1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * The User Datagram Protocol (UDP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 12 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 13 * Hirokazu Takahashi, <taka@valinux.co.jp> 14 * 15 * Fixes: 16 * Alan Cox : verify_area() calls 17 * Alan Cox : stopped close while in use off icmp 18 * messages. Not a fix but a botch that 19 * for udp at least is 'valid'. 20 * Alan Cox : Fixed icmp handling properly 21 * Alan Cox : Correct error for oversized datagrams 22 * Alan Cox : Tidied select() semantics. 23 * Alan Cox : udp_err() fixed properly, also now 24 * select and read wake correctly on errors 25 * Alan Cox : udp_send verify_area moved to avoid mem leak 26 * Alan Cox : UDP can count its memory 27 * Alan Cox : send to an unknown connection causes 28 * an ECONNREFUSED off the icmp, but 29 * does NOT close. 30 * Alan Cox : Switched to new sk_buff handlers. No more backlog! 31 * Alan Cox : Using generic datagram code. Even smaller and the PEEK 32 * bug no longer crashes it. 33 * Fred Van Kempen : Net2e support for sk->broadcast. 34 * Alan Cox : Uses skb_free_datagram 35 * Alan Cox : Added get/set sockopt support. 36 * Alan Cox : Broadcasting without option set returns EACCES. 37 * Alan Cox : No wakeup calls. Instead we now use the callbacks. 38 * Alan Cox : Use ip_tos and ip_ttl 39 * Alan Cox : SNMP Mibs 40 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support. 41 * Matt Dillon : UDP length checks. 42 * Alan Cox : Smarter af_inet used properly. 43 * Alan Cox : Use new kernel side addressing. 44 * Alan Cox : Incorrect return on truncated datagram receive. 45 * Arnt Gulbrandsen : New udp_send and stuff 46 * Alan Cox : Cache last socket 47 * Alan Cox : Route cache 48 * Jon Peatfield : Minor efficiency fix to sendto(). 49 * Mike Shaver : RFC1122 checks. 50 * Alan Cox : Nonblocking error fix. 51 * Willy Konynenberg : Transparent proxying support. 52 * Mike McLagan : Routing by source 53 * David S. Miller : New socket lookup architecture. 54 * Last socket cache retained as it 55 * does have a high hit rate. 56 * Olaf Kirch : Don't linearise iovec on sendmsg. 57 * Andi Kleen : Some cleanups, cache destination entry 58 * for connect. 59 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 60 * Melvin Smith : Check msg_name not msg_namelen in sendto(), 61 * return ENOTCONN for unconnected sockets (POSIX) 62 * Janos Farkas : don't deliver multi/broadcasts to a different 63 * bound-to-device socket 64 * Hirokazu Takahashi : HW checksumming for outgoing UDP 65 * datagrams. 66 * Hirokazu Takahashi : sendfile() on UDP works now. 67 * Arnaldo C. Melo : convert /proc/net/udp to seq_file 68 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 69 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind 70 * a single port at the same time. 71 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support 72 * James Chapman : Add L2TP encapsulation type. 73 */ 74 75 #define pr_fmt(fmt) "UDP: " fmt 76 77 #include <linux/uaccess.h> 78 #include <asm/ioctls.h> 79 #include <linux/memblock.h> 80 #include <linux/highmem.h> 81 #include <linux/swap.h> 82 #include <linux/types.h> 83 #include <linux/fcntl.h> 84 #include <linux/module.h> 85 #include <linux/socket.h> 86 #include <linux/sockios.h> 87 #include <linux/igmp.h> 88 #include <linux/inetdevice.h> 89 #include <linux/in.h> 90 #include <linux/errno.h> 91 #include <linux/timer.h> 92 #include <linux/mm.h> 93 #include <linux/inet.h> 94 #include <linux/netdevice.h> 95 #include <linux/slab.h> 96 #include <net/tcp_states.h> 97 #include <linux/skbuff.h> 98 #include <linux/proc_fs.h> 99 #include <linux/seq_file.h> 100 #include <net/net_namespace.h> 101 #include <net/icmp.h> 102 #include <net/inet_hashtables.h> 103 #include <net/ip_tunnels.h> 104 #include <net/route.h> 105 #include <net/checksum.h> 106 #include <net/xfrm.h> 107 #include <trace/events/udp.h> 108 #include <linux/static_key.h> 109 #include <trace/events/skb.h> 110 #include <net/busy_poll.h> 111 #include "udp_impl.h" 112 #include <net/sock_reuseport.h> 113 #include <net/addrconf.h> 114 #include <net/udp_tunnel.h> 115 116 struct udp_table udp_table __read_mostly; 117 EXPORT_SYMBOL(udp_table); 118 119 long sysctl_udp_mem[3] __read_mostly; 120 EXPORT_SYMBOL(sysctl_udp_mem); 121 122 atomic_long_t udp_memory_allocated; 123 EXPORT_SYMBOL(udp_memory_allocated); 124 125 #define MAX_UDP_PORTS 65536 126 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN) 127 128 static int udp_lib_lport_inuse(struct net *net, __u16 num, 129 const struct udp_hslot *hslot, 130 unsigned long *bitmap, 131 struct sock *sk, unsigned int log) 132 { 133 struct sock *sk2; 134 kuid_t uid = sock_i_uid(sk); 135 136 sk_for_each(sk2, &hslot->head) { 137 if (net_eq(sock_net(sk2), net) && 138 sk2 != sk && 139 (bitmap || udp_sk(sk2)->udp_port_hash == num) && 140 (!sk2->sk_reuse || !sk->sk_reuse) && 141 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 142 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 143 inet_rcv_saddr_equal(sk, sk2, true)) { 144 if (sk2->sk_reuseport && sk->sk_reuseport && 145 !rcu_access_pointer(sk->sk_reuseport_cb) && 146 uid_eq(uid, sock_i_uid(sk2))) { 147 if (!bitmap) 148 return 0; 149 } else { 150 if (!bitmap) 151 return 1; 152 __set_bit(udp_sk(sk2)->udp_port_hash >> log, 153 bitmap); 154 } 155 } 156 } 157 return 0; 158 } 159 160 /* 161 * Note: we still hold spinlock of primary hash chain, so no other writer 162 * can insert/delete a socket with local_port == num 163 */ 164 static int udp_lib_lport_inuse2(struct net *net, __u16 num, 165 struct udp_hslot *hslot2, 166 struct sock *sk) 167 { 168 struct sock *sk2; 169 kuid_t uid = sock_i_uid(sk); 170 int res = 0; 171 172 spin_lock(&hslot2->lock); 173 udp_portaddr_for_each_entry(sk2, &hslot2->head) { 174 if (net_eq(sock_net(sk2), net) && 175 sk2 != sk && 176 (udp_sk(sk2)->udp_port_hash == num) && 177 (!sk2->sk_reuse || !sk->sk_reuse) && 178 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 179 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 180 inet_rcv_saddr_equal(sk, sk2, true)) { 181 if (sk2->sk_reuseport && sk->sk_reuseport && 182 !rcu_access_pointer(sk->sk_reuseport_cb) && 183 uid_eq(uid, sock_i_uid(sk2))) { 184 res = 0; 185 } else { 186 res = 1; 187 } 188 break; 189 } 190 } 191 spin_unlock(&hslot2->lock); 192 return res; 193 } 194 195 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot) 196 { 197 struct net *net = sock_net(sk); 198 kuid_t uid = sock_i_uid(sk); 199 struct sock *sk2; 200 201 sk_for_each(sk2, &hslot->head) { 202 if (net_eq(sock_net(sk2), net) && 203 sk2 != sk && 204 sk2->sk_family == sk->sk_family && 205 ipv6_only_sock(sk2) == ipv6_only_sock(sk) && 206 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) && 207 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 208 sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) && 209 inet_rcv_saddr_equal(sk, sk2, false)) { 210 return reuseport_add_sock(sk, sk2, 211 inet_rcv_saddr_any(sk)); 212 } 213 } 214 215 return reuseport_alloc(sk, inet_rcv_saddr_any(sk)); 216 } 217 218 /** 219 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6 220 * 221 * @sk: socket struct in question 222 * @snum: port number to look up 223 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains, 224 * with NULL address 225 */ 226 int udp_lib_get_port(struct sock *sk, unsigned short snum, 227 unsigned int hash2_nulladdr) 228 { 229 struct udp_hslot *hslot, *hslot2; 230 struct udp_table *udptable = sk->sk_prot->h.udp_table; 231 int error = 1; 232 struct net *net = sock_net(sk); 233 234 if (!snum) { 235 int low, high, remaining; 236 unsigned int rand; 237 unsigned short first, last; 238 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN); 239 240 inet_get_local_port_range(net, &low, &high); 241 remaining = (high - low) + 1; 242 243 rand = prandom_u32(); 244 first = reciprocal_scale(rand, remaining) + low; 245 /* 246 * force rand to be an odd multiple of UDP_HTABLE_SIZE 247 */ 248 rand = (rand | 1) * (udptable->mask + 1); 249 last = first + udptable->mask + 1; 250 do { 251 hslot = udp_hashslot(udptable, net, first); 252 bitmap_zero(bitmap, PORTS_PER_CHAIN); 253 spin_lock_bh(&hslot->lock); 254 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk, 255 udptable->log); 256 257 snum = first; 258 /* 259 * Iterate on all possible values of snum for this hash. 260 * Using steps of an odd multiple of UDP_HTABLE_SIZE 261 * give us randomization and full range coverage. 262 */ 263 do { 264 if (low <= snum && snum <= high && 265 !test_bit(snum >> udptable->log, bitmap) && 266 !inet_is_local_reserved_port(net, snum)) 267 goto found; 268 snum += rand; 269 } while (snum != first); 270 spin_unlock_bh(&hslot->lock); 271 cond_resched(); 272 } while (++first != last); 273 goto fail; 274 } else { 275 hslot = udp_hashslot(udptable, net, snum); 276 spin_lock_bh(&hslot->lock); 277 if (hslot->count > 10) { 278 int exist; 279 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum; 280 281 slot2 &= udptable->mask; 282 hash2_nulladdr &= udptable->mask; 283 284 hslot2 = udp_hashslot2(udptable, slot2); 285 if (hslot->count < hslot2->count) 286 goto scan_primary_hash; 287 288 exist = udp_lib_lport_inuse2(net, snum, hslot2, sk); 289 if (!exist && (hash2_nulladdr != slot2)) { 290 hslot2 = udp_hashslot2(udptable, hash2_nulladdr); 291 exist = udp_lib_lport_inuse2(net, snum, hslot2, 292 sk); 293 } 294 if (exist) 295 goto fail_unlock; 296 else 297 goto found; 298 } 299 scan_primary_hash: 300 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0)) 301 goto fail_unlock; 302 } 303 found: 304 inet_sk(sk)->inet_num = snum; 305 udp_sk(sk)->udp_port_hash = snum; 306 udp_sk(sk)->udp_portaddr_hash ^= snum; 307 if (sk_unhashed(sk)) { 308 if (sk->sk_reuseport && 309 udp_reuseport_add_sock(sk, hslot)) { 310 inet_sk(sk)->inet_num = 0; 311 udp_sk(sk)->udp_port_hash = 0; 312 udp_sk(sk)->udp_portaddr_hash ^= snum; 313 goto fail_unlock; 314 } 315 316 sk_add_node_rcu(sk, &hslot->head); 317 hslot->count++; 318 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 319 320 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 321 spin_lock(&hslot2->lock); 322 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 323 sk->sk_family == AF_INET6) 324 hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node, 325 &hslot2->head); 326 else 327 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 328 &hslot2->head); 329 hslot2->count++; 330 spin_unlock(&hslot2->lock); 331 } 332 sock_set_flag(sk, SOCK_RCU_FREE); 333 error = 0; 334 fail_unlock: 335 spin_unlock_bh(&hslot->lock); 336 fail: 337 return error; 338 } 339 EXPORT_SYMBOL(udp_lib_get_port); 340 341 int udp_v4_get_port(struct sock *sk, unsigned short snum) 342 { 343 unsigned int hash2_nulladdr = 344 ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum); 345 unsigned int hash2_partial = 346 ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0); 347 348 /* precompute partial secondary hash */ 349 udp_sk(sk)->udp_portaddr_hash = hash2_partial; 350 return udp_lib_get_port(sk, snum, hash2_nulladdr); 351 } 352 353 static int compute_score(struct sock *sk, struct net *net, 354 __be32 saddr, __be16 sport, 355 __be32 daddr, unsigned short hnum, 356 int dif, int sdif) 357 { 358 int score; 359 struct inet_sock *inet; 360 bool dev_match; 361 362 if (!net_eq(sock_net(sk), net) || 363 udp_sk(sk)->udp_port_hash != hnum || 364 ipv6_only_sock(sk)) 365 return -1; 366 367 if (sk->sk_rcv_saddr != daddr) 368 return -1; 369 370 score = (sk->sk_family == PF_INET) ? 