READ_ONCE(up->gso_size);
1139 
1140 	if (msg->msg_controllen) {
1141 		err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1142 		if (err > 0) {
1143 			err = ip_cmsg_send(sk, msg, &ipc,
1144 					   sk->sk_family == AF_INET6);
1145 			connected = 0;
1146 		}
1147 		if (unlikely(err < 0)) {
1148 			kfree(ipc.opt);
1149 			return err;
1150 		}
1151 		if (ipc.opt)
1152 			free = 1;
1153 	}
1154 	if (!ipc.opt) {
1155 		struct ip_options_rcu *inet_opt;
1156 
1157 		rcu_read_lock();
1158 		inet_opt = rcu_dereference(inet->inet_opt);
1159 		if (inet_opt) {
1160 			memcpy(&opt_copy, inet_opt,
1161 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
1162 			ipc.opt = &opt_copy.opt;
1163 		}
1164 		rcu_read_unlock();
1165 	}
1166 
1167 	if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) {
1168 		err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1169 					    (struct sockaddr *)usin,
1170 					    &msg->msg_namelen,
1171 					    &ipc.addr);
1172 		if (err)
1173 			goto out_free;
1174 		if (usin) {
1175 			if (usin->sin_port == 0) {
1176 				/* BPF program set invalid port. Reject it. */
1177 				err = -EINVAL;
1178 				goto out_free;
1179 			}
1180 			daddr = usin->sin_addr.s_addr;
1181 			dport = usin->sin_port;
1182 		}
1183 	}
1184 
1185 	saddr = ipc.addr;
1186 	ipc.addr = faddr = daddr;
1187 
1188 	if (ipc.opt && ipc.opt->opt.srr) {
1189 		if (!daddr) {
1190 			err = -EINVAL;
1191 			goto out_free;
1192 		}
1193 		faddr = ipc.opt->opt.faddr;
1194 		connected = 0;
1195 	}
1196 	tos = get_rttos(&ipc, inet);
1197 	scope = ip_sendmsg_scope(inet, &ipc, msg);
1198 	if (scope == RT_SCOPE_LINK)
1199 		connected = 0;
1200 
1201 	uc_index = READ_ONCE(inet->uc_index);
1202 	if (ipv4_is_multicast(daddr)) {
1203 		if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1204 			ipc.oif = READ_ONCE(inet->mc_index);
1205 		if (!saddr)
1206 			saddr = READ_ONCE(inet->mc_addr);
1207 		connected = 0;
1208 	} else if (!ipc.oif) {
1209 		ipc.oif = uc_index;
1210 	} else if (ipv4_is_lbcast(daddr) && uc_index) {
1211 		/* oif is set, packet is to local broadcast and
1212 		 * uc_index is set. oif is most likely set
1213 		 * by sk_bound_dev_if. If uc_index != oif check if the
1214 		 * oif is an L3 master and uc_index is an L3 slave.
1215 		 * If so, we want to allow the send using the uc_index.
1216 		 */
1217 		if (ipc.oif != uc_index &&
1218 		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1219 							      uc_index)) {
1220 			ipc.oif = uc_index;
1221 		}
1222 	}
1223 
1224 	if (connected)
1225 		rt = dst_rtable(sk_dst_check(sk, 0));
1226 
1227 	if (!rt) {
1228 		struct net *net = sock_net(sk);
1229 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1230 
1231 		fl4 = &fl4_stack;
1232 
1233 		flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos, scope,
1234 				   sk->sk_protocol, flow_flags, faddr, saddr,
1235 				   dport, inet->inet_sport, sk->sk_uid);
1236 
1237 		security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
1238 		rt = ip_route_output_flow(net, fl4, sk);
1239 		if (IS_ERR(rt)) {
1240 			err = PTR_ERR(rt);
1241 			rt = NULL;
1242 			if (err == -ENETUNREACH)
1243 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1244 			goto out;
1245 		}
1246 
1247 		err = -EACCES;
1248 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1249 		    !sock_flag(sk, SOCK_BROADCAST))
1250 			goto out;
1251 		if (connected)
1252 			sk_dst_set(sk, dst_clone(&rt->dst));
1253 	}
1254 
1255 	if (msg->msg_flags&MSG_CONFIRM)
1256 		goto do_confirm;
1257 back_from_confirm:
1258 
1259 	saddr = fl4->saddr;
1260 	if (!ipc.addr)
1261 		daddr = ipc.addr = fl4->daddr;
1262 
1263 	/* Lockless fast path for the non-corking case. */
1264 	if (!corkreq) {
1265 		struct inet_cork cork;
1266 
1267 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1268 				  sizeof(struct udphdr), &ipc, &rt,
1269 				  &cork, msg->msg_flags);
1270 		err = PTR_ERR(skb);
1271 		if (!IS_ERR_OR_NULL(skb))
1272 			err = udp_send_skb(skb, fl4, &cork);
1273 		goto out;
1274 	}
1275 
1276 	lock_sock(sk);
1277 	if (unlikely(up->pending)) {
1278 		/* The socket is already corked while preparing it. */
1279 		/* ... which is an evident application bug. --ANK */
1280 		release_sock(sk);
1281 
1282 		net_dbg_ratelimited("socket already corked\n");
1283 		err = -EINVAL;
1284 		goto out;
1285 	}
1286 	/*
1287 	 *	Now cork the socket to pend data.
1288 	 */
1289 	fl4 = &inet->cork.fl.u.ip4;
1290 	fl4->daddr = daddr;
1291 	fl4->saddr = saddr;
1292 	fl4->fl4_dport = dport;
1293 	fl4->fl4_sport = inet->inet_sport;
1294 	WRITE_ONCE(up->pending, AF_INET);
1295 
1296 do_append_data:
1297 	up->len += ulen;
1298 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1299 			     sizeof(struct udphdr), &ipc, &rt,
1300 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1301 	if (err)
1302 		udp_flush_pending_frames(sk);
1303 	else if (!corkreq)
1304 		err = udp_push_pending_frames(sk);
1305 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1306 		WRITE_ONCE(up->pending, 0);
1307 	release_sock(sk);
1308 
1309 out:
1310 	ip_rt_put(rt);
1311 out_free:
1312 	if (free)
1313 		kfree(ipc.opt);
1314 	if (!err)
1315 		return len;
1316 	/*
1317 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1318 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1319 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1320 	 * things).  We could add another new stat but at least for now that
1321 	 * seems like overkill.
1322 	 */
1323 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1324 		UDP_INC_STATS(sock_net(sk),
1325 			      UDP_MIB_SNDBUFERRORS, is_udplite);
1326 	}
1327 	return err;
1328 
1329 do_confirm:
1330 	if (msg->msg_flags & MSG_PROBE)
1331 		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1332 	if (!(msg->msg_flags&MSG_PROBE) || len)
1333 		goto back_from_confirm;
1334 	err = 0;
1335 	goto out;
1336 }
1337 EXPORT_SYMBOL(udp_sendmsg);
1338 
1339 void udp_splice_eof(struct socket *sock)
1340 {
1341 	struct sock *sk = sock->sk;
1342 	struct udp_sock *up = udp_sk(sk);
1343 
1344 	if (!READ_ONCE(up->pending) || udp_test_bit(CORK, sk))
1345 		return;
1346 
1347 	lock_sock(sk);
1348 	if (up->pending && !udp_test_bit(CORK, sk))
1349 		udp_push_pending_frames(sk);
1350 	release_sock(sk);
1351 }
1352 EXPORT_SYMBOL_GPL(udp_splice_eof);
1353 
1354 #define UDP_SKB_IS_STATELESS 0x80000000
1355 
1356 /* all head states (dst, sk, nf conntrack) except skb extensions are
1357  * cleared by udp_rcv().
1358  *
1359  * We need to preserve secpath, if present, to eventually process
1360  * IP_CMSG_PASSSEC at recvmsg() time.
1361  *
1362  * Other extensions can be cleared.
1363  */
1364 static bool udp_try_make_stateless(struct sk_buff *skb)
1365 {
1366 	if (!skb_has_extensions(skb))
1367 		return true;
1368 
1369 	if (!secpath_exists(skb)) {
1370 		skb_ext_reset(skb);
1371 		return true;
1372 	}
1373 
1374 	return false;
1375 }
1376 
1377 static void udp_set_dev_scratch(struct sk_buff *skb)
1378 {
1379 	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1380 
1381 	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1382 	scratch->_tsize_state = skb->truesize;
1383 #if BITS_PER_LONG == 64
1384 	scratch->len = skb->len;
1385 	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1386 	scratch->is_linear = !skb_is_nonlinear(skb);
1387 #endif
1388 	if (udp_try_make_stateless(skb))
1389 		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1390 }
1391 
1392 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1393 {
1394 	/* We come here after udp_lib_checksum_complete() returned 0.
1395 	 * This means that __skb_checksum_complete() might have
1396 	 * set skb->csum_valid to 1.
1397 	 * On 64bit platforms, we can set csum_unnecessary
1398 	 * to true, but only if the skb is not shared.
1399 	 */
1400 #if BITS_PER_LONG == 64
1401 	if (!skb_shared(skb))
1402 		udp_skb_scratch(skb)->csum_unnecessary = true;
1403 #endif
1404 }
1405 
1406 static int udp_skb_truesize(struct sk_buff *skb)
1407 {
1408 	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1409 }
1410 
1411 static bool udp_skb_has_head_state(struct sk_buff *skb)
1412 {
1413 	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1414 }
1415 
1416 /* fully reclaim rmem/fwd memory allocated for skb */
1417 static void udp_rmem_release(struct sock *sk, int size, int partial,
1418 			     bool rx_queue_lock_held)
1419 {
1420 	struct udp_sock *up = udp_sk(sk);
1421 	struct sk_buff_head *sk_queue;
1422 	int amt;
1423 
1424 	if (likely(partial)) {
1425 		up->forward_deficit += size;
1426 		size = up->forward_deficit;
1427 		if (size < READ_ONCE(up->forward_threshold) &&
1428 		    !skb_queue_empty(&up->reader_queue))
1429 			return;
1430 	} else {
1431 		size += up->forward_deficit;
1432 	}
1433 	up->forward_deficit = 0;
1434 
1435 	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1436 	 * if the called don't held it already
1437 	 */
1438 	sk_queue = &sk->sk_receive_queue;
1439 	if (!rx_queue_lock_held)
1440 		spin_lock(&sk_queue->lock);
1441 
1442 
1443 	sk_forward_alloc_add(sk, size);
1444 	amt = (sk->sk_forward_alloc - partial) & ~(PAGE_SIZE - 1);
1445 	sk_forward_alloc_add(sk, -amt);
1446 
1447 	if (amt)
1448 		__sk_mem_reduce_allocated(sk, amt >> PAGE_SHIFT);
1449 
1450 	atomic_sub(size, &sk->sk_rmem_alloc);
1451 
1452 	/* this can save us from acquiring the rx queue lock on next receive */
1453 	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1454 
1455 	if (!rx_queue_lock_held)
1456 		spin_unlock(&sk_queue->lock);
1457 }
1458 
1459 /* Note: called with reader_queue.lock held.
