xref: /linux/net/ipv4/udp.c (revision a508da6cc0093171833efb8376b00473f24221b9)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The User Datagram Protocol (UDP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
12  *		Hirokazu Takahashi, <taka@valinux.co.jp>
13  *
14  * Fixes:
15  *		Alan Cox	:	verify_area() calls
16  *		Alan Cox	: 	stopped close while in use off icmp
17  *					messages. Not a fix but a botch that
18  *					for udp at least is 'valid'.
19  *		Alan Cox	:	Fixed icmp handling properly
20  *		Alan Cox	: 	Correct error for oversized datagrams
21  *		Alan Cox	:	Tidied select() semantics.
22  *		Alan Cox	:	udp_err() fixed properly, also now
23  *					select and read wake correctly on errors
24  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
25  *		Alan Cox	:	UDP can count its memory
26  *		Alan Cox	:	send to an unknown connection causes
27  *					an ECONNREFUSED off the icmp, but
28  *					does NOT close.
29  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
30  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
31  *					bug no longer crashes it.
32  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
33  *		Alan Cox	:	Uses skb_free_datagram
34  *		Alan Cox	:	Added get/set sockopt support.
35  *		Alan Cox	:	Broadcasting without option set returns EACCES.
36  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
37  *		Alan Cox	:	Use ip_tos and ip_ttl
38  *		Alan Cox	:	SNMP Mibs
39  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
40  *		Matt Dillon	:	UDP length checks.
41  *		Alan Cox	:	Smarter af_inet used properly.
42  *		Alan Cox	:	Use new kernel side addressing.
43  *		Alan Cox	:	Incorrect return on truncated datagram receive.
44  *	Arnt Gulbrandsen 	:	New udp_send and stuff
45  *		Alan Cox	:	Cache last socket
46  *		Alan Cox	:	Route cache
47  *		Jon Peatfield	:	Minor efficiency fix to sendto().
48  *		Mike Shaver	:	RFC1122 checks.
49  *		Alan Cox	:	Nonblocking error fix.
50  *	Willy Konynenberg	:	Transparent proxying support.
51  *		Mike McLagan	:	Routing by source
52  *		David S. Miller	:	New socket lookup architecture.
53  *					Last socket cache retained as it
54  *					does have a high hit rate.
55  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
56  *		Andi Kleen	:	Some cleanups, cache destination entry
57  *					for connect.
58  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
59  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
60  *					return ENOTCONN for unconnected sockets (POSIX)
61  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
62  *					bound-to-device socket
63  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
64  *					datagrams.
65  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
66  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
67  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
68  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
69  *					a single port at the same time.
70  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71  *	James Chapman		:	Add L2TP encapsulation type.
72  *
73  *
74  *		This program is free software; you can redistribute it and/or
75  *		modify it under the terms of the GNU General Public License
76  *		as published by the Free Software Foundation; either version
77  *		2 of the License, or (at your option) any later version.
78  */
79 
80 #define pr_fmt(fmt) "UDP: " fmt
81 
82 #include <asm/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/bootmem.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
93 #include <linux/in.h>
94 #include <linux/errno.h>
95 #include <linux/timer.h>
96 #include <linux/mm.h>
97 #include <linux/inet.h>
98 #include <linux/netdevice.h>
99 #include <linux/slab.h>
100 #include <net/tcp_states.h>
101 #include <linux/skbuff.h>
102 #include <linux/proc_fs.h>
103 #include <linux/seq_file.h>
104 #include <net/net_namespace.h>
105 #include <net/icmp.h>
106 #include <net/route.h>
107 #include <net/checksum.h>
108 #include <net/xfrm.h>
109 #include <trace/events/udp.h>
110 #include <linux/static_key.h>
111 #include "udp_impl.h"
112 
113 struct udp_table udp_table __read_mostly;
114 EXPORT_SYMBOL(udp_table);
115 
116 long sysctl_udp_mem[3] __read_mostly;
117 EXPORT_SYMBOL(sysctl_udp_mem);
118 
119 int sysctl_udp_rmem_min __read_mostly;
120 EXPORT_SYMBOL(sysctl_udp_rmem_min);
121 
122 int sysctl_udp_wmem_min __read_mostly;
123 EXPORT_SYMBOL(sysctl_udp_wmem_min);
124 
125 atomic_long_t udp_memory_allocated;
126 EXPORT_SYMBOL(udp_memory_allocated);
127 
128 #define MAX_UDP_PORTS 65536
129 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
130 
131 static int udp_lib_lport_inuse(struct net *net, __u16 num,
132 			       const struct udp_hslot *hslot,
133 			       unsigned long *bitmap,
134 			       struct sock *sk,
135 			       int (*saddr_comp)(const struct sock *sk1,
136 						 const struct sock *sk2),
137 			       unsigned int log)
138 {
139 	struct sock *sk2;
140 	struct hlist_nulls_node *node;
141 
142 	sk_nulls_for_each(sk2, node, &hslot->head)
143 		if (net_eq(sock_net(sk2), net) &&
144 		    sk2 != sk &&
145 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
146 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
147 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
148 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
149 		    (*saddr_comp)(sk, sk2)) {
150 			if (bitmap)
151 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
152 					  bitmap);
153 			else
154 				return 1;
155 		}
156 	return 0;
157 }
158 
159 /*
160  * Note: we still hold spinlock of primary hash chain, so no other writer
161  * can insert/delete a socket with local_port == num
162  */
163 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
164 			       struct udp_hslot *hslot2,
165 			       struct sock *sk,
166 			       int (*saddr_comp)(const struct sock *sk1,
167 						 const struct sock *sk2))
168 {
169 	struct sock *sk2;
170 	struct hlist_nulls_node *node;
171 	int res = 0;
172 
173 	spin_lock(&hslot2->lock);
174 	udp_portaddr_for_each_entry(sk2, node, &hslot2->head)
175 		if (net_eq(sock_net(sk2), net) &&
176 		    sk2 != sk &&
177 		    (udp_sk(sk2)->udp_port_hash == num) &&
178 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
179 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
180 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
181 		    (*saddr_comp)(sk, sk2)) {
182 			res = 1;
183 			break;
184 		}
185 	spin_unlock(&hslot2->lock);
186 	return res;
187 }
188 
189 /**
190  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
191  *
192  *  @sk:          socket struct in question
193  *  @snum:        port number to look up
194  *  @saddr_comp:  AF-dependent comparison of bound local IP addresses
195  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
196  *                   with NULL address
197  */
198 int udp_lib_get_port(struct sock *sk, unsigned short snum,
199 		       int (*saddr_comp)(const struct sock *sk1,
200 					 const struct sock *sk2),
201 		     unsigned int hash2_nulladdr)
202 {
203 	struct udp_hslot *hslot, *hslot2;
204 	struct udp_table *udptable = sk->sk_prot->h.udp_table;
205 	int    error = 1;
206 	struct net *net = sock_net(sk);
207 
208 	if (!snum) {
209 		int low, high, remaining;
210 		unsigned int rand;
211 		unsigned short first, last;
212 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
213 
214 		inet_get_local_port_range(&low, &high);
215 		remaining = (high - low) + 1;
216 
217 		rand = net_random();
218 		first = (((u64)rand * remaining) >> 32) + low;
219 		/*
220 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
221 		 */
222 		rand = (rand | 1) * (udptable->mask + 1);
223 		last = first + udptable->mask + 1;
224 		do {
225 			hslot = udp_hashslot(udptable, net, first);
226 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
227 			spin_lock_bh(&hslot->lock);
228 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
229 					    saddr_comp, udptable->log);
230 
231 			snum = first;
232 			/*
233 			 * Iterate on all possible values of snum for this hash.
234 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
235 			 * give us randomization and full range coverage.
