xref: /linux/net/ipv4/udp.c (revision a634dda26186cf9a51567020fcce52bcba5e1e59)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		The User Datagram Protocol (UDP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
12  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
13  *		Hirokazu Takahashi, <taka@valinux.co.jp>
14  *
15  * Fixes:
16  *		Alan Cox	:	verify_area() calls
17  *		Alan Cox	: 	stopped close while in use off icmp
18  *					messages. Not a fix but a botch that
19  *					for udp at least is 'valid'.
20  *		Alan Cox	:	Fixed icmp handling properly
21  *		Alan Cox	: 	Correct error for oversized datagrams
22  *		Alan Cox	:	Tidied select() semantics.
23  *		Alan Cox	:	udp_err() fixed properly, also now
24  *					select and read wake correctly on errors
25  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
26  *		Alan Cox	:	UDP can count its memory
27  *		Alan Cox	:	send to an unknown connection causes
28  *					an ECONNREFUSED off the icmp, but
29  *					does NOT close.
30  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
31  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
32  *					bug no longer crashes it.
33  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
34  *		Alan Cox	:	Uses skb_free_datagram
35  *		Alan Cox	:	Added get/set sockopt support.
36  *		Alan Cox	:	Broadcasting without option set returns EACCES.
37  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
38  *		Alan Cox	:	Use ip_tos and ip_ttl
39  *		Alan Cox	:	SNMP Mibs
40  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
41  *		Matt Dillon	:	UDP length checks.
42  *		Alan Cox	:	Smarter af_inet used properly.
43  *		Alan Cox	:	Use new kernel side addressing.
44  *		Alan Cox	:	Incorrect return on truncated datagram receive.
45  *	Arnt Gulbrandsen 	:	New udp_send and stuff
46  *		Alan Cox	:	Cache last socket
47  *		Alan Cox	:	Route cache
48  *		Jon Peatfield	:	Minor efficiency fix to sendto().
49  *		Mike Shaver	:	RFC1122 checks.
50  *		Alan Cox	:	Nonblocking error fix.
51  *	Willy Konynenberg	:	Transparent proxying support.
52  *		Mike McLagan	:	Routing by source
53  *		David S. Miller	:	New socket lookup architecture.
54  *					Last socket cache retained as it
55  *					does have a high hit rate.
56  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
57  *		Andi Kleen	:	Some cleanups, cache destination entry
58  *					for connect.
59  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
60  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
61  *					return ENOTCONN for unconnected sockets (POSIX)
62  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
63  *					bound-to-device socket
64  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
65  *					datagrams.
66  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
67  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
68  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
69  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
70  *					a single port at the same time.
71  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
72  *	James Chapman		:	Add L2TP encapsulation type.
73  */
74 
75 #define pr_fmt(fmt) "UDP: " fmt
76 
77 #include <linux/bpf-cgroup.h>
78 #include <linux/uaccess.h>
79 #include <asm/ioctls.h>
80 #include <linux/memblock.h>
81 #include <linux/highmem.h>
82 #include <linux/types.h>
83 #include <linux/fcntl.h>
84 #include <linux/module.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/igmp.h>
88 #include <linux/inetdevice.h>
89 #include <linux/in.h>
90 #include <linux/errno.h>
91 #include <linux/timer.h>
92 #include <linux/mm.h>
93 #include <linux/inet.h>
94 #include <linux/netdevice.h>
95 #include <linux/slab.h>
96 #include <net/tcp_states.h>
97 #include <linux/skbuff.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <net/net_namespace.h>
101 #include <net/icmp.h>
102 #include <net/inet_hashtables.h>
103 #include <net/ip.h>
104 #include <net/ip_tunnels.h>
105 #include <net/route.h>
106 #include <net/checksum.h>
107 #include <net/gso.h>
108 #include <net/xfrm.h>
109 #include <trace/events/udp.h>
110 #include <linux/static_key.h>
111 #include <linux/btf_ids.h>
112 #include <trace/events/skb.h>
113 #include <net/busy_poll.h>
114 #include "udp_impl.h"
115 #include <net/sock_reuseport.h>
116 #include <net/addrconf.h>
117 #include <net/udp_tunnel.h>
118 #include <net/gro.h>
119 #if IS_ENABLED(CONFIG_IPV6)
120 #include <net/ipv6_stubs.h>
121 #endif
122 
123 struct udp_table udp_table __read_mostly;
124 EXPORT_SYMBOL(udp_table);
125 
126 long sysctl_udp_mem[3] __read_mostly;
127 EXPORT_SYMBOL(sysctl_udp_mem);
128 
129 atomic_long_t udp_memory_allocated ____cacheline_aligned_in_smp;
130 EXPORT_SYMBOL(udp_memory_allocated);
131 DEFINE_PER_CPU(int, udp_memory_per_cpu_fw_alloc);
132 EXPORT_PER_CPU_SYMBOL_GPL(udp_memory_per_cpu_fw_alloc);
133 
134 #define MAX_UDP_PORTS 65536
135 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN_PERNET)
136 
137 static struct udp_table *udp_get_table_prot(struct sock *sk)
138 {
139 	return sk->sk_prot->h.udp_table ? : sock_net(sk)->ipv4.udp_table;
140 }
141 
142 static int udp_lib_lport_inuse(struct net *net, __u16 num,
143 			       const struct udp_hslot *hslot,
144 			       unsigned long *bitmap,
145 			       struct sock *sk, unsigned int log)
146 {
147 	struct sock *sk2;
148 	kuid_t uid = sock_i_uid(sk);
149 
150 	sk_for_each(sk2, &hslot->head) {
151 		if (net_eq(sock_net(sk2), net) &&
152 		    sk2 != sk &&
153 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
154 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
155 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
156 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
157 		    inet_rcv_saddr_equal(sk, sk2, true)) {
158 			if (sk2->sk_reuseport && sk->sk_reuseport &&
159 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
160 			    uid_eq(uid, sock_i_uid(sk2))) {
161 				if (!bitmap)
162 					return 0;
163 			} else {
164 				if (!bitmap)
165 					return 1;
166 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
167 					  bitmap);
168 			}
169 		}
170 	}
171 	return 0;
172 }
173 
174 /*
175  * Note: we still hold spinlock of primary hash chain, so no other writer
176  * can insert/delete a socket with local_port == num
177  */
178 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
179 				struct udp_hslot *hslot2,
180 				struct sock *sk)
181 {
182 	struct sock *sk2;
183 	kuid_t uid = sock_i_uid(sk);
184 	int res = 0;
185 
186 	spin_lock(&hslot2->lock);
187 	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
188 		if (net_eq(sock_net(sk2), net) &&
189 		    sk2 != sk &&
190 		    (udp_sk(sk2)->udp_port_hash == num) &&
191 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
192 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
193 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
194 		    inet_rcv_saddr_equal(sk, sk2, true)) {
195 			if (sk2->sk_reuseport && sk->sk_reuseport &&
196 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
197 			    uid_eq(uid, sock_i_uid(sk2))) {
198 				res = 0;
199 			} else {
200 				res = 1;
201 			}
202 			break;
203 		}
204 	}
205 	spin_unlock(&hslot2->lock);
206 	return res;
207 }
208 
209 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
210 {
211 	struct net *net = sock_net(sk);
212 	kuid_t uid = sock_i_uid(sk);
213 	struct sock *sk2;
214 
215 	sk_for_each(sk2, &hslot->head) {
216 		if (net_eq(sock_net(sk2), net) &&
217 		    sk2 != sk &&
218 		    sk2->sk_family == sk->sk_family &&
219 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
220 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
221 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
222 		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
223 		    inet_rcv_saddr_equal(sk, sk2, false)) {
224 			return reuseport_add_sock(sk, sk2,
225 						  inet_rcv_saddr_any(sk));
226 		}
227 	}
228 
229 	return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
230 }
231 
232 /**
233  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
234  *
235  *  @sk:          socket struct in question
236  *  @snum:        port number to look up
237  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
238  *                   with NULL address
239  */
240 int udp_lib_get_port(struct sock *sk, unsigned short snum,
241 		     unsigned int hash2_nulladdr)
242 {
243 	struct udp_table *udptable = udp_get_table_prot(sk);
244 	struct udp_hslot *hslot, *hslot2;
245 	struct net *net = sock_net(sk);
246 	int error = -EADDRINUSE;
247 
248 	if (!snum) {
249 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
250 		unsigned short first, last;
251 		int low, high, remaining;
252 		unsigned int rand;
253 
254 		inet_sk_get_local_port_range(sk, &low, &high);
255 		remaining = (high - low) + 1;
256 
257 		rand = get_random_u32();
258 		first = reciprocal_scale(rand, remaining) + low;
259 		/*
260 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
261 		 */
262 		rand = (rand | 1) * (udptable->mask + 1);
263 		last = first + udptable->mask + 1;
264 		do {
265 			hslot = udp_hashslot(udptable, net, first);
266 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
267 			spin_lock_bh(&hslot->lock);
268 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
269 					    udptable->log);
270 
271 			snum = first;
272 			/*
273 			 * Iterate on all possible values of snum for this hash.
274 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
275 			 * give us randomization and full range coverage.
276 			 */
277 			do {
278 				if (low <= snum && snum <= high &&
279 				    !test_bit(snum >> udptable->log, bitmap) &&
280 				    !inet_is_local_reserved_port(net, snum))
281 					goto found;
282 				snum += rand;
283 			} while (snum != first);
284 			spin_unlock_bh(&hslot->lock);
285 			cond_resched();
286 		} while (++first != last);
287 		goto fail;
288 	} else {
289 		hslot = udp_hashslot(udptable, net, snum);
290 		spin_lock_bh(&hslot->lock);
291 		if (hslot->count > 10) {
292 			int exist;
293 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
294 
295 			slot2          &= udptable->mask;
296 			hash2_nulladdr &= udptable->mask;
297 
298 			hslot2 = udp_hashslot2(udptable, slot2);
299 			if (hslot->count < hslot2->count)
300 				goto scan_primary_hash;
301 
302 			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
303 			if (!exist && (hash2_nulladdr != slot2)) {
304 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
305 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
306 							     sk);
307 			}
308 			if (exist)
309 				goto fail_unlock;
310 			else
311 				goto found;
312 		}
313 scan_primary_hash:
314 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
315 			goto fail_unlock;
316 	}
317 found:
318 	inet_sk(sk)->inet_num = snum;
319 	udp_sk(sk)->udp_port_hash = snum;
320 	udp_sk(sk)->udp_portaddr_hash ^= snum;
321 	if (sk_unhashed(sk)) {
322 		if (sk->sk_reuseport &&
323 		    udp_reuseport_add_sock(sk, hslot)) {
324 			inet_sk(sk)->inet_num = 0;
325 			udp_sk(sk)->udp_port_hash = 0;
326 			udp_sk(sk)->udp_portaddr_hash ^= snum;
327 			goto fail_unlock;
328 		}
329 
330 		sock_set_flag(sk, SOCK_RCU_FREE);
331 
332 		sk_add_node_rcu(sk, &hslot->head);
333 		hslot->count++;
334 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
335 
336 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
337 		spin_lock(&hslot2->lock);
338 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
339 		    sk->sk_family == AF_INET6)
340 			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
341 					   &hslot2->head);
342 		else
343 			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
344 					   &hslot2->head);
345 		hslot2->count++;
346 		spin_unlock(&hslot2->lock);
347 	}
348 
349 	error = 0;
350 fail_unlock:
351 	spin_unlock_bh(&hslot->lock);
352 fail:
353 	return error;
354 }
355 EXPORT_SYMBOL(udp_lib_get_port);
356 
357 int udp_v4_get_port(struct sock *sk, unsigned short snum)
358 {
359 	unsigned int hash2_nulladdr =
360 		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
361 	unsigned int hash2_partial =
362 		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
363 
364 	/* precompute partial secondary hash */
365 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
366 	return udp_lib_get_port(sk, snum, hash2_nulladdr);
367 }
368 
369 static int compute_score(struct sock *sk, const struct net *net,
370 			 __be32 saddr, __be16 sport,
371 			 __be32 daddr, unsigned short hnum,
372 			 int dif, int sdif)
373 {
374 	int score;
375 	struct inet_sock *inet;
376 	bool dev_match;
377 
378 	if (!net_eq(sock_net(sk), net) ||
379 	    udp_sk(sk)->udp_port_hash != hnum ||
380 	    ipv6_only_sock(sk))
381 		return -1;
382 
383 	if (sk->sk_rcv_saddr != daddr)
384 		return -1;
385 
386 	score = (sk->sk_family == PF_INET) ? 2 : 1;
387 
388 	inet = inet_sk(sk);
389 	if (inet->inet_daddr) {
390 		if (inet->inet_daddr != saddr)
391 			return -1;
392 		score += 4;
393 	}
394 
395 	if (inet->inet_dport) {
396 		if (inet->inet_dport != sport)
397 			return -1;
398 		score += 4;
399 	}
400 
401 	dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
402 					dif, sdif);
403 	if (!dev_match)
404 		return -1;
405 	if (sk->sk_bound_dev_if)
406 		score += 4;
407 
408 	if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
409 		score++;
410 	return score;
411 }
412 
413 u32 udp_ehashfn(const struct net *net, const __be32 laddr, const __u16 lport,
414 		const __be32 faddr, const __be16 fport)
415 {
416 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
417 
418 	return __inet_ehashfn(laddr, lport, faddr, fport,
419 			      udp_ehash_secret + net_hash_mix(net));
420 }
421 EXPORT_SYMBOL(udp_ehashfn);
422 
423 /* called with rcu_read_lock() */
424 static struct sock *udp4_lib_lookup2(const struct net *net,
425 				     __be32 saddr, __be16 sport,
426 				     __be32 daddr, unsigned int hnum,
427 				     int dif, int sdif,
428 				     struct udp_hslot *hslot2,
429 				     struct sk_buff *skb)
430 {
431 	struct sock *sk, *result;
432 	int score, badness;
433 	bool need_rescore;
434 
435 	result = NULL;
436 	badness = 0;
437 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
438 		need_rescore = false;
439 rescore:
440 		score = compute_score(need_rescore ? result : sk, net, saddr,
441 				      sport, daddr, hnum, dif, sdif);
442 		if (score > badness) {
443 			badness = score;
444 
445 			if (need_rescore)
446 				continue;
447 
448 			if (sk->sk_state == TCP_ESTABLISHED) {
449 				result = sk;
450 				continue;
451 			}
452 
453 			result = inet_lookup_reuseport(net, sk, skb, sizeof(struct udphdr),
454 						       saddr, sport, daddr, hnum, udp_ehashfn);
455 			if (!result) {
456 				result = sk;
457 				continue;
458 			}
459 
460 			/* Fall back to scoring if group has connections */
461 			if (!reuseport_has_conns(sk))
462 				return result;
463 
464 			/* Reuseport logic returned an error, keep original score. */
465 			if (IS_ERR(result))
466 				continue;
467 
468 			/* compute_score is too long of a function to be
469 			 * inlined, and calling it again here yields
470 			 * measureable overhead for some
471 			 * workloads. Work around it by jumping
472 			 * backwards to rescore 'result'.
473 			 */
474 			need_rescore = true;
475 			goto rescore;
476 		}
477 	}
478 	return result;
479 }
480 
481 #if IS_ENABLED(CONFIG_BASE_SMALL)
482 static struct sock *udp4_lib_lookup4(const struct net *net,
483 				     __be32 saddr, __be16 sport,
484 				     __be32 daddr, unsigned int hnum,
485 				     int dif, int sdif,
486 				     struct udp_table *udptable)
487 {
488 	return NULL;
489 }
490 
491 static void udp_rehash4(struct udp_table *udptable, struct sock *sk,
492 			u16 newhash4)
493 {
494 }
495 
496 static void udp_unhash4(struct udp_table *udptable, struct sock *sk)
497 {
498 }
499 #else /* !CONFIG_BASE_SMALL */
500 static struct sock *udp4_lib_lookup4(const struct net *net,
501 				     __be32 saddr, __be16 sport,
502 				     __be32 daddr, unsigned int hnum,
503 				     int dif, int sdif,
504 				     struct udp_table *udptable)
505 {
506 	const __portpair ports = INET_COMBINED_PORTS(sport, hnum);
507 	const struct hlist_nulls_node *node;
508 	struct udp_hslot *hslot4;
509 	unsigned int hash4, slot;
510 	struct udp_sock *up;
511 	struct sock *sk;
512 
513 	hash4 = udp_ehashfn(net, daddr, hnum, saddr, sport);
514 	slot = hash4 & udptable->mask;
515 	hslot4 = &udptable->hash4[slot];
516 	INET_ADDR_COOKIE(acookie, saddr, daddr);
517 
518 begin:
519 	/* SLAB_TYPESAFE_BY_RCU not used, so we don't need to touch sk_refcnt */
520 	udp_lrpa_for_each_entry_rcu(up, node, &hslot4->nulls_head) {
521 		sk = (struct sock *)up;
522 		if (inet_match(net, sk, acookie, ports, dif, sdif))
523 			return sk;
524 	}
525 
526 	/* if the nulls value we got at the end of this lookup is not the
527 	 * expected one, we must restart lookup. We probably met an item that
528 	 * was moved to another chain due to rehash.
