xref: /linux/net/ipv4/udp.c (revision b2d0f5d5dc53532e6f07bc546a476a55ebdfe0f3)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The User Datagram Protocol (UDP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
12  *		Hirokazu Takahashi, <taka@valinux.co.jp>
13  *
14  * Fixes:
15  *		Alan Cox	:	verify_area() calls
16  *		Alan Cox	: 	stopped close while in use off icmp
17  *					messages. Not a fix but a botch that
18  *					for udp at least is 'valid'.
19  *		Alan Cox	:	Fixed icmp handling properly
20  *		Alan Cox	: 	Correct error for oversized datagrams
21  *		Alan Cox	:	Tidied select() semantics.
22  *		Alan Cox	:	udp_err() fixed properly, also now
23  *					select and read wake correctly on errors
24  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
25  *		Alan Cox	:	UDP can count its memory
26  *		Alan Cox	:	send to an unknown connection causes
27  *					an ECONNREFUSED off the icmp, but
28  *					does NOT close.
29  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
30  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
31  *					bug no longer crashes it.
32  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
33  *		Alan Cox	:	Uses skb_free_datagram
34  *		Alan Cox	:	Added get/set sockopt support.
35  *		Alan Cox	:	Broadcasting without option set returns EACCES.
36  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
37  *		Alan Cox	:	Use ip_tos and ip_ttl
38  *		Alan Cox	:	SNMP Mibs
39  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
40  *		Matt Dillon	:	UDP length checks.
41  *		Alan Cox	:	Smarter af_inet used properly.
42  *		Alan Cox	:	Use new kernel side addressing.
43  *		Alan Cox	:	Incorrect return on truncated datagram receive.
44  *	Arnt Gulbrandsen 	:	New udp_send and stuff
45  *		Alan Cox	:	Cache last socket
46  *		Alan Cox	:	Route cache
47  *		Jon Peatfield	:	Minor efficiency fix to sendto().
48  *		Mike Shaver	:	RFC1122 checks.
49  *		Alan Cox	:	Nonblocking error fix.
50  *	Willy Konynenberg	:	Transparent proxying support.
51  *		Mike McLagan	:	Routing by source
52  *		David S. Miller	:	New socket lookup architecture.
53  *					Last socket cache retained as it
54  *					does have a high hit rate.
55  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
56  *		Andi Kleen	:	Some cleanups, cache destination entry
57  *					for connect.
58  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
59  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
60  *					return ENOTCONN for unconnected sockets (POSIX)
61  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
62  *					bound-to-device socket
63  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
64  *					datagrams.
65  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
66  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
67  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
68  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
69  *					a single port at the same time.
70  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71  *	James Chapman		:	Add L2TP encapsulation type.
72  *
73  *
74  *		This program is free software; you can redistribute it and/or
75  *		modify it under the terms of the GNU General Public License
76  *		as published by the Free Software Foundation; either version
77  *		2 of the License, or (at your option) any later version.
78  */
79 
80 #define pr_fmt(fmt) "UDP: " fmt
81 
82 #include <linux/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/bootmem.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
93 #include <linux/inetdevice.h>
94 #include <linux/in.h>
95 #include <linux/errno.h>
96 #include <linux/timer.h>
97 #include <linux/mm.h>
98 #include <linux/inet.h>
99 #include <linux/netdevice.h>
100 #include <linux/slab.h>
101 #include <net/tcp_states.h>
102 #include <linux/skbuff.h>
103 #include <linux/proc_fs.h>
104 #include <linux/seq_file.h>
105 #include <net/net_namespace.h>
106 #include <net/icmp.h>
107 #include <net/inet_hashtables.h>
108 #include <net/route.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <trace/events/udp.h>
112 #include <linux/static_key.h>
113 #include <trace/events/skb.h>
114 #include <net/busy_poll.h>
115 #include "udp_impl.h"
116 #include <net/sock_reuseport.h>
117 #include <net/addrconf.h>
118 
119 struct udp_table udp_table __read_mostly;
120 EXPORT_SYMBOL(udp_table);
121 
122 long sysctl_udp_mem[3] __read_mostly;
123 EXPORT_SYMBOL(sysctl_udp_mem);
124 
125 int sysctl_udp_rmem_min __read_mostly;
126 EXPORT_SYMBOL(sysctl_udp_rmem_min);
127 
128 int sysctl_udp_wmem_min __read_mostly;
129 EXPORT_SYMBOL(sysctl_udp_wmem_min);
130 
131 atomic_long_t udp_memory_allocated;
132 EXPORT_SYMBOL(udp_memory_allocated);
133 
134 #define MAX_UDP_PORTS 65536
135 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
136 
137 /* IPCB reference means this can not be used from early demux */
138 static bool udp_lib_exact_dif_match(struct net *net, struct sk_buff *skb)
139 {
140 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
141 	if (!net->ipv4.sysctl_udp_l3mdev_accept &&
142 	    skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
143 		return true;
144 #endif
145 	return false;
146 }
147 
148 static int udp_lib_lport_inuse(struct net *net, __u16 num,
149 			       const struct udp_hslot *hslot,
150 			       unsigned long *bitmap,
151 			       struct sock *sk, unsigned int log)
152 {
153 	struct sock *sk2;
154 	kuid_t uid = sock_i_uid(sk);
155 
156 	sk_for_each(sk2, &hslot->head) {
157 		if (net_eq(sock_net(sk2), net) &&
158 		    sk2 != sk &&
159 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
160 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
161 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
162 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
163 		    inet_rcv_saddr_equal(sk, sk2, true)) {
164 			if (sk2->sk_reuseport && sk->sk_reuseport &&
165 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
166 			    uid_eq(uid, sock_i_uid(sk2))) {
167 				if (!bitmap)
168 					return 0;
169 			} else {
170 				if (!bitmap)
171 					return 1;
172 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
173 					  bitmap);
174 			}
175 		}
176 	}
177 	return 0;
178 }
179 
180 /*
181  * Note: we still hold spinlock of primary hash chain, so no other writer
182  * can insert/delete a socket with local_port == num
183  */
184 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
185 				struct udp_hslot *hslot2,
186 				struct sock *sk)
187 {
188 	struct sock *sk2;
189 	kuid_t uid = sock_i_uid(sk);
190 	int res = 0;
191 
192 	spin_lock(&hslot2->lock);
193 	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
194 		if (net_eq(sock_net(sk2), net) &&
195 		    sk2 != sk &&
196 		    (udp_sk(sk2)->udp_port_hash == num) &&
197 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
198 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
199 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
200 		    inet_rcv_saddr_equal(sk, sk2, true)) {
201 			if (sk2->sk_reuseport && sk->sk_reuseport &&
202 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
203 			    uid_eq(uid, sock_i_uid(sk2))) {
204 				res = 0;
205 			} else {
206 				res = 1;
207 			}
208 			break;
209 		}
210 	}
211 	spin_unlock(&hslot2->lock);
212 	return res;
213 }
214 
215 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
216 {
217 	struct net *net = sock_net(sk);
218 	kuid_t uid = sock_i_uid(sk);
219 	struct sock *sk2;
220 
221 	sk_for_each(sk2, &hslot->head) {
222 		if (net_eq(sock_net(sk2), net) &&
223 		    sk2 != sk &&
224 		    sk2->sk_family == sk->sk_family &&
225 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
226 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
227 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
228 		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
229 		    inet_rcv_saddr_equal(sk, sk2, false)) {
230 			return reuseport_add_sock(sk, sk2);
231 		}
232 	}
233 
234 	return reuseport_alloc(sk);
235 }
236 
237 /**
238  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
239  *
240  *  @sk:          socket struct in question
241  *  @snum:        port number to look up
242  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
243  *                   with NULL address
244  */
245 int udp_lib_get_port(struct sock *sk, unsigned short snum,
246 		     unsigned int hash2_nulladdr)
247 {
248 	struct udp_hslot *hslot, *hslot2;
249 	struct udp_table *udptable = sk->sk_prot->h.udp_table;
250 	int    error = 1;
251 	struct net *net = sock_net(sk);
252 
253 	if (!snum) {
254 		int low, high, remaining;
255 		unsigned int rand;
256 		unsigned short first, last;
257 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
258 
259 		inet_get_local_port_range(net, &low, &high);
260 		remaining = (high - low) + 1;
261 
262 		rand = prandom_u32();
263 		first = reciprocal_scale(rand, remaining) + low;
264 		/*
265 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
266 		 */
267 		rand = (rand | 1) * (udptable->mask + 1);
268 		last = first + udptable->mask + 1;
269 		do {
270 			hslot = udp_hashslot(udptable, net, first);
271 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
272 			spin_lock_bh(&hslot->lock);
273 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
274 					    udptable->log);
275 
276 			snum = first;
277 			/*
278 			 * Iterate on all possible values of snum for this hash.
279 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
280 			 * give us randomization and full range coverage.
