xref: /linux/net/ipv4/udp.c (revision b45e0c30bc58fb6fcaa42f1d1d813cefb8ab4117)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		The User Datagram Protocol (UDP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
12  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
13  *		Hirokazu Takahashi, <taka@valinux.co.jp>
14  *
15  * Fixes:
16  *		Alan Cox	:	verify_area() calls
17  *		Alan Cox	: 	stopped close while in use off icmp
18  *					messages. Not a fix but a botch that
19  *					for udp at least is 'valid'.
20  *		Alan Cox	:	Fixed icmp handling properly
21  *		Alan Cox	: 	Correct error for oversized datagrams
22  *		Alan Cox	:	Tidied select() semantics.
23  *		Alan Cox	:	udp_err() fixed properly, also now
24  *					select and read wake correctly on errors
25  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
26  *		Alan Cox	:	UDP can count its memory
27  *		Alan Cox	:	send to an unknown connection causes
28  *					an ECONNREFUSED off the icmp, but
29  *					does NOT close.
30  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
31  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
32  *					bug no longer crashes it.
33  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
34  *		Alan Cox	:	Uses skb_free_datagram
35  *		Alan Cox	:	Added get/set sockopt support.
36  *		Alan Cox	:	Broadcasting without option set returns EACCES.
37  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
38  *		Alan Cox	:	Use ip_tos and ip_ttl
39  *		Alan Cox	:	SNMP Mibs
40  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
41  *		Matt Dillon	:	UDP length checks.
42  *		Alan Cox	:	Smarter af_inet used properly.
43  *		Alan Cox	:	Use new kernel side addressing.
44  *		Alan Cox	:	Incorrect return on truncated datagram receive.
45  *	Arnt Gulbrandsen 	:	New udp_send and stuff
46  *		Alan Cox	:	Cache last socket
47  *		Alan Cox	:	Route cache
48  *		Jon Peatfield	:	Minor efficiency fix to sendto().
49  *		Mike Shaver	:	RFC1122 checks.
50  *		Alan Cox	:	Nonblocking error fix.
51  *	Willy Konynenberg	:	Transparent proxying support.
52  *		Mike McLagan	:	Routing by source
53  *		David S. Miller	:	New socket lookup architecture.
54  *					Last socket cache retained as it
55  *					does have a high hit rate.
56  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
57  *		Andi Kleen	:	Some cleanups, cache destination entry
58  *					for connect.
59  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
60  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
61  *					return ENOTCONN for unconnected sockets (POSIX)
62  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
63  *					bound-to-device socket
64  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
65  *					datagrams.
66  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
67  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
68  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
69  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
70  *					a single port at the same time.
71  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
72  *	James Chapman		:	Add L2TP encapsulation type.
73  */
74 
75 #define pr_fmt(fmt) "UDP: " fmt
76 
77 #include <linux/uaccess.h>
78 #include <asm/ioctls.h>
79 #include <linux/memblock.h>
80 #include <linux/highmem.h>
81 #include <linux/swap.h>
82 #include <linux/types.h>
83 #include <linux/fcntl.h>
84 #include <linux/module.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/igmp.h>
88 #include <linux/inetdevice.h>
89 #include <linux/in.h>
90 #include <linux/errno.h>
91 #include <linux/timer.h>
92 #include <linux/mm.h>
93 #include <linux/inet.h>
94 #include <linux/netdevice.h>
95 #include <linux/slab.h>
96 #include <net/tcp_states.h>
97 #include <linux/skbuff.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <net/net_namespace.h>
101 #include <net/icmp.h>
102 #include <net/inet_hashtables.h>
103 #include <net/ip_tunnels.h>
104 #include <net/route.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <trace/events/udp.h>
108 #include <linux/static_key.h>
109 #include <trace/events/skb.h>
110 #include <net/busy_poll.h>
111 #include "udp_impl.h"
112 #include <net/sock_reuseport.h>
113 #include <net/addrconf.h>
114 #include <net/udp_tunnel.h>
115 
116 struct udp_table udp_table __read_mostly;
117 EXPORT_SYMBOL(udp_table);
118 
119 long sysctl_udp_mem[3] __read_mostly;
120 EXPORT_SYMBOL(sysctl_udp_mem);
121 
122 atomic_long_t udp_memory_allocated;
123 EXPORT_SYMBOL(udp_memory_allocated);
124 
125 #define MAX_UDP_PORTS 65536
126 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
127 
128 static int udp_lib_lport_inuse(struct net *net, __u16 num,
129 			       const struct udp_hslot *hslot,
130 			       unsigned long *bitmap,
131 			       struct sock *sk, unsigned int log)
132 {
133 	struct sock *sk2;
134 	kuid_t uid = sock_i_uid(sk);
135 
136 	sk_for_each(sk2, &hslot->head) {
137 		if (net_eq(sock_net(sk2), net) &&
138 		    sk2 != sk &&
139 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
140 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
141 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
142 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
143 		    inet_rcv_saddr_equal(sk, sk2, true)) {
144 			if (sk2->sk_reuseport && sk->sk_reuseport &&
145 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
146 			    uid_eq(uid, sock_i_uid(sk2))) {
147 				if (!bitmap)
148 					return 0;
149 			} else {
150 				if (!bitmap)
151 					return 1;
152 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
153 					  bitmap);
154 			}
155 		}
156 	}
157 	return 0;
158 }
159 
160 /*
161  * Note: we still hold spinlock of primary hash chain, so no other writer
162  * can insert/delete a socket with local_port == num
163  */
164 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
165 				struct udp_hslot *hslot2,
166 				struct sock *sk)
167 {
168 	struct sock *sk2;
169 	kuid_t uid = sock_i_uid(sk);
170 	int res = 0;
171 
172 	spin_lock(&hslot2->lock);
173 	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
174 		if (net_eq(sock_net(sk2), net) &&
175 		    sk2 != sk &&
176 		    (udp_sk(sk2)->udp_port_hash == num) &&
177 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
178 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
179 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
180 		    inet_rcv_saddr_equal(sk, sk2, true)) {
181 			if (sk2->sk_reuseport && sk->sk_reuseport &&
182 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
183 			    uid_eq(uid, sock_i_uid(sk2))) {
184 				res = 0;
185 			} else {
186 				res = 1;
187 			}
188 			break;
189 		}
190 	}
191 	spin_unlock(&hslot2->lock);
192 	return res;
193 }
194 
195 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
196 {
197 	struct net *net = sock_net(sk);
198 	kuid_t uid = sock_i_uid(sk);
199 	struct sock *sk2;
200 
201 	sk_for_each(sk2, &hslot->head) {
202 		if (net_eq(sock_net(sk2), net) &&
203 		    sk2 != sk &&
204 		    sk2->sk_family == sk->sk_family &&
205 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
206 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
207 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
208 		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
209 		    inet_rcv_saddr_equal(sk, sk2, false)) {
210 			return reuseport_add_sock(sk, sk2,
211 						  inet_rcv_saddr_any(sk));
212 		}
213 	}
214 
215 	return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
216 }
217 
218 /**
219  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
220  *
221  *  @sk:          socket struct in question
222  *  @snum:        port number to look up
223  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
224  *                   with NULL address
225  */
226 int udp_lib_get_port(struct sock *sk, unsigned short snum,
227 		     unsigned int hash2_nulladdr)
228 {
229 	struct udp_hslot *hslot, *hslot2;
230 	struct udp_table *udptable = sk->sk_prot->h.udp_table;
231 	int    error = 1;
232 	struct net *net = sock_net(sk);
233 
234 	if (!snum) {
235 		int low, high, remaining;
236 		unsigned int rand;
237 		unsigned short first, last;
238 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
239 
240 		inet_get_local_port_range(net, &low, &high);
241 		remaining = (high - low) + 1;
242 
243 		rand = prandom_u32();
244 		first = reciprocal_scale(rand, remaining) + low;
245 		/*
246 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
247 		 */
248 		rand = (rand | 1) * (udptable->mask + 1);
249 		last = first + udptable->mask + 1;
250 		do {
251 			hslot = udp_hashslot(udptable, net, first);
252 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
253 			spin_lock_bh(&hslot->lock);
254 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
255 					    udptable->log);
256 
257 			snum = first;
258 			/*
259 			 * Iterate on all possible values of snum for this hash.
260 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
261 			 * give us randomization and full range coverage.
262 			 */
263 			do {
264 				if (low <= snum && snum <= high &&
265 				    !test_bit(snum >> udptable->log, bitmap) &&
266 				    !inet_is_local_reserved_port(net, snum))
267 					goto found;
268 				snum += rand;
269 			} while (snum != first);
270 			spin_unlock_bh(&hslot->lock);
271 			cond_resched();
272 		} while (++first != last);
273 		goto fail;
274 	} else {
275 		hslot = udp_hashslot(udptable, net, snum);
276 		spin_lock_bh(&hslot->lock);
277 		if (hslot->count > 10) {
278 			int exist;
279 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
280 
281 			slot2          &= udptable->mask;
282 			hash2_nulladdr &= udptable->mask;
283 
284 			hslot2 = udp_hashslot2(udptable, slot2);
285 			if (hslot->count < hslot2->count)
286 				goto scan_primary_hash;
287 
288 			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
289 			if (!exist && (hash2_nulladdr != slot2)) {
290 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
291 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
292 							     sk);
293 			}
294 			if (exist)
295 				goto fail_unlock;
296 			else
297 				goto found;
298 		}
299 scan_primary_hash:
300 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
301 			goto fail_unlock;
302 	}
303 found:
304 	inet_sk(sk)->inet_num = snum;
305 	udp_sk(sk)->udp_port_hash = snum;
306 	udp_sk(sk)->udp_portaddr_hash ^= snum;
307 	if (sk_unhashed(sk)) {
308 		if (sk->sk_reuseport &&
309 		    udp_reuseport_add_sock(sk, hslot)) {
310 			inet_sk(sk)->inet_num = 0;
311 			udp_sk(sk)->udp_port_hash = 0;
312 			udp_sk(sk)->udp_portaddr_hash ^= snum;
313 			goto fail_unlock;
314 		}
315 
316 		sk_add_node_rcu(sk, &hslot->head);
317 		hslot->count++;
318 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
319 
320 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
321 		spin_lock(&hslot2->lock);
322 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
323 		    sk->sk_family == AF_INET6)
324 			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
325 					   &hslot2->head);
326 		else
327 			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
328 					   &hslot2->head);
329 		hslot2->count++;
330 		spin_unlock(&hslot2->lock);
331 	}
332 	sock_set_flag(sk, SOCK_RCU_FREE);
333 	error = 0;
334 fail_unlock:
335 	spin_unlock_bh(&hslot->lock);
336 fail:
337 	return error;
338 }
339 EXPORT_SYMBOL(udp_lib_get_port);
340 
341 int udp_v4_get_port(struct sock *sk, unsigned short snum)
342 {
343 	unsigned int hash2_nulladdr =
344 		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
345 	unsigned int hash2_partial =
346 		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
347 
348 	/* precompute partial secondary hash */
349 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
350 	return udp_lib_get_port(sk, snum, hash2_nulladdr);
351 }
352 
353 static int compute_score(struct sock *sk, struct net *net,
354 			 __be32 saddr, __be16 sport,
355 			 __be32 daddr, unsigned short hnum,
356 			 int dif, int sdif)
357 {
358 	int score;
359 	struct inet_sock *inet;
360 	bool dev_match;
361 
362 	if (!net_eq(sock_net(sk), net) ||
363 	    udp_sk(sk)->udp_port_hash != hnum ||
364 	    ipv6_only_sock(sk))
365 		return -1;
366 
367 	if (sk->sk_rcv_saddr != daddr)
368 		return -1;
369 
370 	score = (sk->sk_family == PF_INET) ? 2 : 1;
371 
372 	inet = inet_sk(sk);
373 	if (inet->inet_daddr) {
374 		if (inet->inet_daddr != saddr)
375 			return -1;
376 		score += 4;
377 	}
378 
379 	if (inet->inet_dport) {
380 		if (inet->inet_dport != sport)
381 			return -1;
382 		score += 4;
383 	}
384 
385 	dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
386 					dif, sdif);
387 	if (!dev_match)
388 		return -1;
389 	score += 4;
390 
391 	if (sk->sk_incoming_cpu == raw_smp_processor_id())
392 		score++;
393 	return score;
394 }
395 
396 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
397 		       const __u16 lport, const __be32 faddr,
398 		       const __be16 fport)
399 {
400 	static u32 udp_ehash_secret __read_mostly;
401 
402 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
403 
404 	return __inet_ehashfn(laddr, lport, faddr, fport,
405 			      udp_ehash_secret + net_hash_mix(net));
406 }
407 
408 /* called with rcu_read_lock() */
409 static struct sock *udp4_lib_lookup2(struct net *net,
410 				     __be32 saddr, __be16 sport,
411 				     __be32 daddr, unsigned int hnum,
412 				     int dif, int sdif,
413 				     struct udp_hslot *hslot2,
414 				     struct sk_buff *skb)
415 {
416 	struct sock *sk, *result;
417 	int score, badness;
418 	u32 hash = 0;
419 
420 	result = NULL;
421 	badness = 0;
422 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
423 		score = compute_score(sk, net, saddr, sport,
424 				      daddr, hnum, dif, sdif);
425 		if (score > badness) {
426 			if (sk->sk_reuseport &&
427 			    sk->sk_state != TCP_ESTABLISHED) {
428 				hash = udp_ehashfn(net, daddr, hnum,
429 						   saddr, sport);
430 				result = reuseport_select_sock(sk, hash, skb,
431 							sizeof(struct udphdr));
432 				if (result && !reuseport_has_conns(sk, false))
433 					return result;
434 			}
435 			badness = score;
436 			result = sk;
437 		}
438 	}
439 	return result;
440 }
441 
442 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
443  * harder than this. -DaveM
444  */
445 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
446 		__be16 sport, __be32 daddr, __be16 dport, int dif,
447 		int sdif, struct udp_table *udptable, struct sk_buff *skb)
448 {
449 	struct sock *result;
450 	unsigned short hnum = ntohs(dport);
451 	unsigned int hash2, slot2;
452 	struct udp_hslot *hslot2;
453 
454 	hash2 = ipv4_portaddr_hash(net, daddr, hnum);
455 	slot2 = hash2 & udptable->mask;
456 	hslot2 = &udptable->hash2[slot2];
457 
458 	result = udp4_lib_lookup2(net, saddr, sport,
459 				  daddr, hnum, dif, sdif,
460 				  hslot2, skb);
461 	if (!result) {
462 		hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
463 		slot2 = hash2 & udptable->mask;
464 		hslot2 = &udptable->hash2[slot2];
465 
466 		result = udp4_lib_lookup2(net, saddr, sport,
467 					  htonl(INADDR_ANY), hnum, dif, sdif,
468 					  hslot2, skb);
469 	}
470 	if (IS_ERR(result))
471 		return NULL;
472 	return result;
473 }
474 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
475 
476 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
477 						 __be16 sport, __be16 dport,
478 						 struct udp_table *udptable)
479 {
480 	const struct iphdr *iph = ip_hdr(skb);
481 
482 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
483 				 iph->daddr, dport, inet_iif(skb),
484 				 inet_sdif(skb), udptable, skb);
485 }
486 
487 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb,
488 				 __be16 sport, __be16 dport)
489 {
490 	const struct iphdr *iph = ip_hdr(skb);
491 
492 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
493 				 iph->daddr, dport, inet_iif(skb),
494 				 inet_sdif(skb), &udp_table, NULL);
495 }
496 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb);
497 
498 /* Must be called under rcu_read_lock().
