xref: /linux/net/ipv4/udp.c (revision a5766f11cfd3a0c03450d99c8fe548c2940be884)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The User Datagram Protocol (UDP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11  *		Alan Cox, <Alan.Cox@linux.org>
12  *		Hirokazu Takahashi, <taka@valinux.co.jp>
13  *
14  * Fixes:
15  *		Alan Cox	:	verify_area() calls
16  *		Alan Cox	: 	stopped close while in use off icmp
17  *					messages. Not a fix but a botch that
18  *					for udp at least is 'valid'.
19  *		Alan Cox	:	Fixed icmp handling properly
20  *		Alan Cox	: 	Correct error for oversized datagrams
21  *		Alan Cox	:	Tidied select() semantics.
22  *		Alan Cox	:	udp_err() fixed properly, also now
23  *					select and read wake correctly on errors
24  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
25  *		Alan Cox	:	UDP can count its memory
26  *		Alan Cox	:	send to an unknown connection causes
27  *					an ECONNREFUSED off the icmp, but
28  *					does NOT close.
29  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
30  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
31  *					bug no longer crashes it.
32  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
33  *		Alan Cox	:	Uses skb_free_datagram
34  *		Alan Cox	:	Added get/set sockopt support.
35  *		Alan Cox	:	Broadcasting without option set returns EACCES.
36  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
37  *		Alan Cox	:	Use ip_tos and ip_ttl
38  *		Alan Cox	:	SNMP Mibs
39  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
40  *		Matt Dillon	:	UDP length checks.
41  *		Alan Cox	:	Smarter af_inet used properly.
42  *		Alan Cox	:	Use new kernel side addressing.
43  *		Alan Cox	:	Incorrect return on truncated datagram receive.
44  *	Arnt Gulbrandsen 	:	New udp_send and stuff
45  *		Alan Cox	:	Cache last socket
46  *		Alan Cox	:	Route cache
47  *		Jon Peatfield	:	Minor efficiency fix to sendto().
48  *		Mike Shaver	:	RFC1122 checks.
49  *		Alan Cox	:	Nonblocking error fix.
50  *	Willy Konynenberg	:	Transparent proxying support.
51  *		Mike McLagan	:	Routing by source
52  *		David S. Miller	:	New socket lookup architecture.
53  *					Last socket cache retained as it
54  *					does have a high hit rate.
55  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
56  *		Andi Kleen	:	Some cleanups, cache destination entry
57  *					for connect.
58  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
59  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
60  *					return ENOTCONN for unconnected sockets (POSIX)
61  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
62  *					bound-to-device socket
63  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
64  *					datagrams.
65  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
66  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
67  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
68  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
69  *					a single port at the same time.
70  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71  *	James Chapman		:	Add L2TP encapsulation type.
72  *
73  *
74  *		This program is free software; you can redistribute it and/or
75  *		modify it under the terms of the GNU General Public License
76  *		as published by the Free Software Foundation; either version
77  *		2 of the License, or (at your option) any later version.
78  */
79 
80 #include <asm/system.h>
81 #include <asm/uaccess.h>
82 #include <asm/ioctls.h>
83 #include <linux/bootmem.h>
84 #include <linux/types.h>
85 #include <linux/fcntl.h>
86 #include <linux/module.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/igmp.h>
90 #include <linux/in.h>
91 #include <linux/errno.h>
92 #include <linux/timer.h>
93 #include <linux/mm.h>
94 #include <linux/inet.h>
95 #include <linux/netdevice.h>
96 #include <net/tcp_states.h>
97 #include <linux/skbuff.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <net/net_namespace.h>
101 #include <net/icmp.h>
102 #include <net/route.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include "udp_impl.h"
106 
107 /*
108  *	Snmp MIB for the UDP layer
109  */
110 
111 struct hlist_head udp_hash[UDP_HTABLE_SIZE];
112 DEFINE_RWLOCK(udp_hash_lock);
113 
114 int sysctl_udp_mem[3] __read_mostly;
115 int sysctl_udp_rmem_min __read_mostly;
116 int sysctl_udp_wmem_min __read_mostly;
117 
118 EXPORT_SYMBOL(sysctl_udp_mem);
119 EXPORT_SYMBOL(sysctl_udp_rmem_min);
120 EXPORT_SYMBOL(sysctl_udp_wmem_min);
121 
122 atomic_t udp_memory_allocated;
123 EXPORT_SYMBOL(udp_memory_allocated);
124 
125 static int udp_lib_lport_inuse(struct net *net, __u16 num,
126 			       const struct hlist_head udptable[],
127 			       struct sock *sk,
128 			       int (*saddr_comp)(const struct sock *sk1,
129 						 const struct sock *sk2))
130 {
131 	struct sock *sk2;
132 	struct hlist_node *node;
133 
134 	sk_for_each(sk2, node, &udptable[udp_hashfn(net, num)])
135 		if (net_eq(sock_net(sk2), net)			&&
136 		    sk2 != sk					&&
137 		    sk2->sk_hash == num				&&
138 		    (!sk2->sk_reuse || !sk->sk_reuse)		&&
139 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if
140 			|| sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
141 		    (*saddr_comp)(sk, sk2))
142 			return 1;
143 	return 0;
144 }
145 
146 /**
147  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
148  *
149  *  @sk:          socket struct in question
150  *  @snum:        port number to look up
151  *  @saddr_comp:  AF-dependent comparison of bound local IP addresses
152  */
153 int udp_lib_get_port(struct sock *sk, unsigned short snum,
154 		       int (*saddr_comp)(const struct sock *sk1,
155 					 const struct sock *sk2 )    )
156 {
157 	struct hlist_head *udptable = sk->sk_prot->h.udp_hash;
158 	int    error = 1;
159 	struct net *net = sock_net(sk);
160 
161 	write_lock_bh(&udp_hash_lock);
162 
163 	if (!snum) {
164 		int low, high, remaining;
165 		unsigned rand;
166 		unsigned short first;
167 
168 		inet_get_local_port_range(&low, &high);
169 		remaining = (high - low) + 1;
170 
171 		rand = net_random();
172 		snum = first = rand % remaining + low;
173 		rand |= 1;
174 		while (udp_lib_lport_inuse(net, snum, udptable, sk,
175 					   saddr_comp)) {
176 			do {
177 				snum = snum + rand;
178 			} while (snum < low || snum > high);
179 			if (snum == first)
180 				goto fail;
181 		}
182 	} else if (udp_lib_lport_inuse(net, snum, udptable, sk, saddr_comp))
183 		goto fail;
184 
185 	inet_sk(sk)->num = snum;
186 	sk->sk_hash = snum;
187 	if (sk_unhashed(sk)) {
188 		sk_add_node(sk, &udptable[udp_hashfn(net, snum)]);
189 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
190 	}
191 	error = 0;
192 fail:
193 	write_unlock_bh(&udp_hash_lock);
194 	return error;