529 	 */
530 	if (get_nulls_value(node) != slot)
531 		goto begin;
532 
533 	return NULL;
534 }
535 
536 /* udp_rehash4() only checks hslot4, and hash4_cnt is not processed. */
537 static void udp_rehash4(struct udp_table *udptable, struct sock *sk,
538 			u16 newhash4)
539 {
540 	struct udp_hslot *hslot4, *nhslot4;
541 
542 	hslot4 = udp_hashslot4(udptable, udp_sk(sk)->udp_lrpa_hash);
543 	nhslot4 = udp_hashslot4(udptable, newhash4);
544 	udp_sk(sk)->udp_lrpa_hash = newhash4;
545 
546 	if (hslot4 != nhslot4) {
547 		spin_lock_bh(&hslot4->lock);
548 		hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_lrpa_node);
549 		hslot4->count--;
550 		spin_unlock_bh(&hslot4->lock);
551 
552 		spin_lock_bh(&nhslot4->lock);
553 		hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_lrpa_node,
554 					 &nhslot4->nulls_head);
555 		nhslot4->count++;
556 		spin_unlock_bh(&nhslot4->lock);
557 	}
558 }
559 
560 static void udp_unhash4(struct udp_table *udptable, struct sock *sk)
561 {
562 	struct udp_hslot *hslot2, *hslot4;
563 
564 	if (udp_hashed4(sk)) {
565 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
566 		hslot4 = udp_hashslot4(udptable, udp_sk(sk)->udp_lrpa_hash);
567 
568 		spin_lock(&hslot4->lock);
569 		hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_lrpa_node);
570 		hslot4->count--;
571 		spin_unlock(&hslot4->lock);
572 
573 		spin_lock(&hslot2->lock);
574 		udp_hash4_dec(hslot2);
575 		spin_unlock(&hslot2->lock);
576 	}
577 }
578 
579 void udp_lib_hash4(struct sock *sk, u16 hash)
580 {
581 	struct udp_hslot *hslot, *hslot2, *hslot4;
582 	struct net *net = sock_net(sk);
583 	struct udp_table *udptable;
584 
585 	/* Connected udp socket can re-connect to another remote address, which
586 	 * will be handled by rehash. Thus no need to redo hash4 here.
587 	 */
588 	if (udp_hashed4(sk))
589 		return;
590 
591 	udptable = net->ipv4.udp_table;
592 	hslot = udp_hashslot(udptable, net, udp_sk(sk)->udp_port_hash);
593 	hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
594 	hslot4 = udp_hashslot4(udptable, hash);
595 	udp_sk(sk)->udp_lrpa_hash = hash;
596 
597 	spin_lock_bh(&hslot->lock);
598 	if (rcu_access_pointer(sk->sk_reuseport_cb))
599 		reuseport_detach_sock(sk);
600 
601 	spin_lock(&hslot4->lock);
602 	hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_lrpa_node,
603 				 &hslot4->nulls_head);
604 	hslot4->count++;
605 	spin_unlock(&hslot4->lock);
606 
607 	spin_lock(&hslot2->lock);
608 	udp_hash4_inc(hslot2);
609 	spin_unlock(&hslot2->lock);
610 
611 	spin_unlock_bh(&hslot->lock);
612 }
613 EXPORT_SYMBOL(udp_lib_hash4);
614 
615 /* call with sock lock */
616 void udp4_hash4(struct sock *sk)
617 {
618 	struct net *net = sock_net(sk);
619 	unsigned int hash;
620 
621 	if (sk_unhashed(sk) || sk->sk_rcv_saddr == htonl(INADDR_ANY))
622 		return;
623 
624 	hash = udp_ehashfn(net, sk->sk_rcv_saddr, sk->sk_num,
625 			   sk->sk_daddr, sk->sk_dport);
626 
627 	udp_lib_hash4(sk, hash);
628 }
629 EXPORT_SYMBOL(udp4_hash4);
630 #endif /* CONFIG_BASE_SMALL */
631 
632 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
633  * harder than this. -DaveM
634  */
635 struct sock *__udp4_lib_lookup(const struct net *net, __be32 saddr,
636 		__be16 sport, __be32 daddr, __be16 dport, int dif,
637 		int sdif, struct udp_table *udptable, struct sk_buff *skb)
638 {
639 	unsigned short hnum = ntohs(dport);
640 	struct udp_hslot *hslot2;
641 	struct sock *result, *sk;
642 	unsigned int hash2;
643 
644 	hash2 = ipv4_portaddr_hash(net, daddr, hnum);
645 	hslot2 = udp_hashslot2(udptable, hash2);
646 
647 	if (udp_has_hash4(hslot2)) {
648 		result = udp4_lib_lookup4(net, saddr, sport, daddr, hnum,
649 					  dif, sdif, udptable);
650 		if (result) /* udp4_lib_lookup4 return sk or NULL */
651 			return result;
652 	}
653 
654 	/* Lookup connected or non-wildcard socket */
655 	result = udp4_lib_lookup2(net, saddr, sport,
656 				  daddr, hnum, dif, sdif,
657 				  hslot2, skb);
658 	if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED)
659 		goto done;
660 
661 	/* Lookup redirect from BPF */
662 	if (static_branch_unlikely(&bpf_sk_lookup_enabled) &&
663 	    udptable == net->ipv4.udp_table) {
664 		sk = inet_lookup_run_sk_lookup(net, IPPROTO_UDP, skb, sizeof(struct udphdr),
665 					       saddr, sport, daddr, hnum, dif,
666 					       udp_ehashfn);
667 		if (sk) {
668 			result = sk;
669 			goto done;
670 		}
671 	}
672 
673 	/* Got non-wildcard socket or error on first lookup */
674 	if (result)
675 		goto done;
676 
677 	/* Lookup wildcard sockets */
678 	hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
679 	hslot2 = udp_hashslot2(udptable, hash2);
680 
681 	result = udp4_lib_lookup2(net, saddr, sport,
682 				  htonl(INADDR_ANY), hnum, dif, sdif,
683 				  hslot2, skb);
684 done:
685 	if (IS_ERR(result))
686 		return NULL;
687 	return result;
688 }
689 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
690 
691 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
692 						 __be16 sport, __be16 dport,
693 						 struct udp_table *udptable)
694 {
695 	const struct iphdr *iph = ip_hdr(skb);
696 
697 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
698 				 iph->daddr, dport, inet_iif(skb),
699 				 inet_sdif(skb), udptable, skb);
700 }
701 
702 struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb,
703 				 __be16 sport, __be16 dport)
704 {
705 	const u16 offset = NAPI_GRO_CB(skb)->network_offsets[skb->encapsulation];
706 	const struct iphdr *iph = (struct iphdr *)(skb->data + offset);
707 	struct net *net = dev_net(skb->dev);
708 	int iif, sdif;
709 
710 	inet_get_iif_sdif(skb, &iif, &sdif);
711 
712 	return __udp4_lib_lookup(net, iph->saddr, sport,
713 				 iph->daddr, dport, iif,
714 				 sdif, net->ipv4.udp_table, NULL);
715 }
716 
717 /* Must be called under rcu_read_lock().
718  * Does increment socket refcount.
719  */
720 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
721 struct sock *udp4_lib_lookup(const struct net *net, __be32 saddr, __be16 sport,
722 			     __be32 daddr, __be16 dport, int dif)
723 {
724 	struct sock *sk;
725 
726 	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
727 			       dif, 0, net->ipv4.udp_table, NULL);
728 	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
729 		sk = NULL;
730 	return sk;
731 }
732 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
733 #endif
734 
735 static inline bool __udp_is_mcast_sock(struct net *net, const struct sock *sk,
736 				       __be16 loc_port, __be32 loc_addr,
737 				       __be16 rmt_port, __be32 rmt_addr,
738 				       int dif, int sdif, unsigned short hnum)
739 {
740 	const struct inet_sock *inet = inet_sk(sk);
741 
742 	if (!net_eq(sock_net(sk), net) ||
743 	    udp_sk(sk)->udp_port_hash != hnum ||
744 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
745 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
746 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
747 	    ipv6_only_sock(sk) ||
748 	    !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
749 		return false;
750 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
751 		return false;
752 	return true;
753 }
754 
755 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
756 EXPORT_SYMBOL(udp_encap_needed_key);
757 
758 #if IS_ENABLED(CONFIG_IPV6)
759 DEFINE_STATIC_KEY_FALSE(udpv6_encap_needed_key);
760 EXPORT_SYMBOL(udpv6_encap_needed_key);
761 #endif
762 
763 void udp_encap_enable(void)
764 {
765 	static_branch_inc(&udp_encap_needed_key);
766 }
767 EXPORT_SYMBOL(udp_encap_enable);
768 
769 void udp_encap_disable(void)
770 {
771 	static_branch_dec(&udp_encap_needed_key);
772 }
773 EXPORT_SYMBOL(udp_encap_disable);
774 
775 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go
776  * through error handlers in encapsulations looking for a match.
777  */
778 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
779 {
780 	int i;
781 
782 	for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
783 		int (*handler)(struct sk_buff *skb, u32 info);
784 		const struct ip_tunnel_encap_ops *encap;
785 
786 		encap = rcu_dereference(iptun_encaps[i]);
787 		if (!encap)
788 			continue;
789 		handler = encap->err_handler;
790 		if (handler && !handler(skb, info))
791 			return 0;
792 	}
793 
794 	return -ENOENT;
795 }
796 
797 /* Try to match ICMP errors to UDP tunnels by looking up a socket without
798  * reversing source and destination port: this will match tunnels that force the
799  * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
800  * lwtunnels might actually break this assumption by being configured with
801  * different destination ports on endpoints, in this case we won't be able to
802  * trace ICMP messages back to them.
803  *
804  * If this doesn't match any socket, probe tunnels with arbitrary destination
805  * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
806  * we've sent packets to won't necessarily match the local destination port.
807  *
808  * Then ask the tunnel implementation to match the error against a valid
809  * association.
810  *
811  * Return an error if we can't find a match, the socket if we need further
812  * processing, zero otherwise.
813  */
814 static struct sock *__udp4_lib_err_encap(struct net *net,
815 					 const struct iphdr *iph,
816 					 struct udphdr *uh,
817 					 struct udp_table *udptable,
818 					 struct sock *sk,
819 					 struct sk_buff *skb, u32 info)
820 {
821 	int (*lookup)(struct sock *sk, struct sk_buff *skb);
822 	int network_offset, transport_offset;
823 	struct udp_sock *up;
824 
825 	network_offset = skb_network_offset(skb);
826 	transport_offset = skb_transport_offset(skb);
827 
828 	/* Network header needs to point to the outer IPv4 header inside ICMP */
829 	skb_reset_network_header(skb);
830 
831 	/* Transport header needs to point to the UDP header */
832 	skb_set_transport_header(skb, iph->ihl << 2);
833 
834 	if (sk) {
835 		up = udp_sk(sk);
836 
837 		lookup = READ_ONCE(up->encap_err_lookup);
838 		if (lookup && lookup(sk, skb))
839 			sk = NULL;
840 
841 		goto out;
842 	}
843 
844 	sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
845 			       iph->saddr, uh->dest, skb->dev->ifindex, 0,
846 			       udptable, NULL);
847 	if (sk) {
848 		up = udp_sk(sk);
849 
850 		lookup = READ_ONCE(up->encap_err_lookup);
851 		if (!lookup || lookup(sk, skb))
852 			sk = NULL;
853 	}
854 
855 out:
856 	if (!sk)
857 		sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
858 
859 	skb_set_transport_header(skb, transport_offset);
860 	skb_set_network_header(skb, network_offset);
861 
862 	return sk;
863 }
864 
865 /*
866  * This routine is called by the ICMP module when it gets some
867  * sort of error condition.  If err < 0 then the socket should
868  * be closed and the error returned to the user.  If err > 0
869  * it's just the icmp type << 8 | icmp code.
870  * Header points to the ip header of the error packet. We move
871  * on past this. Then (as it used to claim before adjustment)
872  * header points to the first 8 bytes of the udp header.  We need
873  * to find the appropriate port.
874  */
875 
876 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
877 {
878 	struct inet_sock *inet;
879 	const struct iphdr *iph = (const struct iphdr *)skb->data;
880 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
881 	const int type = icmp_hdr(skb)->type;
882 	const int code = icmp_hdr(skb)->code;
883 	bool tunnel = false;
884 	struct sock *sk;
885 	int harderr;
886 	int err;
887 	struct net *net = dev_net(skb->dev);
888 
889 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
890 			       iph->saddr, uh->source, skb->dev->ifindex,
891 			       inet_sdif(skb), udptable, NULL);
892 
893 	if (!sk || READ_ONCE(udp_sk(sk)->encap_type)) {
894 		/* No socket for error: try tunnels before discarding */
895 		if (static_branch_unlikely(&udp_encap_needed_key)) {
896 			sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb,
897 						  info);
898 			if (!sk)
899 				return 0;
900 		} else
901 			sk = ERR_PTR(-ENOENT);
902 
903 		if (IS_ERR(sk)) {
904 			__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
905 			return PTR_ERR(sk);
906 		}
907 
908 		tunnel = true;
909 	}
910 
911 	err = 0;
912 	harderr = 0;
913 	inet = inet_sk(sk);
914 
915 	switch (type) {
916 	default:
917 	case ICMP_TIME_EXCEEDED:
918 		err = EHOSTUNREACH;
919 		break;
920 	case ICMP_SOURCE_QUENCH:
921 		goto out;
922 	case ICMP_PARAMETERPROB:
923 		err = EPROTO;
924 		harderr = 1;
925 		break;
926 	case ICMP_DEST_UNREACH:
927 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
928 			ipv4_sk_update_pmtu(skb, sk, info);
929 			if (READ_ONCE(inet->pmtudisc) != IP_PMTUDISC_DONT) {
930 				err = EMSGSIZE;
931 				harderr = 1;
932 				break;
933 			}
934 			goto out;
935 		}
936 		err = EHOSTUNREACH;
937 		if (code <= NR_ICMP_UNREACH) {
938 			harderr = icmp_err_convert[code].fatal;
939 			err = icmp_err_convert[code].errno;
940 		}
941 		break;
942 	case ICMP_REDIRECT:
943 		ipv4_sk_redirect(skb, sk);
944 		goto out;
945 	}
946 
947 	/*
948 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
949 	 *	4.1.3.3.
950 	 */
951 	if (tunnel) {
952 		/* ...not for tunnels though: we don't have a sending socket */
953 		if (udp_sk(sk)->encap_err_rcv)
954 			udp_sk(sk)->encap_err_rcv(sk, skb, err, uh->dest, info,
955 						  (u8 *)(uh+1));
956 		goto out;
957 	}
958 	if (!inet_test_bit(RECVERR, sk)) {
959 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
960 			goto out;
961 	} else
962 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
963 
964 	sk->sk_err = err;
965 	sk_error_report(sk);
966 out:
967 	return 0;
968 }
969 
970 int udp_err(struct sk_buff *skb, u32 info)
971 {
972 	return __udp4_lib_err(skb, info, dev_net(skb->dev)->ipv4.udp_table);
973 }
974 
975 /*
976  * Throw away all pending data and cancel the corking. Socket is locked.
977  */
978 void udp_flush_pending_frames(struct sock *sk)
979 {
980 	struct udp_sock *up = udp_sk(sk);
981 
982 	if (up->pending) {
983 		up->len = 0;
984 		WRITE_ONCE(up->pending, 0);
985 		ip_flush_pending_frames(sk);
986 	}
987 }
988 EXPORT_SYMBOL(udp_flush_pending_frames);
989 
990 /**
991  * 	udp4_hwcsum  -  handle outgoing HW checksumming
992  * 	@skb: 	sk_buff containing the filled-in UDP header
993  * 	        (checksum field must be zeroed out)
994  *	@src:	source IP address
995  *	@dst:	destination IP address
996  */
997 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
998 {
999 	struct udphdr *uh = udp_hdr(skb);
1000 	int offset = skb_transport_offset(skb);
1001 	int len = skb->len - offset;
1002 	int hlen = len;
1003 	__wsum csum = 0;
1004 
1005 	if (!skb_has_frag_list(skb)) {
1006 		/*
1007 		 * Only one fragment on the socket.
