1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * The User Datagram Protocol (UDP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 12 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 13 * Hirokazu Takahashi, <taka@valinux.co.jp> 14 * 15 * Fixes: 16 * Alan Cox : verify_area() calls 17 * Alan Cox : stopped close while in use off icmp 18 * messages. Not a fix but a botch that 19 * for udp at least is 'valid'. 20 * Alan Cox : Fixed icmp handling properly 21 * Alan Cox : Correct error for oversized datagrams 22 * Alan Cox : Tidied select() semantics. 23 * Alan Cox : udp_err() fixed properly, also now 24 * select and read wake correctly on errors 25 * Alan Cox : udp_send verify_area moved to avoid mem leak 26 * Alan Cox : UDP can count its memory 27 * Alan Cox : send to an unknown connection causes 28 * an ECONNREFUSED off the icmp, but 29 * does NOT close. 30 * Alan Cox : Switched to new sk_buff handlers. No more backlog! 31 * Alan Cox : Using generic datagram code. Even smaller and the PEEK 32 * bug no longer crashes it. 33 * Fred Van Kempen : Net2e support for sk->broadcast. 34 * Alan Cox : Uses skb_free_datagram 35 * Alan Cox : Added get/set sockopt support. 36 * Alan Cox : Broadcasting without option set returns EACCES. 37 * Alan Cox : No wakeup calls. Instead we now use the callbacks. 38 * Alan Cox : Use ip_tos and ip_ttl 39 * Alan Cox : SNMP Mibs 40 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support. 41 * Matt Dillon : UDP length checks. 42 * Alan Cox : Smarter af_inet used properly. 43 * Alan Cox : Use new kernel side addressing. 44 * Alan Cox : Incorrect return on truncated datagram receive. 45 * Arnt Gulbrandsen : New udp_send and stuff 46 * Alan Cox : Cache last socket 47 * Alan Cox : Route cache 48 * Jon Peatfield : Minor efficiency fix to sendto(). 49 * Mike Shaver : RFC1122 checks. 50 * Alan Cox : Nonblocking error fix. 51 * Willy Konynenberg : Transparent proxying support. 52 * Mike McLagan : Routing by source 53 * David S. Miller : New socket lookup architecture. 54 * Last socket cache retained as it 55 * does have a high hit rate. 56 * Olaf Kirch : Don't linearise iovec on sendmsg. 57 * Andi Kleen : Some cleanups, cache destination entry 58 * for connect. 59 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 60 * Melvin Smith : Check msg_name not msg_namelen in sendto(), 61 * return ENOTCONN for unconnected sockets (POSIX) 62 * Janos Farkas : don't deliver multi/broadcasts to a different 63 * bound-to-device socket 64 * Hirokazu Takahashi : HW checksumming for outgoing UDP 65 * datagrams. 66 * Hirokazu Takahashi : sendfile() on UDP works now. 67 * Arnaldo C. Melo : convert /proc/net/udp to seq_file 68 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 69 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind 70 * a single port at the same time. 71 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support 72 * James Chapman : Add L2TP encapsulation type. 73 */ 74 75 #define pr_fmt(fmt) "UDP: " fmt 76 77 #include <linux/bpf-cgroup.h> 78 #include <linux/uaccess.h> 79 #include <asm/ioctls.h> 80 #include <linux/memblock.h> 81 #include <linux/highmem.h> 82 #include <linux/types.h> 83 #include <linux/fcntl.h> 84 #include <linux/module.h> 85 #include <linux/socket.h> 86 #include <linux/sockios.h> 87 #include <linux/igmp.h> 88 #include <linux/inetdevice.h> 89 #include <linux/in.h> 90 #include <linux/errno.h> 91 #include <linux/timer.h> 92 #include <linux/mm.h> 93 #include <linux/inet.h> 94 #include <linux/netdevice.h> 95 #include <linux/slab.h> 96 #include <net/tcp_states.h> 97 #include <linux/skbuff.h> 98 #include <linux/proc_fs.h> 99 #include <linux/seq_file.h> 100 #include <net/net_namespace.h> 101 #include <net/icmp.h> 102 #include <net/inet_hashtables.h> 103 #include <net/ip.h> 104 #include <net/ip_tunnels.h> 105 #include <net/route.h> 106 #include <net/checksum.h> 107 #include <net/gso.h> 108 #include <net/xfrm.h> 109 #include <trace/events/udp.h> 110 #include <linux/static_key.h> 111 #include <linux/btf_ids.h> 112 #include <trace/events/skb.h> 113 #include <net/busy_poll.h> 114 #include "udp_impl.h" 115 #include <net/sock_reuseport.h> 116 #include <net/addrconf.h> 117 #include <net/udp_tunnel.h> 118 #include <net/gro.h> 119 #if IS_ENABLED(CONFIG_IPV6) 120 #include <net/ipv6_stubs.h> 121 #endif 122 123 struct udp_table udp_table __read_mostly; 124 EXPORT_SYMBOL(udp_table); 125 126 long sysctl_udp_mem[3] __read_mostly; 127 EXPORT_SYMBOL(sysctl_udp_mem); 128 129 atomic_long_t udp_memory_allocated ____cacheline_aligned_in_smp; 130 EXPORT_SYMBOL(udp_memory_allocated); 131 DEFINE_PER_CPU(int, udp_memory_per_cpu_fw_alloc); 132 EXPORT_PER_CPU_SYMBOL_GPL(udp_memory_per_cpu_fw_alloc); 133 134 #define MAX_UDP_PORTS 65536 135 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN_PERNET) 136 137 static struct udp_table *udp_get_table_prot(struct sock *sk) 138 { 139 return sk->sk_prot->h.udp_table ? : sock_net(sk)->ipv4.udp_table; 140 } 141 142 static int udp_lib_lport_inuse(struct net *net, __u16 num, 143 const struct udp_hslot *hslot, 144 unsigned long *bitmap, 145 struct sock *sk, unsigned int log) 146 { 147 struct sock *sk2; 148 kuid_t uid = sock_i_uid(sk); 149 150 sk_for_each(sk2, &hslot->head) { 151 if (net_eq(sock_net(sk2), net) && 152 sk2 != sk && 153 (bitmap || udp_sk(sk2)->udp_port_hash == num) && 154 (!sk2->sk_reuse || !sk->sk_reuse) && 155 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 156 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 157 inet_rcv_saddr_equal(sk, sk2, true)) { 158 if (sk2->sk_reuseport && sk->sk_reuseport && 159 !rcu_access_pointer(sk->sk_reuseport_cb) && 160 uid_eq(uid, sock_i_uid(sk2))) { 161 if (!bitmap) 162 return 0; 163 } else { 164 if (!bitmap) 165 return 1; 166 __set_bit(udp_sk(sk2)->udp_port_hash >> log, 167 bitmap); 168 } 169 } 170 } 171 return 0; 172 } 173 174 /* 175 * Note: we still hold spinlock of primary hash chain, so no other writer 176 * can insert/delete a socket with local_port == num 177 */ 178 static int udp_lib_lport_inuse2(struct net *net, __u16 num, 179 struct udp_hslot *hslot2, 180 struct sock *sk) 181 { 182 struct sock *sk2; 183 kuid_t uid = sock_i_uid(sk); 184 int res = 0; 185 186 spin_lock(&hslot2->lock); 187 udp_portaddr_for_each_entry(sk2, &hslot2->head) { 188 if (net_eq(sock_net(sk2), net) && 189 sk2 != sk && 190 (udp_sk(sk2)->udp_port_hash == num) && 191 (!sk2->sk_reuse || !sk->sk_reuse) && 192 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 193 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 194 inet_rcv_saddr_equal(sk, sk2, true)) { 195 if (sk2->sk_reuseport && sk->sk_reuseport && 196 !rcu_access_pointer(sk->sk_reuseport_cb) && 197 uid_eq(uid, sock_i_uid(sk2))) { 198 res = 0; 199 } else { 200 res = 1; 201 } 202 break; 203 } 204 } 205 spin_unlock(&hslot2->lock); 206 return res; 207 } 208 209 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot) 210 { 211 struct net *net = sock_net(sk); 212 kuid_t uid = sock_i_uid(sk); 213 struct sock *sk2; 214 215 sk_for_each(sk2, &hslot->head) { 216 if (net_eq(sock_net(sk2), net) && 217 sk2 != sk && 218 sk2->sk_family == sk->sk_family && 219 ipv6_only_sock(sk2) == ipv6_only_sock(sk) && 220 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) && 221 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 222 sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) && 223 inet_rcv_saddr_equal(sk, sk2, false)) { 224 return reuseport_add_sock(sk, sk2, 225 inet_rcv_saddr_any(sk)); 226 } 227 } 228 229 return reuseport_alloc(sk, inet_rcv_saddr_any(sk)); 230 } 231 232 /** 233 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6 234 * 235 * @sk: socket struct in question 236 * @snum: port number to look up 237 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains, 238 * with NULL address 239 */ 240 int udp_lib_get_port(struct sock *sk, unsigned short snum, 241 unsigned int hash2_nulladdr) 242 { 243 struct udp_table *udptable = udp_get_table_prot(sk); 244 struct udp_hslot *hslot, *hslot2; 245 struct net *net = sock_net(sk); 246 int error = -EADDRINUSE; 247 248 if (!snum) { 249 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN); 250 unsigned short first, last; 251 int low, high, remaining; 252 unsigned int rand; 253 254 inet_sk_get_local_port_range(sk, &low, &high); 255 remaining = (high - low) + 1; 256 257 rand = get_random_u32(); 258 first = reciprocal_scale(rand, remaining) + low; 259 /* 260 * force rand to be an odd multiple of UDP_HTABLE_SIZE 261 */ 262 rand = (rand | 1) * (udptable->mask + 1); 263 last = first + udptable->mask + 1; 264 do { 265 hslot = udp_hashslot(udptable, net, first); 266 bitmap_zero(bitmap, PORTS_PER_CHAIN); 267 spin_lock_bh(&hslot->lock); 268 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk, 269 udptable->log); 270 271 snum = first; 272 /* 273 * Iterate on all possible values of snum for this hash. 274 * Using steps of an odd multiple of UDP_HTABLE_SIZE 275 * give us randomization and full range coverage. 276 */ 277 do { 278 if (low <= snum && snum <= high && 279 !test_bit(snum >> udptable->log, bitmap) && 280 !inet_is_local_reserved_port(net, snum)) 281 goto found; 282 snum += rand; 283 } while (snum != first); 284 spin_unlock_bh(&hslot->lock); 285 cond_resched(); 286 } while (++first != last); 287 goto fail; 288 } else { 289 hslot = udp_hashslot(udptable, net, snum); 290 spin_lock_bh(&hslot->lock); 291 if (hslot->count > 10) { 292 int exist; 293 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum; 294 295 slot2 &= udptable->mask; 296 hash2_nulladdr &= udptable->mask; 297 298 hslot2 = udp_hashslot2(udptable, slot2); 299 if (hslot->count < hslot2->count) 300 goto scan_primary_hash; 301 302 exist = udp_lib_lport_inuse2(net, snum, hslot2, sk); 303 if (!exist && (hash2_nulladdr != slot2)) { 304 hslot2 = udp_hashslot2(udptable, hash2_nulladdr); 305 exist = udp_lib_lport_inuse2(net, snum, hslot2, 306 sk); 307 } 308 if (exist) 309 goto fail_unlock; 310 else 311 goto found; 312 } 313 scan_primary_hash: 314 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0)) 315 goto fail_unlock; 316 } 317 found: 318 inet_sk(sk)->inet_num = snum; 319 udp_sk(sk)->udp_port_hash = snum; 320 udp_sk(sk)->udp_portaddr_hash ^= snum; 321 if (sk_unhashed(sk)) { 322 if (sk->sk_reuseport && 323 udp_reuseport_add_sock(sk, hslot)) { 324 inet_sk(sk)->inet_num = 0; 325 udp_sk(sk)->udp_port_hash = 0; 326 udp_sk(sk)->udp_portaddr_hash ^= snum; 327 goto fail_unlock; 328 } 329 330 sock_set_flag(sk, SOCK_RCU_FREE); 331 332 sk_add_node_rcu(sk, &hslot->head); 333 hslot->count++; 334 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 335 336 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 337 spin_lock(&hslot2->lock); 338 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 339 sk->sk_family == AF_INET6) 340 hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node, 341 &hslot2->head); 342 else 343 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 344 &hslot2->head); 345 hslot2->count++; 346 spin_unlock(&hslot2->lock); 347 } 348 349 error = 0; 350 fail_unlock: 351 spin_unlock_bh(&hslot->lock); 352 fail: 353 return error; 354 } 355 EXPORT_SYMBOL(udp_lib_get_port); 356 357 int udp_v4_get_port(struct sock *sk, unsigned short snum) 358 { 359 unsigned int hash2_nulladdr = 360 ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum); 361 unsigned int hash2_partial = 362 ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0); 363 364 /* precompute partial secondary hash */ 365 udp_sk(sk)->udp_portaddr_hash = hash2_partial; 366 return udp_lib_get_port(sk, snum, hash2_nulladdr); 367 } 368 369 static int compute_score(struct sock *sk, const struct net *net, 370 __be32 saddr, __be16 sport, 371 __be32 daddr, unsigned short hnum, 372 int dif, int sdif) 373 { 374 int score; 375 struct inet_sock *inet; 376 bool dev_match; 377 378 if (!net_eq(sock_net(sk), net) || 379 udp_sk(sk)->udp_port_hash != hnum || 380 ipv6_only_sock(sk)) 381 return -1; 382 383 if (sk->sk_rcv_saddr != daddr) 384 return -1; 385 386 score = (sk->sk_family == PF_INET) ? 2 : 1; 387 388 inet = inet_sk(sk); 389 if (inet->inet_daddr) { 390 if (inet->inet_daddr != saddr) 391 return -1; 392 score += 4; 393 } 394 395 if (inet->inet_dport) { 396 if (inet->inet_dport != sport) 397 return -1; 398 score += 4; 399 } 400 401 dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, 402 dif, sdif); 403 if (!dev_match) 404 return -1; 405 if (sk->sk_bound_dev_if) 406 score += 4; 407 408 if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id()) 409 score++; 410 return score; 411 } 412 413 u32 udp_ehashfn(const struct net *net, const __be32 laddr, const __u16 lport, 414 const __be32 faddr, const __be16 fport) 415 { 416 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret)); 417 418 return __inet_ehashfn(laddr, lport, faddr, fport, 419 udp_ehash_secret + net_hash_mix(net)); 420 } 421 EXPORT_SYMBOL(udp_ehashfn); 422 423 /* called with rcu_read_lock() */ 424 static struct sock *udp4_lib_lookup2(const struct net *net, 425 __be32 saddr, __be16 sport, 426 __be32 daddr, unsigned int hnum, 427 int dif, int sdif, 428 struct udp_hslot *hslot2, 429 struct sk_buff *skb) 430 { 431 struct sock *sk, *result; 432 int score, badness; 433 bool need_rescore; 434 435 result = NULL; 436 badness = 0; 437 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 438 need_rescore = false; 439 rescore: 440 score = compute_score(need_rescore ? result : sk, net, saddr, 441 sport, daddr, hnum, dif, sdif); 442 if (score > badness) { 443 badness = score; 444 445 if (need_rescore) 446 continue; 447 448 if (sk->sk_state == TCP_ESTABLISHED) { 449 result = sk; 450 continue; 451 } 452 453 result = inet_lookup_reuseport(net, sk, skb, sizeof(struct udphdr), 454 saddr, sport, daddr, hnum, udp_ehashfn); 455 if (!result) { 456 result = sk; 457 continue; 458 } 459 460 /* Fall back to scoring if group has connections */ 461 if (!reuseport_has_conns(sk)) 462 return result; 463 464 /* Reuseport logic returned an error, keep original score. */ 465 if (IS_ERR(result)) 466 continue; 467 468 /* compute_score is too long of a function to be 469 * inlined, and calling it again here yields 470 * measureable overhead for some 471 * workloads. Work around it by jumping 472 * backwards to rescore 'result'. 