281 			 */
282 			do {
283 				if (low <= snum && snum <= high &&
284 				    !test_bit(snum >> udptable->log, bitmap) &&
285 				    !inet_is_local_reserved_port(net, snum))
286 					goto found;
287 				snum += rand;
288 			} while (snum != first);
289 			spin_unlock_bh(&hslot->lock);
290 			cond_resched();
291 		} while (++first != last);
292 		goto fail;
293 	} else {
294 		hslot = udp_hashslot(udptable, net, snum);
295 		spin_lock_bh(&hslot->lock);
296 		if (hslot->count > 10) {
297 			int exist;
298 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
299 
300 			slot2          &= udptable->mask;
301 			hash2_nulladdr &= udptable->mask;
302 
303 			hslot2 = udp_hashslot2(udptable, slot2);
304 			if (hslot->count < hslot2->count)
305 				goto scan_primary_hash;
306 
307 			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
308 			if (!exist && (hash2_nulladdr != slot2)) {
309 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
310 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
311 							     sk);
312 			}
313 			if (exist)
314 				goto fail_unlock;
315 			else
316 				goto found;
317 		}
318 scan_primary_hash:
319 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
320 			goto fail_unlock;
321 	}
322 found:
323 	inet_sk(sk)->inet_num = snum;
324 	udp_sk(sk)->udp_port_hash = snum;
325 	udp_sk(sk)->udp_portaddr_hash ^= snum;
326 	if (sk_unhashed(sk)) {
327 		if (sk->sk_reuseport &&
328 		    udp_reuseport_add_sock(sk, hslot)) {
329 			inet_sk(sk)->inet_num = 0;
330 			udp_sk(sk)->udp_port_hash = 0;
331 			udp_sk(sk)->udp_portaddr_hash ^= snum;
332 			goto fail_unlock;
333 		}
334 
335 		sk_add_node_rcu(sk, &hslot->head);
336 		hslot->count++;
337 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
338 
339 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
340 		spin_lock(&hslot2->lock);
341 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
342 		    sk->sk_family == AF_INET6)
343 			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
344 					   &hslot2->head);
345 		else
346 			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
347 					   &hslot2->head);
348 		hslot2->count++;
349 		spin_unlock(&hslot2->lock);
350 	}
351 	sock_set_flag(sk, SOCK_RCU_FREE);
352 	error = 0;
353 fail_unlock:
354 	spin_unlock_bh(&hslot->lock);
355 fail:
356 	return error;
357 }
358 EXPORT_SYMBOL(udp_lib_get_port);
359 
360 static u32 udp4_portaddr_hash(const struct net *net, __be32 saddr,
361 			      unsigned int port)
362 {
363 	return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
364 }
365 
366 int udp_v4_get_port(struct sock *sk, unsigned short snum)
367 {
368 	unsigned int hash2_nulladdr =
369 		udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
370 	unsigned int hash2_partial =
371 		udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
372 
373 	/* precompute partial secondary hash */
374 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
375 	return udp_lib_get_port(sk, snum, hash2_nulladdr);
376 }
377 
378 static int compute_score(struct sock *sk, struct net *net,
379 			 __be32 saddr, __be16 sport,
380 			 __be32 daddr, unsigned short hnum,
381 			 int dif, int sdif, bool exact_dif)
382 {
383 	int score;
384 	struct inet_sock *inet;
385 
386 	if (!net_eq(sock_net(sk), net) ||
387 	    udp_sk(sk)->udp_port_hash != hnum ||
388 	    ipv6_only_sock(sk))
389 		return -1;
390 
391 	score = (sk->sk_family == PF_INET) ? 2 : 1;
392 	inet = inet_sk(sk);
393 
394 	if (inet->inet_rcv_saddr) {
395 		if (inet->inet_rcv_saddr != daddr)
396 			return -1;
397 		score += 4;
398 	}
399 
400 	if (inet->inet_daddr) {
401 		if (inet->inet_daddr != saddr)
402 			return -1;
403 		score += 4;
404 	}
405 
406 	if (inet->inet_dport) {
407 		if (inet->inet_dport != sport)
408 			return -1;
409 		score += 4;
410 	}
411 
412 	if (sk->sk_bound_dev_if || exact_dif) {
413 		bool dev_match = (sk->sk_bound_dev_if == dif ||
414 				  sk->sk_bound_dev_if == sdif);
415 
416 		if (exact_dif && !dev_match)
417 			return -1;
418 		if (sk->sk_bound_dev_if && dev_match)
419 			score += 4;
420 	}
421 
422 	if (sk->sk_incoming_cpu == raw_smp_processor_id())
423 		score++;
424 	return score;
425 }
426 
427 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
428 		       const __u16 lport, const __be32 faddr,
429 		       const __be16 fport)
430 {
431 	static u32 udp_ehash_secret __read_mostly;
432 
433 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
434 
435 	return __inet_ehashfn(laddr, lport, faddr, fport,
436 			      udp_ehash_secret + net_hash_mix(net));
437 }
438 
439 /* called with rcu_read_lock() */
440 static struct sock *udp4_lib_lookup2(struct net *net,
441 				     __be32 saddr, __be16 sport,
442 				     __be32 daddr, unsigned int hnum,
443 				     int dif, int sdif, bool exact_dif,
444 				     struct udp_hslot *hslot2,
445 				     struct sk_buff *skb)
446 {
447 	struct sock *sk, *result;
448 	int score, badness, matches = 0, reuseport = 0;
449 	u32 hash = 0;
450 
451 	result = NULL;
452 	badness = 0;
453 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
454 		score = compute_score(sk, net, saddr, sport,
455 				      daddr, hnum, dif, sdif, exact_dif);
456 		if (score > badness) {
457 			reuseport = sk->sk_reuseport;
458 			if (reuseport) {
459 				hash = udp_ehashfn(net, daddr, hnum,
460 						   saddr, sport);
461 				result = reuseport_select_sock(sk, hash, skb,
462 							sizeof(struct udphdr));
463 				if (result)
464 					return result;
465 				matches = 1;
466 			}
467 			badness = score;
468 			result = sk;
469 		} else if (score == badness && reuseport) {
470 			matches++;
471 			if (reciprocal_scale(hash, matches) == 0)
472 				result = sk;
473 			hash = next_pseudo_random32(hash);
474 		}
475 	}
476 	return result;
477 }
478 
479 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
480  * harder than this. -DaveM
481  */
482 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
483 		__be16 sport, __be32 daddr, __be16 dport, int dif,
484 		int sdif, struct udp_table *udptable, struct sk_buff *skb)
485 {
486 	struct sock *sk, *result;
487 	unsigned short hnum = ntohs(dport);
488 	unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
489 	struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
490 	bool exact_dif = udp_lib_exact_dif_match(net, skb);
491 	int score, badness, matches = 0, reuseport = 0;
492 	u32 hash = 0;
493 
494 	if (hslot->count > 10) {
495 		hash2 = udp4_portaddr_hash(net, daddr, hnum);
496 		slot2 = hash2 & udptable->mask;
497 		hslot2 = &udptable->hash2[slot2];
498 		if (hslot->count < hslot2->count)
499 			goto begin;
500 
501 		result = udp4_lib_lookup2(net, saddr, sport,
502 					  daddr, hnum, dif, sdif,
503 					  exact_dif, hslot2, skb);
504 		if (!result) {
505 			unsigned int old_slot2 = slot2;
506 			hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
507 			slot2 = hash2 & udptable->mask;
508 			/* avoid searching the same slot again. */
509 			if (unlikely(slot2 == old_slot2))
510 				return result;
511 
512 			hslot2 = &udptable->hash2[slot2];
513 			if (hslot->count < hslot2->count)
514 				goto begin;
515 
516 			result = udp4_lib_lookup2(net, saddr, sport,
517 						  daddr, hnum, dif, sdif,
518 						  exact_dif, hslot2, skb);
519 		}
520 		return result;
521 	}
522 begin:
523 	result = NULL;
524 	badness = 0;
525 	sk_for_each_rcu(sk, &hslot->head) {
526 		score = compute_score(sk, net, saddr, sport,
527 				      daddr, hnum, dif, sdif, exact_dif);
528 		if (score > badness) {
529 			reuseport = sk->sk_reuseport;
530 			if (reuseport) {
531 				hash = udp_ehashfn(net, daddr, hnum,
532 						   saddr, sport);
533 				result = reuseport_select_sock(sk, hash, skb,
534 							sizeof(struct udphdr));
535 				if (result)
536 					return result;
537 				matches = 1;
538 			}
539 			result = sk;
540 			badness = score;
541 		} else if (score == badness && reuseport) {
542 			matches++;
543 			if (reciprocal_scale(hash, matches) == 0)
544 				result = sk;
545 			hash = next_pseudo_random32(hash);
546 		}
547 	}
548 	return result;
549 }
550 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
551 
552 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
553 						 __be16 sport, __be16 dport,
554 						 struct udp_table *udptable)
555 {
556 	const struct iphdr *iph = ip_hdr(skb);
557 
558 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
559 				 iph->daddr, dport, inet_iif(skb),
560 				 inet_sdif(skb), udptable, skb);
561 }
562 
563 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb,
564 				 __be16 sport, __be16 dport)
565 {
566 	return __udp4_lib_lookup_skb(skb, sport, dport, &udp_table);
567 }
568 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb);
569 
570 /* Must be called under rcu_read_lock().
571  * Does increment socket refcount.
572  */
573 #if IS_ENABLED(CONFIG_NETFILTER_XT_MATCH_SOCKET) || \
574     IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TPROXY) || \
575     IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
576 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
577 			     __be32 daddr, __be16 dport, int dif)
578 {
579 	struct sock *sk;
580 
581 	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
582 			       dif, 0, &udp_table, NULL);
583 	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
584 		sk = NULL;
585 	return sk;
586 }
587 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
588 #endif
589 
590 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
591 				       __be16 loc_port, __be32 loc_addr,
592 				       __be16 rmt_port, __be32 rmt_addr,
593 				       int dif, int sdif, unsigned short hnum)
594 {
595 	struct inet_sock *inet = inet_sk(sk);
596 
597 	if (!net_eq(sock_net(sk), net) ||
598 	    udp_sk(sk)->udp_port_hash != hnum ||
599 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
600 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
601 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
602 	    ipv6_only_sock(sk) ||
603 	    (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif &&
604 	     sk->sk_bound_dev_if != sdif))
605 		return false;
606 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
607 		return false;
608 	return true;
609 }
610 
611 /*
612  * This routine is called by the ICMP module when it gets some
613  * sort of error condition.  If err < 0 then the socket should
614  * be closed and the error returned to the user.  If err > 0
615  * it's just the icmp type << 8 | icmp code.
616  * Header points to the ip header of the error packet. We move
617  * on past this. Then (as it used to claim before adjustment)
618  * header points to the first 8 bytes of the udp header.  We need
619  * to find the appropriate port.
620  */
621 
622 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
623 {
624 	struct inet_sock *inet;
625 	const struct iphdr *iph = (const struct iphdr *)skb->data;
626 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
627 	const int type = icmp_hdr(skb)->type;
628 	const int code = icmp_hdr(skb)->code;
629 	struct sock *sk;
630 	int harderr;
631 	int err;
632 	struct net *net = dev_net(skb->dev);
633 
634 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
635 			       iph->saddr, uh->source, skb->dev->ifindex, 0,
636 			       udptable, NULL);
637 	if (!sk) {
638 		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
639 		return;	/* No socket for error */
640 	}
641 
642 	err = 0;
643 	harderr = 0;
644 	inet = inet_sk(sk);
645 
646 	switch (type) {
647 	default:
648 	case ICMP_TIME_EXCEEDED:
649 		err = EHOSTUNREACH;
650 		break;
651 	case ICMP_SOURCE_QUENCH:
652 		goto out;
653 	case ICMP_PARAMETERPROB:
654 		err = EPROTO;
655 		harderr = 1;
656 		break;
657 	case ICMP_DEST_UNREACH:
658 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
659 			ipv4_sk_update_pmtu(skb, sk, info);
660 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
661 				err = EMSGSIZE;
662 				harderr = 1;
663 				break;
664 			}
665 			goto out;
666 		}
667 		err = EHOSTUNREACH;
668 		if (code <= NR_ICMP_UNREACH) {
669 			harderr = icmp_err_convert[code].fatal;
670 			err = icmp_err_convert[code].errno;
671 		}
672 		break;
673 	case ICMP_REDIRECT:
674 		ipv4_sk_redirect(skb, sk);
675 		goto out;
676 	}
677 
678 	/*
679 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
680 	 *	4.1.3.3.
681 	 */
682 	if (!inet->recverr) {
683 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
684 			goto out;
685 	} else
686 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
687 
688 	sk->sk_err = err;
689 	sk->sk_error_report(sk);
690 out:
691 	return;
692 }
693 
694 void udp_err(struct sk_buff *skb, u32 info)
695 {
696 	__udp4_lib_err(skb, info, &udp_table);
697 }
698 
699 /*
700  * Throw away all pending data and cancel the corking. Socket is locked.
701  */
702 void udp_flush_pending_frames(struct sock *sk)
703 {
704 	struct udp_sock *up = udp_sk(sk);
705 
706 	if (up->pending) {
707 		up->len = 0;
708 		up->pending = 0;
709 		ip_flush_pending_frames(sk);
710 	}
711 }
712 EXPORT_SYMBOL(udp_flush_pending_frames);
713 
714 /**
715  * 	udp4_hwcsum  -  handle outgoing HW checksumming
716  * 	@skb: 	sk_buff containing the filled-in UDP header
717  * 	        (checksum field must be zeroed out)
718  *	@src:	source IP address
719  *	@dst:	destination IP address
720  */
721 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
722 {
723 	struct udphdr *uh = udp_hdr(skb);
724 	int offset = skb_transport_offset(skb);
725 	int len = skb->len - offset;
726 	int hlen = len;
727 	__wsum csum = 0;
728 
729 	if (!skb_has_frag_list(skb)) {
730 		/*
731 		 * Only one fragment on the socket.
