1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * The User Datagram Protocol (UDP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 11 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 12 * Hirokazu Takahashi, <taka@valinux.co.jp> 13 * 14 * Fixes: 15 * Alan Cox : verify_area() calls 16 * Alan Cox : stopped close while in use off icmp 17 * messages. Not a fix but a botch that 18 * for udp at least is 'valid'. 19 * Alan Cox : Fixed icmp handling properly 20 * Alan Cox : Correct error for oversized datagrams 21 * Alan Cox : Tidied select() semantics. 22 * Alan Cox : udp_err() fixed properly, also now 23 * select and read wake correctly on errors 24 * Alan Cox : udp_send verify_area moved to avoid mem leak 25 * Alan Cox : UDP can count its memory 26 * Alan Cox : send to an unknown connection causes 27 * an ECONNREFUSED off the icmp, but 28 * does NOT close. 29 * Alan Cox : Switched to new sk_buff handlers. No more backlog! 30 * Alan Cox : Using generic datagram code. Even smaller and the PEEK 31 * bug no longer crashes it. 32 * Fred Van Kempen : Net2e support for sk->broadcast. 33 * Alan Cox : Uses skb_free_datagram 34 * Alan Cox : Added get/set sockopt support. 35 * Alan Cox : Broadcasting without option set returns EACCES. 36 * Alan Cox : No wakeup calls. Instead we now use the callbacks. 37 * Alan Cox : Use ip_tos and ip_ttl 38 * Alan Cox : SNMP Mibs 39 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support. 40 * Matt Dillon : UDP length checks. 41 * Alan Cox : Smarter af_inet used properly. 42 * Alan Cox : Use new kernel side addressing. 43 * Alan Cox : Incorrect return on truncated datagram receive. 44 * Arnt Gulbrandsen : New udp_send and stuff 45 * Alan Cox : Cache last socket 46 * Alan Cox : Route cache 47 * Jon Peatfield : Minor efficiency fix to sendto(). 48 * Mike Shaver : RFC1122 checks. 49 * Alan Cox : Nonblocking error fix. 50 * Willy Konynenberg : Transparent proxying support. 51 * Mike McLagan : Routing by source 52 * David S. Miller : New socket lookup architecture. 53 * Last socket cache retained as it 54 * does have a high hit rate. 55 * Olaf Kirch : Don't linearise iovec on sendmsg. 56 * Andi Kleen : Some cleanups, cache destination entry 57 * for connect. 58 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 59 * Melvin Smith : Check msg_name not msg_namelen in sendto(), 60 * return ENOTCONN for unconnected sockets (POSIX) 61 * Janos Farkas : don't deliver multi/broadcasts to a different 62 * bound-to-device socket 63 * Hirokazu Takahashi : HW checksumming for outgoing UDP 64 * datagrams. 65 * Hirokazu Takahashi : sendfile() on UDP works now. 66 * Arnaldo C. Melo : convert /proc/net/udp to seq_file 67 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 68 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind 69 * a single port at the same time. 70 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support 71 * James Chapman : Add L2TP encapsulation type. 72 * 73 * 74 * This program is free software; you can redistribute it and/or 75 * modify it under the terms of the GNU General Public License 76 * as published by the Free Software Foundation; either version 77 * 2 of the License, or (at your option) any later version. 78 */ 79 80 #define pr_fmt(fmt) "UDP: " fmt 81 82 #include <asm/uaccess.h> 83 #include <asm/ioctls.h> 84 #include <linux/bootmem.h> 85 #include <linux/highmem.h> 86 #include <linux/swap.h> 87 #include <linux/types.h> 88 #include <linux/fcntl.h> 89 #include <linux/module.h> 90 #include <linux/socket.h> 91 #include <linux/sockios.h> 92 #include <linux/igmp.h> 93 #include <linux/inetdevice.h> 94 #include <linux/in.h> 95 #include <linux/errno.h> 96 #include <linux/timer.h> 97 #include <linux/mm.h> 98 #include <linux/inet.h> 99 #include <linux/netdevice.h> 100 #include <linux/slab.h> 101 #include <net/tcp_states.h> 102 #include <linux/skbuff.h> 103 #include <linux/proc_fs.h> 104 #include <linux/seq_file.h> 105 #include <net/net_namespace.h> 106 #include <net/icmp.h> 107 #include <net/inet_hashtables.h> 108 #include <net/route.h> 109 #include <net/checksum.h> 110 #include <net/xfrm.h> 111 #include <trace/events/udp.h> 112 #include <linux/static_key.h> 113 #include <trace/events/skb.h> 114 #include <net/busy_poll.h> 115 #include "udp_impl.h" 116 #include <net/sock_reuseport.h> 117 118 struct udp_table udp_table __read_mostly; 119 EXPORT_SYMBOL(udp_table); 120 121 long sysctl_udp_mem[3] __read_mostly; 122 EXPORT_SYMBOL(sysctl_udp_mem); 123 124 int sysctl_udp_rmem_min __read_mostly; 125 EXPORT_SYMBOL(sysctl_udp_rmem_min); 126 127 int sysctl_udp_wmem_min __read_mostly; 128 EXPORT_SYMBOL(sysctl_udp_wmem_min); 129 130 atomic_long_t udp_memory_allocated; 131 EXPORT_SYMBOL(udp_memory_allocated); 132 133 #define MAX_UDP_PORTS 65536 134 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN) 135 136 static int udp_lib_lport_inuse(struct net *net, __u16 num, 137 const struct udp_hslot *hslot, 138 unsigned long *bitmap, 139 struct sock *sk, 140 int (*saddr_comp)(const struct sock *sk1, 141 const struct sock *sk2, 142 bool match_wildcard), 143 unsigned int log) 144 { 145 struct sock *sk2; 146 struct hlist_nulls_node *node; 147 kuid_t uid = sock_i_uid(sk); 148 149 sk_nulls_for_each(sk2, node, &hslot->head) { 150 if (net_eq(sock_net(sk2), net) && 151 sk2 != sk && 152 (bitmap || udp_sk(sk2)->udp_port_hash == num) && 153 (!sk2->sk_reuse || !sk->sk_reuse) && 154 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 155 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 156 (!sk2->sk_reuseport || !sk->sk_reuseport || 157 rcu_access_pointer(sk->sk_reuseport_cb) || 158 !uid_eq(uid, sock_i_uid(sk2))) && 159 saddr_comp(sk, sk2, true)) { 160 if (!bitmap) 161 return 1; 162 __set_bit(udp_sk(sk2)->udp_port_hash >> log, bitmap); 163 } 164 } 165 return 0; 166 } 167 168 /* 169 * Note: we still hold spinlock of primary hash chain, so no other writer 170 * can insert/delete a socket with local_port == num 171 */ 172 static int udp_lib_lport_inuse2(struct net *net, __u16 num, 173 struct udp_hslot *hslot2, 174 struct sock *sk, 175 int (*saddr_comp)(const struct sock *sk1, 176 const struct sock *sk2, 177 bool match_wildcard)) 178 { 179 struct sock *sk2; 180 struct hlist_nulls_node *node; 181 kuid_t uid = sock_i_uid(sk); 182 int res = 0; 183 184 spin_lock(&hslot2->lock); 185 udp_portaddr_for_each_entry(sk2, node, &hslot2->head) { 186 if (net_eq(sock_net(sk2), net) && 187 sk2 != sk && 188 (udp_sk(sk2)->udp_port_hash == num) && 189 (!sk2->sk_reuse || !sk->sk_reuse) && 190 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 191 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 192 (!sk2->sk_reuseport || !sk->sk_reuseport || 193 rcu_access_pointer(sk->sk_reuseport_cb) || 194 !uid_eq(uid, sock_i_uid(sk2))) && 195 saddr_comp(sk, sk2, true)) { 196 res = 1; 197 break; 198 } 199 } 200 spin_unlock(&hslot2->lock); 201 return res; 202 } 203 204 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot, 205 int (*saddr_same)(const struct sock *sk1, 206 const struct sock *sk2, 207 bool match_wildcard)) 208 { 209 struct net *net = sock_net(sk); 210 struct hlist_nulls_node *node; 211 kuid_t uid = sock_i_uid(sk); 212 struct sock *sk2; 213 214 sk_nulls_for_each(sk2, node, &hslot->head) { 215 if (net_eq(sock_net(sk2), net) && 216 sk2 != sk && 217 sk2->sk_family == sk->sk_family && 218 ipv6_only_sock(sk2) == ipv6_only_sock(sk) && 219 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) && 220 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 221 sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) && 222 (*saddr_same)(sk, sk2, false)) { 223 return reuseport_add_sock(sk, sk2); 224 } 225 } 226 227 /* Initial allocation may have already happened via setsockopt */ 228 if (!rcu_access_pointer(sk->sk_reuseport_cb)) 229 return reuseport_alloc(sk); 230 return 0; 231 } 232 233 /** 234 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6 235 * 236 * @sk: socket struct in question 237 * @snum: port number to look up 238 * @saddr_comp: AF-dependent comparison of bound local IP addresses 239 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains, 240 * with NULL address 241 */ 242 int udp_lib_get_port(struct sock *sk, unsigned short snum, 243 int (*saddr_comp)(const struct sock *sk1, 244 const struct sock *sk2, 245 bool match_wildcard), 246 unsigned int hash2_nulladdr) 247 { 248 struct udp_hslot *hslot, *hslot2; 249 struct udp_table *udptable = sk->sk_prot->h.udp_table; 250 int error = 1; 251 struct net *net = sock_net(sk); 252 253 if (!snum) { 254 int low, high, remaining; 255 unsigned int rand; 256 unsigned short first, last; 257 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN); 258 259 inet_get_local_port_range(net, &low, &high); 260 remaining = (high - low) + 1; 261 262 rand = prandom_u32(); 263 first = reciprocal_scale(rand, remaining) + low; 264 /* 265 * force rand to be an odd multiple of UDP_HTABLE_SIZE 266 */ 267 rand = (rand | 1) * (udptable->mask + 1); 268 last = first + udptable->mask + 1; 269 do { 270 hslot = udp_hashslot(udptable, net, first); 271 bitmap_zero(bitmap, PORTS_PER_CHAIN); 272 spin_lock_bh(&hslot->lock); 273 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk, 274 saddr_comp, udptable->log); 275 276 snum = first; 277 /* 278 * Iterate on all possible values of snum for this hash. 279 * Using steps of an odd multiple of UDP_HTABLE_SIZE 280 * give us randomization and full range coverage. 