473 */ 474 need_rescore = true; 475 goto rescore; 476 } 477 } 478 return result; 479 } 480 481 #if IS_ENABLED(CONFIG_BASE_SMALL) 482 static struct sock *udp4_lib_lookup4(const struct net *net, 483 __be32 saddr, __be16 sport, 484 __be32 daddr, unsigned int hnum, 485 int dif, int sdif, 486 struct udp_table *udptable) 487 { 488 return NULL; 489 } 490 491 static void udp_rehash4(struct udp_table *udptable, struct sock *sk, 492 u16 newhash4) 493 { 494 } 495 496 static void udp_unhash4(struct udp_table *udptable, struct sock *sk) 497 { 498 } 499 #else /* !CONFIG_BASE_SMALL */ 500 static struct sock *udp4_lib_lookup4(const struct net *net, 501 __be32 saddr, __be16 sport, 502 __be32 daddr, unsigned int hnum, 503 int dif, int sdif, 504 struct udp_table *udptable) 505 { 506 const __portpair ports = INET_COMBINED_PORTS(sport, hnum); 507 const struct hlist_nulls_node *node; 508 struct udp_hslot *hslot4; 509 unsigned int hash4, slot; 510 struct udp_sock *up; 511 struct sock *sk; 512 513 hash4 = udp_ehashfn(net, daddr, hnum, saddr, sport); 514 slot = hash4 & udptable->mask; 515 hslot4 = &udptable->hash4[slot]; 516 INET_ADDR_COOKIE(acookie, saddr, daddr); 517 518 begin: 519 /* SLAB_TYPESAFE_BY_RCU not used, so we don't need to touch sk_refcnt */ 520 udp_lrpa_for_each_entry_rcu(up, node, &hslot4->nulls_head) { 521 sk = (struct sock *)up; 522 if (inet_match(net, sk, acookie, ports, dif, sdif)) 523 return sk; 524 } 525 526 /* if the nulls value we got at the end of this lookup is not the 527 * expected one, we must restart lookup. We probably met an item that 528 * was moved to another chain due to rehash. 529 */ 530 if (get_nulls_value(node) != slot) 531 goto begin; 532 533 return NULL; 534 } 535 536 /* udp_rehash4() only checks hslot4, and hash4_cnt is not processed. */ 537 static void udp_rehash4(struct udp_table *udptable, struct sock *sk, 538 u16 newhash4) 539 { 540 struct udp_hslot *hslot4, *nhslot4; 541 542 hslot4 = udp_hashslot4(udptable, udp_sk(sk)->udp_lrpa_hash); 543 nhslot4 = udp_hashslot4(udptable, newhash4); 544 udp_sk(sk)->udp_lrpa_hash = newhash4; 545 546 if (hslot4 != nhslot4) { 547 spin_lock_bh(&hslot4->lock); 548 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_lrpa_node); 549 hslot4->count--; 550 spin_unlock_bh(&hslot4->lock); 551 552 spin_lock_bh(&nhslot4->lock); 553 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_lrpa_node, 554 &nhslot4->nulls_head); 555 nhslot4->count++; 556 spin_unlock_bh(&nhslot4->lock); 557 } 558 } 559 560 static void udp_unhash4(struct udp_table *udptable, struct sock *sk) 561 { 562 struct udp_hslot *hslot2, *hslot4; 563 564 if (udp_hashed4(sk)) { 565 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 566 hslot4 = udp_hashslot4(udptable, udp_sk(sk)->udp_lrpa_hash); 567 568 spin_lock(&hslot4->lock); 569 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_lrpa_node); 570 hslot4->count--; 571 spin_unlock(&hslot4->lock); 572 573 spin_lock(&hslot2->lock); 574 udp_hash4_dec(hslot2); 575 spin_unlock(&hslot2->lock); 576 } 577 } 578 579 void udp_lib_hash4(struct sock *sk, u16 hash) 580 { 581 struct udp_hslot *hslot, *hslot2, *hslot4; 582 struct net *net = sock_net(sk); 583 struct udp_table *udptable; 584 585 /* Connected udp socket can re-connect to another remote address, which 586 * will be handled by rehash. Thus no need to redo hash4 here. 587 */ 588 if (udp_hashed4(sk)) 589 return; 590 591 udptable = net->ipv4.udp_table; 592 hslot = udp_hashslot(udptable, net, udp_sk(sk)->udp_port_hash); 593 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 594 hslot4 = udp_hashslot4(udptable, hash); 595 udp_sk(sk)->udp_lrpa_hash = hash; 596 597 spin_lock_bh(&hslot->lock); 598 if (rcu_access_pointer(sk->sk_reuseport_cb)) 599 reuseport_detach_sock(sk); 600 601 spin_lock(&hslot4->lock); 602 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_lrpa_node, 603 &hslot4->nulls_head); 604 hslot4->count++; 605 spin_unlock(&hslot4->lock); 606 607 spin_lock(&hslot2->lock); 608 udp_hash4_inc(hslot2); 609 spin_unlock(&hslot2->lock); 610 611 spin_unlock_bh(&hslot->lock); 612 } 613 EXPORT_SYMBOL(udp_lib_hash4); 614 615 /* call with sock lock */ 616 void udp4_hash4(struct sock *sk) 617 { 618 struct net *net = sock_net(sk); 619 unsigned int hash; 620 621 if (sk_unhashed(sk) || sk->sk_rcv_saddr == htonl(INADDR_ANY)) 622 return; 623 624 hash = udp_ehashfn(net, sk->sk_rcv_saddr, sk->sk_num, 625 sk->sk_daddr, sk->sk_dport); 626 627 udp_lib_hash4(sk, hash); 628 } 629 EXPORT_SYMBOL(udp4_hash4); 630 #endif /* CONFIG_BASE_SMALL */ 631 632 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try 633 * harder than this. -DaveM 634 */ 635 struct sock *__udp4_lib_lookup(const struct net *net, __be32 saddr, 636 __be16 sport, __be32 daddr, __be16 dport, int dif, 637 int sdif, struct udp_table *udptable, struct sk_buff *skb) 638 { 639 unsigned short hnum = ntohs(dport); 640 struct udp_hslot *hslot2; 641 struct sock *result, *sk; 642 unsigned int hash2; 643 644 hash2 = ipv4_portaddr_hash(net, daddr, hnum); 645 hslot2 = udp_hashslot2(udptable, hash2); 646 647 if (udp_has_hash4(hslot2)) { 648 result = udp4_lib_lookup4(net, saddr, sport, daddr, hnum, 649 dif, sdif, udptable); 650 if (result) /* udp4_lib_lookup4 return sk or NULL */ 651 return result; 652 } 653 654 /* Lookup connected or non-wildcard socket */ 655 result = udp4_lib_lookup2(net, saddr, sport, 656 daddr, hnum, dif, sdif, 657 hslot2, skb); 658 if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED) 659 goto done; 660 661 /* Lookup redirect from BPF */ 662 if (static_branch_unlikely(&bpf_sk_lookup_enabled) && 663 udptable == net->ipv4.udp_table) { 664 sk = inet_lookup_run_sk_lookup(net, IPPROTO_UDP, skb, sizeof(struct udphdr), 665 saddr, sport, daddr, hnum, dif, 666 udp_ehashfn); 667 if (sk) { 668 result = sk; 669 goto done; 670 } 671 } 672 673 /* Got non-wildcard socket or error on first lookup */ 674 if (result) 675 goto done; 676 677 /* Lookup wildcard sockets */ 678 hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum); 679 hslot2 = udp_hashslot2(udptable, hash2); 680 681 result = udp4_lib_lookup2(net, saddr, sport, 682 htonl(INADDR_ANY), hnum, dif, sdif, 683 hslot2, skb); 684 done: 685 if (IS_ERR(result)) 686 return NULL; 687 return result; 688 } 689 EXPORT_SYMBOL_GPL(__udp4_lib_lookup); 690 691 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb, 692 __be16 sport, __be16 dport, 693 struct udp_table *udptable) 694 { 695 const struct iphdr *iph = ip_hdr(skb); 696 697 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport, 698 iph->daddr, dport, inet_iif(skb), 699 inet_sdif(skb), udptable, skb); 700 } 701 702 struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb, 703 __be16 sport, __be16 dport) 704 { 705 const u16 offset = NAPI_GRO_CB(skb)->network_offsets[skb->encapsulation]; 706 const struct iphdr *iph = (struct iphdr *)(skb->data + offset); 707 struct net *net = dev_net(skb->dev); 708 int iif, sdif; 709 710 inet_get_iif_sdif(skb, &iif, &sdif); 711 712 return __udp4_lib_lookup(net, iph->saddr, sport, 713 iph->daddr, dport, iif, 714 sdif, net->ipv4.udp_table, NULL); 715 } 716 717 /* Must be called under rcu_read_lock(). 718 * Does increment socket refcount. 719 */ 720 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4) 721 struct sock *udp4_lib_lookup(const struct net *net, __be32 saddr, __be16 sport, 722 __be32 daddr, __be16 dport, int dif) 723 { 724 struct sock *sk; 725 726 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport, 727 dif, 0, net->ipv4.udp_table, NULL); 728 if (sk && !refcount_inc_not_zero(&sk->sk_refcnt)) 729 sk = NULL; 730 return sk; 731 } 732 EXPORT_SYMBOL_GPL(udp4_lib_lookup); 733 #endif 734 735 static inline bool __udp_is_mcast_sock(struct net *net, const struct sock *sk, 736 __be16 loc_port, __be32 loc_addr, 737 __be16 rmt_port, __be32 rmt_addr, 738 int dif, int sdif, unsigned short hnum) 739 { 740 const struct inet_sock *inet = inet_sk(sk); 741 742 if (!net_eq(sock_net(sk), net) || 743 udp_sk(sk)->udp_port_hash != hnum || 744 (inet->inet_daddr && inet->inet_daddr != rmt_addr) || 745 (inet->inet_dport != rmt_port && inet->inet_dport) || 746 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) || 747 ipv6_only_sock(sk) || 748 !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif)) 749 return false; 750 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif)) 751 return false; 752 return true; 753 } 754 755 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key); 756 EXPORT_SYMBOL(udp_encap_needed_key); 757 758 #if IS_ENABLED(CONFIG_IPV6) 759 DEFINE_STATIC_KEY_FALSE(udpv6_encap_needed_key); 760 EXPORT_SYMBOL(udpv6_encap_needed_key); 761 #endif 762 763 void udp_encap_enable(void) 764 { 765 static_branch_inc(&udp_encap_needed_key); 766 } 767 EXPORT_SYMBOL(udp_encap_enable); 768 769 void udp_encap_disable(void) 770 { 771 static_branch_dec(&udp_encap_needed_key); 772 } 773 EXPORT_SYMBOL(udp_encap_disable); 774 775 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go 776 * through error handlers in encapsulations looking for a match. 777 */ 778 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info) 779 { 780 int i; 781 782 for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) { 783 int (*handler)(struct sk_buff *skb, u32 info); 784 const struct ip_tunnel_encap_ops *encap; 785 786 encap = rcu_dereference(iptun_encaps[i]); 787 if (!encap) 788 continue; 789 handler = encap->err_handler; 790 if (handler && !handler(skb, info)) 791 return 0; 792 } 793 794 return -ENOENT; 795 } 796 797 /* Try to match ICMP errors to UDP tunnels by looking up a socket without 798 * reversing source and destination port: this will match tunnels that force the 799 * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that 800 * lwtunnels might actually break this assumption by being configured with 801 * different destination ports on endpoints, in this case we won't be able to 802 * trace ICMP messages back to them. 803 * 804 * If this doesn't match any socket, probe tunnels with arbitrary destination 805 * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port 806 * we've sent packets to won't necessarily match the local destination port. 807 * 808 * Then ask the tunnel implementation to match the error against a valid 809 * association. 810 * 811 * Return an error if we can't find a match, the socket if we need further 812 * processing, zero otherwise. 813 */ 814 static struct sock *__udp4_lib_err_encap(struct net *net, 815 const struct iphdr *iph, 816 struct udphdr *uh, 817 struct udp_table *udptable, 818 struct sock *sk, 819 struct sk_buff *skb, u32 info) 820 { 821 int (*lookup)(struct sock *sk, struct sk_buff *skb); 822 int network_offset, transport_offset; 823 struct udp_sock *up; 824 825 network_offset = skb_network_offset(skb); 826 transport_offset = skb_transport_offset(skb); 827 828 /* Network header needs to point to the outer IPv4 header inside ICMP */ 829 skb_reset_network_header(skb); 830 831 /* Transport header needs to point to the UDP header */ 832 skb_set_transport_header(skb, iph->ihl << 2); 833 834 if (sk) { 835 up = udp_sk(sk); 836 837 lookup = READ_ONCE(up->encap_err_lookup); 838 if (lookup && lookup(sk, skb)) 839 sk = NULL; 840 841 goto out; 842 } 843 844 sk = __udp4_lib_lookup(net, iph->daddr, uh->source, 845 iph->saddr, uh->dest, skb->dev->ifindex, 0, 846 udptable, NULL); 847 if (sk) { 848 up = udp_sk(sk); 849 850 lookup = READ_ONCE(up->encap_err_lookup); 851 if (!lookup || lookup(sk, skb)) 852 sk = NULL; 853 } 854 855 out: 856 if (!sk) 857 sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info)); 858 859 skb_set_transport_header(skb, transport_offset); 860 skb_set_network_header(skb, network_offset); 861 862 return sk; 863 } 864 865 /* 866 * This routine is called by the ICMP module when it gets some 867 * sort of error condition. If err < 0 then the socket should 868 * be closed and the error returned to the user. If err > 0 869 * it's just the icmp type << 8 | icmp code. 870 * Header points to the ip header of the error packet. We move 871 * on past this. Then (as it used to claim before adjustment) 872 * header points to the first 8 bytes of the udp header. We need 873 * to find the appropriate port. 874 */ 875 876 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable) 877 { 878 struct inet_sock *inet; 879 const struct iphdr *iph = (const struct iphdr *)skb->data; 880 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2)); 881 const int type = icmp_hdr(skb)->type; 882 const int code = icmp_hdr(skb)->code; 883 bool tunnel = false; 884 struct sock *sk; 885 int harderr; 886 int err; 887 struct net *net = dev_net(skb->dev); 888 889 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest, 890 iph->saddr, uh->source, skb->dev->ifindex, 891 inet_sdif(skb), udptable, NULL); 892 893 if (!sk || READ_ONCE(udp_sk(sk)->encap_type)) { 894 /* No socket for error: try tunnels before discarding */ 895 if (static_branch_unlikely(&udp_encap_needed_key)) { 896 sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb, 897 info); 898 if (!sk) 899 return 0; 900 } else 901 sk = ERR_PTR(-ENOENT); 902 903 if (IS_ERR(sk)) { 904 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); 905 return PTR_ERR(sk); 906 } 907 908 tunnel = true; 909 } 910 911 err = 0; 912 harderr = 0; 913 inet = inet_sk(sk); 914 915 switch (type) { 916 default: 917 case ICMP_TIME_EXCEEDED: 918 err = EHOSTUNREACH; 919 break; 920 case ICMP_SOURCE_QUENCH: 921 goto out; 922 case ICMP_PARAMETERPROB: 923 err = EPROTO; 924 harderr = 1; 925 break; 926 case ICMP_DEST_UNREACH: 927 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */ 928 ipv4_sk_update_pmtu(skb, sk, info); 929 if (READ_ONCE(inet->pmtudisc) != IP_PMTUDISC_DONT) { 930 err = EMSGSIZE; 931 harderr = 1; 932 break; 933 } 934 goto out; 935 } 936 err = EHOSTUNREACH; 937 if (code <= NR_ICMP_UNREACH) { 938 harderr = icmp_err_convert[code].fatal; 939 err = icmp_err_convert[code].errno; 940 } 941 break; 942 case ICMP_REDIRECT: 943 ipv4_sk_redirect(skb, sk); 944 goto out; 945 } 946 947 /* 948 * RFC1122: OK. Passes ICMP errors back to application, as per 949 * 4.1.3.3. 