xref: /linux/net/ipv4/udp.c (revision 9cfc5c90ad38c8fc11bfd39de42a107da00871ba)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The User Datagram Protocol (UDP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
12  *		Hirokazu Takahashi, <taka@valinux.co.jp>
13  *
14  * Fixes:
15  *		Alan Cox	:	verify_area() calls
16  *		Alan Cox	: 	stopped close while in use off icmp
17  *					messages. Not a fix but a botch that
18  *					for udp at least is 'valid'.
19  *		Alan Cox	:	Fixed icmp handling properly
20  *		Alan Cox	: 	Correct error for oversized datagrams
21  *		Alan Cox	:	Tidied select() semantics.
22  *		Alan Cox	:	udp_err() fixed properly, also now
23  *					select and read wake correctly on errors
24  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
25  *		Alan Cox	:	UDP can count its memory
26  *		Alan Cox	:	send to an unknown connection causes
27  *					an ECONNREFUSED off the icmp, but
28  *					does NOT close.
29  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
30  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
31  *					bug no longer crashes it.
32  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
33  *		Alan Cox	:	Uses skb_free_datagram
34  *		Alan Cox	:	Added get/set sockopt support.
35  *		Alan Cox	:	Broadcasting without option set returns EACCES.
36  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
37  *		Alan Cox	:	Use ip_tos and ip_ttl
38  *		Alan Cox	:	SNMP Mibs
39  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
40  *		Matt Dillon	:	UDP length checks.
41  *		Alan Cox	:	Smarter af_inet used properly.
42  *		Alan Cox	:	Use new kernel side addressing.
43  *		Alan Cox	:	Incorrect return on truncated datagram receive.
44  *	Arnt Gulbrandsen 	:	New udp_send and stuff
45  *		Alan Cox	:	Cache last socket
46  *		Alan Cox	:	Route cache
47  *		Jon Peatfield	:	Minor efficiency fix to sendto().
48  *		Mike Shaver	:	RFC1122 checks.
49  *		Alan Cox	:	Nonblocking error fix.
50  *	Willy Konynenberg	:	Transparent proxying support.
51  *		Mike McLagan	:	Routing by source
52  *		David S. Miller	:	New socket lookup architecture.
53  *					Last socket cache retained as it
54  *					does have a high hit rate.
55  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
56  *		Andi Kleen	:	Some cleanups, cache destination entry
57  *					for connect.
58  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
59  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
60  *					return ENOTCONN for unconnected sockets (POSIX)
61  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
62  *					bound-to-device socket
63  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
64  *					datagrams.
65  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
66  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
67  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
68  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
69  *					a single port at the same time.
70  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71  *	James Chapman		:	Add L2TP encapsulation type.
72  *
73  *
74  *		This program is free software; you can redistribute it and/or
75  *		modify it under the terms of the GNU General Public License
76  *		as published by the Free Software Foundation; either version
77  *		2 of the License, or (at your option) any later version.
78  */
79 
80 #define pr_fmt(fmt) "UDP: " fmt
81 
82 #include <asm/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/bootmem.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
93 #include <linux/inetdevice.h>
94 #include <linux/in.h>
95 #include <linux/errno.h>
96 #include <linux/timer.h>
97 #include <linux/mm.h>
98 #include <linux/inet.h>
99 #include <linux/netdevice.h>
100 #include <linux/slab.h>
101 #include <net/tcp_states.h>
102 #include <linux/skbuff.h>
103 #include <linux/netdevice.h>
104 #include <linux/proc_fs.h>
105 #include <linux/seq_file.h>
106 #include <net/net_namespace.h>
107 #include <net/icmp.h>
108 #include <net/inet_hashtables.h>
109 #include <net/route.h>
110 #include <net/checksum.h>
111 #include <net/xfrm.h>
112 #include <trace/events/udp.h>
113 #include <linux/static_key.h>
114 #include <trace/events/skb.h>
115 #include <net/busy_poll.h>
116 #include "udp_impl.h"
117 
118 struct udp_table udp_table __read_mostly;
119 EXPORT_SYMBOL(udp_table);
120 
121 long sysctl_udp_mem[3] __read_mostly;
122 EXPORT_SYMBOL(sysctl_udp_mem);
123 
124 int sysctl_udp_rmem_min __read_mostly;
125 EXPORT_SYMBOL(sysctl_udp_rmem_min);
126 
127 int sysctl_udp_wmem_min __read_mostly;
128 EXPORT_SYMBOL(sysctl_udp_wmem_min);
129 
130 atomic_long_t udp_memory_allocated;
131 EXPORT_SYMBOL(udp_memory_allocated);
132 
133 #define MAX_UDP_PORTS 65536
134 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
135 
136 static int udp_lib_lport_inuse(struct net *net, __u16 num,
137 			       const struct udp_hslot *hslot,
138 			       unsigned long *bitmap,
139 			       struct sock *sk,
140 			       int (*saddr_comp)(const struct sock *sk1,
141 						 const struct sock *sk2),
142 			       unsigned int log)
143 {
144 	struct sock *sk2;
145 	struct hlist_nulls_node *node;
146 	kuid_t uid = sock_i_uid(sk);
147 
148 	sk_nulls_for_each(sk2, node, &hslot->head) {
149 		if (net_eq(sock_net(sk2), net) &&
150 		    sk2 != sk &&
151 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
152 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
153 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
154 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
155 		    (!sk2->sk_reuseport || !sk->sk_reuseport ||
156 		     !uid_eq(uid, sock_i_uid(sk2))) &&
157 		    saddr_comp(sk, sk2)) {
158 			if (!bitmap)
159 				return 1;
160 			__set_bit(udp_sk(sk2)->udp_port_hash >> log, bitmap);
161 		}
162 	}
163 	return 0;
164 }
165 
166 /*
167  * Note: we still hold spinlock of primary hash chain, so no other writer
168  * can insert/delete a socket with local_port == num
169  */
170 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
171 				struct udp_hslot *hslot2,
172 				struct sock *sk,
173 				int (*saddr_comp)(const struct sock *sk1,
174 						  const struct sock *sk2))
175 {
176 	struct sock *sk2;
177 	struct hlist_nulls_node *node;
178 	kuid_t uid = sock_i_uid(sk);
179 	int res = 0;
180 
181 	spin_lock(&hslot2->lock);
182 	udp_portaddr_for_each_entry(sk2, node, &hslot2->head) {
183 		if (net_eq(sock_net(sk2), net) &&
184 		    sk2 != sk &&
185 		    (udp_sk(sk2)->udp_port_hash == num) &&
186 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
187 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
188 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
189 		    (!sk2->sk_reuseport || !sk->sk_reuseport ||
190 		     !uid_eq(uid, sock_i_uid(sk2))) &&
191 		    saddr_comp(sk, sk2)) {
192 			res = 1;
193 			break;
194 		}
195 	}
196 	spin_unlock(&hslot2->lock);
197 	return res;
198 }
199 
200 /**
201  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
202  *
203  *  @sk:          socket struct in question
204  *  @snum:        port number to look up
205  *  @saddr_comp:  AF-dependent comparison of bound local IP addresses
206  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
207  *                   with NULL address
208  */
209 int udp_lib_get_port(struct sock *sk, unsigned short snum,
210 		     int (*saddr_comp)(const struct sock *sk1,
211 				       const struct sock *sk2),
212 		     unsigned int hash2_nulladdr)
213 {
214 	struct udp_hslot *hslot, *hslot2;
215 	struct udp_table *udptable = sk->sk_prot->h.udp_table;
216 	int    error = 1;
217 	struct net *net = sock_net(sk);
218 
219 	if (!snum) {
220 		int low, high, remaining;
221 		unsigned int rand;
222 		unsigned short first, last;
223 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
224 
225 		inet_get_local_port_range(net, &low, &high);
226 		remaining = (high - low) + 1;
227 
228 		rand = prandom_u32();
229 		first = reciprocal_scale(rand, remaining) + low;
230 		/*
231 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
232 		 */
233 		rand = (rand | 1) * (udptable->mask + 1);
234 		last = first + udptable->mask + 1;
235 		do {
236 			hslot = udp_hashslot(udptable, net, first);
237 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
238 			spin_lock_bh(&hslot->lock);
239 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
240 					    saddr_comp, udptable->log);
241 
242 			snum = first;
243 			/*
244 			 * Iterate on all possible values of snum for this hash.
245 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
246 			 * give us randomization and full range coverage.