236 			 */
237 			do {
238 				if (low <= snum && snum <= high &&
239 				    !test_bit(snum >> udptable->log, bitmap) &&
240 				    !inet_is_reserved_local_port(snum))
241 					goto found;
242 				snum += rand;
243 			} while (snum != first);
244 			spin_unlock_bh(&hslot->lock);
245 		} while (++first != last);
246 		goto fail;
247 	} else {
248 		hslot = udp_hashslot(udptable, net, snum);
249 		spin_lock_bh(&hslot->lock);
250 		if (hslot->count > 10) {
251 			int exist;
252 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
253 
254 			slot2          &= udptable->mask;
255 			hash2_nulladdr &= udptable->mask;
256 
257 			hslot2 = udp_hashslot2(udptable, slot2);
258 			if (hslot->count < hslot2->count)
259 				goto scan_primary_hash;
260 
261 			exist = udp_lib_lport_inuse2(net, snum, hslot2,
262 						     sk, saddr_comp);
263 			if (!exist && (hash2_nulladdr != slot2)) {
264 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
265 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
266 							     sk, saddr_comp);
267 			}
268 			if (exist)
269 				goto fail_unlock;
270 			else
271 				goto found;
272 		}
273 scan_primary_hash:
274 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk,
275 					saddr_comp, 0))
276 			goto fail_unlock;
277 	}
278 found:
279 	inet_sk(sk)->inet_num = snum;
280 	udp_sk(sk)->udp_port_hash = snum;
281 	udp_sk(sk)->udp_portaddr_hash ^= snum;
282 	if (sk_unhashed(sk)) {
283 		sk_nulls_add_node_rcu(sk, &hslot->head);
284 		hslot->count++;
285 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
286 
287 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
288 		spin_lock(&hslot2->lock);
289 		hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
290 					 &hslot2->head);
291 		hslot2->count++;
292 		spin_unlock(&hslot2->lock);
293 	}
294 	error = 0;
295 fail_unlock:
296 	spin_unlock_bh(&hslot->lock);
297 fail:
298 	return error;
299 }
300 EXPORT_SYMBOL(udp_lib_get_port);
301 
302 static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
303 {
304 	struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
305 
306 	return 	(!ipv6_only_sock(sk2)  &&
307 		 (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr ||
308 		   inet1->inet_rcv_saddr == inet2->inet_rcv_saddr));
309 }
310 
311 static unsigned int udp4_portaddr_hash(struct net *net, __be32 saddr,
312 				       unsigned int port)
313 {
314 	return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
315 }
316 
317 int udp_v4_get_port(struct sock *sk, unsigned short snum)
318 {
319 	unsigned int hash2_nulladdr =
320 		udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
321 	unsigned int hash2_partial =
322 		udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
323 
324 	/* precompute partial secondary hash */
325 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
326 	return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr);
327 }
328 
329 static inline int compute_score(struct sock *sk, struct net *net, __be32 saddr,
330 			 unsigned short hnum,
331 			 __be16 sport, __be32 daddr, __be16 dport, int dif)
332 {
333 	int score = -1;
334 
335 	if (net_eq(sock_net(sk), net) && udp_sk(sk)->udp_port_hash == hnum &&
336 			!ipv6_only_sock(sk)) {
337 		struct inet_sock *inet = inet_sk(sk);
338 
339 		score = (sk->sk_family == PF_INET ? 1 : 0);
340 		if (inet->inet_rcv_saddr) {
341 			if (inet->inet_rcv_saddr != daddr)
342 				return -1;
343 			score += 2;
344 		}
345 		if (inet->inet_daddr) {
346 			if (inet->inet_daddr != saddr)
347 				return -1;
348 			score += 2;
349 		}
350 		if (inet->inet_dport) {
351 			if (inet->inet_dport != sport)
352 				return -1;
353 			score += 2;
354 		}
355 		if (sk->sk_bound_dev_if) {
356 			if (sk->sk_bound_dev_if != dif)
357 				return -1;
358 			score += 2;
359 		}
360 	}
361 	return score;
362 }
363 
364 /*
365  * In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num)
366  */
367 #define SCORE2_MAX (1 + 2 + 2 + 2)
368 static inline int compute_score2(struct sock *sk, struct net *net,
369 				 __be32 saddr, __be16 sport,
370 				 __be32 daddr, unsigned int hnum, int dif)
371 {
372 	int score = -1;
373 
374 	if (net_eq(sock_net(sk), net) && !ipv6_only_sock(sk)) {
375 		struct inet_sock *inet = inet_sk(sk);
376 
377 		if (inet->inet_rcv_saddr != daddr)
378 			return -1;
379 		if (inet->inet_num != hnum)
380 			return -1;
381 
382 		score = (sk->sk_family == PF_INET ? 1 : 0);
383 		if (inet->inet_daddr) {
384 			if (inet->inet_daddr != saddr)
385 				return -1;
386 			score += 2;
387 		}
388 		if (inet->inet_dport) {
389 			if (inet->inet_dport != sport)
390 				return -1;
391 			score += 2;
392 		}
393 		if (sk->sk_bound_dev_if) {
394 			if (sk->sk_bound_dev_if != dif)
395 				return -1;
396 			score += 2;
397 		}
398 	}
399 	return score;
400 }
401 
402 
403 /* called with read_rcu_lock() */
404 static struct sock *udp4_lib_lookup2(struct net *net,
405 		__be32 saddr, __be16 sport,
406 		__be32 daddr, unsigned int hnum, int dif,
407 		struct udp_hslot *hslot2, unsigned int slot2)
408 {
409 	struct sock *sk, *result;
410 	struct hlist_nulls_node *node;
411 	int score, badness;
412 
413 begin:
414 	result = NULL;
415 	badness = -1;
416 	udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
417 		score = compute_score2(sk, net, saddr, sport,
418 				      daddr, hnum, dif);
419 		if (score > badness) {
420 			result = sk;
421 			badness = score;
422 			if (score == SCORE2_MAX)
423 				goto exact_match;
424 		}
425 	}
426 	/*
427 	 * if the nulls value we got at the end of this lookup is
428 	 * not the expected one, we must restart lookup.
429 	 * We probably met an item that was moved to another chain.
430 	 */
431 	if (get_nulls_value(node) != slot2)
432 		goto begin;
433 
434 	if (result) {
435 exact_match:
436 		if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
437 			result = NULL;
438 		else if (unlikely(compute_score2(result, net, saddr, sport,
439 				  daddr, hnum, dif) < badness)) {
440 			sock_put(result);
441 			goto begin;
442 		}
443 	}
444 	return result;
445 }
446 
447 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
448  * harder than this. -DaveM
449  */
450 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
451 		__be16 sport, __be32 daddr, __be16 dport,
452 		int dif, struct udp_table *udptable)
453 {
454 	struct sock *sk, *result;
455 	struct hlist_nulls_node *node;
456 	unsigned short hnum = ntohs(dport);
457 	unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
458 	struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
459 	int score, badness;
460 
461 	rcu_read_lock();
462 	if (hslot->count > 10) {
463 		hash2 = udp4_portaddr_hash(net, daddr, hnum);
464 		slot2 = hash2 & udptable->mask;
465 		hslot2 = &udptable->hash2[slot2];
466 		if (hslot->count < hslot2->count)
467 			goto begin;
468 
469 		result = udp4_lib_lookup2(net, saddr, sport,
470 					  daddr, hnum, dif,
471 					  hslot2, slot2);
472 		if (!result) {
473 			hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
474 			slot2 = hash2 & udptable->mask;
475 			hslot2 = &udptable->hash2[slot2];
476 			if (hslot->count < hslot2->count)
477 				goto begin;
478 
479 			result = udp4_lib_lookup2(net, saddr, sport,
480 						  htonl(INADDR_ANY), hnum, dif,
481 						  hslot2, slot2);
482 		}
483 		rcu_read_unlock();
484 		return result;
485 	}
486 begin:
487 	result = NULL;
488 	badness = -1;
489 	sk_nulls_for_each_rcu(sk, node, &hslot->head) {
490 		score = compute_score(sk, net, saddr, hnum, sport,
491 				      daddr, dport, dif);
492 		if (score > badness) {
493 			result = sk;
494 			badness = score;
495 		}
496 	}
497 	/*
498 	 * if the nulls value we got at the end of this lookup is
499 	 * not the expected one, we must restart lookup.
500 	 * We probably met an item that was moved to another chain.
501 	 */
502 	if (get_nulls_value(node) != slot)
503 		goto begin;
504 
505 	if (result) {
506 		if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
507 			result = NULL;
508 		else if (unlikely(compute_score(result, net, saddr, hnum, sport,
509 				  daddr, dport, dif) < badness)) {
510 			sock_put(result);
511 			goto begin;
512 		}
513 	}
514 	rcu_read_unlock();
515 	return result;
516 }
517 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
518 
519 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
520 						 __be16 sport, __be16 dport,
521 						 struct udp_table *udptable)
522 {
523 	struct sock *sk;
524 	const struct iphdr *iph = ip_hdr(skb);
525 
526 	if (unlikely(sk = skb_steal_sock(skb)))
527 		return sk;
528 	else
529 		return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport,
530 					 iph->daddr, dport, inet_iif(skb),
531 					 udptable);
532 }
533 
534 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
535 			     __be32 daddr, __be16 dport, int dif)
536 {
537 	return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif, &udp_table);
538 }
539 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
540 
541 static inline struct sock *udp_v4_mcast_next(struct net *net, struct sock *sk,
542 					     __be16 loc_port, __be32 loc_addr,
543 					     __be16 rmt_port, __be32 rmt_addr,
544 					     int dif)
545 {
546 	struct hlist_nulls_node *node;
547 	struct sock *s = sk;
548 	unsigned short hnum = ntohs(loc_port);
549 
550 	sk_nulls_for_each_from(s, node) {
551 		struct inet_sock *inet = inet_sk(s);
552 
553 		if (!net_eq(sock_net(s), net) ||
554 		    udp_sk(s)->udp_port_hash != hnum ||
555 		    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
556 		    (inet->inet_dport != rmt_port && inet->inet_dport) ||
557 		    (inet->inet_rcv_saddr &&
558 		     inet->inet_rcv_saddr != loc_addr) ||
559 		    ipv6_only_sock(s) ||
560 		    (s->sk_bound_dev_if && s->sk_bound_dev_if != dif))
561 			continue;
562 		if (!ip_mc_sf_allow(s, loc_addr, rmt_addr, dif))
563 			continue;
564 		goto found;
565 	}
566 	s = NULL;
567 found:
568 	return s;
569 }
570 
571 /*
572  * This routine is called by the ICMP module when it gets some
573  * sort of error condition.  If err < 0 then the socket should
574  * be closed and the error returned to the user.  If err > 0
575  * it's just the icmp type << 8 | icmp code.
576  * Header points to the ip header of the error packet. We move
577  * on past this. Then (as it used to claim before adjustment)
578  * header points to the first 8 bytes of the udp header.  We need
579  * to find the appropriate port.