732 		 */
733 		skb->csum_start = skb_transport_header(skb) - skb->head;
734 		skb->csum_offset = offsetof(struct udphdr, check);
735 		uh->check = ~csum_tcpudp_magic(src, dst, len,
736 					       IPPROTO_UDP, 0);
737 	} else {
738 		struct sk_buff *frags;
739 
740 		/*
741 		 * HW-checksum won't work as there are two or more
742 		 * fragments on the socket so that all csums of sk_buffs
743 		 * should be together
744 		 */
745 		skb_walk_frags(skb, frags) {
746 			csum = csum_add(csum, frags->csum);
747 			hlen -= frags->len;
748 		}
749 
750 		csum = skb_checksum(skb, offset, hlen, csum);
751 		skb->ip_summed = CHECKSUM_NONE;
752 
753 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
754 		if (uh->check == 0)
755 			uh->check = CSUM_MANGLED_0;
756 	}
757 }
758 EXPORT_SYMBOL_GPL(udp4_hwcsum);
759 
760 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
761  * for the simple case like when setting the checksum for a UDP tunnel.
762  */
763 void udp_set_csum(bool nocheck, struct sk_buff *skb,
764 		  __be32 saddr, __be32 daddr, int len)
765 {
766 	struct udphdr *uh = udp_hdr(skb);
767 
768 	if (nocheck) {
769 		uh->check = 0;
770 	} else if (skb_is_gso(skb)) {
771 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
772 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
773 		uh->check = 0;
774 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
775 		if (uh->check == 0)
776 			uh->check = CSUM_MANGLED_0;
777 	} else {
778 		skb->ip_summed = CHECKSUM_PARTIAL;
779 		skb->csum_start = skb_transport_header(skb) - skb->head;
780 		skb->csum_offset = offsetof(struct udphdr, check);
781 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
782 	}
783 }
784 EXPORT_SYMBOL(udp_set_csum);
785 
786 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
787 {
788 	struct sock *sk = skb->sk;
789 	struct inet_sock *inet = inet_sk(sk);
790 	struct udphdr *uh;
791 	int err = 0;
792 	int is_udplite = IS_UDPLITE(sk);
793 	int offset = skb_transport_offset(skb);
794 	int len = skb->len - offset;
795 	__wsum csum = 0;
796 
797 	/*
798 	 * Create a UDP header
799 	 */
800 	uh = udp_hdr(skb);
801 	uh->source = inet->inet_sport;
802 	uh->dest = fl4->fl4_dport;
803 	uh->len = htons(len);
804 	uh->check = 0;
805 
806 	if (is_udplite)  				 /*     UDP-Lite      */
807 		csum = udplite_csum(skb);
808 
809 	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
810 
811 		skb->ip_summed = CHECKSUM_NONE;
812 		goto send;
813 
814 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
815 
816 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
817 		goto send;
818 
819 	} else
820 		csum = udp_csum(skb);
821 
822 	/* add protocol-dependent pseudo-header */
823 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
824 				      sk->sk_protocol, csum);
825 	if (uh->check == 0)
826 		uh->check = CSUM_MANGLED_0;
827 
828 send:
829 	err = ip_send_skb(sock_net(sk), skb);
830 	if (err) {
831 		if (err == -ENOBUFS && !inet->recverr) {
832 			UDP_INC_STATS(sock_net(sk),
833 				      UDP_MIB_SNDBUFERRORS, is_udplite);
834 			err = 0;
835 		}
836 	} else
837 		UDP_INC_STATS(sock_net(sk),
838 			      UDP_MIB_OUTDATAGRAMS, is_udplite);
839 	return err;
840 }
841 
842 /*
843  * Push out all pending data as one UDP datagram. Socket is locked.
844  */
845 int udp_push_pending_frames(struct sock *sk)
846 {
847 	struct udp_sock  *up = udp_sk(sk);
848 	struct inet_sock *inet = inet_sk(sk);
849 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
850 	struct sk_buff *skb;
851 	int err = 0;
852 
853 	skb = ip_finish_skb(sk, fl4);
854 	if (!skb)
855 		goto out;
856 
857 	err = udp_send_skb(skb, fl4);
858 
859 out:
860 	up->len = 0;
861 	up->pending = 0;
862 	return err;
863 }
864 EXPORT_SYMBOL(udp_push_pending_frames);
865 
866 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
867 {
868 	struct inet_sock *inet = inet_sk(sk);
869 	struct udp_sock *up = udp_sk(sk);
870 	struct flowi4 fl4_stack;
871 	struct flowi4 *fl4;
872 	int ulen = len;
873 	struct ipcm_cookie ipc;
874 	struct rtable *rt = NULL;
875 	int free = 0;
876 	int connected = 0;
877 	__be32 daddr, faddr, saddr;
878 	__be16 dport;
879 	u8  tos;
880 	int err, is_udplite = IS_UDPLITE(sk);
881 	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
882 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
883 	struct sk_buff *skb;
884 	struct ip_options_data opt_copy;
885 
886 	if (len > 0xFFFF)
887 		return -EMSGSIZE;
888 
889 	/*
890 	 *	Check the flags.
891 	 */
892 
893 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
894 		return -EOPNOTSUPP;
895 
896 	ipc.opt = NULL;
897 	ipc.tx_flags = 0;
898 	ipc.ttl = 0;
899 	ipc.tos = -1;
900 
901 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
902 
903 	fl4 = &inet->cork.fl.u.ip4;
904 	if (up->pending) {
905 		/*
906 		 * There are pending frames.
907 		 * The socket lock must be held while it's corked.
908 		 */
909 		lock_sock(sk);
910 		if (likely(up->pending)) {
911 			if (unlikely(up->pending != AF_INET)) {
912 				release_sock(sk);
913 				return -EINVAL;
914 			}
915 			goto do_append_data;
916 		}
917 		release_sock(sk);
918 	}
919 	ulen += sizeof(struct udphdr);
920 
921 	/*
922 	 *	Get and verify the address.
923 	 */
924 	if (msg->msg_name) {
925 		DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
926 		if (msg->msg_namelen < sizeof(*usin))
927 			return -EINVAL;
928 		if (usin->sin_family != AF_INET) {
929 			if (usin->sin_family != AF_UNSPEC)
930 				return -EAFNOSUPPORT;
931 		}
932 
933 		daddr = usin->sin_addr.s_addr;
934 		dport = usin->sin_port;
935 		if (dport == 0)
936 			return -EINVAL;
937 	} else {
938 		if (sk->sk_state != TCP_ESTABLISHED)
939 			return -EDESTADDRREQ;
940 		daddr = inet->inet_daddr;
941 		dport = inet->inet_dport;
942 		/* Open fast path for connected socket.
943 		   Route will not be used, if at least one option is set.
944 		 */
945 		connected = 1;
946 	}
947 
948 	ipc.sockc.tsflags = sk->sk_tsflags;
949 	ipc.addr = inet->inet_saddr;
950 	ipc.oif = sk->sk_bound_dev_if;
951 
952 	if (msg->msg_controllen) {
953 		err = ip_cmsg_send(sk, msg, &ipc, sk->sk_family == AF_INET6);
954 		if (unlikely(err)) {
955 			kfree(ipc.opt);
956 			return err;
957 		}
958 		if (ipc.opt)
959 			free = 1;
960 		connected = 0;
961 	}
962 	if (!ipc.opt) {
963 		struct ip_options_rcu *inet_opt;
964 
965 		rcu_read_lock();
966 		inet_opt = rcu_dereference(inet->inet_opt);
967 		if (inet_opt) {
968 			memcpy(&opt_copy, inet_opt,
969 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
970 			ipc.opt = &opt_copy.opt;
971 		}
972 		rcu_read_unlock();
973 	}
974 
975 	saddr = ipc.addr;
976 	ipc.addr = faddr = daddr;
977 
978 	sock_tx_timestamp(sk, ipc.sockc.tsflags, &ipc.tx_flags);
979 
980 	if (ipc.opt && ipc.opt->opt.srr) {
981 		if (!daddr)
982 			return -EINVAL;
983 		faddr = ipc.opt->opt.faddr;
984 		connected = 0;
985 	}
986 	tos = get_rttos(&ipc, inet);
987 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
988 	    (msg->msg_flags & MSG_DONTROUTE) ||
989 	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
990 		tos |= RTO_ONLINK;
991 		connected = 0;
992 	}
993 
994 	if (ipv4_is_multicast(daddr)) {
995 		if (!ipc.oif)
996 			ipc.oif = inet->mc_index;
997 		if (!saddr)
998 			saddr = inet->mc_addr;
999 		connected = 0;
1000 	} else if (!ipc.oif)
1001 		ipc.oif = inet->uc_index;
1002 
1003 	if (connected)
1004 		rt = (struct rtable *)sk_dst_check(sk, 0);
1005 
1006 	if (!rt) {
1007 		struct net *net = sock_net(sk);
1008 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1009 
1010 		fl4 = &fl4_stack;
1011 
1012 		flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
1013 				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
1014 				   flow_flags,
1015 				   faddr, saddr, dport, inet->inet_sport,
1016 				   sk->sk_uid);
1017 
1018 		security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1019 		rt = ip_route_output_flow(net, fl4, sk);
1020 		if (IS_ERR(rt)) {
1021 			err = PTR_ERR(rt);
1022 			rt = NULL;
1023 			if (err == -ENETUNREACH)
1024 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1025 			goto out;
1026 		}
1027 
1028 		err = -EACCES;
1029 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1030 		    !sock_flag(sk, SOCK_BROADCAST))
1031 			goto out;
1032 		if (connected)
1033 			sk_dst_set(sk, dst_clone(&rt->dst));
1034 	}
1035 
1036 	if (msg->msg_flags&MSG_CONFIRM)
1037 		goto do_confirm;
1038 back_from_confirm:
1039 
1040 	saddr = fl4->saddr;
1041 	if (!ipc.addr)
1042 		daddr = ipc.addr = fl4->daddr;
1043 
1044 	/* Lockless fast path for the non-corking case. */
1045 	if (!corkreq) {
1046 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1047 				  sizeof(struct udphdr), &ipc, &rt,
1048 				  msg->msg_flags);
1049 		err = PTR_ERR(skb);
1050 		if (!IS_ERR_OR_NULL(skb))
1051 			err = udp_send_skb(skb, fl4);
1052 		goto out;
1053 	}
1054 
1055 	lock_sock(sk);
1056 	if (unlikely(up->pending)) {
1057 		/* The socket is already corked while preparing it. */
1058 		/* ... which is an evident application bug. --ANK */
1059 		release_sock(sk);
1060 
1061 		net_dbg_ratelimited("socket already corked\n");
1062 		err = -EINVAL;
1063 		goto out;
1064 	}
1065 	/*
1066 	 *	Now cork the socket to pend data.
1067 	 */
1068 	fl4 = &inet->cork.fl.u.ip4;
1069 	fl4->daddr = daddr;
1070 	fl4->saddr = saddr;
1071 	fl4->fl4_dport = dport;
1072 	fl4->fl4_sport = inet->inet_sport;
1073 	up->pending = AF_INET;
1074 
1075 do_append_data:
1076 	up->len += ulen;
1077 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1078 			     sizeof(struct udphdr), &ipc, &rt,
1079 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1080 	if (err)
1081 		udp_flush_pending_frames(sk);
1082 	else if (!corkreq)
1083 		err = udp_push_pending_frames(sk);
1084 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1085 		up->pending = 0;
1086 	release_sock(sk);
1087 
1088 out:
1089 	ip_rt_put(rt);
1090 	if (free)
1091 		kfree(ipc.opt);
1092 	if (!err)
1093 		return len;
1094 	/*
1095 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1096 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1097 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1098 	 * things).  We could add another new stat but at least for now that
1099 	 * seems like overkill.
