xref: /linux/net/ipv4/udp.c (revision 89e47d3b8a273b0eac21e4bf6d7fdb86b654fa16)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The User Datagram Protocol (UDP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
12  *		Hirokazu Takahashi, <taka@valinux.co.jp>
13  *
14  * Fixes:
15  *		Alan Cox	:	verify_area() calls
16  *		Alan Cox	: 	stopped close while in use off icmp
17  *					messages. Not a fix but a botch that
18  *					for udp at least is 'valid'.
19  *		Alan Cox	:	Fixed icmp handling properly
20  *		Alan Cox	: 	Correct error for oversized datagrams
21  *		Alan Cox	:	Tidied select() semantics.
22  *		Alan Cox	:	udp_err() fixed properly, also now
23  *					select and read wake correctly on errors
24  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
25  *		Alan Cox	:	UDP can count its memory
26  *		Alan Cox	:	send to an unknown connection causes
27  *					an ECONNREFUSED off the icmp, but
28  *					does NOT close.
29  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
30  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
31  *					bug no longer crashes it.
32  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
33  *		Alan Cox	:	Uses skb_free_datagram
34  *		Alan Cox	:	Added get/set sockopt support.
35  *		Alan Cox	:	Broadcasting without option set returns EACCES.
36  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
37  *		Alan Cox	:	Use ip_tos and ip_ttl
38  *		Alan Cox	:	SNMP Mibs
39  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
40  *		Matt Dillon	:	UDP length checks.
41  *		Alan Cox	:	Smarter af_inet used properly.
42  *		Alan Cox	:	Use new kernel side addressing.
43  *		Alan Cox	:	Incorrect return on truncated datagram receive.
44  *	Arnt Gulbrandsen 	:	New udp_send and stuff
45  *		Alan Cox	:	Cache last socket
46  *		Alan Cox	:	Route cache
47  *		Jon Peatfield	:	Minor efficiency fix to sendto().
48  *		Mike Shaver	:	RFC1122 checks.
49  *		Alan Cox	:	Nonblocking error fix.
50  *	Willy Konynenberg	:	Transparent proxying support.
51  *		Mike McLagan	:	Routing by source
52  *		David S. Miller	:	New socket lookup architecture.
53  *					Last socket cache retained as it
54  *					does have a high hit rate.
55  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
56  *		Andi Kleen	:	Some cleanups, cache destination entry
57  *					for connect.
58  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
59  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
60  *					return ENOTCONN for unconnected sockets (POSIX)
61  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
62  *					bound-to-device socket
63  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
64  *					datagrams.
65  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
66  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
67  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
68  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
69  *					a single port at the same time.
70  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71  *	James Chapman		:	Add L2TP encapsulation type.
72  *
73  *
74  *		This program is free software; you can redistribute it and/or
75  *		modify it under the terms of the GNU General Public License
76  *		as published by the Free Software Foundation; either version
77  *		2 of the License, or (at your option) any later version.
78  */
79 
80 #define pr_fmt(fmt) "UDP: " fmt
81 
82 #include <asm/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/bootmem.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
93 #include <linux/in.h>
94 #include <linux/errno.h>
95 #include <linux/timer.h>
96 #include <linux/mm.h>
97 #include <linux/inet.h>
98 #include <linux/netdevice.h>
99 #include <linux/slab.h>
100 #include <net/tcp_states.h>
101 #include <linux/skbuff.h>
102 #include <linux/proc_fs.h>
103 #include <linux/seq_file.h>
104 #include <net/net_namespace.h>
105 #include <net/icmp.h>
106 #include <net/inet_hashtables.h>
107 #include <net/route.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <trace/events/udp.h>
111 #include <linux/static_key.h>
112 #include <trace/events/skb.h>
113 #include <net/busy_poll.h>
114 #include "udp_impl.h"
115 
116 struct udp_table udp_table __read_mostly;
117 EXPORT_SYMBOL(udp_table);
118 
119 long sysctl_udp_mem[3] __read_mostly;
120 EXPORT_SYMBOL(sysctl_udp_mem);
121 
122 int sysctl_udp_rmem_min __read_mostly;
123 EXPORT_SYMBOL(sysctl_udp_rmem_min);
124 
125 int sysctl_udp_wmem_min __read_mostly;
126 EXPORT_SYMBOL(sysctl_udp_wmem_min);
127 
128 atomic_long_t udp_memory_allocated;
129 EXPORT_SYMBOL(udp_memory_allocated);
130 
131 #define MAX_UDP_PORTS 65536
132 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
133 
134 static int udp_lib_lport_inuse(struct net *net, __u16 num,
135 			       const struct udp_hslot *hslot,
136 			       unsigned long *bitmap,
137 			       struct sock *sk,
138 			       int (*saddr_comp)(const struct sock *sk1,
139 						 const struct sock *sk2),
140 			       unsigned int log)
141 {
142 	struct sock *sk2;
143 	struct hlist_nulls_node *node;
144 	kuid_t uid = sock_i_uid(sk);
145 
146 	sk_nulls_for_each(sk2, node, &hslot->head)
147 		if (net_eq(sock_net(sk2), net) &&
148 		    sk2 != sk &&
149 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
150 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
151 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
152 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
153 		    (!sk2->sk_reuseport || !sk->sk_reuseport ||
154 		      !uid_eq(uid, sock_i_uid(sk2))) &&
155 		    (*saddr_comp)(sk, sk2)) {
156 			if (bitmap)
157 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
158 					  bitmap);
159 			else
160 				return 1;
161 		}
162 	return 0;
163 }
164 
165 /*
166  * Note: we still hold spinlock of primary hash chain, so no other writer
167  * can insert/delete a socket with local_port == num
168  */
169 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
170 			       struct udp_hslot *hslot2,
171 			       struct sock *sk,
172 			       int (*saddr_comp)(const struct sock *sk1,
173 						 const struct sock *sk2))
174 {
175 	struct sock *sk2;
176 	struct hlist_nulls_node *node;
177 	kuid_t uid = sock_i_uid(sk);
178 	int res = 0;
179 
180 	spin_lock(&hslot2->lock);
181 	udp_portaddr_for_each_entry(sk2, node, &hslot2->head)
182 		if (net_eq(sock_net(sk2), net) &&
183 		    sk2 != sk &&
184 		    (udp_sk(sk2)->udp_port_hash == num) &&
185 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
186 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
187 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
188 		    (!sk2->sk_reuseport || !sk->sk_reuseport ||
189 		      !uid_eq(uid, sock_i_uid(sk2))) &&
190 		    (*saddr_comp)(sk, sk2)) {
191 			res = 1;
192 			break;
193 		}
194 	spin_unlock(&hslot2->lock);
195 	return res;
196 }
197 
198 /**
199  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
200  *
201  *  @sk:          socket struct in question
202  *  @snum:        port number to look up
203  *  @saddr_comp:  AF-dependent comparison of bound local IP addresses
204  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
205  *                   with NULL address
206  */
207 int udp_lib_get_port(struct sock *sk, unsigned short snum,
208 		       int (*saddr_comp)(const struct sock *sk1,
209 					 const struct sock *sk2),
210 		     unsigned int hash2_nulladdr)
211 {
212 	struct udp_hslot *hslot, *hslot2;
213 	struct udp_table *udptable = sk->sk_prot->h.udp_table;
214 	int    error = 1;
215 	struct net *net = sock_net(sk);
216 
217 	if (!snum) {
218 		int low, high, remaining;
219 		unsigned int rand;
220 		unsigned short first, last;
221 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
222 
223 		inet_get_local_port_range(net, &low, &high);
224 		remaining = (high - low) + 1;
225 
226 		rand = net_random();
227 		first = (((u64)rand * remaining) >> 32) + low;
228 		/*
229 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
230 		 */
231 		rand = (rand | 1) * (udptable->mask + 1);
232 		last = first + udptable->mask + 1;
233 		do {
234 			hslot = udp_hashslot(udptable, net, first);
235 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
236 			spin_lock_bh(&hslot->lock);
237 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
238 					    saddr_comp, udptable->log);
239 
240 			snum = first;
241 			/*
242 			 * Iterate on all possible values of snum for this hash.