281 */ 282 do { 283 if (low <= snum && snum <= high && 284 !test_bit(snum >> udptable->log, bitmap) && 285 !inet_is_local_reserved_port(net, snum)) 286 goto found; 287 snum += rand; 288 } while (snum != first); 289 spin_unlock_bh(&hslot->lock); 290 } while (++first != last); 291 goto fail; 292 } else { 293 hslot = udp_hashslot(udptable, net, snum); 294 spin_lock_bh(&hslot->lock); 295 if (hslot->count > 10) { 296 int exist; 297 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum; 298 299 slot2 &= udptable->mask; 300 hash2_nulladdr &= udptable->mask; 301 302 hslot2 = udp_hashslot2(udptable, slot2); 303 if (hslot->count < hslot2->count) 304 goto scan_primary_hash; 305 306 exist = udp_lib_lport_inuse2(net, snum, hslot2, 307 sk, saddr_comp); 308 if (!exist && (hash2_nulladdr != slot2)) { 309 hslot2 = udp_hashslot2(udptable, hash2_nulladdr); 310 exist = udp_lib_lport_inuse2(net, snum, hslot2, 311 sk, saddr_comp); 312 } 313 if (exist) 314 goto fail_unlock; 315 else 316 goto found; 317 } 318 scan_primary_hash: 319 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 320 saddr_comp, 0)) 321 goto fail_unlock; 322 } 323 found: 324 inet_sk(sk)->inet_num = snum; 325 udp_sk(sk)->udp_port_hash = snum; 326 udp_sk(sk)->udp_portaddr_hash ^= snum; 327 if (sk_unhashed(sk)) { 328 if (sk->sk_reuseport && 329 udp_reuseport_add_sock(sk, hslot, saddr_comp)) { 330 inet_sk(sk)->inet_num = 0; 331 udp_sk(sk)->udp_port_hash = 0; 332 udp_sk(sk)->udp_portaddr_hash ^= snum; 333 goto fail_unlock; 334 } 335 336 sk_nulls_add_node_rcu(sk, &hslot->head); 337 hslot->count++; 338 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 339 340 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 341 spin_lock(&hslot2->lock); 342 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 343 &hslot2->head); 344 hslot2->count++; 345 spin_unlock(&hslot2->lock); 346 } 347 error = 0; 348 fail_unlock: 349 spin_unlock_bh(&hslot->lock); 350 fail: 351 return error; 352 } 353 EXPORT_SYMBOL(udp_lib_get_port); 354 355 /* match_wildcard == true: 0.0.0.0 equals to any IPv4 addresses 356 * match_wildcard == false: addresses must be exactly the same, i.e. 357 * 0.0.0.0 only equals to 0.0.0.0 358 */ 359 static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2, 360 bool match_wildcard) 361 { 362 struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2); 363 364 if (!ipv6_only_sock(sk2)) { 365 if (inet1->inet_rcv_saddr == inet2->inet_rcv_saddr) 366 return 1; 367 if (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr) 368 return match_wildcard; 369 } 370 return 0; 371 } 372 373 static u32 udp4_portaddr_hash(const struct net *net, __be32 saddr, 374 unsigned int port) 375 { 376 return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port; 377 } 378 379 int udp_v4_get_port(struct sock *sk, unsigned short snum) 380 { 381 unsigned int hash2_nulladdr = 382 udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum); 383 unsigned int hash2_partial = 384 udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0); 385 386 /* precompute partial secondary hash */ 387 udp_sk(sk)->udp_portaddr_hash = hash2_partial; 388 return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr); 389 } 390 391 static inline int compute_score(struct sock *sk, struct net *net, 392 __be32 saddr, unsigned short hnum, __be16 sport, 393 __be32 daddr, __be16 dport, int dif) 394 { 395 int score; 396 struct inet_sock *inet; 397 398 if (!net_eq(sock_net(sk), net) || 399 udp_sk(sk)->udp_port_hash != hnum || 400 ipv6_only_sock(sk)) 401 return -1; 402 403 score = (sk->sk_family == PF_INET) ? 2 : 1; 404 inet = inet_sk(sk); 405 406 if (inet->inet_rcv_saddr) { 407 if (inet->inet_rcv_saddr != daddr) 408 return -1; 409 score += 4; 410 } 411 412 if (inet->inet_daddr) { 413 if (inet->inet_daddr != saddr) 414 return -1; 415 score += 4; 416 } 417 418 if (inet->inet_dport) { 419 if (inet->inet_dport != sport) 420 return -1; 421 score += 4; 422 } 423 424 if (sk->sk_bound_dev_if) { 425 if (sk->sk_bound_dev_if != dif) 426 return -1; 427 score += 4; 428 } 429 if (sk->sk_incoming_cpu == raw_smp_processor_id()) 430 score++; 431 return score; 432 } 433 434 /* 435 * In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num) 436 */ 437 static inline int compute_score2(struct sock *sk, struct net *net, 438 __be32 saddr, __be16 sport, 439 __be32 daddr, unsigned int hnum, int dif) 440 { 441 int score; 442 struct inet_sock *inet; 443 444 if (!net_eq(sock_net(sk), net) || 445 ipv6_only_sock(sk)) 446 return -1; 447 448 inet = inet_sk(sk); 449 450 if (inet->inet_rcv_saddr != daddr || 451 inet->inet_num != hnum) 452 return -1; 453 454 score = (sk->sk_family == PF_INET) ? 2 : 1; 455 456 if (inet->inet_daddr) { 457 if (inet->inet_daddr != saddr) 458 return -1; 459 score += 4; 460 } 461 462 if (inet->inet_dport) { 463 if (inet->inet_dport != sport) 464 return -1; 465 score += 4; 466 } 467 468 if (sk->sk_bound_dev_if) { 469 if (sk->sk_bound_dev_if != dif) 470 return -1; 471 score += 4; 472 } 473 474 if (sk->sk_incoming_cpu == raw_smp_processor_id()) 475 score++; 476 477 return score; 478 } 479 480 static u32 udp_ehashfn(const struct net *net, const __be32 laddr, 481 const __u16 lport, const __be32 faddr, 482 const __be16 fport) 483 { 484 static u32 udp_ehash_secret __read_mostly; 485 486 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret)); 487 488 return __inet_ehashfn(laddr, lport, faddr, fport, 489 udp_ehash_secret + net_hash_mix(net)); 490 } 491 492 /* called with read_rcu_lock() */ 493 static struct sock *udp4_lib_lookup2(struct net *net, 494 __be32 saddr, __be16 sport, 495 __be32 daddr, unsigned int hnum, int dif, 496 struct udp_hslot *hslot2, unsigned int slot2, 497 struct sk_buff *skb) 498 { 499 struct sock *sk, *result; 500 struct hlist_nulls_node *node; 501 int score, badness, matches = 0, reuseport = 0; 502 bool select_ok = true; 503 u32 hash = 0; 504 505 begin: 506 result = NULL; 507 badness = 0; 508 udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) { 509 score = compute_score2(sk, net, saddr, sport, 510 daddr, hnum, dif); 511 if (score > badness) { 512 result = sk; 513 badness = score; 514 reuseport = sk->sk_reuseport; 515 if (reuseport) { 516 hash = udp_ehashfn(net, daddr, hnum, 517 saddr, sport); 518 if (select_ok) { 519 struct sock *sk2; 520 521 sk2 = reuseport_select_sock(sk, hash, skb, 522 sizeof(struct udphdr)); 523 if (sk2) { 524 result = sk2; 525 select_ok = false; 526 goto found; 527 } 528 } 529 matches = 1; 530 } 531 } else if (score == badness && reuseport) { 532 matches++; 533 if (reciprocal_scale(hash, matches) == 0) 534 result = sk; 535 hash = next_pseudo_random32(hash); 536 } 537 } 538 /* 539 * if the nulls value we got at the end of this lookup is 540 * not the expected one, we must restart lookup. 541 * We probably met an item that was moved to another chain. 542 */ 543 if (get_nulls_value(node) != slot2) 544 goto begin; 545 if (result) { 546 found: 547 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2))) 548 result = NULL; 549 else if (unlikely(compute_score2(result, net, saddr, sport, 550 daddr, hnum, dif) < badness)) { 551 sock_put(result); 552 goto begin; 553 } 554 } 555 return result; 556 } 557 558 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try 559 * harder than this. -DaveM 560 */ 561 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr, 562 __be16 sport, __be32 daddr, __be16 dport, 563 int dif, struct udp_table *udptable, struct sk_buff *skb) 564 { 565 struct sock *sk, *result; 566 struct hlist_nulls_node *node; 567 unsigned short hnum = ntohs(dport); 568 unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask); 569 struct udp_hslot *hslot2, *hslot = &udptable->hash[slot]; 570 int score, badness, matches = 0, reuseport = 0; 571 bool select_ok = true; 572 u32 hash = 0; 573 574 rcu_read_lock(); 575 if (hslot->count > 10) { 576 hash2 = udp4_portaddr_hash(net, daddr, hnum); 577 slot2 = hash2 & udptable->mask; 578 hslot2 = &udptable->hash2[slot2]; 579 if (hslot->count < hslot2->count) 580 goto begin; 581 582 result = udp4_lib_lookup2(net, saddr, sport, 583 daddr, hnum, dif, 584 hslot2, slot2, skb); 585 if (!result) { 586 hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum); 587 slot2 = hash2 & udptable->mask; 588 hslot2 = &udptable->hash2[slot2]; 589 if (hslot->count < hslot2->count) 590 goto begin; 591 592 result = udp4_lib_lookup2(net, saddr, sport, 593 htonl(INADDR_ANY), hnum, dif, 594 hslot2, slot2, skb); 595 } 596 rcu_read_unlock(); 597 return result; 598 } 599 begin: 600 result = NULL; 601 badness = 0; 602 sk_nulls_for_each_rcu(sk, node, &hslot->head) { 603 score = compute_score(sk, net, saddr, hnum, sport, 604 daddr, dport, dif); 605 if (score > badness) { 606 result = sk; 607 badness = score; 608 reuseport = sk->sk_reuseport; 609 if (reuseport) { 610 hash = udp_ehashfn(net, daddr, hnum, 611 saddr, sport); 612 if (select_ok) { 613 struct sock *sk2; 614 615 sk2 = reuseport_select_sock(sk, hash, skb, 616 sizeof(struct udphdr)); 617 if (sk2) { 618 result = sk2; 619 select_ok = false; 620 goto found; 621 } 622 } 623 matches = 1; 624 } 625 } else if (score == badness && reuseport) { 626 matches++; 627 if (reciprocal_scale(hash, matches) == 0) 628 result = sk; 629 hash = next_pseudo_random32(hash); 630 } 631 } 632 /* 633 * if the nulls value we got at the end of this lookup is 634 * not the expected one, we must restart lookup. 