1460  * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1461  * This avoids a cache line miss while receive_queue lock is held.
1462  * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1463  */
1464 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1465 {
1466 	prefetch(&skb->data);
1467 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1468 }
1469 EXPORT_SYMBOL(udp_skb_destructor);
1470 
1471 /* as above, but the caller held the rx queue lock, too */
1472 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1473 {
1474 	prefetch(&skb->data);
1475 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1476 }
1477 
1478 /* Idea of busylocks is to let producers grab an extra spinlock
1479  * to relieve pressure on the receive_queue spinlock shared by consumer.
1480  * Under flood, this means that only one producer can be in line
1481  * trying to acquire the receive_queue spinlock.
1482  * These busylock can be allocated on a per cpu manner, instead of a
1483  * per socket one (that would consume a cache line per socket)
1484  */
1485 static int udp_busylocks_log __read_mostly;
1486 static spinlock_t *udp_busylocks __read_mostly;
1487 
1488 static spinlock_t *busylock_acquire(void *ptr)
1489 {
1490 	spinlock_t *busy;
1491 
1492 	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1493 	spin_lock(busy);
1494 	return busy;
1495 }
1496 
1497 static void busylock_release(spinlock_t *busy)
1498 {
1499 	if (busy)
1500 		spin_unlock(busy);
1501 }
1502 
1503 static int udp_rmem_schedule(struct sock *sk, int size)
1504 {
1505 	int delta;
1506 
1507 	delta = size - sk->sk_forward_alloc;
1508 	if (delta > 0 && !__sk_mem_schedule(sk, delta, SK_MEM_RECV))
1509 		return -ENOBUFS;
1510 
1511 	return 0;
1512 }
1513 
1514 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1515 {
1516 	struct sk_buff_head *list = &sk->sk_receive_queue;
1517 	int rmem, err = -ENOMEM;
1518 	spinlock_t *busy = NULL;
1519 	bool becomes_readable;
1520 	int size, rcvbuf;
1521 
1522 	/* Immediately drop when the receive queue is full.
1523 	 * Always allow at least one packet.
1524 	 */
1525 	rmem = atomic_read(&sk->sk_rmem_alloc);
1526 	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1527 	if (rmem > rcvbuf)
1528 		goto drop;
1529 
1530 	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1531 	 * having linear skbs :
1532 	 * - Reduce memory overhead and thus increase receive queue capacity
1533 	 * - Less cache line misses at copyout() time
1534 	 * - Less work at consume_skb() (less alien page frag freeing)
1535 	 */
1536 	if (rmem > (rcvbuf >> 1)) {
1537 		skb_condense(skb);
1538 
1539 		busy = busylock_acquire(sk);
1540 	}
1541 	size = skb->truesize;
1542 	udp_set_dev_scratch(skb);
1543 
1544 	atomic_add(size, &sk->sk_rmem_alloc);
1545 
1546 	spin_lock(&list->lock);
1547 	err = udp_rmem_schedule(sk, size);
1548 	if (err) {
1549 		spin_unlock(&list->lock);
1550 		goto uncharge_drop;
1551 	}
1552 
1553 	sk_forward_alloc_add(sk, -size);
1554 
1555 	/* no need to setup a destructor, we will explicitly release the
1556 	 * forward allocated memory on dequeue
1557 	 */
1558 	sock_skb_set_dropcount(sk, skb);
1559 
1560 	becomes_readable = skb_queue_empty(list);
1561 	__skb_queue_tail(list, skb);
1562 	spin_unlock(&list->lock);
1563 
1564 	if (!sock_flag(sk, SOCK_DEAD)) {
1565 		if (becomes_readable ||
1566 		    sk->sk_data_ready != sock_def_readable ||
1567 		    READ_ONCE(sk->sk_peek_off) >= 0)
1568 			INDIRECT_CALL_1(sk->sk_data_ready,
1569 					sock_def_readable, sk);
1570 		else
1571 			sk_wake_async_rcu(sk, SOCK_WAKE_WAITD, POLL_IN);
1572 	}
1573 	busylock_release(busy);
1574 	return 0;
1575 
1576 uncharge_drop:
1577 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1578 
1579 drop:
1580 	atomic_inc(&sk->sk_drops);
1581 	busylock_release(busy);
1582 	return err;
1583 }
1584 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1585 
1586 void udp_destruct_common(struct sock *sk)
1587 {
1588 	/* reclaim completely the forward allocated memory */
1589 	struct udp_sock *up = udp_sk(sk);
1590 	unsigned int total = 0;
1591 	struct sk_buff *skb;
1592 
1593 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1594 	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1595 		total += skb->truesize;
1596 		kfree_skb(skb);
1597 	}
1598 	udp_rmem_release(sk, total, 0, true);
1599 }
1600 EXPORT_SYMBOL_GPL(udp_destruct_common);
1601 
1602 static void udp_destruct_sock(struct sock *sk)
1603 {
1604 	udp_destruct_common(sk);
1605 	inet_sock_destruct(sk);
1606 }
1607 
1608 int udp_init_sock(struct sock *sk)
1609 {
1610 	udp_lib_init_sock(sk);
1611 	sk->sk_destruct = udp_destruct_sock;
1612 	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1613 	return 0;
1614 }
1615 
1616 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1617 {
1618 	if (unlikely(READ_ONCE(udp_sk(sk)->peeking_with_offset)))
1619 		sk_peek_offset_bwd(sk, len);
1620 
1621 	if (!skb_unref(skb))
1622 		return;
1623 
1624 	/* In the more common cases we cleared the head states previously,
1625 	 * see __udp_queue_rcv_skb().
1626 	 */
1627 	if (unlikely(udp_skb_has_head_state(skb)))
1628 		skb_release_head_state(skb);
1629 	__consume_stateless_skb(skb);
1630 }
1631 EXPORT_SYMBOL_GPL(skb_consume_udp);
1632 
1633 static struct sk_buff *__first_packet_length(struct sock *sk,
1634 					     struct sk_buff_head *rcvq,
1635 					     int *total)
1636 {
1637 	struct sk_buff *skb;
1638 
1639 	while ((skb = skb_peek(rcvq)) != NULL) {
1640 		if (udp_lib_checksum_complete(skb)) {
1641 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1642 					IS_UDPLITE(sk));
1643 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1644 					IS_UDPLITE(sk));
1645 			atomic_inc(&sk->sk_drops);
1646 			__skb_unlink(skb, rcvq);
1647 			*total += skb->truesize;
1648 			kfree_skb(skb);
1649 		} else {
1650 			udp_skb_csum_unnecessary_set(skb);
1651 			break;
1652 		}
1653 	}
1654 	return skb;
1655 }
1656 
1657 /**
1658  *	first_packet_length	- return length of first packet in receive queue
1659  *	@sk: socket
1660  *
1661  *	Drops all bad checksum frames, until a valid one is found.
1662  *	Returns the length of found skb, or -1 if none is found.
1663  */
1664 static int first_packet_length(struct sock *sk)
1665 {
1666 	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1667 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1668 	struct sk_buff *skb;
1669 	int total = 0;
1670 	int res;
1671 
1672 	spin_lock_bh(&rcvq->lock);
1673 	skb = __first_packet_length(sk, rcvq, &total);
1674 	if (!skb && !skb_queue_empty_lockless(sk_queue)) {
1675 		spin_lock(&sk_queue->lock);
1676 		skb_queue_splice_tail_init(sk_queue, rcvq);
1677 		spin_unlock(&sk_queue->lock);
1678 
1679 		skb = __first_packet_length(sk, rcvq, &total);
1680 	}
1681 	res = skb ? skb->len : -1;
1682 	if (total)
1683 		udp_rmem_release(sk, total, 1, false);
1684 	spin_unlock_bh(&rcvq->lock);
1685 	return res;
1686 }
1687 
1688 /*
1689  *	IOCTL requests applicable to the UDP protocol
1690  */
1691 
1692 int udp_ioctl(struct sock *sk, int cmd, int *karg)
1693 {
1694 	switch (cmd) {
1695 	case SIOCOUTQ:
1696 	{
1697 		*karg = sk_wmem_alloc_get(sk);
1698 		return 0;
1699 	}
1700 
1701 	case SIOCINQ:
1702 	{
1703 		*karg = max_t(int, 0, first_packet_length(sk));
1704 		return 0;
1705 	}
1706 
1707 	default:
1708 		return -ENOIOCTLCMD;
1709 	}
1710 
1711 	return 0;
1712 }
1713 EXPORT_SYMBOL(udp_ioctl);
1714 
1715 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1716 			       int *off, int *err)
1717 {
1718 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1719 	struct sk_buff_head *queue;
1720 	struct sk_buff *last;
1721 	long timeo;
1722 	int error;
1723 
1724 	queue = &udp_sk(sk)->reader_queue;
1725 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1726 	do {
1727 		struct sk_buff *skb;
1728 
1729 		error = sock_error(sk);
1730 		if (error)
1731 			break;
1732 
1733 		error = -EAGAIN;
1734 		do {
1735 			spin_lock_bh(&queue->lock);
1736 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1737 							err, &last);
1738 			if (skb) {
1739 				if (!(flags & MSG_PEEK))
1740 					udp_skb_destructor(sk, skb);
1741 				spin_unlock_bh(&queue->lock);
1742 				return skb;
1743 			}
1744 
1745 			if (skb_queue_empty_lockless(sk_queue)) {
1746 				spin_unlock_bh(&queue->lock);
1747 				goto busy_check;
1748 			}
1749 
1750 			/* refill the reader queue and walk it again
1751 			 * keep both queues locked to avoid re-acquiring
1752 			 * the sk_receive_queue lock if fwd memory scheduling
1753 			 * is needed.
1754 			 */
1755 			spin_lock(&sk_queue->lock);
1756 			skb_queue_splice_tail_init(sk_queue, queue);
1757 
1758 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1759 							err, &last);
1760 			if (skb && !(flags & MSG_PEEK))
1761 				udp_skb_dtor_locked(sk, skb);
1762 			spin_unlock(&sk_queue->lock);
1763 			spin_unlock_bh(&queue->lock);
1764 			if (skb)
1765 				return skb;
1766 
1767 busy_check:
1768 			if (!sk_can_busy_loop(sk))
1769 				break;
1770 
1771 			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1772 		} while (!skb_queue_empty_lockless(sk_queue));
1773 
1774 		/* sk_queue is empty, reader_queue may contain peeked packets */
1775 	} while (timeo &&
1776 		 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
1777 					      &error, &timeo,
1778 					      (struct sk_buff *)sk_queue));
1779 
1780 	*err = error;
1781 	return NULL;
1782 }
1783 EXPORT_SYMBOL(__skb_recv_udp);
1784 
1785 int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1786 {
1787 	struct sk_buff *skb;
1788 	int err;
1789 
1790 try_again:
1791 	skb = skb_recv_udp(sk, MSG_DONTWAIT, &err);
1792 	if (!skb)
1793 		return err;
1794 
1795 	if (udp_lib_checksum_complete(skb)) {
1796 		int is_udplite = IS_UDPLITE(sk);
1797 		struct net *net = sock_net(sk);
1798 
1799 		__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, is_udplite);
1800 		__UDP_INC_STATS(net, UDP_MIB_INERRORS, is_udplite);
1801 		atomic_inc(&sk->sk_drops);
1802 		kfree_skb(skb);
1803 		goto try_again;
1804 	}
1805 
1806 	WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1807 	return recv_actor(sk, skb);
1808 }
1809 EXPORT_SYMBOL(udp_read_skb);
1810 
1811 /*
1812  * 	This should be easy, if there is something there we
1813  * 	return it, otherwise we block.