499  * Does increment socket refcount.
500  */
501 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
502 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
503 			     __be32 daddr, __be16 dport, int dif)
504 {
505 	struct sock *sk;
506 
507 	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
508 			       dif, 0, &udp_table, NULL);
509 	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
510 		sk = NULL;
511 	return sk;
512 }
513 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
514 #endif
515 
516 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
517 				       __be16 loc_port, __be32 loc_addr,
518 				       __be16 rmt_port, __be32 rmt_addr,
519 				       int dif, int sdif, unsigned short hnum)
520 {
521 	struct inet_sock *inet = inet_sk(sk);
522 
523 	if (!net_eq(sock_net(sk), net) ||
524 	    udp_sk(sk)->udp_port_hash != hnum ||
525 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
526 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
527 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
528 	    ipv6_only_sock(sk) ||
529 	    !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
530 		return false;
531 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
532 		return false;
533 	return true;
534 }
535 
536 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
537 void udp_encap_enable(void)
538 {
539 	static_branch_inc(&udp_encap_needed_key);
540 }
541 EXPORT_SYMBOL(udp_encap_enable);
542 
543 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go
544  * through error handlers in encapsulations looking for a match.
545  */
546 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
547 {
548 	int i;
549 
550 	for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
551 		int (*handler)(struct sk_buff *skb, u32 info);
552 		const struct ip_tunnel_encap_ops *encap;
553 
554 		encap = rcu_dereference(iptun_encaps[i]);
555 		if (!encap)
556 			continue;
557 		handler = encap->err_handler;
558 		if (handler && !handler(skb, info))
559 			return 0;
560 	}
561 
562 	return -ENOENT;
563 }
564 
565 /* Try to match ICMP errors to UDP tunnels by looking up a socket without
566  * reversing source and destination port: this will match tunnels that force the
567  * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
568  * lwtunnels might actually break this assumption by being configured with
569  * different destination ports on endpoints, in this case we won't be able to
570  * trace ICMP messages back to them.
571  *
572  * If this doesn't match any socket, probe tunnels with arbitrary destination
573  * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
574  * we've sent packets to won't necessarily match the local destination port.
575  *
576  * Then ask the tunnel implementation to match the error against a valid
577  * association.
578  *
579  * Return an error if we can't find a match, the socket if we need further
580  * processing, zero otherwise.
581  */
582 static struct sock *__udp4_lib_err_encap(struct net *net,
583 					 const struct iphdr *iph,
584 					 struct udphdr *uh,
585 					 struct udp_table *udptable,
586 					 struct sk_buff *skb, u32 info)
587 {
588 	int network_offset, transport_offset;
589 	struct sock *sk;
590 
591 	network_offset = skb_network_offset(skb);
592 	transport_offset = skb_transport_offset(skb);
593 
594 	/* Network header needs to point to the outer IPv4 header inside ICMP */
595 	skb_reset_network_header(skb);
596 
597 	/* Transport header needs to point to the UDP header */
598 	skb_set_transport_header(skb, iph->ihl << 2);
599 
600 	sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
601 			       iph->saddr, uh->dest, skb->dev->ifindex, 0,
602 			       udptable, NULL);
603 	if (sk) {
604 		int (*lookup)(struct sock *sk, struct sk_buff *skb);
605 		struct udp_sock *up = udp_sk(sk);
606 
607 		lookup = READ_ONCE(up->encap_err_lookup);
608 		if (!lookup || lookup(sk, skb))
609 			sk = NULL;
610 	}
611 
612 	if (!sk)
613 		sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
614 
615 	skb_set_transport_header(skb, transport_offset);
616 	skb_set_network_header(skb, network_offset);
617 
618 	return sk;
619 }
620 
621 /*
622  * This routine is called by the ICMP module when it gets some
623  * sort of error condition.  If err < 0 then the socket should
624  * be closed and the error returned to the user.  If err > 0
625  * it's just the icmp type << 8 | icmp code.
626  * Header points to the ip header of the error packet. We move
627  * on past this. Then (as it used to claim before adjustment)
628  * header points to the first 8 bytes of the udp header.  We need
629  * to find the appropriate port.
630  */
631 
632 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
633 {
634 	struct inet_sock *inet;
635 	const struct iphdr *iph = (const struct iphdr *)skb->data;
636 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
637 	const int type = icmp_hdr(skb)->type;
638 	const int code = icmp_hdr(skb)->code;
639 	bool tunnel = false;
640 	struct sock *sk;
641 	int harderr;
642 	int err;
643 	struct net *net = dev_net(skb->dev);
644 
645 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
646 			       iph->saddr, uh->source, skb->dev->ifindex,
647 			       inet_sdif(skb), udptable, NULL);
648 	if (!sk) {
649 		/* No socket for error: try tunnels before discarding */
650 		sk = ERR_PTR(-ENOENT);
651 		if (static_branch_unlikely(&udp_encap_needed_key)) {
652 			sk = __udp4_lib_err_encap(net, iph, uh, udptable, skb,
653 						  info);
654 			if (!sk)
655 				return 0;
656 		}
657 
658 		if (IS_ERR(sk)) {
659 			__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
660 			return PTR_ERR(sk);
661 		}
662 
663 		tunnel = true;
664 	}
665 
666 	err = 0;
667 	harderr = 0;
668 	inet = inet_sk(sk);
669 
670 	switch (type) {
671 	default:
672 	case ICMP_TIME_EXCEEDED:
673 		err = EHOSTUNREACH;
674 		break;
675 	case ICMP_SOURCE_QUENCH:
676 		goto out;
677 	case ICMP_PARAMETERPROB:
678 		err = EPROTO;
679 		harderr = 1;
680 		break;
681 	case ICMP_DEST_UNREACH:
682 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
683 			ipv4_sk_update_pmtu(skb, sk, info);
684 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
685 				err = EMSGSIZE;
686 				harderr = 1;
687 				break;
688 			}
689 			goto out;
690 		}
691 		err = EHOSTUNREACH;
692 		if (code <= NR_ICMP_UNREACH) {
693 			harderr = icmp_err_convert[code].fatal;
694 			err = icmp_err_convert[code].errno;
695 		}
696 		break;
697 	case ICMP_REDIRECT:
698 		ipv4_sk_redirect(skb, sk);
699 		goto out;
700 	}
701 
702 	/*
703 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
704 	 *	4.1.3.3.
705 	 */
706 	if (tunnel) {
707 		/* ...not for tunnels though: we don't have a sending socket */
708 		goto out;
709 	}
710 	if (!inet->recverr) {
711 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
712 			goto out;
713 	} else
714 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
715 
716 	sk->sk_err = err;
717 	sk->sk_error_report(sk);
718 out:
719 	return 0;
720 }
721 
722 int udp_err(struct sk_buff *skb, u32 info)
723 {
724 	return __udp4_lib_err(skb, info, &udp_table);
725 }
726 
727 /*
728  * Throw away all pending data and cancel the corking. Socket is locked.
729  */
730 void udp_flush_pending_frames(struct sock *sk)
731 {
732 	struct udp_sock *up = udp_sk(sk);
733 
734 	if (up->pending) {
735 		up->len = 0;
736 		up->pending = 0;
737 		ip_flush_pending_frames(sk);
738 	}
739 }
740 EXPORT_SYMBOL(udp_flush_pending_frames);
741 
742 /**
743  * 	udp4_hwcsum  -  handle outgoing HW checksumming
744  * 	@skb: 	sk_buff containing the filled-in UDP header
745  * 	        (checksum field must be zeroed out)
746  *	@src:	source IP address
747  *	@dst:	destination IP address
748  */
749 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
750 {
751 	struct udphdr *uh = udp_hdr(skb);
752 	int offset = skb_transport_offset(skb);
753 	int len = skb->len - offset;
754 	int hlen = len;
755 	__wsum csum = 0;
756 
757 	if (!skb_has_frag_list(skb)) {
758 		/*
759 		 * Only one fragment on the socket.
760 		 */
761 		skb->csum_start = skb_transport_header(skb) - skb->head;
762 		skb->csum_offset = offsetof(struct udphdr, check);
763 		uh->check = ~csum_tcpudp_magic(src, dst, len,
764 					       IPPROTO_UDP, 0);
765 	} else {
766 		struct sk_buff *frags;
767 
768 		/*
769 		 * HW-checksum won't work as there are two or more
770 		 * fragments on the socket so that all csums of sk_buffs
771 		 * should be together
772 		 */
773 		skb_walk_frags(skb, frags) {
774 			csum = csum_add(csum, frags->csum);
775 			hlen -= frags->len;
776 		}
777 
778 		csum = skb_checksum(skb, offset, hlen, csum);
779 		skb->ip_summed = CHECKSUM_NONE;
780 
781 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
782 		if (uh->check == 0)
783 			uh->check = CSUM_MANGLED_0;
784 	}
785 }
786 EXPORT_SYMBOL_GPL(udp4_hwcsum);
787 
788 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
789  * for the simple case like when setting the checksum for a UDP tunnel.