243 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
244 			 * give us randomization and full range coverage.
245 			 */
246 			do {
247 				if (low <= snum && snum <= high &&
248 				    !test_bit(snum >> udptable->log, bitmap) &&
249 				    !inet_is_reserved_local_port(snum))
250 					goto found;
251 				snum += rand;
252 			} while (snum != first);
253 			spin_unlock_bh(&hslot->lock);
254 		} while (++first != last);
255 		goto fail;
256 	} else {
257 		hslot = udp_hashslot(udptable, net, snum);
258 		spin_lock_bh(&hslot->lock);
259 		if (hslot->count > 10) {
260 			int exist;
261 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
262 
263 			slot2          &= udptable->mask;
264 			hash2_nulladdr &= udptable->mask;
265 
266 			hslot2 = udp_hashslot2(udptable, slot2);
267 			if (hslot->count < hslot2->count)
268 				goto scan_primary_hash;
269 
270 			exist = udp_lib_lport_inuse2(net, snum, hslot2,
271 						     sk, saddr_comp);
272 			if (!exist && (hash2_nulladdr != slot2)) {
273 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
274 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
275 							     sk, saddr_comp);
276 			}
277 			if (exist)
278 				goto fail_unlock;
279 			else
280 				goto found;
281 		}
282 scan_primary_hash:
283 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk,
284 					saddr_comp, 0))
285 			goto fail_unlock;
286 	}
287 found:
288 	inet_sk(sk)->inet_num = snum;
289 	udp_sk(sk)->udp_port_hash = snum;
290 	udp_sk(sk)->udp_portaddr_hash ^= snum;
291 	if (sk_unhashed(sk)) {
292 		sk_nulls_add_node_rcu(sk, &hslot->head);
293 		hslot->count++;
294 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
295 
296 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
297 		spin_lock(&hslot2->lock);
298 		hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
299 					 &hslot2->head);
300 		hslot2->count++;
301 		spin_unlock(&hslot2->lock);
302 	}
303 	error = 0;
304 fail_unlock:
305 	spin_unlock_bh(&hslot->lock);
306 fail:
307 	return error;
308 }
309 EXPORT_SYMBOL(udp_lib_get_port);
310 
311 static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
312 {
313 	struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
314 
315 	return 	(!ipv6_only_sock(sk2)  &&
316 		 (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr ||
317 		   inet1->inet_rcv_saddr == inet2->inet_rcv_saddr));
318 }
319 
320 static unsigned int udp4_portaddr_hash(struct net *net, __be32 saddr,
321 				       unsigned int port)
322 {
323 	return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
324 }
325 
326 int udp_v4_get_port(struct sock *sk, unsigned short snum)
327 {
328 	unsigned int hash2_nulladdr =
329 		udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
330 	unsigned int hash2_partial =
331 		udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
332 
333 	/* precompute partial secondary hash */
334 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
335 	return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr);
336 }
337 
338 static inline int compute_score(struct sock *sk, struct net *net, __be32 saddr,
339 			 unsigned short hnum,
340 			 __be16 sport, __be32 daddr, __be16 dport, int dif)
341 {
342 	int score = -1;
343 
344 	if (net_eq(sock_net(sk), net) && udp_sk(sk)->udp_port_hash == hnum &&
345 			!ipv6_only_sock(sk)) {
346 		struct inet_sock *inet = inet_sk(sk);
347 
348 		score = (sk->sk_family == PF_INET ? 2 : 1);
349 		if (inet->inet_rcv_saddr) {
350 			if (inet->inet_rcv_saddr != daddr)
351 				return -1;
352 			score += 4;
353 		}
354 		if (inet->inet_daddr) {
355 			if (inet->inet_daddr != saddr)
356 				return -1;
357 			score += 4;
358 		}
359 		if (inet->inet_dport) {
360 			if (inet->inet_dport != sport)
361 				return -1;
362 			score += 4;
363 		}
364 		if (sk->sk_bound_dev_if) {
365 			if (sk->sk_bound_dev_if != dif)
366 				return -1;
367 			score += 4;
368 		}
369 	}
370 	return score;
371 }
372 
373 /*
374  * In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num)
375  */
376 static inline int compute_score2(struct sock *sk, struct net *net,
377 				 __be32 saddr, __be16 sport,
378 				 __be32 daddr, unsigned int hnum, int dif)
379 {
380 	int score = -1;
381 
382 	if (net_eq(sock_net(sk), net) && !ipv6_only_sock(sk)) {
383 		struct inet_sock *inet = inet_sk(sk);
384 
385 		if (inet->inet_rcv_saddr != daddr)
386 			return -1;
387 		if (inet->inet_num != hnum)
388 			return -1;
389 
390 		score = (sk->sk_family == PF_INET ? 2 : 1);
391 		if (inet->inet_daddr) {
392 			if (inet->inet_daddr != saddr)
393 				return -1;
394 			score += 4;
395 		}
396 		if (inet->inet_dport) {
397 			if (inet->inet_dport != sport)
398 				return -1;
399 			score += 4;
400 		}
401 		if (sk->sk_bound_dev_if) {
402 			if (sk->sk_bound_dev_if != dif)
403 				return -1;
404 			score += 4;
405 		}
406 	}
407 	return score;
408 }
409 
410 static unsigned int udp_ehashfn(struct net *net, const __be32 laddr,
411 				 const __u16 lport, const __be32 faddr,
412 				 const __be16 fport)
413 {
414 	static u32 udp_ehash_secret __read_mostly;
415 
416 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
417 
418 	return __inet_ehashfn(laddr, lport, faddr, fport,
419 			      udp_ehash_secret + net_hash_mix(net));
420 }
421 
422 
423 /* called with read_rcu_lock() */
424 static struct sock *udp4_lib_lookup2(struct net *net,
425 		__be32 saddr, __be16 sport,
426 		__be32 daddr, unsigned int hnum, int dif,
427 		struct udp_hslot *hslot2, unsigned int slot2)
428 {
429 	struct sock *sk, *result;
430 	struct hlist_nulls_node *node;
431 	int score, badness, matches = 0, reuseport = 0;
432 	u32 hash = 0;
433 
434 begin:
435 	result = NULL;
436 	badness = 0;
437 	udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
438 		score = compute_score2(sk, net, saddr, sport,
439 				      daddr, hnum, dif);