2 : 1; 371 372 inet = inet_sk(sk); 373 if (inet->inet_daddr) { 374 if (inet->inet_daddr != saddr) 375 return -1; 376 score += 4; 377 } 378 379 if (inet->inet_dport) { 380 if (inet->inet_dport != sport) 381 return -1; 382 score += 4; 383 } 384 385 dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, 386 dif, sdif); 387 if (!dev_match) 388 return -1; 389 score += 4; 390 391 if (sk->sk_incoming_cpu == raw_smp_processor_id()) 392 score++; 393 return score; 394 } 395 396 static u32 udp_ehashfn(const struct net *net, const __be32 laddr, 397 const __u16 lport, const __be32 faddr, 398 const __be16 fport) 399 { 400 static u32 udp_ehash_secret __read_mostly; 401 402 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret)); 403 404 return __inet_ehashfn(laddr, lport, faddr, fport, 405 udp_ehash_secret + net_hash_mix(net)); 406 } 407 408 /* called with rcu_read_lock() */ 409 static struct sock *udp4_lib_lookup2(struct net *net, 410 __be32 saddr, __be16 sport, 411 __be32 daddr, unsigned int hnum, 412 int dif, int sdif, 413 struct udp_hslot *hslot2, 414 struct sk_buff *skb) 415 { 416 struct sock *sk, *result; 417 int score, badness; 418 u32 hash = 0; 419 420 result = NULL; 421 badness = 0; 422 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 423 score = compute_score(sk, net, saddr, sport, 424 daddr, hnum, dif, sdif); 425 if (score > badness) { 426 if (sk->sk_reuseport) { 427 hash = udp_ehashfn(net, daddr, hnum, 428 saddr, sport); 429 result = reuseport_select_sock(sk, hash, skb, 430 sizeof(struct udphdr)); 431 if (result) 432 return result; 433 } 434 badness = score; 435 result = sk; 436 } 437 } 438 return result; 439 } 440 441 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try 442 * harder than this. -DaveM 443 */ 444 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr, 445 __be16 sport, __be32 daddr, __be16 dport, int dif, 446 int sdif, struct udp_table *udptable, struct sk_buff *skb) 447 { 448 struct sock *result; 449 unsigned short hnum = ntohs(dport); 450 unsigned int hash2, slot2; 451 struct udp_hslot *hslot2; 452 453 hash2 = ipv4_portaddr_hash(net, daddr, hnum); 454 slot2 = hash2 & udptable->mask; 455 hslot2 = &udptable->hash2[slot2]; 456 457 result = udp4_lib_lookup2(net, saddr, sport, 458 daddr, hnum, dif, sdif, 459 hslot2, skb); 460 if (!result) { 461 hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum); 462 slot2 = hash2 & udptable->mask; 463 hslot2 = &udptable->hash2[slot2]; 464 465 result = udp4_lib_lookup2(net, saddr, sport, 466 htonl(INADDR_ANY), hnum, dif, sdif, 467 hslot2, skb); 468 } 469 if (IS_ERR(result)) 470 return NULL; 471 return result; 472 } 473 EXPORT_SYMBOL_GPL(__udp4_lib_lookup); 474 475 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb, 476 __be16 sport, __be16 dport, 477 struct udp_table *udptable) 478 { 479 const struct iphdr *iph = ip_hdr(skb); 480 481 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport, 482 iph->daddr, dport, inet_iif(skb), 483 inet_sdif(skb), udptable, skb); 484 } 485 486 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb, 487 __be16 sport, __be16 dport) 488 { 489 const struct iphdr *iph = ip_hdr(skb); 490 491 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport, 492 iph->daddr, dport, inet_iif(skb), 493 inet_sdif(skb), &udp_table, NULL); 494 } 495 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb); 496 497 /* Must be called under rcu_read_lock(). 498 * Does increment socket refcount. 499 */ 500 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4) 501 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport, 502 __be32 daddr, __be16 dport, int dif) 503 { 504 struct sock *sk; 505 506 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport, 507 dif, 0, &udp_table, NULL); 508 if (sk && !refcount_inc_not_zero(&sk->sk_refcnt)) 509 sk = NULL; 510 return sk; 511 } 512 EXPORT_SYMBOL_GPL(udp4_lib_lookup); 513 #endif 514 515 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk, 516 __be16 loc_port, __be32 loc_addr, 517 __be16 rmt_port, __be32 rmt_addr, 518 int dif, int sdif, unsigned short hnum) 519 { 520 struct inet_sock *inet = inet_sk(sk); 521 522 if (!net_eq(sock_net(sk), net) || 523 udp_sk(sk)->udp_port_hash != hnum || 524 (inet->inet_daddr && inet->inet_daddr != rmt_addr) || 525 (inet->inet_dport != rmt_port && inet->inet_dport) || 526 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) || 527 ipv6_only_sock(sk) || 528 !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif)) 529 return false; 530 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif)) 531 return false; 532 return true; 533 } 534 535 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key); 536 void udp_encap_enable(void) 537 { 538 static_branch_inc(&udp_encap_needed_key); 539 } 540 EXPORT_SYMBOL(udp_encap_enable); 541 542 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go 543 * through error handlers in encapsulations looking for a match. 544 */ 545 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info) 546 { 547 int i; 548 549 for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) { 550 int (*handler)(struct sk_buff *skb, u32 info); 551 const struct ip_tunnel_encap_ops *encap; 552 553 encap = rcu_dereference(iptun_encaps[i]); 554 if (!encap) 555 continue; 556 handler = encap->err_handler; 557 if (handler && !handler(skb, info)) 558 return 0; 559 } 560 561 return -ENOENT; 562 } 563 564 /* Try to match ICMP errors to UDP tunnels by looking up a socket without 565 * reversing source and destination port: this will match tunnels that force the 566 * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that 567 * lwtunnels might actually break this assumption by being configured with 568 * different destination ports on endpoints, in this case we won't be able to 569 * trace ICMP messages back to them. 570 * 571 * If this doesn't match any socket, probe tunnels with arbitrary destination 572 * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port 573 * we've sent packets to won't necessarily match the local destination port. 574 * 575 * Then ask the tunnel implementation to match the error against a valid 576 * association. 577 * 578 * Return an error if we can't find a match, the socket if we need further 579 * processing, zero otherwise. 580 */ 581 static struct sock *__udp4_lib_err_encap(struct net *net, 582 const struct iphdr *iph, 583 struct udphdr *uh, 584 struct udp_table *udptable, 585 struct sk_buff *skb, u32 info) 586 { 587 int network_offset, transport_offset; 588 struct sock *sk; 589 590 network_offset = skb_network_offset(skb); 591 transport_offset = skb_transport_offset(skb); 592 593 /* Network header needs to point to the outer IPv4 header inside ICMP */ 594 skb_reset_network_header(skb); 595 596 /* Transport header needs to point to the UDP header */ 597 skb_set_transport_header(skb, iph->ihl << 2); 598 599 sk = __udp4_lib_lookup(net, iph->daddr, uh->source, 600 iph->saddr, uh->dest, skb->dev->ifindex, 0, 601 udptable, NULL); 602 if (sk) { 603 int (*lookup)(struct sock *sk, struct sk_buff *skb); 604 struct udp_sock *up = udp_sk(sk); 605 606 lookup = READ_ONCE(up->encap_err_lookup); 607 if (!lookup || lookup(sk, skb)) 608 sk = NULL; 609 } 610 611 if (!sk) 612 sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info)); 613 614 skb_set_transport_header(skb, transport_offset); 615 skb_set_network_header(skb, network_offset); 616 617 return sk; 618 } 619 620 /* 621 * This routine is called by the ICMP module when it gets some 622 * sort of error condition. If err < 0 then the socket should 623 * be closed and the error returned to the user. If err > 0 624 * it's just the icmp type << 8 | icmp code. 625 * Header points to the ip header of the error packet. We move 626 * on past this. Then (as it used to claim before adjustment) 627 * header points to the first 8 bytes of the udp header. We need 628 * to find the appropriate port. 629 */ 630 631 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable) 632 { 633 struct inet_sock *inet; 634 const struct iphdr *iph = (const struct iphdr *)skb->data; 635 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2)); 636 const int type = icmp_hdr(skb)->type; 637 const int code = icmp_hdr(skb)->code; 638 bool tunnel = false; 639 struct sock *sk; 640 int harderr; 641 int err; 642 struct net *net = dev_net(skb->dev); 643 644 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest, 645 iph->saddr, uh->source, skb->dev->ifindex, 646 inet_sdif(skb), udptable, NULL); 647 if (!sk) { 648 /* No socket for error: try tunnels before discarding */ 649 sk = ERR_PTR(-ENOENT); 650 if (static_branch_unlikely(&udp_encap_needed_key)) { 651 sk = __udp4_lib_err_encap(net, iph, uh, udptable, skb, 652 info); 653 if (!sk) 654 return 0; 655 } 656 657 if (IS_ERR(sk)) { 658 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); 659 return PTR_ERR(sk); 660 } 661 662 tunnel = true; 663 } 664 665 err = 0; 666 harderr = 0; 667 inet = inet_sk(sk); 668 669 switch (type) { 670 default: 671 case ICMP_TIME_EXCEEDED: 672 err = EHOSTUNREACH; 673 break; 674 case ICMP_SOURCE_QUENCH: 675 goto out; 676 case ICMP_PARAMETERPROB: 677 err = EPROTO; 678 harderr = 1; 679 break; 680 case ICMP_DEST_UNREACH: 681 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */ 682 ipv4_sk_update_pmtu(skb, sk, info); 683 if (inet->pmtudisc != IP_PMTUDISC_DONT) { 684 err = EMSGSIZE; 685 harderr = 1; 686 break; 687 } 688 goto out; 689 } 690 err = EHOSTUNREACH; 691 if (code <= NR_ICMP_UNREACH) { 692 harderr = icmp_err_convert[code].fatal; 693 err = icmp_err_convert[code].errno; 694 } 695 break; 696 case ICMP_REDIRECT: 697 ipv4_sk_redirect(skb, sk); 698 goto out; 699 } 700 701 /* 702 * RFC1122: OK. Passes ICMP errors back to application, as per 703 * 4.1.3.3. 704 */ 705 if (tunnel) { 706 /* ...not for tunnels though: we don't have a sending socket */ 707 goto out; 708 } 709 if (!inet->recverr) { 710 if (!harderr || sk->sk_state != TCP_ESTABLISHED) 711 goto out; 712 } else 713 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1)); 714 715 sk->sk_err = err; 716 sk->sk_error_report(sk); 717 out: 718 return 0; 719 } 720 721 int udp_err(struct sk_buff *skb, u32 info) 722 { 723 return __udp4_lib_err(skb, info, &udp_table); 724 } 725 726 /* 727 * Throw away all pending data and cancel the corking. Socket is locked. 