247 			 */
248 			do {
249 				if (low <= snum && snum <= high &&
250 				    !test_bit(snum >> udptable->log, bitmap) &&
251 				    !inet_is_local_reserved_port(net, snum))
252 					goto found;
253 				snum += rand;
254 			} while (snum != first);
255 			spin_unlock_bh(&hslot->lock);
256 		} while (++first != last);
257 		goto fail;
258 	} else {
259 		hslot = udp_hashslot(udptable, net, snum);
260 		spin_lock_bh(&hslot->lock);
261 		if (hslot->count > 10) {
262 			int exist;
263 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
264 
265 			slot2          &= udptable->mask;
266 			hash2_nulladdr &= udptable->mask;
267 
268 			hslot2 = udp_hashslot2(udptable, slot2);
269 			if (hslot->count < hslot2->count)
270 				goto scan_primary_hash;
271 
272 			exist = udp_lib_lport_inuse2(net, snum, hslot2,
273 						     sk, saddr_comp);
274 			if (!exist && (hash2_nulladdr != slot2)) {
275 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
276 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
277 							     sk, saddr_comp);
278 			}
279 			if (exist)
280 				goto fail_unlock;
281 			else
282 				goto found;
283 		}
284 scan_primary_hash:
285 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk,
286 					saddr_comp, 0))
287 			goto fail_unlock;
288 	}
289 found:
290 	inet_sk(sk)->inet_num = snum;
291 	udp_sk(sk)->udp_port_hash = snum;
292 	udp_sk(sk)->udp_portaddr_hash ^= snum;
293 	if (sk_unhashed(sk)) {
294 		sk_nulls_add_node_rcu(sk, &hslot->head);
295 		hslot->count++;
296 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
297 
298 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
299 		spin_lock(&hslot2->lock);
300 		hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
301 					 &hslot2->head);
302 		hslot2->count++;
303 		spin_unlock(&hslot2->lock);
304 	}
305 	error = 0;
306 fail_unlock:
307 	spin_unlock_bh(&hslot->lock);
308 fail:
309 	return error;
310 }
311 EXPORT_SYMBOL(udp_lib_get_port);
312 
313 static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
314 {
315 	struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
316 
317 	return 	(!ipv6_only_sock(sk2)  &&
318 		 (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr ||
319 		   inet1->inet_rcv_saddr == inet2->inet_rcv_saddr));
320 }
321 
322 static u32 udp4_portaddr_hash(const struct net *net, __be32 saddr,
323 			      unsigned int port)
324 {
325 	return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
326 }
327 
328 int udp_v4_get_port(struct sock *sk, unsigned short snum)
329 {
330 	unsigned int hash2_nulladdr =
331 		udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
332 	unsigned int hash2_partial =
333 		udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
334 
335 	/* precompute partial secondary hash */
336 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
337 	return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr);
338 }
339 
340 static inline int compute_score(struct sock *sk, struct net *net,
341 				__be32 saddr, unsigned short hnum, __be16 sport,
342 				__be32 daddr, __be16 dport, int dif)
343 {
344 	int score;
345 	struct inet_sock *inet;
346 
347 	if (!net_eq(sock_net(sk), net) ||
348 	    udp_sk(sk)->udp_port_hash != hnum ||
349 	    ipv6_only_sock(sk))
350 		return -1;
351 
352 	score = (sk->sk_family == PF_INET) ? 2 : 1;
353 	inet = inet_sk(sk);
354 
355 	if (inet->inet_rcv_saddr) {
356 		if (inet->inet_rcv_saddr != daddr)
357 			return -1;
358 		score += 4;
359 	}
360 
361 	if (inet->inet_daddr) {
362 		if (inet->inet_daddr != saddr)
363 			return -1;
364 		score += 4;
365 	}
366 
367 	if (inet->inet_dport) {
368 		if (inet->inet_dport != sport)
369 			return -1;
370 		score += 4;
371 	}
372 
373 	if (sk->sk_bound_dev_if) {
374 		if (sk->sk_bound_dev_if != dif)
375 			return -1;
376 		score += 4;
377 	}
378 	if (sk->sk_incoming_cpu == raw_smp_processor_id())
379 		score++;
380 	return score;
381 }
382 
383 /*
384  * In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num)
385  */
386 static inline int compute_score2(struct sock *sk, struct net *net,
387 				 __be32 saddr, __be16 sport,
388 				 __be32 daddr, unsigned int hnum, int dif)
389 {
390 	int score;
391 	struct inet_sock *inet;
392 
393 	if (!net_eq(sock_net(sk), net) ||
394 	    ipv6_only_sock(sk))
395 		return -1;
396 
397 	inet = inet_sk(sk);
398 
399 	if (inet->inet_rcv_saddr != daddr ||
400 	    inet->inet_num != hnum)
401 		return -1;
402 
403 	score = (sk->sk_family == PF_INET) ? 2 : 1;
404 
405 	if (inet->inet_daddr) {
406 		if (inet->inet_daddr != saddr)
407 			return -1;
408 		score += 4;
409 	}
410 
411 	if (inet->inet_dport) {
412 		if (inet->inet_dport != sport)
413 			return -1;
414 		score += 4;
415 	}
416 
417 	if (sk->sk_bound_dev_if) {
418 		if (sk->sk_bound_dev_if != dif)
419 			return -1;
420 		score += 4;
421 	}
422 
423 	if (sk->sk_incoming_cpu == raw_smp_processor_id())
424 		score++;
425 
426 	return score;
427 }
428 
429 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
430 		       const __u16 lport, const __be32 faddr,
431 		       const __be16 fport)
432 {
433 	static u32 udp_ehash_secret __read_mostly;
434 
435 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
436 
437 	return __inet_ehashfn(laddr, lport, faddr, fport,
438 			      udp_ehash_secret + net_hash_mix(net));
439 }
440 
441 /* called with read_rcu_lock() */
442 static struct sock *udp4_lib_lookup2(struct net *net,
443 		__be32 saddr, __be16 sport,
444 		__be32 daddr, unsigned int hnum, int dif,
445 		struct udp_hslot *hslot2, unsigned int slot2)
446 {
447 	struct sock *sk, *result;
448 	struct hlist_nulls_node *node;
449 	int score, badness, matches = 0, reuseport = 0;
450 	u32 hash = 0;
451 
452 begin:
453 	result = NULL;
454 	badness = 0;
455 	udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
456 		score = compute_score2(sk, net, saddr, sport,
457 				      daddr, hnum, dif);
458 		if (score > badness) {
459 			result = sk;
460 			badness = score;
461 			reuseport = sk->sk_reuseport;
462 			if (reuseport) {
463 				hash = udp_ehashfn(net, daddr, hnum,
464 						   saddr, sport);
465 				matches = 1;
466 			}
467 		} else if (score == badness && reuseport) {
468 			matches++;
469 			if (reciprocal_scale(hash, matches) == 0)
470 				result = sk;
471 			hash = next_pseudo_random32(hash);
472 		}
473 	}
474 	/*
475 	 * if the nulls value we got at the end of this lookup is
476 	 * not the expected one, we must restart lookup.
477 	 * We probably met an item that was moved to another chain.
478 	 */
479 	if (get_nulls_value(node) != slot2)
480 		goto begin;
481 	if (result) {
482 		if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
483 			result = NULL;
484 		else if (unlikely(compute_score2(result, net, saddr, sport,
485 				  daddr, hnum, dif) < badness)) {
486 			sock_put(result);
487 			goto begin;
488 		}
489 	}
490 	return result;
491 }
492 
493 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
494  * harder than this. -DaveM
495  */
496 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
497 		__be16 sport, __be32 daddr, __be16 dport,
498 		int dif, struct udp_table *udptable)
499 {
500 	struct sock *sk, *result;
501 	struct hlist_nulls_node *node;
502 	unsigned short hnum = ntohs(dport);
503 	unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
504 	struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
505 	int score, badness, matches = 0, reuseport = 0;
506 	u32 hash = 0;
507 
508 	rcu_read_lock();
509 	if (hslot->count > 10) {
510 		hash2 = udp4_portaddr_hash(net, daddr, hnum);
511 		slot2 = hash2 & udptable->mask;
512 		hslot2 = &udptable->hash2[slot2];
513 		if (hslot->count < hslot2->count)
514 			goto begin;
515 
516 		result = udp4_lib_lookup2(net, saddr, sport,
517 					  daddr, hnum, dif,
518 					  hslot2, slot2);
519 		if (!result) {
520 			hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
521 			slot2 = hash2 & udptable->mask;
522 			hslot2 = &udptable->hash2[slot2];
523 			if (hslot->count < hslot2->count)
524 				goto begin;
525 
526 			result = udp4_lib_lookup2(net, saddr, sport,
527 						  htonl(INADDR_ANY), hnum, dif,
528 						  hslot2, slot2);
529 		}
530 		rcu_read_unlock();
531 		return result;
532 	}
533 begin:
534 	result = NULL;
535 	badness = 0;
536 	sk_nulls_for_each_rcu(sk, node, &hslot->head) {
537 		score = compute_score(sk, net, saddr, hnum, sport,
538 				      daddr, dport, dif);
539 		if (score > badness) {
540 			result = sk;
541 			badness = score;
542 			reuseport = sk->sk_reuseport;
543 			if (reuseport) {
544 				hash = udp_ehashfn(net, daddr, hnum,
545 						   saddr, sport);
546 				matches = 1;
547 			}
548 		} else if (score == badness && reuseport) {
549 			matches++;
550 			if (reciprocal_scale(hash, matches) == 0)
551 				result = sk;
552 			hash = next_pseudo_random32(hash);
553 		}
554 	}
555 	/*
556 	 * if the nulls value we got at the end of this lookup is
557 	 * not the expected one, we must restart lookup.
558 	 * We probably met an item that was moved to another chain.
559 	 */
560 	if (get_nulls_value(node) != slot)
561 		goto begin;
562 
563 	if (result) {
564 		if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
565 			result = NULL;
566 		else if (unlikely(compute_score(result, net, saddr, hnum, sport,
567 				  daddr, dport, dif) < badness)) {
568 			sock_put(result);
569 			goto begin;
570 		}
571 	}
572 	rcu_read_unlock();
573 	return result;
574 }
575 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
576 
577 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
578 						 __be16 sport, __be16 dport,
579 						 struct udp_table *udptable)
580 {
581 	const struct iphdr *iph = ip_hdr(skb);
582 
583 	return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport,
584 				 iph->daddr, dport, inet_iif(skb),
585 				 udptable);
586 }
587 
588 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
589 			     __be32 daddr, __be16 dport, int dif)
590 {
591 	return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif, &udp_table);
592 }
593 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
594 
595 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
596 				       __be16 loc_port, __be32 loc_addr,
597 				       __be16 rmt_port, __be32 rmt_addr,
598 				       int dif, unsigned short hnum)
599 {
600 	struct inet_sock *inet = inet_sk(sk);
601 
602 	if (!net_eq(sock_net(sk), net) ||
603 	    udp_sk(sk)->udp_port_hash != hnum ||
604 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
605 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
606 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
607 	    ipv6_only_sock(sk) ||
608 	    (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif))
609 		return false;
610 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif))
611 		return false;
612 	return true;
613 }
614 
615 /*
616  * This routine is called by the ICMP module when it gets some
617  * sort of error condition.  If err < 0 then the socket should
618  * be closed and the error returned to the user.  If err > 0
619  * it's just the icmp type << 8 | icmp code.
620  * Header points to the ip header of the error packet. We move
621  * on past this. Then (as it used to claim before adjustment)
622  * header points to the first 8 bytes of the udp header.  We need
623  * to find the appropriate port.
624  */
625 
626 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
627 {
628 	struct inet_sock *inet;
629 	const struct iphdr *iph = (const struct iphdr *)skb->data;
630 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
631 	const int type = icmp_hdr(skb)->type;
632 	const int code = icmp_hdr(skb)->code;
633 	struct sock *sk;
634 	int harderr;
635 	int err;
636 	struct net *net = dev_net(skb->dev);
637 
638 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
639 			iph->saddr, uh->source, skb->dev->ifindex, udptable);
640 	if (!sk) {
641 		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
642 		return;	/* No socket for error */
643 	}
644 
645 	err = 0;
646 	harderr = 0;
647 	inet = inet_sk(sk);
648 
649 	switch (type) {
650 	default:
651 	case ICMP_TIME_EXCEEDED:
652 		err = EHOSTUNREACH;
653 		break;
654 	case ICMP_SOURCE_QUENCH:
655 		goto out;
656 	case ICMP_PARAMETERPROB:
657 		err = EPROTO;
658 		harderr = 1;
659 		break;
660 	case ICMP_DEST_UNREACH:
661 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
662 			ipv4_sk_update_pmtu(skb, sk, info);
663 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
664 				err = EMSGSIZE;
665 				harderr = 1;
666 				break;
667 			}
668 			goto out;
669 		}
670 		err = EHOSTUNREACH;
671 		if (code <= NR_ICMP_UNREACH) {
672 			harderr = icmp_err_convert[code].fatal;
673 			err = icmp_err_convert[code].errno;
674 		}
675 		break;
676 	case ICMP_REDIRECT:
677 		ipv4_sk_redirect(skb, sk);
678 		goto out;
679 	}
680 
681 	/*
682 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
683 	 *	4.1.3.3.