1008 		 */
1009 		skb->csum_start = skb_transport_header(skb) - skb->head;
1010 		skb->csum_offset = offsetof(struct udphdr, check);
1011 		uh->check = ~csum_tcpudp_magic(src, dst, len,
1012 					       IPPROTO_UDP, 0);
1013 	} else {
1014 		struct sk_buff *frags;
1015 
1016 		/*
1017 		 * HW-checksum won't work as there are two or more
1018 		 * fragments on the socket so that all csums of sk_buffs
1019 		 * should be together
1020 		 */
1021 		skb_walk_frags(skb, frags) {
1022 			csum = csum_add(csum, frags->csum);
1023 			hlen -= frags->len;
1024 		}
1025 
1026 		csum = skb_checksum(skb, offset, hlen, csum);
1027 		skb->ip_summed = CHECKSUM_NONE;
1028 
1029 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
1030 		if (uh->check == 0)
1031 			uh->check = CSUM_MANGLED_0;
1032 	}
1033 }
1034 EXPORT_SYMBOL_GPL(udp4_hwcsum);
1035 
1036 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
1037  * for the simple case like when setting the checksum for a UDP tunnel.
1038  */
1039 void udp_set_csum(bool nocheck, struct sk_buff *skb,
1040 		  __be32 saddr, __be32 daddr, int len)
1041 {
1042 	struct udphdr *uh = udp_hdr(skb);
1043 
1044 	if (nocheck) {
1045 		uh->check = 0;
1046 	} else if (skb_is_gso(skb)) {
1047 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
1048 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
1049 		uh->check = 0;
1050 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
1051 		if (uh->check == 0)
1052 			uh->check = CSUM_MANGLED_0;
1053 	} else {
1054 		skb->ip_summed = CHECKSUM_PARTIAL;
1055 		skb->csum_start = skb_transport_header(skb) - skb->head;
1056 		skb->csum_offset = offsetof(struct udphdr, check);
1057 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
1058 	}
1059 }
1060 EXPORT_SYMBOL(udp_set_csum);
1061 
1062 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
1063 			struct inet_cork *cork)
1064 {
1065 	struct sock *sk = skb->sk;
1066 	struct inet_sock *inet = inet_sk(sk);
1067 	struct udphdr *uh;
1068 	int err;
1069 	int is_udplite = IS_UDPLITE(sk);
1070 	int offset = skb_transport_offset(skb);
1071 	int len = skb->len - offset;
1072 	int datalen = len - sizeof(*uh);
1073 	__wsum csum = 0;
1074 
1075 	/*
1076 	 * Create a UDP header
1077 	 */
1078 	uh = udp_hdr(skb);
1079 	uh->source = inet->inet_sport;
1080 	uh->dest = fl4->fl4_dport;
1081 	uh->len = htons(len);
1082 	uh->check = 0;
1083 
1084 	if (cork->gso_size) {
1085 		const int hlen = skb_network_header_len(skb) +
1086 				 sizeof(struct udphdr);
1087 
1088 		if (hlen + cork->gso_size > cork->fragsize) {
1089 			kfree_skb(skb);
1090 			return -EINVAL;
1091 		}
1092 		if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) {
1093 			kfree_skb(skb);
1094 			return -EINVAL;
1095 		}
1096 		if (sk->sk_no_check_tx) {
1097 			kfree_skb(skb);
1098 			return -EINVAL;
1099 		}
1100 		if (is_udplite || dst_xfrm(skb_dst(skb))) {
1101 			kfree_skb(skb);
1102 			return -EIO;
1103 		}
1104 
1105 		if (datalen > cork->gso_size) {
1106 			skb_shinfo(skb)->gso_size = cork->gso_size;
1107 			skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
1108 			skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
1109 								 cork->gso_size);
1110 
1111 			/* Don't checksum the payload, skb will get segmented */
1112 			goto csum_partial;
1113 		}
1114 	}
1115 
1116 	if (is_udplite)  				 /*     UDP-Lite      */
1117 		csum = udplite_csum(skb);
1118 
1119 	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
1120 
1121 		skb->ip_summed = CHECKSUM_NONE;
1122 		goto send;
1123 
1124 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
1125 csum_partial:
1126 
1127 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
1128 		goto send;
1129 
1130 	} else
1131 		csum = udp_csum(skb);
1132 
1133 	/* add protocol-dependent pseudo-header */
1134 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
1135 				      sk->sk_protocol, csum);
1136 	if (uh->check == 0)
1137 		uh->check = CSUM_MANGLED_0;
1138 
1139 send:
1140 	err = ip_send_skb(sock_net(sk), skb);
1141 	if (err) {
1142 		if (err == -ENOBUFS &&
1143 		    !inet_test_bit(RECVERR, sk)) {
1144 			UDP_INC_STATS(sock_net(sk),
1145 				      UDP_MIB_SNDBUFERRORS, is_udplite);
1146 			err = 0;
1147 		}
1148 	} else
1149 		UDP_INC_STATS(sock_net(sk),
1150 			      UDP_MIB_OUTDATAGRAMS, is_udplite);
1151 	return err;
1152 }
1153 
1154 /*
1155  * Push out all pending data as one UDP datagram. Socket is locked.
1156  */
1157 int udp_push_pending_frames(struct sock *sk)
1158 {
1159 	struct udp_sock  *up = udp_sk(sk);
1160 	struct inet_sock *inet = inet_sk(sk);
1161 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
1162 	struct sk_buff *skb;
1163 	int err = 0;
1164 
1165 	skb = ip_finish_skb(sk, fl4);
1166 	if (!skb)
1167 		goto out;
1168 
1169 	err = udp_send_skb(skb, fl4, &inet->cork.base);
1170 
1171 out:
1172 	up->len = 0;
1173 	WRITE_ONCE(up->pending, 0);
1174 	return err;
1175 }
1176 EXPORT_SYMBOL(udp_push_pending_frames);
1177 
1178 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
1179 {
1180 	switch (cmsg->cmsg_type) {
1181 	case UDP_SEGMENT:
1182 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
1183 			return -EINVAL;
1184 		*gso_size = *(__u16 *)CMSG_DATA(cmsg);
1185 		return 0;
1186 	default:
1187 		return -EINVAL;
1188 	}
1189 }
1190 
1191 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
1192 {
1193 	struct cmsghdr *cmsg;
1194 	bool need_ip = false;
1195 	int err;
1196 
1197 	for_each_cmsghdr(cmsg, msg) {
1198 		if (!CMSG_OK(msg, cmsg))
1199 			return -EINVAL;
1200 
1201 		if (cmsg->cmsg_level != SOL_UDP) {
1202 			need_ip = true;
1203 			continue;
1204 		}
1205 
1206 		err = __udp_cmsg_send(cmsg, gso_size);
1207 		if (err)
1208 			return err;
1209 	}
1210 
1211 	return need_ip;
1212 }
1213 EXPORT_SYMBOL_GPL(udp_cmsg_send);
1214 
1215 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1216 {
1217 	struct inet_sock *inet = inet_sk(sk);
1218 	struct udp_sock *up = udp_sk(sk);
1219 	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1220 	struct flowi4 fl4_stack;
1221 	struct flowi4 *fl4;
1222 	int ulen = len;
1223 	struct ipcm_cookie ipc;
1224 	struct rtable *rt = NULL;
1225 	int free = 0;
1226 	int connected = 0;
1227 	__be32 daddr, faddr, saddr;
1228 	u8 tos, scope;
1229 	__be16 dport;
1230 	int err, is_udplite = IS_UDPLITE(sk);
1231 	int corkreq = udp_test_bit(CORK, sk) || msg->msg_flags & MSG_MORE;
1232 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
1233 	struct sk_buff *skb;
1234 	struct ip_options_data opt_copy;
1235 	int uc_index;
1236 
1237 	if (len > 0xFFFF)
1238 		return -EMSGSIZE;
1239 
1240 	/*
1241 	 *	Check the flags.
1242 	 */
1243 
1244 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1245 		return -EOPNOTSUPP;
1246 
1247 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1248 
1249 	fl4 = &inet->cork.fl.u.ip4;
1250 	if (READ_ONCE(up->pending)) {
1251 		/*
1252 		 * There are pending frames.
1253 		 * The socket lock must be held while it's corked.
1254 		 */
1255 		lock_sock(sk);
1256 		if (likely(up->pending)) {
1257 			if (unlikely(up->pending != AF_INET)) {
1258 				release_sock(sk);
1259 				return -EINVAL;
1260 			}
1261 			goto do_append_data;
1262 		}
1263 		release_sock(sk);
1264 	}
1265 	ulen += sizeof(struct udphdr);
1266 
1267 	/*
1268 	 *	Get and verify the address.
1269 	 */
1270 	if (usin) {
1271 		if (msg->msg_namelen < sizeof(*usin))
1272 			return -EINVAL;
1273 		if (usin->sin_family != AF_INET) {
1274 			if (usin->sin_family != AF_UNSPEC)
1275 				return -EAFNOSUPPORT;
1276 		}
1277 
1278 		daddr = usin->sin_addr.s_addr;
1279 		dport = usin->sin_port;
1280 		if (dport == 0)
1281 			return -EINVAL;
1282 	} else {
1283 		if (sk->sk_state != TCP_ESTABLISHED)
1284 			return -EDESTADDRREQ;
1285 		daddr = inet->inet_daddr;
1286 		dport = inet->inet_dport;
1287 		/* Open fast path for connected socket.
1288 		   Route will not be used, if at least one option is set.
1289 		 */
1290 		connected = 1;
1291 	}
1292 
1293 	ipcm_init_sk(&ipc, inet);
1294 	ipc.gso_size = READ_ONCE(up->gso_size);
1295 
1296 	if (msg->msg_controllen) {
1297 		err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1298 		if (err > 0) {
1299 			err = ip_cmsg_send(sk, msg, &ipc,
1300 					   sk->sk_family == AF_INET6);
1301 			connected = 0;
1302 		}
1303 		if (unlikely(err < 0)) {
1304 			kfree(ipc.opt);
1305 			return err;
1306 		}
1307 		if (ipc.opt)
1308 			free = 1;
1309 	}
1310 	if (!ipc.opt) {
1311 		struct ip_options_rcu *inet_opt;
1312 
1313 		rcu_read_lock();
1314 		inet_opt = rcu_dereference(inet->inet_opt);
1315 		if (inet_opt) {
1316 			memcpy(&opt_copy, inet_opt,
1317 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
1318 			ipc.opt = &opt_copy.opt;
1319 		}
1320 		rcu_read_unlock();
1321 	}
1322 
1323 	if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) {
1324 		err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1325 					    (struct sockaddr *)usin,
1326 					    &msg->msg_namelen,
1327 					    &ipc.addr);
1328 		if (err)
1329 			goto out_free;
1330 		if (usin) {
1331 			if (usin->sin_port == 0) {
1332 				/* BPF program set invalid port. Reject it. */
1333 				err = -EINVAL;
1334 				goto out_free;
1335 			}
1336 			daddr = usin->sin_addr.s_addr;
1337 			dport = usin->sin_port;
1338 		}
1339 	}
1340 
1341 	saddr = ipc.addr;
1342 	ipc.addr = faddr = daddr;
1343 
1344 	if (ipc.opt && ipc.opt->opt.srr) {
1345 		if (!daddr) {
1346 			err = -EINVAL;
1347 			goto out_free;
1348 		}
1349 		faddr = ipc.opt->opt.faddr;
1350 		connected = 0;
1351 	}
1352 	tos = get_rttos(&ipc, inet);
1353 	scope = ip_sendmsg_scope(inet, &ipc, msg);
1354 	if (scope == RT_SCOPE_LINK)
1355 		connected = 0;
1356 
1357 	uc_index = READ_ONCE(inet->uc_index);
1358 	if (ipv4_is_multicast(daddr)) {
1359 		if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1360 			ipc.oif = READ_ONCE(inet->mc_index);
1361 		if (!saddr)
1362 			saddr = READ_ONCE(inet->mc_addr);
1363 		connected = 0;
1364 	} else if (!ipc.oif) {
1365 		ipc.oif = uc_index;
1366 	} else if (ipv4_is_lbcast(daddr) && uc_index) {
1367 		/* oif is set, packet is to local broadcast and
1368 		 * uc_index is set. oif is most likely set
1369 		 * by sk_bound_dev_if. If uc_index != oif check if the
1370 		 * oif is an L3 master and uc_index is an L3 slave.
1371 		 * If so, we want to allow the send using the uc_index.
1372 		 */
1373 		if (ipc.oif != uc_index &&
1374 		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1375 							      uc_index)) {
1376 			ipc.oif = uc_index;
1377 		}
1378 	}
1379 
1380 	if (connected)
1381 		rt = dst_rtable(sk_dst_check(sk, 0));
1382 
1383 	if (!rt) {
1384 		struct net *net = sock_net(sk);
1385 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1386 
1387 		fl4 = &fl4_stack;
1388 
1389 		flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos, scope,
1390 				   sk->sk_protocol, flow_flags, faddr, saddr,
1391 				   dport, inet->inet_sport, sk->sk_uid);
1392 
1393 		security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
1394 		rt = ip_route_output_flow(net, fl4, sk);
1395 		if (IS_ERR(rt)) {
1396 			err = PTR_ERR(rt);
1397 			rt = NULL;
1398 			if (err == -ENETUNREACH)
1399 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1400 			goto out;
1401 		}
1402 
1403 		err = -EACCES;
1404 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1405 		    !sock_flag(sk, SOCK_BROADCAST))
1406 			goto out;
1407 		if (connected)
1408 			sk_dst_set(sk, dst_clone(&rt->dst));
1409 	}
1410 
1411 	if (msg->msg_flags&MSG_CONFIRM)
1412 		goto do_confirm;
1413 back_from_confirm:
1414 
1415 	saddr = fl4->saddr;
1416 	if (!ipc.addr)
1417 		daddr = ipc.addr = fl4->daddr;
1418 
1419 	/* Lockless fast path for the non-corking case. */
1420 	if (!corkreq) {
1421 		struct inet_cork cork;
1422 
1423 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1424 				  sizeof(struct udphdr), &ipc, &rt,
1425 				  &cork, msg->msg_flags);
1426 		err = PTR_ERR(skb);
1427 		if (!IS_ERR_OR_NULL(skb))
1428 			err = udp_send_skb(skb, fl4, &cork);
1429 		goto out;
1430 	}
1431 
1432 	lock_sock(sk);
1433 	if (unlikely(up->pending)) {
1434 		/* The socket is already corked while preparing it. */
1435 		/* ... which is an evident application bug. --ANK */
1436 		release_sock(sk);
1437 
1438 		net_dbg_ratelimited("socket already corked\n");
1439 		err = -EINVAL;
1440 		goto out;
1441 	}
1442 	/*
1443 	 *	Now cork the socket to pend data.
1444 	 */
1445 	fl4 = &inet->cork.fl.u.ip4;
1446 	fl4->daddr = daddr;
1447 	fl4->saddr = saddr;
1448 	fl4->fl4_dport = dport;
1449 	fl4->fl4_sport = inet->inet_sport;
1450 	WRITE_ONCE(up->pending, AF_INET);
1451 
1452 do_append_data:
1453 	up->len += ulen;
1454 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1455 			     sizeof(struct udphdr), &ipc, &rt,
1456 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1457 	if (err)
1458 		udp_flush_pending_frames(sk);
1459 	else if (!corkreq)
1460 		err = udp_push_pending_frames(sk);
1461 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1462 		WRITE_ONCE(up->pending, 0);
1463 	release_sock(sk);
1464 
1465 out:
1466 	ip_rt_put(rt);
1467 out_free:
1468 	if (free)
1469 		kfree(ipc.opt);
1470 	if (!err)
1471 		return len;
1472 	/*
1473 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1474 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1475 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1476 	 * things).  We could add another new stat but at least for now that
1477 	 * seems like overkill.