1100 	 */
1101 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1102 		UDP_INC_STATS(sock_net(sk),
1103 			      UDP_MIB_SNDBUFERRORS, is_udplite);
1104 	}
1105 	return err;
1106 
1107 do_confirm:
1108 	if (msg->msg_flags & MSG_PROBE)
1109 		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1110 	if (!(msg->msg_flags&MSG_PROBE) || len)
1111 		goto back_from_confirm;
1112 	err = 0;
1113 	goto out;
1114 }
1115 EXPORT_SYMBOL(udp_sendmsg);
1116 
1117 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1118 		 size_t size, int flags)
1119 {
1120 	struct inet_sock *inet = inet_sk(sk);
1121 	struct udp_sock *up = udp_sk(sk);
1122 	int ret;
1123 
1124 	if (flags & MSG_SENDPAGE_NOTLAST)
1125 		flags |= MSG_MORE;
1126 
1127 	if (!up->pending) {
1128 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1129 
1130 		/* Call udp_sendmsg to specify destination address which
1131 		 * sendpage interface can't pass.
1132 		 * This will succeed only when the socket is connected.
1133 		 */
1134 		ret = udp_sendmsg(sk, &msg, 0);
1135 		if (ret < 0)
1136 			return ret;
1137 	}
1138 
1139 	lock_sock(sk);
1140 
1141 	if (unlikely(!up->pending)) {
1142 		release_sock(sk);
1143 
1144 		net_dbg_ratelimited("cork failed\n");
1145 		return -EINVAL;
1146 	}
1147 
1148 	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1149 			     page, offset, size, flags);
1150 	if (ret == -EOPNOTSUPP) {
1151 		release_sock(sk);
1152 		return sock_no_sendpage(sk->sk_socket, page, offset,
1153 					size, flags);
1154 	}
1155 	if (ret < 0) {
1156 		udp_flush_pending_frames(sk);
1157 		goto out;
1158 	}
1159 
1160 	up->len += size;
1161 	if (!(up->corkflag || (flags&MSG_MORE)))
1162 		ret = udp_push_pending_frames(sk);
1163 	if (!ret)
1164 		ret = size;
1165 out:
1166 	release_sock(sk);
1167 	return ret;
1168 }
1169 
1170 #define UDP_SKB_IS_STATELESS 0x80000000
1171 
1172 static void udp_set_dev_scratch(struct sk_buff *skb)
1173 {
1174 	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1175 
1176 	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1177 	scratch->_tsize_state = skb->truesize;
1178 #if BITS_PER_LONG == 64
1179 	scratch->len = skb->len;
1180 	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1181 	scratch->is_linear = !skb_is_nonlinear(skb);
1182 #endif
1183 	/* all head states execept sp (dst, sk, nf) are always cleared by
1184 	 * udp_rcv() and we need to preserve secpath, if present, to eventually
1185 	 * process IP_CMSG_PASSSEC at recvmsg() time
1186 	 */
1187 	if (likely(!skb_sec_path(skb)))
1188 		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1189 }
1190 
1191 static int udp_skb_truesize(struct sk_buff *skb)
1192 {
1193 	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1194 }
1195 
1196 static bool udp_skb_has_head_state(struct sk_buff *skb)
1197 {
1198 	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1199 }
1200 
1201 /* fully reclaim rmem/fwd memory allocated for skb */
1202 static void udp_rmem_release(struct sock *sk, int size, int partial,
1203 			     bool rx_queue_lock_held)
1204 {
1205 	struct udp_sock *up = udp_sk(sk);
1206 	struct sk_buff_head *sk_queue;
1207 	int amt;
1208 
1209 	if (likely(partial)) {
1210 		up->forward_deficit += size;
1211 		size = up->forward_deficit;
1212 		if (size < (sk->sk_rcvbuf >> 2))
1213 			return;
1214 	} else {
1215 		size += up->forward_deficit;
1216 	}
1217 	up->forward_deficit = 0;
1218 
1219 	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1220 	 * if the called don't held it already
1221 	 */
1222 	sk_queue = &sk->sk_receive_queue;
1223 	if (!rx_queue_lock_held)
1224 		spin_lock(&sk_queue->lock);
1225 
1226 
1227 	sk->sk_forward_alloc += size;
1228 	amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1);
1229 	sk->sk_forward_alloc -= amt;
1230 
1231 	if (amt)
1232 		__sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT);
1233 
1234 	atomic_sub(size, &sk->sk_rmem_alloc);
1235 
1236 	/* this can save us from acquiring the rx queue lock on next receive */
1237 	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1238 
1239 	if (!rx_queue_lock_held)
1240 		spin_unlock(&sk_queue->lock);
1241 }
1242 
1243 /* Note: called with reader_queue.lock held.
1244  * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1245  * This avoids a cache line miss while receive_queue lock is held.
1246  * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1247  */
1248 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1249 {
1250 	prefetch(&skb->data);
1251 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1252 }
1253 EXPORT_SYMBOL(udp_skb_destructor);
1254 
1255 /* as above, but the caller held the rx queue lock, too */
1256 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1257 {
1258 	prefetch(&skb->data);
1259 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1260 }
1261 
1262 /* Idea of busylocks is to let producers grab an extra spinlock
1263  * to relieve pressure on the receive_queue spinlock shared by consumer.
1264  * Under flood, this means that only one producer can be in line
1265  * trying to acquire the receive_queue spinlock.
1266  * These busylock can be allocated on a per cpu manner, instead of a
1267  * per socket one (that would consume a cache line per socket)
1268  */
1269 static int udp_busylocks_log __read_mostly;
1270 static spinlock_t *udp_busylocks __read_mostly;
1271 
1272 static spinlock_t *busylock_acquire(void *ptr)
1273 {
1274 	spinlock_t *busy;
1275 
1276 	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1277 	spin_lock(busy);
1278 	return busy;
1279 }
1280 
1281 static void busylock_release(spinlock_t *busy)
1282 {
1283 	if (busy)
1284 		spin_unlock(busy);
1285 }
1286 
1287 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1288 {
1289 	struct sk_buff_head *list = &sk->sk_receive_queue;
1290 	int rmem, delta, amt, err = -ENOMEM;
1291 	spinlock_t *busy = NULL;
1292 	int size;
1293 
1294 	/* try to avoid the costly atomic add/sub pair when the receive
1295 	 * queue is full; always allow at least a packet
1296 	 */
1297 	rmem = atomic_read(&sk->sk_rmem_alloc);
1298 	if (rmem > sk->sk_rcvbuf)
1299 		goto drop;
1300 
1301 	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1302 	 * having linear skbs :
1303 	 * - Reduce memory overhead and thus increase receive queue capacity
1304 	 * - Less cache line misses at copyout() time
1305 	 * - Less work at consume_skb() (less alien page frag freeing)
1306 	 */
1307 	if (rmem > (sk->sk_rcvbuf >> 1)) {
1308 		skb_condense(skb);
1309 
1310 		busy = busylock_acquire(sk);
1311 	}
1312 	size = skb->truesize;
1313 	udp_set_dev_scratch(skb);
1314 
1315 	/* we drop only if the receive buf is full and the receive
1316 	 * queue contains some other skb
1317 	 */
1318 	rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1319 	if (rmem > (size + sk->sk_rcvbuf))
1320 		goto uncharge_drop;
1321 
1322 	spin_lock(&list->lock);
1323 	if (size >= sk->sk_forward_alloc) {
1324 		amt = sk_mem_pages(size);
1325 		delta = amt << SK_MEM_QUANTUM_SHIFT;
1326 		if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) {
1327 			err = -ENOBUFS;
1328 			spin_unlock(&list->lock);
1329 			goto uncharge_drop;
1330 		}
1331 
1332 		sk->sk_forward_alloc += delta;
1333 	}
1334 
1335 	sk->sk_forward_alloc -= size;
1336 
1337 	/* no need to setup a destructor, we will explicitly release the
1338 	 * forward allocated memory on dequeue
1339 	 */
1340 	sock_skb_set_dropcount(sk, skb);
1341 
1342 	__skb_queue_tail(list, skb);
1343 	spin_unlock(&list->lock);
1344 
1345 	if (!sock_flag(sk, SOCK_DEAD))
1346 		sk->sk_data_ready(sk);
1347 
1348 	busylock_release(busy);
1349 	return 0;
1350 
1351 uncharge_drop:
1352 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1353 
1354 drop:
1355 	atomic_inc(&sk->sk_drops);
1356 	busylock_release(busy);
1357 	return err;
1358 }
1359 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1360 
1361 void udp_destruct_sock(struct sock *sk)
1362 {
1363 	/* reclaim completely the forward allocated memory */
1364 	struct udp_sock *up = udp_sk(sk);
1365 	unsigned int total = 0;
1366 	struct sk_buff *skb;
1367 
1368 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1369 	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1370 		total += skb->truesize;
1371 		kfree_skb(skb);
1372 	}
1373 	udp_rmem_release(sk, total, 0, true);
1374 
1375 	inet_sock_destruct(sk);
1376 }
1377 EXPORT_SYMBOL_GPL(udp_destruct_sock);
1378 
1379 int udp_init_sock(struct sock *sk)
1380 {
1381 	skb_queue_head_init(&udp_sk(sk)->reader_queue);
1382 	sk->sk_destruct = udp_destruct_sock;
1383 	return 0;
1384 }
1385 EXPORT_SYMBOL_GPL(udp_init_sock);
1386 
1387 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1388 {
1389 	if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1390 		bool slow = lock_sock_fast(sk);
1391 
1392 		sk_peek_offset_bwd(sk, len);
1393 		unlock_sock_fast(sk, slow);
1394 	}
1395 
1396 	if (!skb_unref(skb))
1397 		return;
1398 
1399 	/* In the more common cases we cleared the head states previously,
1400 	 * see __udp_queue_rcv_skb().
1401 	 */
1402 	if (unlikely(udp_skb_has_head_state(skb)))
1403 		skb_release_head_state(skb);
1404 	__consume_stateless_skb(skb);
1405 }
1406 EXPORT_SYMBOL_GPL(skb_consume_udp);
1407 
1408 static struct sk_buff *__first_packet_length(struct sock *sk,
1409 					     struct sk_buff_head *rcvq,
1410 					     int *total)
1411 {
1412 	struct sk_buff *skb;
1413 
1414 	while ((skb = skb_peek(rcvq)) != NULL) {
1415 		if (udp_lib_checksum_complete(skb)) {
1416 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1417 					IS_UDPLITE(sk));
1418 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1419 					IS_UDPLITE(sk));
1420 			atomic_inc(&sk->sk_drops);
1421 			__skb_unlink(skb, rcvq);
1422 			*total += skb->truesize;
1423 			kfree_skb(skb);
1424 		} else {
1425 			/* the csum related bits could be changed, refresh
1426 			 * the scratch area
1427 			 */
1428 			udp_set_dev_scratch(skb);
1429 			break;
1430 		}
1431 	}
1432 	return skb;
1433 }
1434 
1435 /**
1436  *	first_packet_length	- return length of first packet in receive queue
1437  *	@sk: socket
1438  *
1439  *	Drops all bad checksum frames, until a valid one is found.
1440  *	Returns the length of found skb, or -1 if none is found.