684 	 */
685 	if (!inet->recverr) {
686 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
687 			goto out;
688 	} else
689 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
690 
691 	sk->sk_err = err;
692 	sk->sk_error_report(sk);
693 out:
694 	sock_put(sk);
695 }
696 
697 void udp_err(struct sk_buff *skb, u32 info)
698 {
699 	__udp4_lib_err(skb, info, &udp_table);
700 }
701 
702 /*
703  * Throw away all pending data and cancel the corking. Socket is locked.
704  */
705 void udp_flush_pending_frames(struct sock *sk)
706 {
707 	struct udp_sock *up = udp_sk(sk);
708 
709 	if (up->pending) {
710 		up->len = 0;
711 		up->pending = 0;
712 		ip_flush_pending_frames(sk);
713 	}
714 }
715 EXPORT_SYMBOL(udp_flush_pending_frames);
716 
717 /**
718  * 	udp4_hwcsum  -  handle outgoing HW checksumming
719  * 	@skb: 	sk_buff containing the filled-in UDP header
720  * 	        (checksum field must be zeroed out)
721  *	@src:	source IP address
722  *	@dst:	destination IP address
723  */
724 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
725 {
726 	struct udphdr *uh = udp_hdr(skb);
727 	int offset = skb_transport_offset(skb);
728 	int len = skb->len - offset;
729 	int hlen = len;
730 	__wsum csum = 0;
731 
732 	if (!skb_has_frag_list(skb)) {
733 		/*
734 		 * Only one fragment on the socket.
735 		 */
736 		skb->csum_start = skb_transport_header(skb) - skb->head;
737 		skb->csum_offset = offsetof(struct udphdr, check);
738 		uh->check = ~csum_tcpudp_magic(src, dst, len,
739 					       IPPROTO_UDP, 0);
740 	} else {
741 		struct sk_buff *frags;
742 
743 		/*
744 		 * HW-checksum won't work as there are two or more
745 		 * fragments on the socket so that all csums of sk_buffs
746 		 * should be together
747 		 */
748 		skb_walk_frags(skb, frags) {
749 			csum = csum_add(csum, frags->csum);
750 			hlen -= frags->len;
751 		}
752 
753 		csum = skb_checksum(skb, offset, hlen, csum);
754 		skb->ip_summed = CHECKSUM_NONE;
755 
756 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
757 		if (uh->check == 0)
758 			uh->check = CSUM_MANGLED_0;
759 	}
760 }
761 EXPORT_SYMBOL_GPL(udp4_hwcsum);
762 
763 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
764  * for the simple case like when setting the checksum for a UDP tunnel.
765  */
766 void udp_set_csum(bool nocheck, struct sk_buff *skb,
767 		  __be32 saddr, __be32 daddr, int len)
768 {
769 	struct udphdr *uh = udp_hdr(skb);
770 
771 	if (nocheck)
772 		uh->check = 0;
773 	else if (skb_is_gso(skb))
774 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
775 	else if (skb_dst(skb) && skb_dst(skb)->dev &&
776 		 (skb_dst(skb)->dev->features & NETIF_F_V4_CSUM)) {
777 
778 		BUG_ON(skb->ip_summed == CHECKSUM_PARTIAL);
779 
780 		skb->ip_summed = CHECKSUM_PARTIAL;
781 		skb->csum_start = skb_transport_header(skb) - skb->head;
782 		skb->csum_offset = offsetof(struct udphdr, check);
783 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
784 	} else {
785 		__wsum csum;
786 
787 		BUG_ON(skb->ip_summed == CHECKSUM_PARTIAL);
788 
789 		uh->check = 0;
790 		csum = skb_checksum(skb, 0, len, 0);
791 		uh->check = udp_v4_check(len, saddr, daddr, csum);
792 		if (uh->check == 0)
793 			uh->check = CSUM_MANGLED_0;
794 
795 		skb->ip_summed = CHECKSUM_UNNECESSARY;
796 	}
797 }
798 EXPORT_SYMBOL(udp_set_csum);
799 
800 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
801 {
802 	struct sock *sk = skb->sk;
803 	struct inet_sock *inet = inet_sk(sk);
804 	struct udphdr *uh;
805 	int err = 0;
806 	int is_udplite = IS_UDPLITE(sk);
807 	int offset = skb_transport_offset(skb);
808 	int len = skb->len - offset;
809 	__wsum csum = 0;
810 
811 	/*
812 	 * Create a UDP header
813 	 */
814 	uh = udp_hdr(skb);
815 	uh->source = inet->inet_sport;
816 	uh->dest = fl4->fl4_dport;
817 	uh->len = htons(len);
818 	uh->check = 0;
819 
820 	if (is_udplite)  				 /*     UDP-Lite      */
821 		csum = udplite_csum(skb);
822 
823 	else if (sk->sk_no_check_tx) {   /* UDP csum disabled */
824 
825 		skb->ip_summed = CHECKSUM_NONE;
826 		goto send;
827 
828 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
829 
830 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
831 		goto send;
832 
833 	} else
834 		csum = udp_csum(skb);
835 
836 	/* add protocol-dependent pseudo-header */
837 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
838 				      sk->sk_protocol, csum);
839 	if (uh->check == 0)
840 		uh->check = CSUM_MANGLED_0;
841 
842 send:
843 	err = ip_send_skb(sock_net(sk), skb);
844 	if (err) {
845 		if (err == -ENOBUFS && !inet->recverr) {
846 			UDP_INC_STATS_USER(sock_net(sk),
847 					   UDP_MIB_SNDBUFERRORS, is_udplite);
848 			err = 0;
849 		}
850 	} else
851 		UDP_INC_STATS_USER(sock_net(sk),
852 				   UDP_MIB_OUTDATAGRAMS, is_udplite);
853 	return err;
854 }
855 
856 /*
857  * Push out all pending data as one UDP datagram. Socket is locked.
858  */
859 int udp_push_pending_frames(struct sock *sk)
860 {
861 	struct udp_sock  *up = udp_sk(sk);
862 	struct inet_sock *inet = inet_sk(sk);
863 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
864 	struct sk_buff *skb;
865 	int err = 0;
866 
867 	skb = ip_finish_skb(sk, fl4);
868 	if (!skb)
869 		goto out;
870 
871 	err = udp_send_skb(skb, fl4);
872 
873 out:
874 	up->len = 0;
875 	up->pending = 0;
876 	return err;
877 }
878 EXPORT_SYMBOL(udp_push_pending_frames);
879 
880 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
881 {
882 	struct inet_sock *inet = inet_sk(sk);
883 	struct udp_sock *up = udp_sk(sk);
884 	struct flowi4 fl4_stack;
885 	struct flowi4 *fl4;
886 	int ulen = len;
887 	struct ipcm_cookie ipc;
888 	struct rtable *rt = NULL;
889 	int free = 0;
890 	int connected = 0;
891 	__be32 daddr, faddr, saddr;
892 	__be16 dport;
893 	u8  tos;
894 	int err, is_udplite = IS_UDPLITE(sk);
895 	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
896 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
897 	struct sk_buff *skb;
898 	struct ip_options_data opt_copy;
899 
900 	if (len > 0xFFFF)
901 		return -EMSGSIZE;
902 
903 	/*
904 	 *	Check the flags.
905 	 */
906 
907 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
908 		return -EOPNOTSUPP;
909 
910 	ipc.opt = NULL;
911 	ipc.tx_flags = 0;
912 	ipc.ttl = 0;
913 	ipc.tos = -1;
914 
915 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
916 
917 	fl4 = &inet->cork.fl.u.ip4;
918 	if (up->pending) {
919 		/*
920 		 * There are pending frames.
921 		 * The socket lock must be held while it's corked.
922 		 */
923 		lock_sock(sk);
924 		if (likely(up->pending)) {
925 			if (unlikely(up->pending != AF_INET)) {
926 				release_sock(sk);
927 				return -EINVAL;
928 			}
929 			goto do_append_data;
930 		}
931 		release_sock(sk);
932 	}
933 	ulen += sizeof(struct udphdr);
934 
935 	/*
936 	 *	Get and verify the address.
937 	 */
938 	if (msg->msg_name) {
939 		DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
940 		if (msg->msg_namelen < sizeof(*usin))
941 			return -EINVAL;
942 		if (usin->sin_family != AF_INET) {
943 			if (usin->sin_family != AF_UNSPEC)
944 				return -EAFNOSUPPORT;
945 		}
946 
947 		daddr = usin->sin_addr.s_addr;
948 		dport = usin->sin_port;
949 		if (dport == 0)
950 			return -EINVAL;
951 	} else {
952 		if (sk->sk_state != TCP_ESTABLISHED)
953 			return -EDESTADDRREQ;
954 		daddr = inet->inet_daddr;
955 		dport = inet->inet_dport;
956 		/* Open fast path for connected socket.