1478 	 */
1479 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1480 		UDP_INC_STATS(sock_net(sk),
1481 			      UDP_MIB_SNDBUFERRORS, is_udplite);
1482 	}
1483 	return err;
1484 
1485 do_confirm:
1486 	if (msg->msg_flags & MSG_PROBE)
1487 		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1488 	if (!(msg->msg_flags&MSG_PROBE) || len)
1489 		goto back_from_confirm;
1490 	err = 0;
1491 	goto out;
1492 }
1493 EXPORT_SYMBOL(udp_sendmsg);
1494 
1495 void udp_splice_eof(struct socket *sock)
1496 {
1497 	struct sock *sk = sock->sk;
1498 	struct udp_sock *up = udp_sk(sk);
1499 
1500 	if (!READ_ONCE(up->pending) || udp_test_bit(CORK, sk))
1501 		return;
1502 
1503 	lock_sock(sk);
1504 	if (up->pending && !udp_test_bit(CORK, sk))
1505 		udp_push_pending_frames(sk);
1506 	release_sock(sk);
1507 }
1508 EXPORT_SYMBOL_GPL(udp_splice_eof);
1509 
1510 #define UDP_SKB_IS_STATELESS 0x80000000
1511 
1512 /* all head states (dst, sk, nf conntrack) except skb extensions are
1513  * cleared by udp_rcv().
1514  *
1515  * We need to preserve secpath, if present, to eventually process
1516  * IP_CMSG_PASSSEC at recvmsg() time.
1517  *
1518  * Other extensions can be cleared.
1519  */
1520 static bool udp_try_make_stateless(struct sk_buff *skb)
1521 {
1522 	if (!skb_has_extensions(skb))
1523 		return true;
1524 
1525 	if (!secpath_exists(skb)) {
1526 		skb_ext_reset(skb);
1527 		return true;
1528 	}
1529 
1530 	return false;
1531 }
1532 
1533 static void udp_set_dev_scratch(struct sk_buff *skb)
1534 {
1535 	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1536 
1537 	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1538 	scratch->_tsize_state = skb->truesize;
1539 #if BITS_PER_LONG == 64
1540 	scratch->len = skb->len;
1541 	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1542 	scratch->is_linear = !skb_is_nonlinear(skb);
1543 #endif
1544 	if (udp_try_make_stateless(skb))
1545 		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1546 }
1547 
1548 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1549 {
1550 	/* We come here after udp_lib_checksum_complete() returned 0.
1551 	 * This means that __skb_checksum_complete() might have
1552 	 * set skb->csum_valid to 1.
1553 	 * On 64bit platforms, we can set csum_unnecessary
1554 	 * to true, but only if the skb is not shared.
1555 	 */
1556 #if BITS_PER_LONG == 64
1557 	if (!skb_shared(skb))
1558 		udp_skb_scratch(skb)->csum_unnecessary = true;
1559 #endif
1560 }
1561 
1562 static int udp_skb_truesize(struct sk_buff *skb)
1563 {
1564 	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1565 }
1566 
1567 static bool udp_skb_has_head_state(struct sk_buff *skb)
1568 {
1569 	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1570 }
1571 
1572 /* fully reclaim rmem/fwd memory allocated for skb */
1573 static void udp_rmem_release(struct sock *sk, int size, int partial,
1574 			     bool rx_queue_lock_held)
1575 {
1576 	struct udp_sock *up = udp_sk(sk);
1577 	struct sk_buff_head *sk_queue;
1578 	int amt;
1579 
1580 	if (likely(partial)) {
1581 		up->forward_deficit += size;
1582 		size = up->forward_deficit;
1583 		if (size < READ_ONCE(up->forward_threshold) &&
1584 		    !skb_queue_empty(&up->reader_queue))
1585 			return;
1586 	} else {
1587 		size += up->forward_deficit;
1588 	}
1589 	up->forward_deficit = 0;
1590 
1591 	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1592 	 * if the called don't held it already
1593 	 */
1594 	sk_queue = &sk->sk_receive_queue;
1595 	if (!rx_queue_lock_held)
1596 		spin_lock(&sk_queue->lock);
1597 
1598 
1599 	sk_forward_alloc_add(sk, size);
1600 	amt = (sk->sk_forward_alloc - partial) & ~(PAGE_SIZE - 1);
1601 	sk_forward_alloc_add(sk, -amt);
1602 
1603 	if (amt)
1604 		__sk_mem_reduce_allocated(sk, amt >> PAGE_SHIFT);
1605 
1606 	atomic_sub(size, &sk->sk_rmem_alloc);
1607 
1608 	/* this can save us from acquiring the rx queue lock on next receive */
1609 	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1610 
1611 	if (!rx_queue_lock_held)
1612 		spin_unlock(&sk_queue->lock);
1613 }
1614 
1615 /* Note: called with reader_queue.lock held.
1616  * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1617  * This avoids a cache line miss while receive_queue lock is held.
1618  * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1619  */
1620 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1621 {
1622 	prefetch(&skb->data);
1623 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1624 }
1625 EXPORT_SYMBOL(udp_skb_destructor);
1626 
1627 /* as above, but the caller held the rx queue lock, too */
1628 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1629 {
1630 	prefetch(&skb->data);
1631 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1632 }
1633 
1634 /* Idea of busylocks is to let producers grab an extra spinlock
1635  * to relieve pressure on the receive_queue spinlock shared by consumer.
1636  * Under flood, this means that only one producer can be in line
1637  * trying to acquire the receive_queue spinlock.
1638  * These busylock can be allocated on a per cpu manner, instead of a
1639  * per socket one (that would consume a cache line per socket)
1640  */
1641 static int udp_busylocks_log __read_mostly;
1642 static spinlock_t *udp_busylocks __read_mostly;
1643 
1644 static spinlock_t *busylock_acquire(void *ptr)
1645 {
1646 	spinlock_t *busy;
1647 
1648 	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1649 	spin_lock(busy);
1650 	return busy;
1651 }
1652 
1653 static void busylock_release(spinlock_t *busy)
1654 {
1655 	if (busy)
1656 		spin_unlock(busy);
1657 }
1658 
1659 static int udp_rmem_schedule(struct sock *sk, int size)
1660 {
1661 	int delta;
1662 
1663 	delta = size - sk->sk_forward_alloc;
1664 	if (delta > 0 && !__sk_mem_schedule(sk, delta, SK_MEM_RECV))
1665 		return -ENOBUFS;
1666 
1667 	return 0;
1668 }
1669 
1670 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1671 {
1672 	struct sk_buff_head *list = &sk->sk_receive_queue;
1673 	int rmem, err = -ENOMEM;
1674 	spinlock_t *busy = NULL;
1675 	int size, rcvbuf;
1676 
1677 	/* Immediately drop when the receive queue is full.
1678 	 * Always allow at least one packet.
1679 	 */
1680 	rmem = atomic_read(&sk->sk_rmem_alloc);
1681 	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1682 	if (rmem > rcvbuf)
1683 		goto drop;
1684 
1685 	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1686 	 * having linear skbs :
1687 	 * - Reduce memory overhead and thus increase receive queue capacity
1688 	 * - Less cache line misses at copyout() time
1689 	 * - Less work at consume_skb() (less alien page frag freeing)
1690 	 */
1691 	if (rmem > (rcvbuf >> 1)) {
1692 		skb_condense(skb);
1693 
1694 		busy = busylock_acquire(sk);
1695 	}
1696 	size = skb->truesize;
1697 	udp_set_dev_scratch(skb);
1698 
1699 	atomic_add(size, &sk->sk_rmem_alloc);
1700 
1701 	spin_lock(&list->lock);
1702 	err = udp_rmem_schedule(sk, size);
1703 	if (err) {
1704 		spin_unlock(&list->lock);
1705 		goto uncharge_drop;
1706 	}
1707 
1708 	sk_forward_alloc_add(sk, -size);
1709 
1710 	/* no need to setup a destructor, we will explicitly release the
1711 	 * forward allocated memory on dequeue
1712 	 */
1713 	sock_skb_set_dropcount(sk, skb);
1714 
1715 	__skb_queue_tail(list, skb);
1716 	spin_unlock(&list->lock);
1717 
1718 	if (!sock_flag(sk, SOCK_DEAD))
1719 		INDIRECT_CALL_1(sk->sk_data_ready, sock_def_readable, sk);
1720 
1721 	busylock_release(busy);
1722 	return 0;
1723 
1724 uncharge_drop:
1725 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1726 
1727 drop:
1728 	atomic_inc(&sk->sk_drops);
1729 	busylock_release(busy);
1730 	return err;
1731 }
1732 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1733 
1734 void udp_destruct_common(struct sock *sk)
1735 {
1736 	/* reclaim completely the forward allocated memory */
1737 	struct udp_sock *up = udp_sk(sk);
1738 	unsigned int total = 0;
1739 	struct sk_buff *skb;
1740 
1741 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1742 	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1743 		total += skb->truesize;
1744 		kfree_skb(skb);
1745 	}
1746 	udp_rmem_release(sk, total, 0, true);
1747 }
1748 EXPORT_SYMBOL_GPL(udp_destruct_common);
1749 
1750 static void udp_destruct_sock(struct sock *sk)
1751 {
1752 	udp_destruct_common(sk);
1753 	inet_sock_destruct(sk);
1754 }
1755 
1756 int udp_init_sock(struct sock *sk)
1757 {
1758 	udp_lib_init_sock(sk);
1759 	sk->sk_destruct = udp_destruct_sock;
1760 	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1761 	return 0;
1762 }
1763 
1764 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1765 {
1766 	if (unlikely(READ_ONCE(udp_sk(sk)->peeking_with_offset)))
1767 		sk_peek_offset_bwd(sk, len);
1768 
1769 	if (!skb_unref(skb))
1770 		return;
1771 
1772 	/* In the more common cases we cleared the head states previously,
1773 	 * see __udp_queue_rcv_skb().
1774 	 */
1775 	if (unlikely(udp_skb_has_head_state(skb)))
1776 		skb_release_head_state(skb);
1777 	__consume_stateless_skb(skb);
1778 }
1779 EXPORT_SYMBOL_GPL(skb_consume_udp);
1780 
1781 static struct sk_buff *__first_packet_length(struct sock *sk,
1782 					     struct sk_buff_head *rcvq,
1783 					     int *total)
1784 {
1785 	struct sk_buff *skb;
1786 
1787 	while ((skb = skb_peek(rcvq)) != NULL) {
1788 		if (udp_lib_checksum_complete(skb)) {
1789 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1790 					IS_UDPLITE(sk));
1791 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1792 					IS_UDPLITE(sk));
1793 			atomic_inc(&sk->sk_drops);
1794 			__skb_unlink(skb, rcvq);
1795 			*total += skb->truesize;
1796 			kfree_skb(skb);
1797 		} else {
1798 			udp_skb_csum_unnecessary_set(skb);
1799 			break;
1800 		}
1801 	}
1802 	return skb;
1803 }
1804 
1805 /**
1806  *	first_packet_length	- return length of first packet in receive queue
1807  *	@sk: socket
1808  *
1809  *	Drops all bad checksum frames, until a valid one is found.
1810  *	Returns the length of found skb, or -1 if none is found.
1811  */
1812 static int first_packet_length(struct sock *sk)
1813 {
1814 	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1815 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1816 	struct sk_buff *skb;
1817 	int total = 0;
1818 	int res;
1819 
1820 	spin_lock_bh(&rcvq->lock);
1821 	skb = __first_packet_length(sk, rcvq, &total);
1822 	if (!skb && !skb_queue_empty_lockless(sk_queue)) {
1823 		spin_lock(&sk_queue->lock);
1824 		skb_queue_splice_tail_init(sk_queue, rcvq);
1825 		spin_unlock(&sk_queue->lock);
1826 
1827 		skb = __first_packet_length(sk, rcvq, &total);
1828 	}
1829 	res = skb ? skb->len : -1;
1830 	if (total)
1831 		udp_rmem_release(sk, total, 1, false);
1832 	spin_unlock_bh(&rcvq->lock);
1833 	return res;
1834 }
1835 
1836 /*
1837  *	IOCTL requests applicable to the UDP protocol
1838  */
1839 
1840 int udp_ioctl(struct sock *sk, int cmd, int *karg)
1841 {
1842 	switch (cmd) {
1843 	case SIOCOUTQ:
1844 	{
1845 		*karg = sk_wmem_alloc_get(sk);
1846 		return 0;
1847 	}
1848 
1849 	case SIOCINQ:
1850 	{
1851 		*karg = max_t(int, 0, first_packet_length(sk));
1852 		return 0;
1853 	}
1854 
1855 	default:
1856 		return -ENOIOCTLCMD;
1857 	}
1858 
1859 	return 0;
1860 }
1861 EXPORT_SYMBOL(udp_ioctl);
1862 
1863 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1864 			       int *off, int *err)
1865 {
1866 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1867 	struct sk_buff_head *queue;
1868 	struct sk_buff *last;
1869 	long timeo;
1870 	int error;
1871 
1872 	queue = &udp_sk(sk)->reader_queue;
1873 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1874 	do {
1875 		struct sk_buff *skb;
1876 
1877 		error = sock_error(sk);
1878 		if (error)
1879 			break;
1880 
1881 		error = -EAGAIN;
1882 		do {
1883 			spin_lock_bh(&queue->lock);
1884 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1885 							err, &last);
1886 			if (skb) {
1887 				if (!(flags & MSG_PEEK))
1888 					udp_skb_destructor(sk, skb);
1889 				spin_unlock_bh(&queue->lock);
1890 				return skb;
1891 			}
1892 
1893 			if (skb_queue_empty_lockless(sk_queue)) {
1894 				spin_unlock_bh(&queue->lock);
1895 				goto busy_check;
1896 			}
1897 
1898 			/* refill the reader queue and walk it again
1899 			 * keep both queues locked to avoid re-acquiring
1900 			 * the sk_receive_queue lock if fwd memory scheduling
1901 			 * is needed.
1902 			 */
1903 			spin_lock(&sk_queue->lock);
1904 			skb_queue_splice_tail_init(sk_queue, queue);
1905 
1906 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1907 							err, &last);
1908 			if (skb && !(flags & MSG_PEEK))
1909 				udp_skb_dtor_locked(sk, skb);
1910 			spin_unlock(&sk_queue->lock);
1911 			spin_unlock_bh(&queue->lock);
1912 			if (skb)
1913 				return skb;
1914 
1915 busy_check:
1916 			if (!sk_can_busy_loop(sk))
1917 				break;
1918 
1919 			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1920 		} while (!skb_queue_empty_lockless(sk_queue));
1921 
1922 		/* sk_queue is empty, reader_queue may contain peeked packets */
1923 	} while (timeo &&
1924 		 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
1925 					      &error, &timeo,
1926 					      (struct sk_buff *)sk_queue));
1927 
1928 	*err = error;
1929 	return NULL;
1930 }
1931 EXPORT_SYMBOL(__skb_recv_udp);
1932 
1933 int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1934 {
1935 	struct sk_buff *skb;
1936 	int err;
1937 
1938 try_again:
1939 	skb = skb_recv_udp(sk, MSG_DONTWAIT, &err);
1940 	if (!skb)
1941 		return err;
1942 
1943 	if (udp_lib_checksum_complete(skb)) {
1944 		int is_udplite = IS_UDPLITE(sk);
1945 		struct net *net = sock_net(sk);
1946 
1947 		__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, is_udplite);
1948 		__UDP_INC_STATS(net, UDP_MIB_INERRORS, is_udplite);
1949 		atomic_inc(&sk->sk_drops);
1950 		kfree_skb(skb);
1951 		goto try_again;
1952 	}
1953 
1954 	WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1955 	return recv_actor(sk, skb);
1956 }
1957 EXPORT_SYMBOL(udp_read_skb);
1958 
1959 /*
1960  * 	This should be easy, if there is something there we
1961  * 	return it, otherwise we block.
1962  */
1963 
1964 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
1965 		int *addr_len)
1966 {
1967 	struct inet_sock *inet = inet_sk(sk);
1968 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1969 	struct sk_buff *skb;
1970 	unsigned int ulen, copied;
1971 	int off, err, peeking = flags & MSG_PEEK;
1972 	int is_udplite = IS_UDPLITE(sk);
1973 	bool checksum_valid = false;
1974 
1975 	if (flags & MSG_ERRQUEUE)
1976 		return ip_recv_error(sk, msg, len, addr_len);
1977 
1978 try_again:
1979 	off = sk_peek_offset(sk, flags);
1980 	skb = __skb_recv_udp(sk, flags, &off, &err);
1981 	if (!skb)
1982 		return err;
1983 
1984 	ulen = udp_skb_len(skb);
1985 	copied = len;
1986 	if (copied > ulen - off)
1987 		copied = ulen - off;
1988 	else if (copied < ulen)
1989 		msg->msg_flags |= MSG_TRUNC;
1990 
1991 	/*
1992 	 * If checksum is needed at all, try to do it while copying the
1993 	 * data.  If the data is truncated, or if we only want a partial
1994 	 * coverage checksum (UDP-Lite), do it before the copy.