635 * We probably met an item that was moved to another chain. 636 */ 637 if (get_nulls_value(node) != slot) 638 goto begin; 639 640 if (result) { 641 found: 642 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2))) 643 result = NULL; 644 else if (unlikely(compute_score(result, net, saddr, hnum, sport, 645 daddr, dport, dif) < badness)) { 646 sock_put(result); 647 goto begin; 648 } 649 } 650 rcu_read_unlock(); 651 return result; 652 } 653 EXPORT_SYMBOL_GPL(__udp4_lib_lookup); 654 655 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb, 656 __be16 sport, __be16 dport, 657 struct udp_table *udptable) 658 { 659 const struct iphdr *iph = ip_hdr(skb); 660 661 return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport, 662 iph->daddr, dport, inet_iif(skb), 663 udptable, skb); 664 } 665 666 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport, 667 __be32 daddr, __be16 dport, int dif) 668 { 669 return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif, 670 &udp_table, NULL); 671 } 672 EXPORT_SYMBOL_GPL(udp4_lib_lookup); 673 674 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk, 675 __be16 loc_port, __be32 loc_addr, 676 __be16 rmt_port, __be32 rmt_addr, 677 int dif, unsigned short hnum) 678 { 679 struct inet_sock *inet = inet_sk(sk); 680 681 if (!net_eq(sock_net(sk), net) || 682 udp_sk(sk)->udp_port_hash != hnum || 683 (inet->inet_daddr && inet->inet_daddr != rmt_addr) || 684 (inet->inet_dport != rmt_port && inet->inet_dport) || 685 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) || 686 ipv6_only_sock(sk) || 687 (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif)) 688 return false; 689 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif)) 690 return false; 691 return true; 692 } 693 694 /* 695 * This routine is called by the ICMP module when it gets some 696 * sort of error condition. If err < 0 then the socket should 697 * be closed and the error returned to the user. If err > 0 698 * it's just the icmp type << 8 | icmp code. 699 * Header points to the ip header of the error packet. We move 700 * on past this. Then (as it used to claim before adjustment) 701 * header points to the first 8 bytes of the udp header. We need 702 * to find the appropriate port. 703 */ 704 705 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable) 706 { 707 struct inet_sock *inet; 708 const struct iphdr *iph = (const struct iphdr *)skb->data; 709 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2)); 710 const int type = icmp_hdr(skb)->type; 711 const int code = icmp_hdr(skb)->code; 712 struct sock *sk; 713 int harderr; 714 int err; 715 struct net *net = dev_net(skb->dev); 716 717 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest, 718 iph->saddr, uh->source, skb->dev->ifindex, udptable, 719 NULL); 720 if (!sk) { 721 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS); 722 return; /* No socket for error */ 723 } 724 725 err = 0; 726 harderr = 0; 727 inet = inet_sk(sk); 728 729 switch (type) { 730 default: 731 case ICMP_TIME_EXCEEDED: 732 err = EHOSTUNREACH; 733 break; 734 case ICMP_SOURCE_QUENCH: 735 goto out; 736 case ICMP_PARAMETERPROB: 737 err = EPROTO; 738 harderr = 1; 739 break; 740 case ICMP_DEST_UNREACH: 741 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */ 742 ipv4_sk_update_pmtu(skb, sk, info); 743 if (inet->pmtudisc != IP_PMTUDISC_DONT) { 744 err = EMSGSIZE; 745 harderr = 1; 746 break; 747 } 748 goto out; 749 } 750 err = EHOSTUNREACH; 751 if (code <= NR_ICMP_UNREACH) { 752 harderr = icmp_err_convert[code].fatal; 753 err = icmp_err_convert[code].errno; 754 } 755 break; 756 case ICMP_REDIRECT: 757 ipv4_sk_redirect(skb, sk); 758 goto out; 759 } 760 761 /* 762 * RFC1122: OK. Passes ICMP errors back to application, as per 763 * 4.1.3.3. 764 */ 765 if (!inet->recverr) { 766 if (!harderr || sk->sk_state != TCP_ESTABLISHED) 767 goto out; 768 } else 769 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1)); 770 771 sk->sk_err = err; 772 sk->sk_error_report(sk); 773 out: 774 sock_put(sk); 775 } 776 777 void udp_err(struct sk_buff *skb, u32 info) 778 { 779 __udp4_lib_err(skb, info, &udp_table); 780 } 781 782 /* 783 * Throw away all pending data and cancel the corking. Socket is locked. 784 */ 785 void udp_flush_pending_frames(struct sock *sk) 786 { 787 struct udp_sock *up = udp_sk(sk); 788 789 if (up->pending) { 790 up->len = 0; 791 up->pending = 0; 792 ip_flush_pending_frames(sk); 793 } 794 } 795 EXPORT_SYMBOL(udp_flush_pending_frames); 796 797 /** 798 * udp4_hwcsum - handle outgoing HW checksumming 799 * @skb: sk_buff containing the filled-in UDP header 800 * (checksum field must be zeroed out) 801 * @src: source IP address 802 * @dst: destination IP address 803 */ 804 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst) 805 { 806 struct udphdr *uh = udp_hdr(skb); 807 int offset = skb_transport_offset(skb); 808 int len = skb->len - offset; 809 int hlen = len; 810 __wsum csum = 0; 811 812 if (!skb_has_frag_list(skb)) { 813 /* 814 * Only one fragment on the socket. 815 */ 816 skb->csum_start = skb_transport_header(skb) - skb->head; 817 skb->csum_offset = offsetof(struct udphdr, check); 818 uh->check = ~csum_tcpudp_magic(src, dst, len, 819 IPPROTO_UDP, 0); 820 } else { 821 struct sk_buff *frags; 822 823 /* 824 * HW-checksum won't work as there are two or more 825 * fragments on the socket so that all csums of sk_buffs 826 * should be together 827 */ 828 skb_walk_frags(skb, frags) { 829 csum = csum_add(csum, frags->csum); 830 hlen -= frags->len; 831 } 832 833 csum = skb_checksum(skb, offset, hlen, csum); 834 skb->ip_summed = CHECKSUM_NONE; 835 836 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum); 837 if (uh->check == 0) 838 uh->check = CSUM_MANGLED_0; 839 } 840 } 841 EXPORT_SYMBOL_GPL(udp4_hwcsum); 842 843 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended 844 * for the simple case like when setting the checksum for a UDP tunnel. 845 */ 846 void udp_set_csum(bool nocheck, struct sk_buff *skb, 847 __be32 saddr, __be32 daddr, int len) 848 { 849 struct udphdr *uh = udp_hdr(skb); 850 851 if (nocheck) 852 uh->check = 0; 853 else if (skb_is_gso(skb)) 854 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 855 else if (skb_dst(skb) && skb_dst(skb)->dev && 856 (skb_dst(skb)->dev->features & 857 (NETIF_F_IP_CSUM | NETIF_F_HW_CSUM))) { 858 859 BUG_ON(skb->ip_summed == CHECKSUM_PARTIAL); 860 861 skb->ip_summed = CHECKSUM_PARTIAL; 862 skb->csum_start = skb_transport_header(skb) - skb->head; 863 skb->csum_offset = offsetof(struct udphdr, check); 864 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 865 } else { 866 __wsum csum; 867 868 BUG_ON(skb->ip_summed == CHECKSUM_PARTIAL); 869 870 uh->check = 0; 871 csum = skb_checksum(skb, 0, len, 0); 872 uh->check = udp_v4_check(len, saddr, daddr, csum); 873 if (uh->check == 0) 874 uh->check = CSUM_MANGLED_0; 875 876 skb->ip_summed = CHECKSUM_UNNECESSARY; 877 } 878 } 879 EXPORT_SYMBOL(udp_set_csum); 880 881 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4) 882 { 883 struct sock *sk = skb->sk; 884 struct inet_sock *inet = inet_sk(sk); 885 struct udphdr *uh; 886 int err = 0; 887 int is_udplite = IS_UDPLITE(sk); 888 int offset = skb_transport_offset(skb); 889 int len = skb->len - offset; 890 __wsum csum = 0; 891 892 /* 893 * Create a UDP header 894 */ 895 uh = udp_hdr(skb); 896 uh->source = inet->inet_sport; 897 uh->dest = fl4->fl4_dport; 898 uh->len = htons(len); 899 uh->check = 0; 900 901 if (is_udplite) /* UDP-Lite */ 902 csum = udplite_csum(skb); 903 904 else if (sk->sk_no_check_tx) { /* UDP csum disabled */ 905 906 skb->ip_summed = CHECKSUM_NONE; 907 goto send; 908 909 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */ 910 911 udp4_hwcsum(skb, fl4->saddr, fl4->daddr); 912 goto send; 913 914 } else 915 csum = udp_csum(skb); 916 917 /* add protocol-dependent pseudo-header */ 918 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len, 919 sk->sk_protocol, csum); 920 if (uh->check == 0) 921 uh->check = CSUM_MANGLED_0; 922 923 send: 924 err = ip_send_skb(sock_net(sk), skb); 925 if (err) { 926 if (err == -ENOBUFS && !inet->recverr) { 927 UDP_INC_STATS_USER(sock_net(sk), 928 UDP_MIB_SNDBUFERRORS, is_udplite); 929 err = 0; 930 } 931 } else 932 UDP_INC_STATS_USER(sock_net(sk), 933 UDP_MIB_OUTDATAGRAMS, is_udplite); 934 return err; 935 } 936 937 /* 938 * Push out all pending data as one UDP datagram. Socket is locked. 939 */ 940 int udp_push_pending_frames(struct sock *sk) 941 { 942 struct udp_sock *up = udp_sk(sk); 943 struct inet_sock *inet = inet_sk(sk); 944 struct flowi4 *fl4 = &inet->cork.fl.u.ip4; 945 struct sk_buff *skb; 946 int err = 0; 947 948 skb = ip_finish_skb(sk, fl4); 949 if (!skb) 950 goto out; 951 952 err = udp_send_skb(skb, fl4); 953 954 out: 955 up->len = 0; 956 up->pending = 0; 957 return err; 958 } 959 EXPORT_SYMBOL(udp_push_pending_frames); 960 961 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 962 { 963 struct inet_sock *inet = inet_sk(sk); 964 struct udp_sock *up = udp_sk(sk); 965 struct flowi4 fl4_stack; 966 struct flowi4 *fl4; 967 int ulen = len; 968 struct ipcm_cookie ipc; 969 struct rtable *rt = NULL; 970 int free = 0; 971 int connected = 0; 972 __be32 daddr, faddr, saddr; 973 __be16 dport; 974 u8 tos; 975 int err, is_udplite = IS_UDPLITE(sk); 976 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE; 977 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *); 978 struct sk_buff *skb; 979 struct ip_options_data opt_copy; 980 981 if (len > 0xFFFF) 982 return -EMSGSIZE; 983 984 /* 985 * Check the flags. 