580  */
581 
582 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
583 {
584 	struct inet_sock *inet;
585 	const struct iphdr *iph = (const struct iphdr *)skb->data;
586 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
587 	const int type = icmp_hdr(skb)->type;
588 	const int code = icmp_hdr(skb)->code;
589 	struct sock *sk;
590 	int harderr;
591 	int err;
592 	struct net *net = dev_net(skb->dev);
593 
594 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
595 			iph->saddr, uh->source, skb->dev->ifindex, udptable);
596 	if (sk == NULL) {
597 		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
598 		return;	/* No socket for error */
599 	}
600 
601 	err = 0;
602 	harderr = 0;
603 	inet = inet_sk(sk);
604 
605 	switch (type) {
606 	default:
607 	case ICMP_TIME_EXCEEDED:
608 		err = EHOSTUNREACH;
609 		break;
610 	case ICMP_SOURCE_QUENCH:
611 		goto out;
612 	case ICMP_PARAMETERPROB:
613 		err = EPROTO;
614 		harderr = 1;
615 		break;
616 	case ICMP_DEST_UNREACH:
617 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
618 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
619 				err = EMSGSIZE;
620 				harderr = 1;
621 				break;
622 			}
623 			goto out;
624 		}
625 		err = EHOSTUNREACH;
626 		if (code <= NR_ICMP_UNREACH) {
627 			harderr = icmp_err_convert[code].fatal;
628 			err = icmp_err_convert[code].errno;
629 		}
630 		break;
631 	}
632 
633 	/*
634 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
635 	 *	4.1.3.3.
636 	 */
637 	if (!inet->recverr) {
638 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
639 			goto out;
640 	} else
641 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
642 
643 	sk->sk_err = err;
644 	sk->sk_error_report(sk);
645 out:
646 	sock_put(sk);
647 }
648 
649 void udp_err(struct sk_buff *skb, u32 info)
650 {
651 	__udp4_lib_err(skb, info, &udp_table);
652 }
653 
654 /*
655  * Throw away all pending data and cancel the corking. Socket is locked.
656  */
657 void udp_flush_pending_frames(struct sock *sk)
658 {
659 	struct udp_sock *up = udp_sk(sk);
660 
661 	if (up->pending) {
662 		up->len = 0;
663 		up->pending = 0;
664 		ip_flush_pending_frames(sk);
665 	}
666 }
667 EXPORT_SYMBOL(udp_flush_pending_frames);
668 
669 /**
670  * 	udp4_hwcsum  -  handle outgoing HW checksumming
671  * 	@skb: 	sk_buff containing the filled-in UDP header
672  * 	        (checksum field must be zeroed out)
673  *	@src:	source IP address
674  *	@dst:	destination IP address
675  */
676 static void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
677 {
678 	struct udphdr *uh = udp_hdr(skb);
679 	struct sk_buff *frags = skb_shinfo(skb)->frag_list;
680 	int offset = skb_transport_offset(skb);
681 	int len = skb->len - offset;
682 	int hlen = len;
683 	__wsum csum = 0;
684 
685 	if (!frags) {
686 		/*
687 		 * Only one fragment on the socket.
688 		 */
689 		skb->csum_start = skb_transport_header(skb) - skb->head;
690 		skb->csum_offset = offsetof(struct udphdr, check);
691 		uh->check = ~csum_tcpudp_magic(src, dst, len,
692 					       IPPROTO_UDP, 0);
693 	} else {
694 		/*
695 		 * HW-checksum won't work as there are two or more
696 		 * fragments on the socket so that all csums of sk_buffs
697 		 * should be together
698 		 */
699 		do {
700 			csum = csum_add(csum, frags->csum);
701 			hlen -= frags->len;
702 		} while ((frags = frags->next));
703 
704 		csum = skb_checksum(skb, offset, hlen, csum);
705 		skb->ip_summed = CHECKSUM_NONE;
706 
707 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
708 		if (uh->check == 0)
709 			uh->check = CSUM_MANGLED_0;
710 	}
711 }
712 
713 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
714 {
715 	struct sock *sk = skb->sk;
716 	struct inet_sock *inet = inet_sk(sk);
717 	struct udphdr *uh;
718 	int err = 0;
719 	int is_udplite = IS_UDPLITE(sk);
720 	int offset = skb_transport_offset(skb);
721 	int len = skb->len - offset;
722 	__wsum csum = 0;
723 
724 	/*
725 	 * Create a UDP header
726 	 */
727 	uh = udp_hdr(skb);
728 	uh->source = inet->inet_sport;
729 	uh->dest = fl4->fl4_dport;
730 	uh->len = htons(len);
731 	uh->check = 0;
732 
733 	if (is_udplite)  				 /*     UDP-Lite      */
734 		csum = udplite_csum(skb);
735 
736 	else if (sk->sk_no_check == UDP_CSUM_NOXMIT) {   /* UDP csum disabled */
737 
738 		skb->ip_summed = CHECKSUM_NONE;
739 		goto send;
740 
741 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
742 
743 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
744 		goto send;
745 
746 	} else
747 		csum = udp_csum(skb);
748 
749 	/* add protocol-dependent pseudo-header */
750 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
751 				      sk->sk_protocol, csum);
752 	if (uh->check == 0)
753 		uh->check = CSUM_MANGLED_0;
754 
755 send:
756 	err = ip_send_skb(skb);
757 	if (err) {
758 		if (err == -ENOBUFS && !inet->recverr) {
759 			UDP_INC_STATS_USER(sock_net(sk),
760 					   UDP_MIB_SNDBUFERRORS, is_udplite);
761 			err = 0;
762 		}
763 	} else
764 		UDP_INC_STATS_USER(sock_net(sk),
765 				   UDP_MIB_OUTDATAGRAMS, is_udplite);
766 	return err;
767 }
768 
769 /*
770  * Push out all pending data as one UDP datagram. Socket is locked.
771  */
772 static int udp_push_pending_frames(struct sock *sk)
773 {
774 	struct udp_sock  *up = udp_sk(sk);
775 	struct inet_sock *inet = inet_sk(sk);
776 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
777 	struct sk_buff *skb;
778 	int err = 0;
779 
780 	skb = ip_finish_skb(sk, fl4);
781 	if (!skb)
782 		goto out;
783 
784 	err = udp_send_skb(skb, fl4);
785 
786 out:
787 	up->len = 0;
788 	up->pending = 0;
789 	return err;
790 }
791 
792 int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
793 		size_t len)
794 {
795 	struct inet_sock *inet = inet_sk(sk);
796 	struct udp_sock *up = udp_sk(sk);
797 	struct flowi4 fl4_stack;
798 	struct flowi4 *fl4;
799 	int ulen = len;
800 	struct ipcm_cookie ipc;
801 	struct rtable *rt = NULL;
802 	int free = 0;
803 	int connected = 0;
804 	__be32 daddr, faddr, saddr;
805 	__be16 dport;
806 	u8  tos;
807 	int err, is_udplite = IS_UDPLITE(sk);
808 	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
809 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
810 	struct sk_buff *skb;
811 	struct ip_options_data opt_copy;
812 
813 	if (len > 0xFFFF)
814 		return -EMSGSIZE;
815 
816 	/*
817 	 *	Check the flags.
818 	 */
819 
820 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
821 		return -EOPNOTSUPP;
822 
823 	ipc.opt = NULL;
824 	ipc.tx_flags = 0;
825 
826 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
827 
828 	fl4 = &inet->cork.fl.u.ip4;
829 	if (up->pending) {
830 		/*
831 		 * There are pending frames.
832 		 * The socket lock must be held while it's corked.
833 		 */
834 		lock_sock(sk);
835 		if (likely(up->pending)) {
836 			if (unlikely(up->pending != AF_INET)) {
837 				release_sock(sk);
838 				return -EINVAL;
839 			}
840 			goto do_append_data;
841 		}
842 		release_sock(sk);
843 	}
844 	ulen += sizeof(struct udphdr);
845 
846 	/*
847 	 *	Get and verify the address.
848 	 */
849 	if (msg->msg_name) {
850 		struct sockaddr_in *usin = (struct sockaddr_in *)msg->msg_name;
851 		if (msg->msg_namelen < sizeof(*usin))
852 			return -EINVAL;
853 		if (usin->sin_family != AF_INET) {
854 			if (usin->sin_family != AF_UNSPEC)
855 				return -EAFNOSUPPORT;
856 		}
857 
858 		daddr = usin->sin_addr.s_addr;
859 		dport = usin->sin_port;
860 		if (dport == 0)
861 			return -EINVAL;
862 	} else {
863 		if (sk->sk_state != TCP_ESTABLISHED)
864 			return -EDESTADDRREQ;
865 		daddr = inet->inet_daddr;
866 		dport = inet->inet_dport;
867 		/* Open fast path for connected socket.