1441  */
1442 static int first_packet_length(struct sock *sk)
1443 {
1444 	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1445 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1446 	struct sk_buff *skb;
1447 	int total = 0;
1448 	int res;
1449 
1450 	spin_lock_bh(&rcvq->lock);
1451 	skb = __first_packet_length(sk, rcvq, &total);
1452 	if (!skb && !skb_queue_empty(sk_queue)) {
1453 		spin_lock(&sk_queue->lock);
1454 		skb_queue_splice_tail_init(sk_queue, rcvq);
1455 		spin_unlock(&sk_queue->lock);
1456 
1457 		skb = __first_packet_length(sk, rcvq, &total);
1458 	}
1459 	res = skb ? skb->len : -1;
1460 	if (total)
1461 		udp_rmem_release(sk, total, 1, false);
1462 	spin_unlock_bh(&rcvq->lock);
1463 	return res;
1464 }
1465 
1466 /*
1467  *	IOCTL requests applicable to the UDP protocol
1468  */
1469 
1470 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1471 {
1472 	switch (cmd) {
1473 	case SIOCOUTQ:
1474 	{
1475 		int amount = sk_wmem_alloc_get(sk);
1476 
1477 		return put_user(amount, (int __user *)arg);
1478 	}
1479 
1480 	case SIOCINQ:
1481 	{
1482 		int amount = max_t(int, 0, first_packet_length(sk));
1483 
1484 		return put_user(amount, (int __user *)arg);
1485 	}
1486 
1487 	default:
1488 		return -ENOIOCTLCMD;
1489 	}
1490 
1491 	return 0;
1492 }
1493 EXPORT_SYMBOL(udp_ioctl);
1494 
1495 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1496 			       int noblock, int *peeked, int *off, int *err)
1497 {
1498 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1499 	struct sk_buff_head *queue;
1500 	struct sk_buff *last;
1501 	long timeo;
1502 	int error;
1503 
1504 	queue = &udp_sk(sk)->reader_queue;
1505 	flags |= noblock ? MSG_DONTWAIT : 0;
1506 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1507 	do {
1508 		struct sk_buff *skb;
1509 
1510 		error = sock_error(sk);
1511 		if (error)
1512 			break;
1513 
1514 		error = -EAGAIN;
1515 		*peeked = 0;
1516 		do {
1517 			spin_lock_bh(&queue->lock);
1518 			skb = __skb_try_recv_from_queue(sk, queue, flags,
1519 							udp_skb_destructor,
1520 							peeked, off, err,
1521 							&last);
1522 			if (skb) {
1523 				spin_unlock_bh(&queue->lock);
1524 				return skb;
1525 			}
1526 
1527 			if (skb_queue_empty(sk_queue)) {
1528 				spin_unlock_bh(&queue->lock);
1529 				goto busy_check;
1530 			}
1531 
1532 			/* refill the reader queue and walk it again
1533 			 * keep both queues locked to avoid re-acquiring
1534 			 * the sk_receive_queue lock if fwd memory scheduling
1535 			 * is needed.
1536 			 */
1537 			spin_lock(&sk_queue->lock);
1538 			skb_queue_splice_tail_init(sk_queue, queue);
1539 
1540 			skb = __skb_try_recv_from_queue(sk, queue, flags,
1541 							udp_skb_dtor_locked,
1542 							peeked, off, err,
1543 							&last);
1544 			spin_unlock(&sk_queue->lock);
1545 			spin_unlock_bh(&queue->lock);
1546 			if (skb)
1547 				return skb;
1548 
1549 busy_check:
1550 			if (!sk_can_busy_loop(sk))
1551 				break;
1552 
1553 			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1554 		} while (!skb_queue_empty(sk_queue));
1555 
1556 		/* sk_queue is empty, reader_queue may contain peeked packets */
1557 	} while (timeo &&
1558 		 !__skb_wait_for_more_packets(sk, &error, &timeo,
1559 					      (struct sk_buff *)sk_queue));
1560 
1561 	*err = error;
1562 	return NULL;
1563 }
1564 EXPORT_SYMBOL_GPL(__skb_recv_udp);
1565 
1566 /*
1567  * 	This should be easy, if there is something there we
1568  * 	return it, otherwise we block.
1569  */
1570 
1571 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1572 		int flags, int *addr_len)
1573 {
1574 	struct inet_sock *inet = inet_sk(sk);
1575 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1576 	struct sk_buff *skb;
1577 	unsigned int ulen, copied;
1578 	int peeked, peeking, off;
1579 	int err;
1580 	int is_udplite = IS_UDPLITE(sk);
1581 	bool checksum_valid = false;
1582 
1583 	if (flags & MSG_ERRQUEUE)
1584 		return ip_recv_error(sk, msg, len, addr_len);
1585 
1586 try_again:
1587 	peeking = flags & MSG_PEEK;
1588 	off = sk_peek_offset(sk, flags);
1589 	skb = __skb_recv_udp(sk, flags, noblock, &peeked, &off, &err);
1590 	if (!skb)
1591 		return err;
1592 
1593 	ulen = udp_skb_len(skb);
1594 	copied = len;
1595 	if (copied > ulen - off)
1596 		copied = ulen - off;
1597 	else if (copied < ulen)
1598 		msg->msg_flags |= MSG_TRUNC;
1599 
1600 	/*
1601 	 * If checksum is needed at all, try to do it while copying the
1602 	 * data.  If the data is truncated, or if we only want a partial
1603 	 * coverage checksum (UDP-Lite), do it before the copy.
1604 	 */
1605 
1606 	if (copied < ulen || peeking ||
1607 	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1608 		checksum_valid = udp_skb_csum_unnecessary(skb) ||
1609 				!__udp_lib_checksum_complete(skb);
1610 		if (!checksum_valid)
1611 			goto csum_copy_err;
1612 	}
1613 
1614 	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1615 		if (udp_skb_is_linear(skb))
1616 			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1617 		else
1618 			err = skb_copy_datagram_msg(skb, off, msg, copied);
1619 	} else {
1620 		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1621 
1622 		if (err == -EINVAL)
1623 			goto csum_copy_err;
1624 	}
1625 
1626 	if (unlikely(err)) {
1627 		if (!peeked) {
1628 			atomic_inc(&sk->sk_drops);
1629 			UDP_INC_STATS(sock_net(sk),
1630 				      UDP_MIB_INERRORS, is_udplite);
1631 		}
1632 		kfree_skb(skb);
1633 		return err;
1634 	}
1635 
1636 	if (!peeked)
1637 		UDP_INC_STATS(sock_net(sk),
1638 			      UDP_MIB_INDATAGRAMS, is_udplite);
1639 
1640 	sock_recv_ts_and_drops(msg, sk, skb);
1641 
1642 	/* Copy the address. */
1643 	if (sin) {
1644 		sin->sin_family = AF_INET;
1645 		sin->sin_port = udp_hdr(skb)->source;
1646 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1647 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1648 		*addr_len = sizeof(*sin);
1649 	}
1650 	if (inet->cmsg_flags)
1651 		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1652 
1653 	err = copied;
1654 	if (flags & MSG_TRUNC)
1655 		err = ulen;
1656 
1657 	skb_consume_udp(sk, skb, peeking ? -err : err);
1658 	return err;
1659 
1660 csum_copy_err:
1661 	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1662 				 udp_skb_destructor)) {
1663 		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1664 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1665 	}
1666 	kfree_skb(skb);
1667 
1668 	/* starting over for a new packet, but check if we need to yield */
1669 	cond_resched();
1670 	msg->msg_flags &= ~MSG_TRUNC;
1671 	goto try_again;
1672 }
1673 
1674 int __udp_disconnect(struct sock *sk, int flags)
1675 {
1676 	struct inet_sock *inet = inet_sk(sk);
1677 	/*
1678 	 *	1003.1g - break association.
1679 	 */
1680 
1681 	sk->sk_state = TCP_CLOSE;
1682 	inet->inet_daddr = 0;
1683 	inet->inet_dport = 0;
1684 	sock_rps_reset_rxhash(sk);
1685 	sk->sk_bound_dev_if = 0;
1686 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1687 		inet_reset_saddr(sk);
1688 
1689 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1690 		sk->sk_prot->unhash(sk);
1691 		inet->inet_sport = 0;
1692 	}
1693 	sk_dst_reset(sk);
1694 	return 0;
1695 }
1696 EXPORT_SYMBOL(__udp_disconnect);
1697 
1698 int udp_disconnect(struct sock *sk, int flags)
1699 {
1700 	lock_sock(sk);
1701 	__udp_disconnect(sk, flags);
1702 	release_sock(sk);
1703 	return 0;
1704 }
1705 EXPORT_SYMBOL(udp_disconnect);
1706 
1707 void udp_lib_unhash(struct sock *sk)
1708 {
1709 	if (sk_hashed(sk)) {
1710 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1711 		struct udp_hslot *hslot, *hslot2;
1712 
1713 		hslot  = udp_hashslot(udptable, sock_net(sk),
1714 				      udp_sk(sk)->udp_port_hash);
1715 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1716 
1717 		spin_lock_bh(&hslot->lock);
1718 		if (rcu_access_pointer(sk->sk_reuseport_cb))
1719 			reuseport_detach_sock(sk);
1720 		if (sk_del_node_init_rcu(sk)) {
1721 			hslot->count--;
1722 			inet_sk(sk)->inet_num = 0;
1723 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1724 
1725 			spin_lock(&hslot2->lock);
1726 			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1727 			hslot2->count--;
1728 			spin_unlock(&hslot2->lock);
1729 		}
1730 		spin_unlock_bh(&hslot->lock);
1731 	}
1732 }
1733 EXPORT_SYMBOL(udp_lib_unhash);
1734 
1735 /*
1736  * inet_rcv_saddr was changed, we must rehash secondary hash
1737  */
1738 void udp_lib_rehash(struct sock *sk, u16 newhash)
1739 {
1740 	if (sk_hashed(sk)) {
1741 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1742 		struct udp_hslot *hslot, *hslot2, *nhslot2;
1743 
1744 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1745 		nhslot2 = udp_hashslot2(udptable, newhash);
1746 		udp_sk(sk)->udp_portaddr_hash = newhash;
1747 
1748 		if (hslot2 != nhslot2 ||
1749 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
1750 			hslot = udp_hashslot(udptable, sock_net(sk),
1751 					     udp_sk(sk)->udp_port_hash);
1752 			/* we must lock primary chain too */
1753 			spin_lock_bh(&hslot->lock);
1754 			if (rcu_access_pointer(sk->sk_reuseport_cb))
1755 				reuseport_detach_sock(sk);
1756 
1757 			if (hslot2 != nhslot2) {
1758 				spin_lock(&hslot2->lock);
1759 				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1760 				hslot2->count--;
1761 				spin_unlock(&hslot2->lock);
1762 
1763 				spin_lock(&nhslot2->lock);
1764 				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1765 							 &nhslot2->head);
1766 				nhslot2->count++;
1767 				spin_unlock(&nhslot2->lock);
1768 			}
1769 
1770 			spin_unlock_bh(&hslot->lock);
1771 		}
1772 	}
1773 }
1774 EXPORT_SYMBOL(udp_lib_rehash);
1775 
1776 static void udp_v4_rehash(struct sock *sk)
1777 {
1778 	u16 new_hash = udp4_portaddr_hash(sock_net(sk),
1779 					  inet_sk(sk)->inet_rcv_saddr,
1780 					  inet_sk(sk)->inet_num);
1781 	udp_lib_rehash(sk, new_hash);
1782 }
1783 
1784 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1785 {
1786 	int rc;
1787 
1788 	if (inet_sk(sk)->inet_daddr) {
1789 		sock_rps_save_rxhash(sk, skb);
1790 		sk_mark_napi_id(sk, skb);
1791 		sk_incoming_cpu_update(sk);
1792 	} else {
1793 		sk_mark_napi_id_once(sk, skb);
1794 	}
1795 
1796 	rc = __udp_enqueue_schedule_skb(sk, skb);
1797 	if (rc < 0) {
1798 		int is_udplite = IS_UDPLITE(sk);
1799 
1800 		/* Note that an ENOMEM error is charged twice */
1801 		if (rc == -ENOMEM)
1802 			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1803 					is_udplite);
1804 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1805 		kfree_skb(skb);
1806 		trace_udp_fail_queue_rcv_skb(rc, sk);
1807 		return -1;
1808 	}
1809 
1810 	return 0;
1811 }
1812 
1813 static struct static_key udp_encap_needed __read_mostly;
1814 void udp_encap_enable(void)
1815 {
1816 	static_key_enable(&udp_encap_needed);
1817 }
1818 EXPORT_SYMBOL(udp_encap_enable);
1819 
1820 /* returns:
1821  *  -1: error
1822  *   0: success
1823  *  >0: "udp encap" protocol resubmission
1824  *
1825  * Note that in the success and error cases, the skb is assumed to
1826  * have either been requeued or freed.