986 */ 987 988 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */ 989 return -EOPNOTSUPP; 990 991 ipc.opt = NULL; 992 ipc.tx_flags = 0; 993 ipc.ttl = 0; 994 ipc.tos = -1; 995 996 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag; 997 998 fl4 = &inet->cork.fl.u.ip4; 999 if (up->pending) { 1000 /* 1001 * There are pending frames. 1002 * The socket lock must be held while it's corked. 1003 */ 1004 lock_sock(sk); 1005 if (likely(up->pending)) { 1006 if (unlikely(up->pending != AF_INET)) { 1007 release_sock(sk); 1008 return -EINVAL; 1009 } 1010 goto do_append_data; 1011 } 1012 release_sock(sk); 1013 } 1014 ulen += sizeof(struct udphdr); 1015 1016 /* 1017 * Get and verify the address. 1018 */ 1019 if (msg->msg_name) { 1020 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name); 1021 if (msg->msg_namelen < sizeof(*usin)) 1022 return -EINVAL; 1023 if (usin->sin_family != AF_INET) { 1024 if (usin->sin_family != AF_UNSPEC) 1025 return -EAFNOSUPPORT; 1026 } 1027 1028 daddr = usin->sin_addr.s_addr; 1029 dport = usin->sin_port; 1030 if (dport == 0) 1031 return -EINVAL; 1032 } else { 1033 if (sk->sk_state != TCP_ESTABLISHED) 1034 return -EDESTADDRREQ; 1035 daddr = inet->inet_daddr; 1036 dport = inet->inet_dport; 1037 /* Open fast path for connected socket. 1038 Route will not be used, if at least one option is set. 1039 */ 1040 connected = 1; 1041 } 1042 ipc.addr = inet->inet_saddr; 1043 1044 ipc.oif = sk->sk_bound_dev_if; 1045 1046 sock_tx_timestamp(sk, &ipc.tx_flags); 1047 1048 if (msg->msg_controllen) { 1049 err = ip_cmsg_send(sock_net(sk), msg, &ipc, 1050 sk->sk_family == AF_INET6); 1051 if (unlikely(err)) { 1052 kfree(ipc.opt); 1053 return err; 1054 } 1055 if (ipc.opt) 1056 free = 1; 1057 connected = 0; 1058 } 1059 if (!ipc.opt) { 1060 struct ip_options_rcu *inet_opt; 1061 1062 rcu_read_lock(); 1063 inet_opt = rcu_dereference(inet->inet_opt); 1064 if (inet_opt) { 1065 memcpy(&opt_copy, inet_opt, 1066 sizeof(*inet_opt) + inet_opt->opt.optlen); 1067 ipc.opt = &opt_copy.opt; 1068 } 1069 rcu_read_unlock(); 1070 } 1071 1072 saddr = ipc.addr; 1073 ipc.addr = faddr = daddr; 1074 1075 if (ipc.opt && ipc.opt->opt.srr) { 1076 if (!daddr) 1077 return -EINVAL; 1078 faddr = ipc.opt->opt.faddr; 1079 connected = 0; 1080 } 1081 tos = get_rttos(&ipc, inet); 1082 if (sock_flag(sk, SOCK_LOCALROUTE) || 1083 (msg->msg_flags & MSG_DONTROUTE) || 1084 (ipc.opt && ipc.opt->opt.is_strictroute)) { 1085 tos |= RTO_ONLINK; 1086 connected = 0; 1087 } 1088 1089 if (ipv4_is_multicast(daddr)) { 1090 if (!ipc.oif) 1091 ipc.oif = inet->mc_index; 1092 if (!saddr) 1093 saddr = inet->mc_addr; 1094 connected = 0; 1095 } else if (!ipc.oif) 1096 ipc.oif = inet->uc_index; 1097 1098 if (connected) 1099 rt = (struct rtable *)sk_dst_check(sk, 0); 1100 1101 if (!rt) { 1102 struct net *net = sock_net(sk); 1103 __u8 flow_flags = inet_sk_flowi_flags(sk); 1104 1105 fl4 = &fl4_stack; 1106 1107 flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos, 1108 RT_SCOPE_UNIVERSE, sk->sk_protocol, 1109 flow_flags, 1110 faddr, saddr, dport, inet->inet_sport); 1111 1112 if (!saddr && ipc.oif) { 1113 err = l3mdev_get_saddr(net, ipc.oif, fl4); 1114 if (err < 0) 1115 goto out; 1116 } 1117 1118 security_sk_classify_flow(sk, flowi4_to_flowi(fl4)); 1119 rt = ip_route_output_flow(net, fl4, sk); 1120 if (IS_ERR(rt)) { 1121 err = PTR_ERR(rt); 1122 rt = NULL; 1123 if (err == -ENETUNREACH) 1124 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 1125 goto out; 1126 } 1127 1128 err = -EACCES; 1129 if ((rt->rt_flags & RTCF_BROADCAST) && 1130 !sock_flag(sk, SOCK_BROADCAST)) 1131 goto out; 1132 if (connected) 1133 sk_dst_set(sk, dst_clone(&rt->dst)); 1134 } 1135 1136 if (msg->msg_flags&MSG_CONFIRM) 1137 goto do_confirm; 1138 back_from_confirm: 1139 1140 saddr = fl4->saddr; 1141 if (!ipc.addr) 1142 daddr = ipc.addr = fl4->daddr; 1143 1144 /* Lockless fast path for the non-corking case. */ 1145 if (!corkreq) { 1146 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen, 1147 sizeof(struct udphdr), &ipc, &rt, 1148 msg->msg_flags); 1149 err = PTR_ERR(skb); 1150 if (!IS_ERR_OR_NULL(skb)) 1151 err = udp_send_skb(skb, fl4); 1152 goto out; 1153 } 1154 1155 lock_sock(sk); 1156 if (unlikely(up->pending)) { 1157 /* The socket is already corked while preparing it. */ 1158 /* ... which is an evident application bug. --ANK */ 1159 release_sock(sk); 1160 1161 net_dbg_ratelimited("cork app bug 2\n"); 1162 err = -EINVAL; 1163 goto out; 1164 } 1165 /* 1166 * Now cork the socket to pend data. 1167 */ 1168 fl4 = &inet->cork.fl.u.ip4; 1169 fl4->daddr = daddr; 1170 fl4->saddr = saddr; 1171 fl4->fl4_dport = dport; 1172 fl4->fl4_sport = inet->inet_sport; 1173 up->pending = AF_INET; 1174 1175 do_append_data: 1176 up->len += ulen; 1177 err = ip_append_data(sk, fl4, getfrag, msg, ulen, 1178 sizeof(struct udphdr), &ipc, &rt, 1179 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags); 1180 if (err) 1181 udp_flush_pending_frames(sk); 1182 else if (!corkreq) 1183 err = udp_push_pending_frames(sk); 1184 else if (unlikely(skb_queue_empty(&sk->sk_write_queue))) 1185 up->pending = 0; 1186 release_sock(sk); 1187 1188 out: 1189 ip_rt_put(rt); 1190 if (free) 1191 kfree(ipc.opt); 1192 if (!err) 1193 return len; 1194 /* 1195 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting 1196 * ENOBUFS might not be good (it's not tunable per se), but otherwise 1197 * we don't have a good statistic (IpOutDiscards but it can be too many 1198 * things). We could add another new stat but at least for now that 1199 * seems like overkill. 1200 */ 1201 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1202 UDP_INC_STATS_USER(sock_net(sk), 1203 UDP_MIB_SNDBUFERRORS, is_udplite); 1204 } 1205 return err; 1206 1207 do_confirm: 1208 dst_confirm(&rt->dst); 1209 if (!(msg->msg_flags&MSG_PROBE) || len) 1210 goto back_from_confirm; 1211 err = 0; 1212 goto out; 1213 } 1214 EXPORT_SYMBOL(udp_sendmsg); 1215 1216 int udp_sendpage(struct sock *sk, struct page *page, int offset, 1217 size_t size, int flags) 1218 { 1219 struct inet_sock *inet = inet_sk(sk); 1220 struct udp_sock *up = udp_sk(sk); 1221 int ret; 1222 1223 if (flags & MSG_SENDPAGE_NOTLAST) 1224 flags |= MSG_MORE; 1225 1226 if (!up->pending) { 1227 struct msghdr msg = { .msg_flags = flags|MSG_MORE }; 1228 1229 /* Call udp_sendmsg to specify destination address which 1230 * sendpage interface can't pass. 1231 * This will succeed only when the socket is connected. 1232 */ 1233 ret = udp_sendmsg(sk, &msg, 0); 1234 if (ret < 0) 1235 return ret; 1236 } 1237 1238 lock_sock(sk); 1239 1240 if (unlikely(!up->pending)) { 1241 release_sock(sk); 1242 1243 net_dbg_ratelimited("udp cork app bug 3\n"); 1244 return -EINVAL; 1245 } 1246 1247 ret = ip_append_page(sk, &inet->cork.fl.u.ip4, 1248 page, offset, size, flags); 1249 if (ret == -EOPNOTSUPP) { 1250 release_sock(sk); 1251 return sock_no_sendpage(sk->sk_socket, page, offset, 1252 size, flags); 1253 } 1254 if (ret < 0) { 1255 udp_flush_pending_frames(sk); 1256 goto out; 1257 } 1258 1259 up->len += size; 1260 if (!(up->corkflag || (flags&MSG_MORE))) 1261 ret = udp_push_pending_frames(sk); 1262 if (!ret) 1263 ret = size; 1264 out: 1265 release_sock(sk); 1266 return ret; 1267 } 1268 1269 /** 1270 * first_packet_length - return length of first packet in receive queue 1271 * @sk: socket 1272 * 1273 * Drops all bad checksum frames, until a valid one is found. 1274 * Returns the length of found skb, or 0 if none is found. 1275 */ 1276 static unsigned int first_packet_length(struct sock *sk) 1277 { 1278 struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue; 1279 struct sk_buff *skb; 1280 unsigned int res; 1281 1282 __skb_queue_head_init(&list_kill); 1283 1284 spin_lock_bh(&rcvq->lock); 1285 while ((skb = skb_peek(rcvq)) != NULL && 1286 udp_lib_checksum_complete(skb)) { 1287 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS, 1288 IS_UDPLITE(sk)); 1289 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, 1290 IS_UDPLITE(sk)); 1291 atomic_inc(&sk->sk_drops); 1292 __skb_unlink(skb, rcvq); 1293 __skb_queue_tail(&list_kill, skb); 1294 } 1295 res = skb ? skb->len : 0; 1296 spin_unlock_bh(&rcvq->lock); 1297 1298 if (!skb_queue_empty(&list_kill)) { 1299 bool slow = lock_sock_fast(sk); 1300 1301 __skb_queue_purge(&list_kill); 1302 sk_mem_reclaim_partial(sk); 1303 unlock_sock_fast(sk, slow); 1304 } 1305 return res; 1306 } 1307 1308 /* 1309 * IOCTL requests applicable to the UDP protocol 1310 */ 1311 1312 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg) 1313 { 1314 switch (cmd) { 1315 case SIOCOUTQ: 1316 { 1317 int amount = sk_wmem_alloc_get(sk); 1318 1319 return put_user(amount, (int __user *)arg); 1320 } 1321 1322 case SIOCINQ: 1323 { 1324 unsigned int amount = first_packet_length(sk); 1325 1326 if (amount) 1327 /* 1328 * We will only return the amount 1329 * of this packet since that is all 1330 * that will be read. 1331 */ 1332 amount -= sizeof(struct udphdr); 1333 1334 return put_user(amount, (int __user *)arg); 1335 } 1336 1337 default: 1338 return -ENOIOCTLCMD; 1339 } 1340 1341 return 0; 1342 } 1343 EXPORT_SYMBOL(udp_ioctl); 1344 1345 /* 1346 * This should be easy, if there is something there we 1347 * return it, otherwise we block. 