957 		   Route will not be used, if at least one option is set.
958 		 */
959 		connected = 1;
960 	}
961 	ipc.addr = inet->inet_saddr;
962 
963 	ipc.oif = sk->sk_bound_dev_if;
964 
965 	sock_tx_timestamp(sk, &ipc.tx_flags);
966 
967 	if (msg->msg_controllen) {
968 		err = ip_cmsg_send(sock_net(sk), msg, &ipc,
969 				   sk->sk_family == AF_INET6);
970 		if (err)
971 			return err;
972 		if (ipc.opt)
973 			free = 1;
974 		connected = 0;
975 	}
976 	if (!ipc.opt) {
977 		struct ip_options_rcu *inet_opt;
978 
979 		rcu_read_lock();
980 		inet_opt = rcu_dereference(inet->inet_opt);
981 		if (inet_opt) {
982 			memcpy(&opt_copy, inet_opt,
983 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
984 			ipc.opt = &opt_copy.opt;
985 		}
986 		rcu_read_unlock();
987 	}
988 
989 	saddr = ipc.addr;
990 	ipc.addr = faddr = daddr;
991 
992 	if (ipc.opt && ipc.opt->opt.srr) {
993 		if (!daddr)
994 			return -EINVAL;
995 		faddr = ipc.opt->opt.faddr;
996 		connected = 0;
997 	}
998 	tos = get_rttos(&ipc, inet);
999 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
1000 	    (msg->msg_flags & MSG_DONTROUTE) ||
1001 	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
1002 		tos |= RTO_ONLINK;
1003 		connected = 0;
1004 	}
1005 
1006 	if (ipv4_is_multicast(daddr)) {
1007 		if (!ipc.oif)
1008 			ipc.oif = inet->mc_index;
1009 		if (!saddr)
1010 			saddr = inet->mc_addr;
1011 		connected = 0;
1012 	} else if (!ipc.oif)
1013 		ipc.oif = inet->uc_index;
1014 
1015 	if (connected)
1016 		rt = (struct rtable *)sk_dst_check(sk, 0);
1017 
1018 	if (!rt) {
1019 		struct net *net = sock_net(sk);
1020 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1021 
1022 		fl4 = &fl4_stack;
1023 
1024 		flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
1025 				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
1026 				   flow_flags,
1027 				   faddr, saddr, dport, inet->inet_sport);
1028 
1029 		if (!saddr && ipc.oif)
1030 			l3mdev_get_saddr(net, ipc.oif, fl4);
1031 
1032 		security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1033 		rt = ip_route_output_flow(net, fl4, sk);
1034 		if (IS_ERR(rt)) {
1035 			err = PTR_ERR(rt);
1036 			rt = NULL;
1037 			if (err == -ENETUNREACH)
1038 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1039 			goto out;
1040 		}
1041 
1042 		err = -EACCES;
1043 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1044 		    !sock_flag(sk, SOCK_BROADCAST))
1045 			goto out;
1046 		if (connected)
1047 			sk_dst_set(sk, dst_clone(&rt->dst));
1048 	}
1049 
1050 	if (msg->msg_flags&MSG_CONFIRM)
1051 		goto do_confirm;
1052 back_from_confirm:
1053 
1054 	saddr = fl4->saddr;
1055 	if (!ipc.addr)
1056 		daddr = ipc.addr = fl4->daddr;
1057 
1058 	/* Lockless fast path for the non-corking case. */
1059 	if (!corkreq) {
1060 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1061 				  sizeof(struct udphdr), &ipc, &rt,
1062 				  msg->msg_flags);
1063 		err = PTR_ERR(skb);
1064 		if (!IS_ERR_OR_NULL(skb))
1065 			err = udp_send_skb(skb, fl4);
1066 		goto out;
1067 	}
1068 
1069 	lock_sock(sk);
1070 	if (unlikely(up->pending)) {
1071 		/* The socket is already corked while preparing it. */
1072 		/* ... which is an evident application bug. --ANK */
1073 		release_sock(sk);
1074 
1075 		net_dbg_ratelimited("cork app bug 2\n");
1076 		err = -EINVAL;
1077 		goto out;
1078 	}
1079 	/*
1080 	 *	Now cork the socket to pend data.
1081 	 */
1082 	fl4 = &inet->cork.fl.u.ip4;
1083 	fl4->daddr = daddr;
1084 	fl4->saddr = saddr;
1085 	fl4->fl4_dport = dport;
1086 	fl4->fl4_sport = inet->inet_sport;
1087 	up->pending = AF_INET;
1088 
1089 do_append_data:
1090 	up->len += ulen;
1091 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1092 			     sizeof(struct udphdr), &ipc, &rt,
1093 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1094 	if (err)
1095 		udp_flush_pending_frames(sk);
1096 	else if (!corkreq)
1097 		err = udp_push_pending_frames(sk);
1098 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1099 		up->pending = 0;
1100 	release_sock(sk);
1101 
1102 out:
1103 	ip_rt_put(rt);
1104 	if (free)
1105 		kfree(ipc.opt);
1106 	if (!err)
1107 		return len;
1108 	/*
1109 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1110 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1111 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1112 	 * things).  We could add another new stat but at least for now that
1113 	 * seems like overkill.
1114 	 */
1115 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1116 		UDP_INC_STATS_USER(sock_net(sk),
1117 				UDP_MIB_SNDBUFERRORS, is_udplite);
1118 	}
1119 	return err;
1120 
1121 do_confirm:
1122 	dst_confirm(&rt->dst);
1123 	if (!(msg->msg_flags&MSG_PROBE) || len)
1124 		goto back_from_confirm;
1125 	err = 0;
1126 	goto out;
1127 }
1128 EXPORT_SYMBOL(udp_sendmsg);
1129 
1130 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1131 		 size_t size, int flags)
1132 {
1133 	struct inet_sock *inet = inet_sk(sk);
1134 	struct udp_sock *up = udp_sk(sk);
1135 	int ret;
1136 
1137 	if (flags & MSG_SENDPAGE_NOTLAST)
1138 		flags |= MSG_MORE;
1139 
1140 	if (!up->pending) {
1141 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1142 
1143 		/* Call udp_sendmsg to specify destination address which
1144 		 * sendpage interface can't pass.
1145 		 * This will succeed only when the socket is connected.
1146 		 */
1147 		ret = udp_sendmsg(sk, &msg, 0);
1148 		if (ret < 0)
1149 			return ret;
1150 	}
1151 
1152 	lock_sock(sk);
1153 
1154 	if (unlikely(!up->pending)) {
1155 		release_sock(sk);
1156 
1157 		net_dbg_ratelimited("udp cork app bug 3\n");
1158 		return -EINVAL;
1159 	}
1160 
1161 	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1162 			     page, offset, size, flags);
1163 	if (ret == -EOPNOTSUPP) {
1164 		release_sock(sk);
1165 		return sock_no_sendpage(sk->sk_socket, page, offset,
1166 					size, flags);
1167 	}
1168 	if (ret < 0) {
1169 		udp_flush_pending_frames(sk);
1170 		goto out;
1171 	}
1172 
1173 	up->len += size;
1174 	if (!(up->corkflag || (flags&MSG_MORE)))
1175 		ret = udp_push_pending_frames(sk);
1176 	if (!ret)
1177 		ret = size;
1178 out:
1179 	release_sock(sk);
1180 	return ret;
1181 }
1182 
1183 /**
1184  *	first_packet_length	- return length of first packet in receive queue
1185  *	@sk: socket
1186  *
1187  *	Drops all bad checksum frames, until a valid one is found.
1188  *	Returns the length of found skb, or 0 if none is found.
1189  */
1190 static unsigned int first_packet_length(struct sock *sk)
1191 {
1192 	struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue;
1193 	struct sk_buff *skb;
1194 	unsigned int res;
1195 
1196 	__skb_queue_head_init(&list_kill);
1197 
1198 	spin_lock_bh(&rcvq->lock);
1199 	while ((skb = skb_peek(rcvq)) != NULL &&
1200 		udp_lib_checksum_complete(skb)) {
1201 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS,
1202 				 IS_UDPLITE(sk));
1203 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1204 				 IS_UDPLITE(sk));
1205 		atomic_inc(&sk->sk_drops);
1206 		__skb_unlink(skb, rcvq);
1207 		__skb_queue_tail(&list_kill, skb);
1208 	}
1209 	res = skb ? skb->len : 0;
1210 	spin_unlock_bh(&rcvq->lock);
1211 
1212 	if (!skb_queue_empty(&list_kill)) {
1213 		bool slow = lock_sock_fast(sk);
1214 
1215 		__skb_queue_purge(&list_kill);
1216 		sk_mem_reclaim_partial(sk);
1217 		unlock_sock_fast(sk, slow);
1218 	}
1219 	return res;
1220 }
1221 
1222 /*
1223  *	IOCTL requests applicable to the UDP protocol
1224  */
1225 
1226 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1227 {
1228 	switch (cmd) {
1229 	case SIOCOUTQ:
1230 	{
1231 		int amount = sk_wmem_alloc_get(sk);
1232 
1233 		return put_user(amount, (int __user *)arg);
1234 	}
1235 
1236 	case SIOCINQ:
1237 	{
1238 		unsigned int amount = first_packet_length(sk);
1239 
1240 		if (amount)
1241 			/*
1242 			 * We will only return the amount
1243 			 * of this packet since that is all
1244 			 * that will be read.
1245 			 */
1246 			amount -= sizeof(struct udphdr);
1247 
1248 		return put_user(amount, (int __user *)arg);
1249 	}
1250 
1251 	default:
1252 		return -ENOIOCTLCMD;
1253 	}
1254 
1255 	return 0;
1256 }
1257 EXPORT_SYMBOL(udp_ioctl);
1258 
1259 /*
1260  * 	This should be easy, if there is something there we
1261  * 	return it, otherwise we block.
1262  */
1263 
1264 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1265 		int flags, int *addr_len)
1266 {
1267 	struct inet_sock *inet = inet_sk(sk);
1268 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1269 	struct sk_buff *skb;
1270 	unsigned int ulen, copied;
1271 	int peeked, off = 0;
1272 	int err;
1273 	int is_udplite = IS_UDPLITE(sk);
1274 	bool slow;
1275 
1276 	if (flags & MSG_ERRQUEUE)
1277 		return ip_recv_error(sk, msg, len, addr_len);
1278 
1279 try_again:
1280 	skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
1281 				  &peeked, &off, &err);
1282 	if (!skb)
1283 		goto out;
1284 
1285 	ulen = skb->len - sizeof(struct udphdr);
1286 	copied = len;
1287 	if (copied > ulen)
1288 		copied = ulen;
1289 	else if (copied < ulen)
1290 		msg->msg_flags |= MSG_TRUNC;
1291 
1292 	/*
1293 	 * If checksum is needed at all, try to do it while copying the
1294 	 * data.  If the data is truncated, or if we only want a partial
1295 	 * coverage checksum (UDP-Lite), do it before the copy.