195 }
196 
197 static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
198 {
199 	struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
200 
201 	return 	( !ipv6_only_sock(sk2)  &&
202 		  (!inet1->rcv_saddr || !inet2->rcv_saddr ||
203 		   inet1->rcv_saddr == inet2->rcv_saddr      ));
204 }
205 
206 int udp_v4_get_port(struct sock *sk, unsigned short snum)
207 {
208 	return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal);
209 }
210 
211 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
212  * harder than this. -DaveM
213  */
214 static struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
215 		__be16 sport, __be32 daddr, __be16 dport,
216 		int dif, struct hlist_head udptable[])
217 {
218 	struct sock *sk, *result = NULL;
219 	struct hlist_node *node;
220 	unsigned short hnum = ntohs(dport);
221 	int badness = -1;
222 
223 	read_lock(&udp_hash_lock);
224 	sk_for_each(sk, node, &udptable[udp_hashfn(net, hnum)]) {
225 		struct inet_sock *inet = inet_sk(sk);
226 
227 		if (net_eq(sock_net(sk), net) && sk->sk_hash == hnum &&
228 				!ipv6_only_sock(sk)) {
229 			int score = (sk->sk_family == PF_INET ? 1 : 0);
230 			if (inet->rcv_saddr) {
231 				if (inet->rcv_saddr != daddr)
232 					continue;
233 				score+=2;
234 			}
235 			if (inet->daddr) {
236 				if (inet->daddr != saddr)
237 					continue;
238 				score+=2;
239 			}
240 			if (inet->dport) {
241 				if (inet->dport != sport)
242 					continue;
243 				score+=2;
244 			}
245 			if (sk->sk_bound_dev_if) {
246 				if (sk->sk_bound_dev_if != dif)
247 					continue;
248 				score+=2;
249 			}
250 			if (score == 9) {
251 				result = sk;
252 				break;
253 			} else if (score > badness) {
254 				result = sk;
255 				badness = score;
256 			}
257 		}
258 	}
259 	if (result)
260 		sock_hold(result);
261 	read_unlock(&udp_hash_lock);
262 	return result;
263 }
264 
265 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
266 						 __be16 sport, __be16 dport,
267 						 struct hlist_head udptable[])
268 {
269 	struct sock *sk;
270 	const struct iphdr *iph = ip_hdr(skb);
271 
272 	if (unlikely(sk = skb_steal_sock(skb)))
273 		return sk;
274 	else
275 		return __udp4_lib_lookup(dev_net(skb->dst->dev), iph->saddr, sport,
276 					 iph->daddr, dport, inet_iif(skb),
277 					 udptable);
278 }
279 
280 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
281 			     __be32 daddr, __be16 dport, int dif)
282 {
283 	return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif, udp_hash);
284 }
285 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
286 
287 static inline struct sock *udp_v4_mcast_next(struct sock *sk,
288 					     __be16 loc_port, __be32 loc_addr,
289 					     __be16 rmt_port, __be32 rmt_addr,
290 					     int dif)
291 {
292 	struct hlist_node *node;
293 	struct sock *s = sk;
294 	unsigned short hnum = ntohs(loc_port);
295 
296 	sk_for_each_from(s, node) {
297 		struct inet_sock *inet = inet_sk(s);
298 
299 		if (s->sk_hash != hnum					||
300 		    (inet->daddr && inet->daddr != rmt_addr)		||
301 		    (inet->dport != rmt_port && inet->dport)		||
302 		    (inet->rcv_saddr && inet->rcv_saddr != loc_addr)	||
303 		    ipv6_only_sock(s)					||
304 		    (s->sk_bound_dev_if && s->sk_bound_dev_if != dif))
305 			continue;
306 		if (!ip_mc_sf_allow(s, loc_addr, rmt_addr, dif))
307 			continue;
308 		goto found;
309 	}
310 	s = NULL;
311 found:
312 	return s;
313 }
314 
315 /*
316  * This routine is called by the ICMP module when it gets some
317  * sort of error condition.  If err < 0 then the socket should
318  * be closed and the error returned to the user.  If err > 0
319  * it's just the icmp type << 8 | icmp code.
320  * Header points to the ip header of the error packet. We move
321  * on past this. Then (as it used to claim before adjustment)
322  * header points to the first 8 bytes of the udp header.  We need
323  * to find the appropriate port.
324  */
325 
326 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct hlist_head udptable[])
327 {
328 	struct inet_sock *inet;
329 	struct iphdr *iph = (struct iphdr*)skb->data;
330 	struct udphdr *uh = (struct udphdr*)(skb->data+(iph->ihl<<2));
331 	const int type = icmp_hdr(skb)->type;
332 	const int code = icmp_hdr(skb)->code;
333 	struct sock *sk;
334 	int harderr;
335 	int err;
336 	struct net *net = dev_net(skb->dev);
337 
338 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
339 			iph->saddr, uh->source, skb->dev->ifindex, udptable);
340 	if (sk == NULL) {
341 		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
342 		return;	/* No socket for error */
343 	}
344 
345 	err = 0;
346 	harderr = 0;
347 	inet = inet_sk(sk);
348 
349 	switch (type) {
350 	default:
351 	case ICMP_TIME_EXCEEDED:
352 		err = EHOSTUNREACH;
353 		break;
354 	case ICMP_SOURCE_QUENCH:
355 		goto out;
356 	case ICMP_PARAMETERPROB:
357 		err = EPROTO;
358 		harderr = 1;
359 		break;
360 	case ICMP_DEST_UNREACH:
361 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
362 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
363 				err = EMSGSIZE;
364 				harderr = 1;
365 				break;
366 			}
367 			goto out;
368 		}
369 		err = EHOSTUNREACH;
370 		if (code <= NR_ICMP_UNREACH) {
371 			harderr = icmp_err_convert[code].fatal;
372 			err = icmp_err_convert[code].errno;
373 		}
374 		break;
375 	}
376 
377 	/*
378 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
379 	 *	4.1.3.3.
380 	 */
381 	if (!inet->recverr) {
382 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
383 			goto out;
384 	} else {
385 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8*)(uh+1));
386 	}
387 	sk->sk_err = err;
388 	sk->sk_error_report(sk);
389 out:
390 	sock_put(sk);
391 }
392 
393 void udp_err(struct sk_buff *skb, u32 info)
394 {
395 	__udp4_lib_err(skb, info, udp_hash);
396 }
397 
398 /*
399  * Throw away all pending data and cancel the corking. Socket is locked.
400  */
401 void udp_flush_pending_frames(struct sock *sk)
402 {
403 	struct udp_sock *up = udp_sk(sk);
404 
405 	if (up->pending) {
406 		up->len = 0;
407 		up->pending = 0;
408 		ip_flush_pending_frames(sk);
409 	}
410 }
411 EXPORT_SYMBOL(udp_flush_pending_frames);
412 
413 /**
414  * 	udp4_hwcsum_outgoing  -  handle outgoing HW checksumming
415  * 	@sk: 	socket we are sending on
416  * 	@skb: 	sk_buff containing the filled-in UDP header
417  * 	        (checksum field must be zeroed out)
418  */
419 static void udp4_hwcsum_outgoing(struct sock *sk, struct sk_buff *skb,
420 				 __be32 src, __be32 dst, int len      )
421 {
422 	unsigned int offset;
423 	struct udphdr *uh = udp_hdr(skb);
424 	__wsum csum = 0;
425 
426 	if (skb_queue_len(&sk->sk_write_queue) == 1) {
427 		/*
428 		 * Only one fragment on the socket.