728 */ 729 void udp_flush_pending_frames(struct sock *sk) 730 { 731 struct udp_sock *up = udp_sk(sk); 732 733 if (up->pending) { 734 up->len = 0; 735 up->pending = 0; 736 ip_flush_pending_frames(sk); 737 } 738 } 739 EXPORT_SYMBOL(udp_flush_pending_frames); 740 741 /** 742 * udp4_hwcsum - handle outgoing HW checksumming 743 * @skb: sk_buff containing the filled-in UDP header 744 * (checksum field must be zeroed out) 745 * @src: source IP address 746 * @dst: destination IP address 747 */ 748 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst) 749 { 750 struct udphdr *uh = udp_hdr(skb); 751 int offset = skb_transport_offset(skb); 752 int len = skb->len - offset; 753 int hlen = len; 754 __wsum csum = 0; 755 756 if (!skb_has_frag_list(skb)) { 757 /* 758 * Only one fragment on the socket. 759 */ 760 skb->csum_start = skb_transport_header(skb) - skb->head; 761 skb->csum_offset = offsetof(struct udphdr, check); 762 uh->check = ~csum_tcpudp_magic(src, dst, len, 763 IPPROTO_UDP, 0); 764 } else { 765 struct sk_buff *frags; 766 767 /* 768 * HW-checksum won't work as there are two or more 769 * fragments on the socket so that all csums of sk_buffs 770 * should be together 771 */ 772 skb_walk_frags(skb, frags) { 773 csum = csum_add(csum, frags->csum); 774 hlen -= frags->len; 775 } 776 777 csum = skb_checksum(skb, offset, hlen, csum); 778 skb->ip_summed = CHECKSUM_NONE; 779 780 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum); 781 if (uh->check == 0) 782 uh->check = CSUM_MANGLED_0; 783 } 784 } 785 EXPORT_SYMBOL_GPL(udp4_hwcsum); 786 787 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended 788 * for the simple case like when setting the checksum for a UDP tunnel. 789 */ 790 void udp_set_csum(bool nocheck, struct sk_buff *skb, 791 __be32 saddr, __be32 daddr, int len) 792 { 793 struct udphdr *uh = udp_hdr(skb); 794 795 if (nocheck) { 796 uh->check = 0; 797 } else if (skb_is_gso(skb)) { 798 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 799 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 800 uh->check = 0; 801 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb)); 802 if (uh->check == 0) 803 uh->check = CSUM_MANGLED_0; 804 } else { 805 skb->ip_summed = CHECKSUM_PARTIAL; 806 skb->csum_start = skb_transport_header(skb) - skb->head; 807 skb->csum_offset = offsetof(struct udphdr, check); 808 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 809 } 810 } 811 EXPORT_SYMBOL(udp_set_csum); 812 813 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4, 814 struct inet_cork *cork) 815 { 816 struct sock *sk = skb->sk; 817 struct inet_sock *inet = inet_sk(sk); 818 struct udphdr *uh; 819 int err = 0; 820 int is_udplite = IS_UDPLITE(sk); 821 int offset = skb_transport_offset(skb); 822 int len = skb->len - offset; 823 __wsum csum = 0; 824 825 /* 826 * Create a UDP header 827 */ 828 uh = udp_hdr(skb); 829 uh->source = inet->inet_sport; 830 uh->dest = fl4->fl4_dport; 831 uh->len = htons(len); 832 uh->check = 0; 833 834 if (cork->gso_size) { 835 const int hlen = skb_network_header_len(skb) + 836 sizeof(struct udphdr); 837 838 if (hlen + cork->gso_size > cork->fragsize) { 839 kfree_skb(skb); 840 return -EINVAL; 841 } 842 if (skb->len > cork->gso_size * UDP_MAX_SEGMENTS) { 843 kfree_skb(skb); 844 return -EINVAL; 845 } 846 if (sk->sk_no_check_tx) { 847 kfree_skb(skb); 848 return -EINVAL; 849 } 850 if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite || 851 dst_xfrm(skb_dst(skb))) { 852 kfree_skb(skb); 853 return -EIO; 854 } 855 856 skb_shinfo(skb)->gso_size = cork->gso_size; 857 skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4; 858 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(len - sizeof(uh), 859 cork->gso_size); 860 goto csum_partial; 861 } 862 863 if (is_udplite) /* UDP-Lite */ 864 csum = udplite_csum(skb); 865 866 else if (sk->sk_no_check_tx) { /* UDP csum off */ 867 868 skb->ip_summed = CHECKSUM_NONE; 869 goto send; 870 871 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */ 872 csum_partial: 873 874 udp4_hwcsum(skb, fl4->saddr, fl4->daddr); 875 goto send; 876 877 } else 878 csum = udp_csum(skb); 879 880 /* add protocol-dependent pseudo-header */ 881 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len, 882 sk->sk_protocol, csum); 883 if (uh->check == 0) 884 uh->check = CSUM_MANGLED_0; 885 886 send: 887 err = ip_send_skb(sock_net(sk), skb); 888 if (err) { 889 if (err == -ENOBUFS && !inet->recverr) { 890 UDP_INC_STATS(sock_net(sk), 891 UDP_MIB_SNDBUFERRORS, is_udplite); 892 err = 0; 893 } 894 } else 895 UDP_INC_STATS(sock_net(sk), 896 UDP_MIB_OUTDATAGRAMS, is_udplite); 897 return err; 898 } 899 900 /* 901 * Push out all pending data as one UDP datagram. Socket is locked. 902 */ 903 int udp_push_pending_frames(struct sock *sk) 904 { 905 struct udp_sock *up = udp_sk(sk); 906 struct inet_sock *inet = inet_sk(sk); 907 struct flowi4 *fl4 = &inet->cork.fl.u.ip4; 908 struct sk_buff *skb; 909 int err = 0; 910 911 skb = ip_finish_skb(sk, fl4); 912 if (!skb) 913 goto out; 914 915 err = udp_send_skb(skb, fl4, &inet->cork.base); 916 917 out: 918 up->len = 0; 919 up->pending = 0; 920 return err; 921 } 922 EXPORT_SYMBOL(udp_push_pending_frames); 923 924 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size) 925 { 926 switch (cmsg->cmsg_type) { 927 case UDP_SEGMENT: 928 if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16))) 929 return -EINVAL; 930 *gso_size = *(__u16 *)CMSG_DATA(cmsg); 931 return 0; 932 default: 933 return -EINVAL; 934 } 935 } 936 937 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size) 938 { 939 struct cmsghdr *cmsg; 940 bool need_ip = false; 941 int err; 942 943 for_each_cmsghdr(cmsg, msg) { 944 if (!CMSG_OK(msg, cmsg)) 945 return -EINVAL; 946 947 if (cmsg->cmsg_level != SOL_UDP) { 948 need_ip = true; 949 continue; 950 } 951 952 err = __udp_cmsg_send(cmsg, gso_size); 953 if (err) 954 return err; 955 } 956 957 return need_ip; 958 } 959 EXPORT_SYMBOL_GPL(udp_cmsg_send); 960 961 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 962 { 963 struct inet_sock *inet = inet_sk(sk); 964 struct udp_sock *up = udp_sk(sk); 965 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name); 966 struct flowi4 fl4_stack; 967 struct flowi4 *fl4; 968 int ulen = len; 969 struct ipcm_cookie ipc; 970 struct rtable *rt = NULL; 971 int free = 0; 972 int connected = 0; 973 __be32 daddr, faddr, saddr; 974 __be16 dport; 975 u8 tos; 976 int err, is_udplite = IS_UDPLITE(sk); 977 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE; 978 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *); 979 struct sk_buff *skb; 980 struct ip_options_data opt_copy; 981 982 if (len > 0xFFFF) 983 return -EMSGSIZE; 984 985 /* 986 * Check the flags. 987 */ 988 989 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */ 990 return -EOPNOTSUPP; 991 992 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag; 993 994 fl4 = &inet->cork.fl.u.ip4; 995 if (up->pending) { 996 /* 997 * There are pending frames. 998 * The socket lock must be held while it's corked. 999 */ 1000 lock_sock(sk); 1001 if (likely(up->pending)) { 1002 if (unlikely(up->pending != AF_INET)) { 1003 release_sock(sk); 1004 return -EINVAL; 1005 } 1006 goto do_append_data; 1007 } 1008 release_sock(sk); 1009 } 1010 ulen += sizeof(struct udphdr); 1011 1012 /* 1013 * Get and verify the address. 1014 */ 1015 if (usin) { 1016 if (msg->msg_namelen < sizeof(*usin)) 1017 return -EINVAL; 1018 if (usin->sin_family != AF_INET) { 1019 if (usin->sin_family != AF_UNSPEC) 1020 return -EAFNOSUPPORT; 1021 } 1022 1023 daddr = usin->sin_addr.s_addr; 1024 dport = usin->sin_port; 1025 if (dport == 0) 1026 return -EINVAL; 1027 } else { 1028 if (sk->sk_state != TCP_ESTABLISHED) 1029 return -EDESTADDRREQ; 1030 daddr = inet->inet_daddr; 1031 dport = inet->inet_dport; 1032 /* Open fast path for connected socket. 1033 Route will not be used, if at least one option is set. 1034 */ 1035 connected = 1; 1036 } 1037 1038 ipcm_init_sk(&ipc, inet); 1039 ipc.gso_size = up->gso_size; 1040 1041 if (msg->msg_controllen) { 1042 err = udp_cmsg_send(sk, msg, &ipc.gso_size); 1043 if (err > 0) 1044 err = ip_cmsg_send(sk, msg, &ipc, 1045 sk->sk_family == AF_INET6); 1046 if (unlikely(err < 0)) { 1047 kfree(ipc.opt); 1048 return err; 1049 } 1050 if (ipc.opt) 1051 free = 1; 1052 connected = 0; 1053 } 1054 if (!ipc.opt) { 1055 struct ip_options_rcu *inet_opt; 1056 1057 rcu_read_lock(); 1058 inet_opt = rcu_dereference(inet->inet_opt); 1059 if (inet_opt) { 1060 memcpy(&opt_copy, inet_opt, 1061 sizeof(*inet_opt) + inet_opt->opt.optlen); 1062 ipc.opt = &opt_copy.opt; 1063 } 1064 rcu_read_unlock(); 1065 } 1066 1067 if (cgroup_bpf_enabled && !connected) { 1068 err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk, 1069 (struct sockaddr *)usin, &ipc.addr); 1070 if (err) 1071 goto out_free; 1072 if (usin) { 1073 if (usin->sin_port == 0) { 1074 /* BPF program set invalid port. Reject it. */ 1075 err = -EINVAL; 1076 goto out_free; 1077 } 1078 daddr = usin->sin_addr.s_addr; 1079 dport = usin->sin_port; 1080 } 1081 } 1082 1083 saddr = ipc.addr; 1084 ipc.addr = faddr = daddr; 1085 1086 if (ipc.opt && ipc.opt->opt.srr) { 1087 if (!daddr) { 1088 err = -EINVAL; 1089 goto out_free; 1090 } 1091 faddr = ipc.opt->opt.faddr; 1092 connected = 0; 1093 } 1094 tos = get_rttos(&ipc, inet); 1095 if (sock_flag(sk, SOCK_LOCALROUTE) || 1096 (msg->msg_flags & MSG_DONTROUTE) || 1097 (ipc.opt && ipc.opt->opt.is_strictroute)) { 1098 tos |= RTO_ONLINK; 1099 connected = 0; 1100 } 1101 1102 if (ipv4_is_multicast(daddr)) { 1103 if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif)) 1104 ipc.oif = inet->mc_index; 1105 if (!saddr) 1106 saddr = inet->mc_addr; 1107 connected = 0; 1108 } else if (!ipc.oif) { 1109 ipc.oif = inet->uc_index; 1110 } else if (ipv4_is_lbcast(daddr) && inet->uc_index) { 1111 /* oif is set, packet is to local broadcast and 1112 * and uc_index is set. oif is most likely set 1113 * by sk_bound_dev_if. If uc_index != oif check if the 1114 * oif is an L3 master and uc_index is an L3 slave. 1115 * If so, we want to allow the send using the uc_index. 