790  */
791 void udp_set_csum(bool nocheck, struct sk_buff *skb,
792 		  __be32 saddr, __be32 daddr, int len)
793 {
794 	struct udphdr *uh = udp_hdr(skb);
795 
796 	if (nocheck) {
797 		uh->check = 0;
798 	} else if (skb_is_gso(skb)) {
799 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
800 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
801 		uh->check = 0;
802 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
803 		if (uh->check == 0)
804 			uh->check = CSUM_MANGLED_0;
805 	} else {
806 		skb->ip_summed = CHECKSUM_PARTIAL;
807 		skb->csum_start = skb_transport_header(skb) - skb->head;
808 		skb->csum_offset = offsetof(struct udphdr, check);
809 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
810 	}
811 }
812 EXPORT_SYMBOL(udp_set_csum);
813 
814 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
815 			struct inet_cork *cork)
816 {
817 	struct sock *sk = skb->sk;
818 	struct inet_sock *inet = inet_sk(sk);
819 	struct udphdr *uh;
820 	int err = 0;
821 	int is_udplite = IS_UDPLITE(sk);
822 	int offset = skb_transport_offset(skb);
823 	int len = skb->len - offset;
824 	__wsum csum = 0;
825 
826 	/*
827 	 * Create a UDP header
828 	 */
829 	uh = udp_hdr(skb);
830 	uh->source = inet->inet_sport;
831 	uh->dest = fl4->fl4_dport;
832 	uh->len = htons(len);
833 	uh->check = 0;
834 
835 	if (cork->gso_size) {
836 		const int hlen = skb_network_header_len(skb) +
837 				 sizeof(struct udphdr);
838 
839 		if (hlen + cork->gso_size > cork->fragsize) {
840 			kfree_skb(skb);
841 			return -EINVAL;
842 		}
843 		if (skb->len > cork->gso_size * UDP_MAX_SEGMENTS) {
844 			kfree_skb(skb);
845 			return -EINVAL;
846 		}
847 		if (sk->sk_no_check_tx) {
848 			kfree_skb(skb);
849 			return -EINVAL;
850 		}
851 		if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
852 		    dst_xfrm(skb_dst(skb))) {
853 			kfree_skb(skb);
854 			return -EIO;
855 		}
856 
857 		skb_shinfo(skb)->gso_size = cork->gso_size;
858 		skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
859 		skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(len - sizeof(uh),
860 							 cork->gso_size);
861 		goto csum_partial;
862 	}
863 
864 	if (is_udplite)  				 /*     UDP-Lite      */
865 		csum = udplite_csum(skb);
866 
867 	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
868 
869 		skb->ip_summed = CHECKSUM_NONE;
870 		goto send;
871 
872 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
873 csum_partial:
874 
875 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
876 		goto send;
877 
878 	} else
879 		csum = udp_csum(skb);
880 
881 	/* add protocol-dependent pseudo-header */
882 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
883 				      sk->sk_protocol, csum);
884 	if (uh->check == 0)
885 		uh->check = CSUM_MANGLED_0;
886 
887 send:
888 	err = ip_send_skb(sock_net(sk), skb);
889 	if (err) {
890 		if (err == -ENOBUFS && !inet->recverr) {
891 			UDP_INC_STATS(sock_net(sk),
892 				      UDP_MIB_SNDBUFERRORS, is_udplite);
893 			err = 0;
894 		}
895 	} else
896 		UDP_INC_STATS(sock_net(sk),
897 			      UDP_MIB_OUTDATAGRAMS, is_udplite);
898 	return err;
899 }
900 
901 /*
902  * Push out all pending data as one UDP datagram. Socket is locked.
903  */
904 int udp_push_pending_frames(struct sock *sk)
905 {
906 	struct udp_sock  *up = udp_sk(sk);
907 	struct inet_sock *inet = inet_sk(sk);
908 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
909 	struct sk_buff *skb;
910 	int err = 0;
911 
912 	skb = ip_finish_skb(sk, fl4);
913 	if (!skb)
914 		goto out;
915 
916 	err = udp_send_skb(skb, fl4, &inet->cork.base);
917 
918 out:
919 	up->len = 0;
920 	up->pending = 0;
921 	return err;
922 }
923 EXPORT_SYMBOL(udp_push_pending_frames);
924 
925 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
926 {
927 	switch (cmsg->cmsg_type) {
928 	case UDP_SEGMENT:
929 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
930 			return -EINVAL;
931 		*gso_size = *(__u16 *)CMSG_DATA(cmsg);
932 		return 0;
933 	default:
934 		return -EINVAL;
935 	}
936 }
937 
938 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
939 {
940 	struct cmsghdr *cmsg;
941 	bool need_ip = false;
942 	int err;
943 
944 	for_each_cmsghdr(cmsg, msg) {
945 		if (!CMSG_OK(msg, cmsg))
946 			return -EINVAL;
947 
948 		if (cmsg->cmsg_level != SOL_UDP) {
949 			need_ip = true;
950 			continue;
951 		}
952 
953 		err = __udp_cmsg_send(cmsg, gso_size);
954 		if (err)
955 			return err;
956 	}
957 
958 	return need_ip;
959 }
960 EXPORT_SYMBOL_GPL(udp_cmsg_send);
961 
962 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
963 {
964 	struct inet_sock *inet = inet_sk(sk);
965 	struct udp_sock *up = udp_sk(sk);
966 	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
967 	struct flowi4 fl4_stack;
968 	struct flowi4 *fl4;
969 	int ulen = len;
970 	struct ipcm_cookie ipc;
971 	struct rtable *rt = NULL;
972 	int free = 0;
973 	int connected = 0;
974 	__be32 daddr, faddr, saddr;
975 	__be16 dport;
976 	u8  tos;
977 	int err, is_udplite = IS_UDPLITE(sk);
978 	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
979 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
980 	struct sk_buff *skb;
981 	struct ip_options_data opt_copy;
982 
983 	if (len > 0xFFFF)
984 		return -EMSGSIZE;
985 
986 	/*
987 	 *	Check the flags.
988 	 */
989 
990 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
991 		return -EOPNOTSUPP;
992 
993 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
994 
995 	fl4 = &inet->cork.fl.u.ip4;
996 	if (up->pending) {
997 		/*
998 		 * There are pending frames.
999 		 * The socket lock must be held while it's corked.
1000 		 */
1001 		lock_sock(sk);
1002 		if (likely(up->pending)) {
1003 			if (unlikely(up->pending != AF_INET)) {
1004 				release_sock(sk);
1005 				return -EINVAL;
1006 			}
1007 			goto do_append_data;
1008 		}
1009 		release_sock(sk);
1010 	}
1011 	ulen += sizeof(struct udphdr);
1012 
1013 	/*
1014 	 *	Get and verify the address.
1015 	 */
1016 	if (usin) {
1017 		if (msg->msg_namelen < sizeof(*usin))
1018 			return -EINVAL;
1019 		if (usin->sin_family != AF_INET) {
1020 			if (usin->sin_family != AF_UNSPEC)
1021 				return -EAFNOSUPPORT;
1022 		}
1023 
1024 		daddr = usin->sin_addr.s_addr;
1025 		dport = usin->sin_port;
1026 		if (dport == 0)
1027 			return -EINVAL;
1028 	} else {
1029 		if (sk->sk_state != TCP_ESTABLISHED)
1030 			return -EDESTADDRREQ;
1031 		daddr = inet->inet_daddr;
1032 		dport = inet->inet_dport;
1033 		/* Open fast path for connected socket.
1034 		   Route will not be used, if at least one option is set.
1035 		 */
1036 		connected = 1;
1037 	}
1038 
1039 	ipcm_init_sk(&ipc, inet);
1040 	ipc.gso_size = up->gso_size;
1041 
1042 	if (msg->msg_controllen) {
1043 		err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1044 		if (err > 0)
1045 			err = ip_cmsg_send(sk, msg, &ipc,
1046 					   sk->sk_family == AF_INET6);
1047 		if (unlikely(err < 0)) {
1048 			kfree(ipc.opt);
1049 			return err;
1050 		}
1051 		if (ipc.opt)
1052 			free = 1;
1053 		connected = 0;
1054 	}
1055 	if (!ipc.opt) {
1056 		struct ip_options_rcu *inet_opt;
1057 
1058 		rcu_read_lock();
1059 		inet_opt = rcu_dereference(inet->inet_opt);
1060 		if (inet_opt) {
1061 			memcpy(&opt_copy, inet_opt,
1062 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
1063 			ipc.opt = &opt_copy.opt;
1064 		}
1065 		rcu_read_unlock();
1066 	}
1067 
1068 	if (cgroup_bpf_enabled && !connected) {
1069 		err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1070 					    (struct sockaddr *)usin, &ipc.addr);
1071 		if (err)
1072 			goto out_free;
1073 		if (usin) {
1074 			if (usin->sin_port == 0) {
1075 				/* BPF program set invalid port. Reject it. */
1076 				err = -EINVAL;
1077 				goto out_free;
1078 			}
1079 			daddr = usin->sin_addr.s_addr;
1080 			dport = usin->sin_port;
1081 		}
1082 	}
1083 
1084 	saddr = ipc.addr;
1085 	ipc.addr = faddr = daddr;
1086 
1087 	if (ipc.opt && ipc.opt->opt.srr) {
1088 		if (!daddr) {
1089 			err = -EINVAL;
1090 			goto out_free;
1091 		}
1092 		faddr = ipc.opt->opt.faddr;
1093 		connected = 0;
1094 	}
1095 	tos = get_rttos(&ipc, inet);
1096 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
1097 	    (msg->msg_flags & MSG_DONTROUTE) ||
1098 	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
1099 		tos |= RTO_ONLINK;
1100 		connected = 0;
1101 	}
1102 
1103 	if (ipv4_is_multicast(daddr)) {
1104 		if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1105 			ipc.oif = inet->mc_index;
1106 		if (!saddr)
1107 			saddr = inet->mc_addr;
1108 		connected = 0;
1109 	} else if (!ipc.oif) {
1110 		ipc.oif = inet->uc_index;
1111 	} else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
1112 		/* oif is set, packet is to local broadcast and
1113 		 * and uc_index is set. oif is most likely set
1114 		 * by sk_bound_dev_if. If uc_index != oif check if the
1115 		 * oif is an L3 master and uc_index is an L3 slave.
1116 		 * If so, we want to allow the send using the uc_index.
1117 		 */
1118 		if (ipc.oif != inet->uc_index &&
1119 		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1120 							      inet->uc_index)) {
1121 			ipc.oif = inet->uc_index;
1122 		}
1123 	}
1124 
1125 	if (connected)
1126 		rt = (struct rtable *)sk_dst_check(sk, 0);
1127 
1128 	if (!rt) {
1129 		struct net *net = sock_net(sk);
1130 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1131 
1132 		fl4 = &fl4_stack;
1133 
1134 		flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos,
1135 				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
1136 				   flow_flags,
1137 				   faddr, saddr, dport, inet->inet_sport,
1138 				   sk->sk_uid);
1139 
1140 		security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1141 		rt = ip_route_output_flow(net, fl4, sk);
1142 		if (IS_ERR(rt)) {
1143 			err = PTR_ERR(rt);
1144 			rt = NULL;
1145 			if (err == -ENETUNREACH)
1146 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1147 			goto out;
1148 		}
1149 
1150 		err = -EACCES;
1151 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1152 		    !sock_flag(sk, SOCK_BROADCAST))
1153 			goto out;
1154 		if (connected)
1155 			sk_dst_set(sk, dst_clone(&rt->dst));
1156 	}
1157 
1158 	if (msg->msg_flags&MSG_CONFIRM)
1159 		goto do_confirm;
1160 back_from_confirm:
1161 
1162 	saddr = fl4->saddr;
1163 	if (!ipc.addr)
1164 		daddr = ipc.addr = fl4->daddr;
1165 
1166 	/* Lockless fast path for the non-corking case. */
1167 	if (!corkreq) {
1168 		struct inet_cork cork;
1169 
1170 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1171 				  sizeof(struct udphdr), &ipc, &rt,
1172 				  &cork, msg->msg_flags);
1173 		err = PTR_ERR(skb);
1174 		if (!IS_ERR_OR_NULL(skb))
1175 			err = udp_send_skb(skb, fl4, &cork);
1176 		goto out;
1177 	}
1178 
1179 	lock_sock(sk);
1180 	if (unlikely(up->pending)) {
1181 		/* The socket is already corked while preparing it. */
1182 		/* ... which is an evident application bug. --ANK */
1183 		release_sock(sk);
1184 
1185 		net_dbg_ratelimited("socket already corked\n");
1186 		err = -EINVAL;
1187 		goto out;
1188 	}
1189 	/*
1190 	 *	Now cork the socket to pend data.