1348 */ 1349 1350 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock, 1351 int flags, int *addr_len) 1352 { 1353 struct inet_sock *inet = inet_sk(sk); 1354 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name); 1355 struct sk_buff *skb; 1356 unsigned int ulen, copied; 1357 int peeked, off = 0; 1358 int err; 1359 int is_udplite = IS_UDPLITE(sk); 1360 bool checksum_valid = false; 1361 bool slow; 1362 1363 if (flags & MSG_ERRQUEUE) 1364 return ip_recv_error(sk, msg, len, addr_len); 1365 1366 try_again: 1367 skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0), 1368 &peeked, &off, &err); 1369 if (!skb) 1370 goto out; 1371 1372 ulen = skb->len - sizeof(struct udphdr); 1373 copied = len; 1374 if (copied > ulen) 1375 copied = ulen; 1376 else if (copied < ulen) 1377 msg->msg_flags |= MSG_TRUNC; 1378 1379 /* 1380 * If checksum is needed at all, try to do it while copying the 1381 * data. If the data is truncated, or if we only want a partial 1382 * coverage checksum (UDP-Lite), do it before the copy. 1383 */ 1384 1385 if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) { 1386 checksum_valid = !udp_lib_checksum_complete(skb); 1387 if (!checksum_valid) 1388 goto csum_copy_err; 1389 } 1390 1391 if (checksum_valid || skb_csum_unnecessary(skb)) 1392 err = skb_copy_datagram_msg(skb, sizeof(struct udphdr), 1393 msg, copied); 1394 else { 1395 err = skb_copy_and_csum_datagram_msg(skb, sizeof(struct udphdr), 1396 msg); 1397 1398 if (err == -EINVAL) 1399 goto csum_copy_err; 1400 } 1401 1402 if (unlikely(err)) { 1403 trace_kfree_skb(skb, udp_recvmsg); 1404 if (!peeked) { 1405 atomic_inc(&sk->sk_drops); 1406 UDP_INC_STATS_USER(sock_net(sk), 1407 UDP_MIB_INERRORS, is_udplite); 1408 } 1409 goto out_free; 1410 } 1411 1412 if (!peeked) 1413 UDP_INC_STATS_USER(sock_net(sk), 1414 UDP_MIB_INDATAGRAMS, is_udplite); 1415 1416 sock_recv_ts_and_drops(msg, sk, skb); 1417 1418 /* Copy the address. */ 1419 if (sin) { 1420 sin->sin_family = AF_INET; 1421 sin->sin_port = udp_hdr(skb)->source; 1422 sin->sin_addr.s_addr = ip_hdr(skb)->saddr; 1423 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 1424 *addr_len = sizeof(*sin); 1425 } 1426 if (inet->cmsg_flags) 1427 ip_cmsg_recv_offset(msg, skb, sizeof(struct udphdr)); 1428 1429 err = copied; 1430 if (flags & MSG_TRUNC) 1431 err = ulen; 1432 1433 out_free: 1434 skb_free_datagram_locked(sk, skb); 1435 out: 1436 return err; 1437 1438 csum_copy_err: 1439 slow = lock_sock_fast(sk); 1440 if (!skb_kill_datagram(sk, skb, flags)) { 1441 UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 1442 UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1443 } 1444 unlock_sock_fast(sk, slow); 1445 1446 /* starting over for a new packet, but check if we need to yield */ 1447 cond_resched(); 1448 msg->msg_flags &= ~MSG_TRUNC; 1449 goto try_again; 1450 } 1451 1452 int udp_disconnect(struct sock *sk, int flags) 1453 { 1454 struct inet_sock *inet = inet_sk(sk); 1455 /* 1456 * 1003.1g - break association. 1457 */ 1458 1459 sk->sk_state = TCP_CLOSE; 1460 inet->inet_daddr = 0; 1461 inet->inet_dport = 0; 1462 sock_rps_reset_rxhash(sk); 1463 sk->sk_bound_dev_if = 0; 1464 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 1465 inet_reset_saddr(sk); 1466 1467 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) { 1468 sk->sk_prot->unhash(sk); 1469 inet->inet_sport = 0; 1470 } 1471 sk_dst_reset(sk); 1472 return 0; 1473 } 1474 EXPORT_SYMBOL(udp_disconnect); 1475 1476 void udp_lib_unhash(struct sock *sk) 1477 { 1478 if (sk_hashed(sk)) { 1479 struct udp_table *udptable = sk->sk_prot->h.udp_table; 1480 struct udp_hslot *hslot, *hslot2; 1481 1482 hslot = udp_hashslot(udptable, sock_net(sk), 1483 udp_sk(sk)->udp_port_hash); 1484 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1485 1486 spin_lock_bh(&hslot->lock); 1487 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1488 reuseport_detach_sock(sk); 1489 if (sk_nulls_del_node_init_rcu(sk)) { 1490 hslot->count--; 1491 inet_sk(sk)->inet_num = 0; 1492 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 1493 1494 spin_lock(&hslot2->lock); 1495 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 1496 hslot2->count--; 1497 spin_unlock(&hslot2->lock); 1498 } 1499 spin_unlock_bh(&hslot->lock); 1500 } 1501 } 1502 EXPORT_SYMBOL(udp_lib_unhash); 1503 1504 /* 1505 * inet_rcv_saddr was changed, we must rehash secondary hash 1506 */ 1507 void udp_lib_rehash(struct sock *sk, u16 newhash) 1508 { 1509 if (sk_hashed(sk)) { 1510 struct udp_table *udptable = sk->sk_prot->h.udp_table; 1511 struct udp_hslot *hslot, *hslot2, *nhslot2; 1512 1513 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1514 nhslot2 = udp_hashslot2(udptable, newhash); 1515 udp_sk(sk)->udp_portaddr_hash = newhash; 1516 1517 if (hslot2 != nhslot2 || 1518 rcu_access_pointer(sk->sk_reuseport_cb)) { 1519 hslot = udp_hashslot(udptable, sock_net(sk), 1520 udp_sk(sk)->udp_port_hash); 1521 /* we must lock primary chain too */ 1522 spin_lock_bh(&hslot->lock); 1523 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1524 reuseport_detach_sock(sk); 1525 1526 if (hslot2 != nhslot2) { 1527 spin_lock(&hslot2->lock); 1528 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 1529 hslot2->count--; 1530 spin_unlock(&hslot2->lock); 1531 1532 spin_lock(&nhslot2->lock); 1533 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 1534 &nhslot2->head); 1535 nhslot2->count++; 1536 spin_unlock(&nhslot2->lock); 1537 } 1538 1539 spin_unlock_bh(&hslot->lock); 1540 } 1541 } 1542 } 1543 EXPORT_SYMBOL(udp_lib_rehash); 1544 1545 static void udp_v4_rehash(struct sock *sk) 1546 { 1547 u16 new_hash = udp4_portaddr_hash(sock_net(sk), 1548 inet_sk(sk)->inet_rcv_saddr, 1549 inet_sk(sk)->inet_num); 1550 udp_lib_rehash(sk, new_hash); 1551 } 1552 1553 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 1554 { 1555 int rc; 1556 1557 if (inet_sk(sk)->inet_daddr) { 1558 sock_rps_save_rxhash(sk, skb); 1559 sk_mark_napi_id(sk, skb); 1560 sk_incoming_cpu_update(sk); 1561 } 1562 1563 rc = sock_queue_rcv_skb(sk, skb); 1564 if (rc < 0) { 1565 int is_udplite = IS_UDPLITE(sk); 1566 1567 /* Note that an ENOMEM error is charged twice */ 1568 if (rc == -ENOMEM) 1569 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS, 1570 is_udplite); 1571 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1572 kfree_skb(skb); 1573 trace_udp_fail_queue_rcv_skb(rc, sk); 1574 return -1; 1575 } 1576 1577 return 0; 1578 1579 } 1580 1581 static struct static_key udp_encap_needed __read_mostly; 1582 void udp_encap_enable(void) 1583 { 1584 if (!static_key_enabled(&udp_encap_needed)) 1585 static_key_slow_inc(&udp_encap_needed); 1586 } 1587 EXPORT_SYMBOL(udp_encap_enable); 1588 1589 /* returns: 1590 * -1: error 1591 * 0: success 1592 * >0: "udp encap" protocol resubmission 1593 * 1594 * Note that in the success and error cases, the skb is assumed to 1595 * have either been requeued or freed. 1596 */ 1597 int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 1598 { 1599 struct udp_sock *up = udp_sk(sk); 1600 int rc; 1601 int is_udplite = IS_UDPLITE(sk); 1602 1603 /* 1604 * Charge it to the socket, dropping if the queue is full. 1605 */ 1606 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) 1607 goto drop; 1608 nf_reset(skb); 1609 1610 if (static_key_false(&udp_encap_needed) && up->encap_type) { 1611 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb); 1612 1613 /* 1614 * This is an encapsulation socket so pass the skb to 1615 * the socket's udp_encap_rcv() hook. Otherwise, just 1616 * fall through and pass this up the UDP socket. 1617 * up->encap_rcv() returns the following value: 1618 * =0 if skb was successfully passed to the encap 1619 * handler or was discarded by it. 1620 * >0 if skb should be passed on to UDP. 1621 * <0 if skb should be resubmitted as proto -N 1622 */ 1623 1624 /* if we're overly short, let UDP handle it */ 1625 encap_rcv = ACCESS_ONCE(up->encap_rcv); 1626 if (skb->len > sizeof(struct udphdr) && encap_rcv) { 1627 int ret; 1628 1629 /* Verify checksum before giving to encap */ 1630 if (udp_lib_checksum_complete(skb)) 1631 goto csum_error; 1632 1633 ret = encap_rcv(sk, skb); 1634 if (ret <= 0) { 1635 UDP_INC_STATS_BH(sock_net(sk), 1636 UDP_MIB_INDATAGRAMS, 1637 is_udplite); 1638 return -ret; 1639 } 1640 } 1641 1642 /* FALLTHROUGH -- it's a UDP Packet */ 1643 } 1644 1645 /* 1646 * UDP-Lite specific tests, ignored on UDP sockets 1647 */ 1648 if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) { 1649 1650 /* 1651 * MIB statistics other than incrementing the error count are 1652 * disabled for the following two types of errors: these depend 1653 * on the application settings, not on the functioning of the 1654 * protocol stack as such. 1655 * 1656 * RFC 3828 here recommends (sec 3.3): "There should also be a 1657 * way ... to ... at least let the receiving application block 1658 * delivery of packets with coverage values less than a value 1659 * provided by the application." 1660 */ 1661 if (up->pcrlen == 0) { /* full coverage was set */ 1662 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n", 1663 UDP_SKB_CB(skb)->cscov, skb->len); 1664 goto drop; 1665 } 1666 /* The next case involves violating the min. coverage requested 1667 * by the receiver. This is subtle: if receiver wants x and x is 1668 * greater than the buffersize/MTU then receiver will complain 1669 * that it wants x while sender emits packets of smaller size y. 1670 * Therefore the above ...