1995 	 */
1996 
1997 	if (copied < ulen || peeking ||
1998 	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1999 		checksum_valid = udp_skb_csum_unnecessary(skb) ||
2000 				!__udp_lib_checksum_complete(skb);
2001 		if (!checksum_valid)
2002 			goto csum_copy_err;
2003 	}
2004 
2005 	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
2006 		if (udp_skb_is_linear(skb))
2007 			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
2008 		else
2009 			err = skb_copy_datagram_msg(skb, off, msg, copied);
2010 	} else {
2011 		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
2012 
2013 		if (err == -EINVAL)
2014 			goto csum_copy_err;
2015 	}
2016 
2017 	if (unlikely(err)) {
2018 		if (!peeking) {
2019 			atomic_inc(&sk->sk_drops);
2020 			UDP_INC_STATS(sock_net(sk),
2021 				      UDP_MIB_INERRORS, is_udplite);
2022 		}
2023 		kfree_skb(skb);
2024 		return err;
2025 	}
2026 
2027 	if (!peeking)
2028 		UDP_INC_STATS(sock_net(sk),
2029 			      UDP_MIB_INDATAGRAMS, is_udplite);
2030 
2031 	sock_recv_cmsgs(msg, sk, skb);
2032 
2033 	/* Copy the address. */
2034 	if (sin) {
2035 		sin->sin_family = AF_INET;
2036 		sin->sin_port = udp_hdr(skb)->source;
2037 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
2038 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
2039 		*addr_len = sizeof(*sin);
2040 
2041 		BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
2042 						      (struct sockaddr *)sin,
2043 						      addr_len);
2044 	}
2045 
2046 	if (udp_test_bit(GRO_ENABLED, sk))
2047 		udp_cmsg_recv(msg, sk, skb);
2048 
2049 	if (inet_cmsg_flags(inet))
2050 		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
2051 
2052 	err = copied;
2053 	if (flags & MSG_TRUNC)
2054 		err = ulen;
2055 
2056 	skb_consume_udp(sk, skb, peeking ? -err : err);
2057 	return err;
2058 
2059 csum_copy_err:
2060 	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
2061 				 udp_skb_destructor)) {
2062 		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2063 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2064 	}
2065 	kfree_skb(skb);
2066 
2067 	/* starting over for a new packet, but check if we need to yield */
2068 	cond_resched();
2069 	msg->msg_flags &= ~MSG_TRUNC;
2070 	goto try_again;
2071 }
2072 
2073 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
2074 {
2075 	/* This check is replicated from __ip4_datagram_connect() and
2076 	 * intended to prevent BPF program called below from accessing bytes
2077 	 * that are out of the bound specified by user in addr_len.
2078 	 */
2079 	if (addr_len < sizeof(struct sockaddr_in))
2080 		return -EINVAL;
2081 
2082 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr, &addr_len);
2083 }
2084 EXPORT_SYMBOL(udp_pre_connect);
2085 
2086 static int udp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
2087 {
2088 	int res;
2089 
2090 	lock_sock(sk);
2091 	res = __ip4_datagram_connect(sk, uaddr, addr_len);
2092 	if (!res)
2093 		udp4_hash4(sk);
2094 	release_sock(sk);
2095 	return res;
2096 }
2097 
2098 int __udp_disconnect(struct sock *sk, int flags)
2099 {
2100 	struct inet_sock *inet = inet_sk(sk);
2101 	/*
2102 	 *	1003.1g - break association.
2103 	 */
2104 
2105 	sk->sk_state = TCP_CLOSE;
2106 	inet->inet_daddr = 0;
2107 	inet->inet_dport = 0;
2108 	sock_rps_reset_rxhash(sk);
2109 	sk->sk_bound_dev_if = 0;
2110 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) {
2111 		inet_reset_saddr(sk);
2112 		if (sk->sk_prot->rehash &&
2113 		    (sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2114 			sk->sk_prot->rehash(sk);
2115 	}
2116 
2117 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
2118 		sk->sk_prot->unhash(sk);
2119 		inet->inet_sport = 0;
2120 	}
2121 	sk_dst_reset(sk);
2122 	return 0;
2123 }
2124 EXPORT_SYMBOL(__udp_disconnect);
2125 
2126 int udp_disconnect(struct sock *sk, int flags)
2127 {
2128 	lock_sock(sk);
2129 	__udp_disconnect(sk, flags);
2130 	release_sock(sk);
2131 	return 0;
2132 }
2133 EXPORT_SYMBOL(udp_disconnect);
2134 
2135 void udp_lib_unhash(struct sock *sk)
2136 {
2137 	if (sk_hashed(sk)) {
2138 		struct udp_table *udptable = udp_get_table_prot(sk);
2139 		struct udp_hslot *hslot, *hslot2;
2140 
2141 		hslot  = udp_hashslot(udptable, sock_net(sk),
2142 				      udp_sk(sk)->udp_port_hash);
2143 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2144 
2145 		spin_lock_bh(&hslot->lock);
2146 		if (rcu_access_pointer(sk->sk_reuseport_cb))
2147 			reuseport_detach_sock(sk);
2148 		if (sk_del_node_init_rcu(sk)) {
2149 			hslot->count--;
2150 			inet_sk(sk)->inet_num = 0;
2151 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
2152 
2153 			spin_lock(&hslot2->lock);
2154 			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2155 			hslot2->count--;
2156 			spin_unlock(&hslot2->lock);
2157 
2158 			udp_unhash4(udptable, sk);
2159 		}
2160 		spin_unlock_bh(&hslot->lock);
2161 	}
2162 }
2163 EXPORT_SYMBOL(udp_lib_unhash);
2164 
2165 /*
2166  * inet_rcv_saddr was changed, we must rehash secondary hash
2167  */
2168 void udp_lib_rehash(struct sock *sk, u16 newhash, u16 newhash4)
2169 {
2170 	if (sk_hashed(sk)) {
2171 		struct udp_table *udptable = udp_get_table_prot(sk);
2172 		struct udp_hslot *hslot, *hslot2, *nhslot2;
2173 
2174 		hslot = udp_hashslot(udptable, sock_net(sk),
2175 				     udp_sk(sk)->udp_port_hash);
2176 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2177 		nhslot2 = udp_hashslot2(udptable, newhash);
2178 		udp_sk(sk)->udp_portaddr_hash = newhash;
2179 
2180 		if (hslot2 != nhslot2 ||
2181 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
2182 			/* we must lock primary chain too */
2183 			spin_lock_bh(&hslot->lock);
2184 			if (rcu_access_pointer(sk->sk_reuseport_cb))
2185 				reuseport_detach_sock(sk);
2186 
2187 			if (hslot2 != nhslot2) {
2188 				spin_lock(&hslot2->lock);
2189 				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2190 				hslot2->count--;
2191 				spin_unlock(&hslot2->lock);
2192 
2193 				spin_lock(&nhslot2->lock);
2194 				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
2195 							 &nhslot2->head);
2196 				nhslot2->count++;
2197 				spin_unlock(&nhslot2->lock);
2198 			}
2199 
2200 			spin_unlock_bh(&hslot->lock);
2201 		}
2202 
2203 		/* Now process hash4 if necessary:
2204 		 * (1) update hslot4;
2205 		 * (2) update hslot2->hash4_cnt.
2206 		 * Note that hslot2/hslot4 should be checked separately, as
2207 		 * either of them may change with the other unchanged.
2208 		 */
2209 		if (udp_hashed4(sk)) {
2210 			spin_lock_bh(&hslot->lock);
2211 
2212 			udp_rehash4(udptable, sk, newhash4);
2213 			if (hslot2 != nhslot2) {
2214 				spin_lock(&hslot2->lock);
2215 				udp_hash4_dec(hslot2);
2216 				spin_unlock(&hslot2->lock);
2217 
2218 				spin_lock(&nhslot2->lock);
2219 				udp_hash4_inc(nhslot2);
2220 				spin_unlock(&nhslot2->lock);
2221 			}
2222 
2223 			spin_unlock_bh(&hslot->lock);
2224 		}
2225 	}
2226 }
2227 EXPORT_SYMBOL(udp_lib_rehash);
2228 
2229 void udp_v4_rehash(struct sock *sk)
2230 {
2231 	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
2232 					  inet_sk(sk)->inet_rcv_saddr,
2233 					  inet_sk(sk)->inet_num);
2234 	u16 new_hash4 = udp_ehashfn(sock_net(sk),
2235 				    sk->sk_rcv_saddr, sk->sk_num,
2236 				    sk->sk_daddr, sk->sk_dport);
2237 
2238 	udp_lib_rehash(sk, new_hash, new_hash4);
2239 }
2240 
2241 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2242 {
2243 	int rc;
2244 
2245 	if (inet_sk(sk)->inet_daddr) {
2246 		sock_rps_save_rxhash(sk, skb);
2247 		sk_mark_napi_id(sk, skb);
2248 		sk_incoming_cpu_update(sk);
2249 	} else {
2250 		sk_mark_napi_id_once(sk, skb);
2251 	}
2252 
2253 	rc = __udp_enqueue_schedule_skb(sk, skb);
2254 	if (rc < 0) {
2255 		int is_udplite = IS_UDPLITE(sk);
2256 		int drop_reason;
2257 
2258 		/* Note that an ENOMEM error is charged twice */
2259 		if (rc == -ENOMEM) {
2260 			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
2261 					is_udplite);
2262 			drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
2263 		} else {
2264 			UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS,
2265 				      is_udplite);
2266 			drop_reason = SKB_DROP_REASON_PROTO_MEM;
2267 		}
2268 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2269 		trace_udp_fail_queue_rcv_skb(rc, sk, skb);
2270 		sk_skb_reason_drop(sk, skb, drop_reason);
2271 		return -1;
2272 	}
2273 
2274 	return 0;
2275 }
2276 
2277 /* returns:
2278  *  -1: error
2279  *   0: success
2280  *  >0: "udp encap" protocol resubmission
2281  *
2282  * Note that in the success and error cases, the skb is assumed to
2283  * have either been requeued or freed.
2284  */
2285 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
2286 {
2287 	int drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2288 	struct udp_sock *up = udp_sk(sk);
2289 	int is_udplite = IS_UDPLITE(sk);
2290 
2291 	/*
2292 	 *	Charge it to the socket, dropping if the queue is full.
2293 	 */
2294 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
2295 		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2296 		goto drop;
2297 	}
2298 	nf_reset_ct(skb);
2299 
2300 	if (static_branch_unlikely(&udp_encap_needed_key) &&
2301 	    READ_ONCE(up->encap_type)) {
2302 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2303 
2304 		/*
2305 		 * This is an encapsulation socket so pass the skb to
2306 		 * the socket's udp_encap_rcv() hook. Otherwise, just
2307 		 * fall through and pass this up the UDP socket.
2308 		 * up->encap_rcv() returns the following value:
2309 		 * =0 if skb was successfully passed to the encap
2310 		 *    handler or was discarded by it.
2311 		 * >0 if skb should be passed on to UDP.
2312 		 * <0 if skb should be resubmitted as proto -N
2313 		 */
2314 
2315 		/* if we're overly short, let UDP handle it */
2316 		encap_rcv = READ_ONCE(up->encap_rcv);
2317 		if (encap_rcv) {
2318 			int ret;
2319 
2320 			/* Verify checksum before giving to encap */
2321 			if (udp_lib_checksum_complete(skb))
2322 				goto csum_error;
2323 
2324 			ret = encap_rcv(sk, skb);
2325 			if (ret <= 0) {
2326 				__UDP_INC_STATS(sock_net(sk),
2327 						UDP_MIB_INDATAGRAMS,
2328 						is_udplite);
2329 				return -ret;
2330 			}
2331 		}
2332 
2333 		/* FALLTHROUGH -- it's a UDP Packet */
2334 	}
2335 
2336 	/*
2337 	 * 	UDP-Lite specific tests, ignored on UDP sockets
2338 	 */
2339 	if (udp_test_bit(UDPLITE_RECV_CC, sk) && UDP_SKB_CB(skb)->partial_cov) {
2340 		u16 pcrlen = READ_ONCE(up->pcrlen);
2341 
2342 		/*
2343 		 * MIB statistics other than incrementing the error count are
2344 		 * disabled for the following two types of errors: these depend
2345 		 * on the application settings, not on the functioning of the
2346 		 * protocol stack as such.
2347 		 *
2348 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
2349 		 * way ... to ... at least let the receiving application block
2350 		 * delivery of packets with coverage values less than a value
2351 		 * provided by the application."
2352 		 */
2353 		if (pcrlen == 0) {          /* full coverage was set  */
2354 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2355 					    UDP_SKB_CB(skb)->cscov, skb->len);
2356 			goto drop;
2357 		}
2358 		/* The next case involves violating the min. coverage requested
2359 		 * by the receiver. This is subtle: if receiver wants x and x is
2360 		 * greater than the buffersize/MTU then receiver will complain
2361 		 * that it wants x while sender emits packets of smaller size y.
2362 		 * Therefore the above ...()->partial_cov statement is essential.
2363 		 */
2364 		if (UDP_SKB_CB(skb)->cscov < pcrlen) {
2365 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2366 					    UDP_SKB_CB(skb)->cscov, pcrlen);
2367 			goto drop;
2368 		}
2369 	}
2370 
2371 	prefetch(&sk->sk_rmem_alloc);
2372 	if (rcu_access_pointer(sk->sk_filter) &&
2373 	    udp_lib_checksum_complete(skb))
2374 			goto csum_error;
2375 
2376 	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) {
2377 		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2378 		goto drop;
2379 	}
2380 
2381 	udp_csum_pull_header(skb);
2382 
2383 	ipv4_pktinfo_prepare(sk, skb, true);
2384 	return __udp_queue_rcv_skb(sk, skb);
2385 
2386 csum_error:
2387 	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2388 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2389 drop:
2390 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2391 	atomic_inc(&sk->sk_drops);
2392 	sk_skb_reason_drop(sk, skb, drop_reason);
2393 	return -1;
2394 }
2395 
2396 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2397 {
2398 	struct sk_buff *next, *segs;
2399 	int ret;
2400 
2401 	if (likely(!udp_unexpected_gso(sk, skb)))
2402 		return udp_queue_rcv_one_skb(sk, skb);
2403 
2404 	BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET);
2405 	__skb_push(skb, -skb_mac_offset(skb));
2406 	segs = udp_rcv_segment(sk, skb, true);
2407 	skb_list_walk_safe(segs, skb, next) {
2408 		__skb_pull(skb, skb_transport_offset(skb));
2409 
2410 		udp_post_segment_fix_csum(skb);
2411 		ret = udp_queue_rcv_one_skb(sk, skb);
2412 		if (ret > 0)
2413 			ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret);
2414 	}
2415 	return 0;
2416 }
2417 
2418 /* For TCP sockets, sk_rx_dst is protected by socket lock
2419  * For UDP, we use xchg() to guard against concurrent changes.
2420  */
2421 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2422 {
2423 	struct dst_entry *old;
2424 
2425 	if (dst_hold_safe(dst)) {
2426 		old = unrcu_pointer(xchg(&sk->sk_rx_dst, RCU_INITIALIZER(dst)));
2427 		dst_release(old);
2428 		return old != dst;
2429 	}
2430 	return false;
2431 }
2432 EXPORT_SYMBOL(udp_sk_rx_dst_set);
2433 
2434 /*
2435  *	Multicasts and broadcasts go to each listener.
2436  *
2437  *	Note: called only from the BH handler context.