429 		 */
430 		skb->csum_start = skb_transport_header(skb) - skb->head;
431 		skb->csum_offset = offsetof(struct udphdr, check);
432 		uh->check = ~csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, 0);
433 	} else {
434 		/*
435 		 * HW-checksum won't work as there are two or more
436 		 * fragments on the socket so that all csums of sk_buffs
437 		 * should be together
438 		 */
439 		offset = skb_transport_offset(skb);
440 		skb->csum = skb_checksum(skb, offset, skb->len - offset, 0);
441 
442 		skb->ip_summed = CHECKSUM_NONE;
443 
444 		skb_queue_walk(&sk->sk_write_queue, skb) {
445 			csum = csum_add(csum, skb->csum);
446 		}
447 
448 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
449 		if (uh->check == 0)
450 			uh->check = CSUM_MANGLED_0;
451 	}
452 }
453 
454 /*
455  * Push out all pending data as one UDP datagram. Socket is locked.
456  */
457 static int udp_push_pending_frames(struct sock *sk)
458 {
459 	struct udp_sock  *up = udp_sk(sk);
460 	struct inet_sock *inet = inet_sk(sk);
461 	struct flowi *fl = &inet->cork.fl;
462 	struct sk_buff *skb;
463 	struct udphdr *uh;
464 	int err = 0;
465 	int is_udplite = IS_UDPLITE(sk);
466 	__wsum csum = 0;
467 
468 	/* Grab the skbuff where UDP header space exists. */
469 	if ((skb = skb_peek(&sk->sk_write_queue)) == NULL)
470 		goto out;
471 
472 	/*
473 	 * Create a UDP header
474 	 */
475 	uh = udp_hdr(skb);
476 	uh->source = fl->fl_ip_sport;
477 	uh->dest = fl->fl_ip_dport;
478 	uh->len = htons(up->len);
479 	uh->check = 0;
480 
481 	if (is_udplite)  				 /*     UDP-Lite      */
482 		csum  = udplite_csum_outgoing(sk, skb);
483 
484 	else if (sk->sk_no_check == UDP_CSUM_NOXMIT) {   /* UDP csum disabled */
485 
486 		skb->ip_summed = CHECKSUM_NONE;
487 		goto send;
488 
489 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
490 
491 		udp4_hwcsum_outgoing(sk, skb, fl->fl4_src,fl->fl4_dst, up->len);
492 		goto send;
493 
494 	} else						 /*   `normal' UDP    */
495 		csum = udp_csum_outgoing(sk, skb);
496 
497 	/* add protocol-dependent pseudo-header */
498 	uh->check = csum_tcpudp_magic(fl->fl4_src, fl->fl4_dst, up->len,
499 				      sk->sk_protocol, csum             );
500 	if (uh->check == 0)
501 		uh->check = CSUM_MANGLED_0;
502 
503 send:
504 	err = ip_push_pending_frames(sk);
505 out:
506 	up->len = 0;
507 	up->pending = 0;
508 	if (!err)
509 		UDP_INC_STATS_USER(sock_net(sk),
510 				UDP_MIB_OUTDATAGRAMS, is_udplite);
511 	return err;
512 }
513 
514 int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
515 		size_t len)
516 {
517 	struct inet_sock *inet = inet_sk(sk);
518 	struct udp_sock *up = udp_sk(sk);
519 	int ulen = len;
520 	struct ipcm_cookie ipc;
521 	struct rtable *rt = NULL;
522 	int free = 0;
523 	int connected = 0;
524 	__be32 daddr, faddr, saddr;
525 	__be16 dport;
526 	u8  tos;
527 	int err, is_udplite = IS_UDPLITE(sk);
528 	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
529 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
530 
531 	if (len > 0xFFFF)
532 		return -EMSGSIZE;
533 
534 	/*
535 	 *	Check the flags.
536 	 */
537 
538 	if (msg->msg_flags&MSG_OOB)	/* Mirror BSD error message compatibility */
539 		return -EOPNOTSUPP;
540 
541 	ipc.opt = NULL;
542 
543 	if (up->pending) {
544 		/*
545 		 * There are pending frames.
546 		 * The socket lock must be held while it's corked.
547 		 */
548 		lock_sock(sk);
549 		if (likely(up->pending)) {
550 			if (unlikely(up->pending != AF_INET)) {
551 				release_sock(sk);
552 				return -EINVAL;
553 			}
554 			goto do_append_data;
555 		}
556 		release_sock(sk);
557 	}
558 	ulen += sizeof(struct udphdr);
559 
560 	/*
561 	 *	Get and verify the address.
562 	 */
563 	if (msg->msg_name) {
564 		struct sockaddr_in * usin = (struct sockaddr_in*)msg->msg_name;
565 		if (msg->msg_namelen < sizeof(*usin))
566 			return -EINVAL;
567 		if (usin->sin_family != AF_INET) {
568 			if (usin->sin_family != AF_UNSPEC)
569 				return -EAFNOSUPPORT;
570 		}
571 
572 		daddr = usin->sin_addr.s_addr;
573 		dport = usin->sin_port;
574 		if (dport == 0)
575 			return -EINVAL;
576 	} else {
577 		if (sk->sk_state != TCP_ESTABLISHED)
578 			return -EDESTADDRREQ;
579 		daddr = inet->daddr;
580 		dport = inet->dport;
581 		/* Open fast path for connected socket.
582 		   Route will not be used, if at least one option is set.
583 		 */
584 		connected = 1;
585 	}
586 	ipc.addr = inet->saddr;
587 
588 	ipc.oif = sk->sk_bound_dev_if;
589 	if (msg->msg_controllen) {
590 		err = ip_cmsg_send(sock_net(sk), msg, &ipc);
591 		if (err)
592 			return err;
593 		if (ipc.opt)
594 			free = 1;
595 		connected = 0;
596 	}
597 	if (!ipc.opt)
598 		ipc.opt = inet->opt;
599 
600 	saddr = ipc.addr;
601 	ipc.addr = faddr = daddr;
602 
603 	if (ipc.opt && ipc.opt->srr) {
604 		if (!daddr)
605 			return -EINVAL;
606 		faddr = ipc.opt->faddr;
607 		connected = 0;
608 	}
609 	tos = RT_TOS(inet->tos);
610 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
611 	    (msg->msg_flags & MSG_DONTROUTE) ||
612 	    (ipc.opt && ipc.opt->is_strictroute)) {
613 		tos |= RTO_ONLINK;
614 		connected = 0;
615 	}
616 
617 	if (ipv4_is_multicast(daddr)) {
618 		if (!ipc.oif)
619 			ipc.oif = inet->mc_index;
620 		if (!saddr)
621 			saddr = inet->mc_addr;
622 		connected = 0;
623 	}
624 
625 	if (connected)
626 		rt = (struct rtable*)sk_dst_check(sk, 0);
627 
628 	if (rt == NULL) {
629 		struct flowi fl = { .oif = ipc.oif,
630 				    .nl_u = { .ip4_u =
631 					      { .daddr = faddr,
632 						.saddr = saddr,
633 						.tos = tos } },
634 				    .proto = sk->sk_protocol,
635 				    .uli_u = { .ports =
636 					       { .sport = inet->sport,
637 						 .dport = dport } } };
638 		struct net *net = sock_net(sk);
639 
640 		security_sk_classify_flow(sk, &fl);
641 		err = ip_route_output_flow(net, &rt, &fl, sk, 1);
642 		if (err) {
643 			if (err == -ENETUNREACH)
644 				IP_INC_STATS_BH(net, IPSTATS_MIB_OUTNOROUTES);
645 			goto out;
646 		}
647 
648 		err = -EACCES;
649 		if ((rt->rt_flags & RTCF_BROADCAST) &&
650 		    !sock_flag(sk, SOCK_BROADCAST))
651 			goto out;
652 		if (connected)
653 			sk_dst_set(sk, dst_clone(&rt->u.dst));
654 	}
655 
656 	if (msg->msg_flags&MSG_CONFIRM)
657 		goto do_confirm;
658 back_from_confirm:
659 
660 	saddr = rt->rt_src;
661 	if (!ipc.addr)
662 		daddr = ipc.addr = rt->rt_dst;
663 
664 	lock_sock(sk);
665 	if (unlikely(up->pending)) {
666 		/* The socket is already corked while preparing it. */
667 		/* ... which is an evident application bug. --ANK */
668 		release_sock(sk);
669 
670 		LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 2\n");
671 		err = -EINVAL;
672 		goto out;
673 	}
674 	/*
675 	 *	Now cork the socket to pend data.