1814  */
1815 
1816 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
1817 		int *addr_len)
1818 {
1819 	struct inet_sock *inet = inet_sk(sk);
1820 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1821 	struct sk_buff *skb;
1822 	unsigned int ulen, copied;
1823 	int off, err, peeking = flags & MSG_PEEK;
1824 	int is_udplite = IS_UDPLITE(sk);
1825 	bool checksum_valid = false;
1826 
1827 	if (flags & MSG_ERRQUEUE)
1828 		return ip_recv_error(sk, msg, len, addr_len);
1829 
1830 try_again:
1831 	off = sk_peek_offset(sk, flags);
1832 	skb = __skb_recv_udp(sk, flags, &off, &err);
1833 	if (!skb)
1834 		return err;
1835 
1836 	ulen = udp_skb_len(skb);
1837 	copied = len;
1838 	if (copied > ulen - off)
1839 		copied = ulen - off;
1840 	else if (copied < ulen)
1841 		msg->msg_flags |= MSG_TRUNC;
1842 
1843 	/*
1844 	 * If checksum is needed at all, try to do it while copying the
1845 	 * data.  If the data is truncated, or if we only want a partial
1846 	 * coverage checksum (UDP-Lite), do it before the copy.
1847 	 */
1848 
1849 	if (copied < ulen || peeking ||
1850 	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1851 		checksum_valid = udp_skb_csum_unnecessary(skb) ||
1852 				!__udp_lib_checksum_complete(skb);
1853 		if (!checksum_valid)
1854 			goto csum_copy_err;
1855 	}
1856 
1857 	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1858 		if (udp_skb_is_linear(skb))
1859 			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1860 		else
1861 			err = skb_copy_datagram_msg(skb, off, msg, copied);
1862 	} else {
1863 		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1864 
1865 		if (err == -EINVAL)
1866 			goto csum_copy_err;
1867 	}
1868 
1869 	if (unlikely(err)) {
1870 		if (!peeking) {
1871 			atomic_inc(&sk->sk_drops);
1872 			UDP_INC_STATS(sock_net(sk),
1873 				      UDP_MIB_INERRORS, is_udplite);
1874 		}
1875 		kfree_skb(skb);
1876 		return err;
1877 	}
1878 
1879 	if (!peeking)
1880 		UDP_INC_STATS(sock_net(sk),
1881 			      UDP_MIB_INDATAGRAMS, is_udplite);
1882 
1883 	sock_recv_cmsgs(msg, sk, skb);
1884 
1885 	/* Copy the address. */
1886 	if (sin) {
1887 		sin->sin_family = AF_INET;
1888 		sin->sin_port = udp_hdr(skb)->source;
1889 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1890 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1891 		*addr_len = sizeof(*sin);
1892 
1893 		BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
1894 						      (struct sockaddr *)sin,
1895 						      addr_len);
1896 	}
1897 
1898 	if (udp_test_bit(GRO_ENABLED, sk))
1899 		udp_cmsg_recv(msg, sk, skb);
1900 
1901 	if (inet_cmsg_flags(inet))
1902 		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1903 
1904 	err = copied;
1905 	if (flags & MSG_TRUNC)
1906 		err = ulen;
1907 
1908 	skb_consume_udp(sk, skb, peeking ? -err : err);
1909 	return err;
1910 
1911 csum_copy_err:
1912 	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1913 				 udp_skb_destructor)) {
1914 		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1915 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1916 	}
1917 	kfree_skb(skb);
1918 
1919 	/* starting over for a new packet, but check if we need to yield */
1920 	cond_resched();
1921 	msg->msg_flags &= ~MSG_TRUNC;
1922 	goto try_again;
1923 }
1924 
1925 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1926 {
1927 	/* This check is replicated from __ip4_datagram_connect() and
1928 	 * intended to prevent BPF program called below from accessing bytes
1929 	 * that are out of the bound specified by user in addr_len.
1930 	 */
1931 	if (addr_len < sizeof(struct sockaddr_in))
1932 		return -EINVAL;
1933 
1934 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr, &addr_len);
1935 }
1936 EXPORT_SYMBOL(udp_pre_connect);
1937 
1938 int __udp_disconnect(struct sock *sk, int flags)
1939 {
1940 	struct inet_sock *inet = inet_sk(sk);
1941 	/*
1942 	 *	1003.1g - break association.
1943 	 */
1944 
1945 	sk->sk_state = TCP_CLOSE;
1946 	inet->inet_daddr = 0;
1947 	inet->inet_dport = 0;
1948 	sock_rps_reset_rxhash(sk);
1949 	sk->sk_bound_dev_if = 0;
1950 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) {
1951 		inet_reset_saddr(sk);
1952 		if (sk->sk_prot->rehash &&
1953 		    (sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1954 			sk->sk_prot->rehash(sk);
1955 	}
1956 
1957 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1958 		sk->sk_prot->unhash(sk);
1959 		inet->inet_sport = 0;
1960 	}
1961 	sk_dst_reset(sk);
1962 	return 0;
1963 }
1964 EXPORT_SYMBOL(__udp_disconnect);
1965 
1966 int udp_disconnect(struct sock *sk, int flags)
1967 {
1968 	lock_sock(sk);
1969 	__udp_disconnect(sk, flags);
1970 	release_sock(sk);
1971 	return 0;
1972 }
1973 EXPORT_SYMBOL(udp_disconnect);
1974 
1975 void udp_lib_unhash(struct sock *sk)
1976 {
1977 	if (sk_hashed(sk)) {
1978 		struct udp_table *udptable = udp_get_table_prot(sk);
1979 		struct udp_hslot *hslot, *hslot2;
1980 
1981 		hslot  = udp_hashslot(udptable, sock_net(sk),
1982 				      udp_sk(sk)->udp_port_hash);
1983 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1984 
1985 		spin_lock_bh(&hslot->lock);
1986 		if (rcu_access_pointer(sk->sk_reuseport_cb))
1987 			reuseport_detach_sock(sk);
1988 		if (sk_del_node_init_rcu(sk)) {
1989 			hslot->count--;
1990 			inet_sk(sk)->inet_num = 0;
1991 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1992 
1993 			spin_lock(&hslot2->lock);
1994 			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1995 			hslot2->count--;
1996 			spin_unlock(&hslot2->lock);
1997 		}
1998 		spin_unlock_bh(&hslot->lock);
1999 	}
2000 }
2001 EXPORT_SYMBOL(udp_lib_unhash);
2002 
2003 /*
2004  * inet_rcv_saddr was changed, we must rehash secondary hash
2005  */
2006 void udp_lib_rehash(struct sock *sk, u16 newhash)
2007 {
2008 	if (sk_hashed(sk)) {
2009 		struct udp_table *udptable = udp_get_table_prot(sk);
2010 		struct udp_hslot *hslot, *hslot2, *nhslot2;
2011 
2012 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2013 		nhslot2 = udp_hashslot2(udptable, newhash);
2014 		udp_sk(sk)->udp_portaddr_hash = newhash;
2015 
2016 		if (hslot2 != nhslot2 ||
2017 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
2018 			hslot = udp_hashslot(udptable, sock_net(sk),
2019 					     udp_sk(sk)->udp_port_hash);
2020 			/* we must lock primary chain too */
2021 			spin_lock_bh(&hslot->lock);
2022 			if (rcu_access_pointer(sk->sk_reuseport_cb))
2023 				reuseport_detach_sock(sk);
2024 
2025 			if (hslot2 != nhslot2) {
2026 				spin_lock(&hslot2->lock);
2027 				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2028 				hslot2->count--;
2029 				spin_unlock(&hslot2->lock);
2030 
2031 				spin_lock(&nhslot2->lock);
2032 				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
2033 							 &nhslot2->head);
2034 				nhslot2->count++;
2035 				spin_unlock(&nhslot2->lock);
2036 			}
2037 
2038 			spin_unlock_bh(&hslot->lock);
2039 		}
2040 	}
2041 }
2042 EXPORT_SYMBOL(udp_lib_rehash);
2043 
2044 void udp_v4_rehash(struct sock *sk)
2045 {
2046 	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
2047 					  inet_sk(sk)->inet_rcv_saddr,
2048 					  inet_sk(sk)->inet_num);
2049 	udp_lib_rehash(sk, new_hash);
2050 }
2051 
2052 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2053 {
2054 	int rc;
2055 
2056 	if (inet_sk(sk)->inet_daddr) {
2057 		sock_rps_save_rxhash(sk, skb);
2058 		sk_mark_napi_id(sk, skb);
2059 		sk_incoming_cpu_update(sk);
2060 	} else {
2061 		sk_mark_napi_id_once(sk, skb);
2062 	}
2063 
2064 	rc = __udp_enqueue_schedule_skb(sk, skb);
2065 	if (rc < 0) {
2066 		int is_udplite = IS_UDPLITE(sk);
2067 		int drop_reason;
2068 
2069 		/* Note that an ENOMEM error is charged twice */
2070 		if (rc == -ENOMEM) {
2071 			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
2072 					is_udplite);
2073 			drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
2074 		} else {
2075 			UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS,
2076 				      is_udplite);
2077 			drop_reason = SKB_DROP_REASON_PROTO_MEM;
2078 		}
2079 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2080 		trace_udp_fail_queue_rcv_skb(rc, sk, skb);
2081 		sk_skb_reason_drop(sk, skb, drop_reason);
2082 		return -1;
2083 	}
2084 
2085 	return 0;
2086 }
2087 
2088 /* returns:
2089  *  -1: error
2090  *   0: success
2091  *  >0: "udp encap" protocol resubmission
2092  *
2093  * Note that in the success and error cases, the skb is assumed to
2094  * have either been requeued or freed.
2095  */
2096 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
2097 {
2098 	int drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2099 	struct udp_sock *up = udp_sk(sk);
2100 	int is_udplite = IS_UDPLITE(sk);
2101 
2102 	/*
2103 	 *	Charge it to the socket, dropping if the queue is full.
2104 	 */
2105 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
2106 		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2107 		goto drop;
2108 	}
2109 	nf_reset_ct(skb);
2110 
2111 	if (static_branch_unlikely(&udp_encap_needed_key) &&
2112 	    READ_ONCE(up->encap_type)) {
2113 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2114 
2115 		/*
2116 		 * This is an encapsulation socket so pass the skb to
2117 		 * the socket's udp_encap_rcv() hook. Otherwise, just
2118 		 * fall through and pass this up the UDP socket.