2438  */
2439 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2440 				    struct udphdr  *uh,
2441 				    __be32 saddr, __be32 daddr,
2442 				    struct udp_table *udptable,
2443 				    int proto)
2444 {
2445 	struct sock *sk, *first = NULL;
2446 	unsigned short hnum = ntohs(uh->dest);
2447 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2448 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2449 	unsigned int offset = offsetof(typeof(*sk), sk_node);
2450 	int dif = skb->dev->ifindex;
2451 	int sdif = inet_sdif(skb);
2452 	struct hlist_node *node;
2453 	struct sk_buff *nskb;
2454 
2455 	if (use_hash2) {
2456 		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2457 			    udptable->mask;
2458 		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2459 start_lookup:
2460 		hslot = &udptable->hash2[hash2].hslot;
2461 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2462 	}
2463 
2464 	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2465 		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2466 					 uh->source, saddr, dif, sdif, hnum))
2467 			continue;
2468 
2469 		if (!first) {
2470 			first = sk;
2471 			continue;
2472 		}
2473 		nskb = skb_clone(skb, GFP_ATOMIC);
2474 
2475 		if (unlikely(!nskb)) {
2476 			atomic_inc(&sk->sk_drops);
2477 			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2478 					IS_UDPLITE(sk));
2479 			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
2480 					IS_UDPLITE(sk));
2481 			continue;
2482 		}
2483 		if (udp_queue_rcv_skb(sk, nskb) > 0)
2484 			consume_skb(nskb);
2485 	}
2486 
2487 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2488 	if (use_hash2 && hash2 != hash2_any) {
2489 		hash2 = hash2_any;
2490 		goto start_lookup;
2491 	}
2492 
2493 	if (first) {
2494 		if (udp_queue_rcv_skb(first, skb) > 0)
2495 			consume_skb(skb);
2496 	} else {
2497 		kfree_skb(skb);
2498 		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2499 				proto == IPPROTO_UDPLITE);
2500 	}
2501 	return 0;
2502 }
2503 
2504 /* Initialize UDP checksum. If exited with zero value (success),
2505  * CHECKSUM_UNNECESSARY means, that no more checks are required.
2506  * Otherwise, csum completion requires checksumming packet body,
2507  * including udp header and folding it to skb->csum.
2508  */
2509 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2510 				 int proto)
2511 {
2512 	int err;
2513 
2514 	UDP_SKB_CB(skb)->partial_cov = 0;
2515 	UDP_SKB_CB(skb)->cscov = skb->len;
2516 
2517 	if (proto == IPPROTO_UDPLITE) {
2518 		err = udplite_checksum_init(skb, uh);
2519 		if (err)
2520 			return err;
2521 
2522 		if (UDP_SKB_CB(skb)->partial_cov) {
2523 			skb->csum = inet_compute_pseudo(skb, proto);
2524 			return 0;
2525 		}
2526 	}
2527 
2528 	/* Note, we are only interested in != 0 or == 0, thus the
2529 	 * force to int.
2530 	 */
2531 	err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2532 							inet_compute_pseudo);
2533 	if (err)
2534 		return err;
2535 
2536 	if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2537 		/* If SW calculated the value, we know it's bad */
2538 		if (skb->csum_complete_sw)
2539 			return 1;
2540 
2541 		/* HW says the value is bad. Let's validate that.
2542 		 * skb->csum is no longer the full packet checksum,
2543 		 * so don't treat it as such.
2544 		 */
2545 		skb_checksum_complete_unset(skb);
2546 	}
2547 
2548 	return 0;
2549 }
2550 
2551 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2552  * return code conversion for ip layer consumption
2553  */
2554 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2555 			       struct udphdr *uh)
2556 {
2557 	int ret;
2558 
2559 	if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2560 		skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2561 
2562 	ret = udp_queue_rcv_skb(sk, skb);
2563 
2564 	/* a return value > 0 means to resubmit the input, but
2565 	 * it wants the return to be -protocol, or 0
2566 	 */
2567 	if (ret > 0)
2568 		return -ret;
2569 	return 0;
2570 }
2571 
2572 /*
2573  *	All we need to do is get the socket, and then do a checksum.
2574  */
2575 
2576 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2577 		   int proto)
2578 {
2579 	struct sock *sk = NULL;
2580 	struct udphdr *uh;
2581 	unsigned short ulen;
2582 	struct rtable *rt = skb_rtable(skb);
2583 	__be32 saddr, daddr;
2584 	struct net *net = dev_net(skb->dev);
2585 	bool refcounted;
2586 	int drop_reason;
2587 
2588 	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2589 
2590 	/*
2591 	 *  Validate the packet.
2592 	 */
2593 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2594 		goto drop;		/* No space for header. */
2595 
2596 	uh   = udp_hdr(skb);
2597 	ulen = ntohs(uh->len);
2598 	saddr = ip_hdr(skb)->saddr;
2599 	daddr = ip_hdr(skb)->daddr;
2600 
2601 	if (ulen > skb->len)
2602 		goto short_packet;
2603 
2604 	if (proto == IPPROTO_UDP) {
2605 		/* UDP validates ulen. */
2606 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2607 			goto short_packet;
2608 		uh = udp_hdr(skb);
2609 	}
2610 
2611 	if (udp4_csum_init(skb, uh, proto))
2612 		goto csum_error;
2613 
2614 	sk = inet_steal_sock(net, skb, sizeof(struct udphdr), saddr, uh->source, daddr, uh->dest,
2615 			     &refcounted, udp_ehashfn);
2616 	if (IS_ERR(sk))
2617 		goto no_sk;
2618 
2619 	if (sk) {
2620 		struct dst_entry *dst = skb_dst(skb);
2621 		int ret;
2622 
2623 		if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst))
2624 			udp_sk_rx_dst_set(sk, dst);
2625 
2626 		ret = udp_unicast_rcv_skb(sk, skb, uh);
2627 		if (refcounted)
2628 			sock_put(sk);
2629 		return ret;
2630 	}
2631 
2632 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2633 		return __udp4_lib_mcast_deliver(net, skb, uh,
2634 						saddr, daddr, udptable, proto);
2635 
2636 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2637 	if (sk)
2638 		return udp_unicast_rcv_skb(sk, skb, uh);
2639 no_sk:
2640 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2641 		goto drop;
2642 	nf_reset_ct(skb);
2643 
2644 	/* No socket. Drop packet silently, if checksum is wrong */
2645 	if (udp_lib_checksum_complete(skb))
2646 		goto csum_error;
2647 
2648 	drop_reason = SKB_DROP_REASON_NO_SOCKET;
2649 	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2650 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2651 
2652 	/*
2653 	 * Hmm.  We got an UDP packet to a port to which we
2654 	 * don't wanna listen.  Ignore it.
2655 	 */
2656 	sk_skb_reason_drop(sk, skb, drop_reason);
2657 	return 0;
2658 
2659 short_packet:
2660 	drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
2661 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2662 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2663 			    &saddr, ntohs(uh->source),
2664 			    ulen, skb->len,
2665 			    &daddr, ntohs(uh->dest));
2666 	goto drop;
2667 
2668 csum_error:
2669 	/*
2670 	 * RFC1122: OK.  Discards the bad packet silently (as far as
2671 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2672 	 */
2673 	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2674 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2675 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2676 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2677 			    ulen);
2678 	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2679 drop:
2680 	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2681 	sk_skb_reason_drop(sk, skb, drop_reason);
2682 	return 0;
2683 }
2684 
2685 /* We can only early demux multicast if there is a single matching socket.
2686  * If more than one socket found returns NULL
2687  */
2688 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2689 						  __be16 loc_port, __be32 loc_addr,
2690 						  __be16 rmt_port, __be32 rmt_addr,
2691 						  int dif, int sdif)
2692 {
2693 	struct udp_table *udptable = net->ipv4.udp_table;
2694 	unsigned short hnum = ntohs(loc_port);
2695 	struct sock *sk, *result;
2696 	struct udp_hslot *hslot;
2697 	unsigned int slot;
2698 
2699 	slot = udp_hashfn(net, hnum, udptable->mask);
2700 	hslot = &udptable->hash[slot];
2701 
2702 	/* Do not bother scanning a too big list */
2703 	if (hslot->count > 10)
2704 		return NULL;
2705 
2706 	result = NULL;
2707 	sk_for_each_rcu(sk, &hslot->head) {
2708 		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2709 					rmt_port, rmt_addr, dif, sdif, hnum)) {
2710 			if (result)
2711 				return NULL;
2712 			result = sk;
2713 		}
2714 	}
2715 
2716 	return result;
2717 }
2718 
2719 /* For unicast we should only early demux connected sockets or we can
2720  * break forwarding setups.  The chains here can be long so only check
2721  * if the first socket is an exact match and if not move on.
2722  */
2723 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2724 					    __be16 loc_port, __be32 loc_addr,
2725 					    __be16 rmt_port, __be32 rmt_addr,
2726 					    int dif, int sdif)
2727 {
2728 	struct udp_table *udptable = net->ipv4.udp_table;
2729 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2730 	unsigned short hnum = ntohs(loc_port);
2731 	struct udp_hslot *hslot2;
2732 	unsigned int hash2;
2733 	__portpair ports;
2734 	struct sock *sk;
2735 
2736 	hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2737 	hslot2 = udp_hashslot2(udptable, hash2);
2738 	ports = INET_COMBINED_PORTS(rmt_port, hnum);
2739 
2740 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2741 		if (inet_match(net, sk, acookie, ports, dif, sdif))
2742 			return sk;
2743 		/* Only check first socket in chain */
2744 		break;
2745 	}
2746 	return NULL;
2747 }
2748 
2749 int udp_v4_early_demux(struct sk_buff *skb)
2750 {
2751 	struct net *net = dev_net(skb->dev);
2752 	struct in_device *in_dev = NULL;
2753 	const struct iphdr *iph;
2754 	const struct udphdr *uh;
2755 	struct sock *sk = NULL;
2756 	struct dst_entry *dst;
2757 	int dif = skb->dev->ifindex;
2758 	int sdif = inet_sdif(skb);
2759 	int ours;
2760 
2761 	/* validate the packet */
2762 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2763 		return 0;
2764 
2765 	iph = ip_hdr(skb);
2766 	uh = udp_hdr(skb);
2767 
2768 	if (skb->pkt_type == PACKET_MULTICAST) {
2769 		in_dev = __in_dev_get_rcu(skb->dev);
2770 
2771 		if (!in_dev)
2772 			return 0;
2773 
2774 		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2775 				       iph->protocol);
2776 		if (!ours)
2777 			return 0;
2778 
2779 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2780 						   uh->source, iph->saddr,
2781 						   dif, sdif);
2782 	} else if (skb->pkt_type == PACKET_HOST) {
2783 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2784 					     uh->source, iph->saddr, dif, sdif);
2785 	}
2786 
2787 	if (!sk)
2788 		return 0;
2789 
2790 	skb->sk = sk;
2791 	DEBUG_NET_WARN_ON_ONCE(sk_is_refcounted(sk));
2792 	skb->destructor = sock_pfree;
2793 	dst = rcu_dereference(sk->sk_rx_dst);
2794 
2795 	if (dst)
2796 		dst = dst_check(dst, 0);
2797 	if (dst) {
2798 		u32 itag = 0;
2799 
2800 		/* set noref for now.
2801 		 * any place which wants to hold dst has to call
2802 		 * dst_hold_safe()
2803 		 */
2804 		skb_dst_set_noref(skb, dst);
2805 
2806 		/* for unconnected multicast sockets we need to validate
2807 		 * the source on each packet
2808 		 */
2809 		if (!inet_sk(sk)->inet_daddr && in_dev)
2810 			return ip_mc_validate_source(skb, iph->daddr,
2811 						     iph->saddr,
2812 						     ip4h_dscp(iph),
2813 						     skb->dev, in_dev, &itag);
2814 	}
2815 	return 0;
2816 }
2817 
2818 int udp_rcv(struct sk_buff *skb)
2819 {
2820 	return __udp4_lib_rcv(skb, dev_net(skb->dev)->ipv4.udp_table, IPPROTO_UDP);
2821 }
2822 
2823 void udp_destroy_sock(struct sock *sk)
2824 {
2825 	struct udp_sock *up = udp_sk(sk);
2826 	bool slow = lock_sock_fast(sk);
2827 
2828 	/* protects from races with udp_abort() */
2829 	sock_set_flag(sk, SOCK_DEAD);
2830 	udp_flush_pending_frames(sk);
2831 	unlock_sock_fast(sk, slow);
2832 	if (static_branch_unlikely(&udp_encap_needed_key)) {
2833 		if (up->encap_type) {
2834 			void (*encap_destroy)(struct sock *sk);
2835 			encap_destroy = READ_ONCE(up->encap_destroy);
2836 			if (encap_destroy)
2837 				encap_destroy(sk);
2838 		}
2839 		if (udp_test_bit(ENCAP_ENABLED, sk))
2840 			static_branch_dec(&udp_encap_needed_key);
2841 	}
2842 }
2843 
2844 static void set_xfrm_gro_udp_encap_rcv(__u16 encap_type, unsigned short family,
2845 				       struct sock *sk)
2846 {
2847 #ifdef CONFIG_XFRM
2848 	if (udp_test_bit(GRO_ENABLED, sk) && encap_type == UDP_ENCAP_ESPINUDP) {
2849 		if (family == AF_INET)
2850 			WRITE_ONCE(udp_sk(sk)->gro_receive, xfrm4_gro_udp_encap_rcv);
2851 		else if (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6)
2852 			WRITE_ONCE(udp_sk(sk)->gro_receive, ipv6_stub->xfrm6_gro_udp_encap_rcv);
2853 	}
2854 #endif
2855 }
2856 
2857 /*
2858  *	Socket option code for UDP
2859  */
2860 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2861 		       sockptr_t optval, unsigned int optlen,
2862 		       int (*push_pending_frames)(struct sock *))
2863 {
2864 	struct udp_sock *up = udp_sk(sk);
2865 	int val, valbool;
2866 	int err = 0;
2867 	int is_udplite = IS_UDPLITE(sk);
2868 
2869 	if (level == SOL_SOCKET) {
2870 		err = sk_setsockopt(sk, level, optname, optval, optlen);
2871 
2872 		if (optname == SO_RCVBUF || optname == SO_RCVBUFFORCE) {
2873 			sockopt_lock_sock(sk);
2874 			/* paired with READ_ONCE in udp_rmem_release() */
2875 			WRITE_ONCE(up->forward_threshold, sk->sk_rcvbuf >> 2);
2876 			sockopt_release_sock(sk);
2877 		}
2878 		return err;
2879 	}
2880 
2881 	if (optlen < sizeof(int))
2882 		return -EINVAL;
2883 
2884 	if (copy_from_sockptr(&val, optval, sizeof(val)))
2885 		return -EFAULT;
2886 
2887 	valbool = val ? 1 : 0;
2888 
2889 	switch (optname) {
2890 	case UDP_CORK:
2891 		if (val != 0) {
2892 			udp_set_bit(CORK, sk);
2893 		} else {
2894 			udp_clear_bit(CORK, sk);
2895 			lock_sock(sk);
2896 			push_pending_frames(sk);
2897 			release_sock(sk);
2898 		}
2899 		break;
2900 
2901 	case UDP_ENCAP:
2902 		switch (val) {
2903 		case 0:
2904 #ifdef CONFIG_XFRM
2905 		case UDP_ENCAP_ESPINUDP:
2906 			set_xfrm_gro_udp_encap_rcv(val, sk->sk_family, sk);
2907 #if IS_ENABLED(CONFIG_IPV6)
2908 			if (sk->sk_family == AF_INET6)
2909 				WRITE_ONCE(up->encap_rcv,
2910 					   ipv6_stub->xfrm6_udp_encap_rcv);
2911 			else
2912 #endif
2913 				WRITE_ONCE(up->encap_rcv,
2914 					   xfrm4_udp_encap_rcv);
2915 #endif
2916 			fallthrough;
2917 		case UDP_ENCAP_L2TPINUDP:
2918 			WRITE_ONCE(up->encap_type, val);
2919 			udp_tunnel_encap_enable(sk);
2920 			break;
2921 		default:
2922 			err = -ENOPROTOOPT;
2923 			break;
2924 		}
2925 		break;
2926 
2927 	case UDP_NO_CHECK6_TX:
2928 		udp_set_no_check6_tx(sk, valbool);
2929 		break;
2930 
2931 	case UDP_NO_CHECK6_RX:
2932 		udp_set_no_check6_rx(sk, valbool);
2933 		break;
2934 
2935 	case UDP_SEGMENT:
2936 		if (val < 0 || val > USHRT_MAX)
2937 			return -EINVAL;
2938 		WRITE_ONCE(up->gso_size, val);
2939 		break;
2940 
2941 	case UDP_GRO:
2942 
2943 		/* when enabling GRO, accept the related GSO packet type */
2944 		if (valbool)
2945 			udp_tunnel_encap_enable(sk);
2946 		udp_assign_bit(GRO_ENABLED, sk, valbool);
2947 		udp_assign_bit(ACCEPT_L4, sk, valbool);
2948 		set_xfrm_gro_udp_encap_rcv(up->encap_type, sk->sk_family, sk);
2949 		break;
2950 
2951 	/*
2952 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2953 	 */
2954 	/* The sender sets actual checksum coverage length via this option.