440 		if (score > badness) {
441 			result = sk;
442 			badness = score;
443 			reuseport = sk->sk_reuseport;
444 			if (reuseport) {
445 				hash = udp_ehashfn(net, daddr, hnum,
446 						   saddr, sport);
447 				matches = 1;
448 			}
449 		} else if (score == badness && reuseport) {
450 			matches++;
451 			if (((u64)hash * matches) >> 32 == 0)
452 				result = sk;
453 			hash = next_pseudo_random32(hash);
454 		}
455 	}
456 	/*
457 	 * if the nulls value we got at the end of this lookup is
458 	 * not the expected one, we must restart lookup.
459 	 * We probably met an item that was moved to another chain.
460 	 */
461 	if (get_nulls_value(node) != slot2)
462 		goto begin;
463 	if (result) {
464 		if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
465 			result = NULL;
466 		else if (unlikely(compute_score2(result, net, saddr, sport,
467 				  daddr, hnum, dif) < badness)) {
468 			sock_put(result);
469 			goto begin;
470 		}
471 	}
472 	return result;
473 }
474 
475 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
476  * harder than this. -DaveM
477  */
478 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
479 		__be16 sport, __be32 daddr, __be16 dport,
480 		int dif, struct udp_table *udptable)
481 {
482 	struct sock *sk, *result;
483 	struct hlist_nulls_node *node;
484 	unsigned short hnum = ntohs(dport);
485 	unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
486 	struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
487 	int score, badness, matches = 0, reuseport = 0;
488 	u32 hash = 0;
489 
490 	rcu_read_lock();
491 	if (hslot->count > 10) {
492 		hash2 = udp4_portaddr_hash(net, daddr, hnum);
493 		slot2 = hash2 & udptable->mask;
494 		hslot2 = &udptable->hash2[slot2];
495 		if (hslot->count < hslot2->count)
496 			goto begin;
497 
498 		result = udp4_lib_lookup2(net, saddr, sport,
499 					  daddr, hnum, dif,
500 					  hslot2, slot2);
501 		if (!result) {
502 			hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
503 			slot2 = hash2 & udptable->mask;
504 			hslot2 = &udptable->hash2[slot2];
505 			if (hslot->count < hslot2->count)
506 				goto begin;
507 
508 			result = udp4_lib_lookup2(net, saddr, sport,
509 						  htonl(INADDR_ANY), hnum, dif,
510 						  hslot2, slot2);
511 		}
512 		rcu_read_unlock();
513 		return result;
514 	}
515 begin:
516 	result = NULL;
517 	badness = 0;
518 	sk_nulls_for_each_rcu(sk, node, &hslot->head) {
519 		score = compute_score(sk, net, saddr, hnum, sport,
520 				      daddr, dport, dif);
521 		if (score > badness) {
522 			result = sk;
523 			badness = score;
524 			reuseport = sk->sk_reuseport;
525 			if (reuseport) {
526 				hash = udp_ehashfn(net, daddr, hnum,
527 						   saddr, sport);
528 				matches = 1;
529 			}
530 		} else if (score == badness && reuseport) {
531 			matches++;
532 			if (((u64)hash * matches) >> 32 == 0)
533 				result = sk;
534 			hash = next_pseudo_random32(hash);
535 		}
536 	}
537 	/*
538 	 * if the nulls value we got at the end of this lookup is
539 	 * not the expected one, we must restart lookup.
540 	 * We probably met an item that was moved to another chain.
541 	 */
542 	if (get_nulls_value(node) != slot)
543 		goto begin;
544 
545 	if (result) {
546 		if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
547 			result = NULL;
548 		else if (unlikely(compute_score(result, net, saddr, hnum, sport,
549 				  daddr, dport, dif) < badness)) {
550 			sock_put(result);
551 			goto begin;
552 		}
553 	}
554 	rcu_read_unlock();
555 	return result;
556 }
557 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
558 
559 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
560 						 __be16 sport, __be16 dport,
561 						 struct udp_table *udptable)
562 {
563 	struct sock *sk;
564 	const struct iphdr *iph = ip_hdr(skb);
565 
566 	if (unlikely(sk = skb_steal_sock(skb)))
567 		return sk;
568 	else
569 		return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport,
570 					 iph->daddr, dport, inet_iif(skb),
571 					 udptable);
572 }
573 
574 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
575 			     __be32 daddr, __be16 dport, int dif)
576 {
577 	return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif, &udp_table);
578 }
579 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
580 
581 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
582 				       __be16 loc_port, __be32 loc_addr,
583 				       __be16 rmt_port, __be32 rmt_addr,
584 				       int dif, unsigned short hnum)
585 {
586 	struct inet_sock *inet = inet_sk(sk);
587 
588 	if (!net_eq(sock_net(sk), net) ||
589 	    udp_sk(sk)->udp_port_hash != hnum ||
590 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
591 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
592 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
593 	    ipv6_only_sock(sk) ||
594 	    (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif))
595 		return false;
596 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif))
597 		return false;
598 	return true;
599 }
600 
601 static inline struct sock *udp_v4_mcast_next(struct net *net, struct sock *sk,
602 					     __be16 loc_port, __be32 loc_addr,
603 					     __be16 rmt_port, __be32 rmt_addr,
604 					     int dif)
605 {
606 	struct hlist_nulls_node *node;
607 	struct sock *s = sk;
608 	unsigned short hnum = ntohs(loc_port);
609 
610 	sk_nulls_for_each_from(s, node) {
611 		if (__udp_is_mcast_sock(net, s,
612 					loc_port, loc_addr,
613 					rmt_port, rmt_addr,
614 					dif, hnum))
615 			goto found;
616 	}
617 	s = NULL;
618 found:
619 	return s;
620 }
621 
622 /*
623  * This routine is called by the ICMP module when it gets some
624  * sort of error condition.  If err < 0 then the socket should
625  * be closed and the error returned to the user.  If err > 0
626  * it's just the icmp type << 8 | icmp code.