1296 	 */
1297 
1298 	if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) {
1299 		if (udp_lib_checksum_complete(skb))
1300 			goto csum_copy_err;
1301 	}
1302 
1303 	if (skb_csum_unnecessary(skb))
1304 		err = skb_copy_datagram_msg(skb, sizeof(struct udphdr),
1305 					    msg, copied);
1306 	else {
1307 		err = skb_copy_and_csum_datagram_msg(skb, sizeof(struct udphdr),
1308 						     msg);
1309 
1310 		if (err == -EINVAL)
1311 			goto csum_copy_err;
1312 	}
1313 
1314 	if (unlikely(err)) {
1315 		trace_kfree_skb(skb, udp_recvmsg);
1316 		if (!peeked) {
1317 			atomic_inc(&sk->sk_drops);
1318 			UDP_INC_STATS_USER(sock_net(sk),
1319 					   UDP_MIB_INERRORS, is_udplite);
1320 		}
1321 		goto out_free;
1322 	}
1323 
1324 	if (!peeked)
1325 		UDP_INC_STATS_USER(sock_net(sk),
1326 				UDP_MIB_INDATAGRAMS, is_udplite);
1327 
1328 	sock_recv_ts_and_drops(msg, sk, skb);
1329 
1330 	/* Copy the address. */
1331 	if (sin) {
1332 		sin->sin_family = AF_INET;
1333 		sin->sin_port = udp_hdr(skb)->source;
1334 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1335 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1336 		*addr_len = sizeof(*sin);
1337 	}
1338 	if (inet->cmsg_flags)
1339 		ip_cmsg_recv_offset(msg, skb, sizeof(struct udphdr));
1340 
1341 	err = copied;
1342 	if (flags & MSG_TRUNC)
1343 		err = ulen;
1344 
1345 out_free:
1346 	skb_free_datagram_locked(sk, skb);
1347 out:
1348 	return err;
1349 
1350 csum_copy_err:
1351 	slow = lock_sock_fast(sk);
1352 	if (!skb_kill_datagram(sk, skb, flags)) {
1353 		UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1354 		UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1355 	}
1356 	unlock_sock_fast(sk, slow);
1357 
1358 	/* starting over for a new packet, but check if we need to yield */
1359 	cond_resched();
1360 	msg->msg_flags &= ~MSG_TRUNC;
1361 	goto try_again;
1362 }
1363 
1364 int udp_disconnect(struct sock *sk, int flags)
1365 {
1366 	struct inet_sock *inet = inet_sk(sk);
1367 	/*
1368 	 *	1003.1g - break association.
1369 	 */
1370 
1371 	sk->sk_state = TCP_CLOSE;
1372 	inet->inet_daddr = 0;
1373 	inet->inet_dport = 0;
1374 	sock_rps_reset_rxhash(sk);
1375 	sk->sk_bound_dev_if = 0;
1376 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1377 		inet_reset_saddr(sk);
1378 
1379 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1380 		sk->sk_prot->unhash(sk);
1381 		inet->inet_sport = 0;
1382 	}
1383 	sk_dst_reset(sk);
1384 	return 0;
1385 }
1386 EXPORT_SYMBOL(udp_disconnect);
1387 
1388 void udp_lib_unhash(struct sock *sk)
1389 {
1390 	if (sk_hashed(sk)) {
1391 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1392 		struct udp_hslot *hslot, *hslot2;
1393 
1394 		hslot  = udp_hashslot(udptable, sock_net(sk),
1395 				      udp_sk(sk)->udp_port_hash);
1396 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1397 
1398 		spin_lock_bh(&hslot->lock);
1399 		if (sk_nulls_del_node_init_rcu(sk)) {
1400 			hslot->count--;
1401 			inet_sk(sk)->inet_num = 0;
1402 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1403 
1404 			spin_lock(&hslot2->lock);
1405 			hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1406 			hslot2->count--;
1407 			spin_unlock(&hslot2->lock);
1408 		}
1409 		spin_unlock_bh(&hslot->lock);
1410 	}
1411 }
1412 EXPORT_SYMBOL(udp_lib_unhash);
1413 
1414 /*
1415  * inet_rcv_saddr was changed, we must rehash secondary hash
1416  */
1417 void udp_lib_rehash(struct sock *sk, u16 newhash)
1418 {
1419 	if (sk_hashed(sk)) {
1420 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1421 		struct udp_hslot *hslot, *hslot2, *nhslot2;
1422 
1423 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1424 		nhslot2 = udp_hashslot2(udptable, newhash);
1425 		udp_sk(sk)->udp_portaddr_hash = newhash;
1426 		if (hslot2 != nhslot2) {
1427 			hslot = udp_hashslot(udptable, sock_net(sk),
1428 					     udp_sk(sk)->udp_port_hash);
1429 			/* we must lock primary chain too */
1430 			spin_lock_bh(&hslot->lock);
1431 
1432 			spin_lock(&hslot2->lock);
1433 			hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1434 			hslot2->count--;
1435 			spin_unlock(&hslot2->lock);
1436 
1437 			spin_lock(&nhslot2->lock);
1438 			hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1439 						 &nhslot2->head);
1440 			nhslot2->count++;
1441 			spin_unlock(&nhslot2->lock);
1442 
1443 			spin_unlock_bh(&hslot->lock);
1444 		}
1445 	}
1446 }
1447 EXPORT_SYMBOL(udp_lib_rehash);
1448 
1449 static void udp_v4_rehash(struct sock *sk)
1450 {
1451 	u16 new_hash = udp4_portaddr_hash(sock_net(sk),
1452 					  inet_sk(sk)->inet_rcv_saddr,
1453 					  inet_sk(sk)->inet_num);
1454 	udp_lib_rehash(sk, new_hash);
1455 }
1456 
1457 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1458 {
1459 	int rc;
1460 
1461 	if (inet_sk(sk)->inet_daddr) {
1462 		sock_rps_save_rxhash(sk, skb);
1463 		sk_mark_napi_id(sk, skb);
1464 		sk_incoming_cpu_update(sk);
1465 	}
1466 
1467 	rc = sock_queue_rcv_skb(sk, skb);
1468 	if (rc < 0) {
1469 		int is_udplite = IS_UDPLITE(sk);
1470 
1471 		/* Note that an ENOMEM error is charged twice */
1472 		if (rc == -ENOMEM)
1473 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1474 					 is_udplite);
1475 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1476 		kfree_skb(skb);
1477 		trace_udp_fail_queue_rcv_skb(rc, sk);
1478 		return -1;
1479 	}
1480 
1481 	return 0;
1482 
1483 }
1484 
1485 static struct static_key udp_encap_needed __read_mostly;
1486 void udp_encap_enable(void)
1487 {
1488 	if (!static_key_enabled(&udp_encap_needed))
1489 		static_key_slow_inc(&udp_encap_needed);
1490 }
1491 EXPORT_SYMBOL(udp_encap_enable);
1492 
1493 /* returns:
1494  *  -1: error
1495  *   0: success
1496  *  >0: "udp encap" protocol resubmission
1497  *
1498  * Note that in the success and error cases, the skb is assumed to
1499  * have either been requeued or freed.
1500  */
1501 int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1502 {
1503 	struct udp_sock *up = udp_sk(sk);
1504 	int rc;
1505 	int is_udplite = IS_UDPLITE(sk);
1506 
1507 	/*
1508 	 *	Charge it to the socket, dropping if the queue is full.
1509 	 */
1510 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1511 		goto drop;
1512 	nf_reset(skb);
1513 
1514 	if (static_key_false(&udp_encap_needed) && up->encap_type) {
1515 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1516 
1517 		/*
1518 		 * This is an encapsulation socket so pass the skb to
1519 		 * the socket's udp_encap_rcv() hook. Otherwise, just
1520 		 * fall through and pass this up the UDP socket.
1521 		 * up->encap_rcv() returns the following value:
1522 		 * =0 if skb was successfully passed to the encap
1523 		 *    handler or was discarded by it.
1524 		 * >0 if skb should be passed on to UDP.
1525 		 * <0 if skb should be resubmitted as proto -N
1526 		 */
1527 
1528 		/* if we're overly short, let UDP handle it */
1529 		encap_rcv = ACCESS_ONCE(up->encap_rcv);
1530 		if (skb->len > sizeof(struct udphdr) && encap_rcv) {
1531 			int ret;
1532 
1533 			/* Verify checksum before giving to encap */
1534 			if (udp_lib_checksum_complete(skb))
1535 				goto csum_error;
1536 
1537 			ret = encap_rcv(sk, skb);
1538 			if (ret <= 0) {
1539 				UDP_INC_STATS_BH(sock_net(sk),
1540 						 UDP_MIB_INDATAGRAMS,
1541 						 is_udplite);
1542 				return -ret;
1543 			}
1544 		}
1545 
1546 		/* FALLTHROUGH -- it's a UDP Packet */
1547 	}
1548 
1549 	/*
1550 	 * 	UDP-Lite specific tests, ignored on UDP sockets
1551 	 */
1552 	if ((is_udplite & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
1553 
1554 		/*
1555 		 * MIB statistics other than incrementing the error count are
1556 		 * disabled for the following two types of errors: these depend
1557 		 * on the application settings, not on the functioning of the
1558 		 * protocol stack as such.
1559 		 *
1560 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
1561 		 * way ... to ... at least let the receiving application block
1562 		 * delivery of packets with coverage values less than a value
1563 		 * provided by the application."
1564 		 */
1565 		if (up->pcrlen == 0) {          /* full coverage was set  */
1566 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
1567 					    UDP_SKB_CB(skb)->cscov, skb->len);
1568 			goto drop;
1569 		}
1570 		/* The next case involves violating the min. coverage requested
1571 		 * by the receiver. This is subtle: if receiver wants x and x is
1572 		 * greater than the buffersize/MTU then receiver will complain
1573 		 * that it wants x while sender emits packets of smaller size y.
1574 		 * Therefore the above ...()->partial_cov statement is essential.
1575 		 */
1576 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
1577 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
1578 					    UDP_SKB_CB(skb)->cscov, up->pcrlen);
1579 			goto drop;
1580 		}
1581 	}
1582 
1583 	if (rcu_access_pointer(sk->sk_filter) &&
1584 	    udp_lib_checksum_complete(skb))
1585 		goto csum_error;
1586 
1587 	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
1588 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1589 				 is_udplite);
1590 		goto drop;
1591 	}
1592 
1593 	rc = 0;
1594 
1595 	ipv4_pktinfo_prepare(sk, skb);
1596 	bh_lock_sock(sk);
1597 	if (!sock_owned_by_user(sk))
1598 		rc = __udp_queue_rcv_skb(sk, skb);
1599 	else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
1600 		bh_unlock_sock(sk);
1601 		goto drop;
1602 	}
1603 	bh_unlock_sock(sk);
1604 
1605 	return rc;
1606 
1607 csum_error:
1608 	UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1609 drop:
1610 	UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1611 	atomic_inc(&sk->sk_drops);
1612 	kfree_skb(skb);
1613 	return -1;
1614 }
1615 
1616 static void flush_stack(struct sock **stack, unsigned int count,
1617 			struct sk_buff *skb, unsigned int final)
1618 {
1619 	unsigned int i;
1620 	struct sk_buff *skb1 = NULL;
1621 	struct sock *sk;
1622 
1623 	for (i = 0; i < count; i++) {
1624 		sk = stack[i];
1625 		if (likely(!skb1))
1626 			skb1 = (i == final) ? skb : skb_clone(skb, GFP_ATOMIC);
1627 
1628 		if (!skb1) {
1629 			atomic_inc(&sk->sk_drops);
1630 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1631 					 IS_UDPLITE(sk));
1632 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1633 					 IS_UDPLITE(sk));
1634 		}
1635 
1636 		if (skb1 && udp_queue_rcv_skb(sk, skb1) <= 0)
1637 			skb1 = NULL;
1638 
1639 		sock_put(sk);
1640 	}
1641 	if (unlikely(skb1))
1642 		kfree_skb(skb1);
1643 }
1644 
1645 /* For TCP sockets, sk_rx_dst is protected by socket lock
1646  * For UDP, we use xchg() to guard against concurrent changes.