868 		   Route will not be used, if at least one option is set.
869 		 */
870 		connected = 1;
871 	}
872 	ipc.addr = inet->inet_saddr;
873 
874 	ipc.oif = sk->sk_bound_dev_if;
875 	err = sock_tx_timestamp(sk, &ipc.tx_flags);
876 	if (err)
877 		return err;
878 	if (msg->msg_controllen) {
879 		err = ip_cmsg_send(sock_net(sk), msg, &ipc);
880 		if (err)
881 			return err;
882 		if (ipc.opt)
883 			free = 1;
884 		connected = 0;
885 	}
886 	if (!ipc.opt) {
887 		struct ip_options_rcu *inet_opt;
888 
889 		rcu_read_lock();
890 		inet_opt = rcu_dereference(inet->inet_opt);
891 		if (inet_opt) {
892 			memcpy(&opt_copy, inet_opt,
893 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
894 			ipc.opt = &opt_copy.opt;
895 		}
896 		rcu_read_unlock();
897 	}
898 
899 	saddr = ipc.addr;
900 	ipc.addr = faddr = daddr;
901 
902 	if (ipc.opt && ipc.opt->opt.srr) {
903 		if (!daddr)
904 			return -EINVAL;
905 		faddr = ipc.opt->opt.faddr;
906 		connected = 0;
907 	}
908 	tos = RT_TOS(inet->tos);
909 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
910 	    (msg->msg_flags & MSG_DONTROUTE) ||
911 	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
912 		tos |= RTO_ONLINK;
913 		connected = 0;
914 	}
915 
916 	if (ipv4_is_multicast(daddr)) {
917 		if (!ipc.oif)
918 			ipc.oif = inet->mc_index;
919 		if (!saddr)
920 			saddr = inet->mc_addr;
921 		connected = 0;
922 	} else if (!ipc.oif)
923 		ipc.oif = inet->uc_index;
924 
925 	if (connected)
926 		rt = (struct rtable *)sk_dst_check(sk, 0);
927 
928 	if (rt == NULL) {
929 		struct net *net = sock_net(sk);
930 
931 		fl4 = &fl4_stack;
932 		flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
933 				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
934 				   inet_sk_flowi_flags(sk)|FLOWI_FLAG_CAN_SLEEP,
935 				   faddr, saddr, dport, inet->inet_sport);
936 
937 		security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
938 		rt = ip_route_output_flow(net, fl4, sk);
939 		if (IS_ERR(rt)) {
940 			err = PTR_ERR(rt);
941 			rt = NULL;
942 			if (err == -ENETUNREACH)
943 				IP_INC_STATS_BH(net, IPSTATS_MIB_OUTNOROUTES);
944 			goto out;
945 		}
946 
947 		err = -EACCES;
948 		if ((rt->rt_flags & RTCF_BROADCAST) &&
949 		    !sock_flag(sk, SOCK_BROADCAST))
950 			goto out;
951 		if (connected)
952 			sk_dst_set(sk, dst_clone(&rt->dst));
953 	}
954 
955 	if (msg->msg_flags&MSG_CONFIRM)
956 		goto do_confirm;
957 back_from_confirm:
958 
959 	saddr = fl4->saddr;
960 	if (!ipc.addr)
961 		daddr = ipc.addr = fl4->daddr;
962 
963 	/* Lockless fast path for the non-corking case. */
964 	if (!corkreq) {
965 		skb = ip_make_skb(sk, fl4, getfrag, msg->msg_iov, ulen,
966 				  sizeof(struct udphdr), &ipc, &rt,
967 				  msg->msg_flags);
968 		err = PTR_ERR(skb);
969 		if (skb && !IS_ERR(skb))
970 			err = udp_send_skb(skb, fl4);
971 		goto out;
972 	}
973 
974 	lock_sock(sk);
975 	if (unlikely(up->pending)) {
976 		/* The socket is already corked while preparing it. */
977 		/* ... which is an evident application bug. --ANK */
978 		release_sock(sk);
979 
980 		LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("cork app bug 2\n"));
981 		err = -EINVAL;
982 		goto out;
983 	}
984 	/*
985 	 *	Now cork the socket to pend data.
986 	 */
987 	fl4 = &inet->cork.fl.u.ip4;
988 	fl4->daddr = daddr;
989 	fl4->saddr = saddr;
990 	fl4->fl4_dport = dport;
991 	fl4->fl4_sport = inet->inet_sport;
992 	up->pending = AF_INET;
993 
994 do_append_data:
995 	up->len += ulen;
996 	err = ip_append_data(sk, fl4, getfrag, msg->msg_iov, ulen,
997 			     sizeof(struct udphdr), &ipc, &rt,
998 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
999 	if (err)
1000 		udp_flush_pending_frames(sk);
1001 	else if (!corkreq)
1002 		err = udp_push_pending_frames(sk);
1003 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1004 		up->pending = 0;
1005 	release_sock(sk);
1006 
1007 out:
1008 	ip_rt_put(rt);
1009 	if (free)
1010 		kfree(ipc.opt);
1011 	if (!err)
1012 		return len;
1013 	/*
1014 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1015 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1016 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1017 	 * things).  We could add another new stat but at least for now that
1018 	 * seems like overkill.
1019 	 */
1020 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1021 		UDP_INC_STATS_USER(sock_net(sk),
1022 				UDP_MIB_SNDBUFERRORS, is_udplite);
1023 	}
1024 	return err;
1025 
1026 do_confirm:
1027 	dst_confirm(&rt->dst);
1028 	if (!(msg->msg_flags&MSG_PROBE) || len)
1029 		goto back_from_confirm;
1030 	err = 0;
1031 	goto out;
1032 }
1033 EXPORT_SYMBOL(udp_sendmsg);
1034 
1035 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1036 		 size_t size, int flags)
1037 {
1038 	struct inet_sock *inet = inet_sk(sk);
1039 	struct udp_sock *up = udp_sk(sk);
1040 	int ret;
1041 
1042 	if (!up->pending) {
1043 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1044 
1045 		/* Call udp_sendmsg to specify destination address which
1046 		 * sendpage interface can't pass.
1047 		 * This will succeed only when the socket is connected.
1048 		 */
1049 		ret = udp_sendmsg(NULL, sk, &msg, 0);
1050 		if (ret < 0)
1051 			return ret;
1052 	}
1053 
1054 	lock_sock(sk);
1055 
1056 	if (unlikely(!up->pending)) {
1057 		release_sock(sk);
1058 
1059 		LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("udp cork app bug 3\n"));
1060 		return -EINVAL;
1061 	}
1062 
1063 	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1064 			     page, offset, size, flags);
1065 	if (ret == -EOPNOTSUPP) {
1066 		release_sock(sk);
1067 		return sock_no_sendpage(sk->sk_socket, page, offset,
1068 					size, flags);
1069 	}
1070 	if (ret < 0) {
1071 		udp_flush_pending_frames(sk);
1072 		goto out;
1073 	}
1074 
1075 	up->len += size;
1076 	if (!(up->corkflag || (flags&MSG_MORE)))
1077 		ret = udp_push_pending_frames(sk);
1078 	if (!ret)
1079 		ret = size;
1080 out:
1081 	release_sock(sk);
1082 	return ret;
1083 }
1084 
1085 
1086 /**
1087  *	first_packet_length	- return length of first packet in receive queue
1088  *	@sk: socket
1089  *
1090  *	Drops all bad checksum frames, until a valid one is found.
1091  *	Returns the length of found skb, or 0 if none is found.
1092  */
1093 static unsigned int first_packet_length(struct sock *sk)
1094 {
1095 	struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue;
1096 	struct sk_buff *skb;
1097 	unsigned int res;
1098 
1099 	__skb_queue_head_init(&list_kill);
1100 
1101 	spin_lock_bh(&rcvq->lock);
1102 	while ((skb = skb_peek(rcvq)) != NULL &&
1103 		udp_lib_checksum_complete(skb)) {
1104 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1105 				 IS_UDPLITE(sk));
1106 		atomic_inc(&sk->sk_drops);
1107 		__skb_unlink(skb, rcvq);
1108 		__skb_queue_tail(&list_kill, skb);
1109 	}
1110 	res = skb ? skb->len : 0;
1111 	spin_unlock_bh(&rcvq->lock);
1112 
1113 	if (!skb_queue_empty(&list_kill)) {
1114 		bool slow = lock_sock_fast(sk);
1115 
1116 		__skb_queue_purge(&list_kill);
1117 		sk_mem_reclaim_partial(sk);
1118 		unlock_sock_fast(sk, slow);
1119 	}
1120 	return res;
1121 }
1122 
1123 /*
1124  *	IOCTL requests applicable to the UDP protocol
1125  */
1126 
1127 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1128 {
1129 	switch (cmd) {
1130 	case SIOCOUTQ:
1131 	{
1132 		int amount = sk_wmem_alloc_get(sk);
1133 
1134 		return put_user(amount, (int __user *)arg);
1135 	}
1136 
1137 	case SIOCINQ:
1138 	{
1139 		unsigned int amount = first_packet_length(sk);
1140 
1141 		if (amount)
1142 			/*
1143 			 * We will only return the amount
1144 			 * of this packet since that is all
1145 			 * that will be read.
1146 			 */
1147 			amount -= sizeof(struct udphdr);
1148 
1149 		return put_user(amount, (int __user *)arg);
1150 	}
1151 
1152 	default:
1153 		return -ENOIOCTLCMD;
1154 	}
1155 
1156 	return 0;
1157 }
1158 EXPORT_SYMBOL(udp_ioctl);
1159 
1160 /*
1161  * 	This should be easy, if there is something there we
1162  * 	return it, otherwise we block.
1163  */
1164 
1165 int udp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1166 		size_t len, int noblock, int flags, int *addr_len)
1167 {
1168 	struct inet_sock *inet = inet_sk(sk);
1169 	struct sockaddr_in *sin = (struct sockaddr_in *)msg->msg_name;
1170 	struct sk_buff *skb;
1171 	unsigned int ulen, copied;
1172 	int peeked, off = 0;
1173 	int err;
1174 	int is_udplite = IS_UDPLITE(sk);
1175 	bool slow;
1176 
1177 	/*
1178 	 *	Check any passed addresses
1179 	 */
1180 	if (addr_len)
1181 		*addr_len = sizeof(*sin);
1182 
1183 	if (flags & MSG_ERRQUEUE)
1184 		return ip_recv_error(sk, msg, len);
1185 
1186 try_again:
1187 	skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
1188 				  &peeked, &off, &err);
1189 	if (!skb)
1190 		goto out;
1191 
1192 	ulen = skb->len - sizeof(struct udphdr);
1193 	copied = len;
1194 	if (copied > ulen)
1195 		copied = ulen;
1196 	else if (copied < ulen)
1197 		msg->msg_flags |= MSG_TRUNC;
1198 
1199 	/*
1200 	 * If checksum is needed at all, try to do it while copying the
1201 	 * data.  If the data is truncated, or if we only want a partial
1202 	 * coverage checksum (UDP-Lite), do it before the copy.