627  * Header points to the ip header of the error packet. We move
628  * on past this. Then (as it used to claim before adjustment)
629  * header points to the first 8 bytes of the udp header.  We need
630  * to find the appropriate port.
631  */
632 
633 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
634 {
635 	struct inet_sock *inet;
636 	const struct iphdr *iph = (const struct iphdr *)skb->data;
637 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
638 	const int type = icmp_hdr(skb)->type;
639 	const int code = icmp_hdr(skb)->code;
640 	struct sock *sk;
641 	int harderr;
642 	int err;
643 	struct net *net = dev_net(skb->dev);
644 
645 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
646 			iph->saddr, uh->source, skb->dev->ifindex, udptable);
647 	if (sk == NULL) {
648 		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
649 		return;	/* No socket for error */
650 	}
651 
652 	err = 0;
653 	harderr = 0;
654 	inet = inet_sk(sk);
655 
656 	switch (type) {
657 	default:
658 	case ICMP_TIME_EXCEEDED:
659 		err = EHOSTUNREACH;
660 		break;
661 	case ICMP_SOURCE_QUENCH:
662 		goto out;
663 	case ICMP_PARAMETERPROB:
664 		err = EPROTO;
665 		harderr = 1;
666 		break;
667 	case ICMP_DEST_UNREACH:
668 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
669 			ipv4_sk_update_pmtu(skb, sk, info);
670 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
671 				err = EMSGSIZE;
672 				harderr = 1;
673 				break;
674 			}
675 			goto out;
676 		}
677 		err = EHOSTUNREACH;
678 		if (code <= NR_ICMP_UNREACH) {
679 			harderr = icmp_err_convert[code].fatal;
680 			err = icmp_err_convert[code].errno;
681 		}
682 		break;
683 	case ICMP_REDIRECT:
684 		ipv4_sk_redirect(skb, sk);
685 		goto out;
686 	}
687 
688 	/*
689 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
690 	 *	4.1.3.3.
691 	 */
692 	if (!inet->recverr) {
693 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
694 			goto out;
695 	} else
696 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
697 
698 	sk->sk_err = err;
699 	sk->sk_error_report(sk);
700 out:
701 	sock_put(sk);
702 }
703 
704 void udp_err(struct sk_buff *skb, u32 info)
705 {
706 	__udp4_lib_err(skb, info, &udp_table);
707 }
708 
709 /*
710  * Throw away all pending data and cancel the corking. Socket is locked.
711  */
712 void udp_flush_pending_frames(struct sock *sk)
713 {
714 	struct udp_sock *up = udp_sk(sk);
715 
716 	if (up->pending) {
717 		up->len = 0;
718 		up->pending = 0;
719 		ip_flush_pending_frames(sk);
720 	}
721 }
722 EXPORT_SYMBOL(udp_flush_pending_frames);
723 
724 /**
725  * 	udp4_hwcsum  -  handle outgoing HW checksumming
726  * 	@skb: 	sk_buff containing the filled-in UDP header
727  * 	        (checksum field must be zeroed out)
728  *	@src:	source IP address
729  *	@dst:	destination IP address
730  */
731 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
732 {
733 	struct udphdr *uh = udp_hdr(skb);
734 	struct sk_buff *frags = skb_shinfo(skb)->frag_list;
735 	int offset = skb_transport_offset(skb);
736 	int len = skb->len - offset;
737 	int hlen = len;
738 	__wsum csum = 0;
739 
740 	if (!frags) {
741 		/*
742 		 * Only one fragment on the socket.
743 		 */
744 		skb->csum_start = skb_transport_header(skb) - skb->head;
745 		skb->csum_offset = offsetof(struct udphdr, check);
746 		uh->check = ~csum_tcpudp_magic(src, dst, len,
747 					       IPPROTO_UDP, 0);
748 	} else {
749 		/*
750 		 * HW-checksum won't work as there are two or more
751 		 * fragments on the socket so that all csums of sk_buffs
752 		 * should be together
753 		 */
754 		do {
755 			csum = csum_add(csum, frags->csum);
756 			hlen -= frags->len;
757 		} while ((frags = frags->next));
758 
759 		csum = skb_checksum(skb, offset, hlen, csum);
760 		skb->ip_summed = CHECKSUM_NONE;
761 
762 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
763 		if (uh->check == 0)
764 			uh->check = CSUM_MANGLED_0;
765 	}
766 }
767 EXPORT_SYMBOL_GPL(udp4_hwcsum);
768 
769 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
770 {
771 	struct sock *sk = skb->sk;
772 	struct inet_sock *inet = inet_sk(sk);
773 	struct udphdr *uh;
774 	int err = 0;
775 	int is_udplite = IS_UDPLITE(sk);
776 	int offset = skb_transport_offset(skb);
777 	int len = skb->len - offset;
778 	__wsum csum = 0;
779 
780 	/*
781 	 * Create a UDP header
782 	 */
783 	uh = udp_hdr(skb);
784 	uh->source = inet->inet_sport;
785 	uh->dest = fl4->fl4_dport;
786 	uh->len = htons(len);
787 	uh->check = 0;
788 
789 	if (is_udplite)  				 /*     UDP-Lite      */
790 		csum = udplite_csum(skb);
791 
792 	else if (sk->sk_no_check == UDP_CSUM_NOXMIT) {   /* UDP csum disabled */
793 
794 		skb->ip_summed = CHECKSUM_NONE;
795 		goto send;
796 
797 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
798 
799 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
800 		goto send;
801 
802 	} else
803 		csum = udp_csum(skb);
804 
805 	/* add protocol-dependent pseudo-header */
806 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
807 				      sk->sk_protocol, csum);
808 	if (uh->check == 0)
809 		uh->check = CSUM_MANGLED_0;
810 
811 send:
812 	err = ip_send_skb(sock_net(sk), skb);
813 	if (err) {
814 		if (err == -ENOBUFS && !inet->recverr) {
815 			UDP_INC_STATS_USER(sock_net(sk),
816 					   UDP_MIB_SNDBUFERRORS, is_udplite);
817 			err = 0;
818 		}
819 	} else
820 		UDP_INC_STATS_USER(sock_net(sk),
821 				   UDP_MIB_OUTDATAGRAMS, is_udplite);
822 	return err;
823 }
824 
825 /*
826  * Push out all pending data as one UDP datagram. Socket is locked.