2955 	 * The case coverage > packet length is handled by send module. */
2956 	case UDPLITE_SEND_CSCOV:
2957 		if (!is_udplite)         /* Disable the option on UDP sockets */
2958 			return -ENOPROTOOPT;
2959 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2960 			val = 8;
2961 		else if (val > USHRT_MAX)
2962 			val = USHRT_MAX;
2963 		WRITE_ONCE(up->pcslen, val);
2964 		udp_set_bit(UDPLITE_SEND_CC, sk);
2965 		break;
2966 
2967 	/* The receiver specifies a minimum checksum coverage value. To make
2968 	 * sense, this should be set to at least 8 (as done below). If zero is
2969 	 * used, this again means full checksum coverage.                     */
2970 	case UDPLITE_RECV_CSCOV:
2971 		if (!is_udplite)         /* Disable the option on UDP sockets */
2972 			return -ENOPROTOOPT;
2973 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2974 			val = 8;
2975 		else if (val > USHRT_MAX)
2976 			val = USHRT_MAX;
2977 		WRITE_ONCE(up->pcrlen, val);
2978 		udp_set_bit(UDPLITE_RECV_CC, sk);
2979 		break;
2980 
2981 	default:
2982 		err = -ENOPROTOOPT;
2983 		break;
2984 	}
2985 
2986 	return err;
2987 }
2988 EXPORT_SYMBOL(udp_lib_setsockopt);
2989 
2990 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
2991 		   unsigned int optlen)
2992 {
2993 	if (level == SOL_UDP  ||  level == SOL_UDPLITE || level == SOL_SOCKET)
2994 		return udp_lib_setsockopt(sk, level, optname,
2995 					  optval, optlen,
2996 					  udp_push_pending_frames);
2997 	return ip_setsockopt(sk, level, optname, optval, optlen);
2998 }
2999 
3000 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
3001 		       char __user *optval, int __user *optlen)
3002 {
3003 	struct udp_sock *up = udp_sk(sk);
3004 	int val, len;
3005 
3006 	if (get_user(len, optlen))
3007 		return -EFAULT;
3008 
3009 	if (len < 0)
3010 		return -EINVAL;
3011 
3012 	len = min_t(unsigned int, len, sizeof(int));
3013 
3014 	switch (optname) {
3015 	case UDP_CORK:
3016 		val = udp_test_bit(CORK, sk);
3017 		break;
3018 
3019 	case UDP_ENCAP:
3020 		val = READ_ONCE(up->encap_type);
3021 		break;
3022 
3023 	case UDP_NO_CHECK6_TX:
3024 		val = udp_get_no_check6_tx(sk);
3025 		break;
3026 
3027 	case UDP_NO_CHECK6_RX:
3028 		val = udp_get_no_check6_rx(sk);
3029 		break;
3030 
3031 	case UDP_SEGMENT:
3032 		val = READ_ONCE(up->gso_size);
3033 		break;
3034 
3035 	case UDP_GRO:
3036 		val = udp_test_bit(GRO_ENABLED, sk);
3037 		break;
3038 
3039 	/* The following two cannot be changed on UDP sockets, the return is
3040 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
3041 	case UDPLITE_SEND_CSCOV:
3042 		val = READ_ONCE(up->pcslen);
3043 		break;
3044 
3045 	case UDPLITE_RECV_CSCOV:
3046 		val = READ_ONCE(up->pcrlen);
3047 		break;
3048 
3049 	default:
3050 		return -ENOPROTOOPT;
3051 	}
3052 
3053 	if (put_user(len, optlen))
3054 		return -EFAULT;
3055 	if (copy_to_user(optval, &val, len))
3056 		return -EFAULT;
3057 	return 0;
3058 }
3059 EXPORT_SYMBOL(udp_lib_getsockopt);
3060 
3061 int udp_getsockopt(struct sock *sk, int level, int optname,
3062 		   char __user *optval, int __user *optlen)
3063 {
3064 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
3065 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
3066 	return ip_getsockopt(sk, level, optname, optval, optlen);
3067 }
3068 
3069 /**
3070  * 	udp_poll - wait for a UDP event.
3071  *	@file: - file struct
3072  *	@sock: - socket
3073  *	@wait: - poll table
3074  *
3075  *	This is same as datagram poll, except for the special case of
3076  *	blocking sockets. If application is using a blocking fd
3077  *	and a packet with checksum error is in the queue;
3078  *	then it could get return from select indicating data available
3079  *	but then block when reading it. Add special case code
3080  *	to work around these arguably broken applications.
3081  */
3082 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
3083 {
3084 	__poll_t mask = datagram_poll(file, sock, wait);
3085 	struct sock *sk = sock->sk;
3086 
3087 	if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
3088 		mask |= EPOLLIN | EPOLLRDNORM;
3089 
3090 	/* Check for false positives due to checksum errors */
3091 	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
3092 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
3093 		mask &= ~(EPOLLIN | EPOLLRDNORM);
3094 
3095 	/* psock ingress_msg queue should not contain any bad checksum frames */
3096 	if (sk_is_readable(sk))
3097 		mask |= EPOLLIN | EPOLLRDNORM;
3098 	return mask;
3099 
3100 }
3101 EXPORT_SYMBOL(udp_poll);
3102 
3103 int udp_abort(struct sock *sk, int err)
3104 {
3105 	if (!has_current_bpf_ctx())
3106 		lock_sock(sk);
3107 
3108 	/* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing
3109 	 * with close()
3110 	 */
3111 	if (sock_flag(sk, SOCK_DEAD))
3112 		goto out;
3113 
3114 	sk->sk_err = err;
3115 	sk_error_report(sk);
3116 	__udp_disconnect(sk, 0);
3117 
3118 out:
3119 	if (!has_current_bpf_ctx())
3120 		release_sock(sk);
3121 
3122 	return 0;
3123 }
3124 EXPORT_SYMBOL_GPL(udp_abort);
3125 
3126 struct proto udp_prot = {
3127 	.name			= "UDP",
3128 	.owner			= THIS_MODULE,
3129 	.close			= udp_lib_close,
3130 	.pre_connect		= udp_pre_connect,
3131 	.connect		= udp_connect,
3132 	.disconnect		= udp_disconnect,
3133 	.ioctl			= udp_ioctl,
3134 	.init			= udp_init_sock,
3135 	.destroy		= udp_destroy_sock,
3136 	.setsockopt		= udp_setsockopt,
3137 	.getsockopt		= udp_getsockopt,
3138 	.sendmsg		= udp_sendmsg,
3139 	.recvmsg		= udp_recvmsg,
3140 	.splice_eof		= udp_splice_eof,
3141 	.release_cb		= ip4_datagram_release_cb,
3142 	.hash			= udp_lib_hash,
3143 	.unhash			= udp_lib_unhash,
3144 	.rehash			= udp_v4_rehash,
3145 	.get_port		= udp_v4_get_port,
3146 	.put_port		= udp_lib_unhash,
3147 #ifdef CONFIG_BPF_SYSCALL
3148 	.psock_update_sk_prot	= udp_bpf_update_proto,
3149 #endif
3150 	.memory_allocated	= &udp_memory_allocated,
3151 	.per_cpu_fw_alloc	= &udp_memory_per_cpu_fw_alloc,
3152 
3153 	.sysctl_mem		= sysctl_udp_mem,
3154 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min),
3155 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min),
3156 	.obj_size		= sizeof(struct udp_sock),
3157 	.h.udp_table		= NULL,
3158 	.diag_destroy		= udp_abort,
3159 };
3160 EXPORT_SYMBOL(udp_prot);
3161 
3162 /* ------------------------------------------------------------------------ */
3163 #ifdef CONFIG_PROC_FS
3164 
3165 static unsigned short seq_file_family(const struct seq_file *seq);
3166 static bool seq_sk_match(struct seq_file *seq, const struct sock *sk)
3167 {
3168 	unsigned short family = seq_file_family(seq);
3169 
3170 	/* AF_UNSPEC is used as a match all */
3171 	return ((family == AF_UNSPEC || family == sk->sk_family) &&
3172 		net_eq(sock_net(sk), seq_file_net(seq)));
3173 }
3174 
3175 #ifdef CONFIG_BPF_SYSCALL
3176 static const struct seq_operations bpf_iter_udp_seq_ops;
3177 #endif
3178 static struct udp_table *udp_get_table_seq(struct seq_file *seq,
3179 					   struct net *net)
3180 {
3181 	const struct udp_seq_afinfo *afinfo;
3182 
3183 #ifdef CONFIG_BPF_SYSCALL
3184 	if (seq->op == &bpf_iter_udp_seq_ops)
3185 		return net->ipv4.udp_table;
3186 #endif
3187 
3188 	afinfo = pde_data(file_inode(seq->file));
3189 	return afinfo->udp_table ? : net->ipv4.udp_table;
3190 }
3191 
3192 static struct sock *udp_get_first(struct seq_file *seq, int start)
3193 {
3194 	struct udp_iter_state *state = seq->private;
3195 	struct net *net = seq_file_net(seq);
3196 	struct udp_table *udptable;
3197 	struct sock *sk;
3198 
3199 	udptable = udp_get_table_seq(seq, net);
3200 
3201 	for (state->bucket = start; state->bucket <= udptable->mask;
3202 	     ++state->bucket) {
3203 		struct udp_hslot *hslot = &udptable->hash[state->bucket];
3204 
3205 		if (hlist_empty(&hslot->head))
3206 			continue;
3207 
3208 		spin_lock_bh(&hslot->lock);
3209 		sk_for_each(sk, &hslot->head) {
3210 			if (seq_sk_match(seq, sk))
3211 				goto found;
3212 		}
3213 		spin_unlock_bh(&hslot->lock);
3214 	}
3215 	sk = NULL;
3216 found:
3217 	return sk;
3218 }
3219 
3220 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
3221 {
3222 	struct udp_iter_state *state = seq->private;
3223 	struct net *net = seq_file_net(seq);
3224 	struct udp_table *udptable;
3225 
3226 	do {
3227 		sk = sk_next(sk);
3228 	} while (sk && !seq_sk_match(seq, sk));
3229 
3230 	if (!sk) {
3231 		udptable = udp_get_table_seq(seq, net);
3232 
3233 		if (state->bucket <= udptable->mask)
3234 			spin_unlock_bh(&udptable->hash[state->bucket].lock);
3235 
3236 		return udp_get_first(seq, state->bucket + 1);
3237 	}
3238 	return sk;
3239 }
3240 
3241 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
3242 {
3243 	struct sock *sk = udp_get_first(seq, 0);
3244 
3245 	if (sk)
3246 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
3247 			--pos;
3248 	return pos ? NULL : sk;
3249 }
3250 
3251 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
3252 {
3253 	struct udp_iter_state *state = seq->private;
3254 	state->bucket = MAX_UDP_PORTS;
3255 
3256 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
3257 }
3258 EXPORT_SYMBOL(udp_seq_start);
3259 
3260 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3261 {
3262 	struct sock *sk;
3263 
3264 	if (v == SEQ_START_TOKEN)
3265 		sk = udp_get_idx(seq, 0);
3266 	else
3267 		sk = udp_get_next(seq, v);
3268 
3269 	++*pos;
3270 	return sk;
3271 }
3272 EXPORT_SYMBOL(udp_seq_next);
3273 
3274 void udp_seq_stop(struct seq_file *seq, void *v)
3275 {
3276 	struct udp_iter_state *state = seq->private;
3277 	struct udp_table *udptable;
3278 
3279 	udptable = udp_get_table_seq(seq, seq_file_net(seq));
3280 
3281 	if (state->bucket <= udptable->mask)
3282 		spin_unlock_bh(&udptable->hash[state->bucket].lock);
3283 }
3284 EXPORT_SYMBOL(udp_seq_stop);
3285 
3286 /* ------------------------------------------------------------------------ */
3287 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
3288 		int bucket)
3289 {
3290 	struct inet_sock *inet = inet_sk(sp);
3291 	__be32 dest = inet->inet_daddr;
3292 	__be32 src  = inet->inet_rcv_saddr;
3293 	__u16 destp	  = ntohs(inet->inet_dport);
3294 	__u16 srcp	  = ntohs(inet->inet_sport);
3295 
3296 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
3297 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
3298 		bucket, src, srcp, dest, destp, sp->sk_state,
3299 		sk_wmem_alloc_get(sp),
3300 		udp_rqueue_get(sp),
3301 		0, 0L, 0,
3302 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
3303 		0, sock_i_ino(sp),
3304 		refcount_read(&sp->sk_refcnt), sp,
3305 		atomic_read(&sp->sk_drops));
3306 }
3307 
3308 int udp4_seq_show(struct seq_file *seq, void *v)
3309 {
3310 	seq_setwidth(seq, 127);
3311 	if (v == SEQ_START_TOKEN)
3312 		seq_puts(seq, "   sl  local_address rem_address   st tx_queue "
3313 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
3314 			   "inode ref pointer drops");
3315 	else {
3316 		struct udp_iter_state *state = seq->private;
3317 
3318 		udp4_format_sock(v, seq, state->bucket);
3319 	}
3320 	seq_pad(seq, '\n');
3321 	return 0;
3322 }
3323 
3324 #ifdef CONFIG_BPF_SYSCALL
3325 struct bpf_iter__udp {
3326 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
3327 	__bpf_md_ptr(struct udp_sock *, udp_sk);
3328 	uid_t uid __aligned(8);
3329 	int bucket __aligned(8);
3330 };
3331 
3332 struct bpf_udp_iter_state {
3333 	struct udp_iter_state state;
3334 	unsigned int cur_sk;
3335 	unsigned int end_sk;
3336 	unsigned int max_sk;
3337 	int offset;
3338 	struct sock **batch;
3339 	bool st_bucket_done;
3340 };
3341 
3342 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3343 				      unsigned int new_batch_sz);
3344 static struct sock *bpf_iter_udp_batch(struct seq_file *seq)
3345 {
3346 	struct bpf_udp_iter_state *iter = seq->private;
3347 	struct udp_iter_state *state = &iter->state;
3348 	struct net *net = seq_file_net(seq);
3349 	int resume_bucket, resume_offset;
3350 	struct udp_table *udptable;
3351 	unsigned int batch_sks = 0;
3352 	bool resized = false;
3353 	struct sock *sk;
3354 
3355 	resume_bucket = state->bucket;
3356 	resume_offset = iter->offset;
3357 
3358 	/* The current batch is done, so advance the bucket. */
3359 	if (iter->st_bucket_done)
3360 		state->bucket++;
3361 
3362 	udptable = udp_get_table_seq(seq, net);
3363 
3364 again:
3365 	/* New batch for the next bucket.
3366 	 * Iterate over the hash table to find a bucket with sockets matching
3367 	 * the iterator attributes, and return the first matching socket from
3368 	 * the bucket. The remaining matched sockets from the bucket are batched
3369 	 * before releasing the bucket lock. This allows BPF programs that are
3370 	 * called in seq_show to acquire the bucket lock if needed.
3371 	 */
3372 	iter->cur_sk = 0;
3373 	iter->end_sk = 0;
3374 	iter->st_bucket_done = false;
3375 	batch_sks = 0;
3376 
3377 	for (; state->bucket <= udptable->mask; state->bucket++) {
3378 		struct udp_hslot *hslot2 = &udptable->hash2[state->bucket].hslot;
3379 
3380 		if (hlist_empty(&hslot2->head))
3381 			continue;
3382 
3383 		iter->offset = 0;
3384 		spin_lock_bh(&hslot2->lock);
3385 		udp_portaddr_for_each_entry(sk, &hslot2->head) {
3386 			if (seq_sk_match(seq, sk)) {
3387 				/* Resume from the last iterated socket at the
3388 				 * offset in the bucket before iterator was stopped.
3389 				 */
3390 				if (state->bucket == resume_bucket &&
3391 				    iter->offset < resume_offset) {
3392 					++iter->offset;
3393 					continue;
3394 				}
3395 				if (iter->end_sk < iter->max_sk) {
3396 					sock_hold(sk);
3397 					iter->batch[iter->end_sk++] = sk;
3398 				}
3399 				batch_sks++;
3400 			}
3401 		}
3402 		spin_unlock_bh(&hslot2->lock);
3403 
3404 		if (iter->end_sk)
3405 			break;
3406 	}
3407 
3408 	/* All done: no batch made. */
3409 	if (!iter->end_sk)
3410 		return NULL;
3411 
3412 	if (iter->end_sk == batch_sks) {
3413 		/* Batching is done for the current bucket; return the first
3414 		 * socket to be iterated from the batch.