1191 	 */
1192 	fl4 = &inet->cork.fl.u.ip4;
1193 	fl4->daddr = daddr;
1194 	fl4->saddr = saddr;
1195 	fl4->fl4_dport = dport;
1196 	fl4->fl4_sport = inet->inet_sport;
1197 	up->pending = AF_INET;
1198 
1199 do_append_data:
1200 	up->len += ulen;
1201 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1202 			     sizeof(struct udphdr), &ipc, &rt,
1203 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1204 	if (err)
1205 		udp_flush_pending_frames(sk);
1206 	else if (!corkreq)
1207 		err = udp_push_pending_frames(sk);
1208 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1209 		up->pending = 0;
1210 	release_sock(sk);
1211 
1212 out:
1213 	ip_rt_put(rt);
1214 out_free:
1215 	if (free)
1216 		kfree(ipc.opt);
1217 	if (!err)
1218 		return len;
1219 	/*
1220 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1221 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1222 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1223 	 * things).  We could add another new stat but at least for now that
1224 	 * seems like overkill.
1225 	 */
1226 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1227 		UDP_INC_STATS(sock_net(sk),
1228 			      UDP_MIB_SNDBUFERRORS, is_udplite);
1229 	}
1230 	return err;
1231 
1232 do_confirm:
1233 	if (msg->msg_flags & MSG_PROBE)
1234 		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1235 	if (!(msg->msg_flags&MSG_PROBE) || len)
1236 		goto back_from_confirm;
1237 	err = 0;
1238 	goto out;
1239 }
1240 EXPORT_SYMBOL(udp_sendmsg);
1241 
1242 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1243 		 size_t size, int flags)
1244 {
1245 	struct inet_sock *inet = inet_sk(sk);
1246 	struct udp_sock *up = udp_sk(sk);
1247 	int ret;
1248 
1249 	if (flags & MSG_SENDPAGE_NOTLAST)
1250 		flags |= MSG_MORE;
1251 
1252 	if (!up->pending) {
1253 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1254 
1255 		/* Call udp_sendmsg to specify destination address which
1256 		 * sendpage interface can't pass.
1257 		 * This will succeed only when the socket is connected.
1258 		 */
1259 		ret = udp_sendmsg(sk, &msg, 0);
1260 		if (ret < 0)
1261 			return ret;
1262 	}
1263 
1264 	lock_sock(sk);
1265 
1266 	if (unlikely(!up->pending)) {
1267 		release_sock(sk);
1268 
1269 		net_dbg_ratelimited("cork failed\n");
1270 		return -EINVAL;
1271 	}
1272 
1273 	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1274 			     page, offset, size, flags);
1275 	if (ret == -EOPNOTSUPP) {
1276 		release_sock(sk);
1277 		return sock_no_sendpage(sk->sk_socket, page, offset,
1278 					size, flags);
1279 	}
1280 	if (ret < 0) {
1281 		udp_flush_pending_frames(sk);
1282 		goto out;
1283 	}
1284 
1285 	up->len += size;
1286 	if (!(up->corkflag || (flags&MSG_MORE)))
1287 		ret = udp_push_pending_frames(sk);
1288 	if (!ret)
1289 		ret = size;
1290 out:
1291 	release_sock(sk);
1292 	return ret;
1293 }
1294 
1295 #define UDP_SKB_IS_STATELESS 0x80000000
1296 
1297 static void udp_set_dev_scratch(struct sk_buff *skb)
1298 {
1299 	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1300 
1301 	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1302 	scratch->_tsize_state = skb->truesize;
1303 #if BITS_PER_LONG == 64
1304 	scratch->len = skb->len;
1305 	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1306 	scratch->is_linear = !skb_is_nonlinear(skb);
1307 #endif
1308 	/* all head states execept sp (dst, sk, nf) are always cleared by
1309 	 * udp_rcv() and we need to preserve secpath, if present, to eventually
1310 	 * process IP_CMSG_PASSSEC at recvmsg() time
1311 	 */
1312 	if (likely(!skb_sec_path(skb)))
1313 		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1314 }
1315 
1316 static int udp_skb_truesize(struct sk_buff *skb)
1317 {
1318 	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1319 }
1320 
1321 static bool udp_skb_has_head_state(struct sk_buff *skb)
1322 {
1323 	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1324 }
1325 
1326 /* fully reclaim rmem/fwd memory allocated for skb */
1327 static void udp_rmem_release(struct sock *sk, int size, int partial,
1328 			     bool rx_queue_lock_held)
1329 {
1330 	struct udp_sock *up = udp_sk(sk);
1331 	struct sk_buff_head *sk_queue;
1332 	int amt;
1333 
1334 	if (likely(partial)) {
1335 		up->forward_deficit += size;
1336 		size = up->forward_deficit;
1337 		if (size < (sk->sk_rcvbuf >> 2))
1338 			return;
1339 	} else {
1340 		size += up->forward_deficit;
1341 	}
1342 	up->forward_deficit = 0;
1343 
1344 	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1345 	 * if the called don't held it already
1346 	 */
1347 	sk_queue = &sk->sk_receive_queue;
1348 	if (!rx_queue_lock_held)
1349 		spin_lock(&sk_queue->lock);
1350 
1351 
1352 	sk->sk_forward_alloc += size;
1353 	amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1);
1354 	sk->sk_forward_alloc -= amt;
1355 
1356 	if (amt)
1357 		__sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT);
1358 
1359 	atomic_sub(size, &sk->sk_rmem_alloc);
1360 
1361 	/* this can save us from acquiring the rx queue lock on next receive */
1362 	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1363 
1364 	if (!rx_queue_lock_held)
1365 		spin_unlock(&sk_queue->lock);
1366 }
1367 
1368 /* Note: called with reader_queue.lock held.
1369  * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1370  * This avoids a cache line miss while receive_queue lock is held.
1371  * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1372  */
1373 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1374 {
1375 	prefetch(&skb->data);
1376 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1377 }
1378 EXPORT_SYMBOL(udp_skb_destructor);
1379 
1380 /* as above, but the caller held the rx queue lock, too */
1381 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1382 {
1383 	prefetch(&skb->data);
1384 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1385 }
1386 
1387 /* Idea of busylocks is to let producers grab an extra spinlock
1388  * to relieve pressure on the receive_queue spinlock shared by consumer.
1389  * Under flood, this means that only one producer can be in line
1390  * trying to acquire the receive_queue spinlock.
1391  * These busylock can be allocated on a per cpu manner, instead of a
1392  * per socket one (that would consume a cache line per socket)
1393  */
1394 static int udp_busylocks_log __read_mostly;
1395 static spinlock_t *udp_busylocks __read_mostly;
1396 
1397 static spinlock_t *busylock_acquire(void *ptr)
1398 {
1399 	spinlock_t *busy;
1400 
1401 	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1402 	spin_lock(busy);
1403 	return busy;
1404 }
1405 
1406 static void busylock_release(spinlock_t *busy)
1407 {
1408 	if (busy)
1409 		spin_unlock(busy);
1410 }
1411 
1412 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1413 {
1414 	struct sk_buff_head *list = &sk->sk_receive_queue;
1415 	int rmem, delta, amt, err = -ENOMEM;
1416 	spinlock_t *busy = NULL;
1417 	int size;
1418 
1419 	/* try to avoid the costly atomic add/sub pair when the receive
1420 	 * queue is full; always allow at least a packet
1421 	 */
1422 	rmem = atomic_read(&sk->sk_rmem_alloc);
1423 	if (rmem > sk->sk_rcvbuf)
1424 		goto drop;
1425 
1426 	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1427 	 * having linear skbs :
1428 	 * - Reduce memory overhead and thus increase receive queue capacity
1429 	 * - Less cache line misses at copyout() time
1430 	 * - Less work at consume_skb() (less alien page frag freeing)
1431 	 */
1432 	if (rmem > (sk->sk_rcvbuf >> 1)) {
1433 		skb_condense(skb);
1434 
1435 		busy = busylock_acquire(sk);
1436 	}
1437 	size = skb->truesize;
1438 	udp_set_dev_scratch(skb);
1439 
1440 	/* we drop only if the receive buf is full and the receive
1441 	 * queue contains some other skb
1442 	 */
1443 	rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1444 	if (rmem > (size + sk->sk_rcvbuf))
1445 		goto uncharge_drop;
1446 
1447 	spin_lock(&list->lock);
1448 	if (size >= sk->sk_forward_alloc) {
1449 		amt = sk_mem_pages(size);
1450 		delta = amt << SK_MEM_QUANTUM_SHIFT;
1451 		if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) {
1452 			err = -ENOBUFS;
1453 			spin_unlock(&list->lock);
1454 			goto uncharge_drop;
1455 		}
1456 
1457 		sk->sk_forward_alloc += delta;
1458 	}
1459 
1460 	sk->sk_forward_alloc -= size;
1461 
1462 	/* no need to setup a destructor, we will explicitly release the
1463 	 * forward allocated memory on dequeue
1464 	 */
1465 	sock_skb_set_dropcount(sk, skb);
1466 
1467 	__skb_queue_tail(list, skb);
1468 	spin_unlock(&list->lock);
1469 
1470 	if (!sock_flag(sk, SOCK_DEAD))
1471 		sk->sk_data_ready(sk);
1472 
1473 	busylock_release(busy);
1474 	return 0;
1475 
1476 uncharge_drop:
1477 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1478 
1479 drop:
1480 	atomic_inc(&sk->sk_drops);
1481 	busylock_release(busy);
1482 	return err;
1483 }
1484 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1485 
1486 void udp_destruct_sock(struct sock *sk)
1487 {
1488 	/* reclaim completely the forward allocated memory */
1489 	struct udp_sock *up = udp_sk(sk);
1490 	unsigned int total = 0;
1491 	struct sk_buff *skb;
1492 
1493 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1494 	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1495 		total += skb->truesize;
1496 		kfree_skb(skb);
1497 	}
1498 	udp_rmem_release(sk, total, 0, true);
1499 
1500 	inet_sock_destruct(sk);
1501 }
1502 EXPORT_SYMBOL_GPL(udp_destruct_sock);
1503 
1504 int udp_init_sock(struct sock *sk)
1505 {
1506 	skb_queue_head_init(&udp_sk(sk)->reader_queue);
1507 	sk->sk_destruct = udp_destruct_sock;
1508 	return 0;
1509 }
1510 EXPORT_SYMBOL_GPL(udp_init_sock);
1511 
1512 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1513 {
1514 	if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1515 		bool slow = lock_sock_fast(sk);
1516 
1517 		sk_peek_offset_bwd(sk, len);
1518 		unlock_sock_fast(sk, slow);
1519 	}
1520 
1521 	if (!skb_unref(skb))
1522 		return;
1523 
1524 	/* In the more common cases we cleared the head states previously,
1525 	 * see __udp_queue_rcv_skb().
1526 	 */
1527 	if (unlikely(udp_skb_has_head_state(skb)))
1528 		skb_release_head_state(skb);
1529 	__consume_stateless_skb(skb);
1530 }
1531 EXPORT_SYMBOL_GPL(skb_consume_udp);
1532 
1533 static struct sk_buff *__first_packet_length(struct sock *sk,
1534 					     struct sk_buff_head *rcvq,
1535 					     int *total)
1536 {
1537 	struct sk_buff *skb;
1538 
1539 	while ((skb = skb_peek(rcvq)) != NULL) {
1540 		if (udp_lib_checksum_complete(skb)) {
1541 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1542 					IS_UDPLITE(sk));
1543 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1544 					IS_UDPLITE(sk));
1545 			atomic_inc(&sk->sk_drops);
1546 			__skb_unlink(skb, rcvq);
1547 			*total += skb->truesize;
1548 			kfree_skb(skb);
1549 		} else {
1550 			/* the csum related bits could be changed, refresh
1551 			 * the scratch area
1552 			 */
1553 			udp_set_dev_scratch(skb);
1554 			break;
1555 		}
1556 	}
1557 	return skb;
1558 }
1559 
1560 /**
1561  *	first_packet_length	- return length of first packet in receive queue
1562  *	@sk: socket
1563  *
1564  *	Drops all bad checksum frames, until a valid one is found.