1116 */ 1117 if (ipc.oif != inet->uc_index && 1118 ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk), 1119 inet->uc_index)) { 1120 ipc.oif = inet->uc_index; 1121 } 1122 } 1123 1124 if (connected) 1125 rt = (struct rtable *)sk_dst_check(sk, 0); 1126 1127 if (!rt) { 1128 struct net *net = sock_net(sk); 1129 __u8 flow_flags = inet_sk_flowi_flags(sk); 1130 1131 fl4 = &fl4_stack; 1132 1133 flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos, 1134 RT_SCOPE_UNIVERSE, sk->sk_protocol, 1135 flow_flags, 1136 faddr, saddr, dport, inet->inet_sport, 1137 sk->sk_uid); 1138 1139 security_sk_classify_flow(sk, flowi4_to_flowi(fl4)); 1140 rt = ip_route_output_flow(net, fl4, sk); 1141 if (IS_ERR(rt)) { 1142 err = PTR_ERR(rt); 1143 rt = NULL; 1144 if (err == -ENETUNREACH) 1145 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 1146 goto out; 1147 } 1148 1149 err = -EACCES; 1150 if ((rt->rt_flags & RTCF_BROADCAST) && 1151 !sock_flag(sk, SOCK_BROADCAST)) 1152 goto out; 1153 if (connected) 1154 sk_dst_set(sk, dst_clone(&rt->dst)); 1155 } 1156 1157 if (msg->msg_flags&MSG_CONFIRM) 1158 goto do_confirm; 1159 back_from_confirm: 1160 1161 saddr = fl4->saddr; 1162 if (!ipc.addr) 1163 daddr = ipc.addr = fl4->daddr; 1164 1165 /* Lockless fast path for the non-corking case. */ 1166 if (!corkreq) { 1167 struct inet_cork cork; 1168 1169 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen, 1170 sizeof(struct udphdr), &ipc, &rt, 1171 &cork, msg->msg_flags); 1172 err = PTR_ERR(skb); 1173 if (!IS_ERR_OR_NULL(skb)) 1174 err = udp_send_skb(skb, fl4, &cork); 1175 goto out; 1176 } 1177 1178 lock_sock(sk); 1179 if (unlikely(up->pending)) { 1180 /* The socket is already corked while preparing it. */ 1181 /* ... which is an evident application bug. --ANK */ 1182 release_sock(sk); 1183 1184 net_dbg_ratelimited("socket already corked\n"); 1185 err = -EINVAL; 1186 goto out; 1187 } 1188 /* 1189 * Now cork the socket to pend data. 1190 */ 1191 fl4 = &inet->cork.fl.u.ip4; 1192 fl4->daddr = daddr; 1193 fl4->saddr = saddr; 1194 fl4->fl4_dport = dport; 1195 fl4->fl4_sport = inet->inet_sport; 1196 up->pending = AF_INET; 1197 1198 do_append_data: 1199 up->len += ulen; 1200 err = ip_append_data(sk, fl4, getfrag, msg, ulen, 1201 sizeof(struct udphdr), &ipc, &rt, 1202 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags); 1203 if (err) 1204 udp_flush_pending_frames(sk); 1205 else if (!corkreq) 1206 err = udp_push_pending_frames(sk); 1207 else if (unlikely(skb_queue_empty(&sk->sk_write_queue))) 1208 up->pending = 0; 1209 release_sock(sk); 1210 1211 out: 1212 ip_rt_put(rt); 1213 out_free: 1214 if (free) 1215 kfree(ipc.opt); 1216 if (!err) 1217 return len; 1218 /* 1219 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting 1220 * ENOBUFS might not be good (it's not tunable per se), but otherwise 1221 * we don't have a good statistic (IpOutDiscards but it can be too many 1222 * things). We could add another new stat but at least for now that 1223 * seems like overkill. 1224 */ 1225 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1226 UDP_INC_STATS(sock_net(sk), 1227 UDP_MIB_SNDBUFERRORS, is_udplite); 1228 } 1229 return err; 1230 1231 do_confirm: 1232 if (msg->msg_flags & MSG_PROBE) 1233 dst_confirm_neigh(&rt->dst, &fl4->daddr); 1234 if (!(msg->msg_flags&MSG_PROBE) || len) 1235 goto back_from_confirm; 1236 err = 0; 1237 goto out; 1238 } 1239 EXPORT_SYMBOL(udp_sendmsg); 1240 1241 int udp_sendpage(struct sock *sk, struct page *page, int offset, 1242 size_t size, int flags) 1243 { 1244 struct inet_sock *inet = inet_sk(sk); 1245 struct udp_sock *up = udp_sk(sk); 1246 int ret; 1247 1248 if (flags & MSG_SENDPAGE_NOTLAST) 1249 flags |= MSG_MORE; 1250 1251 if (!up->pending) { 1252 struct msghdr msg = { .msg_flags = flags|MSG_MORE }; 1253 1254 /* Call udp_sendmsg to specify destination address which 1255 * sendpage interface can't pass. 1256 * This will succeed only when the socket is connected. 1257 */ 1258 ret = udp_sendmsg(sk, &msg, 0); 1259 if (ret < 0) 1260 return ret; 1261 } 1262 1263 lock_sock(sk); 1264 1265 if (unlikely(!up->pending)) { 1266 release_sock(sk); 1267 1268 net_dbg_ratelimited("cork failed\n"); 1269 return -EINVAL; 1270 } 1271 1272 ret = ip_append_page(sk, &inet->cork.fl.u.ip4, 1273 page, offset, size, flags); 1274 if (ret == -EOPNOTSUPP) { 1275 release_sock(sk); 1276 return sock_no_sendpage(sk->sk_socket, page, offset, 1277 size, flags); 1278 } 1279 if (ret < 0) { 1280 udp_flush_pending_frames(sk); 1281 goto out; 1282 } 1283 1284 up->len += size; 1285 if (!(up->corkflag || (flags&MSG_MORE))) 1286 ret = udp_push_pending_frames(sk); 1287 if (!ret) 1288 ret = size; 1289 out: 1290 release_sock(sk); 1291 return ret; 1292 } 1293 1294 #define UDP_SKB_IS_STATELESS 0x80000000 1295 1296 static void udp_set_dev_scratch(struct sk_buff *skb) 1297 { 1298 struct udp_dev_scratch *scratch = udp_skb_scratch(skb); 1299 1300 BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long)); 1301 scratch->_tsize_state = skb->truesize; 1302 #if BITS_PER_LONG == 64 1303 scratch->len = skb->len; 1304 scratch->csum_unnecessary = !!skb_csum_unnecessary(skb); 1305 scratch->is_linear = !skb_is_nonlinear(skb); 1306 #endif 1307 /* all head states execept sp (dst, sk, nf) are always cleared by 1308 * udp_rcv() and we need to preserve secpath, if present, to eventually 1309 * process IP_CMSG_PASSSEC at recvmsg() time 1310 */ 1311 if (likely(!skb_sec_path(skb))) 1312 scratch->_tsize_state |= UDP_SKB_IS_STATELESS; 1313 } 1314 1315 static int udp_skb_truesize(struct sk_buff *skb) 1316 { 1317 return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS; 1318 } 1319 1320 static bool udp_skb_has_head_state(struct sk_buff *skb) 1321 { 1322 return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS); 1323 } 1324 1325 /* fully reclaim rmem/fwd memory allocated for skb */ 1326 static void udp_rmem_release(struct sock *sk, int size, int partial, 1327 bool rx_queue_lock_held) 1328 { 1329 struct udp_sock *up = udp_sk(sk); 1330 struct sk_buff_head *sk_queue; 1331 int amt; 1332 1333 if (likely(partial)) { 1334 up->forward_deficit += size; 1335 size = up->forward_deficit; 1336 if (size < (sk->sk_rcvbuf >> 2)) 1337 return; 1338 } else { 1339 size += up->forward_deficit; 1340 } 1341 up->forward_deficit = 0; 1342 1343 /* acquire the sk_receive_queue for fwd allocated memory scheduling, 1344 * if the called don't held it already 1345 */ 1346 sk_queue = &sk->sk_receive_queue; 1347 if (!rx_queue_lock_held) 1348 spin_lock(&sk_queue->lock); 1349 1350 1351 sk->sk_forward_alloc += size; 1352 amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1); 1353 sk->sk_forward_alloc -= amt; 1354 1355 if (amt) 1356 __sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT); 1357 1358 atomic_sub(size, &sk->sk_rmem_alloc); 1359 1360 /* this can save us from acquiring the rx queue lock on next receive */ 1361 skb_queue_splice_tail_init(sk_queue, &up->reader_queue); 1362 1363 if (!rx_queue_lock_held) 1364 spin_unlock(&sk_queue->lock); 1365 } 1366 1367 /* Note: called with reader_queue.lock held. 1368 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch 1369 * This avoids a cache line miss while receive_queue lock is held. 1370 * Look at __udp_enqueue_schedule_skb() to find where this copy is done. 1371 */ 1372 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb) 1373 { 1374 prefetch(&skb->data); 1375 udp_rmem_release(sk, udp_skb_truesize(skb), 1, false); 1376 } 1377 EXPORT_SYMBOL(udp_skb_destructor); 1378 1379 /* as above, but the caller held the rx queue lock, too */ 1380 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb) 1381 { 1382 prefetch(&skb->data); 1383 udp_rmem_release(sk, udp_skb_truesize(skb), 1, true); 1384 } 1385 1386 /* Idea of busylocks is to let producers grab an extra spinlock 1387 * to relieve pressure on the receive_queue spinlock shared by consumer. 1388 * Under flood, this means that only one producer can be in line 1389 * trying to acquire the receive_queue spinlock. 1390 * These busylock can be allocated on a per cpu manner, instead of a 1391 * per socket one (that would consume a cache line per socket) 1392 */ 1393 static int udp_busylocks_log __read_mostly; 1394 static spinlock_t *udp_busylocks __read_mostly; 1395 1396 static spinlock_t *busylock_acquire(void *ptr) 1397 { 1398 spinlock_t *busy; 1399 1400 busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log); 1401 spin_lock(busy); 1402 return busy; 1403 } 1404 1405 static void busylock_release(spinlock_t *busy) 1406 { 1407 if (busy) 1408 spin_unlock(busy); 1409 } 1410 1411 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb) 1412 { 1413 struct sk_buff_head *list = &sk->sk_receive_queue; 1414 int rmem, delta, amt, err = -ENOMEM; 1415 spinlock_t *busy = NULL; 1416 int size; 1417 1418 /* try to avoid the costly atomic add/sub pair when the receive 1419 * queue is full; always allow at least a packet 1420 */ 1421 rmem = atomic_read(&sk->sk_rmem_alloc); 1422 if (rmem > sk->sk_rcvbuf) 1423 goto drop; 1424 1425 /* Under mem pressure, it might be helpful to help udp_recvmsg() 1426 * having linear skbs : 1427 * - Reduce memory overhead and thus increase receive queue capacity 1428 * - Less cache line misses at copyout() time 1429 * - Less work at consume_skb() (less alien page frag freeing) 1430 */ 1431 if (rmem > (sk->sk_rcvbuf >> 1)) { 1432 skb_condense(skb); 1433 1434 busy = busylock_acquire(sk); 1435 } 1436 size = skb->truesize; 1437 udp_set_dev_scratch(skb); 1438 1439 /* we drop only if the receive buf is full and the receive 1440 * queue contains some other skb 1441 */ 1442 rmem = atomic_add_return(size, &sk->sk_rmem_alloc); 1443 if (rmem > (size + sk->sk_rcvbuf)) 1444 goto uncharge_drop; 1445 1446 spin_lock(&list->lock); 1447 if (size >= sk->sk_forward_alloc) { 1448 amt = sk_mem_pages(size); 1449 delta = amt << SK_MEM_QUANTUM_SHIFT; 1450 if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) { 1451 err = -ENOBUFS; 1452 spin_unlock(&list->lock); 1453 goto uncharge_drop; 1454 } 1455 1456 sk->sk_forward_alloc += delta; 1457 } 1458 1459 sk->sk_forward_alloc -= size; 1460 1461 /* no need to setup a destructor, we will explicitly release the 1462 * forward allocated memory on dequeue 1463 */ 1464 sock_skb_set_dropcount(sk, skb); 1465 1466 __skb_queue_tail(list, skb); 1467 spin_unlock(&list->lock); 1468 1469 if (!sock_flag(sk, SOCK_DEAD)) 1470 sk->sk_data_ready(sk); 1471 1472 busylock_release(busy); 1473 return 0; 1474 1475 uncharge_drop: 1476 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 1477 1478 drop: 1479 atomic_inc(&sk->sk_drops); 1480 busylock_release(busy); 1481 return err; 1482 } 1483 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb); 1484 1485 void udp_destruct_sock(struct sock *sk) 1486 { 1487 /* reclaim completely the forward allocated memory */ 1488 struct udp_sock *up = udp_sk(sk); 1489 unsigned int total = 0; 1490 struct sk_buff *skb; 1491 1492 skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue); 1493 while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) { 1494 total += skb->truesize; 1495 kfree_skb(skb); 1496 } 1497 udp_rmem_release(sk, total, 0, true); 1498 1499 inet_sock_destruct(sk); 1500 } 1501 EXPORT_SYMBOL_GPL(udp_destruct_sock); 1502 1503 int udp_init_sock(struct sock *sk) 1504 { 1505 skb_queue_head_init(&udp_sk(sk)->reader_queue); 1506 sk->sk_destruct = udp_destruct_sock; 1507 return 0; 1508 } 1509 EXPORT_SYMBOL_GPL(udp_init_sock); 1510 1511 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len) 1512 { 1513 if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) { 1514 bool slow = lock_sock_fast(sk); 1515 1516 sk_peek_offset_bwd(sk, len); 1517 unlock_sock_fast(sk, slow); 1518 } 1519 1520 if (!skb_unref(skb)) 1521 return; 1522 1523 /* In the more common cases we cleared the head states previously, 1524 * see __udp_queue_rcv_skb(). 