827  */
828 int udp_push_pending_frames(struct sock *sk)
829 {
830 	struct udp_sock  *up = udp_sk(sk);
831 	struct inet_sock *inet = inet_sk(sk);
832 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
833 	struct sk_buff *skb;
834 	int err = 0;
835 
836 	skb = ip_finish_skb(sk, fl4);
837 	if (!skb)
838 		goto out;
839 
840 	err = udp_send_skb(skb, fl4);
841 
842 out:
843 	up->len = 0;
844 	up->pending = 0;
845 	return err;
846 }
847 EXPORT_SYMBOL(udp_push_pending_frames);
848 
849 int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
850 		size_t len)
851 {
852 	struct inet_sock *inet = inet_sk(sk);
853 	struct udp_sock *up = udp_sk(sk);
854 	struct flowi4 fl4_stack;
855 	struct flowi4 *fl4;
856 	int ulen = len;
857 	struct ipcm_cookie ipc;
858 	struct rtable *rt = NULL;
859 	int free = 0;
860 	int connected = 0;
861 	__be32 daddr, faddr, saddr;
862 	__be16 dport;
863 	u8  tos;
864 	int err, is_udplite = IS_UDPLITE(sk);
865 	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
866 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
867 	struct sk_buff *skb;
868 	struct ip_options_data opt_copy;
869 
870 	if (len > 0xFFFF)
871 		return -EMSGSIZE;
872 
873 	/*
874 	 *	Check the flags.
875 	 */
876 
877 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
878 		return -EOPNOTSUPP;
879 
880 	ipc.opt = NULL;
881 	ipc.tx_flags = 0;
882 	ipc.ttl = 0;
883 	ipc.tos = -1;
884 
885 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
886 
887 	fl4 = &inet->cork.fl.u.ip4;
888 	if (up->pending) {
889 		/*
890 		 * There are pending frames.
891 		 * The socket lock must be held while it's corked.
892 		 */
893 		lock_sock(sk);
894 		if (likely(up->pending)) {
895 			if (unlikely(up->pending != AF_INET)) {
896 				release_sock(sk);
897 				return -EINVAL;
898 			}
899 			goto do_append_data;
900 		}
901 		release_sock(sk);
902 	}
903 	ulen += sizeof(struct udphdr);
904 
905 	/*
906 	 *	Get and verify the address.
907 	 */
908 	if (msg->msg_name) {
909 		struct sockaddr_in *usin = (struct sockaddr_in *)msg->msg_name;
910 		if (msg->msg_namelen < sizeof(*usin))
911 			return -EINVAL;
912 		if (usin->sin_family != AF_INET) {
913 			if (usin->sin_family != AF_UNSPEC)
914 				return -EAFNOSUPPORT;
915 		}
916 
917 		daddr = usin->sin_addr.s_addr;
918 		dport = usin->sin_port;
919 		if (dport == 0)
920 			return -EINVAL;
921 	} else {
922 		if (sk->sk_state != TCP_ESTABLISHED)
923 			return -EDESTADDRREQ;
924 		daddr = inet->inet_daddr;
925 		dport = inet->inet_dport;
926 		/* Open fast path for connected socket.
927 		   Route will not be used, if at least one option is set.
928 		 */
929 		connected = 1;
930 	}
931 	ipc.addr = inet->inet_saddr;
932 
933 	ipc.oif = sk->sk_bound_dev_if;
934 
935 	sock_tx_timestamp(sk, &ipc.tx_flags);
936 
937 	if (msg->msg_controllen) {
938 		err = ip_cmsg_send(sock_net(sk), msg, &ipc);
939 		if (err)
940 			return err;
941 		if (ipc.opt)
942 			free = 1;
943 		connected = 0;
944 	}
945 	if (!ipc.opt) {
946 		struct ip_options_rcu *inet_opt;
947 
948 		rcu_read_lock();
949 		inet_opt = rcu_dereference(inet->inet_opt);
950 		if (inet_opt) {
951 			memcpy(&opt_copy, inet_opt,
952 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
953 			ipc.opt = &opt_copy.opt;
954 		}
955 		rcu_read_unlock();
956 	}
957 
958 	saddr = ipc.addr;
959 	ipc.addr = faddr = daddr;
960 
961 	if (ipc.opt && ipc.opt->opt.srr) {
962 		if (!daddr)
963 			return -EINVAL;
964 		faddr = ipc.opt->opt.faddr;
965 		connected = 0;
966 	}
967 	tos = get_rttos(&ipc, inet);
968 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
969 	    (msg->msg_flags & MSG_DONTROUTE) ||
970 	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
971 		tos |= RTO_ONLINK;
972 		connected = 0;
973 	}
974 
975 	if (ipv4_is_multicast(daddr)) {
976 		if (!ipc.oif)
977 			ipc.oif = inet->mc_index;
978 		if (!saddr)
979 			saddr = inet->mc_addr;
980 		connected = 0;
981 	} else if (!ipc.oif)
982 		ipc.oif = inet->uc_index;
983 
984 	if (connected)
985 		rt = (struct rtable *)sk_dst_check(sk, 0);
986 
987 	if (rt == NULL) {
988 		struct net *net = sock_net(sk);
989 
990 		fl4 = &fl4_stack;
991 		flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
992 				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
993 				   inet_sk_flowi_flags(sk)|FLOWI_FLAG_CAN_SLEEP,
994 				   faddr, saddr, dport, inet->inet_sport);
995 
996 		security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
997 		rt = ip_route_output_flow(net, fl4, sk);
998 		if (IS_ERR(rt)) {
999 			err = PTR_ERR(rt);
1000 			rt = NULL;
1001 			if (err == -ENETUNREACH)
1002 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1003 			goto out;
1004 		}
1005 
1006 		err = -EACCES;
1007 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1008 		    !sock_flag(sk, SOCK_BROADCAST))
1009 			goto out;
1010 		if (connected)
1011 			sk_dst_set(sk, dst_clone(&rt->dst));
1012 	}
1013 
1014 	if (msg->msg_flags&MSG_CONFIRM)
1015 		goto do_confirm;
1016 back_from_confirm:
1017 
1018 	saddr = fl4->saddr;
1019 	if (!ipc.addr)
1020 		daddr = ipc.addr = fl4->daddr;
1021 
1022 	/* Lockless fast path for the non-corking case. */
1023 	if (!corkreq) {
1024 		skb = ip_make_skb(sk, fl4, getfrag, msg->msg_iov, ulen,
1025 				  sizeof(struct udphdr), &ipc, &rt,
1026 				  msg->msg_flags);
1027 		err = PTR_ERR(skb);
1028 		if (!IS_ERR_OR_NULL(skb))
1029 			err = udp_send_skb(skb, fl4);
1030 		goto out;
1031 	}
1032 
1033 	lock_sock(sk);
1034 	if (unlikely(up->pending)) {
1035 		/* The socket is already corked while preparing it. */
1036 		/* ... which is an evident application bug. --ANK */
1037 		release_sock(sk);
1038 
1039 		LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("cork app bug 2\n"));
1040 		err = -EINVAL;
1041 		goto out;
1042 	}
1043 	/*
1044 	 *	Now cork the socket to pend data.