1647  */
1648 static void udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
1649 {
1650 	struct dst_entry *old;
1651 
1652 	dst_hold(dst);
1653 	old = xchg(&sk->sk_rx_dst, dst);
1654 	dst_release(old);
1655 }
1656 
1657 /*
1658  *	Multicasts and broadcasts go to each listener.
1659  *
1660  *	Note: called only from the BH handler context.
1661  */
1662 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1663 				    struct udphdr  *uh,
1664 				    __be32 saddr, __be32 daddr,
1665 				    struct udp_table *udptable,
1666 				    int proto)
1667 {
1668 	struct sock *sk, *stack[256 / sizeof(struct sock *)];
1669 	struct hlist_nulls_node *node;
1670 	unsigned short hnum = ntohs(uh->dest);
1671 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
1672 	int dif = skb->dev->ifindex;
1673 	unsigned int count = 0, offset = offsetof(typeof(*sk), sk_nulls_node);
1674 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
1675 	bool inner_flushed = false;
1676 
1677 	if (use_hash2) {
1678 		hash2_any = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
1679 			    udp_table.mask;
1680 		hash2 = udp4_portaddr_hash(net, daddr, hnum) & udp_table.mask;
1681 start_lookup:
1682 		hslot = &udp_table.hash2[hash2];
1683 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
1684 	}
1685 
1686 	spin_lock(&hslot->lock);
1687 	sk_nulls_for_each_entry_offset(sk, node, &hslot->head, offset) {
1688 		if (__udp_is_mcast_sock(net, sk,
1689 					uh->dest, daddr,
1690 					uh->source, saddr,
1691 					dif, hnum)) {
1692 			if (unlikely(count == ARRAY_SIZE(stack))) {
1693 				flush_stack(stack, count, skb, ~0);
1694 				inner_flushed = true;
1695 				count = 0;
1696 			}
1697 			stack[count++] = sk;
1698 			sock_hold(sk);
1699 		}
1700 	}
1701 
1702 	spin_unlock(&hslot->lock);
1703 
1704 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
1705 	if (use_hash2 && hash2 != hash2_any) {
1706 		hash2 = hash2_any;
1707 		goto start_lookup;
1708 	}
1709 
1710 	/*
1711 	 * do the slow work with no lock held
1712 	 */
1713 	if (count) {
1714 		flush_stack(stack, count, skb, count - 1);
1715 	} else {
1716 		if (!inner_flushed)
1717 			UDP_INC_STATS_BH(net, UDP_MIB_IGNOREDMULTI,
1718 					 proto == IPPROTO_UDPLITE);
1719 		consume_skb(skb);
1720 	}
1721 	return 0;
1722 }
1723 
1724 /* Initialize UDP checksum. If exited with zero value (success),
1725  * CHECKSUM_UNNECESSARY means, that no more checks are required.
1726  * Otherwise, csum completion requires chacksumming packet body,
1727  * including udp header and folding it to skb->csum.
1728  */
1729 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1730 				 int proto)
1731 {
1732 	int err;
1733 
1734 	UDP_SKB_CB(skb)->partial_cov = 0;
1735 	UDP_SKB_CB(skb)->cscov = skb->len;
1736 
1737 	if (proto == IPPROTO_UDPLITE) {
1738 		err = udplite_checksum_init(skb, uh);
1739 		if (err)
1740 			return err;
1741 	}
1742 
1743 	return skb_checksum_init_zero_check(skb, proto, uh->check,
1744 					    inet_compute_pseudo);
1745 }
1746 
1747 /*
1748  *	All we need to do is get the socket, and then do a checksum.
1749  */
1750 
1751 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
1752 		   int proto)
1753 {
1754 	struct sock *sk;
1755 	struct udphdr *uh;
1756 	unsigned short ulen;
1757 	struct rtable *rt = skb_rtable(skb);
1758 	__be32 saddr, daddr;
1759 	struct net *net = dev_net(skb->dev);
1760 
1761 	/*
1762 	 *  Validate the packet.
1763 	 */
1764 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1765 		goto drop;		/* No space for header. */
1766 
1767 	uh   = udp_hdr(skb);
1768 	ulen = ntohs(uh->len);
1769 	saddr = ip_hdr(skb)->saddr;
1770 	daddr = ip_hdr(skb)->daddr;
1771 
1772 	if (ulen > skb->len)
1773 		goto short_packet;
1774 
1775 	if (proto == IPPROTO_UDP) {
1776 		/* UDP validates ulen. */
1777 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1778 			goto short_packet;
1779 		uh = udp_hdr(skb);
1780 	}
1781 
1782 	if (udp4_csum_init(skb, uh, proto))
1783 		goto csum_error;
1784 
1785 	sk = skb_steal_sock(skb);
1786 	if (sk) {
1787 		struct dst_entry *dst = skb_dst(skb);
1788 		int ret;
1789 
1790 		if (unlikely(sk->sk_rx_dst != dst))
1791 			udp_sk_rx_dst_set(sk, dst);
1792 
1793 		ret = udp_queue_rcv_skb(sk, skb);
1794 		sock_put(sk);
1795 		/* a return value > 0 means to resubmit the input, but
1796 		 * it wants the return to be -protocol, or 0
1797 		 */
1798 		if (ret > 0)
1799 			return -ret;
1800 		return 0;
1801 	}
1802 
1803 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1804 		return __udp4_lib_mcast_deliver(net, skb, uh,
1805 						saddr, daddr, udptable, proto);
1806 
1807 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
1808 	if (sk) {
1809 		int ret;
1810 
1811 		if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
1812 			skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check,
1813 						 inet_compute_pseudo);
1814 
1815 		ret = udp_queue_rcv_skb(sk, skb);
1816 		sock_put(sk);
1817 
1818 		/* a return value > 0 means to resubmit the input, but
1819 		 * it wants the return to be -protocol, or 0
1820 		 */
1821 		if (ret > 0)
1822 			return -ret;
1823 		return 0;
1824 	}
1825 
1826 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1827 		goto drop;
1828 	nf_reset(skb);
1829 
1830 	/* No socket. Drop packet silently, if checksum is wrong */
1831 	if (udp_lib_checksum_complete(skb))
1832 		goto csum_error;
1833 
1834 	UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1835 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1836 
1837 	/*
1838 	 * Hmm.  We got an UDP packet to a port to which we
1839 	 * don't wanna listen.  Ignore it.
1840 	 */
1841 	kfree_skb(skb);
1842 	return 0;
1843 
1844 short_packet:
1845 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
1846 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
1847 			    &saddr, ntohs(uh->source),
1848 			    ulen, skb->len,
1849 			    &daddr, ntohs(uh->dest));
1850 	goto drop;
1851 
1852 csum_error:
1853 	/*
1854 	 * RFC1122: OK.  Discards the bad packet silently (as far as
1855 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1856 	 */
1857 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
1858 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
1859 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
1860 			    ulen);
1861 	UDP_INC_STATS_BH(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
1862 drop:
1863 	UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1864 	kfree_skb(skb);
1865 	return 0;
1866 }
1867 
1868 /* We can only early demux multicast if there is a single matching socket.
1869  * If more than one socket found returns NULL
1870  */
1871 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
1872 						  __be16 loc_port, __be32 loc_addr,
1873 						  __be16 rmt_port, __be32 rmt_addr,
1874 						  int dif)
1875 {
1876 	struct sock *sk, *result;
1877 	struct hlist_nulls_node *node;
1878 	unsigned short hnum = ntohs(loc_port);
1879 	unsigned int count, slot = udp_hashfn(net, hnum, udp_table.mask);
1880 	struct udp_hslot *hslot = &udp_table.hash[slot];
1881 
1882 	/* Do not bother scanning a too big list */
1883 	if (hslot->count > 10)
1884 		return NULL;
1885 
1886 	rcu_read_lock();
1887 begin:
1888 	count = 0;
1889 	result = NULL;
1890 	sk_nulls_for_each_rcu(sk, node, &hslot->head) {
1891 		if (__udp_is_mcast_sock(net, sk,
1892 					loc_port, loc_addr,
1893 					rmt_port, rmt_addr,
1894 					dif, hnum)) {
1895 			result = sk;
1896 			++count;
1897 		}
1898 	}
1899 	/*
1900 	 * if the nulls value we got at the end of this lookup is
1901 	 * not the expected one, we must restart lookup.
1902 	 * We probably met an item that was moved to another chain.
1903 	 */
1904 	if (get_nulls_value(node) != slot)
1905 		goto begin;
1906 
1907 	if (result) {
1908 		if (count != 1 ||
1909 		    unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
1910 			result = NULL;
1911 		else if (unlikely(!__udp_is_mcast_sock(net, result,
1912 						       loc_port, loc_addr,
1913 						       rmt_port, rmt_addr,
1914 						       dif, hnum))) {
1915 			sock_put(result);
1916 			result = NULL;
1917 		}
1918 	}
1919 	rcu_read_unlock();
1920 	return result;
1921 }
1922 
1923 /* For unicast we should only early demux connected sockets or we can
1924  * break forwarding setups.  The chains here can be long so only check
1925  * if the first socket is an exact match and if not move on.