950 */ 951 if (tunnel) { 952 /* ...not for tunnels though: we don't have a sending socket */ 953 if (udp_sk(sk)->encap_err_rcv) 954 udp_sk(sk)->encap_err_rcv(sk, skb, err, uh->dest, info, 955 (u8 *)(uh+1)); 956 goto out; 957 } 958 if (!inet_test_bit(RECVERR, sk)) { 959 if (!harderr || sk->sk_state != TCP_ESTABLISHED) 960 goto out; 961 } else 962 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1)); 963 964 sk->sk_err = err; 965 sk_error_report(sk); 966 out: 967 return 0; 968 } 969 970 int udp_err(struct sk_buff *skb, u32 info) 971 { 972 return __udp4_lib_err(skb, info, dev_net(skb->dev)->ipv4.udp_table); 973 } 974 975 /* 976 * Throw away all pending data and cancel the corking. Socket is locked. 977 */ 978 void udp_flush_pending_frames(struct sock *sk) 979 { 980 struct udp_sock *up = udp_sk(sk); 981 982 if (up->pending) { 983 up->len = 0; 984 WRITE_ONCE(up->pending, 0); 985 ip_flush_pending_frames(sk); 986 } 987 } 988 EXPORT_SYMBOL(udp_flush_pending_frames); 989 990 /** 991 * udp4_hwcsum - handle outgoing HW checksumming 992 * @skb: sk_buff containing the filled-in UDP header 993 * (checksum field must be zeroed out) 994 * @src: source IP address 995 * @dst: destination IP address 996 */ 997 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst) 998 { 999 struct udphdr *uh = udp_hdr(skb); 1000 int offset = skb_transport_offset(skb); 1001 int len = skb->len - offset; 1002 int hlen = len; 1003 __wsum csum = 0; 1004 1005 if (!skb_has_frag_list(skb)) { 1006 /* 1007 * Only one fragment on the socket. 1008 */ 1009 skb->csum_start = skb_transport_header(skb) - skb->head; 1010 skb->csum_offset = offsetof(struct udphdr, check); 1011 uh->check = ~csum_tcpudp_magic(src, dst, len, 1012 IPPROTO_UDP, 0); 1013 } else { 1014 struct sk_buff *frags; 1015 1016 /* 1017 * HW-checksum won't work as there are two or more 1018 * fragments on the socket so that all csums of sk_buffs 1019 * should be together 1020 */ 1021 skb_walk_frags(skb, frags) { 1022 csum = csum_add(csum, frags->csum); 1023 hlen -= frags->len; 1024 } 1025 1026 csum = skb_checksum(skb, offset, hlen, csum); 1027 skb->ip_summed = CHECKSUM_NONE; 1028 1029 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum); 1030 if (uh->check == 0) 1031 uh->check = CSUM_MANGLED_0; 1032 } 1033 } 1034 EXPORT_SYMBOL_GPL(udp4_hwcsum); 1035 1036 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended 1037 * for the simple case like when setting the checksum for a UDP tunnel. 1038 */ 1039 void udp_set_csum(bool nocheck, struct sk_buff *skb, 1040 __be32 saddr, __be32 daddr, int len) 1041 { 1042 struct udphdr *uh = udp_hdr(skb); 1043 1044 if (nocheck) { 1045 uh->check = 0; 1046 } else if (skb_is_gso(skb)) { 1047 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 1048 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 1049 uh->check = 0; 1050 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb)); 1051 if (uh->check == 0) 1052 uh->check = CSUM_MANGLED_0; 1053 } else { 1054 skb->ip_summed = CHECKSUM_PARTIAL; 1055 skb->csum_start = skb_transport_header(skb) - skb->head; 1056 skb->csum_offset = offsetof(struct udphdr, check); 1057 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 1058 } 1059 } 1060 EXPORT_SYMBOL(udp_set_csum); 1061 1062 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4, 1063 struct inet_cork *cork) 1064 { 1065 struct sock *sk = skb->sk; 1066 struct inet_sock *inet = inet_sk(sk); 1067 struct udphdr *uh; 1068 int err; 1069 int is_udplite = IS_UDPLITE(sk); 1070 int offset = skb_transport_offset(skb); 1071 int len = skb->len - offset; 1072 int datalen = len - sizeof(*uh); 1073 __wsum csum = 0; 1074 1075 /* 1076 * Create a UDP header 1077 */ 1078 uh = udp_hdr(skb); 1079 uh->source = inet->inet_sport; 1080 uh->dest = fl4->fl4_dport; 1081 uh->len = htons(len); 1082 uh->check = 0; 1083 1084 if (cork->gso_size) { 1085 const int hlen = skb_network_header_len(skb) + 1086 sizeof(struct udphdr); 1087 1088 if (hlen + cork->gso_size > cork->fragsize) { 1089 kfree_skb(skb); 1090 return -EINVAL; 1091 } 1092 if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) { 1093 kfree_skb(skb); 1094 return -EINVAL; 1095 } 1096 if (sk->sk_no_check_tx) { 1097 kfree_skb(skb); 1098 return -EINVAL; 1099 } 1100 if (is_udplite || dst_xfrm(skb_dst(skb))) { 1101 kfree_skb(skb); 1102 return -EIO; 1103 } 1104 1105 if (datalen > cork->gso_size) { 1106 skb_shinfo(skb)->gso_size = cork->gso_size; 1107 skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4; 1108 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen, 1109 cork->gso_size); 1110 1111 /* Don't checksum the payload, skb will get segmented */ 1112 goto csum_partial; 1113 } 1114 } 1115 1116 if (is_udplite) /* UDP-Lite */ 1117 csum = udplite_csum(skb); 1118 1119 else if (sk->sk_no_check_tx) { /* UDP csum off */ 1120 1121 skb->ip_summed = CHECKSUM_NONE; 1122 goto send; 1123 1124 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */ 1125 csum_partial: 1126 1127 udp4_hwcsum(skb, fl4->saddr, fl4->daddr); 1128 goto send; 1129 1130 } else 1131 csum = udp_csum(skb); 1132 1133 /* add protocol-dependent pseudo-header */ 1134 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len, 1135 sk->sk_protocol, csum); 1136 if (uh->check == 0) 1137 uh->check = CSUM_MANGLED_0; 1138 1139 send: 1140 err = ip_send_skb(sock_net(sk), skb); 1141 if (err) { 1142 if (err == -ENOBUFS && 1143 !inet_test_bit(RECVERR, sk)) { 1144 UDP_INC_STATS(sock_net(sk), 1145 UDP_MIB_SNDBUFERRORS, is_udplite); 1146 err = 0; 1147 } 1148 } else 1149 UDP_INC_STATS(sock_net(sk), 1150 UDP_MIB_OUTDATAGRAMS, is_udplite); 1151 return err; 1152 } 1153 1154 /* 1155 * Push out all pending data as one UDP datagram. Socket is locked. 1156 */ 1157 int udp_push_pending_frames(struct sock *sk) 1158 { 1159 struct udp_sock *up = udp_sk(sk); 1160 struct inet_sock *inet = inet_sk(sk); 1161 struct flowi4 *fl4 = &inet->cork.fl.u.ip4; 1162 struct sk_buff *skb; 1163 int err = 0; 1164 1165 skb = ip_finish_skb(sk, fl4); 1166 if (!skb) 1167 goto out; 1168 1169 err = udp_send_skb(skb, fl4, &inet->cork.base); 1170 1171 out: 1172 up->len = 0; 1173 WRITE_ONCE(up->pending, 0); 1174 return err; 1175 } 1176 EXPORT_SYMBOL(udp_push_pending_frames); 1177 1178 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size) 1179 { 1180 switch (cmsg->cmsg_type) { 1181 case UDP_SEGMENT: 1182 if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16))) 1183 return -EINVAL; 1184 *gso_size = *(__u16 *)CMSG_DATA(cmsg); 1185 return 0; 1186 default: 1187 return -EINVAL; 1188 } 1189 } 1190 1191 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size) 1192 { 1193 struct cmsghdr *cmsg; 1194 bool need_ip = false; 1195 int err; 1196 1197 for_each_cmsghdr(cmsg, msg) { 1198 if (!CMSG_OK(msg, cmsg)) 1199 return -EINVAL; 1200 1201 if (cmsg->cmsg_level != SOL_UDP) { 1202 need_ip = true; 1203 continue; 1204 } 1205 1206 err = __udp_cmsg_send(cmsg, gso_size); 1207 if (err) 1208 return err; 1209 } 1210 1211 return need_ip; 1212 } 1213 EXPORT_SYMBOL_GPL(udp_cmsg_send); 1214 1215 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1216 { 1217 struct inet_sock *inet = inet_sk(sk); 1218 struct udp_sock *up = udp_sk(sk); 1219 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name); 1220 struct flowi4 fl4_stack; 1221 struct flowi4 *fl4; 1222 int ulen = len; 1223 struct ipcm_cookie ipc; 1224 struct rtable *rt = NULL; 1225 int free = 0; 1226 int connected = 0; 1227 __be32 daddr, faddr, saddr; 1228 u8 tos, scope; 1229 __be16 dport; 1230 int err, is_udplite = IS_UDPLITE(sk); 1231 int corkreq = udp_test_bit(CORK, sk) || msg->msg_flags & MSG_MORE; 1232 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *); 1233 struct sk_buff *skb; 1234 struct ip_options_data opt_copy; 1235 int uc_index; 1236 1237 if (len > 0xFFFF) 1238 return -EMSGSIZE; 1239 1240 /* 1241 * Check the flags. 1242 */ 1243 1244 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */ 1245 return -EOPNOTSUPP; 1246 1247 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag; 1248 1249 fl4 = &inet->cork.fl.u.ip4; 1250 if (READ_ONCE(up->pending)) { 1251 /* 1252 * There are pending frames. 1253 * The socket lock must be held while it's corked. 1254 */ 1255 lock_sock(sk); 1256 if (likely(up->pending)) { 1257 if (unlikely(up->pending != AF_INET)) { 1258 release_sock(sk); 1259 return -EINVAL; 1260 } 1261 goto do_append_data; 1262 } 1263 release_sock(sk); 1264 } 1265 ulen += sizeof(struct udphdr); 1266 1267 /* 1268 * Get and verify the address. 1269 */ 1270 if (usin) { 1271 if (msg->msg_namelen < sizeof(*usin)) 1272 return -EINVAL; 1273 if (usin->sin_family != AF_INET) { 1274 if (usin->sin_family != AF_UNSPEC) 1275 return -EAFNOSUPPORT; 1276 } 1277 1278 daddr = usin->sin_addr.s_addr; 1279 dport = usin->sin_port; 1280 if (dport == 0) 1281 return -EINVAL; 1282 } else { 1283 if (sk->sk_state != TCP_ESTABLISHED) 1284 return -EDESTADDRREQ; 1285 daddr = inet->inet_daddr; 1286 dport = inet->inet_dport; 1287 /* Open fast path for connected socket. 1288 Route will not be used, if at least one option is set. 1289 */ 1290 connected = 1; 1291 } 1292 1293 ipcm_init_sk(&ipc, inet); 1294 ipc.gso_size = READ_ONCE(up->gso_size); 1295 1296 if (msg->msg_controllen) { 1297 err = udp_cmsg_send(sk, msg, &ipc.gso_size); 1298 if (err > 0) { 1299 err = ip_cmsg_send(sk, msg, &ipc, 1300 sk->sk_family == AF_INET6); 1301 connected = 0; 1302 } 1303 if (unlikely(err < 0)) { 1304 kfree(ipc.opt); 1305 return err; 1306 } 1307 if (ipc.opt) 1308 free = 1; 1309 } 1310 if (!ipc.opt) { 1311 struct ip_options_rcu *inet_opt; 1312 1313 rcu_read_lock(); 1314 inet_opt = rcu_dereference(inet->inet_opt); 1315 if (inet_opt) { 1316 memcpy(&opt_copy, inet_opt, 1317 sizeof(*inet_opt) + inet_opt->opt.optlen); 1318 ipc.opt = &opt_copy.opt; 1319 } 1320 rcu_read_unlock(); 1321 } 1322 1323 if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) { 1324 err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk, 1325 (struct sockaddr *)usin, 1326 &msg->msg_namelen, 1327 &ipc.addr); 1328 if (err) 1329 goto out_free; 1330 if (usin) { 1331 if (usin->sin_port == 0) { 1332 /* BPF program set invalid port. Reject it. */ 1333 err = -EINVAL; 1334 goto out_free; 1335 } 1336 daddr = usin->sin_addr.s_addr; 1337 dport = usin->sin_port; 1338 } 1339 } 1340 1341 saddr = ipc.addr; 1342 ipc.addr = faddr = daddr; 1343 1344 if (ipc.opt && ipc.opt->opt.srr) { 1345 if (!daddr) { 1346 err = -EINVAL; 1347 goto out_free; 1348 } 1349 faddr = ipc.opt->opt.faddr; 1350 connected = 0; 1351 } 1352 tos = get_rttos(&ipc, inet); 1353 scope = ip_sendmsg_scope(inet, &ipc, msg); 1354 if (scope == RT_SCOPE_LINK) 1355 connected = 0; 1356 1357 uc_index = READ_ONCE(inet->uc_index); 1358 if (ipv4_is_multicast(daddr)) { 1359 if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif)) 1360 ipc.oif = READ_ONCE(inet->mc_index); 1361 if (!saddr) 1362 saddr = READ_ONCE(inet->mc_addr); 1363 connected = 0; 1364 } else if (!ipc.oif) { 1365 ipc.oif = uc_index; 1366 } else if (ipv4_is_lbcast(daddr) && uc_index) { 1367 /* oif is set, packet is to local broadcast and 1368 * uc_index is set. oif is most likely set 1369 * by sk_bound_dev_if. If uc_index != oif check if the 1370 * oif is an L3 master and uc_index is an L3 slave. 1371 * If so, we want to allow the send using the uc_index. 1372 */ 1373 if (ipc.oif != uc_index && 1374 ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk), 1375 uc_index)) { 1376 ipc.oif = uc_index; 1377 } 1378 } 1379 1380 if (connected) 1381 rt = dst_rtable(sk_dst_check(sk, 0)); 1382 1383 if (!rt) { 1384 struct net *net = sock_net(sk); 1385 __u8 flow_flags = inet_sk_flowi_flags(sk); 1386 1387 fl4 = &fl4_stack; 1388 1389 flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos, scope, 1390 sk->sk_protocol, flow_flags, faddr, saddr, 1391 dport, inet->inet_sport, sk->sk_uid); 1392 1393 security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4)); 1394 rt = ip_route_output_flow(net, fl4, sk); 1395 if (IS_ERR(rt)) { 1396 err = PTR_ERR(rt); 1397 rt = NULL; 1398 if (err == -ENETUNREACH) 1399 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 1400 goto out; 1401 } 1402 1403 err = -EACCES; 1404 if ((rt->rt_flags & RTCF_BROADCAST) && 1405 !sock_flag(sk, SOCK_BROADCAST)) 1406 goto out; 1407 if (connected) 1408 sk_dst_set(sk, dst_clone(&rt->dst)); 1409 } 1410 1411 if (msg->msg_flags&MSG_CONFIRM) 1412 goto do_confirm; 1413 back_from_confirm: 1414 1415 saddr = fl4->saddr; 1416 if (!ipc.addr) 1417 daddr = ipc.addr = fl4->daddr; 1418 1419 /* Lockless fast path for the non-corking case. */ 1420 if (!corkreq) { 1421 struct inet_cork cork; 1422 1423 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen, 1424 sizeof(struct udphdr), &ipc, &rt, 1425 &cork, msg->msg_flags); 1426 err = PTR_ERR(skb); 1427 if (!IS_ERR_OR_NULL(skb)) 1428 err = udp_send_skb(skb, fl4, &cork); 1429 goto out; 1430 } 1431 1432 lock_sock(sk); 1433 if (unlikely(up->pending)) { 1434 /* The socket is already corked while preparing it. */ 1435 /* ... which is an evident application bug. --ANK */ 1436 release_sock(sk); 1437 1438 net_dbg_ratelimited("socket already corked\n"); 1439 err = -EINVAL; 1440 goto out; 1441 } 1442 /* 1443 * Now cork the socket to pend data. 1444 */ 1445 fl4 = &inet->cork.fl.u.ip4; 1446 fl4->daddr = daddr; 1447 fl4->saddr = saddr; 1448 fl4->fl4_dport = dport; 1449 fl4->fl4_sport = inet->inet_sport; 1450 WRITE_ONCE(up->pending, AF_INET); 1451 1452 do_append_data: 1453 up->len += ulen; 1454 err = ip_append_data(sk, fl4, getfrag, msg, ulen, 1455 sizeof(struct udphdr), &ipc, &rt, 1456 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags); 1457 if (err) 1458 udp_flush_pending_frames(sk); 1459 else if (!corkreq) 1460 err = udp_push_pending_frames(sk); 1461 else if (unlikely(skb_queue_empty(&sk->sk_write_queue))) 1462 WRITE_ONCE(up->pending, 0); 1463 release_sock(sk); 1464 1465 out: 1466 ip_rt_put(rt); 1467 out_free: 1468 if (free) 1469 kfree(ipc.opt); 1470 if (!err) 1471 return len; 1472 /* 1473 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting 1474 * ENOBUFS might not be good (it's not tunable per se), but otherwise 1475 * we don't have a good statistic (IpOutDiscards but it can be too many 1476 * things). We could add another new stat but at least for now that 1477 * seems like overkill. 