1045 	 */
1046 	fl4 = &inet->cork.fl.u.ip4;
1047 	fl4->daddr = daddr;
1048 	fl4->saddr = saddr;
1049 	fl4->fl4_dport = dport;
1050 	fl4->fl4_sport = inet->inet_sport;
1051 	up->pending = AF_INET;
1052 
1053 do_append_data:
1054 	up->len += ulen;
1055 	err = ip_append_data(sk, fl4, getfrag, msg->msg_iov, ulen,
1056 			     sizeof(struct udphdr), &ipc, &rt,
1057 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1058 	if (err)
1059 		udp_flush_pending_frames(sk);
1060 	else if (!corkreq)
1061 		err = udp_push_pending_frames(sk);
1062 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1063 		up->pending = 0;
1064 	release_sock(sk);
1065 
1066 out:
1067 	ip_rt_put(rt);
1068 	if (free)
1069 		kfree(ipc.opt);
1070 	if (!err)
1071 		return len;
1072 	/*
1073 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1074 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1075 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1076 	 * things).  We could add another new stat but at least for now that
1077 	 * seems like overkill.
1078 	 */
1079 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1080 		UDP_INC_STATS_USER(sock_net(sk),
1081 				UDP_MIB_SNDBUFERRORS, is_udplite);
1082 	}
1083 	return err;
1084 
1085 do_confirm:
1086 	dst_confirm(&rt->dst);
1087 	if (!(msg->msg_flags&MSG_PROBE) || len)
1088 		goto back_from_confirm;
1089 	err = 0;
1090 	goto out;
1091 }
1092 EXPORT_SYMBOL(udp_sendmsg);
1093 
1094 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1095 		 size_t size, int flags)
1096 {
1097 	struct inet_sock *inet = inet_sk(sk);
1098 	struct udp_sock *up = udp_sk(sk);
1099 	int ret;
1100 
1101 	if (flags & MSG_SENDPAGE_NOTLAST)
1102 		flags |= MSG_MORE;
1103 
1104 	if (!up->pending) {
1105 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1106 
1107 		/* Call udp_sendmsg to specify destination address which
1108 		 * sendpage interface can't pass.
1109 		 * This will succeed only when the socket is connected.
1110 		 */
1111 		ret = udp_sendmsg(NULL, sk, &msg, 0);
1112 		if (ret < 0)
1113 			return ret;
1114 	}
1115 
1116 	lock_sock(sk);
1117 
1118 	if (unlikely(!up->pending)) {
1119 		release_sock(sk);
1120 
1121 		LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("udp cork app bug 3\n"));
1122 		return -EINVAL;
1123 	}
1124 
1125 	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1126 			     page, offset, size, flags);
1127 	if (ret == -EOPNOTSUPP) {
1128 		release_sock(sk);
1129 		return sock_no_sendpage(sk->sk_socket, page, offset,
1130 					size, flags);
1131 	}
1132 	if (ret < 0) {
1133 		udp_flush_pending_frames(sk);
1134 		goto out;
1135 	}
1136 
1137 	up->len += size;
1138 	if (!(up->corkflag || (flags&MSG_MORE)))
1139 		ret = udp_push_pending_frames(sk);
1140 	if (!ret)
1141 		ret = size;
1142 out:
1143 	release_sock(sk);
1144 	return ret;
1145 }
1146 
1147 
1148 /**
1149  *	first_packet_length	- return length of first packet in receive queue
1150  *	@sk: socket
1151  *
1152  *	Drops all bad checksum frames, until a valid one is found.
1153  *	Returns the length of found skb, or 0 if none is found.
1154  */
1155 static unsigned int first_packet_length(struct sock *sk)
1156 {
1157 	struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue;
1158 	struct sk_buff *skb;
1159 	unsigned int res;
1160 
1161 	__skb_queue_head_init(&list_kill);
1162 
1163 	spin_lock_bh(&rcvq->lock);
1164 	while ((skb = skb_peek(rcvq)) != NULL &&
1165 		udp_lib_checksum_complete(skb)) {
1166 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS,
1167 				 IS_UDPLITE(sk));
1168 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1169 				 IS_UDPLITE(sk));
1170 		atomic_inc(&sk->sk_drops);
1171 		__skb_unlink(skb, rcvq);
1172 		__skb_queue_tail(&list_kill, skb);
1173 	}
1174 	res = skb ? skb->len : 0;
1175 	spin_unlock_bh(&rcvq->lock);
1176 
1177 	if (!skb_queue_empty(&list_kill)) {
1178 		bool slow = lock_sock_fast(sk);
1179 
1180 		__skb_queue_purge(&list_kill);
1181 		sk_mem_reclaim_partial(sk);
1182 		unlock_sock_fast(sk, slow);
1183 	}
1184 	return res;
1185 }
1186 
1187 /*
1188  *	IOCTL requests applicable to the UDP protocol
1189  */
1190 
1191 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1192 {
1193 	switch (cmd) {
1194 	case SIOCOUTQ:
1195 	{
1196 		int amount = sk_wmem_alloc_get(sk);
1197 
1198 		return put_user(amount, (int __user *)arg);
1199 	}
1200 
1201 	case SIOCINQ:
1202 	{
1203 		unsigned int amount = first_packet_length(sk);
1204 
1205 		if (amount)
1206 			/*
1207 			 * We will only return the amount
1208 			 * of this packet since that is all
1209 			 * that will be read.