1565  *	Returns the length of found skb, or -1 if none is found.
1566  */
1567 static int first_packet_length(struct sock *sk)
1568 {
1569 	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1570 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1571 	struct sk_buff *skb;
1572 	int total = 0;
1573 	int res;
1574 
1575 	spin_lock_bh(&rcvq->lock);
1576 	skb = __first_packet_length(sk, rcvq, &total);
1577 	if (!skb && !skb_queue_empty(sk_queue)) {
1578 		spin_lock(&sk_queue->lock);
1579 		skb_queue_splice_tail_init(sk_queue, rcvq);
1580 		spin_unlock(&sk_queue->lock);
1581 
1582 		skb = __first_packet_length(sk, rcvq, &total);
1583 	}
1584 	res = skb ? skb->len : -1;
1585 	if (total)
1586 		udp_rmem_release(sk, total, 1, false);
1587 	spin_unlock_bh(&rcvq->lock);
1588 	return res;
1589 }
1590 
1591 /*
1592  *	IOCTL requests applicable to the UDP protocol
1593  */
1594 
1595 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1596 {
1597 	switch (cmd) {
1598 	case SIOCOUTQ:
1599 	{
1600 		int amount = sk_wmem_alloc_get(sk);
1601 
1602 		return put_user(amount, (int __user *)arg);
1603 	}
1604 
1605 	case SIOCINQ:
1606 	{
1607 		int amount = max_t(int, 0, first_packet_length(sk));
1608 
1609 		return put_user(amount, (int __user *)arg);
1610 	}
1611 
1612 	default:
1613 		return -ENOIOCTLCMD;
1614 	}
1615 
1616 	return 0;
1617 }
1618 EXPORT_SYMBOL(udp_ioctl);
1619 
1620 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1621 			       int noblock, int *off, int *err)
1622 {
1623 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1624 	struct sk_buff_head *queue;
1625 	struct sk_buff *last;
1626 	long timeo;
1627 	int error;
1628 
1629 	queue = &udp_sk(sk)->reader_queue;
1630 	flags |= noblock ? MSG_DONTWAIT : 0;
1631 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1632 	do {
1633 		struct sk_buff *skb;
1634 
1635 		error = sock_error(sk);
1636 		if (error)
1637 			break;
1638 
1639 		error = -EAGAIN;
1640 		do {
1641 			spin_lock_bh(&queue->lock);
1642 			skb = __skb_try_recv_from_queue(sk, queue, flags,
1643 							udp_skb_destructor,
1644 							off, err, &last);
1645 			if (skb) {
1646 				spin_unlock_bh(&queue->lock);
1647 				return skb;
1648 			}
1649 
1650 			if (skb_queue_empty(sk_queue)) {
1651 				spin_unlock_bh(&queue->lock);
1652 				goto busy_check;
1653 			}
1654 
1655 			/* refill the reader queue and walk it again
1656 			 * keep both queues locked to avoid re-acquiring
1657 			 * the sk_receive_queue lock if fwd memory scheduling
1658 			 * is needed.
1659 			 */
1660 			spin_lock(&sk_queue->lock);
1661 			skb_queue_splice_tail_init(sk_queue, queue);
1662 
1663 			skb = __skb_try_recv_from_queue(sk, queue, flags,
1664 							udp_skb_dtor_locked,
1665 							off, err, &last);
1666 			spin_unlock(&sk_queue->lock);
1667 			spin_unlock_bh(&queue->lock);
1668 			if (skb)
1669 				return skb;
1670 
1671 busy_check:
1672 			if (!sk_can_busy_loop(sk))
1673 				break;
1674 
1675 			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1676 		} while (!skb_queue_empty(sk_queue));
1677 
1678 		/* sk_queue is empty, reader_queue may contain peeked packets */
1679 	} while (timeo &&
1680 		 !__skb_wait_for_more_packets(sk, &error, &timeo,
1681 					      (struct sk_buff *)sk_queue));
1682 
1683 	*err = error;
1684 	return NULL;
1685 }
1686 EXPORT_SYMBOL(__skb_recv_udp);
1687 
1688 /*
1689  * 	This should be easy, if there is something there we
1690  * 	return it, otherwise we block.
1691  */
1692 
1693 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1694 		int flags, int *addr_len)
1695 {
1696 	struct inet_sock *inet = inet_sk(sk);
1697 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1698 	struct sk_buff *skb;
1699 	unsigned int ulen, copied;
1700 	int off, err, peeking = flags & MSG_PEEK;
1701 	int is_udplite = IS_UDPLITE(sk);
1702 	bool checksum_valid = false;
1703 
1704 	if (flags & MSG_ERRQUEUE)
1705 		return ip_recv_error(sk, msg, len, addr_len);
1706 
1707 try_again:
1708 	off = sk_peek_offset(sk, flags);
1709 	skb = __skb_recv_udp(sk, flags, noblock, &off, &err);
1710 	if (!skb)
1711 		return err;
1712 
1713 	ulen = udp_skb_len(skb);
1714 	copied = len;
1715 	if (copied > ulen - off)
1716 		copied = ulen - off;
1717 	else if (copied < ulen)
1718 		msg->msg_flags |= MSG_TRUNC;
1719 
1720 	/*
1721 	 * If checksum is needed at all, try to do it while copying the
1722 	 * data.  If the data is truncated, or if we only want a partial
1723 	 * coverage checksum (UDP-Lite), do it before the copy.
1724 	 */
1725 
1726 	if (copied < ulen || peeking ||
1727 	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1728 		checksum_valid = udp_skb_csum_unnecessary(skb) ||
1729 				!__udp_lib_checksum_complete(skb);
1730 		if (!checksum_valid)
1731 			goto csum_copy_err;
1732 	}
1733 
1734 	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1735 		if (udp_skb_is_linear(skb))
1736 			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1737 		else
1738 			err = skb_copy_datagram_msg(skb, off, msg, copied);
1739 	} else {
1740 		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1741 
1742 		if (err == -EINVAL)
1743 			goto csum_copy_err;
1744 	}
1745 
1746 	if (unlikely(err)) {
1747 		if (!peeking) {
1748 			atomic_inc(&sk->sk_drops);
1749 			UDP_INC_STATS(sock_net(sk),
1750 				      UDP_MIB_INERRORS, is_udplite);
1751 		}
1752 		kfree_skb(skb);
1753 		return err;
1754 	}
1755 
1756 	if (!peeking)
1757 		UDP_INC_STATS(sock_net(sk),
1758 			      UDP_MIB_INDATAGRAMS, is_udplite);
1759 
1760 	sock_recv_ts_and_drops(msg, sk, skb);
1761 
1762 	/* Copy the address. */
1763 	if (sin) {
1764 		sin->sin_family = AF_INET;
1765 		sin->sin_port = udp_hdr(skb)->source;
1766 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1767 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1768 		*addr_len = sizeof(*sin);
1769 
1770 		if (cgroup_bpf_enabled)
1771 			BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
1772 							(struct sockaddr *)sin);
1773 	}
1774 
1775 	if (udp_sk(sk)->gro_enabled)
1776 		udp_cmsg_recv(msg, sk, skb);
1777 
1778 	if (inet->cmsg_flags)
1779 		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1780 
1781 	err = copied;
1782 	if (flags & MSG_TRUNC)
1783 		err = ulen;
1784 
1785 	skb_consume_udp(sk, skb, peeking ? -err : err);
1786 	return err;
1787 
1788 csum_copy_err:
1789 	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1790 				 udp_skb_destructor)) {
1791 		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1792 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1793 	}
1794 	kfree_skb(skb);
1795 
1796 	/* starting over for a new packet, but check if we need to yield */
1797 	cond_resched();
1798 	msg->msg_flags &= ~MSG_TRUNC;
1799 	goto try_again;
1800 }
1801 
1802 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1803 {
1804 	/* This check is replicated from __ip4_datagram_connect() and
1805 	 * intended to prevent BPF program called below from accessing bytes
1806 	 * that are out of the bound specified by user in addr_len.
1807 	 */
1808 	if (addr_len < sizeof(struct sockaddr_in))
1809 		return -EINVAL;
1810 
1811 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr);
1812 }
1813 EXPORT_SYMBOL(udp_pre_connect);
1814 
1815 int __udp_disconnect(struct sock *sk, int flags)
1816 {
1817 	struct inet_sock *inet = inet_sk(sk);
1818 	/*
1819 	 *	1003.1g - break association.
1820 	 */
1821 
1822 	sk->sk_state = TCP_CLOSE;
1823 	inet->inet_daddr = 0;
1824 	inet->inet_dport = 0;
1825 	sock_rps_reset_rxhash(sk);
1826 	sk->sk_bound_dev_if = 0;
1827 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1828 		inet_reset_saddr(sk);
1829 
1830 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1831 		sk->sk_prot->unhash(sk);
1832 		inet->inet_sport = 0;
1833 	}
1834 	sk_dst_reset(sk);
1835 	return 0;
1836 }
1837 EXPORT_SYMBOL(__udp_disconnect);
1838 
1839 int udp_disconnect(struct sock *sk, int flags)
1840 {
1841 	lock_sock(sk);
1842 	__udp_disconnect(sk, flags);
1843 	release_sock(sk);
1844 	return 0;
1845 }
1846 EXPORT_SYMBOL(udp_disconnect);
1847 
1848 void udp_lib_unhash(struct sock *sk)
1849 {
1850 	if (sk_hashed(sk)) {
1851 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1852 		struct udp_hslot *hslot, *hslot2;
1853 
1854 		hslot  = udp_hashslot(udptable, sock_net(sk),
1855 				      udp_sk(sk)->udp_port_hash);
1856 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1857 
1858 		spin_lock_bh(&hslot->lock);
1859 		if (rcu_access_pointer(sk->sk_reuseport_cb))
1860 			reuseport_detach_sock(sk);
1861 		if (sk_del_node_init_rcu(sk)) {
1862 			hslot->count--;
1863 			inet_sk(sk)->inet_num = 0;
1864 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1865 
1866 			spin_lock(&hslot2->lock);
1867 			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1868 			hslot2->count--;
1869 			spin_unlock(&hslot2->lock);
1870 		}
1871 		spin_unlock_bh(&hslot->lock);
1872 	}
1873 }
1874 EXPORT_SYMBOL(udp_lib_unhash);
1875 
1876 /*
1877  * inet_rcv_saddr was changed, we must rehash secondary hash
1878  */
1879 void udp_lib_rehash(struct sock *sk, u16 newhash)
1880 {
1881 	if (sk_hashed(sk)) {
1882 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1883 		struct udp_hslot *hslot, *hslot2, *nhslot2;
1884 
1885 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1886 		nhslot2 = udp_hashslot2(udptable, newhash);
1887 		udp_sk(sk)->udp_portaddr_hash = newhash;
1888 
1889 		if (hslot2 != nhslot2 ||
1890 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
1891 			hslot = udp_hashslot(udptable, sock_net(sk),
1892 					     udp_sk(sk)->udp_port_hash);
1893 			/* we must lock primary chain too */
1894 			spin_lock_bh(&hslot->lock);
1895 			if (rcu_access_pointer(sk->sk_reuseport_cb))
1896 				reuseport_detach_sock(sk);
1897 
1898 			if (hslot2 != nhslot2) {
1899 				spin_lock(&hslot2->lock);
1900 				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1901 				hslot2->count--;
1902 				spin_unlock(&hslot2->lock);
1903 
1904 				spin_lock(&nhslot2->lock);
1905 				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1906 							 &nhslot2->head);
1907 				nhslot2->count++;
1908 				spin_unlock(&nhslot2->lock);
1909 			}
1910 
1911 			spin_unlock_bh(&hslot->lock);
1912 		}
1913 	}
1914 }
1915 EXPORT_SYMBOL(udp_lib_rehash);
1916 
1917 void udp_v4_rehash(struct sock *sk)
1918 {
1919 	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
1920 					  inet_sk(sk)->inet_rcv_saddr,
1921 					  inet_sk(sk)->inet_num);
1922 	udp_lib_rehash(sk, new_hash);
1923 }
1924 
1925 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1926 {
1927 	int rc;
1928 
1929 	if (inet_sk(sk)->inet_daddr) {
1930 		sock_rps_save_rxhash(sk, skb);
1931 		sk_mark_napi_id(sk, skb);
1932 		sk_incoming_cpu_update(sk);
1933 	} else {
1934 		sk_mark_napi_id_once(sk, skb);
1935 	}
1936 
1937 	rc = __udp_enqueue_schedule_skb(sk, skb);
1938 	if (rc < 0) {
1939 		int is_udplite = IS_UDPLITE(sk);
1940 
1941 		/* Note that an ENOMEM error is charged twice */
1942 		if (rc == -ENOMEM)
1943 			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1944 					is_udplite);
1945 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1946 		kfree_skb(skb);
1947 		trace_udp_fail_queue_rcv_skb(rc, sk);
1948 		return -1;
1949 	}
1950 
1951 	return 0;
1952 }
1953 
1954 /* returns:
1955  *  -1: error
1956  *   0: success
1957  *  >0: "udp encap" protocol resubmission
1958  *
1959  * Note that in the success and error cases, the skb is assumed to
1960  * have either been requeued or freed.