2119 		 * up->encap_rcv() returns the following value:
2120 		 * =0 if skb was successfully passed to the encap
2121 		 *    handler or was discarded by it.
2122 		 * >0 if skb should be passed on to UDP.
2123 		 * <0 if skb should be resubmitted as proto -N
2124 		 */
2125 
2126 		/* if we're overly short, let UDP handle it */
2127 		encap_rcv = READ_ONCE(up->encap_rcv);
2128 		if (encap_rcv) {
2129 			int ret;
2130 
2131 			/* Verify checksum before giving to encap */
2132 			if (udp_lib_checksum_complete(skb))
2133 				goto csum_error;
2134 
2135 			ret = encap_rcv(sk, skb);
2136 			if (ret <= 0) {
2137 				__UDP_INC_STATS(sock_net(sk),
2138 						UDP_MIB_INDATAGRAMS,
2139 						is_udplite);
2140 				return -ret;
2141 			}
2142 		}
2143 
2144 		/* FALLTHROUGH -- it's a UDP Packet */
2145 	}
2146 
2147 	/*
2148 	 * 	UDP-Lite specific tests, ignored on UDP sockets
2149 	 */
2150 	if (udp_test_bit(UDPLITE_RECV_CC, sk) && UDP_SKB_CB(skb)->partial_cov) {
2151 		u16 pcrlen = READ_ONCE(up->pcrlen);
2152 
2153 		/*
2154 		 * MIB statistics other than incrementing the error count are
2155 		 * disabled for the following two types of errors: these depend
2156 		 * on the application settings, not on the functioning of the
2157 		 * protocol stack as such.
2158 		 *
2159 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
2160 		 * way ... to ... at least let the receiving application block
2161 		 * delivery of packets with coverage values less than a value
2162 		 * provided by the application."
2163 		 */
2164 		if (pcrlen == 0) {          /* full coverage was set  */
2165 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2166 					    UDP_SKB_CB(skb)->cscov, skb->len);
2167 			goto drop;
2168 		}
2169 		/* The next case involves violating the min. coverage requested
2170 		 * by the receiver. This is subtle: if receiver wants x and x is
2171 		 * greater than the buffersize/MTU then receiver will complain
2172 		 * that it wants x while sender emits packets of smaller size y.
2173 		 * Therefore the above ...()->partial_cov statement is essential.
2174 		 */
2175 		if (UDP_SKB_CB(skb)->cscov < pcrlen) {
2176 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2177 					    UDP_SKB_CB(skb)->cscov, pcrlen);
2178 			goto drop;
2179 		}
2180 	}
2181 
2182 	prefetch(&sk->sk_rmem_alloc);
2183 	if (rcu_access_pointer(sk->sk_filter) &&
2184 	    udp_lib_checksum_complete(skb))
2185 			goto csum_error;
2186 
2187 	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) {
2188 		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2189 		goto drop;
2190 	}
2191 
2192 	udp_csum_pull_header(skb);
2193 
2194 	ipv4_pktinfo_prepare(sk, skb, true);
2195 	return __udp_queue_rcv_skb(sk, skb);
2196 
2197 csum_error:
2198 	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2199 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2200 drop:
2201 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2202 	atomic_inc(&sk->sk_drops);
2203 	sk_skb_reason_drop(sk, skb, drop_reason);
2204 	return -1;
2205 }
2206 
2207 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2208 {
2209 	struct sk_buff *next, *segs;
2210 	int ret;
2211 
2212 	if (likely(!udp_unexpected_gso(sk, skb)))
2213 		return udp_queue_rcv_one_skb(sk, skb);
2214 
2215 	BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET);
2216 	__skb_push(skb, -skb_mac_offset(skb));
2217 	segs = udp_rcv_segment(sk, skb, true);
2218 	skb_list_walk_safe(segs, skb, next) {
2219 		__skb_pull(skb, skb_transport_offset(skb));
2220 
2221 		udp_post_segment_fix_csum(skb);
2222 		ret = udp_queue_rcv_one_skb(sk, skb);
2223 		if (ret > 0)
2224 			ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret);
2225 	}
2226 	return 0;
2227 }
2228 
2229 /* For TCP sockets, sk_rx_dst is protected by socket lock
2230  * For UDP, we use xchg() to guard against concurrent changes.
2231  */
2232 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2233 {
2234 	struct dst_entry *old;
2235 
2236 	if (dst_hold_safe(dst)) {
2237 		old = unrcu_pointer(xchg(&sk->sk_rx_dst, RCU_INITIALIZER(dst)));
2238 		dst_release(old);
2239 		return old != dst;
2240 	}
2241 	return false;
2242 }
2243 EXPORT_SYMBOL(udp_sk_rx_dst_set);
2244 
2245 /*
2246  *	Multicasts and broadcasts go to each listener.
2247  *
2248  *	Note: called only from the BH handler context.
2249  */
2250 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2251 				    struct udphdr  *uh,
2252 				    __be32 saddr, __be32 daddr,
2253 				    struct udp_table *udptable,
2254 				    int proto)
2255 {
2256 	struct sock *sk, *first = NULL;
2257 	unsigned short hnum = ntohs(uh->dest);
2258 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2259 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2260 	unsigned int offset = offsetof(typeof(*sk), sk_node);
2261 	int dif = skb->dev->ifindex;
2262 	int sdif = inet_sdif(skb);
2263 	struct hlist_node *node;
2264 	struct sk_buff *nskb;
2265 
2266 	if (use_hash2) {
2267 		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2268 			    udptable->mask;
2269 		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2270 start_lookup:
2271 		hslot = &udptable->hash2[hash2];
2272 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2273 	}
2274 
2275 	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2276 		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2277 					 uh->source, saddr, dif, sdif, hnum))
2278 			continue;
2279 
2280 		if (!first) {
2281 			first = sk;
2282 			continue;
2283 		}
2284 		nskb = skb_clone(skb, GFP_ATOMIC);
2285 
2286 		if (unlikely(!nskb)) {
2287 			atomic_inc(&sk->sk_drops);
2288 			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2289 					IS_UDPLITE(sk));
2290 			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
2291 					IS_UDPLITE(sk));
2292 			continue;
2293 		}
2294 		if (udp_queue_rcv_skb(sk, nskb) > 0)
2295 			consume_skb(nskb);
2296 	}
2297 
2298 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2299 	if (use_hash2 && hash2 != hash2_any) {
2300 		hash2 = hash2_any;
2301 		goto start_lookup;
2302 	}
2303 
2304 	if (first) {
2305 		if (udp_queue_rcv_skb(first, skb) > 0)
2306 			consume_skb(skb);
2307 	} else {
2308 		kfree_skb(skb);
2309 		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2310 				proto == IPPROTO_UDPLITE);
2311 	}
2312 	return 0;
2313 }
2314 
2315 /* Initialize UDP checksum. If exited with zero value (success),
2316  * CHECKSUM_UNNECESSARY means, that no more checks are required.
2317  * Otherwise, csum completion requires checksumming packet body,
2318  * including udp header and folding it to skb->csum.
2319  */
2320 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2321 				 int proto)
2322 {
2323 	int err;
2324 
2325 	UDP_SKB_CB(skb)->partial_cov = 0;
2326 	UDP_SKB_CB(skb)->cscov = skb->len;
2327 
2328 	if (proto == IPPROTO_UDPLITE) {
2329 		err = udplite_checksum_init(skb, uh);
2330 		if (err)
2331 			return err;
2332 
2333 		if (UDP_SKB_CB(skb)->partial_cov) {
2334 			skb->csum = inet_compute_pseudo(skb, proto);
2335 			return 0;
2336 		}
2337 	}
2338 
2339 	/* Note, we are only interested in != 0 or == 0, thus the
2340 	 * force to int.
2341 	 */
2342 	err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2343 							inet_compute_pseudo);
2344 	if (err)
2345 		return err;
2346 
2347 	if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2348 		/* If SW calculated the value, we know it's bad */
2349 		if (skb->csum_complete_sw)
2350 			return 1;
2351 
2352 		/* HW says the value is bad. Let's validate that.
2353 		 * skb->csum is no longer the full packet checksum,
2354 		 * so don't treat it as such.
2355 		 */
2356 		skb_checksum_complete_unset(skb);
2357 	}
2358 
2359 	return 0;
2360 }
2361 
2362 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2363  * return code conversion for ip layer consumption
2364  */
2365 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2366 			       struct udphdr *uh)
2367 {
2368 	int ret;
2369 
2370 	if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2371 		skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2372 
2373 	ret = udp_queue_rcv_skb(sk, skb);
2374 
2375 	/* a return value > 0 means to resubmit the input, but
2376 	 * it wants the return to be -protocol, or 0
2377 	 */
2378 	if (ret > 0)
2379 		return -ret;
2380 	return 0;
2381 }
2382 
2383 /*
2384  *	All we need to do is get the socket, and then do a checksum.
2385  */
2386 
2387 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2388 		   int proto)
2389 {
2390 	struct sock *sk = NULL;
2391 	struct udphdr *uh;
2392 	unsigned short ulen;
2393 	struct rtable *rt = skb_rtable(skb);
2394 	__be32 saddr, daddr;
2395 	struct net *net = dev_net(skb->dev);
2396 	bool refcounted;
2397 	int drop_reason;
2398 
2399 	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2400 
2401 	/*
2402 	 *  Validate the packet.
2403 	 */
2404 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2405 		goto drop;		/* No space for header. */
2406 
2407 	uh   = udp_hdr(skb);
2408 	ulen = ntohs(uh->len);
2409 	saddr = ip_hdr(skb)->saddr;
2410 	daddr = ip_hdr(skb)->daddr;
2411 
2412 	if (ulen > skb->len)
2413 		goto short_packet;
2414 
2415 	if (proto == IPPROTO_UDP) {
2416 		/* UDP validates ulen. */
2417 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2418 			goto short_packet;
2419 		uh = udp_hdr(skb);
2420 	}
2421 
2422 	if (udp4_csum_init(skb, uh, proto))
2423 		goto csum_error;
2424 
2425 	sk = inet_steal_sock(net, skb, sizeof(struct udphdr), saddr, uh->source, daddr, uh->dest,
2426 			     &refcounted, udp_ehashfn);
2427 	if (IS_ERR(sk))
2428 		goto no_sk;
2429 
2430 	if (sk) {
2431 		struct dst_entry *dst = skb_dst(skb);
2432 		int ret;
2433 
2434 		if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst))
2435 			udp_sk_rx_dst_set(sk, dst);
2436 
2437 		ret = udp_unicast_rcv_skb(sk, skb, uh);
2438 		if (refcounted)
2439 			sock_put(sk);
2440 		return ret;
2441 	}
2442 
2443 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2444 		return __udp4_lib_mcast_deliver(net, skb, uh,
2445 						saddr, daddr, udptable, proto);
2446 
2447 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2448 	if (sk)
2449 		return udp_unicast_rcv_skb(sk, skb, uh);
2450 no_sk:
2451 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2452 		goto drop;
2453 	nf_reset_ct(skb);
2454 
2455 	/* No socket. Drop packet silently, if checksum is wrong */
2456 	if (udp_lib_checksum_complete(skb))
2457 		goto csum_error;
2458 
2459 	drop_reason = SKB_DROP_REASON_NO_SOCKET;
2460 	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2461 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2462 
2463 	/*
2464 	 * Hmm.  We got an UDP packet to a port to which we
2465 	 * don't wanna listen.  Ignore it.