1203 	 */
1204 
1205 	if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) {
1206 		if (udp_lib_checksum_complete(skb))
1207 			goto csum_copy_err;
1208 	}
1209 
1210 	if (skb_csum_unnecessary(skb))
1211 		err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr),
1212 					      msg->msg_iov, copied);
1213 	else {
1214 		err = skb_copy_and_csum_datagram_iovec(skb,
1215 						       sizeof(struct udphdr),
1216 						       msg->msg_iov);
1217 
1218 		if (err == -EINVAL)
1219 			goto csum_copy_err;
1220 	}
1221 
1222 	if (err)
1223 		goto out_free;
1224 
1225 	if (!peeked)
1226 		UDP_INC_STATS_USER(sock_net(sk),
1227 				UDP_MIB_INDATAGRAMS, is_udplite);
1228 
1229 	sock_recv_ts_and_drops(msg, sk, skb);
1230 
1231 	/* Copy the address. */
1232 	if (sin) {
1233 		sin->sin_family = AF_INET;
1234 		sin->sin_port = udp_hdr(skb)->source;
1235 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1236 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1237 	}
1238 	if (inet->cmsg_flags)
1239 		ip_cmsg_recv(msg, skb);
1240 
1241 	err = copied;
1242 	if (flags & MSG_TRUNC)
1243 		err = ulen;
1244 
1245 out_free:
1246 	skb_free_datagram_locked(sk, skb);
1247 out:
1248 	return err;
1249 
1250 csum_copy_err:
1251 	slow = lock_sock_fast(sk);
1252 	if (!skb_kill_datagram(sk, skb, flags))
1253 		UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1254 	unlock_sock_fast(sk, slow);
1255 
1256 	if (noblock)
1257 		return -EAGAIN;
1258 
1259 	/* starting over for a new packet */
1260 	msg->msg_flags &= ~MSG_TRUNC;
1261 	goto try_again;
1262 }
1263 
1264 
1265 int udp_disconnect(struct sock *sk, int flags)
1266 {
1267 	struct inet_sock *inet = inet_sk(sk);
1268 	/*
1269 	 *	1003.1g - break association.
1270 	 */
1271 
1272 	sk->sk_state = TCP_CLOSE;
1273 	inet->inet_daddr = 0;
1274 	inet->inet_dport = 0;
1275 	sock_rps_reset_rxhash(sk);
1276 	sk->sk_bound_dev_if = 0;
1277 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1278 		inet_reset_saddr(sk);
1279 
1280 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1281 		sk->sk_prot->unhash(sk);
1282 		inet->inet_sport = 0;
1283 	}
1284 	sk_dst_reset(sk);
1285 	return 0;
1286 }
1287 EXPORT_SYMBOL(udp_disconnect);
1288 
1289 void udp_lib_unhash(struct sock *sk)
1290 {
1291 	if (sk_hashed(sk)) {
1292 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1293 		struct udp_hslot *hslot, *hslot2;
1294 
1295 		hslot  = udp_hashslot(udptable, sock_net(sk),
1296 				      udp_sk(sk)->udp_port_hash);
1297 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1298 
1299 		spin_lock_bh(&hslot->lock);
1300 		if (sk_nulls_del_node_init_rcu(sk)) {
1301 			hslot->count--;
1302 			inet_sk(sk)->inet_num = 0;
1303 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1304 
1305 			spin_lock(&hslot2->lock);
1306 			hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1307 			hslot2->count--;
1308 			spin_unlock(&hslot2->lock);
1309 		}
1310 		spin_unlock_bh(&hslot->lock);
1311 	}
1312 }
1313 EXPORT_SYMBOL(udp_lib_unhash);
1314 
1315 /*
1316  * inet_rcv_saddr was changed, we must rehash secondary hash
1317  */
1318 void udp_lib_rehash(struct sock *sk, u16 newhash)
1319 {
1320 	if (sk_hashed(sk)) {
1321 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1322 		struct udp_hslot *hslot, *hslot2, *nhslot2;
1323 
1324 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1325 		nhslot2 = udp_hashslot2(udptable, newhash);
1326 		udp_sk(sk)->udp_portaddr_hash = newhash;
1327 		if (hslot2 != nhslot2) {
1328 			hslot = udp_hashslot(udptable, sock_net(sk),
1329 					     udp_sk(sk)->udp_port_hash);
1330 			/* we must lock primary chain too */
1331 			spin_lock_bh(&hslot->lock);
1332 
1333 			spin_lock(&hslot2->lock);
1334 			hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1335 			hslot2->count--;
1336 			spin_unlock(&hslot2->lock);
1337 
1338 			spin_lock(&nhslot2->lock);
1339 			hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1340 						 &nhslot2->head);
1341 			nhslot2->count++;
1342 			spin_unlock(&nhslot2->lock);
1343 
1344 			spin_unlock_bh(&hslot->lock);
1345 		}
1346 	}
1347 }
1348 EXPORT_SYMBOL(udp_lib_rehash);
1349 
1350 static void udp_v4_rehash(struct sock *sk)
1351 {
1352 	u16 new_hash = udp4_portaddr_hash(sock_net(sk),
1353 					  inet_sk(sk)->inet_rcv_saddr,
1354 					  inet_sk(sk)->inet_num);
1355 	udp_lib_rehash(sk, new_hash);
1356 }
1357 
1358 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1359 {
1360 	int rc;
1361 
1362 	if (inet_sk(sk)->inet_daddr)
1363 		sock_rps_save_rxhash(sk, skb);
1364 
1365 	rc = sock_queue_rcv_skb(sk, skb);
1366 	if (rc < 0) {
1367 		int is_udplite = IS_UDPLITE(sk);
1368 
1369 		/* Note that an ENOMEM error is charged twice */
1370 		if (rc == -ENOMEM)
1371 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1372 					 is_udplite);
1373 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1374 		kfree_skb(skb);
1375 		trace_udp_fail_queue_rcv_skb(rc, sk);
1376 		return -1;
1377 	}
1378 
1379 	return 0;
1380 
1381 }
1382 
1383 static struct static_key udp_encap_needed __read_mostly;
1384 void udp_encap_enable(void)
1385 {
1386 	if (!static_key_enabled(&udp_encap_needed))
1387 		static_key_slow_inc(&udp_encap_needed);
1388 }
1389 EXPORT_SYMBOL(udp_encap_enable);
1390 
1391 /* returns:
1392  *  -1: error
1393  *   0: success
1394  *  >0: "udp encap" protocol resubmission
1395  *
1396  * Note that in the success and error cases, the skb is assumed to
1397  * have either been requeued or freed.
1398  */
1399 int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1400 {
1401 	struct udp_sock *up = udp_sk(sk);
1402 	int rc;
1403 	int is_udplite = IS_UDPLITE(sk);
1404 
1405 	/*
1406 	 *	Charge it to the socket, dropping if the queue is full.
1407 	 */
1408 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1409 		goto drop;
1410 	nf_reset(skb);
1411 
1412 	if (static_key_false(&udp_encap_needed) && up->encap_type) {
1413 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1414 
1415 		/*
1416 		 * This is an encapsulation socket so pass the skb to
1417 		 * the socket's udp_encap_rcv() hook. Otherwise, just
1418 		 * fall through and pass this up the UDP socket.
1419 		 * up->encap_rcv() returns the following value:
1420 		 * =0 if skb was successfully passed to the encap
1421 		 *    handler or was discarded by it.
1422 		 * >0 if skb should be passed on to UDP.
1423 		 * <0 if skb should be resubmitted as proto -N
1424 		 */
1425 
1426 		/* if we're overly short, let UDP handle it */
1427 		encap_rcv = ACCESS_ONCE(up->encap_rcv);
1428 		if (skb->len > sizeof(struct udphdr) && encap_rcv != NULL) {
1429 			int ret;
1430 
1431 			ret = encap_rcv(sk, skb);
1432 			if (ret <= 0) {
1433 				UDP_INC_STATS_BH(sock_net(sk),
1434 						 UDP_MIB_INDATAGRAMS,
1435 						 is_udplite);
1436 				return -ret;
1437 			}
1438 		}
1439 
1440 		/* FALLTHROUGH -- it's a UDP Packet */
1441 	}
1442 
1443 	/*
1444 	 * 	UDP-Lite specific tests, ignored on UDP sockets
1445 	 */
1446 	if ((is_udplite & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
1447 
1448 		/*
1449 		 * MIB statistics other than incrementing the error count are
1450 		 * disabled for the following two types of errors: these depend
1451 		 * on the application settings, not on the functioning of the
1452 		 * protocol stack as such.
1453 		 *
1454 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
1455 		 * way ... to ... at least let the receiving application block
1456 		 * delivery of packets with coverage values less than a value
1457 		 * provided by the application."
1458 		 */
1459 		if (up->pcrlen == 0) {          /* full coverage was set  */
1460 			LIMIT_NETDEBUG(KERN_WARNING "UDPLite: partial coverage %d while full coverage %d requested\n",
1461 				       UDP_SKB_CB(skb)->cscov, skb->len);
1462 			goto drop;
1463 		}
1464 		/* The next case involves violating the min. coverage requested
1465 		 * by the receiver. This is subtle: if receiver wants x and x is
1466 		 * greater than the buffersize/MTU then receiver will complain
1467 		 * that it wants x while sender emits packets of smaller size y.