1478 */ 1479 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1480 UDP_INC_STATS(sock_net(sk), 1481 UDP_MIB_SNDBUFERRORS, is_udplite); 1482 } 1483 return err; 1484 1485 do_confirm: 1486 if (msg->msg_flags & MSG_PROBE) 1487 dst_confirm_neigh(&rt->dst, &fl4->daddr); 1488 if (!(msg->msg_flags&MSG_PROBE) || len) 1489 goto back_from_confirm; 1490 err = 0; 1491 goto out; 1492 } 1493 EXPORT_SYMBOL(udp_sendmsg); 1494 1495 void udp_splice_eof(struct socket *sock) 1496 { 1497 struct sock *sk = sock->sk; 1498 struct udp_sock *up = udp_sk(sk); 1499 1500 if (!READ_ONCE(up->pending) || udp_test_bit(CORK, sk)) 1501 return; 1502 1503 lock_sock(sk); 1504 if (up->pending && !udp_test_bit(CORK, sk)) 1505 udp_push_pending_frames(sk); 1506 release_sock(sk); 1507 } 1508 EXPORT_SYMBOL_GPL(udp_splice_eof); 1509 1510 #define UDP_SKB_IS_STATELESS 0x80000000 1511 1512 /* all head states (dst, sk, nf conntrack) except skb extensions are 1513 * cleared by udp_rcv(). 1514 * 1515 * We need to preserve secpath, if present, to eventually process 1516 * IP_CMSG_PASSSEC at recvmsg() time. 1517 * 1518 * Other extensions can be cleared. 1519 */ 1520 static bool udp_try_make_stateless(struct sk_buff *skb) 1521 { 1522 if (!skb_has_extensions(skb)) 1523 return true; 1524 1525 if (!secpath_exists(skb)) { 1526 skb_ext_reset(skb); 1527 return true; 1528 } 1529 1530 return false; 1531 } 1532 1533 static void udp_set_dev_scratch(struct sk_buff *skb) 1534 { 1535 struct udp_dev_scratch *scratch = udp_skb_scratch(skb); 1536 1537 BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long)); 1538 scratch->_tsize_state = skb->truesize; 1539 #if BITS_PER_LONG == 64 1540 scratch->len = skb->len; 1541 scratch->csum_unnecessary = !!skb_csum_unnecessary(skb); 1542 scratch->is_linear = !skb_is_nonlinear(skb); 1543 #endif 1544 if (udp_try_make_stateless(skb)) 1545 scratch->_tsize_state |= UDP_SKB_IS_STATELESS; 1546 } 1547 1548 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb) 1549 { 1550 /* We come here after udp_lib_checksum_complete() returned 0. 1551 * This means that __skb_checksum_complete() might have 1552 * set skb->csum_valid to 1. 1553 * On 64bit platforms, we can set csum_unnecessary 1554 * to true, but only if the skb is not shared. 1555 */ 1556 #if BITS_PER_LONG == 64 1557 if (!skb_shared(skb)) 1558 udp_skb_scratch(skb)->csum_unnecessary = true; 1559 #endif 1560 } 1561 1562 static int udp_skb_truesize(struct sk_buff *skb) 1563 { 1564 return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS; 1565 } 1566 1567 static bool udp_skb_has_head_state(struct sk_buff *skb) 1568 { 1569 return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS); 1570 } 1571 1572 /* fully reclaim rmem/fwd memory allocated for skb */ 1573 static void udp_rmem_release(struct sock *sk, int size, int partial, 1574 bool rx_queue_lock_held) 1575 { 1576 struct udp_sock *up = udp_sk(sk); 1577 struct sk_buff_head *sk_queue; 1578 int amt; 1579 1580 if (likely(partial)) { 1581 up->forward_deficit += size; 1582 size = up->forward_deficit; 1583 if (size < READ_ONCE(up->forward_threshold) && 1584 !skb_queue_empty(&up->reader_queue)) 1585 return; 1586 } else { 1587 size += up->forward_deficit; 1588 } 1589 up->forward_deficit = 0; 1590 1591 /* acquire the sk_receive_queue for fwd allocated memory scheduling, 1592 * if the called don't held it already 1593 */ 1594 sk_queue = &sk->sk_receive_queue; 1595 if (!rx_queue_lock_held) 1596 spin_lock(&sk_queue->lock); 1597 1598 1599 sk_forward_alloc_add(sk, size); 1600 amt = (sk->sk_forward_alloc - partial) & ~(PAGE_SIZE - 1); 1601 sk_forward_alloc_add(sk, -amt); 1602 1603 if (amt) 1604 __sk_mem_reduce_allocated(sk, amt >> PAGE_SHIFT); 1605 1606 atomic_sub(size, &sk->sk_rmem_alloc); 1607 1608 /* this can save us from acquiring the rx queue lock on next receive */ 1609 skb_queue_splice_tail_init(sk_queue, &up->reader_queue); 1610 1611 if (!rx_queue_lock_held) 1612 spin_unlock(&sk_queue->lock); 1613 } 1614 1615 /* Note: called with reader_queue.lock held. 1616 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch 1617 * This avoids a cache line miss while receive_queue lock is held. 1618 * Look at __udp_enqueue_schedule_skb() to find where this copy is done. 1619 */ 1620 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb) 1621 { 1622 prefetch(&skb->data); 1623 udp_rmem_release(sk, udp_skb_truesize(skb), 1, false); 1624 } 1625 EXPORT_SYMBOL(udp_skb_destructor); 1626 1627 /* as above, but the caller held the rx queue lock, too */ 1628 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb) 1629 { 1630 prefetch(&skb->data); 1631 udp_rmem_release(sk, udp_skb_truesize(skb), 1, true); 1632 } 1633 1634 /* Idea of busylocks is to let producers grab an extra spinlock 1635 * to relieve pressure on the receive_queue spinlock shared by consumer. 1636 * Under flood, this means that only one producer can be in line 1637 * trying to acquire the receive_queue spinlock. 1638 * These busylock can be allocated on a per cpu manner, instead of a 1639 * per socket one (that would consume a cache line per socket) 1640 */ 1641 static int udp_busylocks_log __read_mostly; 1642 static spinlock_t *udp_busylocks __read_mostly; 1643 1644 static spinlock_t *busylock_acquire(void *ptr) 1645 { 1646 spinlock_t *busy; 1647 1648 busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log); 1649 spin_lock(busy); 1650 return busy; 1651 } 1652 1653 static void busylock_release(spinlock_t *busy) 1654 { 1655 if (busy) 1656 spin_unlock(busy); 1657 } 1658 1659 static int udp_rmem_schedule(struct sock *sk, int size) 1660 { 1661 int delta; 1662 1663 delta = size - sk->sk_forward_alloc; 1664 if (delta > 0 && !__sk_mem_schedule(sk, delta, SK_MEM_RECV)) 1665 return -ENOBUFS; 1666 1667 return 0; 1668 } 1669 1670 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb) 1671 { 1672 struct sk_buff_head *list = &sk->sk_receive_queue; 1673 int rmem, err = -ENOMEM; 1674 spinlock_t *busy = NULL; 1675 int size, rcvbuf; 1676 1677 /* Immediately drop when the receive queue is full. 1678 * Always allow at least one packet. 1679 */ 1680 rmem = atomic_read(&sk->sk_rmem_alloc); 1681 rcvbuf = READ_ONCE(sk->sk_rcvbuf); 1682 if (rmem > rcvbuf) 1683 goto drop; 1684 1685 /* Under mem pressure, it might be helpful to help udp_recvmsg() 1686 * having linear skbs : 1687 * - Reduce memory overhead and thus increase receive queue capacity 1688 * - Less cache line misses at copyout() time 1689 * - Less work at consume_skb() (less alien page frag freeing) 1690 */ 1691 if (rmem > (rcvbuf >> 1)) { 1692 skb_condense(skb); 1693 1694 busy = busylock_acquire(sk); 1695 } 1696 size = skb->truesize; 1697 udp_set_dev_scratch(skb); 1698 1699 atomic_add(size, &sk->sk_rmem_alloc); 1700 1701 spin_lock(&list->lock); 1702 err = udp_rmem_schedule(sk, size); 1703 if (err) { 1704 spin_unlock(&list->lock); 1705 goto uncharge_drop; 1706 } 1707 1708 sk_forward_alloc_add(sk, -size); 1709 1710 /* no need to setup a destructor, we will explicitly release the 1711 * forward allocated memory on dequeue 1712 */ 1713 sock_skb_set_dropcount(sk, skb); 1714 1715 __skb_queue_tail(list, skb); 1716 spin_unlock(&list->lock); 1717 1718 if (!sock_flag(sk, SOCK_DEAD)) 1719 INDIRECT_CALL_1(sk->sk_data_ready, sock_def_readable, sk); 1720 1721 busylock_release(busy); 1722 return 0; 1723 1724 uncharge_drop: 1725 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 1726 1727 drop: 1728 atomic_inc(&sk->sk_drops); 1729 busylock_release(busy); 1730 return err; 1731 } 1732 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb); 1733 1734 void udp_destruct_common(struct sock *sk) 1735 { 1736 /* reclaim completely the forward allocated memory */ 1737 struct udp_sock *up = udp_sk(sk); 1738 unsigned int total = 0; 1739 struct sk_buff *skb; 1740 1741 skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue); 1742 while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) { 1743 total += skb->truesize; 1744 kfree_skb(skb); 1745 } 1746 udp_rmem_release(sk, total, 0, true); 1747 } 1748 EXPORT_SYMBOL_GPL(udp_destruct_common); 1749 1750 static void udp_destruct_sock(struct sock *sk) 1751 { 1752 udp_destruct_common(sk); 1753 inet_sock_destruct(sk); 1754 } 1755 1756 int udp_init_sock(struct sock *sk) 1757 { 1758 udp_lib_init_sock(sk); 1759 sk->sk_destruct = udp_destruct_sock; 1760 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); 1761 return 0; 1762 } 1763 1764 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len) 1765 { 1766 if (unlikely(READ_ONCE(udp_sk(sk)->peeking_with_offset))) 1767 sk_peek_offset_bwd(sk, len); 1768 1769 if (!skb_unref(skb)) 1770 return; 1771 1772 /* In the more common cases we cleared the head states previously, 1773 * see __udp_queue_rcv_skb(). 1774 */ 1775 if (unlikely(udp_skb_has_head_state(skb))) 1776 skb_release_head_state(skb); 1777 __consume_stateless_skb(skb); 1778 } 1779 EXPORT_SYMBOL_GPL(skb_consume_udp); 1780 1781 static struct sk_buff *__first_packet_length(struct sock *sk, 1782 struct sk_buff_head *rcvq, 1783 int *total) 1784 { 1785 struct sk_buff *skb; 1786 1787 while ((skb = skb_peek(rcvq)) != NULL) { 1788 if (udp_lib_checksum_complete(skb)) { 1789 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, 1790 IS_UDPLITE(sk)); 1791 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, 1792 IS_UDPLITE(sk)); 1793 atomic_inc(&sk->sk_drops); 1794 __skb_unlink(skb, rcvq); 1795 *total += skb->truesize; 1796 kfree_skb(skb); 1797 } else { 1798 udp_skb_csum_unnecessary_set(skb); 1799 break; 1800 } 1801 } 1802 return skb; 1803 } 1804 1805 /** 1806 * first_packet_length - return length of first packet in receive queue 1807 * @sk: socket 1808 * 1809 * Drops all bad checksum frames, until a valid one is found. 1810 * Returns the length of found skb, or -1 if none is found. 1811 */ 1812 static int first_packet_length(struct sock *sk) 1813 { 1814 struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue; 1815 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1816 struct sk_buff *skb; 1817 int total = 0; 1818 int res; 1819 1820 spin_lock_bh(&rcvq->lock); 1821 skb = __first_packet_length(sk, rcvq, &total); 1822 if (!skb && !skb_queue_empty_lockless(sk_queue)) { 1823 spin_lock(&sk_queue->lock); 1824 skb_queue_splice_tail_init(sk_queue, rcvq); 1825 spin_unlock(&sk_queue->lock); 1826 1827 skb = __first_packet_length(sk, rcvq, &total); 1828 } 1829 res = skb ? skb->len : -1; 1830 if (total) 1831 udp_rmem_release(sk, total, 1, false); 1832 spin_unlock_bh(&rcvq->lock); 1833 return res; 1834 } 1835 1836 /* 1837 * IOCTL requests applicable to the UDP protocol 1838 */ 1839 1840 int udp_ioctl(struct sock *sk, int cmd, int *karg) 1841 { 1842 switch (cmd) { 1843 case SIOCOUTQ: 1844 { 1845 *karg = sk_wmem_alloc_get(sk); 1846 return 0; 1847 } 1848 1849 case SIOCINQ: 1850 { 1851 *karg = max_t(int, 0, first_packet_length(sk)); 1852 return 0; 1853 } 1854 1855 default: 1856 return -ENOIOCTLCMD; 1857 } 1858 1859 return 0; 1860 } 1861 EXPORT_SYMBOL(udp_ioctl); 1862 1863 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags, 1864 int *off, int *err) 1865 { 1866 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1867 struct sk_buff_head *queue; 1868 struct sk_buff *last; 1869 long timeo; 1870 int error; 1871 1872 queue = &udp_sk(sk)->reader_queue; 1873 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1874 do { 1875 struct sk_buff *skb; 1876 1877 error = sock_error(sk); 1878 if (error) 1879 break; 1880 1881 error = -EAGAIN; 1882 do { 1883 spin_lock_bh(&queue->lock); 1884 skb = __skb_try_recv_from_queue(sk, queue, flags, off, 1885 err, &last); 1886 if (skb) { 1887 if (!(flags & MSG_PEEK)) 1888 udp_skb_destructor(sk, skb); 1889 spin_unlock_bh(&queue->lock); 1890 return skb; 1891 } 1892 1893 if (skb_queue_empty_lockless(sk_queue)) { 1894 spin_unlock_bh(&queue->lock); 1895 goto busy_check; 1896 } 1897 1898 /* refill the reader queue and walk it again 1899 * keep both queues locked to avoid re-acquiring 1900 * the sk_receive_queue lock if fwd memory scheduling 1901 * is needed. 1902 */ 1903 spin_lock(&sk_queue->lock); 1904 skb_queue_splice_tail_init(sk_queue, queue); 1905 1906 skb = __skb_try_recv_from_queue(sk, queue, flags, off, 1907 err, &last); 1908 if (skb && !