2466 	 */
2467 	sk_skb_reason_drop(sk, skb, drop_reason);
2468 	return 0;
2469 
2470 short_packet:
2471 	drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
2472 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2473 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2474 			    &saddr, ntohs(uh->source),
2475 			    ulen, skb->len,
2476 			    &daddr, ntohs(uh->dest));
2477 	goto drop;
2478 
2479 csum_error:
2480 	/*
2481 	 * RFC1122: OK.  Discards the bad packet silently (as far as
2482 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2483 	 */
2484 	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2485 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2486 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2487 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2488 			    ulen);
2489 	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2490 drop:
2491 	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2492 	sk_skb_reason_drop(sk, skb, drop_reason);
2493 	return 0;
2494 }
2495 
2496 /* We can only early demux multicast if there is a single matching socket.
2497  * If more than one socket found returns NULL
2498  */
2499 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2500 						  __be16 loc_port, __be32 loc_addr,
2501 						  __be16 rmt_port, __be32 rmt_addr,
2502 						  int dif, int sdif)
2503 {
2504 	struct udp_table *udptable = net->ipv4.udp_table;
2505 	unsigned short hnum = ntohs(loc_port);
2506 	struct sock *sk, *result;
2507 	struct udp_hslot *hslot;
2508 	unsigned int slot;
2509 
2510 	slot = udp_hashfn(net, hnum, udptable->mask);
2511 	hslot = &udptable->hash[slot];
2512 
2513 	/* Do not bother scanning a too big list */
2514 	if (hslot->count > 10)
2515 		return NULL;
2516 
2517 	result = NULL;
2518 	sk_for_each_rcu(sk, &hslot->head) {
2519 		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2520 					rmt_port, rmt_addr, dif, sdif, hnum)) {
2521 			if (result)
2522 				return NULL;
2523 			result = sk;
2524 		}
2525 	}
2526 
2527 	return result;
2528 }
2529 
2530 /* For unicast we should only early demux connected sockets or we can
2531  * break forwarding setups.  The chains here can be long so only check
2532  * if the first socket is an exact match and if not move on.
2533  */
2534 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2535 					    __be16 loc_port, __be32 loc_addr,
2536 					    __be16 rmt_port, __be32 rmt_addr,
2537 					    int dif, int sdif)
2538 {
2539 	struct udp_table *udptable = net->ipv4.udp_table;
2540 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2541 	unsigned short hnum = ntohs(loc_port);
2542 	unsigned int hash2, slot2;
2543 	struct udp_hslot *hslot2;
2544 	__portpair ports;
2545 	struct sock *sk;
2546 
2547 	hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2548 	slot2 = hash2 & udptable->mask;
2549 	hslot2 = &udptable->hash2[slot2];
2550 	ports = INET_COMBINED_PORTS(rmt_port, hnum);
2551 
2552 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2553 		if (inet_match(net, sk, acookie, ports, dif, sdif))
2554 			return sk;
2555 		/* Only check first socket in chain */
2556 		break;
2557 	}
2558 	return NULL;
2559 }
2560 
2561 int udp_v4_early_demux(struct sk_buff *skb)
2562 {
2563 	struct net *net = dev_net(skb->dev);
2564 	struct in_device *in_dev = NULL;
2565 	const struct iphdr *iph;
2566 	const struct udphdr *uh;
2567 	struct sock *sk = NULL;
2568 	struct dst_entry *dst;
2569 	int dif = skb->dev->ifindex;
2570 	int sdif = inet_sdif(skb);
2571 	int ours;
2572 
2573 	/* validate the packet */
2574 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2575 		return 0;
2576 
2577 	iph = ip_hdr(skb);
2578 	uh = udp_hdr(skb);
2579 
2580 	if (skb->pkt_type == PACKET_MULTICAST) {
2581 		in_dev = __in_dev_get_rcu(skb->dev);
2582 
2583 		if (!in_dev)
2584 			return 0;
2585 
2586 		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2587 				       iph->protocol);
2588 		if (!ours)
2589 			return 0;
2590 
2591 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2592 						   uh->source, iph->saddr,
2593 						   dif, sdif);
2594 	} else if (skb->pkt_type == PACKET_HOST) {
2595 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2596 					     uh->source, iph->saddr, dif, sdif);
2597 	}
2598 
2599 	if (!sk)
2600 		return 0;
2601 
2602 	skb->sk = sk;
2603 	DEBUG_NET_WARN_ON_ONCE(sk_is_refcounted(sk));
2604 	skb->destructor = sock_pfree;
2605 	dst = rcu_dereference(sk->sk_rx_dst);
2606 
2607 	if (dst)
2608 		dst = dst_check(dst, 0);
2609 	if (dst) {
2610 		u32 itag = 0;
2611 
2612 		/* set noref for now.
2613 		 * any place which wants to hold dst has to call
2614 		 * dst_hold_safe()
2615 		 */
2616 		skb_dst_set_noref(skb, dst);
2617 
2618 		/* for unconnected multicast sockets we need to validate
2619 		 * the source on each packet
2620 		 */
2621 		if (!inet_sk(sk)->inet_daddr && in_dev)
2622 			return ip_mc_validate_source(skb, iph->daddr,
2623 						     iph->saddr,
2624 						     iph->tos & INET_DSCP_MASK,
2625 						     skb->dev, in_dev, &itag);
2626 	}
2627 	return 0;
2628 }
2629 
2630 int udp_rcv(struct sk_buff *skb)
2631 {
2632 	return __udp4_lib_rcv(skb, dev_net(skb->dev)->ipv4.udp_table, IPPROTO_UDP);
2633 }
2634 
2635 void udp_destroy_sock(struct sock *sk)
2636 {
2637 	struct udp_sock *up = udp_sk(sk);
2638 	bool slow = lock_sock_fast(sk);
2639 
2640 	/* protects from races with udp_abort() */
2641 	sock_set_flag(sk, SOCK_DEAD);
2642 	udp_flush_pending_frames(sk);
2643 	unlock_sock_fast(sk, slow);
2644 	if (static_branch_unlikely(&udp_encap_needed_key)) {
2645 		if (up->encap_type) {
2646 			void (*encap_destroy)(struct sock *sk);
2647 			encap_destroy = READ_ONCE(up->encap_destroy);
2648 			if (encap_destroy)
2649 				encap_destroy(sk);
2650 		}
2651 		if (udp_test_bit(ENCAP_ENABLED, sk))
2652 			static_branch_dec(&udp_encap_needed_key);
2653 	}
2654 }
2655 
2656 static void set_xfrm_gro_udp_encap_rcv(__u16 encap_type, unsigned short family,
2657 				       struct sock *sk)
2658 {
2659 #ifdef CONFIG_XFRM
2660 	if (udp_test_bit(GRO_ENABLED, sk) && encap_type == UDP_ENCAP_ESPINUDP) {
2661 		if (family == AF_INET)
2662 			WRITE_ONCE(udp_sk(sk)->gro_receive, xfrm4_gro_udp_encap_rcv);
2663 		else if (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6)
2664 			WRITE_ONCE(udp_sk(sk)->gro_receive, ipv6_stub->xfrm6_gro_udp_encap_rcv);
2665 	}
2666 #endif
2667 }
2668 
2669 /*
2670  *	Socket option code for UDP
2671  */
2672 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2673 		       sockptr_t optval, unsigned int optlen,
2674 		       int (*push_pending_frames)(struct sock *))
2675 {
2676 	struct udp_sock *up = udp_sk(sk);
2677 	int val, valbool;
2678 	int err = 0;
2679 	int is_udplite = IS_UDPLITE(sk);
2680 
2681 	if (level == SOL_SOCKET) {
2682 		err = sk_setsockopt(sk, level, optname, optval, optlen);
2683 
2684 		if (optname == SO_RCVBUF || optname == SO_RCVBUFFORCE) {
2685 			sockopt_lock_sock(sk);
2686 			/* paired with READ_ONCE in udp_rmem_release() */
2687 			WRITE_ONCE(up->forward_threshold, sk->sk_rcvbuf >> 2);
2688 			sockopt_release_sock(sk);
2689 		}
2690 		return err;
2691 	}
2692 
2693 	if (optlen < sizeof(int))
2694 		return -EINVAL;
2695 
2696 	if (copy_from_sockptr(&val, optval, sizeof(val)))
2697 		return -EFAULT;
2698 
2699 	valbool = val ? 1 : 0;
2700 
2701 	switch (optname) {
2702 	case UDP_CORK:
2703 		if (val != 0) {
2704 			udp_set_bit(CORK, sk);
2705 		} else {
2706 			udp_clear_bit(CORK, sk);
2707 			lock_sock(sk);
2708 			push_pending_frames(sk);
2709 			release_sock(sk);
2710 		}
2711 		break;
2712 
2713 	case UDP_ENCAP:
2714 		switch (val) {
2715 		case 0:
2716 #ifdef CONFIG_XFRM
2717 		case UDP_ENCAP_ESPINUDP:
2718 			set_xfrm_gro_udp_encap_rcv(val, sk->sk_family, sk);
2719 #if IS_ENABLED(CONFIG_IPV6)
2720 			if (sk->sk_family == AF_INET6)
2721 				WRITE_ONCE(up->encap_rcv,
2722 					   ipv6_stub->xfrm6_udp_encap_rcv);
2723 			else
2724 #endif
2725 				WRITE_ONCE(up->encap_rcv,
2726 					   xfrm4_udp_encap_rcv);
2727 #endif
2728 			fallthrough;
2729 		case UDP_ENCAP_L2TPINUDP:
2730 			WRITE_ONCE(up->encap_type, val);
2731 			udp_tunnel_encap_enable(sk);
2732 			break;
2733 		default:
2734 			err = -ENOPROTOOPT;
2735 			break;
2736 		}
2737 		break;
2738 
2739 	case UDP_NO_CHECK6_TX:
2740 		udp_set_no_check6_tx(sk, valbool);
2741 		break;
2742 
2743 	case UDP_NO_CHECK6_RX:
2744 		udp_set_no_check6_rx(sk, valbool);
2745 		break;
2746 
2747 	case UDP_SEGMENT:
2748 		if (val < 0 || val > USHRT_MAX)
2749 			return -EINVAL;
2750 		WRITE_ONCE(up->gso_size, val);
2751 		break;
2752 
2753 	case UDP_GRO:
2754 
2755 		/* when enabling GRO, accept the related GSO packet type */
2756 		if (valbool)
2757 			udp_tunnel_encap_enable(sk);
2758 		udp_assign_bit(GRO_ENABLED, sk, valbool);
2759 		udp_assign_bit(ACCEPT_L4, sk, valbool);
2760 		set_xfrm_gro_udp_encap_rcv(up->encap_type, sk->sk_family, sk);
2761 		break;
2762 
2763 	/*
2764 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2765 	 */
2766 	/* The sender sets actual checksum coverage length via this option.