()->partial_cov statement is essential. 1671 */ 1672 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) { 1673 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n", 1674 UDP_SKB_CB(skb)->cscov, up->pcrlen); 1675 goto drop; 1676 } 1677 } 1678 1679 if (rcu_access_pointer(sk->sk_filter) && 1680 udp_lib_checksum_complete(skb)) 1681 goto csum_error; 1682 1683 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) { 1684 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS, 1685 is_udplite); 1686 goto drop; 1687 } 1688 1689 rc = 0; 1690 1691 ipv4_pktinfo_prepare(sk, skb); 1692 bh_lock_sock(sk); 1693 if (!sock_owned_by_user(sk)) 1694 rc = __udp_queue_rcv_skb(sk, skb); 1695 else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) { 1696 bh_unlock_sock(sk); 1697 goto drop; 1698 } 1699 bh_unlock_sock(sk); 1700 1701 return rc; 1702 1703 csum_error: 1704 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 1705 drop: 1706 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1707 atomic_inc(&sk->sk_drops); 1708 kfree_skb(skb); 1709 return -1; 1710 } 1711 1712 static void flush_stack(struct sock **stack, unsigned int count, 1713 struct sk_buff *skb, unsigned int final) 1714 { 1715 unsigned int i; 1716 struct sk_buff *skb1 = NULL; 1717 struct sock *sk; 1718 1719 for (i = 0; i < count; i++) { 1720 sk = stack[i]; 1721 if (likely(!skb1)) 1722 skb1 = (i == final) ? skb : skb_clone(skb, GFP_ATOMIC); 1723 1724 if (!skb1) { 1725 atomic_inc(&sk->sk_drops); 1726 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS, 1727 IS_UDPLITE(sk)); 1728 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, 1729 IS_UDPLITE(sk)); 1730 } 1731 1732 if (skb1 && udp_queue_rcv_skb(sk, skb1) <= 0) 1733 skb1 = NULL; 1734 1735 sock_put(sk); 1736 } 1737 if (unlikely(skb1)) 1738 kfree_skb(skb1); 1739 } 1740 1741 /* For TCP sockets, sk_rx_dst is protected by socket lock 1742 * For UDP, we use xchg() to guard against concurrent changes. 1743 */ 1744 static void udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst) 1745 { 1746 struct dst_entry *old; 1747 1748 dst_hold(dst); 1749 old = xchg(&sk->sk_rx_dst, dst); 1750 dst_release(old); 1751 } 1752 1753 /* 1754 * Multicasts and broadcasts go to each listener. 1755 * 1756 * Note: called only from the BH handler context. 1757 */ 1758 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb, 1759 struct udphdr *uh, 1760 __be32 saddr, __be32 daddr, 1761 struct udp_table *udptable, 1762 int proto) 1763 { 1764 struct sock *sk, *stack[256 / sizeof(struct sock *)]; 1765 struct hlist_nulls_node *node; 1766 unsigned short hnum = ntohs(uh->dest); 1767 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum); 1768 int dif = skb->dev->ifindex; 1769 unsigned int count = 0, offset = offsetof(typeof(*sk), sk_nulls_node); 1770 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10); 1771 bool inner_flushed = false; 1772 1773 if (use_hash2) { 1774 hash2_any = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum) & 1775 udp_table.mask; 1776 hash2 = udp4_portaddr_hash(net, daddr, hnum) & udp_table.mask; 1777 start_lookup: 1778 hslot = &udp_table.hash2[hash2]; 1779 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node); 1780 } 1781 1782 spin_lock(&hslot->lock); 1783 sk_nulls_for_each_entry_offset(sk, node, &hslot->head, offset) { 1784 if (__udp_is_mcast_sock(net, sk, 1785 uh->dest, daddr, 1786 uh->source, saddr, 1787 dif, hnum)) { 1788 if (unlikely(count == ARRAY_SIZE(stack))) { 1789 flush_stack(stack, count, skb, ~0); 1790 inner_flushed = true; 1791 count = 0; 1792 } 1793 stack[count++] = sk; 1794 sock_hold(sk); 1795 } 1796 } 1797 1798 spin_unlock(&hslot->lock); 1799 1800 /* Also lookup *:port if we are using hash2 and haven't done so yet. */ 1801 if (use_hash2 && hash2 != hash2_any) { 1802 hash2 = hash2_any; 1803 goto start_lookup; 1804 } 1805 1806 /* 1807 * do the slow work with no lock held 1808 */ 1809 if (count) { 1810 flush_stack(stack, count, skb, count - 1); 1811 } else { 1812 if (!inner_flushed) 1813 UDP_INC_STATS_BH(net, UDP_MIB_IGNOREDMULTI, 1814 proto == IPPROTO_UDPLITE); 1815 consume_skb(skb); 1816 } 1817 return 0; 1818 } 1819 1820 /* Initialize UDP checksum. If exited with zero value (success), 1821 * CHECKSUM_UNNECESSARY means, that no more checks are required. 1822 * Otherwise, csum completion requires chacksumming packet body, 1823 * including udp header and folding it to skb->csum. 1824 */ 1825 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh, 1826 int proto) 1827 { 1828 int err; 1829 1830 UDP_SKB_CB(skb)->partial_cov = 0; 1831 UDP_SKB_CB(skb)->cscov = skb->len; 1832 1833 if (proto == IPPROTO_UDPLITE) { 1834 err = udplite_checksum_init(skb, uh); 1835 if (err) 1836 return err; 1837 } 1838 1839 return skb_checksum_init_zero_check(skb, proto, uh->check, 1840 inet_compute_pseudo); 1841 } 1842 1843 /* 1844 * All we need to do is get the socket, and then do a checksum. 1845 */ 1846 1847 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable, 1848 int proto) 1849 { 1850 struct sock *sk; 1851 struct udphdr *uh; 1852 unsigned short ulen; 1853 struct rtable *rt = skb_rtable(skb); 1854 __be32 saddr, daddr; 1855 struct net *net = dev_net(skb->dev); 1856 1857 /* 1858 * Validate the packet. 1859 */ 1860 if (!pskb_may_pull(skb, sizeof(struct udphdr))) 1861 goto drop; /* No space for header. */ 1862 1863 uh = udp_hdr(skb); 1864 ulen = ntohs(uh->len); 1865 saddr = ip_hdr(skb)->saddr; 1866 daddr = ip_hdr(skb)->daddr; 1867 1868 if (ulen > skb->len) 1869 goto short_packet; 1870 1871 if (proto == IPPROTO_UDP) { 1872 /* UDP validates ulen. */ 1873 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen)) 1874 goto short_packet; 1875 uh = udp_hdr(skb); 1876 } 1877 1878 if (udp4_csum_init(skb, uh, proto)) 1879 goto csum_error; 1880 1881 sk = skb_steal_sock(skb); 1882 if (sk) { 1883 struct dst_entry *dst = skb_dst(skb); 1884 int ret; 1885 1886 if (unlikely(sk->sk_rx_dst != dst)) 1887 udp_sk_rx_dst_set(sk, dst); 1888 1889 ret = udp_queue_rcv_skb(sk, skb); 1890 sock_put(sk); 1891 /* a return value > 0 means to resubmit the input, but 1892 * it wants the return to be -protocol, or 0 1893 */ 1894 if (ret > 0) 1895 return -ret; 1896 return 0; 1897 } 1898 1899 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST)) 1900 return __udp4_lib_mcast_deliver(net, skb, uh, 1901 saddr, daddr, udptable, proto); 1902 1903 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable); 1904 if (sk) { 1905 int ret; 1906 1907 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk)) 1908 skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check, 1909 inet_compute_pseudo); 1910 1911 ret = udp_queue_rcv_skb(sk, skb); 1912 sock_put(sk); 1913 1914 /* a return value > 0 means to resubmit the input, but 1915 * it wants the return to be -protocol, or 0 1916 */ 1917 if (ret > 0) 1918 return -ret; 1919 return 0; 1920 } 1921 1922 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 1923 goto drop; 1924 nf_reset(skb); 1925 1926 /* No socket. Drop packet silently, if checksum is wrong */ 1927 if (udp_lib_checksum_complete(skb)) 1928 goto csum_error; 1929 1930 UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE); 1931 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0); 1932 1933 /* 1934 * Hmm. We got an UDP packet to a port to which we 1935 * don't wanna listen. Ignore it. 1936 */ 1937 kfree_skb(skb); 1938 return 0; 1939 1940 short_packet: 1941 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n", 1942 proto == IPPROTO_UDPLITE ? "Lite" : "", 1943 &saddr, ntohs(uh->source), 1944 ulen, skb->len, 1945 &daddr, ntohs(uh->dest)); 1946 goto drop; 1947 1948 csum_error: 1949 /* 1950 * RFC1122: OK. Discards the bad packet silently (as far as 1951 * the network is concerned, anyway) as per 4.1.3.4 (MUST). 1952 */ 1953 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n", 1954 proto == IPPROTO_UDPLITE ? "Lite" : "", 1955 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest), 1956 ulen); 1957 UDP_INC_STATS_BH(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE); 1958 drop: 1959 UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE); 1960 kfree_skb(skb); 1961 return 0; 1962 } 1963 1964 /* We can only early demux multicast if there is a single matching socket. 1965 * If more than one socket found returns NULL 1966 */ 1967 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net, 1968 __be16 loc_port, __be32 loc_addr, 1969 __be16 rmt_port, __be32 rmt_addr, 1970 int dif) 1971 { 1972 struct sock *sk, *result; 1973 struct hlist_nulls_node *node; 1974 unsigned short hnum = ntohs(loc_port); 1975 unsigned int count, slot = udp_hashfn(net, hnum, udp_table.mask); 1976 struct udp_hslot *hslot = &udp_table.hash[slot]; 1977 1978 /* Do not bother scanning a too big list */ 1979 if (hslot->count > 10) 1980 return NULL; 1981 1982 rcu_read_lock(); 1983 begin: 1984 count = 0; 1985 result = NULL; 1986 sk_nulls_for_each_rcu(sk, node, &hslot->head) { 1987 if (__udp_is_mcast_sock(net, sk, 1988 loc_port, loc_addr, 1989 rmt_port, rmt_addr, 1990 dif, hnum)) { 1991 result = sk; 1992 ++count; 1993 } 1994 } 1995 /* 1996 * if the nulls value we got at the end of this lookup is 1997 * not the expected one, we must restart lookup. 1998 * We probably met an item that was moved to another chain. 