1926  */
1927 static struct sock *__udp4_lib_demux_lookup(struct net *net,
1928 					    __be16 loc_port, __be32 loc_addr,
1929 					    __be16 rmt_port, __be32 rmt_addr,
1930 					    int dif)
1931 {
1932 	struct sock *sk, *result;
1933 	struct hlist_nulls_node *node;
1934 	unsigned short hnum = ntohs(loc_port);
1935 	unsigned int hash2 = udp4_portaddr_hash(net, loc_addr, hnum);
1936 	unsigned int slot2 = hash2 & udp_table.mask;
1937 	struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
1938 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
1939 	const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
1940 
1941 	rcu_read_lock();
1942 	result = NULL;
1943 	udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
1944 		if (INET_MATCH(sk, net, acookie,
1945 			       rmt_addr, loc_addr, ports, dif))
1946 			result = sk;
1947 		/* Only check first socket in chain */
1948 		break;
1949 	}
1950 
1951 	if (result) {
1952 		if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
1953 			result = NULL;
1954 		else if (unlikely(!INET_MATCH(sk, net, acookie,
1955 					      rmt_addr, loc_addr,
1956 					      ports, dif))) {
1957 			sock_put(result);
1958 			result = NULL;
1959 		}
1960 	}
1961 	rcu_read_unlock();
1962 	return result;
1963 }
1964 
1965 void udp_v4_early_demux(struct sk_buff *skb)
1966 {
1967 	struct net *net = dev_net(skb->dev);
1968 	const struct iphdr *iph;
1969 	const struct udphdr *uh;
1970 	struct sock *sk;
1971 	struct dst_entry *dst;
1972 	int dif = skb->dev->ifindex;
1973 	int ours;
1974 
1975 	/* validate the packet */
1976 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
1977 		return;
1978 
1979 	iph = ip_hdr(skb);
1980 	uh = udp_hdr(skb);
1981 
1982 	if (skb->pkt_type == PACKET_BROADCAST ||
1983 	    skb->pkt_type == PACKET_MULTICAST) {
1984 		struct in_device *in_dev = __in_dev_get_rcu(skb->dev);
1985 
1986 		if (!in_dev)
1987 			return;
1988 
1989 		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
1990 				       iph->protocol);
1991 		if (!ours)
1992 			return;
1993 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
1994 						   uh->source, iph->saddr, dif);
1995 	} else if (skb->pkt_type == PACKET_HOST) {
1996 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
1997 					     uh->source, iph->saddr, dif);
1998 	} else {
1999 		return;
2000 	}
2001 
2002 	if (!sk)
2003 		return;
2004 
2005 	skb->sk = sk;
2006 	skb->destructor = sock_efree;
2007 	dst = READ_ONCE(sk->sk_rx_dst);
2008 
2009 	if (dst)
2010 		dst = dst_check(dst, 0);
2011 	if (dst) {
2012 		/* DST_NOCACHE can not be used without taking a reference */
2013 		if (dst->flags & DST_NOCACHE) {
2014 			if (likely(atomic_inc_not_zero(&dst->__refcnt)))
2015 				skb_dst_set(skb, dst);
2016 		} else {
2017 			skb_dst_set_noref(skb, dst);
2018 		}
2019 	}
2020 }
2021 
2022 int udp_rcv(struct sk_buff *skb)
2023 {
2024 	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2025 }
2026 
2027 void udp_destroy_sock(struct sock *sk)
2028 {
2029 	struct udp_sock *up = udp_sk(sk);
2030 	bool slow = lock_sock_fast(sk);
2031 	udp_flush_pending_frames(sk);
2032 	unlock_sock_fast(sk, slow);
2033 	if (static_key_false(&udp_encap_needed) && up->encap_type) {
2034 		void (*encap_destroy)(struct sock *sk);
2035 		encap_destroy = ACCESS_ONCE(up->encap_destroy);
2036 		if (encap_destroy)
2037 			encap_destroy(sk);
2038 	}
2039 }
2040 
2041 /*
2042  *	Socket option code for UDP
2043  */
2044 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2045 		       char __user *optval, unsigned int optlen,
2046 		       int (*push_pending_frames)(struct sock *))
2047 {
2048 	struct udp_sock *up = udp_sk(sk);
2049 	int val, valbool;
2050 	int err = 0;
2051 	int is_udplite = IS_UDPLITE(sk);
2052 
2053 	if (optlen < sizeof(int))
2054 		return -EINVAL;
2055 
2056 	if (get_user(val, (int __user *)optval))
2057 		return -EFAULT;
2058 
2059 	valbool = val ? 1 : 0;
2060 
2061 	switch (optname) {
2062 	case UDP_CORK:
2063 		if (val != 0) {
2064 			up->corkflag = 1;
2065 		} else {
2066 			up->corkflag = 0;
2067 			lock_sock(sk);
2068 			push_pending_frames(sk);
2069 			release_sock(sk);
2070 		}
2071 		break;
2072 
2073 	case UDP_ENCAP:
2074 		switch (val) {
2075 		case 0:
2076 		case UDP_ENCAP_ESPINUDP:
2077 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2078 			up->encap_rcv = xfrm4_udp_encap_rcv;
2079 			/* FALLTHROUGH */
2080 		case UDP_ENCAP_L2TPINUDP:
2081 			up->encap_type = val;
2082 			udp_encap_enable();
2083 			break;
2084 		default:
2085 			err = -ENOPROTOOPT;
2086 			break;
2087 		}
2088 		break;
2089 
2090 	case UDP_NO_CHECK6_TX:
2091 		up->no_check6_tx = valbool;
2092 		break;
2093 
2094 	case UDP_NO_CHECK6_RX:
2095 		up->no_check6_rx = valbool;
2096 		break;
2097 
2098 	/*
2099 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2100 	 */
2101 	/* The sender sets actual checksum coverage length via this option.
2102 	 * The case coverage > packet length is handled by send module. */
2103 	case UDPLITE_SEND_CSCOV:
2104 		if (!is_udplite)         /* Disable the option on UDP sockets */
2105 			return -ENOPROTOOPT;
2106 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2107 			val = 8;
2108 		else if (val > USHRT_MAX)
2109 			val = USHRT_MAX;
2110 		up->pcslen = val;
2111 		up->pcflag |= UDPLITE_SEND_CC;
2112 		break;
2113 
2114 	/* The receiver specifies a minimum checksum coverage value. To make
2115 	 * sense, this should be set to at least 8 (as done below). If zero is
2116 	 * used, this again means full checksum coverage.                     */
2117 	case UDPLITE_RECV_CSCOV:
2118 		if (!is_udplite)         /* Disable the option on UDP sockets */
2119 			return -ENOPROTOOPT;
2120 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2121 			val = 8;
2122 		else if (val > USHRT_MAX)
2123 			val = USHRT_MAX;
2124 		up->pcrlen = val;
2125 		up->pcflag |= UDPLITE_RECV_CC;
2126 		break;
2127 
2128 	default:
2129 		err = -ENOPROTOOPT;
2130 		break;
2131 	}
2132 
2133 	return err;
2134 }
2135 EXPORT_SYMBOL(udp_lib_setsockopt);
2136 
2137 int udp_setsockopt(struct sock *sk, int level, int optname,
2138 		   char __user *optval, unsigned int optlen)
2139 {
2140 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2141 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2142 					  udp_push_pending_frames);
2143 	return ip_setsockopt(sk, level, optname, optval, optlen);
2144 }
2145 
2146 #ifdef CONFIG_COMPAT
2147 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2148 			  char __user *optval, unsigned int optlen)
2149 {
2150 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2151 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2152 					  udp_push_pending_frames);
2153 	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2154 }
2155 #endif
2156 
2157 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2158 		       char __user *optval, int __user *optlen)
2159 {
2160 	struct udp_sock *up = udp_sk(sk);
2161 	int val, len;
2162 
2163 	if (get_user(len, optlen))
2164 		return -EFAULT;
2165 
2166 	len = min_t(unsigned int, len, sizeof(int));
2167 
2168 	if (len < 0)
2169 		return -EINVAL;
2170 
2171 	switch (optname) {
2172 	case UDP_CORK:
2173 		val = up->corkflag;
2174 		break;
2175 
2176 	case UDP_ENCAP:
2177 		val = up->encap_type;
2178 		break;
2179 
2180 	case UDP_NO_CHECK6_TX:
2181 		val = up->no_check6_tx;
2182 		break;
2183 
2184 	case UDP_NO_CHECK6_RX:
2185 		val = up->no_check6_rx;
2186 		break;
2187 
2188 	/* The following two cannot be changed on UDP sockets, the return is
2189 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2190 	case UDPLITE_SEND_CSCOV:
2191 		val = up->pcslen;
2192 		break;
2193 
2194 	case UDPLITE_RECV_CSCOV:
2195 		val = up->pcrlen;
2196 		break;
2197 
2198 	default:
2199 		return -ENOPROTOOPT;
2200 	}
2201 
2202 	if (put_user(len, optlen))
2203 		return -EFAULT;
2204 	if (copy_to_user(optval, &val, len))
2205 		return -EFAULT;
2206 	return 0;
2207 }
2208 EXPORT_SYMBOL(udp_lib_getsockopt);
2209 
2210 int udp_getsockopt(struct sock *sk, int level, int optname,
2211 		   char __user *optval, int __user *optlen)
2212 {
2213 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2214 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2215 	return ip_getsockopt(sk, level, optname, optval, optlen);
2216 }
2217 
2218 #ifdef CONFIG_COMPAT
2219 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2220 				 char __user *optval, int __user *optlen)
2221 {
2222 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2223 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2224 	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2225 }
2226 #endif
2227 /**
2228  * 	udp_poll - wait for a UDP event.
2229  *	@file - file struct
2230  *	@sock - socket
2231  *	@wait - poll table
2232  *
2233  *	This is same as datagram poll, except for the special case of
2234  *	blocking sockets. If application is using a blocking fd
2235  *	and a packet with checksum error is in the queue;
2236  *	then it could get return from select indicating data available
2237  *	but then block when reading it. Add special case code
2238  *	to work around these arguably broken applications.