1827  */
1828 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1829 {
1830 	struct udp_sock *up = udp_sk(sk);
1831 	int is_udplite = IS_UDPLITE(sk);
1832 
1833 	/*
1834 	 *	Charge it to the socket, dropping if the queue is full.
1835 	 */
1836 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1837 		goto drop;
1838 	nf_reset(skb);
1839 
1840 	if (static_key_false(&udp_encap_needed) && up->encap_type) {
1841 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1842 
1843 		/*
1844 		 * This is an encapsulation socket so pass the skb to
1845 		 * the socket's udp_encap_rcv() hook. Otherwise, just
1846 		 * fall through and pass this up the UDP socket.
1847 		 * up->encap_rcv() returns the following value:
1848 		 * =0 if skb was successfully passed to the encap
1849 		 *    handler or was discarded by it.
1850 		 * >0 if skb should be passed on to UDP.
1851 		 * <0 if skb should be resubmitted as proto -N
1852 		 */
1853 
1854 		/* if we're overly short, let UDP handle it */
1855 		encap_rcv = ACCESS_ONCE(up->encap_rcv);
1856 		if (encap_rcv) {
1857 			int ret;
1858 
1859 			/* Verify checksum before giving to encap */
1860 			if (udp_lib_checksum_complete(skb))
1861 				goto csum_error;
1862 
1863 			ret = encap_rcv(sk, skb);
1864 			if (ret <= 0) {
1865 				__UDP_INC_STATS(sock_net(sk),
1866 						UDP_MIB_INDATAGRAMS,
1867 						is_udplite);
1868 				return -ret;
1869 			}
1870 		}
1871 
1872 		/* FALLTHROUGH -- it's a UDP Packet */
1873 	}
1874 
1875 	/*
1876 	 * 	UDP-Lite specific tests, ignored on UDP sockets
1877 	 */
1878 	if ((is_udplite & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
1879 
1880 		/*
1881 		 * MIB statistics other than incrementing the error count are
1882 		 * disabled for the following two types of errors: these depend
1883 		 * on the application settings, not on the functioning of the
1884 		 * protocol stack as such.
1885 		 *
1886 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
1887 		 * way ... to ... at least let the receiving application block
1888 		 * delivery of packets with coverage values less than a value
1889 		 * provided by the application."
1890 		 */
1891 		if (up->pcrlen == 0) {          /* full coverage was set  */
1892 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
1893 					    UDP_SKB_CB(skb)->cscov, skb->len);
1894 			goto drop;
1895 		}
1896 		/* The next case involves violating the min. coverage requested
1897 		 * by the receiver. This is subtle: if receiver wants x and x is
1898 		 * greater than the buffersize/MTU then receiver will complain
1899 		 * that it wants x while sender emits packets of smaller size y.
1900 		 * Therefore the above ...()->partial_cov statement is essential.
1901 		 */
1902 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
1903 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
1904 					    UDP_SKB_CB(skb)->cscov, up->pcrlen);
1905 			goto drop;
1906 		}
1907 	}
1908 
1909 	prefetch(&sk->sk_rmem_alloc);
1910 	if (rcu_access_pointer(sk->sk_filter) &&
1911 	    udp_lib_checksum_complete(skb))
1912 			goto csum_error;
1913 
1914 	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr)))
1915 		goto drop;
1916 
1917 	udp_csum_pull_header(skb);
1918 
1919 	ipv4_pktinfo_prepare(sk, skb);
1920 	return __udp_queue_rcv_skb(sk, skb);
1921 
1922 csum_error:
1923 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1924 drop:
1925 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1926 	atomic_inc(&sk->sk_drops);
1927 	kfree_skb(skb);
1928 	return -1;
1929 }
1930 
1931 /* For TCP sockets, sk_rx_dst is protected by socket lock
1932  * For UDP, we use xchg() to guard against concurrent changes.
1933  */
1934 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
1935 {
1936 	struct dst_entry *old;
1937 
1938 	if (dst_hold_safe(dst)) {
1939 		old = xchg(&sk->sk_rx_dst, dst);
1940 		dst_release(old);
1941 		return old != dst;
1942 	}
1943 	return false;
1944 }
1945 EXPORT_SYMBOL(udp_sk_rx_dst_set);
1946 
1947 /*
1948  *	Multicasts and broadcasts go to each listener.
1949  *
1950  *	Note: called only from the BH handler context.
1951  */
1952 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1953 				    struct udphdr  *uh,
1954 				    __be32 saddr, __be32 daddr,
1955 				    struct udp_table *udptable,
1956 				    int proto)
1957 {
1958 	struct sock *sk, *first = NULL;
1959 	unsigned short hnum = ntohs(uh->dest);
1960 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
1961 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
1962 	unsigned int offset = offsetof(typeof(*sk), sk_node);
1963 	int dif = skb->dev->ifindex;
1964 	int sdif = inet_sdif(skb);
1965 	struct hlist_node *node;
1966 	struct sk_buff *nskb;
1967 
1968 	if (use_hash2) {
1969 		hash2_any = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
1970 			    udptable->mask;
1971 		hash2 = udp4_portaddr_hash(net, daddr, hnum) & udptable->mask;
1972 start_lookup:
1973 		hslot = &udptable->hash2[hash2];
1974 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
1975 	}
1976 
1977 	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
1978 		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
1979 					 uh->source, saddr, dif, sdif, hnum))
1980 			continue;
1981 
1982 		if (!first) {
1983 			first = sk;
1984 			continue;
1985 		}
1986 		nskb = skb_clone(skb, GFP_ATOMIC);
1987 
1988 		if (unlikely(!nskb)) {
1989 			atomic_inc(&sk->sk_drops);
1990 			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
1991 					IS_UDPLITE(sk));
1992 			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
1993 					IS_UDPLITE(sk));
1994 			continue;
1995 		}
1996 		if (udp_queue_rcv_skb(sk, nskb) > 0)
1997 			consume_skb(nskb);
1998 	}
1999 
2000 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2001 	if (use_hash2 && hash2 != hash2_any) {
2002 		hash2 = hash2_any;
2003 		goto start_lookup;
2004 	}
2005 
2006 	if (first) {
2007 		if (udp_queue_rcv_skb(first, skb) > 0)
2008 			consume_skb(skb);
2009 	} else {
2010 		kfree_skb(skb);
2011 		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2012 				proto == IPPROTO_UDPLITE);
2013 	}
2014 	return 0;
2015 }
2016 
2017 /* Initialize UDP checksum. If exited with zero value (success),
2018  * CHECKSUM_UNNECESSARY means, that no more checks are required.
2019  * Otherwise, csum completion requires chacksumming packet body,
2020  * including udp header and folding it to skb->csum.
2021  */
2022 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2023 				 int proto)
2024 {
2025 	int err;
2026 
2027 	UDP_SKB_CB(skb)->partial_cov = 0;
2028 	UDP_SKB_CB(skb)->cscov = skb->len;
2029 
2030 	if (proto == IPPROTO_UDPLITE) {
2031 		err = udplite_checksum_init(skb, uh);
2032 		if (err)
2033 			return err;
2034 	}
2035 
2036 	/* Note, we are only interested in != 0 or == 0, thus the
2037 	 * force to int.
2038 	 */
2039 	return (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2040 							 inet_compute_pseudo);
2041 }
2042 
2043 /*
2044  *	All we need to do is get the socket, and then do a checksum.
2045  */
2046 
2047 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2048 		   int proto)
2049 {
2050 	struct sock *sk;
2051 	struct udphdr *uh;
2052 	unsigned short ulen;
2053 	struct rtable *rt = skb_rtable(skb);
2054 	__be32 saddr, daddr;
2055 	struct net *net = dev_net(skb->dev);
2056 
2057 	/*
2058 	 *  Validate the packet.
2059 	 */
2060 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2061 		goto drop;		/* No space for header. */
2062 
2063 	uh   = udp_hdr(skb);
2064 	ulen = ntohs(uh->len);
2065 	saddr = ip_hdr(skb)->saddr;
2066 	daddr = ip_hdr(skb)->daddr;
2067 
2068 	if (ulen > skb->len)
2069 		goto short_packet;
2070 
2071 	if (proto == IPPROTO_UDP) {
2072 		/* UDP validates ulen. */
2073 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2074 			goto short_packet;
2075 		uh = udp_hdr(skb);
2076 	}
2077 
2078 	if (udp4_csum_init(skb, uh, proto))
2079 		goto csum_error;
2080 
2081 	sk = skb_steal_sock(skb);
2082 	if (sk) {
2083 		struct dst_entry *dst = skb_dst(skb);
2084 		int ret;
2085 
2086 		if (unlikely(sk->sk_rx_dst != dst))
2087 			udp_sk_rx_dst_set(sk, dst);
2088 
2089 		ret = udp_queue_rcv_skb(sk, skb);
2090 		sock_put(sk);
2091 		/* a return value > 0 means to resubmit the input, but
2092 		 * it wants the return to be -protocol, or 0
2093 		 */
2094 		if (ret > 0)
2095 			return -ret;
2096 		return 0;
2097 	}
2098 
2099 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2100 		return __udp4_lib_mcast_deliver(net, skb, uh,
2101 						saddr, daddr, udptable, proto);
2102 
2103 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2104 	if (sk) {
2105 		int ret;
2106 
2107 		if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2108 			skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check,
2109 						 inet_compute_pseudo);
2110 
2111 		ret = udp_queue_rcv_skb(sk, skb);
2112 
2113 		/* a return value > 0 means to resubmit the input, but
2114 		 * it wants the return to be -protocol, or 0
2115 		 */
2116 		if (ret > 0)
2117 			return -ret;
2118 		return 0;
2119 	}
2120 
2121 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2122 		goto drop;
2123 	nf_reset(skb);
2124 
2125 	/* No socket. Drop packet silently, if checksum is wrong */
2126 	if (udp_lib_checksum_complete(skb))
2127 		goto csum_error;
2128 
2129 	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2130 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2131 
2132 	/*
2133 	 * Hmm.  We got an UDP packet to a port to which we
2134 	 * don't wanna listen.  Ignore it.
2135 	 */
2136 	kfree_skb(skb);
2137 	return 0;
2138 
2139 short_packet:
2140 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2141 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2142 			    &saddr, ntohs(uh->source),
2143 			    ulen, skb->len,
2144 			    &daddr, ntohs(uh->dest));
2145 	goto drop;
2146 
2147 csum_error:
2148 	/*
2149 	 * RFC1122: OK.  Discards the bad packet silently (as far as
2150 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2151 	 */
2152 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2153 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2154 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2155 			    ulen);
2156 	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2157 drop:
2158 	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2159 	kfree_skb(skb);
2160 	return 0;
2161 }
2162 
2163 /* We can only early demux multicast if there is a single matching socket.