1999 */ 2000 if (get_nulls_value(node) != slot) 2001 goto begin; 2002 2003 if (result) { 2004 if (count != 1 || 2005 unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2))) 2006 result = NULL; 2007 else if (unlikely(!__udp_is_mcast_sock(net, result, 2008 loc_port, loc_addr, 2009 rmt_port, rmt_addr, 2010 dif, hnum))) { 2011 sock_put(result); 2012 result = NULL; 2013 } 2014 } 2015 rcu_read_unlock(); 2016 return result; 2017 } 2018 2019 /* For unicast we should only early demux connected sockets or we can 2020 * break forwarding setups. The chains here can be long so only check 2021 * if the first socket is an exact match and if not move on. 2022 */ 2023 static struct sock *__udp4_lib_demux_lookup(struct net *net, 2024 __be16 loc_port, __be32 loc_addr, 2025 __be16 rmt_port, __be32 rmt_addr, 2026 int dif) 2027 { 2028 struct sock *sk, *result; 2029 struct hlist_nulls_node *node; 2030 unsigned short hnum = ntohs(loc_port); 2031 unsigned int hash2 = udp4_portaddr_hash(net, loc_addr, hnum); 2032 unsigned int slot2 = hash2 & udp_table.mask; 2033 struct udp_hslot *hslot2 = &udp_table.hash2[slot2]; 2034 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr); 2035 const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum); 2036 2037 rcu_read_lock(); 2038 result = NULL; 2039 udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) { 2040 if (INET_MATCH(sk, net, acookie, 2041 rmt_addr, loc_addr, ports, dif)) 2042 result = sk; 2043 /* Only check first socket in chain */ 2044 break; 2045 } 2046 2047 if (result) { 2048 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2))) 2049 result = NULL; 2050 else if (unlikely(!INET_MATCH(sk, net, acookie, 2051 rmt_addr, loc_addr, 2052 ports, dif))) { 2053 sock_put(result); 2054 result = NULL; 2055 } 2056 } 2057 rcu_read_unlock(); 2058 return result; 2059 } 2060 2061 void udp_v4_early_demux(struct sk_buff *skb) 2062 { 2063 struct net *net = dev_net(skb->dev); 2064 const struct iphdr *iph; 2065 const struct udphdr *uh; 2066 struct sock *sk; 2067 struct dst_entry *dst; 2068 int dif = skb->dev->ifindex; 2069 int ours; 2070 2071 /* validate the packet */ 2072 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr))) 2073 return; 2074 2075 iph = ip_hdr(skb); 2076 uh = udp_hdr(skb); 2077 2078 if (skb->pkt_type == PACKET_BROADCAST || 2079 skb->pkt_type == PACKET_MULTICAST) { 2080 struct in_device *in_dev = __in_dev_get_rcu(skb->dev); 2081 2082 if (!in_dev) 2083 return; 2084 2085 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr, 2086 iph->protocol); 2087 if (!ours) 2088 return; 2089 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr, 2090 uh->source, iph->saddr, dif); 2091 } else if (skb->pkt_type == PACKET_HOST) { 2092 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr, 2093 uh->source, iph->saddr, dif); 2094 } else { 2095 return; 2096 } 2097 2098 if (!sk) 2099 return; 2100 2101 skb->sk = sk; 2102 skb->destructor = sock_efree; 2103 dst = READ_ONCE(sk->sk_rx_dst); 2104 2105 if (dst) 2106 dst = dst_check(dst, 0); 2107 if (dst) { 2108 /* DST_NOCACHE can not be used without taking a reference */ 2109 if (dst->flags & DST_NOCACHE) { 2110 if (likely(atomic_inc_not_zero(&dst->__refcnt))) 2111 skb_dst_set(skb, dst); 2112 } else { 2113 skb_dst_set_noref(skb, dst); 2114 } 2115 } 2116 } 2117 2118 int udp_rcv(struct sk_buff *skb) 2119 { 2120 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP); 2121 } 2122 2123 void udp_destroy_sock(struct sock *sk) 2124 { 2125 struct udp_sock *up = udp_sk(sk); 2126 bool slow = lock_sock_fast(sk); 2127 udp_flush_pending_frames(sk); 2128 unlock_sock_fast(sk, slow); 2129 if (static_key_false(&udp_encap_needed) && up->encap_type) { 2130 void (*encap_destroy)(struct sock *sk); 2131 encap_destroy = ACCESS_ONCE(up->encap_destroy); 2132 if (encap_destroy) 2133 encap_destroy(sk); 2134 } 2135 } 2136 2137 /* 2138 * Socket option code for UDP 2139 */ 2140 int udp_lib_setsockopt(struct sock *sk, int level, int optname, 2141 char __user *optval, unsigned int optlen, 2142 int (*push_pending_frames)(struct sock *)) 2143 { 2144 struct udp_sock *up = udp_sk(sk); 2145 int val, valbool; 2146 int err = 0; 2147 int is_udplite = IS_UDPLITE(sk); 2148 2149 if (optlen < sizeof(int)) 2150 return -EINVAL; 2151 2152 if (get_user(val, (int __user *)optval)) 2153 return -EFAULT; 2154 2155 valbool = val ? 1 : 0; 2156 2157 switch (optname) { 2158 case UDP_CORK: 2159 if (val != 0) { 2160 up->corkflag = 1; 2161 } else { 2162 up->corkflag = 0; 2163 lock_sock(sk); 2164 push_pending_frames(sk); 2165 release_sock(sk); 2166 } 2167 break; 2168 2169 case UDP_ENCAP: 2170 switch (val) { 2171 case 0: 2172 case UDP_ENCAP_ESPINUDP: 2173 case UDP_ENCAP_ESPINUDP_NON_IKE: 2174 up->encap_rcv = xfrm4_udp_encap_rcv; 2175 /* FALLTHROUGH */ 2176 case UDP_ENCAP_L2TPINUDP: 2177 up->encap_type = val; 2178 udp_encap_enable(); 2179 break; 2180 default: 2181 err = -ENOPROTOOPT; 2182 break; 2183 } 2184 break; 2185 2186 case UDP_NO_CHECK6_TX: 2187 up->no_check6_tx = valbool; 2188 break; 2189 2190 case UDP_NO_CHECK6_RX: 2191 up->no_check6_rx = valbool; 2192 break; 2193 2194 /* 2195 * UDP-Lite's partial checksum coverage (RFC 3828). 2196 */ 2197 /* The sender sets actual checksum coverage length via this option. 2198 * The case coverage > packet length is handled by send module. */ 2199 case UDPLITE_SEND_CSCOV: 2200 if (!is_udplite) /* Disable the option on UDP sockets */ 2201 return -ENOPROTOOPT; 2202 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */ 2203 val = 8; 2204 else if (val > USHRT_MAX) 2205 val = USHRT_MAX; 2206 up->pcslen = val; 2207 up->pcflag |= UDPLITE_SEND_CC; 2208 break; 2209 2210 /* The receiver specifies a minimum checksum coverage value. To make 2211 * sense, this should be set to at least 8 (as done below). If zero is 2212 * used, this again means full checksum coverage. */ 2213 case UDPLITE_RECV_CSCOV: 2214 if (!is_udplite) /* Disable the option on UDP sockets */ 2215 return -ENOPROTOOPT; 2216 if (val != 0 && val < 8) /* Avoid silly minimal values. */ 2217 val = 8; 2218 else if (val > USHRT_MAX) 2219 val = USHRT_MAX; 2220 up->pcrlen = val; 2221 up->pcflag |= UDPLITE_RECV_CC; 2222 break; 2223 2224 default: 2225 err = -ENOPROTOOPT; 2226 break; 2227 } 2228 2229 return err; 2230 } 2231 EXPORT_SYMBOL(udp_lib_setsockopt); 2232 2233 int udp_setsockopt(struct sock *sk, int level, int optname, 2234 char __user *optval, unsigned int optlen) 2235 { 2236 if (level == SOL_UDP || level == SOL_UDPLITE) 2237 return udp_lib_setsockopt(sk, level, optname, optval, optlen, 2238 udp_push_pending_frames); 2239 return ip_setsockopt(sk, level, optname, optval, optlen); 2240 } 2241 2242 #ifdef CONFIG_COMPAT 2243 int compat_udp_setsockopt(struct sock *sk, int level, int optname, 2244 char __user *optval, unsigned int optlen) 2245 { 2246 if (level == SOL_UDP || level == SOL_UDPLITE) 2247 return udp_lib_setsockopt(sk, level, optname, optval, optlen, 2248 udp_push_pending_frames); 2249 return compat_ip_setsockopt(sk, level, optname, optval, optlen); 2250 } 2251 #endif 2252 2253 int udp_lib_getsockopt(struct sock *sk, int level, int optname, 2254 char __user *optval, int __user *optlen) 2255 { 2256 struct udp_sock *up = udp_sk(sk); 2257 int val, len; 2258 2259 if (get_user(len, optlen)) 2260 return -EFAULT; 2261 2262 len = min_t(unsigned int, len, sizeof(int)); 2263 2264 if (len < 0) 2265 return -EINVAL; 2266 2267 switch (optname) { 2268 case UDP_CORK: 2269 val = up->corkflag; 2270 break; 2271 2272 case UDP_ENCAP: 2273 val = up->encap_type; 2274 break; 2275 2276 case UDP_NO_CHECK6_TX: 2277 val = up->no_check6_tx; 2278 break; 2279 2280 case UDP_NO_CHECK6_RX: 2281 val = up->no_check6_rx; 2282 break; 2283 2284 /* The following two cannot be changed on UDP sockets, the return is 2285 * always 0 (which corresponds to the full checksum coverage of UDP). */ 2286 case UDPLITE_SEND_CSCOV: 2287 val = up->pcslen; 2288 break; 2289 2290 case UDPLITE_RECV_CSCOV: 2291 val = up->pcrlen; 2292 break; 2293 2294 default: 2295 return -ENOPROTOOPT; 2296 } 2297 2298 if (put_user(len, optlen)) 2299 return -EFAULT; 2300 if (copy_to_user(optval, &val, len)) 2301 return -EFAULT; 2302 return 0; 2303 } 2304 EXPORT_SYMBOL(udp_lib_getsockopt); 2305 2306 int udp_getsockopt(struct sock *sk, int level, int optname, 2307 char __user *optval, int __user *optlen) 2308 { 2309 if (level == SOL_UDP || level == SOL_UDPLITE) 2310 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 2311 return ip_getsockopt(sk, level, optname, optval, optlen); 2312 } 2313 2314 #ifdef CONFIG_COMPAT 2315 int compat_udp_getsockopt(struct sock *sk, int level, int optname, 2316 char __user *optval, int __user *optlen) 2317 { 2318 if (level == SOL_UDP || level == SOL_UDPLITE) 2319 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 2320 return compat_ip_getsockopt(sk, level, optname, optval, optlen); 2321 } 2322 #endif 2323 /** 2324 * udp_poll - wait for a UDP event. 2325 * @file - file struct 2326 * @sock - socket 2327 * @wait - poll table 2328 * 2329 * This is same as datagram poll, except for the special case of 2330 * blocking sockets. If application is using a blocking fd 2331 * and a packet with checksum error is in the queue; 2332 * then it could get return from select indicating data available 2333 * but then block when reading it. Add special case code 2334 * to work around these arguably broken applications. 