2239  */
2240 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2241 {
2242 	unsigned int mask = datagram_poll(file, sock, wait);
2243 	struct sock *sk = sock->sk;
2244 
2245 	sock_rps_record_flow(sk);
2246 
2247 	/* Check for false positives due to checksum errors */
2248 	if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2249 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk))
2250 		mask &= ~(POLLIN | POLLRDNORM);
2251 
2252 	return mask;
2253 
2254 }
2255 EXPORT_SYMBOL(udp_poll);
2256 
2257 struct proto udp_prot = {
2258 	.name		   = "UDP",
2259 	.owner		   = THIS_MODULE,
2260 	.close		   = udp_lib_close,
2261 	.connect	   = ip4_datagram_connect,
2262 	.disconnect	   = udp_disconnect,
2263 	.ioctl		   = udp_ioctl,
2264 	.destroy	   = udp_destroy_sock,
2265 	.setsockopt	   = udp_setsockopt,
2266 	.getsockopt	   = udp_getsockopt,
2267 	.sendmsg	   = udp_sendmsg,
2268 	.recvmsg	   = udp_recvmsg,
2269 	.sendpage	   = udp_sendpage,
2270 	.backlog_rcv	   = __udp_queue_rcv_skb,
2271 	.release_cb	   = ip4_datagram_release_cb,
2272 	.hash		   = udp_lib_hash,
2273 	.unhash		   = udp_lib_unhash,
2274 	.rehash		   = udp_v4_rehash,
2275 	.get_port	   = udp_v4_get_port,
2276 	.memory_allocated  = &udp_memory_allocated,
2277 	.sysctl_mem	   = sysctl_udp_mem,
2278 	.sysctl_wmem	   = &sysctl_udp_wmem_min,
2279 	.sysctl_rmem	   = &sysctl_udp_rmem_min,
2280 	.obj_size	   = sizeof(struct udp_sock),
2281 	.slab_flags	   = SLAB_DESTROY_BY_RCU,
2282 	.h.udp_table	   = &udp_table,
2283 #ifdef CONFIG_COMPAT
2284 	.compat_setsockopt = compat_udp_setsockopt,
2285 	.compat_getsockopt = compat_udp_getsockopt,
2286 #endif
2287 	.clear_sk	   = sk_prot_clear_portaddr_nulls,
2288 };
2289 EXPORT_SYMBOL(udp_prot);
2290 
2291 /* ------------------------------------------------------------------------ */
2292 #ifdef CONFIG_PROC_FS
2293 
2294 static struct sock *udp_get_first(struct seq_file *seq, int start)
2295 {
2296 	struct sock *sk;
2297 	struct udp_iter_state *state = seq->private;
2298 	struct net *net = seq_file_net(seq);
2299 
2300 	for (state->bucket = start; state->bucket <= state->udp_table->mask;
2301 	     ++state->bucket) {
2302 		struct hlist_nulls_node *node;
2303 		struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
2304 
2305 		if (hlist_nulls_empty(&hslot->head))
2306 			continue;
2307 
2308 		spin_lock_bh(&hslot->lock);
2309 		sk_nulls_for_each(sk, node, &hslot->head) {
2310 			if (!net_eq(sock_net(sk), net))
2311 				continue;
2312 			if (sk->sk_family == state->family)
2313 				goto found;
2314 		}
2315 		spin_unlock_bh(&hslot->lock);
2316 	}
2317 	sk = NULL;
2318 found:
2319 	return sk;
2320 }
2321 
2322 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2323 {
2324 	struct udp_iter_state *state = seq->private;
2325 	struct net *net = seq_file_net(seq);
2326 
2327 	do {
2328 		sk = sk_nulls_next(sk);
2329 	} while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
2330 
2331 	if (!sk) {
2332 		if (state->bucket <= state->udp_table->mask)
2333 			spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2334 		return udp_get_first(seq, state->bucket + 1);
2335 	}
2336 	return sk;
2337 }
2338 
2339 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2340 {
2341 	struct sock *sk = udp_get_first(seq, 0);
2342 
2343 	if (sk)
2344 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2345 			--pos;
2346 	return pos ? NULL : sk;
2347 }
2348 
2349 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2350 {
2351 	struct udp_iter_state *state = seq->private;
2352 	state->bucket = MAX_UDP_PORTS;
2353 
2354 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2355 }
2356 
2357 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2358 {
2359 	struct sock *sk;
2360 
2361 	if (v == SEQ_START_TOKEN)
2362 		sk = udp_get_idx(seq, 0);
2363 	else
2364 		sk = udp_get_next(seq, v);
2365 
2366 	++*pos;
2367 	return sk;
2368 }
2369 
2370 static void udp_seq_stop(struct seq_file *seq, void *v)
2371 {
2372 	struct udp_iter_state *state = seq->private;
2373 
2374 	if (state->bucket <= state->udp_table->mask)
2375 		spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2376 }
2377 
2378 int udp_seq_open(struct inode *inode, struct file *file)
2379 {
2380 	struct udp_seq_afinfo *afinfo = PDE_DATA(inode);
2381 	struct udp_iter_state *s;
2382 	int err;
2383 
2384 	err = seq_open_net(inode, file, &afinfo->seq_ops,
2385 			   sizeof(struct udp_iter_state));
2386 	if (err < 0)
2387 		return err;
2388 
2389 	s = ((struct seq_file *)file->private_data)->private;
2390 	s->family		= afinfo->family;
2391 	s->udp_table		= afinfo->udp_table;
2392 	return err;
2393 }
2394 EXPORT_SYMBOL(udp_seq_open);
2395 
2396 /* ------------------------------------------------------------------------ */
2397 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2398 {
2399 	struct proc_dir_entry *p;
2400 	int rc = 0;
2401 
2402 	afinfo->seq_ops.start		= udp_seq_start;
2403 	afinfo->seq_ops.next		= udp_seq_next;
2404 	afinfo->seq_ops.stop		= udp_seq_stop;
2405 
2406 	p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2407 			     afinfo->seq_fops, afinfo);
2408 	if (!p)
2409 		rc = -ENOMEM;
2410 	return rc;
2411 }
2412 EXPORT_SYMBOL(udp_proc_register);
2413 
2414 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2415 {
2416 	remove_proc_entry(afinfo->name, net->proc_net);
2417 }
2418 EXPORT_SYMBOL(udp_proc_unregister);
2419 
2420 /* ------------------------------------------------------------------------ */
2421 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2422 		int bucket)
2423 {
2424 	struct inet_sock *inet = inet_sk(sp);
2425 	__be32 dest = inet->inet_daddr;
2426 	__be32 src  = inet->inet_rcv_saddr;
2427 	__u16 destp	  = ntohs(inet->inet_dport);
2428 	__u16 srcp	  = ntohs(inet->inet_sport);
2429 
2430 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2431 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d",
2432 		bucket, src, srcp, dest, destp, sp->sk_state,
2433 		sk_wmem_alloc_get(sp),
2434 		sk_rmem_alloc_get(sp),
2435 		0, 0L, 0,
2436 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2437 		0, sock_i_ino(sp),
2438 		atomic_read(&sp->sk_refcnt), sp,
2439 		atomic_read(&sp->sk_drops));
2440 }
2441 
2442 int udp4_seq_show(struct seq_file *seq, void *v)
2443 {
2444 	seq_setwidth(seq, 127);
2445 	if (v == SEQ_START_TOKEN)
2446 		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2447 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2448 			   "inode ref pointer drops");
2449 	else {
2450 		struct udp_iter_state *state = seq->private;
2451 
2452 		udp4_format_sock(v, seq, state->bucket);
2453 	}
2454 	seq_pad(seq, '\n');
2455 	return 0;
2456 }
2457 
2458 static const struct file_operations udp_afinfo_seq_fops = {
2459 	.owner    = THIS_MODULE,
2460 	.open     = udp_seq_open,
2461 	.read     = seq_read,
2462 	.llseek   = seq_lseek,
2463 	.release  = seq_release_net
2464 };
2465 
2466 /* ------------------------------------------------------------------------ */
2467 static struct udp_seq_afinfo udp4_seq_afinfo = {
2468 	.name		= "udp",
2469 	.family		= AF_INET,
2470 	.udp_table	= &udp_table,
2471 	.seq_fops	= &udp_afinfo_seq_fops,
2472 	.seq_ops	= {
2473 		.show		= udp4_seq_show,
2474 	},
2475 };
2476 
2477 static int __net_init udp4_proc_init_net(struct net *net)
2478 {
2479 	return udp_proc_register(net, &udp4_seq_afinfo);
2480 }
2481 
2482 static void __net_exit udp4_proc_exit_net(struct net *net)
2483 {
2484 	udp_proc_unregister(net, &udp4_seq_afinfo);
2485 }
2486 
2487 static struct pernet_operations udp4_net_ops = {
2488 	.init = udp4_proc_init_net,
2489 	.exit = udp4_proc_exit_net,
2490 };
2491 
2492 int __init udp4_proc_init(void)
2493 {
2494 	return register_pernet_subsys(&udp4_net_ops);
2495 }
2496 
2497 void udp4_proc_exit(void)
2498 {
2499 	unregister_pernet_subsys(&udp4_net_ops);
2500 }
2501 #endif /* CONFIG_PROC_FS */
2502 
2503 static __initdata unsigned long uhash_entries;
2504 static int __init set_uhash_entries(char *str)
2505 {
2506 	ssize_t ret;
2507 
2508 	if (!str)
2509 		return 0;
2510 
2511 	ret = kstrtoul(str, 0, &uhash_entries);
2512 	if (ret)
2513 		return 0;
2514 
2515 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2516 		uhash_entries = UDP_HTABLE_SIZE_MIN;
2517 	return 1;
2518 }
2519 __setup("uhash_entries=", set_uhash_entries);
2520 
2521 void __init udp_table_init(struct udp_table *table, const char *name)
2522 {
2523 	unsigned int i;
2524 
2525 	table->hash = alloc_large_system_hash(name,
2526 					      2 * sizeof(struct udp_hslot),
2527 					      uhash_entries,
2528 					      21, /* one slot per 2 MB */
2529 					      0,
2530 					      &table->log,
2531 					      &table->mask,
2532 					      UDP_HTABLE_SIZE_MIN,
2533 					      64 * 1024);
2534 
2535 	table->hash2 = table->hash + (table->mask + 1);
2536 	for (i = 0; i <= table->mask; i++) {
2537 		INIT_HLIST_NULLS_HEAD(&table->hash[i].head, i);
2538 		table->hash[i].count = 0;
2539 		spin_lock_init(&table->hash[i].lock);
2540 	}
2541 	for (i = 0; i <= table->mask; i++) {
2542 		INIT_HLIST_NULLS_HEAD(&table->hash2[i].head, i);
2543 		table->hash2[i].count = 0;
2544 		spin_lock_init(&table->hash2[i].lock);
2545 	}
2546 }
2547 
2548 u32 udp_flow_hashrnd(void)
2549 {
2550 	static u32 hashrnd __read_mostly;
2551 
2552 	net_get_random_once(&hashrnd, sizeof(hashrnd));
2553 
2554 	return hashrnd;
2555 }
2556 EXPORT_SYMBOL(udp_flow_hashrnd);
2557 
2558 void __init udp_init(void)
2559 {
2560 	unsigned long limit;
2561 
2562 	udp_table_init(&udp_table, "UDP");
2563 	limit = nr_free_buffer_pages() / 8;
2564 	limit = max(limit, 128UL);
2565 	sysctl_udp_mem[0] = limit / 4 * 3;
2566 	sysctl_udp_mem[1] = limit;
2567 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2568 
2569 	sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2570 	sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2571 }
2572