2767 	 * The case coverage > packet length is handled by send module. */
2768 	case UDPLITE_SEND_CSCOV:
2769 		if (!is_udplite)         /* Disable the option on UDP sockets */
2770 			return -ENOPROTOOPT;
2771 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2772 			val = 8;
2773 		else if (val > USHRT_MAX)
2774 			val = USHRT_MAX;
2775 		WRITE_ONCE(up->pcslen, val);
2776 		udp_set_bit(UDPLITE_SEND_CC, sk);
2777 		break;
2778 
2779 	/* The receiver specifies a minimum checksum coverage value. To make
2780 	 * sense, this should be set to at least 8 (as done below). If zero is
2781 	 * used, this again means full checksum coverage.                     */
2782 	case UDPLITE_RECV_CSCOV:
2783 		if (!is_udplite)         /* Disable the option on UDP sockets */
2784 			return -ENOPROTOOPT;
2785 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2786 			val = 8;
2787 		else if (val > USHRT_MAX)
2788 			val = USHRT_MAX;
2789 		WRITE_ONCE(up->pcrlen, val);
2790 		udp_set_bit(UDPLITE_RECV_CC, sk);
2791 		break;
2792 
2793 	default:
2794 		err = -ENOPROTOOPT;
2795 		break;
2796 	}
2797 
2798 	return err;
2799 }
2800 EXPORT_SYMBOL(udp_lib_setsockopt);
2801 
2802 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
2803 		   unsigned int optlen)
2804 {
2805 	if (level == SOL_UDP  ||  level == SOL_UDPLITE || level == SOL_SOCKET)
2806 		return udp_lib_setsockopt(sk, level, optname,
2807 					  optval, optlen,
2808 					  udp_push_pending_frames);
2809 	return ip_setsockopt(sk, level, optname, optval, optlen);
2810 }
2811 
2812 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2813 		       char __user *optval, int __user *optlen)
2814 {
2815 	struct udp_sock *up = udp_sk(sk);
2816 	int val, len;
2817 
2818 	if (get_user(len, optlen))
2819 		return -EFAULT;
2820 
2821 	if (len < 0)
2822 		return -EINVAL;
2823 
2824 	len = min_t(unsigned int, len, sizeof(int));
2825 
2826 	switch (optname) {
2827 	case UDP_CORK:
2828 		val = udp_test_bit(CORK, sk);
2829 		break;
2830 
2831 	case UDP_ENCAP:
2832 		val = READ_ONCE(up->encap_type);
2833 		break;
2834 
2835 	case UDP_NO_CHECK6_TX:
2836 		val = udp_get_no_check6_tx(sk);
2837 		break;
2838 
2839 	case UDP_NO_CHECK6_RX:
2840 		val = udp_get_no_check6_rx(sk);
2841 		break;
2842 
2843 	case UDP_SEGMENT:
2844 		val = READ_ONCE(up->gso_size);
2845 		break;
2846 
2847 	case UDP_GRO:
2848 		val = udp_test_bit(GRO_ENABLED, sk);
2849 		break;
2850 
2851 	/* The following two cannot be changed on UDP sockets, the return is
2852 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2853 	case UDPLITE_SEND_CSCOV:
2854 		val = READ_ONCE(up->pcslen);
2855 		break;
2856 
2857 	case UDPLITE_RECV_CSCOV:
2858 		val = READ_ONCE(up->pcrlen);
2859 		break;
2860 
2861 	default:
2862 		return -ENOPROTOOPT;
2863 	}
2864 
2865 	if (put_user(len, optlen))
2866 		return -EFAULT;
2867 	if (copy_to_user(optval, &val, len))
2868 		return -EFAULT;
2869 	return 0;
2870 }
2871 EXPORT_SYMBOL(udp_lib_getsockopt);
2872 
2873 int udp_getsockopt(struct sock *sk, int level, int optname,
2874 		   char __user *optval, int __user *optlen)
2875 {
2876 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2877 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2878 	return ip_getsockopt(sk, level, optname, optval, optlen);
2879 }
2880 
2881 /**
2882  * 	udp_poll - wait for a UDP event.
2883  *	@file: - file struct
2884  *	@sock: - socket
2885  *	@wait: - poll table
2886  *
2887  *	This is same as datagram poll, except for the special case of
2888  *	blocking sockets. If application is using a blocking fd
2889  *	and a packet with checksum error is in the queue;
2890  *	then it could get return from select indicating data available
2891  *	but then block when reading it. Add special case code
2892  *	to work around these arguably broken applications.
2893  */
2894 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2895 {
2896 	__poll_t mask = datagram_poll(file, sock, wait);
2897 	struct sock *sk = sock->sk;
2898 
2899 	if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
2900 		mask |= EPOLLIN | EPOLLRDNORM;
2901 
2902 	/* Check for false positives due to checksum errors */
2903 	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2904 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2905 		mask &= ~(EPOLLIN | EPOLLRDNORM);
2906 
2907 	/* psock ingress_msg queue should not contain any bad checksum frames */
2908 	if (sk_is_readable(sk))
2909 		mask |= EPOLLIN | EPOLLRDNORM;
2910 	return mask;
2911 
2912 }
2913 EXPORT_SYMBOL(udp_poll);
2914 
2915 int udp_abort(struct sock *sk, int err)
2916 {
2917 	if (!has_current_bpf_ctx())
2918 		lock_sock(sk);
2919 
2920 	/* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing
2921 	 * with close()
2922 	 */
2923 	if (sock_flag(sk, SOCK_DEAD))
2924 		goto out;
2925 
2926 	sk->sk_err = err;
2927 	sk_error_report(sk);
2928 	__udp_disconnect(sk, 0);
2929 
2930 out:
2931 	if (!has_current_bpf_ctx())
2932 		release_sock(sk);
2933 
2934 	return 0;
2935 }
2936 EXPORT_SYMBOL_GPL(udp_abort);
2937 
2938 struct proto udp_prot = {
2939 	.name			= "UDP",
2940 	.owner			= THIS_MODULE,
2941 	.close			= udp_lib_close,
2942 	.pre_connect		= udp_pre_connect,
2943 	.connect		= ip4_datagram_connect,
2944 	.disconnect		= udp_disconnect,
2945 	.ioctl			= udp_ioctl,
2946 	.init			= udp_init_sock,
2947 	.destroy		= udp_destroy_sock,
2948 	.setsockopt		= udp_setsockopt,
2949 	.getsockopt		= udp_getsockopt,
2950 	.sendmsg		= udp_sendmsg,
2951 	.recvmsg		= udp_recvmsg,
2952 	.splice_eof		= udp_splice_eof,
2953 	.release_cb		= ip4_datagram_release_cb,
2954 	.hash			= udp_lib_hash,
2955 	.unhash			= udp_lib_unhash,
2956 	.rehash			= udp_v4_rehash,
2957 	.get_port		= udp_v4_get_port,
2958 	.put_port		= udp_lib_unhash,
2959 #ifdef CONFIG_BPF_SYSCALL
2960 	.psock_update_sk_prot	= udp_bpf_update_proto,
2961 #endif
2962 	.memory_allocated	= &udp_memory_allocated,
2963 	.per_cpu_fw_alloc	= &udp_memory_per_cpu_fw_alloc,
2964 
2965 	.sysctl_mem		= sysctl_udp_mem,
2966 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2967 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2968 	.obj_size		= sizeof(struct udp_sock),
2969 	.h.udp_table		= NULL,
2970 	.diag_destroy		= udp_abort,
2971 };
2972 EXPORT_SYMBOL(udp_prot);
2973 
2974 /* ------------------------------------------------------------------------ */
2975 #ifdef CONFIG_PROC_FS
2976 
2977 static unsigned short seq_file_family(const struct seq_file *seq);
2978 static bool seq_sk_match(struct seq_file *seq, const struct sock *sk)
2979 {
2980 	unsigned short family = seq_file_family(seq);
2981 
2982 	/* AF_UNSPEC is used as a match all */
2983 	return ((family == AF_UNSPEC || family == sk->sk_family) &&
2984 		net_eq(sock_net(sk), seq_file_net(seq)));
2985 }
2986 
2987 #ifdef CONFIG_BPF_SYSCALL
2988 static const struct seq_operations bpf_iter_udp_seq_ops;
2989 #endif
2990 static struct udp_table *udp_get_table_seq(struct seq_file *seq,
2991 					   struct net *net)
2992 {
2993 	const struct udp_seq_afinfo *afinfo;
2994 
2995 #ifdef CONFIG_BPF_SYSCALL
2996 	if (seq->op == &bpf_iter_udp_seq_ops)
2997 		return net->ipv4.udp_table;
2998 #endif
2999 
3000 	afinfo = pde_data(file_inode(seq->file));
3001 	return afinfo->udp_table ? : net->ipv4.udp_table;
3002 }
3003 
3004 static struct sock *udp_get_first(struct seq_file *seq, int start)
3005 {
3006 	struct udp_iter_state *state = seq->private;
3007 	struct net *net = seq_file_net(seq);
3008 	struct udp_table *udptable;
3009 	struct sock *sk;
3010 
3011 	udptable = udp_get_table_seq(seq, net);
3012 
3013 	for (state->bucket = start; state->bucket <= udptable->mask;
3014 	     ++state->bucket) {
3015 		struct udp_hslot *hslot = &udptable->hash[state->bucket];
3016 
3017 		if (hlist_empty(&hslot->head))
3018 			continue;
3019 
3020 		spin_lock_bh(&hslot->lock);
3021 		sk_for_each(sk, &hslot->head) {
3022 			if (seq_sk_match(seq, sk))
3023 				goto found;
3024 		}
3025 		spin_unlock_bh(&hslot->lock);
3026 	}
3027 	sk = NULL;
3028 found:
3029 	return sk;
3030 }
3031 
3032 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
3033 {
3034 	struct udp_iter_state *state = seq->private;
3035 	struct net *net = seq_file_net(seq);
3036 	struct udp_table *udptable;
3037 
3038 	do {
3039 		sk = sk_next(sk);
3040 	} while (sk && !seq_sk_match(seq, sk));
3041 
3042 	if (!sk) {
3043 		udptable = udp_get_table_seq(seq, net);
3044 
3045 		if (state->bucket <= udptable->mask)
3046 			spin_unlock_bh(&udptable->hash[state->bucket].lock);
3047 
3048 		return udp_get_first(seq, state->bucket + 1);
3049 	}
3050 	return sk;
3051 }
3052 
3053 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
3054 {
3055 	struct sock *sk = udp_get_first(seq, 0);
3056 
3057 	if (sk)
3058 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
3059 			--pos;