2335 */ 2336 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait) 2337 { 2338 unsigned int mask = datagram_poll(file, sock, wait); 2339 struct sock *sk = sock->sk; 2340 2341 sock_rps_record_flow(sk); 2342 2343 /* Check for false positives due to checksum errors */ 2344 if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) && 2345 !(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk)) 2346 mask &= ~(POLLIN | POLLRDNORM); 2347 2348 return mask; 2349 2350 } 2351 EXPORT_SYMBOL(udp_poll); 2352 2353 struct proto udp_prot = { 2354 .name = "UDP", 2355 .owner = THIS_MODULE, 2356 .close = udp_lib_close, 2357 .connect = ip4_datagram_connect, 2358 .disconnect = udp_disconnect, 2359 .ioctl = udp_ioctl, 2360 .destroy = udp_destroy_sock, 2361 .setsockopt = udp_setsockopt, 2362 .getsockopt = udp_getsockopt, 2363 .sendmsg = udp_sendmsg, 2364 .recvmsg = udp_recvmsg, 2365 .sendpage = udp_sendpage, 2366 .backlog_rcv = __udp_queue_rcv_skb, 2367 .release_cb = ip4_datagram_release_cb, 2368 .hash = udp_lib_hash, 2369 .unhash = udp_lib_unhash, 2370 .rehash = udp_v4_rehash, 2371 .get_port = udp_v4_get_port, 2372 .memory_allocated = &udp_memory_allocated, 2373 .sysctl_mem = sysctl_udp_mem, 2374 .sysctl_wmem = &sysctl_udp_wmem_min, 2375 .sysctl_rmem = &sysctl_udp_rmem_min, 2376 .obj_size = sizeof(struct udp_sock), 2377 .slab_flags = SLAB_DESTROY_BY_RCU, 2378 .h.udp_table = &udp_table, 2379 #ifdef CONFIG_COMPAT 2380 .compat_setsockopt = compat_udp_setsockopt, 2381 .compat_getsockopt = compat_udp_getsockopt, 2382 #endif 2383 .clear_sk = sk_prot_clear_portaddr_nulls, 2384 }; 2385 EXPORT_SYMBOL(udp_prot); 2386 2387 /* ------------------------------------------------------------------------ */ 2388 #ifdef CONFIG_PROC_FS 2389 2390 static struct sock *udp_get_first(struct seq_file *seq, int start) 2391 { 2392 struct sock *sk; 2393 struct udp_iter_state *state = seq->private; 2394 struct net *net = seq_file_net(seq); 2395 2396 for (state->bucket = start; state->bucket <= state->udp_table->mask; 2397 ++state->bucket) { 2398 struct hlist_nulls_node *node; 2399 struct udp_hslot *hslot = &state->udp_table->hash[state->bucket]; 2400 2401 if (hlist_nulls_empty(&hslot->head)) 2402 continue; 2403 2404 spin_lock_bh(&hslot->lock); 2405 sk_nulls_for_each(sk, node, &hslot->head) { 2406 if (!net_eq(sock_net(sk), net)) 2407 continue; 2408 if (sk->sk_family == state->family) 2409 goto found; 2410 } 2411 spin_unlock_bh(&hslot->lock); 2412 } 2413 sk = NULL; 2414 found: 2415 return sk; 2416 } 2417 2418 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk) 2419 { 2420 struct udp_iter_state *state = seq->private; 2421 struct net *net = seq_file_net(seq); 2422 2423 do { 2424 sk = sk_nulls_next(sk); 2425 } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family)); 2426 2427 if (!sk) { 2428 if (state->bucket <= state->udp_table->mask) 2429 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock); 2430 return udp_get_first(seq, state->bucket + 1); 2431 } 2432 return sk; 2433 } 2434 2435 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos) 2436 { 2437 struct sock *sk = udp_get_first(seq, 0); 2438 2439 if (sk) 2440 while (pos && (sk = udp_get_next(seq, sk)) != NULL) 2441 --pos; 2442 return pos ? NULL : sk; 2443 } 2444 2445 static void *udp_seq_start(struct seq_file *seq, loff_t *pos) 2446 { 2447 struct udp_iter_state *state = seq->private; 2448 state->bucket = MAX_UDP_PORTS; 2449 2450 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN; 2451 } 2452 2453 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2454 { 2455 struct sock *sk; 2456 2457 if (v == SEQ_START_TOKEN) 2458 sk = udp_get_idx(seq, 0); 2459 else 2460 sk = udp_get_next(seq, v); 2461 2462 ++*pos; 2463 return sk; 2464 } 2465 2466 static void udp_seq_stop(struct seq_file *seq, void *v) 2467 { 2468 struct udp_iter_state *state = seq->private; 2469 2470 if (state->bucket <= state->udp_table->mask) 2471 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock); 2472 } 2473 2474 int udp_seq_open(struct inode *inode, struct file *file) 2475 { 2476 struct udp_seq_afinfo *afinfo = PDE_DATA(inode); 2477 struct udp_iter_state *s; 2478 int err; 2479 2480 err = seq_open_net(inode, file, &afinfo->seq_ops, 2481 sizeof(struct udp_iter_state)); 2482 if (err < 0) 2483 return err; 2484 2485 s = ((struct seq_file *)file->private_data)->private; 2486 s->family = afinfo->family; 2487 s->udp_table = afinfo->udp_table; 2488 return err; 2489 } 2490 EXPORT_SYMBOL(udp_seq_open); 2491 2492 /* ------------------------------------------------------------------------ */ 2493 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo) 2494 { 2495 struct proc_dir_entry *p; 2496 int rc = 0; 2497 2498 afinfo->seq_ops.start = udp_seq_start; 2499 afinfo->seq_ops.next = udp_seq_next; 2500 afinfo->seq_ops.stop = udp_seq_stop; 2501 2502 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net, 2503 afinfo->seq_fops, afinfo); 2504 if (!p) 2505 rc = -ENOMEM; 2506 return rc; 2507 } 2508 EXPORT_SYMBOL(udp_proc_register); 2509 2510 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo) 2511 { 2512 remove_proc_entry(afinfo->name, net->proc_net); 2513 } 2514 EXPORT_SYMBOL(udp_proc_unregister); 2515 2516 /* ------------------------------------------------------------------------ */ 2517 static void udp4_format_sock(struct sock *sp, struct seq_file *f, 2518 int bucket) 2519 { 2520 struct inet_sock *inet = inet_sk(sp); 2521 __be32 dest = inet->inet_daddr; 2522 __be32 src = inet->inet_rcv_saddr; 2523 __u16 destp = ntohs(inet->inet_dport); 2524 __u16 srcp = ntohs(inet->inet_sport); 2525 2526 seq_printf(f, "%5d: %08X:%04X %08X:%04X" 2527 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d", 2528 bucket, src, srcp, dest, destp, sp->sk_state, 2529 sk_wmem_alloc_get(sp), 2530 sk_rmem_alloc_get(sp), 2531 0, 0L, 0, 2532 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)), 2533 0, sock_i_ino(sp), 2534 atomic_read(&sp->sk_refcnt), sp, 2535 atomic_read(&sp->sk_drops)); 2536 } 2537 2538 int udp4_seq_show(struct seq_file *seq, void *v) 2539 { 2540 seq_setwidth(seq, 127); 2541 if (v == SEQ_START_TOKEN) 2542 seq_puts(seq, " sl local_address rem_address st tx_queue " 2543 "rx_queue tr tm->when retrnsmt uid timeout " 2544 "inode ref pointer drops"); 2545 else { 2546 struct udp_iter_state *state = seq->private; 2547 2548 udp4_format_sock(v, seq, state->bucket); 2549 } 2550 seq_pad(seq, '\n'); 2551 return 0; 2552 } 2553 2554 static const struct file_operations udp_afinfo_seq_fops = { 2555 .owner = THIS_MODULE, 2556 .open = udp_seq_open, 2557 .read = seq_read, 2558 .llseek = seq_lseek, 2559 .release = seq_release_net 2560 }; 2561 2562 /* ------------------------------------------------------------------------ */ 2563 static struct udp_seq_afinfo udp4_seq_afinfo = { 2564 .name = "udp", 2565 .family = AF_INET, 2566 .udp_table = &udp_table, 2567 .seq_fops = &udp_afinfo_seq_fops, 2568 .seq_ops = { 2569 .show = udp4_seq_show, 2570 }, 2571 }; 2572 2573 static int __net_init udp4_proc_init_net(struct net *net) 2574 { 2575 return udp_proc_register(net, &udp4_seq_afinfo); 2576 } 2577 2578 static void __net_exit udp4_proc_exit_net(struct net *net) 2579 { 2580 udp_proc_unregister(net, &udp4_seq_afinfo); 2581 } 2582 2583 static struct pernet_operations udp4_net_ops = { 2584 .init = udp4_proc_init_net, 2585 .exit = udp4_proc_exit_net, 2586 }; 2587 2588 int __init udp4_proc_init(void) 2589 { 2590 return register_pernet_subsys(&udp4_net_ops); 2591 } 2592 2593 void udp4_proc_exit(void) 2594 { 2595 unregister_pernet_subsys(&udp4_net_ops); 2596 } 2597 #endif /* CONFIG_PROC_FS */ 2598 2599 static __initdata unsigned long uhash_entries; 2600 static int __init set_uhash_entries(char *str) 2601 { 2602 ssize_t ret; 2603 2604 if (!str) 2605 return 0; 2606 2607 ret = kstrtoul(str, 0, &uhash_entries); 2608 if (ret) 2609 return 0; 2610 2611 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN) 2612 uhash_entries = UDP_HTABLE_SIZE_MIN; 2613 return 1; 2614 } 2615 __setup("uhash_entries=", set_uhash_entries); 2616 2617 void __init udp_table_init(struct udp_table *table, const char *name) 2618 { 2619 unsigned int i; 2620 2621 table->hash = alloc_large_system_hash(name, 2622 2 * sizeof(struct udp_hslot), 2623 uhash_entries, 2624 21, /* one slot per 2 MB */ 2625 0, 2626 &table->log, 2627 &table->mask, 2628 UDP_HTABLE_SIZE_MIN, 2629 64 * 1024); 2630 2631 table->hash2 = table->hash + (table->mask + 1); 2632 for (i = 0; i <= table->mask; i++) { 2633 INIT_HLIST_NULLS_HEAD(&table->hash[i].head, i); 2634 table->hash[i].count = 0; 2635 spin_lock_init(&table->hash[i].lock); 2636 } 2637 for (i = 0; i <= table->mask; i++) { 2638 INIT_HLIST_NULLS_HEAD(&table->hash2[i].head, i); 2639 table->hash2[i].count = 0; 2640 spin_lock_init(&table->hash2[i].lock); 2641 } 2642 } 2643 2644 u32 udp_flow_hashrnd(void) 2645 { 2646 static u32 hashrnd __read_mostly; 2647 2648 net_get_random_once(&hashrnd, sizeof(hashrnd)); 2649 2650 return hashrnd; 2651 } 2652 EXPORT_SYMBOL(udp_flow_hashrnd); 2653 2654 void __init udp_init(void) 2655 { 2656 unsigned long limit; 2657 2658 udp_table_init(&udp_table, "UDP"); 2659 limit = nr_free_buffer_pages() / 8; 2660 limit = max(limit, 128UL); 2661 sysctl_udp_mem[0] = limit / 4 * 3; 2662 sysctl_udp_mem[1] = limit; 2663 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2; 2664 2665 sysctl_udp_rmem_min = SK_MEM_QUANTUM; 2666 sysctl_udp_wmem_min = SK_MEM_QUANTUM; 2667 } 2668