2164  * If more than one socket found returns NULL
2165  */
2166 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2167 						  __be16 loc_port, __be32 loc_addr,
2168 						  __be16 rmt_port, __be32 rmt_addr,
2169 						  int dif, int sdif)
2170 {
2171 	struct sock *sk, *result;
2172 	unsigned short hnum = ntohs(loc_port);
2173 	unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
2174 	struct udp_hslot *hslot = &udp_table.hash[slot];
2175 
2176 	/* Do not bother scanning a too big list */
2177 	if (hslot->count > 10)
2178 		return NULL;
2179 
2180 	result = NULL;
2181 	sk_for_each_rcu(sk, &hslot->head) {
2182 		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2183 					rmt_port, rmt_addr, dif, sdif, hnum)) {
2184 			if (result)
2185 				return NULL;
2186 			result = sk;
2187 		}
2188 	}
2189 
2190 	return result;
2191 }
2192 
2193 /* For unicast we should only early demux connected sockets or we can
2194  * break forwarding setups.  The chains here can be long so only check
2195  * if the first socket is an exact match and if not move on.
2196  */
2197 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2198 					    __be16 loc_port, __be32 loc_addr,
2199 					    __be16 rmt_port, __be32 rmt_addr,
2200 					    int dif, int sdif)
2201 {
2202 	unsigned short hnum = ntohs(loc_port);
2203 	unsigned int hash2 = udp4_portaddr_hash(net, loc_addr, hnum);
2204 	unsigned int slot2 = hash2 & udp_table.mask;
2205 	struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
2206 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2207 	const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
2208 	struct sock *sk;
2209 
2210 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2211 		if (INET_MATCH(sk, net, acookie, rmt_addr,
2212 			       loc_addr, ports, dif, sdif))
2213 			return sk;
2214 		/* Only check first socket in chain */
2215 		break;
2216 	}
2217 	return NULL;
2218 }
2219 
2220 int udp_v4_early_demux(struct sk_buff *skb)
2221 {
2222 	struct net *net = dev_net(skb->dev);
2223 	struct in_device *in_dev = NULL;
2224 	const struct iphdr *iph;
2225 	const struct udphdr *uh;
2226 	struct sock *sk = NULL;
2227 	struct dst_entry *dst;
2228 	int dif = skb->dev->ifindex;
2229 	int sdif = inet_sdif(skb);
2230 	int ours;
2231 
2232 	/* validate the packet */
2233 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2234 		return 0;
2235 
2236 	iph = ip_hdr(skb);
2237 	uh = udp_hdr(skb);
2238 
2239 	if (skb->pkt_type == PACKET_MULTICAST) {
2240 		in_dev = __in_dev_get_rcu(skb->dev);
2241 
2242 		if (!in_dev)
2243 			return 0;
2244 
2245 		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2246 				       iph->protocol);
2247 		if (!ours)
2248 			return 0;
2249 
2250 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2251 						   uh->source, iph->saddr,
2252 						   dif, sdif);
2253 	} else if (skb->pkt_type == PACKET_HOST) {
2254 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2255 					     uh->source, iph->saddr, dif, sdif);
2256 	}
2257 
2258 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2259 		return 0;
2260 
2261 	skb->sk = sk;
2262 	skb->destructor = sock_efree;
2263 	dst = READ_ONCE(sk->sk_rx_dst);
2264 
2265 	if (dst)
2266 		dst = dst_check(dst, 0);
2267 	if (dst) {
2268 		u32 itag = 0;
2269 
2270 		/* set noref for now.
2271 		 * any place which wants to hold dst has to call
2272 		 * dst_hold_safe()
2273 		 */
2274 		skb_dst_set_noref(skb, dst);
2275 
2276 		/* for unconnected multicast sockets we need to validate
2277 		 * the source on each packet
2278 		 */
2279 		if (!inet_sk(sk)->inet_daddr && in_dev)
2280 			return ip_mc_validate_source(skb, iph->daddr,
2281 						     iph->saddr, iph->tos,
2282 						     skb->dev, in_dev, &itag);
2283 	}
2284 	return 0;
2285 }
2286 
2287 int udp_rcv(struct sk_buff *skb)
2288 {
2289 	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2290 }
2291 
2292 void udp_destroy_sock(struct sock *sk)
2293 {
2294 	struct udp_sock *up = udp_sk(sk);
2295 	bool slow = lock_sock_fast(sk);
2296 	udp_flush_pending_frames(sk);
2297 	unlock_sock_fast(sk, slow);
2298 	if (static_key_false(&udp_encap_needed) && up->encap_type) {
2299 		void (*encap_destroy)(struct sock *sk);
2300 		encap_destroy = ACCESS_ONCE(up->encap_destroy);
2301 		if (encap_destroy)
2302 			encap_destroy(sk);
2303 	}
2304 }
2305 
2306 /*
2307  *	Socket option code for UDP
2308  */
2309 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2310 		       char __user *optval, unsigned int optlen,
2311 		       int (*push_pending_frames)(struct sock *))
2312 {
2313 	struct udp_sock *up = udp_sk(sk);
2314 	int val, valbool;
2315 	int err = 0;
2316 	int is_udplite = IS_UDPLITE(sk);
2317 
2318 	if (optlen < sizeof(int))
2319 		return -EINVAL;
2320 
2321 	if (get_user(val, (int __user *)optval))
2322 		return -EFAULT;
2323 
2324 	valbool = val ? 1 : 0;
2325 
2326 	switch (optname) {
2327 	case UDP_CORK:
2328 		if (val != 0) {
2329 			up->corkflag = 1;
2330 		} else {
2331 			up->corkflag = 0;
2332 			lock_sock(sk);
2333 			push_pending_frames(sk);
2334 			release_sock(sk);
2335 		}
2336 		break;
2337 
2338 	case UDP_ENCAP:
2339 		switch (val) {
2340 		case 0:
2341 		case UDP_ENCAP_ESPINUDP:
2342 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2343 			up->encap_rcv = xfrm4_udp_encap_rcv;
2344 			/* FALLTHROUGH */
2345 		case UDP_ENCAP_L2TPINUDP:
2346 			up->encap_type = val;
2347 			udp_encap_enable();
2348 			break;
2349 		default:
2350 			err = -ENOPROTOOPT;
2351 			break;
2352 		}
2353 		break;
2354 
2355 	case UDP_NO_CHECK6_TX:
2356 		up->no_check6_tx = valbool;
2357 		break;
2358 
2359 	case UDP_NO_CHECK6_RX:
2360 		up->no_check6_rx = valbool;
2361 		break;
2362 
2363 	/*
2364 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2365 	 */
2366 	/* The sender sets actual checksum coverage length via this option.
2367 	 * The case coverage > packet length is handled by send module. */
2368 	case UDPLITE_SEND_CSCOV:
2369 		if (!is_udplite)         /* Disable the option on UDP sockets */
2370 			return -ENOPROTOOPT;
2371 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2372 			val = 8;
2373 		else if (val > USHRT_MAX)
2374 			val = USHRT_MAX;
2375 		up->pcslen = val;
2376 		up->pcflag |= UDPLITE_SEND_CC;
2377 		break;
2378 
2379 	/* The receiver specifies a minimum checksum coverage value. To make
2380 	 * sense, this should be set to at least 8 (as done below). If zero is
2381 	 * used, this again means full checksum coverage.                     */
2382 	case UDPLITE_RECV_CSCOV:
2383 		if (!is_udplite)         /* Disable the option on UDP sockets */
2384 			return -ENOPROTOOPT;
2385 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2386 			val = 8;
2387 		else if (val > USHRT_MAX)
2388 			val = USHRT_MAX;
2389 		up->pcrlen = val;
2390 		up->pcflag |= UDPLITE_RECV_CC;
2391 		break;
2392 
2393 	default:
2394 		err = -ENOPROTOOPT;
2395 		break;
2396 	}
2397 
2398 	return err;
2399 }
2400 EXPORT_SYMBOL(udp_lib_setsockopt);
2401 
2402 int udp_setsockopt(struct sock *sk, int level, int optname,
2403 		   char __user *optval, unsigned int optlen)
2404 {
2405 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2406 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2407 					  udp_push_pending_frames);
2408 	return ip_setsockopt(sk, level, optname, optval, optlen);
2409 }
2410 
2411 #ifdef CONFIG_COMPAT
2412 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2413 			  char __user *optval, unsigned int optlen)
2414 {
2415 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2416 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2417 					  udp_push_pending_frames);
2418 	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2419 }
2420 #endif
2421 
2422 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2423 		       char __user *optval, int __user *optlen)
2424 {
2425 	struct udp_sock *up = udp_sk(sk);
2426 	int val, len;
2427 
2428 	if (get_user(len, optlen))
2429 		return -EFAULT;
2430 
2431 	len = min_t(unsigned int, len, sizeof(int));
2432 
2433 	if (len < 0)
2434 		return -EINVAL;
2435 
2436 	switch (optname) {
2437 	case UDP_CORK:
2438 		val = up->corkflag;
2439 		break;
2440 
2441 	case UDP_ENCAP:
2442 		val = up->encap_type;
2443 		break;
2444 
2445 	case UDP_NO_CHECK6_TX:
2446 		val = up->no_check6_tx;
2447 		break;
2448 
2449 	case UDP_NO_CHECK6_RX:
2450 		val = up->no_check6_rx;
2451 		break;
2452 
2453 	/* The following two cannot be changed on UDP sockets, the return is
2454 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2455 	case UDPLITE_SEND_CSCOV:
2456 		val = up->pcslen;
2457 		break;
2458 
2459 	case UDPLITE_RECV_CSCOV:
2460 		val = up->pcrlen;
2461 		break;
2462 
2463 	default:
2464 		return -ENOPROTOOPT;
2465 	}
2466 
2467 	if (put_user(len, optlen))
2468 		return -EFAULT;
2469 	if (copy_to_user(optval, &val, len))
2470 		return -EFAULT;
2471 	return 0;
2472 }
2473 EXPORT_SYMBOL(udp_lib_getsockopt);
2474 
2475 int udp_getsockopt(struct sock *sk, int level, int optname,
2476 		   char __user *optval, int __user *optlen)
2477 {
2478 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2479 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2480 	return ip_getsockopt(sk, level, optname, optval, optlen);
2481 }
2482 
2483 #ifdef CONFIG_COMPAT
2484 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2485 				 char __user *optval, int __user *optlen)
2486 {
2487 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2488 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2489 	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2490 }
2491 #endif
2492 /**
2493  * 	udp_poll - wait for a UDP event.
2494  *	@file - file struct
2495  *	@sock - socket
2496  *	@wait - poll table
2497  *
2498  *	This is same as datagram poll, except for the special case of
2499  *	blocking sockets. If application is using a blocking fd
2500  *	and a packet with checksum error is in the queue;
2501  *	then it could get return from select indicating data available
2502  *	but then block when reading it. Add special case code
2503  *	to work around these arguably broken applications.