676 	 */
677 	inet->cork.fl.fl4_dst = daddr;
678 	inet->cork.fl.fl_ip_dport = dport;
679 	inet->cork.fl.fl4_src = saddr;
680 	inet->cork.fl.fl_ip_sport = inet->sport;
681 	up->pending = AF_INET;
682 
683 do_append_data:
684 	up->len += ulen;
685 	getfrag  =  is_udplite ?  udplite_getfrag : ip_generic_getfrag;
686 	err = ip_append_data(sk, getfrag, msg->msg_iov, ulen,
687 			sizeof(struct udphdr), &ipc, rt,
688 			corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
689 	if (err)
690 		udp_flush_pending_frames(sk);
691 	else if (!corkreq)
692 		err = udp_push_pending_frames(sk);
693 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
694 		up->pending = 0;
695 	release_sock(sk);
696 
697 out:
698 	ip_rt_put(rt);
699 	if (free)
700 		kfree(ipc.opt);
701 	if (!err)
702 		return len;
703 	/*
704 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
705 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
706 	 * we don't have a good statistic (IpOutDiscards but it can be too many
707 	 * things).  We could add another new stat but at least for now that
708 	 * seems like overkill.
709 	 */
710 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
711 		UDP_INC_STATS_USER(sock_net(sk),
712 				UDP_MIB_SNDBUFERRORS, is_udplite);
713 	}
714 	return err;
715 
716 do_confirm:
717 	dst_confirm(&rt->u.dst);
718 	if (!(msg->msg_flags&MSG_PROBE) || len)
719 		goto back_from_confirm;
720 	err = 0;
721 	goto out;
722 }
723 
724 int udp_sendpage(struct sock *sk, struct page *page, int offset,
725 		 size_t size, int flags)
726 {
727 	struct udp_sock *up = udp_sk(sk);
728 	int ret;
729 
730 	if (!up->pending) {
731 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
732 
733 		/* Call udp_sendmsg to specify destination address which
734 		 * sendpage interface can't pass.
735 		 * This will succeed only when the socket is connected.
736 		 */
737 		ret = udp_sendmsg(NULL, sk, &msg, 0);
738 		if (ret < 0)
739 			return ret;
740 	}
741 
742 	lock_sock(sk);
743 
744 	if (unlikely(!up->pending)) {
745 		release_sock(sk);
746 
747 		LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 3\n");
748 		return -EINVAL;
749 	}
750 
751 	ret = ip_append_page(sk, page, offset, size, flags);
752 	if (ret == -EOPNOTSUPP) {
753 		release_sock(sk);
754 		return sock_no_sendpage(sk->sk_socket, page, offset,
755 					size, flags);
756 	}
757 	if (ret < 0) {
758 		udp_flush_pending_frames(sk);
759 		goto out;
760 	}
761 
762 	up->len += size;
763 	if (!(up->corkflag || (flags&MSG_MORE)))
764 		ret = udp_push_pending_frames(sk);
765 	if (!ret)
766 		ret = size;
767 out:
768 	release_sock(sk);
769 	return ret;
770 }
771 
772 /*
773  *	IOCTL requests applicable to the UDP protocol
774  */
775 
776 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
777 {
778 	switch (cmd) {
779 	case SIOCOUTQ:
780 	{
781 		int amount = atomic_read(&sk->sk_wmem_alloc);
782 		return put_user(amount, (int __user *)arg);
783 	}
784 
785 	case SIOCINQ:
786 	{
787 		struct sk_buff *skb;
788 		unsigned long amount;
789 
790 		amount = 0;
791 		spin_lock_bh(&sk->sk_receive_queue.lock);
792 		skb = skb_peek(&sk->sk_receive_queue);
793 		if (skb != NULL) {
794 			/*
795 			 * We will only return the amount
796 			 * of this packet since that is all
797 			 * that will be read.
798 			 */
799 			amount = skb->len - sizeof(struct udphdr);
800 		}
801 		spin_unlock_bh(&sk->sk_receive_queue.lock);
802 		return put_user(amount, (int __user *)arg);
803 	}
804 
805 	default:
806 		return -ENOIOCTLCMD;
807 	}
808 
809 	return 0;
810 }
811 
812 /*
813  * 	This should be easy, if there is something there we
814  * 	return it, otherwise we block.
815  */
816 
817 int udp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
818 		size_t len, int noblock, int flags, int *addr_len)
819 {
820 	struct inet_sock *inet = inet_sk(sk);
821 	struct sockaddr_in *sin = (struct sockaddr_in *)msg->msg_name;
822 	struct sk_buff *skb;
823 	unsigned int ulen, copied;
824 	int peeked;
825 	int err;
826 	int is_udplite = IS_UDPLITE(sk);
827 
828 	/*
829 	 *	Check any passed addresses
830 	 */
831 	if (addr_len)
832 		*addr_len=sizeof(*sin);
833 
834 	if (flags & MSG_ERRQUEUE)
835 		return ip_recv_error(sk, msg, len);
836 
837 try_again:
838 	skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
839 				  &peeked, &err);
840 	if (!skb)
841 		goto out;
842 
843 	ulen = skb->len - sizeof(struct udphdr);
844 	copied = len;
845 	if (copied > ulen)
846 		copied = ulen;
847 	else if (copied < ulen)
848 		msg->msg_flags |= MSG_TRUNC;
849 
850 	/*
851 	 * If checksum is needed at all, try to do it while copying the
852 	 * data.  If the data is truncated, or if we only want a partial
853 	 * coverage checksum (UDP-Lite), do it before the copy.
854 	 */
855 
856 	if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) {
857 		if (udp_lib_checksum_complete(skb))
858 			goto csum_copy_err;
859 	}
860 
861 	if (skb_csum_unnecessary(skb))
862 		err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr),
863 					      msg->msg_iov, copied       );
864 	else {
865 		err = skb_copy_and_csum_datagram_iovec(skb, sizeof(struct udphdr), msg->msg_iov);
866 
867 		if (err == -EINVAL)
868 			goto csum_copy_err;
869 	}
870 
871 	if (err)
872 		goto out_free;
873 
874 	if (!peeked)
875 		UDP_INC_STATS_USER(sock_net(sk),
876 				UDP_MIB_INDATAGRAMS, is_udplite);
877 
878 	sock_recv_timestamp(msg, sk, skb);
879 
880 	/* Copy the address. */
881 	if (sin)
882 	{
883 		sin->sin_family = AF_INET;
884 		sin->sin_port = udp_hdr(skb)->source;
885 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
886 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
887 	}
888 	if (inet->cmsg_flags)
889 		ip_cmsg_recv(msg, skb);
890 
891 	err = copied;
892 	if (flags & MSG_TRUNC)
893 		err = ulen;
894 
895 out_free:
896 	lock_sock(sk);
897 	skb_free_datagram(sk, skb);
898 	release_sock(sk);
899 out:
900 	return err;
901 
902 csum_copy_err:
903 	lock_sock(sk);
904 	if (!skb_kill_datagram(sk, skb, flags))
905 		UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
906 	release_sock(sk);
907 
908 	if (noblock)
909 		return -EAGAIN;
910 	goto try_again;
911 }
912 
913 
914 int udp_disconnect(struct sock *sk, int flags)
915 {
916 	struct inet_sock *inet = inet_sk(sk);
917 	/*
918 	 *	1003.1g - break association.