1961  */
1962 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
1963 {
1964 	struct udp_sock *up = udp_sk(sk);
1965 	int is_udplite = IS_UDPLITE(sk);
1966 
1967 	/*
1968 	 *	Charge it to the socket, dropping if the queue is full.
1969 	 */
1970 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1971 		goto drop;
1972 	nf_reset(skb);
1973 
1974 	if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) {
1975 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1976 
1977 		/*
1978 		 * This is an encapsulation socket so pass the skb to
1979 		 * the socket's udp_encap_rcv() hook. Otherwise, just
1980 		 * fall through and pass this up the UDP socket.
1981 		 * up->encap_rcv() returns the following value:
1982 		 * =0 if skb was successfully passed to the encap
1983 		 *    handler or was discarded by it.
1984 		 * >0 if skb should be passed on to UDP.
1985 		 * <0 if skb should be resubmitted as proto -N
1986 		 */
1987 
1988 		/* if we're overly short, let UDP handle it */
1989 		encap_rcv = READ_ONCE(up->encap_rcv);
1990 		if (encap_rcv) {
1991 			int ret;
1992 
1993 			/* Verify checksum before giving to encap */
1994 			if (udp_lib_checksum_complete(skb))
1995 				goto csum_error;
1996 
1997 			ret = encap_rcv(sk, skb);
1998 			if (ret <= 0) {
1999 				__UDP_INC_STATS(sock_net(sk),
2000 						UDP_MIB_INDATAGRAMS,
2001 						is_udplite);
2002 				return -ret;
2003 			}
2004 		}
2005 
2006 		/* FALLTHROUGH -- it's a UDP Packet */
2007 	}
2008 
2009 	/*
2010 	 * 	UDP-Lite specific tests, ignored on UDP sockets
2011 	 */
2012 	if ((is_udplite & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
2013 
2014 		/*
2015 		 * MIB statistics other than incrementing the error count are
2016 		 * disabled for the following two types of errors: these depend
2017 		 * on the application settings, not on the functioning of the
2018 		 * protocol stack as such.
2019 		 *
2020 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
2021 		 * way ... to ... at least let the receiving application block
2022 		 * delivery of packets with coverage values less than a value
2023 		 * provided by the application."
2024 		 */
2025 		if (up->pcrlen == 0) {          /* full coverage was set  */
2026 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2027 					    UDP_SKB_CB(skb)->cscov, skb->len);
2028 			goto drop;
2029 		}
2030 		/* The next case involves violating the min. coverage requested
2031 		 * by the receiver. This is subtle: if receiver wants x and x is
2032 		 * greater than the buffersize/MTU then receiver will complain
2033 		 * that it wants x while sender emits packets of smaller size y.
2034 		 * Therefore the above ...()->partial_cov statement is essential.
2035 		 */
2036 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
2037 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2038 					    UDP_SKB_CB(skb)->cscov, up->pcrlen);
2039 			goto drop;
2040 		}
2041 	}
2042 
2043 	prefetch(&sk->sk_rmem_alloc);
2044 	if (rcu_access_pointer(sk->sk_filter) &&
2045 	    udp_lib_checksum_complete(skb))
2046 			goto csum_error;
2047 
2048 	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr)))
2049 		goto drop;
2050 
2051 	udp_csum_pull_header(skb);
2052 
2053 	ipv4_pktinfo_prepare(sk, skb);
2054 	return __udp_queue_rcv_skb(sk, skb);
2055 
2056 csum_error:
2057 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2058 drop:
2059 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2060 	atomic_inc(&sk->sk_drops);
2061 	kfree_skb(skb);
2062 	return -1;
2063 }
2064 
2065 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2066 {
2067 	struct sk_buff *next, *segs;
2068 	int ret;
2069 
2070 	if (likely(!udp_unexpected_gso(sk, skb)))
2071 		return udp_queue_rcv_one_skb(sk, skb);
2072 
2073 	BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_SGO_CB_OFFSET);
2074 	__skb_push(skb, -skb_mac_offset(skb));
2075 	segs = udp_rcv_segment(sk, skb, true);
2076 	for (skb = segs; skb; skb = next) {
2077 		next = skb->next;
2078 		__skb_pull(skb, skb_transport_offset(skb));
2079 		ret = udp_queue_rcv_one_skb(sk, skb);
2080 		if (ret > 0)
2081 			ip_protocol_deliver_rcu(dev_net(skb->dev), skb, -ret);
2082 	}
2083 	return 0;
2084 }
2085 
2086 /* For TCP sockets, sk_rx_dst is protected by socket lock
2087  * For UDP, we use xchg() to guard against concurrent changes.
2088  */
2089 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2090 {
2091 	struct dst_entry *old;
2092 
2093 	if (dst_hold_safe(dst)) {
2094 		old = xchg(&sk->sk_rx_dst, dst);
2095 		dst_release(old);
2096 		return old != dst;
2097 	}
2098 	return false;
2099 }
2100 EXPORT_SYMBOL(udp_sk_rx_dst_set);
2101 
2102 /*
2103  *	Multicasts and broadcasts go to each listener.
2104  *
2105  *	Note: called only from the BH handler context.
2106  */
2107 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2108 				    struct udphdr  *uh,
2109 				    __be32 saddr, __be32 daddr,
2110 				    struct udp_table *udptable,
2111 				    int proto)
2112 {
2113 	struct sock *sk, *first = NULL;
2114 	unsigned short hnum = ntohs(uh->dest);
2115 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2116 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2117 	unsigned int offset = offsetof(typeof(*sk), sk_node);
2118 	int dif = skb->dev->ifindex;
2119 	int sdif = inet_sdif(skb);
2120 	struct hlist_node *node;
2121 	struct sk_buff *nskb;
2122 
2123 	if (use_hash2) {
2124 		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2125 			    udptable->mask;
2126 		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2127 start_lookup:
2128 		hslot = &udptable->hash2[hash2];
2129 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2130 	}
2131 
2132 	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2133 		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2134 					 uh->source, saddr, dif, sdif, hnum))
2135 			continue;
2136 
2137 		if (!first) {
2138 			first = sk;
2139 			continue;
2140 		}
2141 		nskb = skb_clone(skb, GFP_ATOMIC);
2142 
2143 		if (unlikely(!nskb)) {
2144 			atomic_inc(&sk->sk_drops);
2145 			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2146 					IS_UDPLITE(sk));
2147 			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
2148 					IS_UDPLITE(sk));
2149 			continue;
2150 		}
2151 		if (udp_queue_rcv_skb(sk, nskb) > 0)
2152 			consume_skb(nskb);
2153 	}
2154 
2155 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2156 	if (use_hash2 && hash2 != hash2_any) {
2157 		hash2 = hash2_any;
2158 		goto start_lookup;
2159 	}
2160 
2161 	if (first) {
2162 		if (udp_queue_rcv_skb(first, skb) > 0)
2163 			consume_skb(skb);
2164 	} else {
2165 		kfree_skb(skb);
2166 		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2167 				proto == IPPROTO_UDPLITE);
2168 	}
2169 	return 0;
2170 }
2171 
2172 /* Initialize UDP checksum. If exited with zero value (success),
2173  * CHECKSUM_UNNECESSARY means, that no more checks are required.
2174  * Otherwise, csum completion requires checksumming packet body,
2175  * including udp header and folding it to skb->csum.
2176  */
2177 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2178 				 int proto)
2179 {
2180 	int err;
2181 
2182 	UDP_SKB_CB(skb)->partial_cov = 0;
2183 	UDP_SKB_CB(skb)->cscov = skb->len;
2184 
2185 	if (proto == IPPROTO_UDPLITE) {
2186 		err = udplite_checksum_init(skb, uh);
2187 		if (err)
2188 			return err;
2189 
2190 		if (UDP_SKB_CB(skb)->partial_cov) {
2191 			skb->csum = inet_compute_pseudo(skb, proto);
2192 			return 0;
2193 		}
2194 	}
2195 
2196 	/* Note, we are only interested in != 0 or == 0, thus the
2197 	 * force to int.
2198 	 */
2199 	err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2200 							inet_compute_pseudo);
2201 	if (err)
2202 		return err;
2203 
2204 	if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2205 		/* If SW calculated the value, we know it's bad */
2206 		if (skb->csum_complete_sw)
2207 			return 1;
2208 
2209 		/* HW says the value is bad. Let's validate that.
2210 		 * skb->csum is no longer the full packet checksum,
2211 		 * so don't treat it as such.
2212 		 */
2213 		skb_checksum_complete_unset(skb);
2214 	}
2215 
2216 	return 0;
2217 }
2218 
2219 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2220  * return code conversion for ip layer consumption
2221  */
2222 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2223 			       struct udphdr *uh)
2224 {
2225 	int ret;
2226 
2227 	if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2228 		skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2229 
2230 	ret = udp_queue_rcv_skb(sk, skb);
2231 
2232 	/* a return value > 0 means to resubmit the input, but
2233 	 * it wants the return to be -protocol, or 0
2234 	 */
2235 	if (ret > 0)
2236 		return -ret;
2237 	return 0;
2238 }
2239 
2240 /*
2241  *	All we need to do is get the socket, and then do a checksum.
2242  */
2243 
2244 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2245 		   int proto)
2246 {
2247 	struct sock *sk;
2248 	struct udphdr *uh;
2249 	unsigned short ulen;
2250 	struct rtable *rt = skb_rtable(skb);
2251 	__be32 saddr, daddr;
2252 	struct net *net = dev_net(skb->dev);
2253 
2254 	/*
2255 	 *  Validate the packet.
2256 	 */
2257 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2258 		goto drop;		/* No space for header. */
2259 
2260 	uh   = udp_hdr(skb);
2261 	ulen = ntohs(uh->len);
2262 	saddr = ip_hdr(skb)->saddr;
2263 	daddr = ip_hdr(skb)->daddr;
2264 
2265 	if (ulen > skb->len)
2266 		goto short_packet;
2267 
2268 	if (proto == IPPROTO_UDP) {
2269 		/* UDP validates ulen. */
2270 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2271 			goto short_packet;
2272 		uh = udp_hdr(skb);
2273 	}
2274 
2275 	if (udp4_csum_init(skb, uh, proto))
2276 		goto csum_error;
2277 
2278 	sk = skb_steal_sock(skb);
2279 	if (sk) {
2280 		struct dst_entry *dst = skb_dst(skb);
2281 		int ret;
2282 
2283 		if (unlikely(sk->sk_rx_dst != dst))
2284 			udp_sk_rx_dst_set(sk, dst);
2285 
2286 		ret = udp_unicast_rcv_skb(sk, skb, uh);
2287 		sock_put(sk);
2288 		return ret;
2289 	}
2290 
2291 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2292 		return __udp4_lib_mcast_deliver(net, skb, uh,
2293 						saddr, daddr, udptable, proto);
2294 
2295 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2296 	if (sk)
2297 		return udp_unicast_rcv_skb(sk, skb, uh);
2298 
2299 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2300 		goto drop;
2301 	nf_reset(skb);
2302 
2303 	/* No socket. Drop packet silently, if checksum is wrong */
2304 	if (udp_lib_checksum_complete(skb))
2305 		goto csum_error;
2306 
2307 	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2308 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2309 
2310 	/*
2311 	 * Hmm.  We got an UDP packet to a port to which we
2312 	 * don't wanna listen.  Ignore it.