1468 		 * Therefore the above ...()->partial_cov statement is essential.
1469 		 */
1470 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
1471 			LIMIT_NETDEBUG(KERN_WARNING "UDPLite: coverage %d too small, need min %d\n",
1472 				       UDP_SKB_CB(skb)->cscov, up->pcrlen);
1473 			goto drop;
1474 		}
1475 	}
1476 
1477 	if (rcu_access_pointer(sk->sk_filter) &&
1478 	    udp_lib_checksum_complete(skb))
1479 		goto drop;
1480 
1481 
1482 	if (sk_rcvqueues_full(sk, skb, sk->sk_rcvbuf))
1483 		goto drop;
1484 
1485 	rc = 0;
1486 
1487 	ipv4_pktinfo_prepare(skb);
1488 	bh_lock_sock(sk);
1489 	if (!sock_owned_by_user(sk))
1490 		rc = __udp_queue_rcv_skb(sk, skb);
1491 	else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
1492 		bh_unlock_sock(sk);
1493 		goto drop;
1494 	}
1495 	bh_unlock_sock(sk);
1496 
1497 	return rc;
1498 
1499 drop:
1500 	UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1501 	atomic_inc(&sk->sk_drops);
1502 	kfree_skb(skb);
1503 	return -1;
1504 }
1505 
1506 
1507 static void flush_stack(struct sock **stack, unsigned int count,
1508 			struct sk_buff *skb, unsigned int final)
1509 {
1510 	unsigned int i;
1511 	struct sk_buff *skb1 = NULL;
1512 	struct sock *sk;
1513 
1514 	for (i = 0; i < count; i++) {
1515 		sk = stack[i];
1516 		if (likely(skb1 == NULL))
1517 			skb1 = (i == final) ? skb : skb_clone(skb, GFP_ATOMIC);
1518 
1519 		if (!skb1) {
1520 			atomic_inc(&sk->sk_drops);
1521 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1522 					 IS_UDPLITE(sk));
1523 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1524 					 IS_UDPLITE(sk));
1525 		}
1526 
1527 		if (skb1 && udp_queue_rcv_skb(sk, skb1) <= 0)
1528 			skb1 = NULL;
1529 	}
1530 	if (unlikely(skb1))
1531 		kfree_skb(skb1);
1532 }
1533 
1534 /*
1535  *	Multicasts and broadcasts go to each listener.
1536  *
1537  *	Note: called only from the BH handler context.
1538  */
1539 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1540 				    struct udphdr  *uh,
1541 				    __be32 saddr, __be32 daddr,
1542 				    struct udp_table *udptable)
1543 {
1544 	struct sock *sk, *stack[256 / sizeof(struct sock *)];
1545 	struct udp_hslot *hslot = udp_hashslot(udptable, net, ntohs(uh->dest));
1546 	int dif;
1547 	unsigned int i, count = 0;
1548 
1549 	spin_lock(&hslot->lock);
1550 	sk = sk_nulls_head(&hslot->head);
1551 	dif = skb->dev->ifindex;
1552 	sk = udp_v4_mcast_next(net, sk, uh->dest, daddr, uh->source, saddr, dif);
1553 	while (sk) {
1554 		stack[count++] = sk;
1555 		sk = udp_v4_mcast_next(net, sk_nulls_next(sk), uh->dest,
1556 				       daddr, uh->source, saddr, dif);
1557 		if (unlikely(count == ARRAY_SIZE(stack))) {
1558 			if (!sk)
1559 				break;
1560 			flush_stack(stack, count, skb, ~0);
1561 			count = 0;
1562 		}
1563 	}
1564 	/*
1565 	 * before releasing chain lock, we must take a reference on sockets
1566 	 */
1567 	for (i = 0; i < count; i++)
1568 		sock_hold(stack[i]);
1569 
1570 	spin_unlock(&hslot->lock);
1571 
1572 	/*
1573 	 * do the slow work with no lock held
1574 	 */
1575 	if (count) {
1576 		flush_stack(stack, count, skb, count - 1);
1577 
1578 		for (i = 0; i < count; i++)
1579 			sock_put(stack[i]);
1580 	} else {
1581 		kfree_skb(skb);
1582 	}
1583 	return 0;
1584 }
1585 
1586 /* Initialize UDP checksum. If exited with zero value (success),
1587  * CHECKSUM_UNNECESSARY means, that no more checks are required.
1588  * Otherwise, csum completion requires chacksumming packet body,
1589  * including udp header and folding it to skb->csum.
1590  */
1591 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1592 				 int proto)
1593 {
1594 	const struct iphdr *iph;
1595 	int err;
1596 
1597 	UDP_SKB_CB(skb)->partial_cov = 0;
1598 	UDP_SKB_CB(skb)->cscov = skb->len;
1599 
1600 	if (proto == IPPROTO_UDPLITE) {
1601 		err = udplite_checksum_init(skb, uh);
1602 		if (err)
1603 			return err;
1604 	}
1605 
1606 	iph = ip_hdr(skb);
1607 	if (uh->check == 0) {
1608 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1609 	} else if (skb->ip_summed == CHECKSUM_COMPLETE) {
1610 		if (!csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
1611 				      proto, skb->csum))
1612 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1613 	}
1614 	if (!skb_csum_unnecessary(skb))
1615 		skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1616 					       skb->len, proto, 0);
1617 	/* Probably, we should checksum udp header (it should be in cache
1618 	 * in any case) and data in tiny packets (< rx copybreak).
1619 	 */
1620 
1621 	return 0;
1622 }
1623 
1624 /*
1625  *	All we need to do is get the socket, and then do a checksum.
1626  */
1627 
1628 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
1629 		   int proto)
1630 {
1631 	struct sock *sk;
1632 	struct udphdr *uh;
1633 	unsigned short ulen;
1634 	struct rtable *rt = skb_rtable(skb);
1635 	__be32 saddr, daddr;
1636 	struct net *net = dev_net(skb->dev);
1637 
1638 	/*
1639 	 *  Validate the packet.
1640 	 */
1641 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1642 		goto drop;		/* No space for header. */
1643 
1644 	uh   = udp_hdr(skb);
1645 	ulen = ntohs(uh->len);
1646 	saddr = ip_hdr(skb)->saddr;
1647 	daddr = ip_hdr(skb)->daddr;
1648 
1649 	if (ulen > skb->len)
1650 		goto short_packet;
1651 
1652 	if (proto == IPPROTO_UDP) {
1653 		/* UDP validates ulen. */
1654 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1655 			goto short_packet;
1656 		uh = udp_hdr(skb);
1657 	}
1658 
1659 	if (udp4_csum_init(skb, uh, proto))
1660 		goto csum_error;
1661 
1662 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1663 		return __udp4_lib_mcast_deliver(net, skb, uh,
1664 				saddr, daddr, udptable);
1665 
1666 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
1667 
1668 	if (sk != NULL) {
1669 		int ret = udp_queue_rcv_skb(sk, skb);
1670 		sock_put(sk);
1671 
1672 		/* a return value > 0 means to resubmit the input, but
1673 		 * it wants the return to be -protocol, or 0
1674 		 */
1675 		if (ret > 0)
1676 			return -ret;
1677 		return 0;
1678 	}
1679 
1680 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1681 		goto drop;
1682 	nf_reset(skb);
1683 
1684 	/* No socket. Drop packet silently, if checksum is wrong */
1685 	if (udp_lib_checksum_complete(skb))
1686 		goto csum_error;
1687 
1688 	UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1689 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1690 
1691 	/*
1692 	 * Hmm.  We got an UDP packet to a port to which we
1693 	 * don't wanna listen.  Ignore it.
1694 	 */
1695 	kfree_skb(skb);
1696 	return 0;
1697 
1698 short_packet:
1699 	LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
1700 		       proto == IPPROTO_UDPLITE ? "Lite" : "",
1701 		       &saddr, ntohs(uh->source),
1702 		       ulen, skb->len,
1703 		       &daddr, ntohs(uh->dest));
1704 	goto drop;
1705 
1706 csum_error:
1707 	/*
1708 	 * RFC1122: OK.  Discards the bad packet silently (as far as
1709 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1710 	 */
1711 	LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
1712 		       proto == IPPROTO_UDPLITE ? "Lite" : "",
1713 		       &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
1714 		       ulen);
1715 drop:
1716 	UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1717 	kfree_skb(skb);
1718 	return 0;
1719 }
1720 
1721 int udp_rcv(struct sk_buff *skb)
1722 {
1723 	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
1724 }
1725 
1726 void udp_destroy_sock(struct sock *sk)
1727 {
1728 	bool slow = lock_sock_fast(sk);
1729 	udp_flush_pending_frames(sk);
1730 	unlock_sock_fast(sk, slow);
1731 }
1732 
1733 /*
1734  *	Socket option code for UDP
1735  */
1736 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
1737 		       char __user *optval, unsigned int optlen,
1738 		       int (*push_pending_frames)(struct sock *))
1739 {
1740 	struct udp_sock *up = udp_sk(sk);
1741 	int val;
1742 	int err = 0;
1743 	int is_udplite = IS_UDPLITE(sk);
1744 
1745 	if (optlen < sizeof(int))
1746 		return -EINVAL;
1747 
1748 	if (get_user(val, (int __user *)optval))
1749 		return -EFAULT;
1750 
1751 	switch (optname) {
1752 	case UDP_CORK:
1753 		if (val != 0) {
1754 			up->corkflag = 1;
1755 		} else {
1756 			up->corkflag = 0;
1757 			lock_sock(sk);
1758 			(*push_pending_frames)(sk);
1759 			release_sock(sk);
1760 		}
1761 		break;
1762 
1763 	case UDP_ENCAP:
1764 		switch (val) {
1765 		case 0:
1766 		case UDP_ENCAP_ESPINUDP:
1767 		case UDP_ENCAP_ESPINUDP_NON_IKE:
1768 			up->encap_rcv = xfrm4_udp_encap_rcv;
1769 			/* FALLTHROUGH */
1770 		case UDP_ENCAP_L2TPINUDP:
1771 			up->encap_type = val;
1772 			udp_encap_enable();
1773 			break;
1774 		default:
1775 			err = -ENOPROTOOPT;
1776 			break;
1777 		}
1778 		break;
1779 
1780 	/*
1781 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
1782 	 */
1783 	/* The sender sets actual checksum coverage length via this option.