(flags & MSG_PEEK)) 1909 udp_skb_dtor_locked(sk, skb); 1910 spin_unlock(&sk_queue->lock); 1911 spin_unlock_bh(&queue->lock); 1912 if (skb) 1913 return skb; 1914 1915 busy_check: 1916 if (!sk_can_busy_loop(sk)) 1917 break; 1918 1919 sk_busy_loop(sk, flags & MSG_DONTWAIT); 1920 } while (!skb_queue_empty_lockless(sk_queue)); 1921 1922 /* sk_queue is empty, reader_queue may contain peeked packets */ 1923 } while (timeo && 1924 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue, 1925 &error, &timeo, 1926 (struct sk_buff *)sk_queue)); 1927 1928 *err = error; 1929 return NULL; 1930 } 1931 EXPORT_SYMBOL(__skb_recv_udp); 1932 1933 int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor) 1934 { 1935 struct sk_buff *skb; 1936 int err; 1937 1938 try_again: 1939 skb = skb_recv_udp(sk, MSG_DONTWAIT, &err); 1940 if (!skb) 1941 return err; 1942 1943 if (udp_lib_checksum_complete(skb)) { 1944 int is_udplite = IS_UDPLITE(sk); 1945 struct net *net = sock_net(sk); 1946 1947 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, is_udplite); 1948 __UDP_INC_STATS(net, UDP_MIB_INERRORS, is_udplite); 1949 atomic_inc(&sk->sk_drops); 1950 kfree_skb(skb); 1951 goto try_again; 1952 } 1953 1954 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk)); 1955 return recv_actor(sk, skb); 1956 } 1957 EXPORT_SYMBOL(udp_read_skb); 1958 1959 /* 1960 * This should be easy, if there is something there we 1961 * return it, otherwise we block. 1962 */ 1963 1964 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, 1965 int *addr_len) 1966 { 1967 struct inet_sock *inet = inet_sk(sk); 1968 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name); 1969 struct sk_buff *skb; 1970 unsigned int ulen, copied; 1971 int off, err, peeking = flags & MSG_PEEK; 1972 int is_udplite = IS_UDPLITE(sk); 1973 bool checksum_valid = false; 1974 1975 if (flags & MSG_ERRQUEUE) 1976 return ip_recv_error(sk, msg, len, addr_len); 1977 1978 try_again: 1979 off = sk_peek_offset(sk, flags); 1980 skb = __skb_recv_udp(sk, flags, &off, &err); 1981 if (!skb) 1982 return err; 1983 1984 ulen = udp_skb_len(skb); 1985 copied = len; 1986 if (copied > ulen - off) 1987 copied = ulen - off; 1988 else if (copied < ulen) 1989 msg->msg_flags |= MSG_TRUNC; 1990 1991 /* 1992 * If checksum is needed at all, try to do it while copying the 1993 * data. If the data is truncated, or if we only want a partial 1994 * coverage checksum (UDP-Lite), do it before the copy. 1995 */ 1996 1997 if (copied < ulen || peeking || 1998 (is_udplite && UDP_SKB_CB(skb)->partial_cov)) { 1999 checksum_valid = udp_skb_csum_unnecessary(skb) || 2000 !__udp_lib_checksum_complete(skb); 2001 if (!checksum_valid) 2002 goto csum_copy_err; 2003 } 2004 2005 if (checksum_valid || udp_skb_csum_unnecessary(skb)) { 2006 if (udp_skb_is_linear(skb)) 2007 err = copy_linear_skb(skb, copied, off, &msg->msg_iter); 2008 else 2009 err = skb_copy_datagram_msg(skb, off, msg, copied); 2010 } else { 2011 err = skb_copy_and_csum_datagram_msg(skb, off, msg); 2012 2013 if (err == -EINVAL) 2014 goto csum_copy_err; 2015 } 2016 2017 if (unlikely(err)) { 2018 if (!peeking) { 2019 atomic_inc(&sk->sk_drops); 2020 UDP_INC_STATS(sock_net(sk), 2021 UDP_MIB_INERRORS, is_udplite); 2022 } 2023 kfree_skb(skb); 2024 return err; 2025 } 2026 2027 if (!peeking) 2028 UDP_INC_STATS(sock_net(sk), 2029 UDP_MIB_INDATAGRAMS, is_udplite); 2030 2031 sock_recv_cmsgs(msg, sk, skb); 2032 2033 /* Copy the address. */ 2034 if (sin) { 2035 sin->sin_family = AF_INET; 2036 sin->sin_port = udp_hdr(skb)->source; 2037 sin->sin_addr.s_addr = ip_hdr(skb)->saddr; 2038 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 2039 *addr_len = sizeof(*sin); 2040 2041 BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk, 2042 (struct sockaddr *)sin, 2043 addr_len); 2044 } 2045 2046 if (udp_test_bit(GRO_ENABLED, sk)) 2047 udp_cmsg_recv(msg, sk, skb); 2048 2049 if (inet_cmsg_flags(inet)) 2050 ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off); 2051 2052 err = copied; 2053 if (flags & MSG_TRUNC) 2054 err = ulen; 2055 2056 skb_consume_udp(sk, skb, peeking ? -err : err); 2057 return err; 2058 2059 csum_copy_err: 2060 if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags, 2061 udp_skb_destructor)) { 2062 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 2063 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 2064 } 2065 kfree_skb(skb); 2066 2067 /* starting over for a new packet, but check if we need to yield */ 2068 cond_resched(); 2069 msg->msg_flags &= ~MSG_TRUNC; 2070 goto try_again; 2071 } 2072 2073 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 2074 { 2075 /* This check is replicated from __ip4_datagram_connect() and 2076 * intended to prevent BPF program called below from accessing bytes 2077 * that are out of the bound specified by user in addr_len. 2078 */ 2079 if (addr_len < sizeof(struct sockaddr_in)) 2080 return -EINVAL; 2081 2082 return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr, &addr_len); 2083 } 2084 EXPORT_SYMBOL(udp_pre_connect); 2085 2086 static int udp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 2087 { 2088 int res; 2089 2090 lock_sock(sk); 2091 res = __ip4_datagram_connect(sk, uaddr, addr_len); 2092 if (!res) 2093 udp4_hash4(sk); 2094 release_sock(sk); 2095 return res; 2096 } 2097 2098 int __udp_disconnect(struct sock *sk, int flags) 2099 { 2100 struct inet_sock *inet = inet_sk(sk); 2101 /* 2102 * 1003.1g - break association. 2103 */ 2104 2105 sk->sk_state = TCP_CLOSE; 2106 inet->inet_daddr = 0; 2107 inet->inet_dport = 0; 2108 sock_rps_reset_rxhash(sk); 2109 sk->sk_bound_dev_if = 0; 2110 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) { 2111 inet_reset_saddr(sk); 2112 if (sk->sk_prot->rehash && 2113 (sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2114 sk->sk_prot->rehash(sk); 2115 } 2116 2117 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) { 2118 sk->sk_prot->unhash(sk); 2119 inet->inet_sport = 0; 2120 } 2121 sk_dst_reset(sk); 2122 return 0; 2123 } 2124 EXPORT_SYMBOL(__udp_disconnect); 2125 2126 int udp_disconnect(struct sock *sk, int flags) 2127 { 2128 lock_sock(sk); 2129 __udp_disconnect(sk, flags); 2130 release_sock(sk); 2131 return 0; 2132 } 2133 EXPORT_SYMBOL(udp_disconnect); 2134 2135 void udp_lib_unhash(struct sock *sk) 2136 { 2137 if (sk_hashed(sk)) { 2138 struct udp_table *udptable = udp_get_table_prot(sk); 2139 struct udp_hslot *hslot, *hslot2; 2140 2141 hslot = udp_hashslot(udptable, sock_net(sk), 2142 udp_sk(sk)->udp_port_hash); 2143 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 2144 2145 spin_lock_bh(&hslot->lock); 2146 if (rcu_access_pointer(sk->sk_reuseport_cb)) 2147 reuseport_detach_sock(sk); 2148 if (sk_del_node_init_rcu(sk)) { 2149 hslot->count--; 2150 inet_sk(sk)->inet_num = 0; 2151 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 2152 2153 spin_lock(&hslot2->lock); 2154 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 2155 hslot2->count--; 2156 spin_unlock(&hslot2->lock); 2157 2158 udp_unhash4(udptable, sk); 2159 } 2160 spin_unlock_bh(&hslot->lock); 2161 } 2162 } 2163 EXPORT_SYMBOL(udp_lib_unhash); 2164 2165 /* 2166 * inet_rcv_saddr was changed, we must rehash secondary hash 2167 */ 2168 void udp_lib_rehash(struct sock *sk, u16 newhash, u16 newhash4) 2169 { 2170 if (sk_hashed(sk)) { 2171 struct udp_table *udptable = udp_get_table_prot(sk); 2172 struct udp_hslot *hslot, *hslot2, *nhslot2; 2173 2174 hslot = udp_hashslot(udptable, sock_net(sk), 2175 udp_sk(sk)->udp_port_hash); 2176 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 2177 nhslot2 = udp_hashslot2(udptable, newhash); 2178 udp_sk(sk)->udp_portaddr_hash = newhash; 2179 2180 if (hslot2 != nhslot2 || 2181 rcu_access_pointer(sk->sk_reuseport_cb)) { 2182 /* we must lock primary chain too */ 2183 spin_lock_bh(&hslot->lock); 2184 if (rcu_access_pointer(sk->sk_reuseport_cb)) 2185 reuseport_detach_sock(sk); 2186 2187 if (hslot2 != nhslot2) { 2188 spin_lock(&hslot2->lock); 2189 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 2190 hslot2->count--; 2191 spin_unlock(&hslot2->lock); 2192 2193 spin_lock(&nhslot2->lock); 2194 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 2195 &nhslot2->head); 2196 nhslot2->count++; 2197 spin_unlock(&nhslot2->lock); 2198 } 2199 2200 spin_unlock_bh(&hslot->lock); 2201 } 2202 2203 /* Now process hash4 if necessary: 2204 * (1) update hslot4; 2205 * (2) update hslot2->hash4_cnt. 2206 * Note that hslot2/hslot4 should be checked separately, as 2207 * either of them may change with the other unchanged. 2208 */ 2209 if (udp_hashed4(sk)) { 2210 spin_lock_bh(&hslot->lock); 2211 2212 udp_rehash4(udptable, sk, newhash4); 2213 if (hslot2 != nhslot2) { 2214 spin_lock(&hslot2->lock); 2215 udp_hash4_dec(hslot2); 2216 spin_unlock(&hslot2->lock); 2217 2218 spin_lock(&nhslot2->lock); 2219 udp_hash4_inc(nhslot2); 2220 spin_unlock(&nhslot2->lock); 2221 } 2222 2223 spin_unlock_bh(&hslot->lock); 2224 } 2225 } 2226 } 2227 EXPORT_SYMBOL(udp_lib_rehash); 2228 2229 void udp_v4_rehash(struct sock *sk) 2230 { 2231 u16 new_hash = ipv4_portaddr_hash(sock_net(sk), 2232 inet_sk(sk)->inet_rcv_saddr, 2233 inet_sk(sk)->inet_num); 2234 u16 new_hash4 = udp_ehashfn(sock_net(sk), 2235 sk->sk_rcv_saddr, sk->sk_num, 2236 sk->sk_daddr, sk->sk_dport); 2237 2238 udp_lib_rehash(sk, new_hash, new_hash4); 2239 } 2240 2241 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 2242 { 2243 int rc; 2244 2245 if (inet_sk(sk)->inet_daddr) { 2246 sock_rps_save_rxhash(sk, skb); 2247 sk_mark_napi_id(sk, skb); 2248 sk_incoming_cpu_update(sk); 2249 } else { 2250 sk_mark_napi_id_once(sk, skb); 2251 } 2252 2253 rc = __udp_enqueue_schedule_skb(sk, skb); 2254 if (rc < 0) { 2255 int is_udplite = IS_UDPLITE(sk); 2256 int drop_reason; 2257 2258 /* Note that an ENOMEM error is charged twice */ 2259 if (rc == -ENOMEM) { 2260 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS, 2261 is_udplite); 2262 drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF; 2263 } else { 2264 UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS, 2265 is_udplite); 2266 drop_reason = SKB_DROP_REASON_PROTO_MEM; 2267 } 2268 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 2269 trace_udp_fail_queue_rcv_skb(rc, sk, skb); 2270 sk_skb_reason_drop(sk, skb, drop_reason); 2271 return -1; 2272 } 2273 2274 return 0; 2275 } 2276 2277 /* returns: 2278 * -1: error 2279 * 0: success 2280 * >0: "udp encap" protocol resubmission 2281 * 2282 * Note that in the success and error cases, the skb is assumed to 2283 * have either been requeued or freed. 2284 */ 2285 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb) 2286 { 2287 int drop_reason = SKB_DROP_REASON_NOT_SPECIFIED; 2288 struct udp_sock *up = udp_sk(sk); 2289 int is_udplite = IS_UDPLITE(sk); 2290 2291 /* 2292 * Charge it to the socket, dropping if the queue is full. 2293 */ 2294 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) { 2295 drop_reason = SKB_DROP_REASON_XFRM_POLICY; 2296 goto drop; 2297 } 2298 nf_reset_ct(skb); 2299 2300 if (static_branch_unlikely(&udp_encap_needed_key) && 2301 READ_ONCE(up->encap_type)) { 2302 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb); 2303 2304 /* 2305 * This is an encapsulation socket so pass the skb to 2306 * the socket's udp_encap_rcv() hook. Otherwise, just 2307 * fall through and pass this up the UDP socket. 2308 * up->encap_rcv() returns the following value: 2309 * =0 if skb was successfully passed to the encap 2310 * handler or was discarded by it. 2311 * >0 if skb should be passed on to UDP. 2312 * <0 if skb should be resubmitted as proto -N 2313 */ 2314 2315 /* if we're overly short, let UDP handle it */ 2316 encap_rcv = READ_ONCE(up->encap_rcv); 2317 if (encap_rcv) { 2318 int ret; 2319 2320 /* Verify checksum before giving to encap */ 2321 if (udp_lib_checksum_complete(skb)) 2322 goto csum_error; 2323 2324 ret = encap_rcv(sk, skb); 2325 if (ret <= 0) { 2326 __UDP_INC_STATS(sock_net(sk), 2327 UDP_MIB_INDATAGRAMS, 2328 is_udplite); 2329 return -ret; 2330 } 2331 } 2332 2333 /* FALLTHROUGH -- it's a UDP Packet */ 2334 } 2335 2336 /* 2337 * UDP-Lite specific tests, ignored on UDP sockets 2338 */ 2339 if (udp_test_bit(UDPLITE_RECV_CC, sk) && UDP_SKB_CB(skb)->partial_cov) { 2340 u16 pcrlen = READ_ONCE(up->pcrlen); 2341 2342 /* 2343 * MIB statistics other than incrementing the error count are 2344 * disabled for the following two types of errors: these depend 2345 * on the application settings, not on the functioning of the 2346 * protocol stack as such. 2347 * 2348 * RFC 3828 here recommends (sec 3.3): "There should also be a 2349 * way ... to ... at least let the receiving application block 2350 * delivery of packets with coverage values less than a value 2351 * provided by the application." 2352 */ 2353 if (pcrlen == 0) { /* full coverage was set */ 2354 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n", 2355 UDP_SKB_CB(skb)->cscov, skb->len); 2356 goto drop; 2357 } 2358 /* The next case involves violating the min. coverage requested 2359 * by the receiver. This is subtle: if receiver wants x and x is 2360 * greater than the buffersize/MTU then receiver will complain 2361 * that it wants x while sender emits packets of smaller size y. 2362 * Therefore the above ...()->partial_cov statement is essential. 2363 */ 2364 if (UDP_SKB_CB(skb)->cscov < pcrlen) { 2365 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n", 2366 UDP_SKB_CB(skb)->cscov, pcrlen); 2367 goto drop; 2368 } 2369 } 2370 2371 prefetch(&sk->sk_rmem_alloc); 2372 if (rcu_access_pointer(sk->sk_filter) && 2373 udp_lib_checksum_complete(skb)) 2374 goto csum_error; 2375 2376 if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) { 2377 drop_reason = SKB_DROP_REASON_SOCKET_FILTER; 2378 goto drop; 2379 } 2380 2381 udp_csum_pull_header(skb); 2382 2383 ipv4_pktinfo_prepare(sk, skb, true); 2384 return __udp_queue_rcv_skb(sk, skb); 2385 2386 csum_error: 2387 drop_reason = SKB_DROP_REASON_UDP_CSUM; 2388 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 2389 drop: 2390 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 2391 atomic_inc(&sk->sk_drops); 2392 sk_skb_reason_drop(sk, skb, drop_reason); 2393 return -1; 2394 } 2395 2396 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 2397 { 2398 struct sk_buff *next, *segs; 2399 int ret; 2400 2401 if (likely(!udp_unexpected_gso(sk, skb))) 2402 return udp_queue_rcv_one_skb(sk, skb); 2403 2404 BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET); 2405 __skb_push(skb, -skb_mac_offset(skb)); 2406 segs = udp_rcv_segment(sk, skb, true); 2407 skb_list_walk_safe(segs, skb, next) { 2408 __skb_pull(skb, skb_transport_offset(skb)); 2409 2410 udp_post_segment_fix_csum(skb); 2411 ret = udp_queue_rcv_one_skb(sk, skb); 2412 if (ret > 0) 2413 ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret); 2414 } 2415 return 0; 2416 } 2417 2418 /* For TCP sockets, sk_rx_dst is protected by socket lock 2419 * For UDP, we use xchg() to guard against concurrent changes. 