2313 	 */
2314 	kfree_skb(skb);
2315 	return 0;
2316 
2317 short_packet:
2318 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2319 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2320 			    &saddr, ntohs(uh->source),
2321 			    ulen, skb->len,
2322 			    &daddr, ntohs(uh->dest));
2323 	goto drop;
2324 
2325 csum_error:
2326 	/*
2327 	 * RFC1122: OK.  Discards the bad packet silently (as far as
2328 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2329 	 */
2330 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2331 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2332 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2333 			    ulen);
2334 	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2335 drop:
2336 	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2337 	kfree_skb(skb);
2338 	return 0;
2339 }
2340 
2341 /* We can only early demux multicast if there is a single matching socket.
2342  * If more than one socket found returns NULL
2343  */
2344 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2345 						  __be16 loc_port, __be32 loc_addr,
2346 						  __be16 rmt_port, __be32 rmt_addr,
2347 						  int dif, int sdif)
2348 {
2349 	struct sock *sk, *result;
2350 	unsigned short hnum = ntohs(loc_port);
2351 	unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
2352 	struct udp_hslot *hslot = &udp_table.hash[slot];
2353 
2354 	/* Do not bother scanning a too big list */
2355 	if (hslot->count > 10)
2356 		return NULL;
2357 
2358 	result = NULL;
2359 	sk_for_each_rcu(sk, &hslot->head) {
2360 		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2361 					rmt_port, rmt_addr, dif, sdif, hnum)) {
2362 			if (result)
2363 				return NULL;
2364 			result = sk;
2365 		}
2366 	}
2367 
2368 	return result;
2369 }
2370 
2371 /* For unicast we should only early demux connected sockets or we can
2372  * break forwarding setups.  The chains here can be long so only check
2373  * if the first socket is an exact match and if not move on.
2374  */
2375 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2376 					    __be16 loc_port, __be32 loc_addr,
2377 					    __be16 rmt_port, __be32 rmt_addr,
2378 					    int dif, int sdif)
2379 {
2380 	unsigned short hnum = ntohs(loc_port);
2381 	unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2382 	unsigned int slot2 = hash2 & udp_table.mask;
2383 	struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
2384 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2385 	const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
2386 	struct sock *sk;
2387 
2388 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2389 		if (INET_MATCH(sk, net, acookie, rmt_addr,
2390 			       loc_addr, ports, dif, sdif))
2391 			return sk;
2392 		/* Only check first socket in chain */
2393 		break;
2394 	}
2395 	return NULL;
2396 }
2397 
2398 int udp_v4_early_demux(struct sk_buff *skb)
2399 {
2400 	struct net *net = dev_net(skb->dev);
2401 	struct in_device *in_dev = NULL;
2402 	const struct iphdr *iph;
2403 	const struct udphdr *uh;
2404 	struct sock *sk = NULL;
2405 	struct dst_entry *dst;
2406 	int dif = skb->dev->ifindex;
2407 	int sdif = inet_sdif(skb);
2408 	int ours;
2409 
2410 	/* validate the packet */
2411 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2412 		return 0;
2413 
2414 	iph = ip_hdr(skb);
2415 	uh = udp_hdr(skb);
2416 
2417 	if (skb->pkt_type == PACKET_MULTICAST) {
2418 		in_dev = __in_dev_get_rcu(skb->dev);
2419 
2420 		if (!in_dev)
2421 			return 0;
2422 
2423 		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2424 				       iph->protocol);
2425 		if (!ours)
2426 			return 0;
2427 
2428 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2429 						   uh->source, iph->saddr,
2430 						   dif, sdif);
2431 	} else if (skb->pkt_type == PACKET_HOST) {
2432 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2433 					     uh->source, iph->saddr, dif, sdif);
2434 	}
2435 
2436 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2437 		return 0;
2438 
2439 	skb->sk = sk;
2440 	skb->destructor = sock_efree;
2441 	dst = READ_ONCE(sk->sk_rx_dst);
2442 
2443 	if (dst)
2444 		dst = dst_check(dst, 0);
2445 	if (dst) {
2446 		u32 itag = 0;
2447 
2448 		/* set noref for now.
2449 		 * any place which wants to hold dst has to call
2450 		 * dst_hold_safe()
2451 		 */
2452 		skb_dst_set_noref(skb, dst);
2453 
2454 		/* for unconnected multicast sockets we need to validate
2455 		 * the source on each packet
2456 		 */
2457 		if (!inet_sk(sk)->inet_daddr && in_dev)
2458 			return ip_mc_validate_source(skb, iph->daddr,
2459 						     iph->saddr, iph->tos,
2460 						     skb->dev, in_dev, &itag);
2461 	}
2462 	return 0;
2463 }
2464 
2465 int udp_rcv(struct sk_buff *skb)
2466 {
2467 	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2468 }
2469 
2470 void udp_destroy_sock(struct sock *sk)
2471 {
2472 	struct udp_sock *up = udp_sk(sk);
2473 	bool slow = lock_sock_fast(sk);
2474 	udp_flush_pending_frames(sk);
2475 	unlock_sock_fast(sk, slow);
2476 	if (static_branch_unlikely(&udp_encap_needed_key)) {
2477 		if (up->encap_type) {
2478 			void (*encap_destroy)(struct sock *sk);
2479 			encap_destroy = READ_ONCE(up->encap_destroy);
2480 			if (encap_destroy)
2481 				encap_destroy(sk);
2482 		}
2483 		if (up->encap_enabled)
2484 			static_branch_dec(&udp_encap_needed_key);
2485 	}
2486 }
2487 
2488 /*
2489  *	Socket option code for UDP
2490  */
2491 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2492 		       char __user *optval, unsigned int optlen,
2493 		       int (*push_pending_frames)(struct sock *))
2494 {
2495 	struct udp_sock *up = udp_sk(sk);
2496 	int val, valbool;
2497 	int err = 0;
2498 	int is_udplite = IS_UDPLITE(sk);
2499 
2500 	if (optlen < sizeof(int))
2501 		return -EINVAL;
2502 
2503 	if (get_user(val, (int __user *)optval))
2504 		return -EFAULT;
2505 
2506 	valbool = val ? 1 : 0;
2507 
2508 	switch (optname) {
2509 	case UDP_CORK:
2510 		if (val != 0) {
2511 			up->corkflag = 1;
2512 		} else {
2513 			up->corkflag = 0;
2514 			lock_sock(sk);
2515 			push_pending_frames(sk);
2516 			release_sock(sk);
2517 		}
2518 		break;
2519 
2520 	case UDP_ENCAP:
2521 		switch (val) {
2522 		case 0:
2523 		case UDP_ENCAP_ESPINUDP:
2524 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2525 			up->encap_rcv = xfrm4_udp_encap_rcv;
2526 			/* FALLTHROUGH */
2527 		case UDP_ENCAP_L2TPINUDP:
2528 			up->encap_type = val;
2529 			lock_sock(sk);
2530 			udp_tunnel_encap_enable(sk->sk_socket);
2531 			release_sock(sk);
2532 			break;
2533 		default:
2534 			err = -ENOPROTOOPT;
2535 			break;
2536 		}
2537 		break;
2538 
2539 	case UDP_NO_CHECK6_TX:
2540 		up->no_check6_tx = valbool;
2541 		break;
2542 
2543 	case UDP_NO_CHECK6_RX:
2544 		up->no_check6_rx = valbool;
2545 		break;
2546 
2547 	case UDP_SEGMENT:
2548 		if (val < 0 || val > USHRT_MAX)
2549 			return -EINVAL;
2550 		up->gso_size = val;
2551 		break;
2552 
2553 	case UDP_GRO:
2554 		lock_sock(sk);
2555 		if (valbool)
2556 			udp_tunnel_encap_enable(sk->sk_socket);
2557 		up->gro_enabled = valbool;
2558 		release_sock(sk);
2559 		break;
2560 
2561 	/*
2562 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2563 	 */
2564 	/* The sender sets actual checksum coverage length via this option.
2565 	 * The case coverage > packet length is handled by send module. */
2566 	case UDPLITE_SEND_CSCOV:
2567 		if (!is_udplite)         /* Disable the option on UDP sockets */
2568 			return -ENOPROTOOPT;
2569 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2570 			val = 8;
2571 		else if (val > USHRT_MAX)
2572 			val = USHRT_MAX;
2573 		up->pcslen = val;
2574 		up->pcflag |= UDPLITE_SEND_CC;
2575 		break;
2576 
2577 	/* The receiver specifies a minimum checksum coverage value. To make
2578 	 * sense, this should be set to at least 8 (as done below). If zero is
2579 	 * used, this again means full checksum coverage.                     */
2580 	case UDPLITE_RECV_CSCOV:
2581 		if (!is_udplite)         /* Disable the option on UDP sockets */
2582 			return -ENOPROTOOPT;
2583 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2584 			val = 8;
2585 		else if (val > USHRT_MAX)
2586 			val = USHRT_MAX;
2587 		up->pcrlen = val;
2588 		up->pcflag |= UDPLITE_RECV_CC;
2589 		break;
2590 
2591 	default:
2592 		err = -ENOPROTOOPT;
2593 		break;
2594 	}
2595 
2596 	return err;
2597 }
2598 EXPORT_SYMBOL(udp_lib_setsockopt);
2599 
2600 int udp_setsockopt(struct sock *sk, int level, int optname,
2601 		   char __user *optval, unsigned int optlen)
2602 {
2603 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2604 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2605 					  udp_push_pending_frames);
2606 	return ip_setsockopt(sk, level, optname, optval, optlen);
2607 }
2608 
2609 #ifdef CONFIG_COMPAT
2610 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2611 			  char __user *optval, unsigned int optlen)
2612 {
2613 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2614 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2615 					  udp_push_pending_frames);
2616 	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2617 }
2618 #endif
2619 
2620 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2621 		       char __user *optval, int __user *optlen)
2622 {
2623 	struct udp_sock *up = udp_sk(sk);
2624 	int val, len;
2625 
2626 	if (get_user(len, optlen))
2627 		return -EFAULT;
2628 
2629 	len = min_t(unsigned int, len, sizeof(int));
2630 
2631 	if (len < 0)
2632 		return -EINVAL;
2633 
2634 	switch (optname) {
2635 	case UDP_CORK:
2636 		val = up->corkflag;
2637 		break;
2638 
2639 	case UDP_ENCAP:
2640 		val = up->encap_type;
2641 		break;
2642 
2643 	case UDP_NO_CHECK6_TX:
2644 		val = up->no_check6_tx;
2645 		break;
2646 
2647 	case UDP_NO_CHECK6_RX:
2648 		val = up->no_check6_rx;
2649 		break;
2650 
2651 	case UDP_SEGMENT:
2652 		val = up->gso_size;
2653 		break;
2654 
2655 	/* The following two cannot be changed on UDP sockets, the return is
2656 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2657 	case UDPLITE_SEND_CSCOV:
2658 		val = up->pcslen;
2659 		break;
2660 
2661 	case UDPLITE_RECV_CSCOV:
2662 		val = up->pcrlen;
2663 		break;
2664 
2665 	default:
2666 		return -ENOPROTOOPT;
2667 	}
2668 
2669 	if (put_user(len, optlen))
2670 		return -EFAULT;
2671 	if (copy_to_user(optval, &val, len))
2672 		return -EFAULT;
2673 	return 0;
2674 }
2675 EXPORT_SYMBOL(udp_lib_getsockopt);
2676 
2677 int udp_getsockopt(struct sock *sk, int level, int optname,
2678 		   char __user *optval, int __user *optlen)
2679 {
2680 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2681 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2682 	return ip_getsockopt(sk, level, optname, optval, optlen);
2683 }
2684 
2685 #ifdef CONFIG_COMPAT
2686 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2687 				 char __user *optval, int __user *optlen)
2688 {
2689 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2690 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2691 	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2692 }
2693 #endif
2694 /**
2695  * 	udp_poll - wait for a UDP event.