1525 */ 1526 if (unlikely(udp_skb_has_head_state(skb))) 1527 skb_release_head_state(skb); 1528 __consume_stateless_skb(skb); 1529 } 1530 EXPORT_SYMBOL_GPL(skb_consume_udp); 1531 1532 static struct sk_buff *__first_packet_length(struct sock *sk, 1533 struct sk_buff_head *rcvq, 1534 int *total) 1535 { 1536 struct sk_buff *skb; 1537 1538 while ((skb = skb_peek(rcvq)) != NULL) { 1539 if (udp_lib_checksum_complete(skb)) { 1540 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, 1541 IS_UDPLITE(sk)); 1542 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, 1543 IS_UDPLITE(sk)); 1544 atomic_inc(&sk->sk_drops); 1545 __skb_unlink(skb, rcvq); 1546 *total += skb->truesize; 1547 kfree_skb(skb); 1548 } else { 1549 /* the csum related bits could be changed, refresh 1550 * the scratch area 1551 */ 1552 udp_set_dev_scratch(skb); 1553 break; 1554 } 1555 } 1556 return skb; 1557 } 1558 1559 /** 1560 * first_packet_length - return length of first packet in receive queue 1561 * @sk: socket 1562 * 1563 * Drops all bad checksum frames, until a valid one is found. 1564 * Returns the length of found skb, or -1 if none is found. 1565 */ 1566 static int first_packet_length(struct sock *sk) 1567 { 1568 struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue; 1569 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1570 struct sk_buff *skb; 1571 int total = 0; 1572 int res; 1573 1574 spin_lock_bh(&rcvq->lock); 1575 skb = __first_packet_length(sk, rcvq, &total); 1576 if (!skb && !skb_queue_empty(sk_queue)) { 1577 spin_lock(&sk_queue->lock); 1578 skb_queue_splice_tail_init(sk_queue, rcvq); 1579 spin_unlock(&sk_queue->lock); 1580 1581 skb = __first_packet_length(sk, rcvq, &total); 1582 } 1583 res = skb ? skb->len : -1; 1584 if (total) 1585 udp_rmem_release(sk, total, 1, false); 1586 spin_unlock_bh(&rcvq->lock); 1587 return res; 1588 } 1589 1590 /* 1591 * IOCTL requests applicable to the UDP protocol 1592 */ 1593 1594 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg) 1595 { 1596 switch (cmd) { 1597 case SIOCOUTQ: 1598 { 1599 int amount = sk_wmem_alloc_get(sk); 1600 1601 return put_user(amount, (int __user *)arg); 1602 } 1603 1604 case SIOCINQ: 1605 { 1606 int amount = max_t(int, 0, first_packet_length(sk)); 1607 1608 return put_user(amount, (int __user *)arg); 1609 } 1610 1611 default: 1612 return -ENOIOCTLCMD; 1613 } 1614 1615 return 0; 1616 } 1617 EXPORT_SYMBOL(udp_ioctl); 1618 1619 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags, 1620 int noblock, int *off, int *err) 1621 { 1622 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1623 struct sk_buff_head *queue; 1624 struct sk_buff *last; 1625 long timeo; 1626 int error; 1627 1628 queue = &udp_sk(sk)->reader_queue; 1629 flags |= noblock ? MSG_DONTWAIT : 0; 1630 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1631 do { 1632 struct sk_buff *skb; 1633 1634 error = sock_error(sk); 1635 if (error) 1636 break; 1637 1638 error = -EAGAIN; 1639 do { 1640 spin_lock_bh(&queue->lock); 1641 skb = __skb_try_recv_from_queue(sk, queue, flags, 1642 udp_skb_destructor, 1643 off, err, &last); 1644 if (skb) { 1645 spin_unlock_bh(&queue->lock); 1646 return skb; 1647 } 1648 1649 if (skb_queue_empty(sk_queue)) { 1650 spin_unlock_bh(&queue->lock); 1651 goto busy_check; 1652 } 1653 1654 /* refill the reader queue and walk it again 1655 * keep both queues locked to avoid re-acquiring 1656 * the sk_receive_queue lock if fwd memory scheduling 1657 * is needed. 1658 */ 1659 spin_lock(&sk_queue->lock); 1660 skb_queue_splice_tail_init(sk_queue, queue); 1661 1662 skb = __skb_try_recv_from_queue(sk, queue, flags, 1663 udp_skb_dtor_locked, 1664 off, err, &last); 1665 spin_unlock(&sk_queue->lock); 1666 spin_unlock_bh(&queue->lock); 1667 if (skb) 1668 return skb; 1669 1670 busy_check: 1671 if (!sk_can_busy_loop(sk)) 1672 break; 1673 1674 sk_busy_loop(sk, flags & MSG_DONTWAIT); 1675 } while (!skb_queue_empty(sk_queue)); 1676 1677 /* sk_queue is empty, reader_queue may contain peeked packets */ 1678 } while (timeo && 1679 !__skb_wait_for_more_packets(sk, &error, &timeo, 1680 (struct sk_buff *)sk_queue)); 1681 1682 *err = error; 1683 return NULL; 1684 } 1685 EXPORT_SYMBOL(__skb_recv_udp); 1686 1687 /* 1688 * This should be easy, if there is something there we 1689 * return it, otherwise we block. 1690 */ 1691 1692 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock, 1693 int flags, int *addr_len) 1694 { 1695 struct inet_sock *inet = inet_sk(sk); 1696 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name); 1697 struct sk_buff *skb; 1698 unsigned int ulen, copied; 1699 int off, err, peeking = flags & MSG_PEEK; 1700 int is_udplite = IS_UDPLITE(sk); 1701 bool checksum_valid = false; 1702 1703 if (flags & MSG_ERRQUEUE) 1704 return ip_recv_error(sk, msg, len, addr_len); 1705 1706 try_again: 1707 off = sk_peek_offset(sk, flags); 1708 skb = __skb_recv_udp(sk, flags, noblock, &off, &err); 1709 if (!skb) 1710 return err; 1711 1712 ulen = udp_skb_len(skb); 1713 copied = len; 1714 if (copied > ulen - off) 1715 copied = ulen - off; 1716 else if (copied < ulen) 1717 msg->msg_flags |= MSG_TRUNC; 1718 1719 /* 1720 * If checksum is needed at all, try to do it while copying the 1721 * data. If the data is truncated, or if we only want a partial 1722 * coverage checksum (UDP-Lite), do it before the copy. 1723 */ 1724 1725 if (copied < ulen || peeking || 1726 (is_udplite && UDP_SKB_CB(skb)->partial_cov)) { 1727 checksum_valid = udp_skb_csum_unnecessary(skb) || 1728 !__udp_lib_checksum_complete(skb); 1729 if (!checksum_valid) 1730 goto csum_copy_err; 1731 } 1732 1733 if (checksum_valid || udp_skb_csum_unnecessary(skb)) { 1734 if (udp_skb_is_linear(skb)) 1735 err = copy_linear_skb(skb, copied, off, &msg->msg_iter); 1736 else 1737 err = skb_copy_datagram_msg(skb, off, msg, copied); 1738 } else { 1739 err = skb_copy_and_csum_datagram_msg(skb, off, msg); 1740 1741 if (err == -EINVAL) 1742 goto csum_copy_err; 1743 } 1744 1745 if (unlikely(err)) { 1746 if (!peeking) { 1747 atomic_inc(&sk->sk_drops); 1748 UDP_INC_STATS(sock_net(sk), 1749 UDP_MIB_INERRORS, is_udplite); 1750 } 1751 kfree_skb(skb); 1752 return err; 1753 } 1754 1755 if (!peeking) 1756 UDP_INC_STATS(sock_net(sk), 1757 UDP_MIB_INDATAGRAMS, is_udplite); 1758 1759 sock_recv_ts_and_drops(msg, sk, skb); 1760 1761 /* Copy the address. */ 1762 if (sin) { 1763 sin->sin_family = AF_INET; 1764 sin->sin_port = udp_hdr(skb)->source; 1765 sin->sin_addr.s_addr = ip_hdr(skb)->saddr; 1766 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 1767 *addr_len = sizeof(*sin); 1768 1769 if (cgroup_bpf_enabled) 1770 BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk, 1771 (struct sockaddr *)sin); 1772 } 1773 1774 if (udp_sk(sk)->gro_enabled) 1775 udp_cmsg_recv(msg, sk, skb); 1776 1777 if (inet->cmsg_flags) 1778 ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off); 1779 1780 err = copied; 1781 if (flags & MSG_TRUNC) 1782 err = ulen; 1783 1784 skb_consume_udp(sk, skb, peeking ? -err : err); 1785 return err; 1786 1787 csum_copy_err: 1788 if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags, 1789 udp_skb_destructor)) { 1790 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 1791 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1792 } 1793 kfree_skb(skb); 1794 1795 /* starting over for a new packet, but check if we need to yield */ 1796 cond_resched(); 1797 msg->msg_flags &= ~MSG_TRUNC; 1798 goto try_again; 1799 } 1800 1801 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 1802 { 1803 /* This check is replicated from __ip4_datagram_connect() and 1804 * intended to prevent BPF program called below from accessing bytes 1805 * that are out of the bound specified by user in addr_len. 1806 */ 1807 if (addr_len < sizeof(struct sockaddr_in)) 1808 return -EINVAL; 1809 1810 return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr); 1811 } 1812 EXPORT_SYMBOL(udp_pre_connect); 1813 1814 int __udp_disconnect(struct sock *sk, int flags) 1815 { 1816 struct inet_sock *inet = inet_sk(sk); 1817 /* 1818 * 1003.1g - break association. 1819 */ 1820 1821 sk->sk_state = TCP_CLOSE; 1822 inet->inet_daddr = 0; 1823 inet->inet_dport = 0; 1824 sock_rps_reset_rxhash(sk); 1825 sk->sk_bound_dev_if = 0; 1826 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 1827 inet_reset_saddr(sk); 1828 1829 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) { 1830 sk->sk_prot->unhash(sk); 1831 inet->inet_sport = 0; 1832 } 1833 sk_dst_reset(sk); 1834 return 0; 1835 } 1836 EXPORT_SYMBOL(__udp_disconnect); 1837 1838 int udp_disconnect(struct sock *sk, int flags) 1839 { 1840 lock_sock(sk); 1841 __udp_disconnect(sk, flags); 1842 release_sock(sk); 1843 return 0; 1844 } 1845 EXPORT_SYMBOL(udp_disconnect); 1846 1847 void udp_lib_unhash(struct sock *sk) 1848 { 1849 if (sk_hashed(sk)) { 1850 struct udp_table *udptable = sk->sk_prot->h.udp_table; 1851 struct udp_hslot *hslot, *hslot2; 1852 1853 hslot = udp_hashslot(udptable, sock_net(sk), 1854 udp_sk(sk)->udp_port_hash); 1855 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1856 1857 spin_lock_bh(&hslot->lock); 1858 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1859 reuseport_detach_sock(sk); 1860 if (sk_del_node_init_rcu(sk)) { 1861 hslot->count--; 1862 inet_sk(sk)->inet_num = 0; 1863 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 1864 1865 spin_lock(&hslot2->lock); 1866 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 1867 hslot2->count--; 1868 spin_unlock(&hslot2->lock); 1869 } 1870 spin_unlock_bh(&hslot->lock); 1871 } 1872 } 1873 EXPORT_SYMBOL(udp_lib_unhash); 1874 1875 /* 1876 * inet_rcv_saddr was changed, we must rehash secondary hash 1877 */ 1878 void udp_lib_rehash(struct sock *sk, u16 newhash) 1879 { 1880 if (sk_hashed(sk)) { 1881 struct udp_table *udptable = sk->sk_prot->h.udp_table; 1882 struct udp_hslot *hslot, *hslot2, *nhslot2; 1883 1884 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1885 nhslot2 = udp_hashslot2(udptable, newhash); 1886 udp_sk(sk)->udp_portaddr_hash = newhash; 1887 1888 if (hslot2 != nhslot2 || 1889 rcu_access_pointer(sk->sk_reuseport_cb)) { 1890 hslot = udp_hashslot(udptable, sock_net(sk), 1891 udp_sk(sk)->udp_port_hash); 1892 /* we must lock primary chain too */ 1893 spin_lock_bh(&hslot->lock); 1894 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1895 reuseport_detach_sock(sk); 1896 1897 if (hslot2 != nhslot2) { 1898 spin_lock(&hslot2->lock); 1899 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 1900 hslot2->count--; 1901 spin_unlock(&hslot2->lock); 1902 1903 spin_lock(&nhslot2->lock); 1904 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 1905 &nhslot2->head); 1906 nhslot2->count++; 1907 spin_unlock(&nhslot2->lock); 1908 } 1909 1910 spin_unlock_bh(&hslot->lock); 1911 } 1912 } 1913 } 1914 EXPORT_SYMBOL(udp_lib_rehash); 1915 1916 void udp_v4_rehash(struct sock *sk) 1917 { 1918 u16 new_hash = ipv4_portaddr_hash(sock_net(sk), 1919 inet_sk(sk)->inet_rcv_saddr, 1920 inet_sk(sk)->inet_num); 1921 udp_lib_rehash(sk, new_hash); 1922 } 1923 1924 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 1925 { 1926 int rc; 1927 1928 if (inet_sk(sk)->inet_daddr) { 1929 sock_rps_save_rxhash(sk, skb); 1930 sk_mark_napi_id(sk, skb); 1931 sk_incoming_cpu_update(sk); 1932 } else { 1933 sk_mark_napi_id_once(sk, skb); 1934 } 1935 1936 rc = __udp_enqueue_schedule_skb(sk, skb); 1937 if (rc < 0) { 1938 int is_udplite = IS_UDPLITE(sk); 1939 1940 /* Note that an ENOMEM error is charged twice */ 1941 if (rc == -ENOMEM) 1942 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS, 1943 is_udplite); 1944 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1945 kfree_skb(skb); 1946 trace_udp_fail_queue_rcv_skb(rc, sk); 1947 return -1; 1948 } 1949 1950 return 0; 1951 } 1952 1953 /* returns: 1954 * -1: error 1955 * 0: success 1956 * >0: "udp encap" protocol resubmission 1957 * 1958 * Note that in the success and error cases, the skb is assumed to 1959 * have either been requeued or freed. 