2420 */ 2421 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst) 2422 { 2423 struct dst_entry *old; 2424 2425 if (dst_hold_safe(dst)) { 2426 old = unrcu_pointer(xchg(&sk->sk_rx_dst, RCU_INITIALIZER(dst))); 2427 dst_release(old); 2428 return old != dst; 2429 } 2430 return false; 2431 } 2432 EXPORT_SYMBOL(udp_sk_rx_dst_set); 2433 2434 /* 2435 * Multicasts and broadcasts go to each listener. 2436 * 2437 * Note: called only from the BH handler context. 2438 */ 2439 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb, 2440 struct udphdr *uh, 2441 __be32 saddr, __be32 daddr, 2442 struct udp_table *udptable, 2443 int proto) 2444 { 2445 struct sock *sk, *first = NULL; 2446 unsigned short hnum = ntohs(uh->dest); 2447 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum); 2448 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10); 2449 unsigned int offset = offsetof(typeof(*sk), sk_node); 2450 int dif = skb->dev->ifindex; 2451 int sdif = inet_sdif(skb); 2452 struct hlist_node *node; 2453 struct sk_buff *nskb; 2454 2455 if (use_hash2) { 2456 hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) & 2457 udptable->mask; 2458 hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask; 2459 start_lookup: 2460 hslot = &udptable->hash2[hash2].hslot; 2461 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node); 2462 } 2463 2464 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) { 2465 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr, 2466 uh->source, saddr, dif, sdif, hnum)) 2467 continue; 2468 2469 if (!first) { 2470 first = sk; 2471 continue; 2472 } 2473 nskb = skb_clone(skb, GFP_ATOMIC); 2474 2475 if (unlikely(!nskb)) { 2476 atomic_inc(&sk->sk_drops); 2477 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS, 2478 IS_UDPLITE(sk)); 2479 __UDP_INC_STATS(net, UDP_MIB_INERRORS, 2480 IS_UDPLITE(sk)); 2481 continue; 2482 } 2483 if (udp_queue_rcv_skb(sk, nskb) > 0) 2484 consume_skb(nskb); 2485 } 2486 2487 /* Also lookup *:port if we are using hash2 and haven't done so yet. */ 2488 if (use_hash2 && hash2 != hash2_any) { 2489 hash2 = hash2_any; 2490 goto start_lookup; 2491 } 2492 2493 if (first) { 2494 if (udp_queue_rcv_skb(first, skb) > 0) 2495 consume_skb(skb); 2496 } else { 2497 kfree_skb(skb); 2498 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI, 2499 proto == IPPROTO_UDPLITE); 2500 } 2501 return 0; 2502 } 2503 2504 /* Initialize UDP checksum. If exited with zero value (success), 2505 * CHECKSUM_UNNECESSARY means, that no more checks are required. 2506 * Otherwise, csum completion requires checksumming packet body, 2507 * including udp header and folding it to skb->csum. 2508 */ 2509 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh, 2510 int proto) 2511 { 2512 int err; 2513 2514 UDP_SKB_CB(skb)->partial_cov = 0; 2515 UDP_SKB_CB(skb)->cscov = skb->len; 2516 2517 if (proto == IPPROTO_UDPLITE) { 2518 err = udplite_checksum_init(skb, uh); 2519 if (err) 2520 return err; 2521 2522 if (UDP_SKB_CB(skb)->partial_cov) { 2523 skb->csum = inet_compute_pseudo(skb, proto); 2524 return 0; 2525 } 2526 } 2527 2528 /* Note, we are only interested in != 0 or == 0, thus the 2529 * force to int. 2530 */ 2531 err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check, 2532 inet_compute_pseudo); 2533 if (err) 2534 return err; 2535 2536 if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) { 2537 /* If SW calculated the value, we know it's bad */ 2538 if (skb->csum_complete_sw) 2539 return 1; 2540 2541 /* HW says the value is bad. Let's validate that. 2542 * skb->csum is no longer the full packet checksum, 2543 * so don't treat it as such. 2544 */ 2545 skb_checksum_complete_unset(skb); 2546 } 2547 2548 return 0; 2549 } 2550 2551 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and 2552 * return code conversion for ip layer consumption 2553 */ 2554 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb, 2555 struct udphdr *uh) 2556 { 2557 int ret; 2558 2559 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk)) 2560 skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo); 2561 2562 ret = udp_queue_rcv_skb(sk, skb); 2563 2564 /* a return value > 0 means to resubmit the input, but 2565 * it wants the return to be -protocol, or 0 2566 */ 2567 if (ret > 0) 2568 return -ret; 2569 return 0; 2570 } 2571 2572 /* 2573 * All we need to do is get the socket, and then do a checksum. 2574 */ 2575 2576 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable, 2577 int proto) 2578 { 2579 struct sock *sk = NULL; 2580 struct udphdr *uh; 2581 unsigned short ulen; 2582 struct rtable *rt = skb_rtable(skb); 2583 __be32 saddr, daddr; 2584 struct net *net = dev_net(skb->dev); 2585 bool refcounted; 2586 int drop_reason; 2587 2588 drop_reason = SKB_DROP_REASON_NOT_SPECIFIED; 2589 2590 /* 2591 * Validate the packet. 2592 */ 2593 if (!pskb_may_pull(skb, sizeof(struct udphdr))) 2594 goto drop; /* No space for header. */ 2595 2596 uh = udp_hdr(skb); 2597 ulen = ntohs(uh->len); 2598 saddr = ip_hdr(skb)->saddr; 2599 daddr = ip_hdr(skb)->daddr; 2600 2601 if (ulen > skb->len) 2602 goto short_packet; 2603 2604 if (proto == IPPROTO_UDP) { 2605 /* UDP validates ulen. */ 2606 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen)) 2607 goto short_packet; 2608 uh = udp_hdr(skb); 2609 } 2610 2611 if (udp4_csum_init(skb, uh, proto)) 2612 goto csum_error; 2613 2614 sk = inet_steal_sock(net, skb, sizeof(struct udphdr), saddr, uh->source, daddr, uh->dest, 2615 &refcounted, udp_ehashfn); 2616 if (IS_ERR(sk)) 2617 goto no_sk; 2618 2619 if (sk) { 2620 struct dst_entry *dst = skb_dst(skb); 2621 int ret; 2622 2623 if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst)) 2624 udp_sk_rx_dst_set(sk, dst); 2625 2626 ret = udp_unicast_rcv_skb(sk, skb, uh); 2627 if (refcounted) 2628 sock_put(sk); 2629 return ret; 2630 } 2631 2632 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST)) 2633 return __udp4_lib_mcast_deliver(net, skb, uh, 2634 saddr, daddr, udptable, proto); 2635 2636 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable); 2637 if (sk) 2638 return udp_unicast_rcv_skb(sk, skb, uh); 2639 no_sk: 2640 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 2641 goto drop; 2642 nf_reset_ct(skb); 2643 2644 /* No socket. Drop packet silently, if checksum is wrong */ 2645 if (udp_lib_checksum_complete(skb)) 2646 goto csum_error; 2647 2648 drop_reason = SKB_DROP_REASON_NO_SOCKET; 2649 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE); 2650 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0); 2651 2652 /* 2653 * Hmm. We got an UDP packet to a port to which we 2654 * don't wanna listen. Ignore it. 2655 */ 2656 sk_skb_reason_drop(sk, skb, drop_reason); 2657 return 0; 2658 2659 short_packet: 2660 drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL; 2661 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n", 2662 proto == IPPROTO_UDPLITE ? "Lite" : "", 2663 &saddr, ntohs(uh->source), 2664 ulen, skb->len, 2665 &daddr, ntohs(uh->dest)); 2666 goto drop; 2667 2668 csum_error: 2669 /* 2670 * RFC1122: OK. Discards the bad packet silently (as far as 2671 * the network is concerned, anyway) as per 4.1.3.4 (MUST). 2672 */ 2673 drop_reason = SKB_DROP_REASON_UDP_CSUM; 2674 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n", 2675 proto == IPPROTO_UDPLITE ? "Lite" : "", 2676 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest), 2677 ulen); 2678 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE); 2679 drop: 2680 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE); 2681 sk_skb_reason_drop(sk, skb, drop_reason); 2682 return 0; 2683 } 2684 2685 /* We can only early demux multicast if there is a single matching socket. 2686 * If more than one socket found returns NULL 2687 */ 2688 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net, 2689 __be16 loc_port, __be32 loc_addr, 2690 __be16 rmt_port, __be32 rmt_addr, 2691 int dif, int sdif) 2692 { 2693 struct udp_table *udptable = net->ipv4.udp_table; 2694 unsigned short hnum = ntohs(loc_port); 2695 struct sock *sk, *result; 2696 struct udp_hslot *hslot; 2697 unsigned int slot; 2698 2699 slot = udp_hashfn(net, hnum, udptable->mask); 2700 hslot = &udptable->hash[slot]; 2701 2702 /* Do not bother scanning a too big list */ 2703 if (hslot->count > 10) 2704 return NULL; 2705 2706 result = NULL; 2707 sk_for_each_rcu(sk, &hslot->head) { 2708 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr, 2709 rmt_port, rmt_addr, dif, sdif, hnum)) { 2710 if (result) 2711 return NULL; 2712 result = sk; 2713 } 2714 } 2715 2716 return result; 2717 } 2718 2719 /* For unicast we should only early demux connected sockets or we can 2720 * break forwarding setups. The chains here can be long so only check 2721 * if the first socket is an exact match and if not move on. 2722 */ 2723 static struct sock *__udp4_lib_demux_lookup(struct net *net, 2724 __be16 loc_port, __be32 loc_addr, 2725 __be16 rmt_port, __be32 rmt_addr, 2726 int dif, int sdif) 2727 { 2728 struct udp_table *udptable = net->ipv4.udp_table; 2729 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr); 2730 unsigned short hnum = ntohs(loc_port); 2731 struct udp_hslot *hslot2; 2732 unsigned int hash2; 2733 __portpair ports; 2734 struct sock *sk; 2735 2736 hash2 = ipv4_portaddr_hash(net, loc_addr, hnum); 2737 hslot2 = udp_hashslot2(udptable, hash2); 2738 ports = INET_COMBINED_PORTS(rmt_port, hnum); 2739 2740 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 2741 if (inet_match(net, sk, acookie, ports, dif, sdif)) 2742 return sk; 2743 /* Only check first socket in chain */ 2744 break; 2745 } 2746 return NULL; 2747 } 2748 2749 int udp_v4_early_demux(struct sk_buff *skb) 2750 { 2751 struct net *net = dev_net(skb->dev); 2752 struct in_device *in_dev = NULL; 2753 const struct iphdr *iph; 2754 const struct udphdr *uh; 2755 struct sock *sk = NULL; 2756 struct dst_entry *dst; 2757 int dif = skb->dev->ifindex; 2758 int sdif = inet_sdif(skb); 2759 int ours; 2760 2761 /* validate the packet */ 2762 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr))) 2763 return 0; 2764 2765 iph = ip_hdr(skb); 2766 uh = udp_hdr(skb); 2767 2768 if (skb->pkt_type == PACKET_MULTICAST) { 2769 in_dev = __in_dev_get_rcu(skb->dev); 2770 2771 if (!in_dev) 2772 return 0; 2773 2774 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr, 2775 iph->protocol); 2776 if (!ours) 2777 return 0; 2778 2779 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr, 2780 uh->source, iph->saddr, 2781 dif, sdif); 2782 } else if (skb->pkt_type == PACKET_HOST) { 2783 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr, 2784 uh->source, iph->saddr, dif, sdif); 2785 } 2786 2787 if (!sk) 2788 return 0; 2789 2790 skb->sk = sk; 2791 DEBUG_NET_WARN_ON_ONCE(sk_is_refcounted(sk)); 2792 skb->destructor = sock_pfree; 2793 dst = rcu_dereference(sk->sk_rx_dst); 2794 2795 if (dst) 2796 dst = dst_check(dst, 0); 2797 if (dst) { 2798 u32 itag = 0; 2799 2800 /* set noref for now. 2801 * any place which wants to hold dst has to call 2802 * dst_hold_safe() 2803 */ 2804 skb_dst_set_noref(skb, dst); 2805 2806 /* for unconnected multicast sockets we need to validate 2807 * the source on each packet 2808 */ 2809 if (!inet_sk(sk)->inet_daddr && in_dev) 2810 return ip_mc_validate_source(skb, iph->daddr, 2811 iph->saddr, 2812 ip4h_dscp(iph), 2813 skb->dev, in_dev, &itag); 2814 } 2815 return 0; 2816 } 2817 2818 int udp_rcv(struct sk_buff *skb) 2819 { 2820 return __udp4_lib_rcv(skb, dev_net(skb->dev)->ipv4.udp_table, IPPROTO_UDP); 2821 } 2822 2823 void udp_destroy_sock(struct sock *sk) 2824 { 2825 struct udp_sock *up = udp_sk(sk); 2826 bool slow = lock_sock_fast(sk); 2827 2828 /* protects from races with udp_abort() */ 2829 sock_set_flag(sk, SOCK_DEAD); 2830 udp_flush_pending_frames(sk); 2831 unlock_sock_fast(sk, slow); 2832 if (static_branch_unlikely(&udp_encap_needed_key)) { 2833 if (up->encap_type) { 2834 void (*encap_destroy)(struct sock *sk); 2835 encap_destroy = READ_ONCE(up->encap_destroy); 2836 if (encap_destroy) 2837 encap_destroy(sk); 2838 } 2839 if (udp_test_bit(ENCAP_ENABLED, sk)) 2840 static_branch_dec(&udp_encap_needed_key); 2841 } 2842 } 2843 2844 static void set_xfrm_gro_udp_encap_rcv(__u16 encap_type, unsigned short family, 2845 struct sock *sk) 2846 { 2847 #ifdef CONFIG_XFRM 2848 if (udp_test_bit(GRO_ENABLED, sk) && encap_type == UDP_ENCAP_ESPINUDP) { 2849 if (family == AF_INET) 2850 WRITE_ONCE(udp_sk(sk)->gro_receive, xfrm4_gro_udp_encap_rcv); 2851 else if (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6) 2852 WRITE_ONCE(udp_sk(sk)->gro_receive, ipv6_stub->xfrm6_gro_udp_encap_rcv); 2853 } 2854 #endif 2855 } 2856 2857 /* 2858 * Socket option code for UDP 2859 */ 2860 int udp_lib_setsockopt(struct sock *sk, int level, int optname, 2861 sockptr_t optval, unsigned int optlen, 2862 int (*push_pending_frames)(struct sock *)) 2863 { 2864 struct udp_sock *up = udp_sk(sk); 2865 int val, valbool; 2866 int err = 0; 2867 int is_udplite = IS_UDPLITE(sk); 2868 2869 if (level == SOL_SOCKET) { 2870 err = sk_setsockopt(sk, level, optname, optval, optlen); 2871 2872 if (optname == SO_RCVBUF || optname == SO_RCVBUFFORCE) { 2873 sockopt_lock_sock(sk); 2874 /* paired with READ_ONCE in udp_rmem_release() */ 2875 WRITE_ONCE(up->forward_threshold, sk->sk_rcvbuf >> 2); 2876 sockopt_release_sock(sk); 2877 } 2878 return err; 2879 } 2880 2881 if (optlen < sizeof(int)) 2882 return -EINVAL; 2883 2884 if (copy_from_sockptr(&val, optval, sizeof(val))) 2885 return -EFAULT; 2886 2887 valbool = val ? 