3060 	return pos ? NULL : sk;
3061 }
3062 
3063 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
3064 {
3065 	struct udp_iter_state *state = seq->private;
3066 	state->bucket = MAX_UDP_PORTS;
3067 
3068 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
3069 }
3070 EXPORT_SYMBOL(udp_seq_start);
3071 
3072 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3073 {
3074 	struct sock *sk;
3075 
3076 	if (v == SEQ_START_TOKEN)
3077 		sk = udp_get_idx(seq, 0);
3078 	else
3079 		sk = udp_get_next(seq, v);
3080 
3081 	++*pos;
3082 	return sk;
3083 }
3084 EXPORT_SYMBOL(udp_seq_next);
3085 
3086 void udp_seq_stop(struct seq_file *seq, void *v)
3087 {
3088 	struct udp_iter_state *state = seq->private;
3089 	struct udp_table *udptable;
3090 
3091 	udptable = udp_get_table_seq(seq, seq_file_net(seq));
3092 
3093 	if (state->bucket <= udptable->mask)
3094 		spin_unlock_bh(&udptable->hash[state->bucket].lock);
3095 }
3096 EXPORT_SYMBOL(udp_seq_stop);
3097 
3098 /* ------------------------------------------------------------------------ */
3099 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
3100 		int bucket)
3101 {
3102 	struct inet_sock *inet = inet_sk(sp);
3103 	__be32 dest = inet->inet_daddr;
3104 	__be32 src  = inet->inet_rcv_saddr;
3105 	__u16 destp	  = ntohs(inet->inet_dport);
3106 	__u16 srcp	  = ntohs(inet->inet_sport);
3107 
3108 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
3109 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
3110 		bucket, src, srcp, dest, destp, sp->sk_state,
3111 		sk_wmem_alloc_get(sp),
3112 		udp_rqueue_get(sp),
3113 		0, 0L, 0,
3114 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
3115 		0, sock_i_ino(sp),
3116 		refcount_read(&sp->sk_refcnt), sp,
3117 		atomic_read(&sp->sk_drops));
3118 }
3119 
3120 int udp4_seq_show(struct seq_file *seq, void *v)
3121 {
3122 	seq_setwidth(seq, 127);
3123 	if (v == SEQ_START_TOKEN)
3124 		seq_puts(seq, "   sl  local_address rem_address   st tx_queue "
3125 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
3126 			   "inode ref pointer drops");
3127 	else {
3128 		struct udp_iter_state *state = seq->private;
3129 
3130 		udp4_format_sock(v, seq, state->bucket);
3131 	}
3132 	seq_pad(seq, '\n');
3133 	return 0;
3134 }
3135 
3136 #ifdef CONFIG_BPF_SYSCALL
3137 struct bpf_iter__udp {
3138 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
3139 	__bpf_md_ptr(struct udp_sock *, udp_sk);
3140 	uid_t uid __aligned(8);
3141 	int bucket __aligned(8);
3142 };
3143 
3144 struct bpf_udp_iter_state {
3145 	struct udp_iter_state state;
3146 	unsigned int cur_sk;
3147 	unsigned int end_sk;
3148 	unsigned int max_sk;
3149 	int offset;
3150 	struct sock **batch;
3151 	bool st_bucket_done;
3152 };
3153 
3154 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3155 				      unsigned int new_batch_sz);
3156 static struct sock *bpf_iter_udp_batch(struct seq_file *seq)
3157 {
3158 	struct bpf_udp_iter_state *iter = seq->private;
3159 	struct udp_iter_state *state = &iter->state;
3160 	struct net *net = seq_file_net(seq);
3161 	int resume_bucket, resume_offset;
3162 	struct udp_table *udptable;
3163 	unsigned int batch_sks = 0;
3164 	bool resized = false;
3165 	struct sock *sk;
3166 
3167 	resume_bucket = state->bucket;
3168 	resume_offset = iter->offset;
3169 
3170 	/* The current batch is done, so advance the bucket. */
3171 	if (iter->st_bucket_done)
3172 		state->bucket++;
3173 
3174 	udptable = udp_get_table_seq(seq, net);
3175 
3176 again:
3177 	/* New batch for the next bucket.
3178 	 * Iterate over the hash table to find a bucket with sockets matching
3179 	 * the iterator attributes, and return the first matching socket from
3180 	 * the bucket. The remaining matched sockets from the bucket are batched
3181 	 * before releasing the bucket lock. This allows BPF programs that are
3182 	 * called in seq_show to acquire the bucket lock if needed.
3183 	 */
3184 	iter->cur_sk = 0;
3185 	iter->end_sk = 0;
3186 	iter->st_bucket_done = false;
3187 	batch_sks = 0;
3188 
3189 	for (; state->bucket <= udptable->mask; state->bucket++) {
3190 		struct udp_hslot *hslot2 = &udptable->hash2[state->bucket];
3191 
3192 		if (hlist_empty(&hslot2->head))
3193 			continue;
3194 
3195 		iter->offset = 0;
3196 		spin_lock_bh(&hslot2->lock);
3197 		udp_portaddr_for_each_entry(sk, &hslot2->head) {
3198 			if (seq_sk_match(seq, sk)) {
3199 				/* Resume from the last iterated socket at the
3200 				 * offset in the bucket before iterator was stopped.
3201 				 */
3202 				if (state->bucket == resume_bucket &&
3203 				    iter->offset < resume_offset) {
3204 					++iter->offset;
3205 					continue;
3206 				}
3207 				if (iter->end_sk < iter->max_sk) {
3208 					sock_hold(sk);
3209 					iter->batch[iter->end_sk++] = sk;
3210 				}
3211 				batch_sks++;
3212 			}
3213 		}
3214 		spin_unlock_bh(&hslot2->lock);
3215 
3216 		if (iter->end_sk)
3217 			break;
3218 	}
3219 
3220 	/* All done: no batch made. */
3221 	if (!iter->end_sk)
3222 		return NULL;
3223 
3224 	if (iter->end_sk == batch_sks) {
3225 		/* Batching is done for the current bucket; return the first
3226 		 * socket to be iterated from the batch.
3227 		 */
3228 		iter->st_bucket_done = true;
3229 		goto done;
3230 	}
3231 	if (!resized && !bpf_iter_udp_realloc_batch(iter, batch_sks * 3 / 2)) {
3232 		resized = true;
3233 		/* After allocating a larger batch, retry one more time to grab
3234 		 * the whole bucket.
3235 		 */
3236 		goto again;
3237 	}
3238 done:
3239 	return iter->batch[0];
3240 }
3241 
3242 static void *bpf_iter_udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3243 {
3244 	struct bpf_udp_iter_state *iter = seq->private;
3245 	struct sock *sk;
3246 
3247 	/* Whenever seq_next() is called, the iter->cur_sk is
3248 	 * done with seq_show(), so unref the iter->cur_sk.
3249 	 */
3250 	if (iter->cur_sk < iter->end_sk) {
3251 		sock_put(iter->batch[iter->cur_sk++]);
3252 		++iter->offset;
3253 	}
3254 
3255 	/* After updating iter->cur_sk, check if there are more sockets
3256 	 * available in the current bucket batch.
3257 	 */
3258 	if (iter->cur_sk < iter->end_sk)
3259 		sk = iter->batch[iter->cur_sk];
3260 	else
3261 		/* Prepare a new batch. */
3262 		sk = bpf_iter_udp_batch(seq);
3263 
3264 	++*pos;
3265 	return sk;
3266 }
3267 
3268 static void *bpf_iter_udp_seq_start(struct seq_file *seq, loff_t *pos)
3269 {
3270 	/* bpf iter does not support lseek, so it always
3271 	 * continue from where it was stop()-ped.
3272 	 */
3273 	if (*pos)
3274 		return bpf_iter_udp_batch(seq);
3275 
3276 	return SEQ_START_TOKEN;
3277 }
3278 
3279 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3280 			     struct udp_sock *udp_sk, uid_t uid, int bucket)
3281 {
3282 	struct bpf_iter__udp ctx;
3283 
3284 	meta->seq_num--;  /* skip SEQ_START_TOKEN */
3285 	ctx.meta = meta;
3286 	ctx.udp_sk = udp_sk;
3287 	ctx.uid = uid;
3288 	ctx.bucket = bucket;
3289 	return bpf_iter_run_prog(prog, &ctx);
3290 }
3291 
3292 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v)
3293 {
3294 	struct udp_iter_state *state = seq->private;
3295 	struct bpf_iter_meta meta;
3296 	struct bpf_prog *prog;
3297 	struct sock *sk = v;
3298 	uid_t uid;
3299 	int ret;
3300 
3301 	if (v == SEQ_START_TOKEN)
3302 		return 0;
3303 
3304 	lock_sock(sk);
3305 
3306 	if (unlikely(sk_unhashed(sk))) {
3307 		ret = SEQ_SKIP;
3308 		goto unlock;
3309 	}
3310 
3311 	uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3312 	meta.seq = seq;
3313 	prog = bpf_iter_get_info(&meta, false);
3314 	ret = udp_prog_seq_show(prog, &meta, v, uid, state->bucket);
3315 
3316 unlock:
3317 	release_sock(sk);
3318 	return ret;
3319 }
3320 
3321 static void bpf_iter_udp_put_batch(struct bpf_udp_iter_state *iter)
3322 {
3323 	while (iter->cur_sk < iter->end_sk)
3324 		sock_put(iter->batch[iter->cur_sk++]);
3325 }
3326 
3327 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v)
3328 {
3329 	struct bpf_udp_iter_state *iter = seq->private;
3330 	struct bpf_iter_meta meta;
3331 	struct bpf_prog *prog;
3332 
3333 	if (!v) {
3334 		meta.seq = seq;
3335 		prog = bpf_iter_get_info(&meta, true);
3336 		if (prog)
3337 			(void)udp_prog_seq_show(prog, &meta, v, 0, 0);
3338 	}
3339 
3340 	if (iter->cur_sk < iter->end_sk) {
3341 		bpf_iter_udp_put_batch(iter);
3342 		iter->st_bucket_done = false;
3343 	}
3344 }
3345 
3346 static const struct seq_operations bpf_iter_udp_seq_ops = {
3347 	.start		= bpf_iter_udp_seq_start,
3348 	.next		= bpf_iter_udp_seq_next,
3349 	.stop		= bpf_iter_udp_seq_stop,
3350 	.show		= bpf_iter_udp_seq_show,
3351 };
3352 #endif
3353 
3354 static unsigned short seq_file_family(const struct seq_file *seq)
3355 {
3356 	const struct udp_seq_afinfo *afinfo;
3357 
3358 #ifdef CONFIG_BPF_SYSCALL
3359 	/* BPF iterator: bpf programs to filter sockets. */