919 	 */
920 
921 	sk->sk_state = TCP_CLOSE;
922 	inet->daddr = 0;
923 	inet->dport = 0;
924 	sk->sk_bound_dev_if = 0;
925 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
926 		inet_reset_saddr(sk);
927 
928 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
929 		sk->sk_prot->unhash(sk);
930 		inet->sport = 0;
931 	}
932 	sk_dst_reset(sk);
933 	return 0;
934 }
935 
936 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
937 {
938 	int is_udplite = IS_UDPLITE(sk);
939 	int rc;
940 
941 	if ((rc = sock_queue_rcv_skb(sk, skb)) < 0) {
942 		/* Note that an ENOMEM error is charged twice */
943 		if (rc == -ENOMEM)
944 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
945 					 is_udplite);
946 		goto drop;
947 	}
948 
949 	return 0;
950 
951 drop:
952 	UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
953 	kfree_skb(skb);
954 	return -1;
955 }
956 
957 /* returns:
958  *  -1: error
959  *   0: success
960  *  >0: "udp encap" protocol resubmission
961  *
962  * Note that in the success and error cases, the skb is assumed to
963  * have either been requeued or freed.
964  */
965 int udp_queue_rcv_skb(struct sock * sk, struct sk_buff *skb)
966 {
967 	struct udp_sock *up = udp_sk(sk);
968 	int rc;
969 	int is_udplite = IS_UDPLITE(sk);
970 
971 	/*
972 	 *	Charge it to the socket, dropping if the queue is full.
973 	 */
974 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
975 		goto drop;
976 	nf_reset(skb);
977 
978 	if (up->encap_type) {
979 		/*
980 		 * This is an encapsulation socket so pass the skb to
981 		 * the socket's udp_encap_rcv() hook. Otherwise, just
982 		 * fall through and pass this up the UDP socket.
983 		 * up->encap_rcv() returns the following value:
984 		 * =0 if skb was successfully passed to the encap
985 		 *    handler or was discarded by it.
986 		 * >0 if skb should be passed on to UDP.
987 		 * <0 if skb should be resubmitted as proto -N
988 		 */
989 
990 		/* if we're overly short, let UDP handle it */
991 		if (skb->len > sizeof(struct udphdr) &&
992 		    up->encap_rcv != NULL) {
993 			int ret;
994 
995 			ret = (*up->encap_rcv)(sk, skb);
996 			if (ret <= 0) {
997 				UDP_INC_STATS_BH(sock_net(sk),
998 						 UDP_MIB_INDATAGRAMS,
999 						 is_udplite);
1000 				return -ret;
1001 			}
1002 		}
1003 
1004 		/* FALLTHROUGH -- it's a UDP Packet */
1005 	}
1006 
1007 	/*
1008 	 * 	UDP-Lite specific tests, ignored on UDP sockets
1009 	 */
1010 	if ((is_udplite & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
1011 
1012 		/*
1013 		 * MIB statistics other than incrementing the error count are
1014 		 * disabled for the following two types of errors: these depend
1015 		 * on the application settings, not on the functioning of the
1016 		 * protocol stack as such.
1017 		 *
1018 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
1019 		 * way ... to ... at least let the receiving application block
1020 		 * delivery of packets with coverage values less than a value
1021 		 * provided by the application."
1022 		 */
1023 		if (up->pcrlen == 0) {          /* full coverage was set  */
1024 			LIMIT_NETDEBUG(KERN_WARNING "UDPLITE: partial coverage "
1025 				"%d while full coverage %d requested\n",
1026 				UDP_SKB_CB(skb)->cscov, skb->len);
1027 			goto drop;
1028 		}
1029 		/* The next case involves violating the min. coverage requested
1030 		 * by the receiver. This is subtle: if receiver wants x and x is
1031 		 * greater than the buffersize/MTU then receiver will complain
1032 		 * that it wants x while sender emits packets of smaller size y.
1033 		 * Therefore the above ...()->partial_cov statement is essential.
1034 		 */
1035 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
1036 			LIMIT_NETDEBUG(KERN_WARNING
1037 				"UDPLITE: coverage %d too small, need min %d\n",
1038 				UDP_SKB_CB(skb)->cscov, up->pcrlen);
1039 			goto drop;
1040 		}
1041 	}
1042 
1043 	if (sk->sk_filter) {
1044 		if (udp_lib_checksum_complete(skb))
1045 			goto drop;
1046 	}
1047 
1048 	rc = 0;
1049 
1050 	bh_lock_sock(sk);
1051 	if (!sock_owned_by_user(sk))
1052 		rc = __udp_queue_rcv_skb(sk, skb);
1053 	else
1054 		sk_add_backlog(sk, skb);
1055 	bh_unlock_sock(sk);
1056 
1057 	return rc;
1058 
1059 drop:
1060 	UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1061 	kfree_skb(skb);
1062 	return -1;
1063 }
1064 
1065 /*
1066  *	Multicasts and broadcasts go to each listener.
1067  *
1068  *	Note: called only from the BH handler context,
1069  *	so we don't need to lock the hashes.
1070  */
1071 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1072 				    struct udphdr  *uh,
1073 				    __be32 saddr, __be32 daddr,
1074 				    struct hlist_head udptable[])
1075 {
1076 	struct sock *sk;
1077 	int dif;
1078 
1079 	read_lock(&udp_hash_lock);
1080 	sk = sk_head(&udptable[udp_hashfn(net, ntohs(uh->dest))]);
1081 	dif = skb->dev->ifindex;
1082 	sk = udp_v4_mcast_next(sk, uh->dest, daddr, uh->source, saddr, dif);
1083 	if (sk) {
1084 		struct sock *sknext = NULL;
1085 
1086 		do {
1087 			struct sk_buff *skb1 = skb;
1088 
1089 			sknext = udp_v4_mcast_next(sk_next(sk), uh->dest, daddr,
1090 						   uh->source, saddr, dif);
1091 			if (sknext)
1092 				skb1 = skb_clone(skb, GFP_ATOMIC);
1093 
1094 			if (skb1) {
1095 				int ret = udp_queue_rcv_skb(sk, skb1);
1096 				if (ret > 0)
1097 					/* we should probably re-process instead
1098 					 * of dropping packets here. */
1099 					kfree_skb(skb1);
1100 			}
1101 			sk = sknext;
1102 		} while (sknext);
1103 	} else
1104 		kfree_skb(skb);
1105 	read_unlock(&udp_hash_lock);
1106 	return 0;
1107 }
1108 
1109 /* Initialize UDP checksum. If exited with zero value (success),
1110  * CHECKSUM_UNNECESSARY means, that no more checks are required.