1 : 0; 2888 2889 switch (optname) { 2890 case UDP_CORK: 2891 if (val != 0) { 2892 udp_set_bit(CORK, sk); 2893 } else { 2894 udp_clear_bit(CORK, sk); 2895 lock_sock(sk); 2896 push_pending_frames(sk); 2897 release_sock(sk); 2898 } 2899 break; 2900 2901 case UDP_ENCAP: 2902 switch (val) { 2903 case 0: 2904 #ifdef CONFIG_XFRM 2905 case UDP_ENCAP_ESPINUDP: 2906 set_xfrm_gro_udp_encap_rcv(val, sk->sk_family, sk); 2907 #if IS_ENABLED(CONFIG_IPV6) 2908 if (sk->sk_family == AF_INET6) 2909 WRITE_ONCE(up->encap_rcv, 2910 ipv6_stub->xfrm6_udp_encap_rcv); 2911 else 2912 #endif 2913 WRITE_ONCE(up->encap_rcv, 2914 xfrm4_udp_encap_rcv); 2915 #endif 2916 fallthrough; 2917 case UDP_ENCAP_L2TPINUDP: 2918 WRITE_ONCE(up->encap_type, val); 2919 udp_tunnel_encap_enable(sk); 2920 break; 2921 default: 2922 err = -ENOPROTOOPT; 2923 break; 2924 } 2925 break; 2926 2927 case UDP_NO_CHECK6_TX: 2928 udp_set_no_check6_tx(sk, valbool); 2929 break; 2930 2931 case UDP_NO_CHECK6_RX: 2932 udp_set_no_check6_rx(sk, valbool); 2933 break; 2934 2935 case UDP_SEGMENT: 2936 if (val < 0 || val > USHRT_MAX) 2937 return -EINVAL; 2938 WRITE_ONCE(up->gso_size, val); 2939 break; 2940 2941 case UDP_GRO: 2942 2943 /* when enabling GRO, accept the related GSO packet type */ 2944 if (valbool) 2945 udp_tunnel_encap_enable(sk); 2946 udp_assign_bit(GRO_ENABLED, sk, valbool); 2947 udp_assign_bit(ACCEPT_L4, sk, valbool); 2948 set_xfrm_gro_udp_encap_rcv(up->encap_type, sk->sk_family, sk); 2949 break; 2950 2951 /* 2952 * UDP-Lite's partial checksum coverage (RFC 3828). 2953 */ 2954 /* The sender sets actual checksum coverage length via this option. 2955 * The case coverage > packet length is handled by send module. */ 2956 case UDPLITE_SEND_CSCOV: 2957 if (!is_udplite) /* Disable the option on UDP sockets */ 2958 return -ENOPROTOOPT; 2959 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */ 2960 val = 8; 2961 else if (val > USHRT_MAX) 2962 val = USHRT_MAX; 2963 WRITE_ONCE(up->pcslen, val); 2964 udp_set_bit(UDPLITE_SEND_CC, sk); 2965 break; 2966 2967 /* The receiver specifies a minimum checksum coverage value. To make 2968 * sense, this should be set to at least 8 (as done below). If zero is 2969 * used, this again means full checksum coverage. */ 2970 case UDPLITE_RECV_CSCOV: 2971 if (!is_udplite) /* Disable the option on UDP sockets */ 2972 return -ENOPROTOOPT; 2973 if (val != 0 && val < 8) /* Avoid silly minimal values. */ 2974 val = 8; 2975 else if (val > USHRT_MAX) 2976 val = USHRT_MAX; 2977 WRITE_ONCE(up->pcrlen, val); 2978 udp_set_bit(UDPLITE_RECV_CC, sk); 2979 break; 2980 2981 default: 2982 err = -ENOPROTOOPT; 2983 break; 2984 } 2985 2986 return err; 2987 } 2988 EXPORT_SYMBOL(udp_lib_setsockopt); 2989 2990 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 2991 unsigned int optlen) 2992 { 2993 if (level == SOL_UDP || level == SOL_UDPLITE || level == SOL_SOCKET) 2994 return udp_lib_setsockopt(sk, level, optname, 2995 optval, optlen, 2996 udp_push_pending_frames); 2997 return ip_setsockopt(sk, level, optname, optval, optlen); 2998 } 2999 3000 int udp_lib_getsockopt(struct sock *sk, int level, int optname, 3001 char __user *optval, int __user *optlen) 3002 { 3003 struct udp_sock *up = udp_sk(sk); 3004 int val, len; 3005 3006 if (get_user(len, optlen)) 3007 return -EFAULT; 3008 3009 if (len < 0) 3010 return -EINVAL; 3011 3012 len = min_t(unsigned int, len, sizeof(int)); 3013 3014 switch (optname) { 3015 case UDP_CORK: 3016 val = udp_test_bit(CORK, sk); 3017 break; 3018 3019 case UDP_ENCAP: 3020 val = READ_ONCE(up->encap_type); 3021 break; 3022 3023 case UDP_NO_CHECK6_TX: 3024 val = udp_get_no_check6_tx(sk); 3025 break; 3026 3027 case UDP_NO_CHECK6_RX: 3028 val = udp_get_no_check6_rx(sk); 3029 break; 3030 3031 case UDP_SEGMENT: 3032 val = READ_ONCE(up->gso_size); 3033 break; 3034 3035 case UDP_GRO: 3036 val = udp_test_bit(GRO_ENABLED, sk); 3037 break; 3038 3039 /* The following two cannot be changed on UDP sockets, the return is 3040 * always 0 (which corresponds to the full checksum coverage of UDP). */ 3041 case UDPLITE_SEND_CSCOV: 3042 val = READ_ONCE(up->pcslen); 3043 break; 3044 3045 case UDPLITE_RECV_CSCOV: 3046 val = READ_ONCE(up->pcrlen); 3047 break; 3048 3049 default: 3050 return -ENOPROTOOPT; 3051 } 3052 3053 if (put_user(len, optlen)) 3054 return -EFAULT; 3055 if (copy_to_user(optval, &val, len)) 3056 return -EFAULT; 3057 return 0; 3058 } 3059 EXPORT_SYMBOL(udp_lib_getsockopt); 3060 3061 int udp_getsockopt(struct sock *sk, int level, int optname, 3062 char __user *optval, int __user *optlen) 3063 { 3064 if (level == SOL_UDP || level == SOL_UDPLITE) 3065 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 3066 return ip_getsockopt(sk, level, optname, optval, optlen); 3067 } 3068 3069 /** 3070 * udp_poll - wait for a UDP event. 3071 * @file: - file struct 3072 * @sock: - socket 3073 * @wait: - poll table 3074 * 3075 * This is same as datagram poll, except for the special case of 3076 * blocking sockets. If application is using a blocking fd 3077 * and a packet with checksum error is in the queue; 3078 * then it could get return from select indicating data available 3079 * but then block when reading it. Add special case code 3080 * to work around these arguably broken applications. 3081 */ 3082 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait) 3083 { 3084 __poll_t mask = datagram_poll(file, sock, wait); 3085 struct sock *sk = sock->sk; 3086 3087 if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue)) 3088 mask |= EPOLLIN | EPOLLRDNORM; 3089 3090 /* Check for false positives due to checksum errors */ 3091 if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) && 3092 !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1) 3093 mask &= ~(EPOLLIN | EPOLLRDNORM); 3094 3095 /* psock ingress_msg queue should not contain any bad checksum frames */ 3096 if (sk_is_readable(sk)) 3097 mask |= EPOLLIN | EPOLLRDNORM; 3098 return mask; 3099 3100 } 3101 EXPORT_SYMBOL(udp_poll); 3102 3103 int udp_abort(struct sock *sk, int err) 3104 { 3105 if (!has_current_bpf_ctx()) 3106 lock_sock(sk); 3107 3108 /* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing 3109 * with close() 3110 */ 3111 if (sock_flag(sk, SOCK_DEAD)) 3112 goto out; 3113 3114 sk->sk_err = err; 3115 sk_error_report(sk); 3116 __udp_disconnect(sk, 0); 3117 3118 out: 3119 if (!has_current_bpf_ctx()) 3120 release_sock(sk); 3121 3122 return 0; 3123 } 3124 EXPORT_SYMBOL_GPL(udp_abort); 3125 3126 struct proto udp_prot = { 3127 .name = "UDP", 3128 .owner = THIS_MODULE, 3129 .close = udp_lib_close, 3130 .pre_connect = udp_pre_connect, 3131 .connect = udp_connect, 3132 .disconnect = udp_disconnect, 3133 .ioctl = udp_ioctl, 3134 .init = udp_init_sock, 3135 .destroy = udp_destroy_sock, 3136 .setsockopt = udp_setsockopt, 3137 .getsockopt = udp_getsockopt, 3138 .sendmsg = udp_sendmsg, 3139 .recvmsg = udp_recvmsg, 3140 .splice_eof = udp_splice_eof, 3141 .release_cb = ip4_datagram_release_cb, 3142 .hash = udp_lib_hash, 3143 .unhash = udp_lib_unhash, 3144 .rehash = udp_v4_rehash, 3145 .get_port = udp_v4_get_port, 3146 .put_port = udp_lib_unhash, 3147 #ifdef CONFIG_BPF_SYSCALL 3148 .psock_update_sk_prot = udp_bpf_update_proto, 3149 #endif 3150 .memory_allocated = &udp_memory_allocated, 3151 .per_cpu_fw_alloc = &udp_memory_per_cpu_fw_alloc, 3152 3153 .sysctl_mem = sysctl_udp_mem, 3154 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_udp_wmem_min), 3155 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_udp_rmem_min), 3156 .obj_size = sizeof(struct udp_sock), 3157 .h.udp_table = NULL, 3158 .diag_destroy = udp_abort, 3159 }; 3160 EXPORT_SYMBOL(udp_prot); 3161 3162 /* ------------------------------------------------------------------------ */ 3163 #ifdef CONFIG_PROC_FS 3164 3165 static unsigned short seq_file_family(const struct seq_file *seq); 3166 static bool seq_sk_match(struct seq_file *seq, const struct sock *sk) 3167 { 3168 unsigned short family = seq_file_family(seq); 3169 3170 /* AF_UNSPEC is used as a match all */ 3171 return ((family == AF_UNSPEC || family == sk->sk_family) && 3172 net_eq(sock_net(sk), seq_file_net(seq))); 3173 } 3174 3175 #ifdef CONFIG_BPF_SYSCALL 3176 static const struct seq_operations bpf_iter_udp_seq_ops; 3177 #endif 3178 static struct udp_table *udp_get_table_seq(struct seq_file *seq, 3179 struct net *net) 3180 { 3181 const struct udp_seq_afinfo *afinfo; 3182 3183 #ifdef CONFIG_BPF_SYSCALL 3184 if (seq->op == &bpf_iter_udp_seq_ops) 3185 return net->ipv4.udp_table; 3186 #endif 3187 3188 afinfo = pde_data(file_inode(seq->file)); 3189 return afinfo->udp_table ? : net->ipv4.udp_table; 3190 } 3191 3192 static struct sock *udp_get_first(struct seq_file *seq, int start) 3193 { 3194 struct udp_iter_state *state = seq->private; 3195 struct net *net = seq_file_net(seq); 3196 struct udp_table *udptable; 3197 struct sock *sk; 3198 3199 udptable = udp_get_table_seq(seq, net); 3200 3201 for (state->bucket = start; state->bucket <= udptable->mask; 3202 ++state->bucket) { 3203 struct udp_hslot *hslot = &udptable->hash[state->bucket]; 3204 3205 if (hlist_empty(&hslot->head)) 3206 continue; 3207 3208 spin_lock_bh(&hslot->lock); 3209 sk_for_each(sk, &hslot->head) { 3210 if (seq_sk_match(seq, sk)) 3211 goto found; 3212 } 3213 spin_unlock_bh(&hslot->lock); 3214 } 3215 sk = NULL; 3216 found: 3217 return sk; 3218 } 3219 3220 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk) 3221 { 3222 struct udp_iter_state *state = seq->private; 3223 struct net *net = seq_file_net(seq); 3224 struct udp_table *udptable; 3225 3226 do { 3227 sk = sk_next(sk); 3228 } while (sk && !seq_sk_match(seq, sk)); 3229 3230 if (!sk) { 3231 udptable = udp_get_table_seq(seq, net); 3232 3233 if (state->bucket <= udptable->mask) 3234 spin_unlock_bh(&udptable->hash[state->bucket].lock); 3235 3236 return udp_get_first(seq, state->bucket + 1); 3237 } 3238 return sk; 3239 } 3240 3241 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos) 3242 { 3243 struct sock *sk = udp_get_first(seq, 0); 3244 3245 if (sk) 3246 while (pos && (sk = udp_get_next(seq, sk)) != NULL) 3247 --pos; 3248 return pos ? NULL : sk; 3249 } 3250 3251 void *udp_seq_start(struct seq_file *seq, loff_t *pos) 3252 { 3253 struct udp_iter_state *state = seq->private; 3254 state->bucket = MAX_UDP_PORTS; 3255 3256 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN; 3257 } 3258 EXPORT_SYMBOL(udp_seq_start); 3259 3260 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3261 { 3262 struct sock *sk; 3263 3264 if (v == SEQ_START_TOKEN) 3265 sk = udp_get_idx(seq, 0); 3266 else 3267 sk = udp_get_next(seq, v); 3268 3269 ++*pos; 3270 return sk; 3271 } 3272 EXPORT_SYMBOL(udp_seq_next); 3273 3274 void udp_seq_stop(struct seq_file *seq, void *v) 3275 { 3276 struct udp_iter_state *state = seq->private; 3277 struct udp_table *udptable; 3278 3279 udptable = udp_get_table_seq(seq, seq_file_net(seq)); 3280 3281 if (state->bucket <= udptable->mask) 3282 spin_unlock_bh(&udptable->hash[state->bucket].lock); 3283 } 3284 EXPORT_SYMBOL(udp_seq_stop); 3285 3286 /* ------------------------------------------------------------------------ */ 3287 static void udp4_format_sock(struct sock *sp, struct seq_file *f, 3288 int bucket) 3289 { 3290 struct inet_sock *inet = inet_sk(sp); 3291 __be32 dest = inet->inet_daddr; 3292 __be32 src = inet->inet_rcv_saddr; 3293 __u16 destp = ntohs(inet->inet_dport); 3294 __u16 srcp = ntohs(inet->inet_sport); 3295 3296 seq_printf(f, "%5d: %08X:%04X %08X:%04X" 3297 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u", 3298 bucket, src, srcp, dest, destp, sp->sk_state, 3299 sk_wmem_alloc_get(sp), 3300 udp_rqueue_get(sp), 3301 0, 0L, 0, 3302 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)), 3303 0, sock_i_ino(sp), 3304 refcount_read(&sp->sk_refcnt), sp, 3305 atomic_read(&sp->sk_drops)); 3306 } 3307 3308 int udp4_seq_show(struct seq_file *seq, void *v) 3309 { 3310 seq_setwidth(seq, 127); 3311 if (v == SEQ_START_TOKEN) 3312 seq_puts(seq, " sl local_address rem_address st tx_queue " 3313 "rx_queue tr tm->when retrnsmt uid timeout " 3314 "inode ref pointer drops"); 3315 else { 3316 struct udp_iter_state *state = seq->private; 3317 3318 udp4_format_sock(v, seq, state->bucket); 3319 } 3320 seq_pad(seq, '\n'); 3321 return 0; 3322 } 3323 3324 #ifdef CONFIG_BPF_SYSCALL 3325 struct bpf_iter__udp { 3326 __bpf_md_ptr(struct bpf_iter_meta *, meta); 3327 __bpf_md_ptr(struct udp_sock *, udp_sk); 3328 uid_t uid __aligned(8); 3329 int bucket __aligned(8); 3330 }; 3331 3332 struct bpf_udp_iter_state { 3333 struct udp_iter_state state; 3334 unsigned int cur_sk; 3335 unsigned int end_sk; 3336 unsigned int max_sk; 3337 int offset; 3338 struct sock **batch; 3339 bool st_bucket_done; 3340 }; 3341 3342 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter, 3343 unsigned int new_batch_sz); 3344 static struct sock *bpf_iter_udp_batch(struct seq_file *seq) 3345 { 3346 struct bpf_udp_iter_state *iter = seq->private; 3347 struct udp_iter_state *state = &iter->state; 3348 struct net *net = seq_file_net(seq); 3349 int resume_bucket, resume_offset; 3350 struct udp_table *udptable; 3351 unsigned int batch_sks = 0; 3352 bool resized = false; 3353 struct sock *sk; 3354 3355 resume_bucket = state->bucket; 3356 resume_offset = iter->offset; 3357 3358 /* The current batch is done, so advance the bucket. */ 3359 if (iter->st_bucket_done) 3360 state->bucket++; 3361 3362 udptable = udp_get_table_seq(seq, net); 3363 3364 again: 3365 /* New batch for the next bucket. 