1784 	 * The case coverage > packet length is handled by send module. */
1785 	case UDPLITE_SEND_CSCOV:
1786 		if (!is_udplite)         /* Disable the option on UDP sockets */
1787 			return -ENOPROTOOPT;
1788 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
1789 			val = 8;
1790 		else if (val > USHRT_MAX)
1791 			val = USHRT_MAX;
1792 		up->pcslen = val;
1793 		up->pcflag |= UDPLITE_SEND_CC;
1794 		break;
1795 
1796 	/* The receiver specifies a minimum checksum coverage value. To make
1797 	 * sense, this should be set to at least 8 (as done below). If zero is
1798 	 * used, this again means full checksum coverage.                     */
1799 	case UDPLITE_RECV_CSCOV:
1800 		if (!is_udplite)         /* Disable the option on UDP sockets */
1801 			return -ENOPROTOOPT;
1802 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
1803 			val = 8;
1804 		else if (val > USHRT_MAX)
1805 			val = USHRT_MAX;
1806 		up->pcrlen = val;
1807 		up->pcflag |= UDPLITE_RECV_CC;
1808 		break;
1809 
1810 	default:
1811 		err = -ENOPROTOOPT;
1812 		break;
1813 	}
1814 
1815 	return err;
1816 }
1817 EXPORT_SYMBOL(udp_lib_setsockopt);
1818 
1819 int udp_setsockopt(struct sock *sk, int level, int optname,
1820 		   char __user *optval, unsigned int optlen)
1821 {
1822 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1823 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1824 					  udp_push_pending_frames);
1825 	return ip_setsockopt(sk, level, optname, optval, optlen);
1826 }
1827 
1828 #ifdef CONFIG_COMPAT
1829 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
1830 			  char __user *optval, unsigned int optlen)
1831 {
1832 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1833 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1834 					  udp_push_pending_frames);
1835 	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
1836 }
1837 #endif
1838 
1839 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
1840 		       char __user *optval, int __user *optlen)
1841 {
1842 	struct udp_sock *up = udp_sk(sk);
1843 	int val, len;
1844 
1845 	if (get_user(len, optlen))
1846 		return -EFAULT;
1847 
1848 	len = min_t(unsigned int, len, sizeof(int));
1849 
1850 	if (len < 0)
1851 		return -EINVAL;
1852 
1853 	switch (optname) {
1854 	case UDP_CORK:
1855 		val = up->corkflag;
1856 		break;
1857 
1858 	case UDP_ENCAP:
1859 		val = up->encap_type;
1860 		break;
1861 
1862 	/* The following two cannot be changed on UDP sockets, the return is
1863 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
1864 	case UDPLITE_SEND_CSCOV:
1865 		val = up->pcslen;
1866 		break;
1867 
1868 	case UDPLITE_RECV_CSCOV:
1869 		val = up->pcrlen;
1870 		break;
1871 
1872 	default:
1873 		return -ENOPROTOOPT;
1874 	}
1875 
1876 	if (put_user(len, optlen))
1877 		return -EFAULT;
1878 	if (copy_to_user(optval, &val, len))
1879 		return -EFAULT;
1880 	return 0;
1881 }
1882 EXPORT_SYMBOL(udp_lib_getsockopt);
1883 
1884 int udp_getsockopt(struct sock *sk, int level, int optname,
1885 		   char __user *optval, int __user *optlen)
1886 {
1887 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1888 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1889 	return ip_getsockopt(sk, level, optname, optval, optlen);
1890 }
1891 
1892 #ifdef CONFIG_COMPAT
1893 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
1894 				 char __user *optval, int __user *optlen)
1895 {
1896 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1897 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1898 	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
1899 }
1900 #endif
1901 /**
1902  * 	udp_poll - wait for a UDP event.
1903  *	@file - file struct
1904  *	@sock - socket
1905  *	@wait - poll table
1906  *
1907  *	This is same as datagram poll, except for the special case of
1908  *	blocking sockets. If application is using a blocking fd
1909  *	and a packet with checksum error is in the queue;
1910  *	then it could get return from select indicating data available
1911  *	but then block when reading it. Add special case code
1912  *	to work around these arguably broken applications.
1913  */
1914 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
1915 {
1916 	unsigned int mask = datagram_poll(file, sock, wait);
1917 	struct sock *sk = sock->sk;
1918 
1919 	/* Check for false positives due to checksum errors */
1920 	if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
1921 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk))
1922 		mask &= ~(POLLIN | POLLRDNORM);
1923 
1924 	return mask;
1925 
1926 }
1927 EXPORT_SYMBOL(udp_poll);
1928 
1929 struct proto udp_prot = {
1930 	.name		   = "UDP",
1931 	.owner		   = THIS_MODULE,
1932 	.close		   = udp_lib_close,
1933 	.connect	   = ip4_datagram_connect,
1934 	.disconnect	   = udp_disconnect,
1935 	.ioctl		   = udp_ioctl,
1936 	.destroy	   = udp_destroy_sock,
1937 	.setsockopt	   = udp_setsockopt,
1938 	.getsockopt	   = udp_getsockopt,
1939 	.sendmsg	   = udp_sendmsg,
1940 	.recvmsg	   = udp_recvmsg,
1941 	.sendpage	   = udp_sendpage,
1942 	.backlog_rcv	   = __udp_queue_rcv_skb,
1943 	.hash		   = udp_lib_hash,
1944 	.unhash		   = udp_lib_unhash,
1945 	.rehash		   = udp_v4_rehash,
1946 	.get_port	   = udp_v4_get_port,
1947 	.memory_allocated  = &udp_memory_allocated,
1948 	.sysctl_mem	   = sysctl_udp_mem,
1949 	.sysctl_wmem	   = &sysctl_udp_wmem_min,
1950 	.sysctl_rmem	   = &sysctl_udp_rmem_min,
1951 	.obj_size	   = sizeof(struct udp_sock),
1952 	.slab_flags	   = SLAB_DESTROY_BY_RCU,
1953 	.h.udp_table	   = &udp_table,
1954 #ifdef CONFIG_COMPAT
1955 	.compat_setsockopt = compat_udp_setsockopt,
1956 	.compat_getsockopt = compat_udp_getsockopt,
1957 #endif
1958 	.clear_sk	   = sk_prot_clear_portaddr_nulls,
1959 };
1960 EXPORT_SYMBOL(udp_prot);
1961 
1962 /* ------------------------------------------------------------------------ */
1963 #ifdef CONFIG_PROC_FS
1964 
1965 static struct sock *udp_get_first(struct seq_file *seq, int start)
1966 {
1967 	struct sock *sk;
1968 	struct udp_iter_state *state = seq->private;
1969 	struct net *net = seq_file_net(seq);
1970 
1971 	for (state->bucket = start; state->bucket <= state->udp_table->mask;
1972 	     ++state->bucket) {
1973 		struct hlist_nulls_node *node;
1974 		struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
1975 
1976 		if (hlist_nulls_empty(&hslot->head))
1977 			continue;
1978 
1979 		spin_lock_bh(&hslot->lock);
1980 		sk_nulls_for_each(sk, node, &hslot->head) {
1981 			if (!net_eq(sock_net(sk), net))
1982 				continue;
1983 			if (sk->sk_family == state->family)
1984 				goto found;
1985 		}
1986 		spin_unlock_bh(&hslot->lock);
1987 	}
1988 	sk = NULL;
1989 found:
1990 	return sk;
1991 }
1992 
1993 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
1994 {
1995 	struct udp_iter_state *state = seq->private;
1996 	struct net *net = seq_file_net(seq);
1997 
1998 	do {
1999 		sk = sk_nulls_next(sk);
2000 	} while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
2001 
2002 	if (!sk) {
2003 		if (state->bucket <= state->udp_table->mask)
2004 			spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2005 		return udp_get_first(seq, state->bucket + 1);
2006 	}
2007 	return sk;
2008 }
2009 
2010 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2011 {
2012 	struct sock *sk = udp_get_first(seq, 0);
2013 
2014 	if (sk)
2015 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2016 			--pos;
2017 	return pos ? NULL : sk;
2018 }
2019 
2020 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2021 {
2022 	struct udp_iter_state *state = seq->private;
2023 	state->bucket = MAX_UDP_PORTS;
2024 
2025 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2026 }
2027 
2028 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2029 {
2030 	struct sock *sk;
2031 
2032 	if (v == SEQ_START_TOKEN)
2033 		sk = udp_get_idx(seq, 0);
2034 	else
2035 		sk = udp_get_next(seq, v);
2036 
2037 	++*pos;
2038 	return sk;
2039 }