3360 	if (seq->op == &bpf_iter_udp_seq_ops)
3361 		return AF_UNSPEC;
3362 #endif
3363 
3364 	/* Proc fs iterator */
3365 	afinfo = pde_data(file_inode(seq->file));
3366 	return afinfo->family;
3367 }
3368 
3369 const struct seq_operations udp_seq_ops = {
3370 	.start		= udp_seq_start,
3371 	.next		= udp_seq_next,
3372 	.stop		= udp_seq_stop,
3373 	.show		= udp4_seq_show,
3374 };
3375 EXPORT_SYMBOL(udp_seq_ops);
3376 
3377 static struct udp_seq_afinfo udp4_seq_afinfo = {
3378 	.family		= AF_INET,
3379 	.udp_table	= NULL,
3380 };
3381 
3382 static int __net_init udp4_proc_init_net(struct net *net)
3383 {
3384 	if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
3385 			sizeof(struct udp_iter_state), &udp4_seq_afinfo))
3386 		return -ENOMEM;
3387 	return 0;
3388 }
3389 
3390 static void __net_exit udp4_proc_exit_net(struct net *net)
3391 {
3392 	remove_proc_entry("udp", net->proc_net);
3393 }
3394 
3395 static struct pernet_operations udp4_net_ops = {
3396 	.init = udp4_proc_init_net,
3397 	.exit = udp4_proc_exit_net,
3398 };
3399 
3400 int __init udp4_proc_init(void)
3401 {
3402 	return register_pernet_subsys(&udp4_net_ops);
3403 }
3404 
3405 void udp4_proc_exit(void)
3406 {
3407 	unregister_pernet_subsys(&udp4_net_ops);
3408 }
3409 #endif /* CONFIG_PROC_FS */
3410 
3411 static __initdata unsigned long uhash_entries;
3412 static int __init set_uhash_entries(char *str)
3413 {
3414 	ssize_t ret;
3415 
3416 	if (!str)
3417 		return 0;
3418 
3419 	ret = kstrtoul(str, 0, &uhash_entries);
3420 	if (ret)
3421 		return 0;
3422 
3423 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
3424 		uhash_entries = UDP_HTABLE_SIZE_MIN;
3425 	return 1;
3426 }
3427 __setup("uhash_entries=", set_uhash_entries);
3428 
3429 void __init udp_table_init(struct udp_table *table, const char *name)
3430 {
3431 	unsigned int i;
3432 
3433 	table->hash = alloc_large_system_hash(name,
3434 					      2 * sizeof(struct udp_hslot),
3435 					      uhash_entries,
3436 					      21, /* one slot per 2 MB */
3437 					      0,
3438 					      &table->log,
3439 					      &table->mask,
3440 					      UDP_HTABLE_SIZE_MIN,
3441 					      UDP_HTABLE_SIZE_MAX);
3442 
3443 	table->hash2 = table->hash + (table->mask + 1);
3444 	for (i = 0; i <= table->mask; i++) {
3445 		INIT_HLIST_HEAD(&table->hash[i].head);
3446 		table->hash[i].count = 0;
3447 		spin_lock_init(&table->hash[i].lock);
3448 	}
3449 	for (i = 0; i <= table->mask; i++) {
3450 		INIT_HLIST_HEAD(&table->hash2[i].head);
3451 		table->hash2[i].count = 0;
3452 		spin_lock_init(&table->hash2[i].lock);
3453 	}
3454 }
3455 
3456 u32 udp_flow_hashrnd(void)
3457 {
3458 	static u32 hashrnd __read_mostly;
3459 
3460 	net_get_random_once(&hashrnd, sizeof(hashrnd));
3461 
3462 	return hashrnd;
3463 }
3464 EXPORT_SYMBOL(udp_flow_hashrnd);
3465 
3466 static void __net_init udp_sysctl_init(struct net *net)
3467 {
3468 	net->ipv4.sysctl_udp_rmem_min = PAGE_SIZE;
3469 	net->ipv4.sysctl_udp_wmem_min = PAGE_SIZE;
3470 
3471 #ifdef CONFIG_NET_L3_MASTER_DEV
3472 	net->ipv4.sysctl_udp_l3mdev_accept = 0;
3473 #endif
3474 }
3475 
3476 static struct udp_table __net_init *udp_pernet_table_alloc(unsigned int hash_entries)
3477 {
3478 	struct udp_table *udptable;
3479 	int i;
3480 
3481 	udptable = kmalloc(sizeof(*udptable), GFP_KERNEL);
3482 	if (!udptable)
3483 		goto out;
3484 
3485 	udptable->hash = vmalloc_huge(hash_entries * 2 * sizeof(struct udp_hslot),
3486 				      GFP_KERNEL_ACCOUNT);
3487 	if (!udptable->hash)
3488 		goto free_table;
3489 
3490 	udptable->hash2 = udptable->hash + hash_entries;
3491 	udptable->mask = hash_entries - 1;
3492 	udptable->log = ilog2(hash_entries);
3493 
3494 	for (i = 0; i < hash_entries; i++) {
3495 		INIT_HLIST_HEAD(&udptable->hash[i].head);
3496 		udptable->hash[i].count = 0;
3497 		spin_lock_init(&udptable->hash[i].lock);
3498 
3499 		INIT_HLIST_HEAD(&udptable->hash2[i].head);
3500 		udptable->hash2[i].count = 0;
3501 		spin_lock_init(&udptable->hash2[i].lock);
3502 	}
3503 
3504 	return udptable;
3505 
3506 free_table:
3507 	kfree(udptable);
3508 out:
3509 	return NULL;
3510 }
3511 
3512 static void __net_exit udp_pernet_table_free(struct net *net)
3513 {
3514 	struct udp_table *udptable = net->ipv4.udp_table;
3515 
3516 	if (udptable == &udp_table)
3517 		return;
3518 
3519 	kvfree(udptable->hash);
3520 	kfree(udptable);
3521 }
3522 
3523 static void __net_init udp_set_table(struct net *net)
3524 {
3525 	struct udp_table *udptable;
3526 	unsigned int hash_entries;
3527 	struct net *old_net;
3528 
3529 	if (net_eq(net, &init_net))
3530 		goto fallback;
3531 
3532 	old_net = current->nsproxy->net_ns;
3533 	hash_entries = READ_ONCE(old_net->ipv4.sysctl_udp_child_hash_entries);
3534 	if (!hash_entries)
3535 		goto fallback;
3536 
3537 	/* Set min to keep the bitmap on stack in udp_lib_get_port() */
3538 	if (hash_entries < UDP_HTABLE_SIZE_MIN_PERNET)
3539 		hash_entries = UDP_HTABLE_SIZE_MIN_PERNET;
3540 	else
3541 		hash_entries = roundup_pow_of_two(hash_entries);
3542 
3543 	udptable = udp_pernet_table_alloc(hash_entries);
3544 	if (udptable) {
3545 		net->ipv4.udp_table = udptable;
3546 	} else {
3547 		pr_warn("Failed to allocate UDP hash table (entries: %u) "
3548 			"for a netns, fallback to the global one\n",
3549 			hash_entries);
3550 fallback:
3551 		net->ipv4.udp_table = &udp_table;
3552 	}
3553 }
3554 
3555 static int __net_init udp_pernet_init(struct net *net)
3556 {
3557 	udp_sysctl_init(net);
3558 	udp_set_table(net);
3559 
3560 	return 0;
3561 }
3562 
3563 static void __net_exit udp_pernet_exit(struct net *net)
3564 {
3565 	udp_pernet_table_free(net);
3566 }
3567 
3568 static struct pernet_operations __net_initdata udp_sysctl_ops = {
3569 	.init	= udp_pernet_init,
3570 	.exit	= udp_pernet_exit,
3571 };
3572 
3573 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3574 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta,
3575 		     struct udp_sock *udp_sk, uid_t uid, int bucket)
3576 
3577 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3578 				      unsigned int new_batch_sz)
3579 {
3580 	struct sock **new_batch;
3581 
3582 	new_batch = kvmalloc_array(new_batch_sz, sizeof(*new_batch),
3583 				   GFP_USER | __GFP_NOWARN);
3584 	if (!new_batch)
3585 		return -ENOMEM;
3586 
3587 	bpf_iter_udp_put_batch(iter);
3588 	kvfree(iter->batch);
3589 	iter->batch = new_batch;
3590 	iter->max_sk = new_batch_sz;
3591 
3592 	return 0;
3593 }
3594 
3595 #define INIT_BATCH_SZ 16
3596 
3597 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux)
3598 {
3599 	struct bpf_udp_iter_state *iter = priv_data;
3600 	int ret;
3601 
3602 	ret = bpf_iter_init_seq_net(priv_data, aux);
3603 	if (ret)
3604 		return ret;
3605 
3606 	ret = bpf_iter_udp_realloc_batch(iter, INIT_BATCH_SZ);
3607 	if (ret)
3608 		bpf_iter_fini_seq_net(priv_data);
3609 
3610 	return ret;
3611 }
3612 
3613 static void bpf_iter_fini_udp(void *priv_data)
3614 {
3615 	struct bpf_udp_iter_state *iter = priv_data;
3616 
3617 	bpf_iter_fini_seq_net(priv_data);
3618 	kvfree(iter->batch);
3619 }
3620 
3621 static const struct bpf_iter_seq_info udp_seq_info = {
3622 	.seq_ops		= &bpf_iter_udp_seq_ops,
3623 	.init_seq_private	= bpf_iter_init_udp,
3624 	.fini_seq_private	= bpf_iter_fini_udp,
3625 	.seq_priv_size		= sizeof(struct bpf_udp_iter_state),
3626 };
3627 
3628 static struct bpf_iter_reg udp_reg_info = {
3629 	.target			= "udp",
3630 	.ctx_arg_info_size	= 1,
3631 	.ctx_arg_info		= {
3632 		{ offsetof(struct bpf_iter__udp, udp_sk),
3633 		  PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED },
3634 	},
3635 	.seq_info		= &udp_seq_info,
3636 };
3637 
3638 static void __init bpf_iter_register(void)
3639 {
3640 	udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP];
3641 	if (bpf_iter_reg_target(&udp_reg_info))
3642 		pr_warn("Warning: could not register bpf iterator udp\n");
3643 }
3644 #endif
3645 
3646 void __init udp_init(void)
3647 {
3648 	unsigned long limit;
3649 	unsigned int i;
3650 
3651 	udp_table_init(&udp_table, "UDP");
3652 	limit = nr_free_buffer_pages() / 8;
3653 	limit = max(limit, 128UL);
3654 	sysctl_udp_mem[0] = limit / 4 * 3;
3655 	sysctl_udp_mem[1] = limit;
3656 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3657 
3658 	/* 16 spinlocks per cpu */
3659 	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3660 	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3661 				GFP_KERNEL);
3662 	if (!udp_busylocks)
3663 		panic("UDP: failed to alloc udp_busylocks\n");
3664 	for (i = 0; i < (1U << udp_busylocks_log); i++)
3665 		spin_lock_init(udp_busylocks + i);
3666 
3667 	if (register_pernet_subsys(&udp_sysctl_ops))
3668 		panic("UDP: failed to init sysctl parameters.\n");
3669 
3670 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3671 	bpf_iter_register();
3672 #endif
3673 }
3674