1960 */ 1961 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb) 1962 { 1963 struct udp_sock *up = udp_sk(sk); 1964 int is_udplite = IS_UDPLITE(sk); 1965 1966 /* 1967 * Charge it to the socket, dropping if the queue is full. 1968 */ 1969 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) 1970 goto drop; 1971 nf_reset(skb); 1972 1973 if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) { 1974 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb); 1975 1976 /* 1977 * This is an encapsulation socket so pass the skb to 1978 * the socket's udp_encap_rcv() hook. Otherwise, just 1979 * fall through and pass this up the UDP socket. 1980 * up->encap_rcv() returns the following value: 1981 * =0 if skb was successfully passed to the encap 1982 * handler or was discarded by it. 1983 * >0 if skb should be passed on to UDP. 1984 * <0 if skb should be resubmitted as proto -N 1985 */ 1986 1987 /* if we're overly short, let UDP handle it */ 1988 encap_rcv = READ_ONCE(up->encap_rcv); 1989 if (encap_rcv) { 1990 int ret; 1991 1992 /* Verify checksum before giving to encap */ 1993 if (udp_lib_checksum_complete(skb)) 1994 goto csum_error; 1995 1996 ret = encap_rcv(sk, skb); 1997 if (ret <= 0) { 1998 __UDP_INC_STATS(sock_net(sk), 1999 UDP_MIB_INDATAGRAMS, 2000 is_udplite); 2001 return -ret; 2002 } 2003 } 2004 2005 /* FALLTHROUGH -- it's a UDP Packet */ 2006 } 2007 2008 /* 2009 * UDP-Lite specific tests, ignored on UDP sockets 2010 */ 2011 if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) { 2012 2013 /* 2014 * MIB statistics other than incrementing the error count are 2015 * disabled for the following two types of errors: these depend 2016 * on the application settings, not on the functioning of the 2017 * protocol stack as such. 2018 * 2019 * RFC 3828 here recommends (sec 3.3): "There should also be a 2020 * way ... to ... at least let the receiving application block 2021 * delivery of packets with coverage values less than a value 2022 * provided by the application." 2023 */ 2024 if (up->pcrlen == 0) { /* full coverage was set */ 2025 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n", 2026 UDP_SKB_CB(skb)->cscov, skb->len); 2027 goto drop; 2028 } 2029 /* The next case involves violating the min. coverage requested 2030 * by the receiver. This is subtle: if receiver wants x and x is 2031 * greater than the buffersize/MTU then receiver will complain 2032 * that it wants x while sender emits packets of smaller size y. 2033 * Therefore the above ...()->partial_cov statement is essential. 2034 */ 2035 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) { 2036 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n", 2037 UDP_SKB_CB(skb)->cscov, up->pcrlen); 2038 goto drop; 2039 } 2040 } 2041 2042 prefetch(&sk->sk_rmem_alloc); 2043 if (rcu_access_pointer(sk->sk_filter) && 2044 udp_lib_checksum_complete(skb)) 2045 goto csum_error; 2046 2047 if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) 2048 goto drop; 2049 2050 udp_csum_pull_header(skb); 2051 2052 ipv4_pktinfo_prepare(sk, skb); 2053 return __udp_queue_rcv_skb(sk, skb); 2054 2055 csum_error: 2056 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 2057 drop: 2058 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 2059 atomic_inc(&sk->sk_drops); 2060 kfree_skb(skb); 2061 return -1; 2062 } 2063 2064 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 2065 { 2066 struct sk_buff *next, *segs; 2067 int ret; 2068 2069 if (likely(!udp_unexpected_gso(sk, skb))) 2070 return udp_queue_rcv_one_skb(sk, skb); 2071 2072 BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_SGO_CB_OFFSET); 2073 __skb_push(skb, -skb_mac_offset(skb)); 2074 segs = udp_rcv_segment(sk, skb, true); 2075 for (skb = segs; skb; skb = next) { 2076 next = skb->next; 2077 __skb_pull(skb, skb_transport_offset(skb)); 2078 ret = udp_queue_rcv_one_skb(sk, skb); 2079 if (ret > 0) 2080 ip_protocol_deliver_rcu(dev_net(skb->dev), skb, -ret); 2081 } 2082 return 0; 2083 } 2084 2085 /* For TCP sockets, sk_rx_dst is protected by socket lock 2086 * For UDP, we use xchg() to guard against concurrent changes. 2087 */ 2088 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst) 2089 { 2090 struct dst_entry *old; 2091 2092 if (dst_hold_safe(dst)) { 2093 old = xchg(&sk->sk_rx_dst, dst); 2094 dst_release(old); 2095 return old != dst; 2096 } 2097 return false; 2098 } 2099 EXPORT_SYMBOL(udp_sk_rx_dst_set); 2100 2101 /* 2102 * Multicasts and broadcasts go to each listener. 2103 * 2104 * Note: called only from the BH handler context. 2105 */ 2106 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb, 2107 struct udphdr *uh, 2108 __be32 saddr, __be32 daddr, 2109 struct udp_table *udptable, 2110 int proto) 2111 { 2112 struct sock *sk, *first = NULL; 2113 unsigned short hnum = ntohs(uh->dest); 2114 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum); 2115 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10); 2116 unsigned int offset = offsetof(typeof(*sk), sk_node); 2117 int dif = skb->dev->ifindex; 2118 int sdif = inet_sdif(skb); 2119 struct hlist_node *node; 2120 struct sk_buff *nskb; 2121 2122 if (use_hash2) { 2123 hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) & 2124 udptable->mask; 2125 hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask; 2126 start_lookup: 2127 hslot = &udptable->hash2[hash2]; 2128 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node); 2129 } 2130 2131 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) { 2132 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr, 2133 uh->source, saddr, dif, sdif, hnum)) 2134 continue; 2135 2136 if (!first) { 2137 first = sk; 2138 continue; 2139 } 2140 nskb = skb_clone(skb, GFP_ATOMIC); 2141 2142 if (unlikely(!nskb)) { 2143 atomic_inc(&sk->sk_drops); 2144 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS, 2145 IS_UDPLITE(sk)); 2146 __UDP_INC_STATS(net, UDP_MIB_INERRORS, 2147 IS_UDPLITE(sk)); 2148 continue; 2149 } 2150 if (udp_queue_rcv_skb(sk, nskb) > 0) 2151 consume_skb(nskb); 2152 } 2153 2154 /* Also lookup *:port if we are using hash2 and haven't done so yet. */ 2155 if (use_hash2 && hash2 != hash2_any) { 2156 hash2 = hash2_any; 2157 goto start_lookup; 2158 } 2159 2160 if (first) { 2161 if (udp_queue_rcv_skb(first, skb) > 0) 2162 consume_skb(skb); 2163 } else { 2164 kfree_skb(skb); 2165 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI, 2166 proto == IPPROTO_UDPLITE); 2167 } 2168 return 0; 2169 } 2170 2171 /* Initialize UDP checksum. If exited with zero value (success), 2172 * CHECKSUM_UNNECESSARY means, that no more checks are required. 2173 * Otherwise, csum completion requires checksumming packet body, 2174 * including udp header and folding it to skb->csum. 2175 */ 2176 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh, 2177 int proto) 2178 { 2179 int err; 2180 2181 UDP_SKB_CB(skb)->partial_cov = 0; 2182 UDP_SKB_CB(skb)->cscov = skb->len; 2183 2184 if (proto == IPPROTO_UDPLITE) { 2185 err = udplite_checksum_init(skb, uh); 2186 if (err) 2187 return err; 2188 2189 if (UDP_SKB_CB(skb)->partial_cov) { 2190 skb->csum = inet_compute_pseudo(skb, proto); 2191 return 0; 2192 } 2193 } 2194 2195 /* Note, we are only interested in != 0 or == 0, thus the 2196 * force to int. 2197 */ 2198 err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check, 2199 inet_compute_pseudo); 2200 if (err) 2201 return err; 2202 2203 if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) { 2204 /* If SW calculated the value, we know it's bad */ 2205 if (skb->csum_complete_sw) 2206 return 1; 2207 2208 /* HW says the value is bad. Let's validate that. 2209 * skb->csum is no longer the full packet checksum, 2210 * so don't treat it as such. 2211 */ 2212 skb_checksum_complete_unset(skb); 2213 } 2214 2215 return 0; 2216 } 2217 2218 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and 2219 * return code conversion for ip layer consumption 2220 */ 2221 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb, 2222 struct udphdr *uh) 2223 { 2224 int ret; 2225 2226 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk)) 2227 skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo); 2228 2229 ret = udp_queue_rcv_skb(sk, skb); 2230 2231 /* a return value > 0 means to resubmit the input, but 2232 * it wants the return to be -protocol, or 0 2233 */ 2234 if (ret > 0) 2235 return -ret; 2236 return 0; 2237 } 2238 2239 /* 2240 * All we need to do is get the socket, and then do a checksum. 2241 */ 2242 2243 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable, 2244 int proto) 2245 { 2246 struct sock *sk; 2247 struct udphdr *uh; 2248 unsigned short ulen; 2249 struct rtable *rt = skb_rtable(skb); 2250 __be32 saddr, daddr; 2251 struct net *net = dev_net(skb->dev); 2252 2253 /* 2254 * Validate the packet. 