2504  */
2505 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2506 {
2507 	unsigned int mask = datagram_poll(file, sock, wait);
2508 	struct sock *sk = sock->sk;
2509 
2510 	if (!skb_queue_empty(&udp_sk(sk)->reader_queue))
2511 		mask |= POLLIN | POLLRDNORM;
2512 
2513 	sock_rps_record_flow(sk);
2514 
2515 	/* Check for false positives due to checksum errors */
2516 	if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2517 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2518 		mask &= ~(POLLIN | POLLRDNORM);
2519 
2520 	return mask;
2521 
2522 }
2523 EXPORT_SYMBOL(udp_poll);
2524 
2525 int udp_abort(struct sock *sk, int err)
2526 {
2527 	lock_sock(sk);
2528 
2529 	sk->sk_err = err;
2530 	sk->sk_error_report(sk);
2531 	__udp_disconnect(sk, 0);
2532 
2533 	release_sock(sk);
2534 
2535 	return 0;
2536 }
2537 EXPORT_SYMBOL_GPL(udp_abort);
2538 
2539 struct proto udp_prot = {
2540 	.name		   = "UDP",
2541 	.owner		   = THIS_MODULE,
2542 	.close		   = udp_lib_close,
2543 	.connect	   = ip4_datagram_connect,
2544 	.disconnect	   = udp_disconnect,
2545 	.ioctl		   = udp_ioctl,
2546 	.init		   = udp_init_sock,
2547 	.destroy	   = udp_destroy_sock,
2548 	.setsockopt	   = udp_setsockopt,
2549 	.getsockopt	   = udp_getsockopt,
2550 	.sendmsg	   = udp_sendmsg,
2551 	.recvmsg	   = udp_recvmsg,
2552 	.sendpage	   = udp_sendpage,
2553 	.release_cb	   = ip4_datagram_release_cb,
2554 	.hash		   = udp_lib_hash,
2555 	.unhash		   = udp_lib_unhash,
2556 	.rehash		   = udp_v4_rehash,
2557 	.get_port	   = udp_v4_get_port,
2558 	.memory_allocated  = &udp_memory_allocated,
2559 	.sysctl_mem	   = sysctl_udp_mem,
2560 	.sysctl_wmem	   = &sysctl_udp_wmem_min,
2561 	.sysctl_rmem	   = &sysctl_udp_rmem_min,
2562 	.obj_size	   = sizeof(struct udp_sock),
2563 	.h.udp_table	   = &udp_table,
2564 #ifdef CONFIG_COMPAT
2565 	.compat_setsockopt = compat_udp_setsockopt,
2566 	.compat_getsockopt = compat_udp_getsockopt,
2567 #endif
2568 	.diag_destroy	   = udp_abort,
2569 };
2570 EXPORT_SYMBOL(udp_prot);
2571 
2572 /* ------------------------------------------------------------------------ */
2573 #ifdef CONFIG_PROC_FS
2574 
2575 static struct sock *udp_get_first(struct seq_file *seq, int start)
2576 {
2577 	struct sock *sk;
2578 	struct udp_iter_state *state = seq->private;
2579 	struct net *net = seq_file_net(seq);
2580 
2581 	for (state->bucket = start; state->bucket <= state->udp_table->mask;
2582 	     ++state->bucket) {
2583 		struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
2584 
2585 		if (hlist_empty(&hslot->head))
2586 			continue;
2587 
2588 		spin_lock_bh(&hslot->lock);
2589 		sk_for_each(sk, &hslot->head) {
2590 			if (!net_eq(sock_net(sk), net))
2591 				continue;
2592 			if (sk->sk_family == state->family)
2593 				goto found;
2594 		}
2595 		spin_unlock_bh(&hslot->lock);
2596 	}
2597 	sk = NULL;
2598 found:
2599 	return sk;
2600 }
2601 
2602 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2603 {
2604 	struct udp_iter_state *state = seq->private;
2605 	struct net *net = seq_file_net(seq);
2606 
2607 	do {
2608 		sk = sk_next(sk);
2609 	} while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
2610 
2611 	if (!sk) {
2612 		if (state->bucket <= state->udp_table->mask)
2613 			spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2614 		return udp_get_first(seq, state->bucket + 1);
2615 	}
2616 	return sk;
2617 }
2618 
2619 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2620 {
2621 	struct sock *sk = udp_get_first(seq, 0);
2622 
2623 	if (sk)
2624 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2625 			--pos;
2626 	return pos ? NULL : sk;
2627 }
2628 
2629 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2630 {
2631 	struct udp_iter_state *state = seq->private;
2632 	state->bucket = MAX_UDP_PORTS;
2633 
2634 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2635 }
2636 
2637 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2638 {
2639 	struct sock *sk;
2640 
2641 	if (v == SEQ_START_TOKEN)
2642 		sk = udp_get_idx(seq, 0);
2643 	else
2644 		sk = udp_get_next(seq, v);
2645 
2646 	++*pos;
2647 	return sk;
2648 }
2649 
2650 static void udp_seq_stop(struct seq_file *seq, void *v)
2651 {
2652 	struct udp_iter_state *state = seq->private;
2653 
2654 	if (state->bucket <= state->udp_table->mask)
2655 		spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2656 }
2657 
2658 int udp_seq_open(struct inode *inode, struct file *file)
2659 {
2660 	struct udp_seq_afinfo *afinfo = PDE_DATA(inode);
2661 	struct udp_iter_state *s;
2662 	int err;
2663 
2664 	err = seq_open_net(inode, file, &afinfo->seq_ops,
2665 			   sizeof(struct udp_iter_state));
2666 	if (err < 0)
2667 		return err;
2668 
2669 	s = ((struct seq_file *)file->private_data)->private;
2670 	s->family		= afinfo->family;
2671 	s->udp_table		= afinfo->udp_table;
2672 	return err;
2673 }
2674 EXPORT_SYMBOL(udp_seq_open);
2675 
2676 /* ------------------------------------------------------------------------ */
2677 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2678 {
2679 	struct proc_dir_entry *p;
2680 	int rc = 0;
2681 
2682 	afinfo->seq_ops.start		= udp_seq_start;
2683 	afinfo->seq_ops.next		= udp_seq_next;
2684 	afinfo->seq_ops.stop		= udp_seq_stop;
2685 
2686 	p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2687 			     afinfo->seq_fops, afinfo);
2688 	if (!p)
2689 		rc = -ENOMEM;
2690 	return rc;
2691 }
2692 EXPORT_SYMBOL(udp_proc_register);
2693 
2694 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2695 {
2696 	remove_proc_entry(afinfo->name, net->proc_net);
2697 }
2698 EXPORT_SYMBOL(udp_proc_unregister);
2699 
2700 /* ------------------------------------------------------------------------ */
2701 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2702 		int bucket)
2703 {
2704 	struct inet_sock *inet = inet_sk(sp);
2705 	__be32 dest = inet->inet_daddr;
2706 	__be32 src  = inet->inet_rcv_saddr;
2707 	__u16 destp	  = ntohs(inet->inet_dport);
2708 	__u16 srcp	  = ntohs(inet->inet_sport);
2709 
2710 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2711 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d",
2712 		bucket, src, srcp, dest, destp, sp->sk_state,
2713 		sk_wmem_alloc_get(sp),
2714 		sk_rmem_alloc_get(sp),
2715 		0, 0L, 0,
2716 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2717 		0, sock_i_ino(sp),
2718 		refcount_read(&sp->sk_refcnt), sp,
2719 		atomic_read(&sp->sk_drops));
2720 }
2721 
2722 int udp4_seq_show(struct seq_file *seq, void *v)
2723 {
2724 	seq_setwidth(seq, 127);
2725 	if (v == SEQ_START_TOKEN)
2726 		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2727 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2728 			   "inode ref pointer drops");
2729 	else {
2730 		struct udp_iter_state *state = seq->private;
2731 
2732 		udp4_format_sock(v, seq, state->bucket);
2733 	}
2734 	seq_pad(seq, '\n');
2735 	return 0;
2736 }
2737 
2738 static const struct file_operations udp_afinfo_seq_fops = {
2739 	.owner    = THIS_MODULE,
2740 	.open     = udp_seq_open,
2741 	.read     = seq_read,
2742 	.llseek   = seq_lseek,
2743 	.release  = seq_release_net
2744 };
2745 
2746 /* ------------------------------------------------------------------------ */
2747 static struct udp_seq_afinfo udp4_seq_afinfo = {
2748 	.name		= "udp",
2749 	.family		= AF_INET,
2750 	.udp_table	= &udp_table,
2751 	.seq_fops	= &udp_afinfo_seq_fops,
2752 	.seq_ops	= {
2753 		.show		= udp4_seq_show,
2754 	},
2755 };
2756 
2757 static int __net_init udp4_proc_init_net(struct net *net)
2758 {
2759 	return udp_proc_register(net, &udp4_seq_afinfo);
2760 }
2761 
2762 static void __net_exit udp4_proc_exit_net(struct net *net)
2763 {
2764 	udp_proc_unregister(net, &udp4_seq_afinfo);
2765 }
2766 
2767 static struct pernet_operations udp4_net_ops = {
2768 	.init = udp4_proc_init_net,
2769 	.exit = udp4_proc_exit_net,
2770 };
2771 
2772 int __init udp4_proc_init(void)
2773 {
2774 	return register_pernet_subsys(&udp4_net_ops);
2775 }
2776 
2777 void udp4_proc_exit(void)
2778 {
2779 	unregister_pernet_subsys(&udp4_net_ops);
2780 }
2781 #endif /* CONFIG_PROC_FS */
2782 
2783 static __initdata unsigned long uhash_entries;
2784 static int __init set_uhash_entries(char *str)
2785 {
2786 	ssize_t ret;
2787 
2788 	if (!str)
2789 		return 0;
2790 
2791 	ret = kstrtoul(str, 0, &uhash_entries);
2792 	if (ret)
2793 		return 0;
2794 
2795 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2796 		uhash_entries = UDP_HTABLE_SIZE_MIN;
2797 	return 1;
2798 }
2799 __setup("uhash_entries=", set_uhash_entries);
2800 
2801 void __init udp_table_init(struct udp_table *table, const char *name)
2802 {
2803 	unsigned int i;
2804 
2805 	table->hash = alloc_large_system_hash(name,
2806 					      2 * sizeof(struct udp_hslot),
2807 					      uhash_entries,
2808 					      21, /* one slot per 2 MB */
2809 					      0,
2810 					      &table->log,
2811 					      &table->mask,
2812 					      UDP_HTABLE_SIZE_MIN,
2813 					      64 * 1024);
2814 
2815 	table->hash2 = table->hash + (table->mask + 1);
2816 	for (i = 0; i <= table->mask; i++) {
2817 		INIT_HLIST_HEAD(&table->hash[i].head);
2818 		table->hash[i].count = 0;
2819 		spin_lock_init(&table->hash[i].lock);
2820 	}
2821 	for (i = 0; i <= table->mask; i++) {
2822 		INIT_HLIST_HEAD(&table->hash2[i].head);
2823 		table->hash2[i].count = 0;
2824 		spin_lock_init(&table->hash2[i].lock);
2825 	}
2826 }
2827 
2828 u32 udp_flow_hashrnd(void)
2829 {
2830 	static u32 hashrnd __read_mostly;
2831 
2832 	net_get_random_once(&hashrnd, sizeof(hashrnd));
2833 
2834 	return hashrnd;
2835 }
2836 EXPORT_SYMBOL(udp_flow_hashrnd);
2837 
2838 void __init udp_init(void)
2839 {
2840 	unsigned long limit;
2841 	unsigned int i;
2842 
2843 	udp_table_init(&udp_table, "UDP");
2844 	limit = nr_free_buffer_pages() / 8;
2845 	limit = max(limit, 128UL);
2846 	sysctl_udp_mem[0] = limit / 4 * 3;
2847 	sysctl_udp_mem[1] = limit;
2848 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2849 
2850 	sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2851 	sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2852 
2853 	/* 16 spinlocks per cpu */
2854 	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
2855 	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
2856 				GFP_KERNEL);
2857 	if (!udp_busylocks)
2858 		panic("UDP: failed to alloc udp_busylocks\n");
2859 	for (i = 0; i < (1U << udp_busylocks_log); i++)
2860 		spin_lock_init(udp_busylocks + i);
2861 }
2862