3366 * Iterate over the hash table to find a bucket with sockets matching 3367 * the iterator attributes, and return the first matching socket from 3368 * the bucket. The remaining matched sockets from the bucket are batched 3369 * before releasing the bucket lock. This allows BPF programs that are 3370 * called in seq_show to acquire the bucket lock if needed. 3371 */ 3372 iter->cur_sk = 0; 3373 iter->end_sk = 0; 3374 iter->st_bucket_done = false; 3375 batch_sks = 0; 3376 3377 for (; state->bucket <= udptable->mask; state->bucket++) { 3378 struct udp_hslot *hslot2 = &udptable->hash2[state->bucket].hslot; 3379 3380 if (hlist_empty(&hslot2->head)) 3381 continue; 3382 3383 iter->offset = 0; 3384 spin_lock_bh(&hslot2->lock); 3385 udp_portaddr_for_each_entry(sk, &hslot2->head) { 3386 if (seq_sk_match(seq, sk)) { 3387 /* Resume from the last iterated socket at the 3388 * offset in the bucket before iterator was stopped. 3389 */ 3390 if (state->bucket == resume_bucket && 3391 iter->offset < resume_offset) { 3392 ++iter->offset; 3393 continue; 3394 } 3395 if (iter->end_sk < iter->max_sk) { 3396 sock_hold(sk); 3397 iter->batch[iter->end_sk++] = sk; 3398 } 3399 batch_sks++; 3400 } 3401 } 3402 spin_unlock_bh(&hslot2->lock); 3403 3404 if (iter->end_sk) 3405 break; 3406 } 3407 3408 /* All done: no batch made. */ 3409 if (!iter->end_sk) 3410 return NULL; 3411 3412 if (iter->end_sk == batch_sks) { 3413 /* Batching is done for the current bucket; return the first 3414 * socket to be iterated from the batch. 3415 */ 3416 iter->st_bucket_done = true; 3417 goto done; 3418 } 3419 if (!resized && !bpf_iter_udp_realloc_batch(iter, batch_sks * 3 / 2)) { 3420 resized = true; 3421 /* After allocating a larger batch, retry one more time to grab 3422 * the whole bucket. 3423 */ 3424 goto again; 3425 } 3426 done: 3427 return iter->batch[0]; 3428 } 3429 3430 static void *bpf_iter_udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3431 { 3432 struct bpf_udp_iter_state *iter = seq->private; 3433 struct sock *sk; 3434 3435 /* Whenever seq_next() is called, the iter->cur_sk is 3436 * done with seq_show(), so unref the iter->cur_sk. 3437 */ 3438 if (iter->cur_sk < iter->end_sk) { 3439 sock_put(iter->batch[iter->cur_sk++]); 3440 ++iter->offset; 3441 } 3442 3443 /* After updating iter->cur_sk, check if there are more sockets 3444 * available in the current bucket batch. 3445 */ 3446 if (iter->cur_sk < iter->end_sk) 3447 sk = iter->batch[iter->cur_sk]; 3448 else 3449 /* Prepare a new batch. */ 3450 sk = bpf_iter_udp_batch(seq); 3451 3452 ++*pos; 3453 return sk; 3454 } 3455 3456 static void *bpf_iter_udp_seq_start(struct seq_file *seq, loff_t *pos) 3457 { 3458 /* bpf iter does not support lseek, so it always 3459 * continue from where it was stop()-ped. 3460 */ 3461 if (*pos) 3462 return bpf_iter_udp_batch(seq); 3463 3464 return SEQ_START_TOKEN; 3465 } 3466 3467 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta, 3468 struct udp_sock *udp_sk, uid_t uid, int bucket) 3469 { 3470 struct bpf_iter__udp ctx; 3471 3472 meta->seq_num--; /* skip SEQ_START_TOKEN */ 3473 ctx.meta = meta; 3474 ctx.udp_sk = udp_sk; 3475 ctx.uid = uid; 3476 ctx.bucket = bucket; 3477 return bpf_iter_run_prog(prog, &ctx); 3478 } 3479 3480 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v) 3481 { 3482 struct udp_iter_state *state = seq->private; 3483 struct bpf_iter_meta meta; 3484 struct bpf_prog *prog; 3485 struct sock *sk = v; 3486 uid_t uid; 3487 int ret; 3488 3489 if (v == SEQ_START_TOKEN) 3490 return 0; 3491 3492 lock_sock(sk); 3493 3494 if (unlikely(sk_unhashed(sk))) { 3495 ret = SEQ_SKIP; 3496 goto unlock; 3497 } 3498 3499 uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk)); 3500 meta.seq = seq; 3501 prog = bpf_iter_get_info(&meta, false); 3502 ret = udp_prog_seq_show(prog, &meta, v, uid, state->bucket); 3503 3504 unlock: 3505 release_sock(sk); 3506 return ret; 3507 } 3508 3509 static void bpf_iter_udp_put_batch(struct bpf_udp_iter_state *iter) 3510 { 3511 while (iter->cur_sk < iter->end_sk) 3512 sock_put(iter->batch[iter->cur_sk++]); 3513 } 3514 3515 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v) 3516 { 3517 struct bpf_udp_iter_state *iter = seq->private; 3518 struct bpf_iter_meta meta; 3519 struct bpf_prog *prog; 3520 3521 if (!v) { 3522 meta.seq = seq; 3523 prog = bpf_iter_get_info(&meta, true); 3524 if (prog) 3525 (void)udp_prog_seq_show(prog, &meta, v, 0, 0); 3526 } 3527 3528 if (iter->cur_sk < iter->end_sk) { 3529 bpf_iter_udp_put_batch(iter); 3530 iter->st_bucket_done = false; 3531 } 3532 } 3533 3534 static const struct seq_operations bpf_iter_udp_seq_ops = { 3535 .start = bpf_iter_udp_seq_start, 3536 .next = bpf_iter_udp_seq_next, 3537 .stop = bpf_iter_udp_seq_stop, 3538 .show = bpf_iter_udp_seq_show, 3539 }; 3540 #endif 3541 3542 static unsigned short seq_file_family(const struct seq_file *seq) 3543 { 3544 const struct udp_seq_afinfo *afinfo; 3545 3546 #ifdef CONFIG_BPF_SYSCALL 3547 /* BPF iterator: bpf programs to filter sockets. */ 3548 if (seq->op == &bpf_iter_udp_seq_ops) 3549 return AF_UNSPEC; 3550 #endif 3551 3552 /* Proc fs iterator */ 3553 afinfo = pde_data(file_inode(seq->file)); 3554 return afinfo->family; 3555 } 3556 3557 const struct seq_operations udp_seq_ops = { 3558 .start = udp_seq_start, 3559 .next = udp_seq_next, 3560 .stop = udp_seq_stop, 3561 .show = udp4_seq_show, 3562 }; 3563 EXPORT_SYMBOL(udp_seq_ops); 3564 3565 static struct udp_seq_afinfo udp4_seq_afinfo = { 3566 .family = AF_INET, 3567 .udp_table = NULL, 3568 }; 3569 3570 static int __net_init udp4_proc_init_net(struct net *net) 3571 { 3572 if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops, 3573 sizeof(struct udp_iter_state), &udp4_seq_afinfo)) 3574 return -ENOMEM; 3575 return 0; 3576 } 3577 3578 static void __net_exit udp4_proc_exit_net(struct net *net) 3579 { 3580 remove_proc_entry("udp", net->proc_net); 3581 } 3582 3583 static struct pernet_operations udp4_net_ops = { 3584 .init = udp4_proc_init_net, 3585 .exit = udp4_proc_exit_net, 3586 }; 3587 3588 int __init udp4_proc_init(void) 3589 { 3590 return register_pernet_subsys(&udp4_net_ops); 3591 } 3592 3593 void udp4_proc_exit(void) 3594 { 3595 unregister_pernet_subsys(&udp4_net_ops); 3596 } 3597 #endif /* CONFIG_PROC_FS */ 3598 3599 static __initdata unsigned long uhash_entries; 3600 static int __init set_uhash_entries(char *str) 3601 { 3602 ssize_t ret; 3603 3604 if (!str) 3605 return 0; 3606 3607 ret = kstrtoul(str, 0, &uhash_entries); 3608 if (ret) 3609 return 0; 3610 3611 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN) 3612 uhash_entries = UDP_HTABLE_SIZE_MIN; 3613 return 1; 3614 } 3615 __setup("uhash_entries=", set_uhash_entries); 3616 3617 void __init udp_table_init(struct udp_table *table, const char *name) 3618 { 3619 unsigned int i, slot_size; 3620 3621 slot_size = sizeof(struct udp_hslot) + sizeof(struct udp_hslot_main) + 3622 udp_hash4_slot_size(); 3623 table->hash = alloc_large_system_hash(name, 3624 slot_size, 3625 uhash_entries, 3626 21, /* one slot per 2 MB */ 3627 0, 3628 &table->log, 3629 &table->mask, 3630 UDP_HTABLE_SIZE_MIN, 3631 UDP_HTABLE_SIZE_MAX); 3632 3633 table->hash2 = (void *)(table->hash + (table->mask + 1)); 3634 for (i = 0; i <= table->mask; i++) { 3635 INIT_HLIST_HEAD(&table->hash[i].head); 3636 table->hash[i].count = 0; 3637 spin_lock_init(&table->hash[i].lock); 3638 } 3639 for (i = 0; i <= table->mask; i++) { 3640 INIT_HLIST_HEAD(&table->hash2[i].hslot.head); 3641 table->hash2[i].hslot.count = 0; 3642 spin_lock_init(&table->hash2[i].hslot.lock); 3643 } 3644 udp_table_hash4_init(table); 3645 } 3646 3647 u32 udp_flow_hashrnd(void) 3648 { 3649 static u32 hashrnd __read_mostly; 3650 3651 net_get_random_once(&hashrnd, sizeof(hashrnd)); 3652 3653 return hashrnd; 3654 } 3655 EXPORT_SYMBOL(udp_flow_hashrnd); 3656 3657 static void __net_init udp_sysctl_init(struct net *net) 3658 { 3659 net->ipv4.sysctl_udp_rmem_min = PAGE_SIZE; 3660 net->ipv4.sysctl_udp_wmem_min = PAGE_SIZE; 3661 3662 #ifdef CONFIG_NET_L3_MASTER_DEV 3663 net->ipv4.sysctl_udp_l3mdev_accept = 0; 3664 #endif 3665 } 3666 3667 static struct udp_table __net_init *udp_pernet_table_alloc(unsigned int hash_entries) 3668 { 3669 struct udp_table *udptable; 3670 unsigned int slot_size; 3671 int i; 3672 3673 udptable = kmalloc(sizeof(*udptable), GFP_KERNEL); 3674 if (!udptable) 3675 goto out; 3676 3677 slot_size = sizeof(struct udp_hslot) + sizeof(struct udp_hslot_main) + 3678 udp_hash4_slot_size(); 3679 udptable->hash = vmalloc_huge(hash_entries * slot_size, 3680 GFP_KERNEL_ACCOUNT); 3681 if (!udptable->hash) 3682 goto free_table; 3683 3684 udptable->hash2 = (void *)(udptable->hash + hash_entries); 3685 udptable->mask = hash_entries - 1; 3686 udptable->log = ilog2(hash_entries); 3687 3688 for (i = 0; i < hash_entries; i++) { 3689 INIT_HLIST_HEAD(&udptable->hash[i].head); 3690 udptable->hash[i].count = 0; 3691 spin_lock_init(&udptable->hash[i].lock); 3692 3693 INIT_HLIST_HEAD(&udptable->hash2[i].hslot.head); 3694 udptable->hash2[i].hslot.count = 0; 3695 spin_lock_init(&udptable->hash2[i].hslot.lock); 3696 } 3697 udp_table_hash4_init(udptable); 3698 3699 return udptable; 3700 3701 free_table: 3702 kfree(udptable); 3703 out: 3704 return NULL; 3705 } 3706 3707 static void __net_exit udp_pernet_table_free(struct net *net) 3708 { 3709 struct udp_table *udptable = net->ipv4.udp_table; 3710 3711 if (udptable == &udp_table) 3712 return; 3713 3714 kvfree(udptable->hash); 3715 kfree(udptable); 3716 } 3717 3718 static void __net_init udp_set_table(struct net *net) 3719 { 3720 struct udp_table *udptable; 3721 unsigned int hash_entries; 3722 struct net *old_net; 3723 3724 if (net_eq(net, &init_net)) 3725 goto fallback; 3726 3727 old_net = current->nsproxy->net_ns; 3728 hash_entries = READ_ONCE(old_net->ipv4.sysctl_udp_child_hash_entries); 3729 if (!hash_entries) 3730 goto fallback; 3731 3732 /* Set min to keep the bitmap on stack in udp_lib_get_port() */ 3733 if (hash_entries < UDP_HTABLE_SIZE_MIN_PERNET) 3734 hash_entries = UDP_HTABLE_SIZE_MIN_PERNET; 3735 else 3736 hash_entries = roundup_pow_of_two(hash_entries); 3737 3738 udptable = udp_pernet_table_alloc(hash_entries); 3739 if (udptable) { 3740 net->ipv4.udp_table = udptable; 3741 } else { 3742 pr_warn("Failed to allocate UDP hash table (entries: %u) " 3743 "for a netns, fallback to the global one\n", 3744 hash_entries); 3745 fallback: 3746 net->ipv4.udp_table = &udp_table; 3747 } 3748 } 3749 3750 static int __net_init udp_pernet_init(struct net *net) 3751 { 3752 udp_sysctl_init(net); 3753 udp_set_table(net); 3754 3755 return 0; 3756 } 3757 3758 static void __net_exit udp_pernet_exit(struct net *net) 3759 { 3760 udp_pernet_table_free(net); 3761 } 3762 3763 static struct pernet_operations __net_initdata udp_sysctl_ops = { 3764 .init = udp_pernet_init, 3765 .exit = udp_pernet_exit, 3766 }; 3767 3768 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3769 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta, 3770 struct udp_sock *udp_sk, uid_t uid, int bucket) 3771 3772 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter, 3773 unsigned int new_batch_sz) 3774 { 3775 struct sock **new_batch; 3776 3777 new_batch = kvmalloc_array(new_batch_sz, sizeof(*new_batch), 3778 GFP_USER | __GFP_NOWARN); 3779 if (!new_batch) 3780 return -ENOMEM; 3781 3782 bpf_iter_udp_put_batch(iter); 3783 kvfree(iter->batch); 3784 iter->batch = new_batch; 3785 iter->max_sk = new_batch_sz; 3786 3787 return 0; 3788 } 3789 3790 #define INIT_BATCH_SZ 16 3791 3792 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux) 3793 { 3794 struct bpf_udp_iter_state *iter = priv_data; 3795 int ret; 3796 3797 ret = bpf_iter_init_seq_net(priv_data, aux); 3798 if (ret) 3799 return ret; 3800 3801 ret = bpf_iter_udp_realloc_batch(iter, INIT_BATCH_SZ); 3802 if (ret) 3803 bpf_iter_fini_seq_net(priv_data); 3804 3805 return ret; 3806 } 3807 3808 static void bpf_iter_fini_udp(void *priv_data) 3809 { 3810 struct bpf_udp_iter_state *iter = priv_data; 3811 3812 bpf_iter_fini_seq_net(priv_data); 3813 kvfree(iter->batch); 3814 } 3815 3816 static const struct bpf_iter_seq_info udp_seq_info = { 3817 .seq_ops = &bpf_iter_udp_seq_ops, 3818 .init_seq_private = bpf_iter_init_udp, 3819 .fini_seq_private = bpf_iter_fini_udp, 3820 .seq_priv_size = sizeof(struct bpf_udp_iter_state), 3821 }; 3822 3823 static struct bpf_iter_reg udp_reg_info = { 3824 .target = "udp", 3825 .ctx_arg_info_size = 1, 3826 .ctx_arg_info = { 3827 { offsetof(struct bpf_iter__udp, udp_sk), 3828 PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED }, 3829 }, 3830 .seq_info = &udp_seq_info, 3831 }; 3832 3833 static void __init bpf_iter_register(void) 3834 { 3835 udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP]; 3836 if (bpf_iter_reg_target(&udp_reg_info)) 3837 pr_warn("Warning: could not register bpf iterator udp\n"); 3838 } 3839 #endif 3840 3841 void __init udp_init(void) 3842 { 3843 unsigned long limit; 3844 unsigned int i; 3845 3846 udp_table_init(&udp_table, "UDP"); 3847 limit = nr_free_buffer_pages() / 8; 3848 limit = max(limit, 128UL); 3849 sysctl_udp_mem[0] = limit / 4 * 3; 3850 sysctl_udp_mem[1] = limit; 3851 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2; 3852 3853 /* 16 spinlocks per cpu */ 3854 udp_busylocks_log = ilog2(nr_cpu_ids) + 4; 3855 udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log, 3856 GFP_KERNEL); 3857 if (!udp_busylocks) 3858 panic("UDP: failed to alloc udp_busylocks\n"); 3859 for (i = 0; i < (1U << udp_busylocks_log); i++) 3860 spin_lock_init(udp_busylocks + i); 3861 3862 if (register_pernet_subsys(&udp_sysctl_ops)) 3863 panic("UDP: failed to init sysctl parameters.\n"); 3864 3865 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3866 bpf_iter_register(); 3867 #endif 3868 } 3869