1111  * Otherwise, csum completion requires chacksumming packet body,
1112  * including udp header and folding it to skb->csum.
1113  */
1114 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1115 				 int proto)
1116 {
1117 	const struct iphdr *iph;
1118 	int err;
1119 
1120 	UDP_SKB_CB(skb)->partial_cov = 0;
1121 	UDP_SKB_CB(skb)->cscov = skb->len;
1122 
1123 	if (proto == IPPROTO_UDPLITE) {
1124 		err = udplite_checksum_init(skb, uh);
1125 		if (err)
1126 			return err;
1127 	}
1128 
1129 	iph = ip_hdr(skb);
1130 	if (uh->check == 0) {
1131 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1132 	} else if (skb->ip_summed == CHECKSUM_COMPLETE) {
1133 	       if (!csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
1134 				      proto, skb->csum))
1135 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1136 	}
1137 	if (!skb_csum_unnecessary(skb))
1138 		skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1139 					       skb->len, proto, 0);
1140 	/* Probably, we should checksum udp header (it should be in cache
1141 	 * in any case) and data in tiny packets (< rx copybreak).
1142 	 */
1143 
1144 	return 0;
1145 }
1146 
1147 /*
1148  *	All we need to do is get the socket, and then do a checksum.
1149  */
1150 
1151 int __udp4_lib_rcv(struct sk_buff *skb, struct hlist_head udptable[],
1152 		   int proto)
1153 {
1154 	struct sock *sk;
1155 	struct udphdr *uh = udp_hdr(skb);
1156 	unsigned short ulen;
1157 	struct rtable *rt = (struct rtable*)skb->dst;
1158 	__be32 saddr = ip_hdr(skb)->saddr;
1159 	__be32 daddr = ip_hdr(skb)->daddr;
1160 	struct net *net = dev_net(skb->dev);
1161 
1162 	/*
1163 	 *  Validate the packet.
1164 	 */
1165 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1166 		goto drop;		/* No space for header. */
1167 
1168 	ulen = ntohs(uh->len);
1169 	if (ulen > skb->len)
1170 		goto short_packet;
1171 
1172 	if (proto == IPPROTO_UDP) {
1173 		/* UDP validates ulen. */
1174 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1175 			goto short_packet;
1176 		uh = udp_hdr(skb);
1177 	}
1178 
1179 	if (udp4_csum_init(skb, uh, proto))
1180 		goto csum_error;
1181 
1182 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1183 		return __udp4_lib_mcast_deliver(net, skb, uh,
1184 				saddr, daddr, udptable);
1185 
1186 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
1187 
1188 	if (sk != NULL) {
1189 		int ret = udp_queue_rcv_skb(sk, skb);
1190 		sock_put(sk);
1191 
1192 		/* a return value > 0 means to resubmit the input, but
1193 		 * it wants the return to be -protocol, or 0
1194 		 */
1195 		if (ret > 0)
1196 			return -ret;
1197 		return 0;
1198 	}
1199 
1200 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1201 		goto drop;
1202 	nf_reset(skb);
1203 
1204 	/* No socket. Drop packet silently, if checksum is wrong */
1205 	if (udp_lib_checksum_complete(skb))
1206 		goto csum_error;
1207 
1208 	UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1209 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1210 
1211 	/*
1212 	 * Hmm.  We got an UDP packet to a port to which we
1213 	 * don't wanna listen.  Ignore it.
1214 	 */
1215 	kfree_skb(skb);
1216 	return 0;
1217 
1218 short_packet:
1219 	LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: short packet: From " NIPQUAD_FMT ":%u %d/%d to " NIPQUAD_FMT ":%u\n",
1220 		       proto == IPPROTO_UDPLITE ? "-Lite" : "",
1221 		       NIPQUAD(saddr),
1222 		       ntohs(uh->source),
1223 		       ulen,
1224 		       skb->len,
1225 		       NIPQUAD(daddr),
1226 		       ntohs(uh->dest));
1227 	goto drop;
1228 
1229 csum_error:
1230 	/*
1231 	 * RFC1122: OK.  Discards the bad packet silently (as far as
1232 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1233 	 */
1234 	LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: bad checksum. From " NIPQUAD_FMT ":%u to " NIPQUAD_FMT ":%u ulen %d\n",
1235 		       proto == IPPROTO_UDPLITE ? "-Lite" : "",
1236 		       NIPQUAD(saddr),
1237 		       ntohs(uh->source),
1238 		       NIPQUAD(daddr),
1239 		       ntohs(uh->dest),
1240 		       ulen);
1241 drop:
1242 	UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1243 	kfree_skb(skb);
1244 	return 0;
1245 }
1246 
1247 int udp_rcv(struct sk_buff *skb)
1248 {
1249 	return __udp4_lib_rcv(skb, udp_hash, IPPROTO_UDP);
1250 }
1251 
1252 void udp_destroy_sock(struct sock *sk)
1253 {
1254 	lock_sock(sk);
1255 	udp_flush_pending_frames(sk);
1256 	release_sock(sk);
1257 }
1258 
1259 /*
1260  *	Socket option code for UDP
1261  */
1262 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
1263 		       char __user *optval, int optlen,
1264 		       int (*push_pending_frames)(struct sock *))
1265 {
1266 	struct udp_sock *up = udp_sk(sk);
1267 	int val;
1268 	int err = 0;
1269 	int is_udplite = IS_UDPLITE(sk);
1270 
1271 	if (optlen<sizeof(int))
1272 		return -EINVAL;
1273 
1274 	if (get_user(val, (int __user *)optval))
1275 		return -EFAULT;
1276 
1277 	switch (optname) {
1278 	case UDP_CORK:
1279 		if (val != 0) {
1280 			up->corkflag = 1;
1281 		} else {
1282 			up->corkflag = 0;
1283 			lock_sock(sk);
1284 			(*push_pending_frames)(sk);
1285 			release_sock(sk);
1286 		}
1287 		break;
1288 
1289 	case UDP_ENCAP:
1290 		switch (val) {
1291 		case 0:
1292 		case UDP_ENCAP_ESPINUDP:
1293 		case UDP_ENCAP_ESPINUDP_NON_IKE:
1294 			up->encap_rcv = xfrm4_udp_encap_rcv;
1295 			/* FALLTHROUGH */
1296 		case UDP_ENCAP_L2TPINUDP:
1297 			up->encap_type = val;
1298 			break;
1299 		default:
1300 			err = -ENOPROTOOPT;
1301 			break;
1302 		}
1303 		break;
1304 
1305 	/*
1306 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
1307 	 */
1308 	/* The sender sets actual checksum coverage length via this option.