2040 
2041 static void udp_seq_stop(struct seq_file *seq, void *v)
2042 {
2043 	struct udp_iter_state *state = seq->private;
2044 
2045 	if (state->bucket <= state->udp_table->mask)
2046 		spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2047 }
2048 
2049 int udp_seq_open(struct inode *inode, struct file *file)
2050 {
2051 	struct udp_seq_afinfo *afinfo = PDE(inode)->data;
2052 	struct udp_iter_state *s;
2053 	int err;
2054 
2055 	err = seq_open_net(inode, file, &afinfo->seq_ops,
2056 			   sizeof(struct udp_iter_state));
2057 	if (err < 0)
2058 		return err;
2059 
2060 	s = ((struct seq_file *)file->private_data)->private;
2061 	s->family		= afinfo->family;
2062 	s->udp_table		= afinfo->udp_table;
2063 	return err;
2064 }
2065 EXPORT_SYMBOL(udp_seq_open);
2066 
2067 /* ------------------------------------------------------------------------ */
2068 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2069 {
2070 	struct proc_dir_entry *p;
2071 	int rc = 0;
2072 
2073 	afinfo->seq_ops.start		= udp_seq_start;
2074 	afinfo->seq_ops.next		= udp_seq_next;
2075 	afinfo->seq_ops.stop		= udp_seq_stop;
2076 
2077 	p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2078 			     afinfo->seq_fops, afinfo);
2079 	if (!p)
2080 		rc = -ENOMEM;
2081 	return rc;
2082 }
2083 EXPORT_SYMBOL(udp_proc_register);
2084 
2085 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2086 {
2087 	proc_net_remove(net, afinfo->name);
2088 }
2089 EXPORT_SYMBOL(udp_proc_unregister);
2090 
2091 /* ------------------------------------------------------------------------ */
2092 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2093 		int bucket, int *len)
2094 {
2095 	struct inet_sock *inet = inet_sk(sp);
2096 	__be32 dest = inet->inet_daddr;
2097 	__be32 src  = inet->inet_rcv_saddr;
2098 	__u16 destp	  = ntohs(inet->inet_dport);
2099 	__u16 srcp	  = ntohs(inet->inet_sport);
2100 
2101 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2102 		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %lu %d %pK %d%n",
2103 		bucket, src, srcp, dest, destp, sp->sk_state,
2104 		sk_wmem_alloc_get(sp),
2105 		sk_rmem_alloc_get(sp),
2106 		0, 0L, 0, sock_i_uid(sp), 0, sock_i_ino(sp),
2107 		atomic_read(&sp->sk_refcnt), sp,
2108 		atomic_read(&sp->sk_drops), len);
2109 }
2110 
2111 int udp4_seq_show(struct seq_file *seq, void *v)
2112 {
2113 	if (v == SEQ_START_TOKEN)
2114 		seq_printf(seq, "%-127s\n",
2115 			   "  sl  local_address rem_address   st tx_queue "
2116 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2117 			   "inode ref pointer drops");
2118 	else {
2119 		struct udp_iter_state *state = seq->private;
2120 		int len;
2121 
2122 		udp4_format_sock(v, seq, state->bucket, &len);
2123 		seq_printf(seq, "%*s\n", 127 - len, "");
2124 	}
2125 	return 0;
2126 }
2127 
2128 static const struct file_operations udp_afinfo_seq_fops = {
2129 	.owner    = THIS_MODULE,
2130 	.open     = udp_seq_open,
2131 	.read     = seq_read,
2132 	.llseek   = seq_lseek,
2133 	.release  = seq_release_net
2134 };
2135 
2136 /* ------------------------------------------------------------------------ */
2137 static struct udp_seq_afinfo udp4_seq_afinfo = {
2138 	.name		= "udp",
2139 	.family		= AF_INET,
2140 	.udp_table	= &udp_table,
2141 	.seq_fops	= &udp_afinfo_seq_fops,
2142 	.seq_ops	= {
2143 		.show		= udp4_seq_show,
2144 	},
2145 };
2146 
2147 static int __net_init udp4_proc_init_net(struct net *net)
2148 {
2149 	return udp_proc_register(net, &udp4_seq_afinfo);
2150 }
2151 
2152 static void __net_exit udp4_proc_exit_net(struct net *net)
2153 {
2154 	udp_proc_unregister(net, &udp4_seq_afinfo);
2155 }
2156 
2157 static struct pernet_operations udp4_net_ops = {
2158 	.init = udp4_proc_init_net,
2159 	.exit = udp4_proc_exit_net,
2160 };
2161 
2162 int __init udp4_proc_init(void)
2163 {
2164 	return register_pernet_subsys(&udp4_net_ops);
2165 }
2166 
2167 void udp4_proc_exit(void)
2168 {
2169 	unregister_pernet_subsys(&udp4_net_ops);
2170 }
2171 #endif /* CONFIG_PROC_FS */
2172 
2173 static __initdata unsigned long uhash_entries;
2174 static int __init set_uhash_entries(char *str)
2175 {
2176 	if (!str)
2177 		return 0;
2178 	uhash_entries = simple_strtoul(str, &str, 0);
2179 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2180 		uhash_entries = UDP_HTABLE_SIZE_MIN;
2181 	return 1;
2182 }
2183 __setup("uhash_entries=", set_uhash_entries);
2184 
2185 void __init udp_table_init(struct udp_table *table, const char *name)
2186 {
2187 	unsigned int i;
2188 
2189 	if (!CONFIG_BASE_SMALL)
2190 		table->hash = alloc_large_system_hash(name,
2191 			2 * sizeof(struct udp_hslot),
2192 			uhash_entries,
2193 			21, /* one slot per 2 MB */
2194 			0,
2195 			&table->log,
2196 			&table->mask,
2197 			64 * 1024);
2198 	/*
2199 	 * Make sure hash table has the minimum size
2200 	 */
2201 	if (CONFIG_BASE_SMALL || table->mask < UDP_HTABLE_SIZE_MIN - 1) {
2202 		table->hash = kmalloc(UDP_HTABLE_SIZE_MIN *
2203 				      2 * sizeof(struct udp_hslot), GFP_KERNEL);
2204 		if (!table->hash)
2205 			panic(name);
2206 		table->log = ilog2(UDP_HTABLE_SIZE_MIN);
2207 		table->mask = UDP_HTABLE_SIZE_MIN - 1;
2208 	}
2209 	table->hash2 = table->hash + (table->mask + 1);
2210 	for (i = 0; i <= table->mask; i++) {
2211 		INIT_HLIST_NULLS_HEAD(&table->hash[i].head, i);
2212 		table->hash[i].count = 0;
2213 		spin_lock_init(&table->hash[i].lock);
2214 	}
2215 	for (i = 0; i <= table->mask; i++) {
2216 		INIT_HLIST_NULLS_HEAD(&table->hash2[i].head, i);
2217 		table->hash2[i].count = 0;
2218 		spin_lock_init(&table->hash2[i].lock);
2219 	}
2220 }
2221 
2222 void __init udp_init(void)
2223 {
2224 	unsigned long limit;
2225 
2226 	udp_table_init(&udp_table, "UDP");
2227 	limit = nr_free_buffer_pages() / 8;
2228 	limit = max(limit, 128UL);
2229 	sysctl_udp_mem[0] = limit / 4 * 3;
2230 	sysctl_udp_mem[1] = limit;
2231 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2232 
2233 	sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2234 	sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2235 }
2236 
2237 int udp4_ufo_send_check(struct sk_buff *skb)
2238 {
2239 	const struct iphdr *iph;
2240 	struct udphdr *uh;
2241 
2242 	if (!pskb_may_pull(skb, sizeof(*uh)))
2243 		return -EINVAL;
2244 
2245 	iph = ip_hdr(skb);
2246 	uh = udp_hdr(skb);
2247 
2248 	uh->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
2249 				       IPPROTO_UDP, 0);
2250 	skb->csum_start = skb_transport_header(skb) - skb->head;
2251 	skb->csum_offset = offsetof(struct udphdr, check);
2252 	skb->ip_summed = CHECKSUM_PARTIAL;
2253 	return 0;
2254 }
2255 
2256 struct sk_buff *udp4_ufo_fragment(struct sk_buff *skb,
2257 	netdev_features_t features)
2258 {
2259 	struct sk_buff *segs = ERR_PTR(-EINVAL);
2260 	unsigned int mss;
2261 	int offset;
2262 	__wsum csum;
2263 
2264 	mss = skb_shinfo(skb)->gso_size;
2265 	if (unlikely(skb->len <= mss))
2266 		goto out;
2267 
2268 	if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
2269 		/* Packet is from an untrusted source, reset gso_segs. */
2270 		int type = skb_shinfo(skb)->gso_type;
2271 
2272 		if (unlikely(type & ~(SKB_GSO_UDP | SKB_GSO_DODGY) ||
2273 			     !(type & (SKB_GSO_UDP))))
2274 			goto out;
2275 
2276 		skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
2277 
2278 		segs = NULL;
2279 		goto out;
2280 	}
2281 
2282 	/* Do software UFO. Complete and fill in the UDP checksum as HW cannot
2283 	 * do checksum of UDP packets sent as multiple IP fragments.
2284 	 */
2285 	offset = skb_checksum_start_offset(skb);
2286 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2287 	offset += skb->csum_offset;
2288 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
2289 	skb->ip_summed = CHECKSUM_NONE;
2290 
2291 	/* Fragment the skb. IP headers of the fragments are updated in
2292 	 * inet_gso_segment()
2293 	 */
2294 	segs = skb_segment(skb, features);
2295 out:
2296 	return segs;
2297 }
2298 
2299