3415 		 */
3416 		iter->st_bucket_done = true;
3417 		goto done;
3418 	}
3419 	if (!resized && !bpf_iter_udp_realloc_batch(iter, batch_sks * 3 / 2)) {
3420 		resized = true;
3421 		/* After allocating a larger batch, retry one more time to grab
3422 		 * the whole bucket.
3423 		 */
3424 		goto again;
3425 	}
3426 done:
3427 	return iter->batch[0];
3428 }
3429 
3430 static void *bpf_iter_udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3431 {
3432 	struct bpf_udp_iter_state *iter = seq->private;
3433 	struct sock *sk;
3434 
3435 	/* Whenever seq_next() is called, the iter->cur_sk is
3436 	 * done with seq_show(), so unref the iter->cur_sk.
3437 	 */
3438 	if (iter->cur_sk < iter->end_sk) {
3439 		sock_put(iter->batch[iter->cur_sk++]);
3440 		++iter->offset;
3441 	}
3442 
3443 	/* After updating iter->cur_sk, check if there are more sockets
3444 	 * available in the current bucket batch.
3445 	 */
3446 	if (iter->cur_sk < iter->end_sk)
3447 		sk = iter->batch[iter->cur_sk];
3448 	else
3449 		/* Prepare a new batch. */
3450 		sk = bpf_iter_udp_batch(seq);
3451 
3452 	++*pos;
3453 	return sk;
3454 }
3455 
3456 static void *bpf_iter_udp_seq_start(struct seq_file *seq, loff_t *pos)
3457 {
3458 	/* bpf iter does not support lseek, so it always
3459 	 * continue from where it was stop()-ped.
3460 	 */
3461 	if (*pos)
3462 		return bpf_iter_udp_batch(seq);
3463 
3464 	return SEQ_START_TOKEN;
3465 }
3466 
3467 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3468 			     struct udp_sock *udp_sk, uid_t uid, int bucket)
3469 {
3470 	struct bpf_iter__udp ctx;
3471 
3472 	meta->seq_num--;  /* skip SEQ_START_TOKEN */
3473 	ctx.meta = meta;
3474 	ctx.udp_sk = udp_sk;
3475 	ctx.uid = uid;
3476 	ctx.bucket = bucket;
3477 	return bpf_iter_run_prog(prog, &ctx);
3478 }
3479 
3480 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v)
3481 {
3482 	struct udp_iter_state *state = seq->private;
3483 	struct bpf_iter_meta meta;
3484 	struct bpf_prog *prog;
3485 	struct sock *sk = v;
3486 	uid_t uid;
3487 	int ret;
3488 
3489 	if (v == SEQ_START_TOKEN)
3490 		return 0;
3491 
3492 	lock_sock(sk);
3493 
3494 	if (unlikely(sk_unhashed(sk))) {
3495 		ret = SEQ_SKIP;
3496 		goto unlock;
3497 	}
3498 
3499 	uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3500 	meta.seq = seq;
3501 	prog = bpf_iter_get_info(&meta, false);
3502 	ret = udp_prog_seq_show(prog, &meta, v, uid, state->bucket);
3503 
3504 unlock:
3505 	release_sock(sk);
3506 	return ret;
3507 }
3508 
3509 static void bpf_iter_udp_put_batch(struct bpf_udp_iter_state *iter)
3510 {
3511 	while (iter->cur_sk < iter->end_sk)
3512 		sock_put(iter->batch[iter->cur_sk++]);
3513 }
3514 
3515 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v)
3516 {
3517 	struct bpf_udp_iter_state *iter = seq->private;
3518 	struct bpf_iter_meta meta;
3519 	struct bpf_prog *prog;
3520 
3521 	if (!v) {
3522 		meta.seq = seq;
3523 		prog = bpf_iter_get_info(&meta, true);
3524 		if (prog)
3525 			(void)udp_prog_seq_show(prog, &meta, v, 0, 0);
3526 	}
3527 
3528 	if (iter->cur_sk < iter->end_sk) {
3529 		bpf_iter_udp_put_batch(iter);
3530 		iter->st_bucket_done = false;
3531 	}
3532 }
3533 
3534 static const struct seq_operations bpf_iter_udp_seq_ops = {
3535 	.start		= bpf_iter_udp_seq_start,
3536 	.next		= bpf_iter_udp_seq_next,
3537 	.stop		= bpf_iter_udp_seq_stop,
3538 	.show		= bpf_iter_udp_seq_show,
3539 };
3540 #endif
3541 
3542 static unsigned short seq_file_family(const struct seq_file *seq)
3543 {
3544 	const struct udp_seq_afinfo *afinfo;
3545 
3546 #ifdef CONFIG_BPF_SYSCALL
3547 	/* BPF iterator: bpf programs to filter sockets. */
3548 	if (seq->op == &bpf_iter_udp_seq_ops)
3549 		return AF_UNSPEC;
3550 #endif
3551 
3552 	/* Proc fs iterator */
3553 	afinfo = pde_data(file_inode(seq->file));
3554 	return afinfo->family;
3555 }
3556 
3557 const struct seq_operations udp_seq_ops = {
3558 	.start		= udp_seq_start,
3559 	.next		= udp_seq_next,
3560 	.stop		= udp_seq_stop,
3561 	.show		= udp4_seq_show,
3562 };
3563 EXPORT_SYMBOL(udp_seq_ops);
3564 
3565 static struct udp_seq_afinfo udp4_seq_afinfo = {
3566 	.family		= AF_INET,
3567 	.udp_table	= NULL,
3568 };
3569 
3570 static int __net_init udp4_proc_init_net(struct net *net)
3571 {
3572 	if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
3573 			sizeof(struct udp_iter_state), &udp4_seq_afinfo))
3574 		return -ENOMEM;
3575 	return 0;
3576 }
3577 
3578 static void __net_exit udp4_proc_exit_net(struct net *net)
3579 {
3580 	remove_proc_entry("udp", net->proc_net);
3581 }
3582 
3583 static struct pernet_operations udp4_net_ops = {
3584 	.init = udp4_proc_init_net,
3585 	.exit = udp4_proc_exit_net,
3586 };
3587 
3588 int __init udp4_proc_init(void)
3589 {
3590 	return register_pernet_subsys(&udp4_net_ops);
3591 }
3592 
3593 void udp4_proc_exit(void)
3594 {
3595 	unregister_pernet_subsys(&udp4_net_ops);
3596 }
3597 #endif /* CONFIG_PROC_FS */
3598 
3599 static __initdata unsigned long uhash_entries;
3600 static int __init set_uhash_entries(char *str)
3601 {
3602 	ssize_t ret;
3603 
3604 	if (!str)
3605 		return 0;
3606 
3607 	ret = kstrtoul(str, 0, &uhash_entries);
3608 	if (ret)
3609 		return 0;
3610 
3611 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
3612 		uhash_entries = UDP_HTABLE_SIZE_MIN;
3613 	return 1;
3614 }
3615 __setup("uhash_entries=", set_uhash_entries);
3616 
3617 void __init udp_table_init(struct udp_table *table, const char *name)
3618 {
3619 	unsigned int i, slot_size;
3620 
3621 	slot_size = sizeof(struct udp_hslot) + sizeof(struct udp_hslot_main) +
3622 		    udp_hash4_slot_size();
3623 	table->hash = alloc_large_system_hash(name,
3624 					      slot_size,
3625 					      uhash_entries,
3626 					      21, /* one slot per 2 MB */
3627 					      0,
3628 					      &table->log,
3629 					      &table->mask,
3630 					      UDP_HTABLE_SIZE_MIN,
3631 					      UDP_HTABLE_SIZE_MAX);
3632 
3633 	table->hash2 = (void *)(table->hash + (table->mask + 1));
3634 	for (i = 0; i <= table->mask; i++) {
3635 		INIT_HLIST_HEAD(&table->hash[i].head);
3636 		table->hash[i].count = 0;
3637 		spin_lock_init(&table->hash[i].lock);
3638 	}
3639 	for (i = 0; i <= table->mask; i++) {
3640 		INIT_HLIST_HEAD(&table->hash2[i].hslot.head);
3641 		table->hash2[i].hslot.count = 0;
3642 		spin_lock_init(&table->hash2[i].hslot.lock);
3643 	}
3644 	udp_table_hash4_init(table);
3645 }
3646 
3647 u32 udp_flow_hashrnd(void)
3648 {
3649 	static u32 hashrnd __read_mostly;
3650 
3651 	net_get_random_once(&hashrnd, sizeof(hashrnd));
3652 
3653 	return hashrnd;
3654 }
3655 EXPORT_SYMBOL(udp_flow_hashrnd);
3656 
3657 static void __net_init udp_sysctl_init(struct net *net)
3658 {
3659 	net->ipv4.sysctl_udp_rmem_min = PAGE_SIZE;
3660 	net->ipv4.sysctl_udp_wmem_min = PAGE_SIZE;
3661 
3662 #ifdef CONFIG_NET_L3_MASTER_DEV
3663 	net->ipv4.sysctl_udp_l3mdev_accept = 0;
3664 #endif
3665 }
3666 
3667 static struct udp_table __net_init *udp_pernet_table_alloc(unsigned int hash_entries)
3668 {
3669 	struct udp_table *udptable;
3670 	unsigned int slot_size;
3671 	int i;
3672 
3673 	udptable = kmalloc(sizeof(*udptable), GFP_KERNEL);
3674 	if (!udptable)
3675 		goto out;
3676 
3677 	slot_size = sizeof(struct udp_hslot) + sizeof(struct udp_hslot_main) +
3678 		    udp_hash4_slot_size();
3679 	udptable->hash = vmalloc_huge(hash_entries * slot_size,
3680 				      GFP_KERNEL_ACCOUNT);
3681 	if (!udptable->hash)
3682 		goto free_table;
3683 
3684 	udptable->hash2 = (void *)(udptable->hash + hash_entries);
3685 	udptable->mask = hash_entries - 1;
3686 	udptable->log = ilog2(hash_entries);
3687 
3688 	for (i = 0; i < hash_entries; i++) {
3689 		INIT_HLIST_HEAD(&udptable->hash[i].head);
3690 		udptable->hash[i].count = 0;
3691 		spin_lock_init(&udptable->hash[i].lock);
3692 
3693 		INIT_HLIST_HEAD(&udptable->hash2[i].hslot.head);
3694 		udptable->hash2[i].hslot.count = 0;
3695 		spin_lock_init(&udptable->hash2[i].hslot.lock);
3696 	}
3697 	udp_table_hash4_init(udptable);
3698 
3699 	return udptable;
3700 
3701 free_table:
3702 	kfree(udptable);
3703 out:
3704 	return NULL;
3705 }
3706 
3707 static void __net_exit udp_pernet_table_free(struct net *net)
3708 {
3709 	struct udp_table *udptable = net->ipv4.udp_table;
3710 
3711 	if (udptable == &udp_table)
3712 		return;
3713 
3714 	kvfree(udptable->hash);
3715 	kfree(udptable);
3716 }
3717 
3718 static void __net_init udp_set_table(struct net *net)
3719 {
3720 	struct udp_table *udptable;
3721 	unsigned int hash_entries;
3722 	struct net *old_net;
3723 
3724 	if (net_eq(net, &init_net))
3725 		goto fallback;
3726 
3727 	old_net = current->nsproxy->net_ns;
3728 	hash_entries = READ_ONCE(old_net->ipv4.sysctl_udp_child_hash_entries);
3729 	if (!hash_entries)
3730 		goto fallback;
3731 
3732 	/* Set min to keep the bitmap on stack in udp_lib_get_port() */
3733 	if (hash_entries < UDP_HTABLE_SIZE_MIN_PERNET)
3734 		hash_entries = UDP_HTABLE_SIZE_MIN_PERNET;
3735 	else
3736 		hash_entries = roundup_pow_of_two(hash_entries);
3737 
3738 	udptable = udp_pernet_table_alloc(hash_entries);
3739 	if (udptable) {
3740 		net->ipv4.udp_table = udptable;
3741 	} else {
3742 		pr_warn("Failed to allocate UDP hash table (entries: %u) "
3743 			"for a netns, fallback to the global one\n",
3744 			hash_entries);
3745 fallback:
3746 		net->ipv4.udp_table = &udp_table;
3747 	}
3748 }
3749 
3750 static int __net_init udp_pernet_init(struct net *net)
3751 {
3752 	udp_sysctl_init(net);
3753 	udp_set_table(net);
3754 
3755 	return 0;
3756 }
3757 
3758 static void __net_exit udp_pernet_exit(struct net *net)
3759 {
3760 	udp_pernet_table_free(net);
3761 }
3762 
3763 static struct pernet_operations __net_initdata udp_sysctl_ops = {
3764 	.init	= udp_pernet_init,
3765 	.exit	= udp_pernet_exit,
3766 };
3767 
3768 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3769 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta,
3770 		     struct udp_sock *udp_sk, uid_t uid, int bucket)
3771 
3772 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3773 				      unsigned int new_batch_sz)
3774 {
3775 	struct sock **new_batch;
3776 
3777 	new_batch = kvmalloc_array(new_batch_sz, sizeof(*new_batch),
3778 				   GFP_USER | __GFP_NOWARN);
3779 	if (!new_batch)
3780 		return -ENOMEM;
3781 
3782 	bpf_iter_udp_put_batch(iter);
3783 	kvfree(iter->batch);
3784 	iter->batch = new_batch;
3785 	iter->max_sk = new_batch_sz;
3786 
3787 	return 0;
3788 }
3789 
3790 #define INIT_BATCH_SZ 16
3791 
3792 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux)
3793 {
3794 	struct bpf_udp_iter_state *iter = priv_data;
3795 	int ret;
3796 
3797 	ret = bpf_iter_init_seq_net(priv_data, aux);
3798 	if (ret)
3799 		return ret;
3800 
3801 	ret = bpf_iter_udp_realloc_batch(iter, INIT_BATCH_SZ);
3802 	if (ret)
3803 		bpf_iter_fini_seq_net(priv_data);
3804 
3805 	return ret;
3806 }
3807 
3808 static void bpf_iter_fini_udp(void *priv_data)
3809 {
3810 	struct bpf_udp_iter_state *iter = priv_data;
3811 
3812 	bpf_iter_fini_seq_net(priv_data);
3813 	kvfree(iter->batch);
3814 }
3815 
3816 static const struct bpf_iter_seq_info udp_seq_info = {
3817 	.seq_ops		= &bpf_iter_udp_seq_ops,
3818 	.init_seq_private	= bpf_iter_init_udp,
3819 	.fini_seq_private	= bpf_iter_fini_udp,
3820 	.seq_priv_size		= sizeof(struct bpf_udp_iter_state),
3821 };
3822 
3823 static struct bpf_iter_reg udp_reg_info = {
3824 	.target			= "udp",
3825 	.ctx_arg_info_size	= 1,
3826 	.ctx_arg_info		= {
3827 		{ offsetof(struct bpf_iter__udp, udp_sk),
3828 		  PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED },
3829 	},
3830 	.seq_info		= &udp_seq_info,
3831 };
3832 
3833 static void __init bpf_iter_register(void)
3834 {
3835 	udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP];
3836 	if (bpf_iter_reg_target(&udp_reg_info))
3837 		pr_warn("Warning: could not register bpf iterator udp\n");
3838 }
3839 #endif
3840 
3841 void __init udp_init(void)
3842 {
3843 	unsigned long limit;
3844 	unsigned int i;
3845 
3846 	udp_table_init(&udp_table, "UDP");
3847 	limit = nr_free_buffer_pages() / 8;
3848 	limit = max(limit, 128UL);
3849 	sysctl_udp_mem[0] = limit / 4 * 3;
3850 	sysctl_udp_mem[1] = limit;
3851 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3852 
3853 	/* 16 spinlocks per cpu */
3854 	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3855 	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3856 				GFP_KERNEL);
3857 	if (!udp_busylocks)
3858 		panic("UDP: failed to alloc udp_busylocks\n");
3859 	for (i = 0; i < (1U << udp_busylocks_log); i++)
3860 		spin_lock_init(udp_busylocks + i);
3861 
3862 	if (register_pernet_subsys(&udp_sysctl_ops))
3863 		panic("UDP: failed to init sysctl parameters.\n");
3864 
3865 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3866 	bpf_iter_register();
3867 #endif
3868 }
3869