1309 	 * The case coverage > packet length is handled by send module. */
1310 	case UDPLITE_SEND_CSCOV:
1311 		if (!is_udplite)         /* Disable the option on UDP sockets */
1312 			return -ENOPROTOOPT;
1313 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
1314 			val = 8;
1315 		else if (val > USHORT_MAX)
1316 			val = USHORT_MAX;
1317 		up->pcslen = val;
1318 		up->pcflag |= UDPLITE_SEND_CC;
1319 		break;
1320 
1321 	/* The receiver specifies a minimum checksum coverage value. To make
1322 	 * sense, this should be set to at least 8 (as done below). If zero is
1323 	 * used, this again means full checksum coverage.                     */
1324 	case UDPLITE_RECV_CSCOV:
1325 		if (!is_udplite)         /* Disable the option on UDP sockets */
1326 			return -ENOPROTOOPT;
1327 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
1328 			val = 8;
1329 		else if (val > USHORT_MAX)
1330 			val = USHORT_MAX;
1331 		up->pcrlen = val;
1332 		up->pcflag |= UDPLITE_RECV_CC;
1333 		break;
1334 
1335 	default:
1336 		err = -ENOPROTOOPT;
1337 		break;
1338 	}
1339 
1340 	return err;
1341 }
1342 
1343 int udp_setsockopt(struct sock *sk, int level, int optname,
1344 		   char __user *optval, int optlen)
1345 {
1346 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1347 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1348 					  udp_push_pending_frames);
1349 	return ip_setsockopt(sk, level, optname, optval, optlen);
1350 }
1351 
1352 #ifdef CONFIG_COMPAT
1353 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
1354 			  char __user *optval, int optlen)
1355 {
1356 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1357 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1358 					  udp_push_pending_frames);
1359 	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
1360 }
1361 #endif
1362 
1363 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
1364 		       char __user *optval, int __user *optlen)
1365 {
1366 	struct udp_sock *up = udp_sk(sk);
1367 	int val, len;
1368 
1369 	if (get_user(len,optlen))
1370 		return -EFAULT;
1371 
1372 	len = min_t(unsigned int, len, sizeof(int));
1373 
1374 	if (len < 0)
1375 		return -EINVAL;
1376 
1377 	switch (optname) {
1378 	case UDP_CORK:
1379 		val = up->corkflag;
1380 		break;
1381 
1382 	case UDP_ENCAP:
1383 		val = up->encap_type;
1384 		break;
1385 
1386 	/* The following two cannot be changed on UDP sockets, the return is
1387 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
1388 	case UDPLITE_SEND_CSCOV:
1389 		val = up->pcslen;
1390 		break;
1391 
1392 	case UDPLITE_RECV_CSCOV:
1393 		val = up->pcrlen;
1394 		break;
1395 
1396 	default:
1397 		return -ENOPROTOOPT;
1398 	}
1399 
1400 	if (put_user(len, optlen))
1401 		return -EFAULT;
1402 	if (copy_to_user(optval, &val,len))
1403 		return -EFAULT;
1404 	return 0;
1405 }
1406 
1407 int udp_getsockopt(struct sock *sk, int level, int optname,
1408 		   char __user *optval, int __user *optlen)
1409 {
1410 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1411 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1412 	return ip_getsockopt(sk, level, optname, optval, optlen);
1413 }
1414 
1415 #ifdef CONFIG_COMPAT
1416 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
1417 				 char __user *optval, int __user *optlen)
1418 {
1419 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1420 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1421 	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
1422 }
1423 #endif
1424 /**
1425  * 	udp_poll - wait for a UDP event.
1426  *	@file - file struct
1427  *	@sock - socket
1428  *	@wait - poll table
1429  *
1430  *	This is same as datagram poll, except for the special case of
1431  *	blocking sockets. If application is using a blocking fd
1432  *	and a packet with checksum error is in the queue;
1433  *	then it could get return from select indicating data available
1434  *	but then block when reading it. Add special case code
1435  *	to work around these arguably broken applications.
1436  */
1437 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
1438 {
1439 	unsigned int mask = datagram_poll(file, sock, wait);
1440 	struct sock *sk = sock->sk;
1441 	int 	is_lite = IS_UDPLITE(sk);
1442 
1443 	/* Check for false positives due to checksum errors */
1444 	if ( (mask & POLLRDNORM) &&
1445 	     !(file->f_flags & O_NONBLOCK) &&
1446 	     !(sk->sk_shutdown & RCV_SHUTDOWN)){
1447 		struct sk_buff_head *rcvq = &sk->sk_receive_queue;
1448 		struct sk_buff *skb;
1449 
1450 		spin_lock_bh(&rcvq->lock);
1451 		while ((skb = skb_peek(rcvq)) != NULL &&
1452 		       udp_lib_checksum_complete(skb)) {
1453 			UDP_INC_STATS_BH(sock_net(sk),
1454 					UDP_MIB_INERRORS, is_lite);
1455 			__skb_unlink(skb, rcvq);
1456 			kfree_skb(skb);
1457 		}
1458 		spin_unlock_bh(&rcvq->lock);
1459 
1460 		/* nothing to see, move along */
1461 		if (skb == NULL)
1462 			mask &= ~(POLLIN | POLLRDNORM);
1463 	}
1464 
1465 	return mask;
1466 
1467 }
1468 
1469 struct proto udp_prot = {
1470 	.name		   = "UDP",
1471 	.owner		   = THIS_MODULE,
1472 	.close		   = udp_lib_close,
1473 	.connect	   = ip4_datagram_connect,
1474 	.disconnect	   = udp_disconnect,
1475 	.ioctl		   = udp_ioctl,
1476 	.destroy	   = udp_destroy_sock,
1477 	.setsockopt	   = udp_setsockopt,
1478 	.getsockopt	   = udp_getsockopt,
1479 	.sendmsg	   = udp_sendmsg,
1480 	.recvmsg	   = udp_recvmsg,
1481 	.sendpage	   = udp_sendpage,
1482 	.backlog_rcv	   = __udp_queue_rcv_skb,
1483 	.hash		   = udp_lib_hash,
1484 	.unhash		   = udp_lib_unhash,
1485 	.get_port	   = udp_v4_get_port,
1486 	.memory_allocated  = &udp_memory_allocated,
1487 	.sysctl_mem	   = sysctl_udp_mem,
1488 	.sysctl_wmem	   = &sysctl_udp_wmem_min,
1489 	.sysctl_rmem	   = &sysctl_udp_rmem_min,
1490 	.obj_size	   = sizeof(struct udp_sock),
1491 	.h.udp_hash	   = udp_hash,
1492 #ifdef CONFIG_COMPAT
1493 	.compat_setsockopt = compat_udp_setsockopt,
1494 	.compat_getsockopt = compat_udp_getsockopt,
1495 #endif
1496 };
1497 
1498 /* ------------------------------------------------------------------------ */
1499 #ifdef CONFIG_PROC_FS
1500 
1501 static struct sock *udp_get_first(struct seq_file *seq)
1502 {
1503 	struct sock *sk;
1504 	struct udp_iter_state *state = seq->private;
1505 	struct net *net = seq_file_net(seq);
1506 
1507 	for (state->bucket = 0; state->bucket < UDP_HTABLE_SIZE; ++state->bucket) {
1508 		struct hlist_node *node;