1210 			 */
1211 			amount -= sizeof(struct udphdr);
1212 
1213 		return put_user(amount, (int __user *)arg);
1214 	}
1215 
1216 	default:
1217 		return -ENOIOCTLCMD;
1218 	}
1219 
1220 	return 0;
1221 }
1222 EXPORT_SYMBOL(udp_ioctl);
1223 
1224 /*
1225  * 	This should be easy, if there is something there we
1226  * 	return it, otherwise we block.
1227  */
1228 
1229 int udp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1230 		size_t len, int noblock, int flags, int *addr_len)
1231 {
1232 	struct inet_sock *inet = inet_sk(sk);
1233 	struct sockaddr_in *sin = (struct sockaddr_in *)msg->msg_name;
1234 	struct sk_buff *skb;
1235 	unsigned int ulen, copied;
1236 	int peeked, off = 0;
1237 	int err;
1238 	int is_udplite = IS_UDPLITE(sk);
1239 	bool slow;
1240 
1241 	if (flags & MSG_ERRQUEUE)
1242 		return ip_recv_error(sk, msg, len, addr_len);
1243 
1244 try_again:
1245 	skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
1246 				  &peeked, &off, &err);
1247 	if (!skb)
1248 		goto out;
1249 
1250 	ulen = skb->len - sizeof(struct udphdr);
1251 	copied = len;
1252 	if (copied > ulen)
1253 		copied = ulen;
1254 	else if (copied < ulen)
1255 		msg->msg_flags |= MSG_TRUNC;
1256 
1257 	/*
1258 	 * If checksum is needed at all, try to do it while copying the
1259 	 * data.  If the data is truncated, or if we only want a partial
1260 	 * coverage checksum (UDP-Lite), do it before the copy.
1261 	 */
1262 
1263 	if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) {
1264 		if (udp_lib_checksum_complete(skb))
1265 			goto csum_copy_err;
1266 	}
1267 
1268 	if (skb_csum_unnecessary(skb))
1269 		err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr),
1270 					      msg->msg_iov, copied);
1271 	else {
1272 		err = skb_copy_and_csum_datagram_iovec(skb,
1273 						       sizeof(struct udphdr),
1274 						       msg->msg_iov);
1275 
1276 		if (err == -EINVAL)
1277 			goto csum_copy_err;
1278 	}
1279 
1280 	if (unlikely(err)) {
1281 		trace_kfree_skb(skb, udp_recvmsg);
1282 		if (!peeked) {
1283 			atomic_inc(&sk->sk_drops);
1284 			UDP_INC_STATS_USER(sock_net(sk),
1285 					   UDP_MIB_INERRORS, is_udplite);
1286 		}
1287 		goto out_free;
1288 	}
1289 
1290 	if (!peeked)
1291 		UDP_INC_STATS_USER(sock_net(sk),
1292 				UDP_MIB_INDATAGRAMS, is_udplite);
1293 
1294 	sock_recv_ts_and_drops(msg, sk, skb);
1295 
1296 	/* Copy the address. */
1297 	if (sin) {
1298 		sin->sin_family = AF_INET;
1299 		sin->sin_port = udp_hdr(skb)->source;
1300 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1301 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1302 		*addr_len = sizeof(*sin);
1303 	}
1304 	if (inet->cmsg_flags)
1305 		ip_cmsg_recv(msg, skb);
1306 
1307 	err = copied;
1308 	if (flags & MSG_TRUNC)
1309 		err = ulen;
1310 
1311 out_free:
1312 	skb_free_datagram_locked(sk, skb);
1313 out:
1314 	return err;
1315 
1316 csum_copy_err:
1317 	slow = lock_sock_fast(sk);
1318 	if (!skb_kill_datagram(sk, skb, flags)) {
1319 		UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1320 		UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1321 	}
1322 	unlock_sock_fast(sk, slow);
1323 
1324 	if (noblock)
1325 		return -EAGAIN;
1326 
1327 	/* starting over for a new packet */
1328 	msg->msg_flags &= ~MSG_TRUNC;
1329 	goto try_again;
1330 }
1331 
1332 
1333 int udp_disconnect(struct sock *sk, int flags)
1334 {
1335 	struct inet_sock *inet = inet_sk(sk);
1336 	/*
1337 	 *	1003.1g - break association.