2255 */ 2256 if (!pskb_may_pull(skb, sizeof(struct udphdr))) 2257 goto drop; /* No space for header. */ 2258 2259 uh = udp_hdr(skb); 2260 ulen = ntohs(uh->len); 2261 saddr = ip_hdr(skb)->saddr; 2262 daddr = ip_hdr(skb)->daddr; 2263 2264 if (ulen > skb->len) 2265 goto short_packet; 2266 2267 if (proto == IPPROTO_UDP) { 2268 /* UDP validates ulen. */ 2269 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen)) 2270 goto short_packet; 2271 uh = udp_hdr(skb); 2272 } 2273 2274 if (udp4_csum_init(skb, uh, proto)) 2275 goto csum_error; 2276 2277 sk = skb_steal_sock(skb); 2278 if (sk) { 2279 struct dst_entry *dst = skb_dst(skb); 2280 int ret; 2281 2282 if (unlikely(sk->sk_rx_dst != dst)) 2283 udp_sk_rx_dst_set(sk, dst); 2284 2285 ret = udp_unicast_rcv_skb(sk, skb, uh); 2286 sock_put(sk); 2287 return ret; 2288 } 2289 2290 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST)) 2291 return __udp4_lib_mcast_deliver(net, skb, uh, 2292 saddr, daddr, udptable, proto); 2293 2294 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable); 2295 if (sk) 2296 return udp_unicast_rcv_skb(sk, skb, uh); 2297 2298 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 2299 goto drop; 2300 nf_reset(skb); 2301 2302 /* No socket. Drop packet silently, if checksum is wrong */ 2303 if (udp_lib_checksum_complete(skb)) 2304 goto csum_error; 2305 2306 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE); 2307 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0); 2308 2309 /* 2310 * Hmm. We got an UDP packet to a port to which we 2311 * don't wanna listen. Ignore it. 2312 */ 2313 kfree_skb(skb); 2314 return 0; 2315 2316 short_packet: 2317 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n", 2318 proto == IPPROTO_UDPLITE ? "Lite" : "", 2319 &saddr, ntohs(uh->source), 2320 ulen, skb->len, 2321 &daddr, ntohs(uh->dest)); 2322 goto drop; 2323 2324 csum_error: 2325 /* 2326 * RFC1122: OK. Discards the bad packet silently (as far as 2327 * the network is concerned, anyway) as per 4.1.3.4 (MUST). 2328 */ 2329 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n", 2330 proto == IPPROTO_UDPLITE ? "Lite" : "", 2331 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest), 2332 ulen); 2333 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE); 2334 drop: 2335 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE); 2336 kfree_skb(skb); 2337 return 0; 2338 } 2339 2340 /* We can only early demux multicast if there is a single matching socket. 2341 * If more than one socket found returns NULL 2342 */ 2343 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net, 2344 __be16 loc_port, __be32 loc_addr, 2345 __be16 rmt_port, __be32 rmt_addr, 2346 int dif, int sdif) 2347 { 2348 struct sock *sk, *result; 2349 unsigned short hnum = ntohs(loc_port); 2350 unsigned int slot = udp_hashfn(net, hnum, udp_table.mask); 2351 struct udp_hslot *hslot = &udp_table.hash[slot]; 2352 2353 /* Do not bother scanning a too big list */ 2354 if (hslot->count > 10) 2355 return NULL; 2356 2357 result = NULL; 2358 sk_for_each_rcu(sk, &hslot->head) { 2359 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr, 2360 rmt_port, rmt_addr, dif, sdif, hnum)) { 2361 if (result) 2362 return NULL; 2363 result = sk; 2364 } 2365 } 2366 2367 return result; 2368 } 2369 2370 /* For unicast we should only early demux connected sockets or we can 2371 * break forwarding setups. The chains here can be long so only check 2372 * if the first socket is an exact match and if not move on. 2373 */ 2374 static struct sock *__udp4_lib_demux_lookup(struct net *net, 2375 __be16 loc_port, __be32 loc_addr, 2376 __be16 rmt_port, __be32 rmt_addr, 2377 int dif, int sdif) 2378 { 2379 unsigned short hnum = ntohs(loc_port); 2380 unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum); 2381 unsigned int slot2 = hash2 & udp_table.mask; 2382 struct udp_hslot *hslot2 = &udp_table.hash2[slot2]; 2383 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr); 2384 const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum); 2385 struct sock *sk; 2386 2387 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 2388 if (INET_MATCH(sk, net, acookie, rmt_addr, 2389 loc_addr, ports, dif, sdif)) 2390 return sk; 2391 /* Only check first socket in chain */ 2392 break; 2393 } 2394 return NULL; 2395 } 2396 2397 int udp_v4_early_demux(struct sk_buff *skb) 2398 { 2399 struct net *net = dev_net(skb->dev); 2400 struct in_device *in_dev = NULL; 2401 const struct iphdr *iph; 2402 const struct udphdr *uh; 2403 struct sock *sk = NULL; 2404 struct dst_entry *dst; 2405 int dif = skb->dev->ifindex; 2406 int sdif = inet_sdif(skb); 2407 int ours; 2408 2409 /* validate the packet */ 2410 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr))) 2411 return 0; 2412 2413 iph = ip_hdr(skb); 2414 uh = udp_hdr(skb); 2415 2416 if (skb->pkt_type == PACKET_MULTICAST) { 2417 in_dev = __in_dev_get_rcu(skb->dev); 2418 2419 if (!in_dev) 2420 return 0; 2421 2422 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr, 2423 iph->protocol); 2424 if (!ours) 2425 return 0; 2426 2427 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr, 2428 uh->source, iph->saddr, 2429 dif, sdif); 2430 } else if (skb->pkt_type == PACKET_HOST) { 2431 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr, 2432 uh->source, iph->saddr, dif, sdif); 2433 } 2434 2435 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 2436 return 0; 2437 2438 skb->sk = sk; 2439 skb->destructor = sock_efree; 2440 dst = READ_ONCE(sk->sk_rx_dst); 2441 2442 if (dst) 2443 dst = dst_check(dst, 0); 2444 if (dst) { 2445 u32 itag = 0; 2446 2447 /* set noref for now. 2448 * any place which wants to hold dst has to call 2449 * dst_hold_safe() 2450 */ 2451 skb_dst_set_noref(skb, dst); 2452 2453 /* for unconnected multicast sockets we need to validate 2454 * the source on each packet 2455 */ 2456 if (!inet_sk(sk)->inet_daddr && in_dev) 2457 return ip_mc_validate_source(skb, iph->daddr, 2458 iph->saddr, iph->tos, 2459 skb->dev, in_dev, &itag); 2460 } 2461 return 0; 2462 } 2463 2464 int udp_rcv(struct sk_buff *skb) 2465 { 2466 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP); 2467 } 2468 2469 void udp_destroy_sock(struct sock *sk) 2470 { 2471 struct udp_sock *up = udp_sk(sk); 2472 bool slow = lock_sock_fast(sk); 2473 udp_flush_pending_frames(sk); 2474 unlock_sock_fast(sk, slow); 2475 if (static_branch_unlikely(&udp_encap_needed_key)) { 2476 if (up->encap_type) { 2477 void (*encap_destroy)(struct sock *sk); 2478 encap_destroy = READ_ONCE(up->encap_destroy); 2479 if (encap_destroy) 2480 encap_destroy(sk); 2481 } 2482 if (up->encap_enabled) 2483 static_branch_dec(&udp_encap_needed_key); 2484 } 2485 } 2486 2487 /* 2488 * Socket option code for UDP 2489 */ 2490 int udp_lib_setsockopt(struct sock *sk, int level, int optname, 2491 char __user *optval, unsigned int optlen, 2492 int (*push_pending_frames)(struct sock *)) 2493 { 2494 struct udp_sock *up = udp_sk(sk); 2495 int val, valbool; 2496 int err = 0; 2497 int is_udplite = IS_UDPLITE(sk); 2498 2499 if (optlen < sizeof(int)) 2500 return -EINVAL; 2501 2502 if (get_user(val, (int __user *)optval)) 2503 return -EFAULT; 2504 2505 valbool = val ? 1 : 0; 2506 2507 switch (optname) { 2508 case UDP_CORK: 2509 if (val != 0) { 2510 up->corkflag = 1; 2511 } else { 2512 up->corkflag = 0; 2513 lock_sock(sk); 2514 push_pending_frames(sk); 2515 release_sock(sk); 2516 } 2517 break; 2518 2519 case UDP_ENCAP: 2520 switch (val) { 2521 case 0: 2522 case UDP_ENCAP_ESPINUDP: 2523 case UDP_ENCAP_ESPINUDP_NON_IKE: 2524 up->encap_rcv = xfrm4_udp_encap_rcv; 2525 /* FALLTHROUGH */ 2526 case UDP_ENCAP_L2TPINUDP: 2527 up->encap_type = val; 2528 lock_sock(sk); 2529 udp_tunnel_encap_enable(sk->sk_socket); 2530 release_sock(sk); 2531 break; 2532 default: 2533 err = -ENOPROTOOPT; 2534 break; 2535 } 2536 break; 2537 2538 case UDP_NO_CHECK6_TX: 2539 up->no_check6_tx = valbool; 2540 break; 2541 2542 case UDP_NO_CHECK6_RX: 2543 up->no_check6_rx = valbool; 2544 break; 2545 2546 case UDP_SEGMENT: 2547 if (val < 0 || val > USHRT_MAX) 2548 return -EINVAL; 2549 up->gso_size = val; 2550 break; 2551 2552 case UDP_GRO: 2553 lock_sock(sk); 2554 if (valbool) 2555 udp_tunnel_encap_enable(sk->sk_socket); 2556 up->gro_enabled = valbool; 2557 release_sock(sk); 2558 break; 2559 2560 /* 2561 * UDP-Lite's partial checksum coverage (RFC 3828). 2562 */ 2563 /* The sender sets actual checksum coverage length via this option. 2564 * The case coverage > packet length is handled by send module. */ 2565 case UDPLITE_SEND_CSCOV: 2566 if (!is_udplite) /* Disable the option on UDP sockets */ 2567 return -ENOPROTOOPT; 2568 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */ 2569 val = 8; 2570 else if (val > USHRT_MAX) 2571 val = USHRT_MAX; 2572 up->pcslen = val; 2573 up->pcflag |= UDPLITE_SEND_CC; 2574 break; 2575 2576 /* The receiver specifies a minimum checksum coverage value. To make 2577 * sense, this should be set to at least 8 (as done below). If zero is 2578 * used, this again means full checksum coverage. */ 2579 case UDPLITE_RECV_CSCOV: 2580 if (!is_udplite) /* Disable the option on UDP sockets */ 2581 return -ENOPROTOOPT; 2582 if (val != 0 && val < 8) /* Avoid silly minimal values. */ 2583 val = 8; 2584 else if (val > USHRT_MAX) 2585 val = USHRT_MAX; 2586 up->pcrlen = val; 2587 up->pcflag |= UDPLITE_RECV_CC; 2588 break; 2589 2590 default: 2591 err = -ENOPROTOOPT; 2592 break; 2593 } 2594 2595 return err; 2596 } 2597 EXPORT_SYMBOL(udp_lib_setsockopt); 2598 2599 int udp_setsockopt(struct sock *sk, int level, int optname, 2600 char __user *optval, unsigned int optlen) 2601 { 2602 if (level == SOL_UDP || level == SOL_UDPLITE) 2603 return udp_lib_setsockopt(sk, level, optname, optval, optlen, 2604 udp_push_pending_frames); 2605 return ip_setsockopt(sk, level, optname, optval, optlen); 2606 } 2607 2608 #ifdef CONFIG_COMPAT 2609 int compat_udp_setsockopt(struct sock *sk, int level, int optname, 2610 char __user *optval, unsigned int optlen) 2611 { 2612 if (level == SOL_UDP || level == SOL_UDPLITE) 2613 return udp_lib_setsockopt(sk, level, optname, optval, optlen, 2614 udp_push_pending_frames); 2615 return compat_ip_setsockopt(sk, level, optname, optval, optlen); 2616 } 2617 #endif 2618 2619 int udp_lib_getsockopt(struct sock *sk, int level, int optname, 2620 char __user *optval, int __user *optlen) 2621 { 2622 struct udp_sock *up = udp_sk(sk); 2623 int val, len; 2624 2625 if (get_user(len, optlen)) 2626 return -EFAULT; 2627 2628 len = min_t(unsigned int, len, sizeof(int)); 2629 2630 if (len < 0) 2631 return -EINVAL; 2632 2633 switch (optname) { 2634 case UDP_CORK: 2635 val = up->corkflag; 2636 break; 2637 2638 case UDP_ENCAP: 2639 val = up->encap_type; 2640 break; 2641 2642 case UDP_NO_CHECK6_TX: 2643 val = up->no_check6_tx; 2644 break; 2645 2646 case UDP_NO_CHECK6_RX: 2647 val = up->no_check6_rx; 2648 break; 2649 2650 case UDP_SEGMENT: 2651 val = up->gso_size; 2652 break; 2653 2654 /* The following two cannot be changed on UDP sockets, the return is 2655 * always 0 (which corresponds to the full checksum coverage of UDP). */ 2656 case UDPLITE_SEND_CSCOV: 2657 val = up->pcslen; 2658 break; 2659 2660 case UDPLITE_RECV_CSCOV: 2661 val = up->pcrlen; 2662 break; 2663 2664 default: 2665 return -ENOPROTOOPT; 2666 } 2667 2668 if (put_user(len, optlen)) 2669 return -EFAULT; 2670 if (copy_to_user(optval, &val, len)) 2671 return -EFAULT; 2672 return 0; 2673 } 2674 EXPORT_SYMBOL(udp_lib_getsockopt); 2675 2676 int udp_getsockopt(struct sock *sk, int level, int optname, 2677 char __user *optval, int __user *optlen) 2678 { 2679 if (level == SOL_UDP || level == SOL_UDPLITE) 2680 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 2681 return ip_getsockopt(sk, level, optname, optval, optlen); 2682 } 2683 2684 #ifdef CONFIG_COMPAT 2685 int compat_udp_getsockopt(struct sock *sk, int level, int optname, 2686 char __user *optval, int __user *optlen) 2687 { 2688 if (level == SOL_UDP || level == SOL_UDPLITE) 2689 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 2690 return compat_ip_getsockopt(sk, level, optname, optval, optlen); 2691 } 2692 #endif 2693 /** 2694 * udp_poll - wait for a UDP event. 