1509 		sk_for_each(sk, node, state->hashtable + state->bucket) {
1510 			if (!net_eq(sock_net(sk), net))
1511 				continue;
1512 			if (sk->sk_family == state->family)
1513 				goto found;
1514 		}
1515 	}
1516 	sk = NULL;
1517 found:
1518 	return sk;
1519 }
1520 
1521 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
1522 {
1523 	struct udp_iter_state *state = seq->private;
1524 	struct net *net = seq_file_net(seq);
1525 
1526 	do {
1527 		sk = sk_next(sk);
1528 try_again:
1529 		;
1530 	} while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
1531 
1532 	if (!sk && ++state->bucket < UDP_HTABLE_SIZE) {
1533 		sk = sk_head(state->hashtable + state->bucket);
1534 		goto try_again;
1535 	}
1536 	return sk;
1537 }
1538 
1539 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
1540 {
1541 	struct sock *sk = udp_get_first(seq);
1542 
1543 	if (sk)
1544 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
1545 			--pos;
1546 	return pos ? NULL : sk;
1547 }
1548 
1549 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
1550 	__acquires(udp_hash_lock)
1551 {
1552 	read_lock(&udp_hash_lock);
1553 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
1554 }
1555 
1556 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1557 {
1558 	struct sock *sk;
1559 
1560 	if (v == SEQ_START_TOKEN)
1561 		sk = udp_get_idx(seq, 0);
1562 	else
1563 		sk = udp_get_next(seq, v);
1564 
1565 	++*pos;
1566 	return sk;
1567 }
1568 
1569 static void udp_seq_stop(struct seq_file *seq, void *v)
1570 	__releases(udp_hash_lock)
1571 {
1572 	read_unlock(&udp_hash_lock);
1573 }
1574 
1575 static int udp_seq_open(struct inode *inode, struct file *file)
1576 {
1577 	struct udp_seq_afinfo *afinfo = PDE(inode)->data;
1578 	struct udp_iter_state *s;
1579 	int err;
1580 
1581 	err = seq_open_net(inode, file, &afinfo->seq_ops,
1582 			   sizeof(struct udp_iter_state));
1583 	if (err < 0)
1584 		return err;
1585 
1586 	s = ((struct seq_file *)file->private_data)->private;
1587 	s->family		= afinfo->family;
1588 	s->hashtable		= afinfo->hashtable;
1589 	return err;
1590 }
1591 
1592 /* ------------------------------------------------------------------------ */
1593 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
1594 {
1595 	struct proc_dir_entry *p;
1596 	int rc = 0;
1597 
1598 	afinfo->seq_fops.open		= udp_seq_open;
1599 	afinfo->seq_fops.read		= seq_read;
1600 	afinfo->seq_fops.llseek		= seq_lseek;
1601 	afinfo->seq_fops.release	= seq_release_net;
1602 
1603 	afinfo->seq_ops.start		= udp_seq_start;
1604 	afinfo->seq_ops.next		= udp_seq_next;
1605 	afinfo->seq_ops.stop		= udp_seq_stop;
1606 
1607 	p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
1608 			     &afinfo->seq_fops, afinfo);
1609 	if (!p)
1610 		rc = -ENOMEM;
1611 	return rc;
1612 }
1613 
1614 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
1615 {
1616 	proc_net_remove(net, afinfo->name);
1617 }
1618 
1619 /* ------------------------------------------------------------------------ */
1620 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
1621 		int bucket, int *len)
1622 {
1623 	struct inet_sock *inet = inet_sk(sp);
1624 	__be32 dest = inet->daddr;
1625 	__be32 src  = inet->rcv_saddr;
1626 	__u16 destp	  = ntohs(inet->dport);
1627 	__u16 srcp	  = ntohs(inet->sport);
1628 
1629 	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
1630 		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %lu %d %p %d%n",
1631 		bucket, src, srcp, dest, destp, sp->sk_state,
1632 		atomic_read(&sp->sk_wmem_alloc),
1633 		atomic_read(&sp->sk_rmem_alloc),
1634 		0, 0L, 0, sock_i_uid(sp), 0, sock_i_ino(sp),
1635 		atomic_read(&sp->sk_refcnt), sp,
1636 		atomic_read(&sp->sk_drops), len);
1637 }
1638 
1639 int udp4_seq_show(struct seq_file *seq, void *v)
1640 {
1641 	if (v == SEQ_START_TOKEN)
1642 		seq_printf(seq, "%-127s\n",
1643 			   "  sl  local_address rem_address   st tx_queue "
1644 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
1645 			   "inode ref pointer drops");
1646 	else {
1647 		struct udp_iter_state *state = seq->private;
1648 		int len;
1649 
1650 		udp4_format_sock(v, seq, state->bucket, &len);
1651 		seq_printf(seq, "%*s\n", 127 - len ,"");
1652 	}
1653 	return 0;
1654 }
1655 
1656 /* ------------------------------------------------------------------------ */
1657 static struct udp_seq_afinfo udp4_seq_afinfo = {
1658 	.name		= "udp",
1659 	.family		= AF_INET,
1660 	.hashtable	= udp_hash,
1661 	.seq_fops	= {
1662 		.owner	=	THIS_MODULE,
1663 	},
1664 	.seq_ops	= {
1665 		.show		= udp4_seq_show,
1666 	},
1667 };
1668 
1669 static int udp4_proc_init_net(struct net *net)
1670 {
1671 	return udp_proc_register(net, &udp4_seq_afinfo);
1672 }
1673 
1674 static void udp4_proc_exit_net(struct net *net)
1675 {
1676 	udp_proc_unregister(net, &udp4_seq_afinfo);
1677 }
1678 
1679 static struct pernet_operations udp4_net_ops = {
1680 	.init = udp4_proc_init_net,
1681 	.exit = udp4_proc_exit_net,
1682 };
1683 
1684 int __init udp4_proc_init(void)
1685 {
1686 	return register_pernet_subsys(&udp4_net_ops);
1687 }
1688 
1689 void udp4_proc_exit(void)
1690 {
1691 	unregister_pernet_subsys(&udp4_net_ops);
1692 }
1693 #endif /* CONFIG_PROC_FS */
1694 
1695 void __init udp_init(void)
1696 {
1697 	unsigned long limit;
1698 
1699 	/* Set the pressure threshold up by the same strategy of TCP. It is a
1700 	 * fraction of global memory that is up to 1/2 at 256 MB, decreasing
1701 	 * toward zero with the amount of memory, with a floor of 128 pages.
1702 	 */
1703 	limit = min(nr_all_pages, 1UL<<(28-PAGE_SHIFT)) >> (20-PAGE_SHIFT);
1704 	limit = (limit * (nr_all_pages >> (20-PAGE_SHIFT))) >> (PAGE_SHIFT-11);
1705 	limit = max(limit, 128UL);
1706 	sysctl_udp_mem[0] = limit / 4 * 3;
1707 	sysctl_udp_mem[1] = limit;
1708 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
1709 
1710 	sysctl_udp_rmem_min = SK_MEM_QUANTUM;
1711 	sysctl_udp_wmem_min = SK_MEM_QUANTUM;
1712 }
1713 
1714 EXPORT_SYMBOL(udp_disconnect);
1715 EXPORT_SYMBOL(udp_hash);
1716 EXPORT_SYMBOL(udp_hash_lock);
1717 EXPORT_SYMBOL(udp_ioctl);
1718 EXPORT_SYMBOL(udp_prot);
1719 EXPORT_SYMBOL(udp_sendmsg);
1720 EXPORT_SYMBOL(udp_lib_getsockopt);
1721 EXPORT_SYMBOL(udp_lib_setsockopt);
1722 EXPORT_SYMBOL(udp_poll);
1723 EXPORT_SYMBOL(udp_lib_get_port);
1724 
1725 #ifdef CONFIG_PROC_FS
1726 EXPORT_SYMBOL(udp_proc_register);
1727 EXPORT_SYMBOL(udp_proc_unregister);
1728 #endif
1729