2696  *	@file - file struct
2697  *	@sock - socket
2698  *	@wait - poll table
2699  *
2700  *	This is same as datagram poll, except for the special case of
2701  *	blocking sockets. If application is using a blocking fd
2702  *	and a packet with checksum error is in the queue;
2703  *	then it could get return from select indicating data available
2704  *	but then block when reading it. Add special case code
2705  *	to work around these arguably broken applications.
2706  */
2707 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2708 {
2709 	__poll_t mask = datagram_poll(file, sock, wait);
2710 	struct sock *sk = sock->sk;
2711 
2712 	if (!skb_queue_empty(&udp_sk(sk)->reader_queue))
2713 		mask |= EPOLLIN | EPOLLRDNORM;
2714 
2715 	/* Check for false positives due to checksum errors */
2716 	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2717 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2718 		mask &= ~(EPOLLIN | EPOLLRDNORM);
2719 
2720 	return mask;
2721 
2722 }
2723 EXPORT_SYMBOL(udp_poll);
2724 
2725 int udp_abort(struct sock *sk, int err)
2726 {
2727 	lock_sock(sk);
2728 
2729 	sk->sk_err = err;
2730 	sk->sk_error_report(sk);
2731 	__udp_disconnect(sk, 0);
2732 
2733 	release_sock(sk);
2734 
2735 	return 0;
2736 }
2737 EXPORT_SYMBOL_GPL(udp_abort);
2738 
2739 struct proto udp_prot = {
2740 	.name			= "UDP",
2741 	.owner			= THIS_MODULE,
2742 	.close			= udp_lib_close,
2743 	.pre_connect		= udp_pre_connect,
2744 	.connect		= ip4_datagram_connect,
2745 	.disconnect		= udp_disconnect,
2746 	.ioctl			= udp_ioctl,
2747 	.init			= udp_init_sock,
2748 	.destroy		= udp_destroy_sock,
2749 	.setsockopt		= udp_setsockopt,
2750 	.getsockopt		= udp_getsockopt,
2751 	.sendmsg		= udp_sendmsg,
2752 	.recvmsg		= udp_recvmsg,
2753 	.sendpage		= udp_sendpage,
2754 	.release_cb		= ip4_datagram_release_cb,
2755 	.hash			= udp_lib_hash,
2756 	.unhash			= udp_lib_unhash,
2757 	.rehash			= udp_v4_rehash,
2758 	.get_port		= udp_v4_get_port,
2759 	.memory_allocated	= &udp_memory_allocated,
2760 	.sysctl_mem		= sysctl_udp_mem,
2761 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2762 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2763 	.obj_size		= sizeof(struct udp_sock),
2764 	.h.udp_table		= &udp_table,
2765 #ifdef CONFIG_COMPAT
2766 	.compat_setsockopt	= compat_udp_setsockopt,
2767 	.compat_getsockopt	= compat_udp_getsockopt,
2768 #endif
2769 	.diag_destroy		= udp_abort,
2770 };
2771 EXPORT_SYMBOL(udp_prot);
2772 
2773 /* ------------------------------------------------------------------------ */
2774 #ifdef CONFIG_PROC_FS
2775 
2776 static struct sock *udp_get_first(struct seq_file *seq, int start)
2777 {
2778 	struct sock *sk;
2779 	struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2780 	struct udp_iter_state *state = seq->private;
2781 	struct net *net = seq_file_net(seq);
2782 
2783 	for (state->bucket = start; state->bucket <= afinfo->udp_table->mask;
2784 	     ++state->bucket) {
2785 		struct udp_hslot *hslot = &afinfo->udp_table->hash[state->bucket];
2786 
2787 		if (hlist_empty(&hslot->head))
2788 			continue;
2789 
2790 		spin_lock_bh(&hslot->lock);
2791 		sk_for_each(sk, &hslot->head) {
2792 			if (!net_eq(sock_net(sk), net))
2793 				continue;
2794 			if (sk->sk_family == afinfo->family)
2795 				goto found;
2796 		}
2797 		spin_unlock_bh(&hslot->lock);
2798 	}
2799 	sk = NULL;
2800 found:
2801 	return sk;
2802 }
2803 
2804 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2805 {
2806 	struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2807 	struct udp_iter_state *state = seq->private;
2808 	struct net *net = seq_file_net(seq);
2809 
2810 	do {
2811 		sk = sk_next(sk);
2812 	} while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != afinfo->family));
2813 
2814 	if (!sk) {
2815 		if (state->bucket <= afinfo->udp_table->mask)
2816 			spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
2817 		return udp_get_first(seq, state->bucket + 1);
2818 	}
2819 	return sk;
2820 }
2821 
2822 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2823 {
2824 	struct sock *sk = udp_get_first(seq, 0);
2825 
2826 	if (sk)
2827 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2828 			--pos;
2829 	return pos ? NULL : sk;
2830 }
2831 
2832 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2833 {
2834 	struct udp_iter_state *state = seq->private;
2835 	state->bucket = MAX_UDP_PORTS;
2836 
2837 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2838 }
2839 EXPORT_SYMBOL(udp_seq_start);
2840 
2841 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2842 {
2843 	struct sock *sk;
2844 
2845 	if (v == SEQ_START_TOKEN)
2846 		sk = udp_get_idx(seq, 0);
2847 	else
2848 		sk = udp_get_next(seq, v);
2849 
2850 	++*pos;
2851 	return sk;
2852 }
2853 EXPORT_SYMBOL(udp_seq_next);
2854 
2855 void udp_seq_stop(struct seq_file *seq, void *v)
2856 {
2857 	struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2858 	struct udp_iter_state *state = seq->private;
2859 
2860 	if (state->bucket <= afinfo->udp_table->mask)
2861 		spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
2862 }
2863 EXPORT_SYMBOL(udp_seq_stop);
2864 
2865 /* ------------------------------------------------------------------------ */
2866 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2867 		int bucket)
2868 {
2869 	struct inet_sock *inet = inet_sk(sp);
2870 	__be32 dest = inet->inet_daddr;
2871 	__be32 src  = inet->inet_rcv_saddr;
2872 	__u16 destp	  = ntohs(inet->inet_dport);
2873 	__u16 srcp	  = ntohs(inet->inet_sport);
2874 
2875 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2876 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
2877 		bucket, src, srcp, dest, destp, sp->sk_state,
2878 		sk_wmem_alloc_get(sp),
2879 		udp_rqueue_get(sp),
2880 		0, 0L, 0,
2881 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2882 		0, sock_i_ino(sp),
2883 		refcount_read(&sp->sk_refcnt), sp,
2884 		atomic_read(&sp->sk_drops));
2885 }
2886 
2887 int udp4_seq_show(struct seq_file *seq, void *v)
2888 {
2889 	seq_setwidth(seq, 127);
2890 	if (v == SEQ_START_TOKEN)
2891 		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2892 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2893 			   "inode ref pointer drops");
2894 	else {
2895 		struct udp_iter_state *state = seq->private;
2896 
2897 		udp4_format_sock(v, seq, state->bucket);
2898 	}
2899 	seq_pad(seq, '\n');
2900 	return 0;
2901 }
2902 
2903 const struct seq_operations udp_seq_ops = {
2904 	.start		= udp_seq_start,
2905 	.next		= udp_seq_next,
2906 	.stop		= udp_seq_stop,
2907 	.show		= udp4_seq_show,
2908 };
2909 EXPORT_SYMBOL(udp_seq_ops);
2910 
2911 static struct udp_seq_afinfo udp4_seq_afinfo = {
2912 	.family		= AF_INET,
2913 	.udp_table	= &udp_table,
2914 };
2915 
2916 static int __net_init udp4_proc_init_net(struct net *net)
2917 {
2918 	if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
2919 			sizeof(struct udp_iter_state), &udp4_seq_afinfo))
2920 		return -ENOMEM;
2921 	return 0;
2922 }
2923 
2924 static void __net_exit udp4_proc_exit_net(struct net *net)
2925 {
2926 	remove_proc_entry("udp", net->proc_net);
2927 }
2928 
2929 static struct pernet_operations udp4_net_ops = {
2930 	.init = udp4_proc_init_net,
2931 	.exit = udp4_proc_exit_net,
2932 };
2933 
2934 int __init udp4_proc_init(void)
2935 {
2936 	return register_pernet_subsys(&udp4_net_ops);
2937 }
2938 
2939 void udp4_proc_exit(void)
2940 {
2941 	unregister_pernet_subsys(&udp4_net_ops);
2942 }
2943 #endif /* CONFIG_PROC_FS */
2944 
2945 static __initdata unsigned long uhash_entries;
2946 static int __init set_uhash_entries(char *str)
2947 {
2948 	ssize_t ret;
2949 
2950 	if (!str)
2951 		return 0;
2952 
2953 	ret = kstrtoul(str, 0, &uhash_entries);
2954 	if (ret)
2955 		return 0;
2956 
2957 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2958 		uhash_entries = UDP_HTABLE_SIZE_MIN;
2959 	return 1;
2960 }
2961 __setup("uhash_entries=", set_uhash_entries);
2962 
2963 void __init udp_table_init(struct udp_table *table, const char *name)
2964 {
2965 	unsigned int i;
2966 
2967 	table->hash = alloc_large_system_hash(name,
2968 					      2 * sizeof(struct udp_hslot),
2969 					      uhash_entries,
2970 					      21, /* one slot per 2 MB */
2971 					      0,
2972 					      &table->log,
2973 					      &table->mask,
2974 					      UDP_HTABLE_SIZE_MIN,
2975 					      64 * 1024);
2976 
2977 	table->hash2 = table->hash + (table->mask + 1);
2978 	for (i = 0; i <= table->mask; i++) {
2979 		INIT_HLIST_HEAD(&table->hash[i].head);
2980 		table->hash[i].count = 0;
2981 		spin_lock_init(&table->hash[i].lock);
2982 	}
2983 	for (i = 0; i <= table->mask; i++) {
2984 		INIT_HLIST_HEAD(&table->hash2[i].head);
2985 		table->hash2[i].count = 0;
2986 		spin_lock_init(&table->hash2[i].lock);
2987 	}
2988 }
2989 
2990 u32 udp_flow_hashrnd(void)
2991 {
2992 	static u32 hashrnd __read_mostly;
2993 
2994 	net_get_random_once(&hashrnd, sizeof(hashrnd));
2995 
2996 	return hashrnd;
2997 }
2998 EXPORT_SYMBOL(udp_flow_hashrnd);
2999 
3000 static void __udp_sysctl_init(struct net *net)
3001 {
3002 	net->ipv4.sysctl_udp_rmem_min = SK_MEM_QUANTUM;
3003 	net->ipv4.sysctl_udp_wmem_min = SK_MEM_QUANTUM;
3004 
3005 #ifdef CONFIG_NET_L3_MASTER_DEV
3006 	net->ipv4.sysctl_udp_l3mdev_accept = 0;
3007 #endif
3008 }
3009 
3010 static int __net_init udp_sysctl_init(struct net *net)
3011 {
3012 	__udp_sysctl_init(net);
3013 	return 0;
3014 }
3015 
3016 static struct pernet_operations __net_initdata udp_sysctl_ops = {
3017 	.init	= udp_sysctl_init,
3018 };
3019 
3020 void __init udp_init(void)
3021 {
3022 	unsigned long limit;
3023 	unsigned int i;
3024 
3025 	udp_table_init(&udp_table, "UDP");
3026 	limit = nr_free_buffer_pages() / 8;
3027 	limit = max(limit, 128UL);
3028 	sysctl_udp_mem[0] = limit / 4 * 3;
3029 	sysctl_udp_mem[1] = limit;
3030 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3031 
3032 	__udp_sysctl_init(&init_net);
3033 
3034 	/* 16 spinlocks per cpu */
3035 	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3036 	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3037 				GFP_KERNEL);
3038 	if (!udp_busylocks)
3039 		panic("UDP: failed to alloc udp_busylocks\n");
3040 	for (i = 0; i < (1U << udp_busylocks_log); i++)
3041 		spin_lock_init(udp_busylocks + i);
3042 
3043 	if (register_pernet_subsys(&udp_sysctl_ops))
3044 		panic("UDP: failed to init sysctl parameters.\n");
3045 }
3046