2695 * @file - file struct 2696 * @sock - socket 2697 * @wait - poll table 2698 * 2699 * This is same as datagram poll, except for the special case of 2700 * blocking sockets. If application is using a blocking fd 2701 * and a packet with checksum error is in the queue; 2702 * then it could get return from select indicating data available 2703 * but then block when reading it. Add special case code 2704 * to work around these arguably broken applications. 2705 */ 2706 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait) 2707 { 2708 __poll_t mask = datagram_poll(file, sock, wait); 2709 struct sock *sk = sock->sk; 2710 2711 if (!skb_queue_empty(&udp_sk(sk)->reader_queue)) 2712 mask |= EPOLLIN | EPOLLRDNORM; 2713 2714 /* Check for false positives due to checksum errors */ 2715 if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) && 2716 !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1) 2717 mask &= ~(EPOLLIN | EPOLLRDNORM); 2718 2719 return mask; 2720 2721 } 2722 EXPORT_SYMBOL(udp_poll); 2723 2724 int udp_abort(struct sock *sk, int err) 2725 { 2726 lock_sock(sk); 2727 2728 sk->sk_err = err; 2729 sk->sk_error_report(sk); 2730 __udp_disconnect(sk, 0); 2731 2732 release_sock(sk); 2733 2734 return 0; 2735 } 2736 EXPORT_SYMBOL_GPL(udp_abort); 2737 2738 struct proto udp_prot = { 2739 .name = "UDP", 2740 .owner = THIS_MODULE, 2741 .close = udp_lib_close, 2742 .pre_connect = udp_pre_connect, 2743 .connect = ip4_datagram_connect, 2744 .disconnect = udp_disconnect, 2745 .ioctl = udp_ioctl, 2746 .init = udp_init_sock, 2747 .destroy = udp_destroy_sock, 2748 .setsockopt = udp_setsockopt, 2749 .getsockopt = udp_getsockopt, 2750 .sendmsg = udp_sendmsg, 2751 .recvmsg = udp_recvmsg, 2752 .sendpage = udp_sendpage, 2753 .release_cb = ip4_datagram_release_cb, 2754 .hash = udp_lib_hash, 2755 .unhash = udp_lib_unhash, 2756 .rehash = udp_v4_rehash, 2757 .get_port = udp_v4_get_port, 2758 .memory_allocated = &udp_memory_allocated, 2759 .sysctl_mem = sysctl_udp_mem, 2760 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_udp_wmem_min), 2761 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_udp_rmem_min), 2762 .obj_size = sizeof(struct udp_sock), 2763 .h.udp_table = &udp_table, 2764 #ifdef CONFIG_COMPAT 2765 .compat_setsockopt = compat_udp_setsockopt, 2766 .compat_getsockopt = compat_udp_getsockopt, 2767 #endif 2768 .diag_destroy = udp_abort, 2769 }; 2770 EXPORT_SYMBOL(udp_prot); 2771 2772 /* ------------------------------------------------------------------------ */ 2773 #ifdef CONFIG_PROC_FS 2774 2775 static struct sock *udp_get_first(struct seq_file *seq, int start) 2776 { 2777 struct sock *sk; 2778 struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file)); 2779 struct udp_iter_state *state = seq->private; 2780 struct net *net = seq_file_net(seq); 2781 2782 for (state->bucket = start; state->bucket <= afinfo->udp_table->mask; 2783 ++state->bucket) { 2784 struct udp_hslot *hslot = &afinfo->udp_table->hash[state->bucket]; 2785 2786 if (hlist_empty(&hslot->head)) 2787 continue; 2788 2789 spin_lock_bh(&hslot->lock); 2790 sk_for_each(sk, &hslot->head) { 2791 if (!net_eq(sock_net(sk), net)) 2792 continue; 2793 if (sk->sk_family == afinfo->family) 2794 goto found; 2795 } 2796 spin_unlock_bh(&hslot->lock); 2797 } 2798 sk = NULL; 2799 found: 2800 return sk; 2801 } 2802 2803 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk) 2804 { 2805 struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file)); 2806 struct udp_iter_state *state = seq->private; 2807 struct net *net = seq_file_net(seq); 2808 2809 do { 2810 sk = sk_next(sk); 2811 } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != afinfo->family)); 2812 2813 if (!sk) { 2814 if (state->bucket <= afinfo->udp_table->mask) 2815 spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock); 2816 return udp_get_first(seq, state->bucket + 1); 2817 } 2818 return sk; 2819 } 2820 2821 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos) 2822 { 2823 struct sock *sk = udp_get_first(seq, 0); 2824 2825 if (sk) 2826 while (pos && (sk = udp_get_next(seq, sk)) != NULL) 2827 --pos; 2828 return pos ? NULL : sk; 2829 } 2830 2831 void *udp_seq_start(struct seq_file *seq, loff_t *pos) 2832 { 2833 struct udp_iter_state *state = seq->private; 2834 state->bucket = MAX_UDP_PORTS; 2835 2836 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN; 2837 } 2838 EXPORT_SYMBOL(udp_seq_start); 2839 2840 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2841 { 2842 struct sock *sk; 2843 2844 if (v == SEQ_START_TOKEN) 2845 sk = udp_get_idx(seq, 0); 2846 else 2847 sk = udp_get_next(seq, v); 2848 2849 ++*pos; 2850 return sk; 2851 } 2852 EXPORT_SYMBOL(udp_seq_next); 2853 2854 void udp_seq_stop(struct seq_file *seq, void *v) 2855 { 2856 struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file)); 2857 struct udp_iter_state *state = seq->private; 2858 2859 if (state->bucket <= afinfo->udp_table->mask) 2860 spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock); 2861 } 2862 EXPORT_SYMBOL(udp_seq_stop); 2863 2864 /* ------------------------------------------------------------------------ */ 2865 static void udp4_format_sock(struct sock *sp, struct seq_file *f, 2866 int bucket) 2867 { 2868 struct inet_sock *inet = inet_sk(sp); 2869 __be32 dest = inet->inet_daddr; 2870 __be32 src = inet->inet_rcv_saddr; 2871 __u16 destp = ntohs(inet->inet_dport); 2872 __u16 srcp = ntohs(inet->inet_sport); 2873 2874 seq_printf(f, "%5d: %08X:%04X %08X:%04X" 2875 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u", 2876 bucket, src, srcp, dest, destp, sp->sk_state, 2877 sk_wmem_alloc_get(sp), 2878 udp_rqueue_get(sp), 2879 0, 0L, 0, 2880 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)), 2881 0, sock_i_ino(sp), 2882 refcount_read(&sp->sk_refcnt), sp, 2883 atomic_read(&sp->sk_drops)); 2884 } 2885 2886 int udp4_seq_show(struct seq_file *seq, void *v) 2887 { 2888 seq_setwidth(seq, 127); 2889 if (v == SEQ_START_TOKEN) 2890 seq_puts(seq, " sl local_address rem_address st tx_queue " 2891 "rx_queue tr tm->when retrnsmt uid timeout " 2892 "inode ref pointer drops"); 2893 else { 2894 struct udp_iter_state *state = seq->private; 2895 2896 udp4_format_sock(v, seq, state->bucket); 2897 } 2898 seq_pad(seq, '\n'); 2899 return 0; 2900 } 2901 2902 const struct seq_operations udp_seq_ops = { 2903 .start = udp_seq_start, 2904 .next = udp_seq_next, 2905 .stop = udp_seq_stop, 2906 .show = udp4_seq_show, 2907 }; 2908 EXPORT_SYMBOL(udp_seq_ops); 2909 2910 static struct udp_seq_afinfo udp4_seq_afinfo = { 2911 .family = AF_INET, 2912 .udp_table = &udp_table, 2913 }; 2914 2915 static int __net_init udp4_proc_init_net(struct net *net) 2916 { 2917 if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops, 2918 sizeof(struct udp_iter_state), &udp4_seq_afinfo)) 2919 return -ENOMEM; 2920 return 0; 2921 } 2922 2923 static void __net_exit udp4_proc_exit_net(struct net *net) 2924 { 2925 remove_proc_entry("udp", net->proc_net); 2926 } 2927 2928 static struct pernet_operations udp4_net_ops = { 2929 .init = udp4_proc_init_net, 2930 .exit = udp4_proc_exit_net, 2931 }; 2932 2933 int __init udp4_proc_init(void) 2934 { 2935 return register_pernet_subsys(&udp4_net_ops); 2936 } 2937 2938 void udp4_proc_exit(void) 2939 { 2940 unregister_pernet_subsys(&udp4_net_ops); 2941 } 2942 #endif /* CONFIG_PROC_FS */ 2943 2944 static __initdata unsigned long uhash_entries; 2945 static int __init set_uhash_entries(char *str) 2946 { 2947 ssize_t ret; 2948 2949 if (!str) 2950 return 0; 2951 2952 ret = kstrtoul(str, 0, &uhash_entries); 2953 if (ret) 2954 return 0; 2955 2956 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN) 2957 uhash_entries = UDP_HTABLE_SIZE_MIN; 2958 return 1; 2959 } 2960 __setup("uhash_entries=", set_uhash_entries); 2961 2962 void __init udp_table_init(struct udp_table *table, const char *name) 2963 { 2964 unsigned int i; 2965 2966 table->hash = alloc_large_system_hash(name, 2967 2 * sizeof(struct udp_hslot), 2968 uhash_entries, 2969 21, /* one slot per 2 MB */ 2970 0, 2971 &table->log, 2972 &table->mask, 2973 UDP_HTABLE_SIZE_MIN, 2974 64 * 1024); 2975 2976 table->hash2 = table->hash + (table->mask + 1); 2977 for (i = 0; i <= table->mask; i++) { 2978 INIT_HLIST_HEAD(&table->hash[i].head); 2979 table->hash[i].count = 0; 2980 spin_lock_init(&table->hash[i].lock); 2981 } 2982 for (i = 0; i <= table->mask; i++) { 2983 INIT_HLIST_HEAD(&table->hash2[i].head); 2984 table->hash2[i].count = 0; 2985 spin_lock_init(&table->hash2[i].lock); 2986 } 2987 } 2988 2989 u32 udp_flow_hashrnd(void) 2990 { 2991 static u32 hashrnd __read_mostly; 2992 2993 net_get_random_once(&hashrnd, sizeof(hashrnd)); 2994 2995 return hashrnd; 2996 } 2997 EXPORT_SYMBOL(udp_flow_hashrnd); 2998 2999 static void __udp_sysctl_init(struct net *net) 3000 { 3001 net->ipv4.sysctl_udp_rmem_min = SK_MEM_QUANTUM; 3002 net->ipv4.sysctl_udp_wmem_min = SK_MEM_QUANTUM; 3003 3004 #ifdef CONFIG_NET_L3_MASTER_DEV 3005 net->ipv4.sysctl_udp_l3mdev_accept = 0; 3006 #endif 3007 } 3008 3009 static int __net_init udp_sysctl_init(struct net *net) 3010 { 3011 __udp_sysctl_init(net); 3012 return 0; 3013 } 3014 3015 static struct pernet_operations __net_initdata udp_sysctl_ops = { 3016 .init = udp_sysctl_init, 3017 }; 3018 3019 void __init udp_init(void) 3020 { 3021 unsigned long limit; 3022 unsigned int i; 3023 3024 udp_table_init(&udp_table, "UDP"); 3025 limit = nr_free_buffer_pages() / 8; 3026 limit = max(limit, 128UL); 3027 sysctl_udp_mem[0] = limit / 4 * 3; 3028 sysctl_udp_mem[1] = limit; 3029 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2; 3030 3031 __udp_sysctl_init(&init_net); 3032 3033 /* 16 spinlocks per cpu */ 3034 udp_busylocks_log = ilog2(nr_cpu_ids) + 4; 3035 udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log, 3036 GFP_KERNEL); 3037 if (!udp_busylocks) 3038 panic("UDP: failed to alloc udp_busylocks\n"); 3039 for (i = 0; i < (1U << udp_busylocks_log); i++) 3040 spin_lock_init(udp_busylocks + i); 3041 3042 if (register_pernet_subsys(&udp_sysctl_ops)) 3043 panic("UDP: failed to init sysctl parameters.\n"); 3044 } 3045