1338 	 */
1339 
1340 	sk->sk_state = TCP_CLOSE;
1341 	inet->inet_daddr = 0;
1342 	inet->inet_dport = 0;
1343 	sock_rps_reset_rxhash(sk);
1344 	sk->sk_bound_dev_if = 0;
1345 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1346 		inet_reset_saddr(sk);
1347 
1348 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1349 		sk->sk_prot->unhash(sk);
1350 		inet->inet_sport = 0;
1351 	}
1352 	sk_dst_reset(sk);
1353 	return 0;
1354 }
1355 EXPORT_SYMBOL(udp_disconnect);
1356 
1357 void udp_lib_unhash(struct sock *sk)
1358 {
1359 	if (sk_hashed(sk)) {
1360 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1361 		struct udp_hslot *hslot, *hslot2;
1362 
1363 		hslot  = udp_hashslot(udptable, sock_net(sk),
1364 				      udp_sk(sk)->udp_port_hash);
1365 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1366 
1367 		spin_lock_bh(&hslot->lock);
1368 		if (sk_nulls_del_node_init_rcu(sk)) {
1369 			hslot->count--;
1370 			inet_sk(sk)->inet_num = 0;
1371 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1372 
1373 			spin_lock(&hslot2->lock);
1374 			hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1375 			hslot2->count--;
1376 			spin_unlock(&hslot2->lock);
1377 		}
1378 		spin_unlock_bh(&hslot->lock);
1379 	}
1380 }
1381 EXPORT_SYMBOL(udp_lib_unhash);
1382 
1383 /*
1384  * inet_rcv_saddr was changed, we must rehash secondary hash
1385  */
1386 void udp_lib_rehash(struct sock *sk, u16 newhash)
1387 {
1388 	if (sk_hashed(sk)) {
1389 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1390 		struct udp_hslot *hslot, *hslot2, *nhslot2;
1391 
1392 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1393 		nhslot2 = udp_hashslot2(udptable, newhash);
1394 		udp_sk(sk)->udp_portaddr_hash = newhash;
1395 		if (hslot2 != nhslot2) {
1396 			hslot = udp_hashslot(udptable, sock_net(sk),
1397 					     udp_sk(sk)->udp_port_hash);
1398 			/* we must lock primary chain too */
1399 			spin_lock_bh(&hslot->lock);
1400 
1401 			spin_lock(&hslot2->lock);
1402 			hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1403 			hslot2->count--;
1404 			spin_unlock(&hslot2->lock);
1405 
1406 			spin_lock(&nhslot2->lock);
1407 			hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1408 						 &nhslot2->head);
1409 			nhslot2->count++;
1410 			spin_unlock(&nhslot2->lock);
1411 
1412 			spin_unlock_bh(&hslot->lock);
1413 		}
1414 	}
1415 }
1416 EXPORT_SYMBOL(udp_lib_rehash);
1417 
1418 static void udp_v4_rehash(struct sock *sk)
1419 {
1420 	u16 new_hash = udp4_portaddr_hash(sock_net(sk),
1421 					  inet_sk(sk)->inet_rcv_saddr,
1422 					  inet_sk(sk)->inet_num);
1423 	udp_lib_rehash(sk, new_hash);
1424 }
1425 
1426 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1427 {
1428 	int rc;
1429 
1430 	if (inet_sk(sk)->inet_daddr) {
1431 		sock_rps_save_rxhash(sk, skb);
1432 		sk_mark_napi_id(sk, skb);
1433 	}
1434 
1435 	rc = sock_queue_rcv_skb(sk, skb);
1436 	if (rc < 0) {
1437 		int is_udplite = IS_UDPLITE(sk);
1438 
1439 		/* Note that an ENOMEM error is charged twice */
1440 		if (rc == -ENOMEM)
1441 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1442 					 is_udplite);
1443 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1444 		kfree_skb(skb);
1445 		trace_udp_fail_queue_rcv_skb(rc, sk);
1446 		return -1;
1447 	}
1448 
1449 	return 0;
1450 
1451 }
1452 
1453 static struct static_key udp_encap_needed __read_mostly;
1454 void udp_encap_enable(void)
1455 {
1456 	if (!static_key_enabled(&udp_encap_needed))
1457 		static_key_slow_inc(&udp_encap_needed);
1458 }
1459 EXPORT_SYMBOL(udp_encap_enable);
1460 
1461 /* returns:
1462  *  -1: error
1463  *   0: success
1464  *  >0: "udp encap" protocol resubmission
1465  *
1466  * Note that in the success and error cases, the skb is assumed to
1467  * have either been requeued or freed.
1468  */
1469 int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1470 {
1471 	struct udp_sock *up = udp_sk(sk);
1472 	int rc;
1473 	int is_udplite = IS_UDPLITE(sk);
1474 
1475 	/*
1476 	 *	Charge it to the socket, dropping if the queue is full.
1477 	 */
1478 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1479 		goto drop;
1480 	nf_reset(skb);
1481 
1482 	if (static_key_false(&udp_encap_needed) && up->encap_type) {
1483 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1484 
1485 		/*
1486 		 * This is an encapsulation socket so pass the skb to
1487 		 * the socket's udp_encap_rcv() hook. Otherwise, just
1488 		 * fall through and pass this up the UDP socket.
1489 		 * up->encap_rcv() returns the following value:
1490 		 * =0 if skb was successfully passed to the encap
1491 		 *    handler or was discarded by it.
1492 		 * >0 if skb should be passed on to UDP.
1493 		 * <0 if skb should be resubmitted as proto -N
1494 		 */
1495 
1496 		/* if we're overly short, let UDP handle it */
1497 		encap_rcv = ACCESS_ONCE(up->encap_rcv);
1498 		if (skb->len > sizeof(struct udphdr) && encap_rcv != NULL) {
1499 			int ret;
1500 
1501 			ret = encap_rcv(sk, skb);
1502 			if (ret <= 0) {
1503 				UDP_INC_STATS_BH(sock_net(sk),
1504 						 UDP_MIB_INDATAGRAMS,
1505 						 is_udplite);
1506 				return -ret;
1507 			}
1508 		}
1509 
1510 		/* FALLTHROUGH -- it's a UDP Packet */
1511 	}
1512 
1513 	/*
1514 	 * 	UDP-Lite specific tests, ignored on UDP sockets
1515 	 */
1516 	if ((is_udplite & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
1517 
1518 		/*
1519 		 * MIB statistics other than incrementing the error count are
1520 		 * disabled for the following two types of errors: these depend
1521 		 * on the application settings, not on the functioning of the
1522 		 * protocol stack as such.
1523 		 *
1524 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
1525 		 * way ... to ... at least let the receiving application block
1526 		 * delivery of packets with coverage values less than a value
1527 		 * provided by the application."
1528 		 */
1529 		if (up->pcrlen == 0) {          /* full coverage was set  */
1530 			LIMIT_NETDEBUG(KERN_WARNING "UDPLite: partial coverage %d while full coverage %d requested\n",
1531 				       UDP_SKB_CB(skb)->cscov, skb->len);
1532 			goto drop;
1533 		}
1534 		/* The next case involves violating the min. coverage requested
1535 		 * by the receiver. This is subtle: if receiver wants x and x is
1536 		 * greater than the buffersize/MTU then receiver will complain
1537 		 * that it wants x while sender emits packets of smaller size y.
1538 		 * Therefore the above ...()->partial_cov statement is essential.
1539 		 */
1540 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
1541 			LIMIT_NETDEBUG(KERN_WARNING "UDPLite: coverage %d too small, need min %d\n",
1542 				       UDP_SKB_CB(skb)->cscov, up->pcrlen);
1543 			goto drop;
1544 		}
1545 	}
1546 
1547 	if (rcu_access_pointer(sk->sk_filter) &&
1548 	    udp_lib_checksum_complete(skb))
1549 		goto csum_error;
1550 
1551 
1552 	if (sk_rcvqueues_full(sk, skb, sk->sk_rcvbuf))
1553 		goto drop;
1554 
1555 	rc = 0;
1556 
1557 	ipv4_pktinfo_prepare(sk, skb);
1558 	bh_lock_sock(sk);
1559 	if (!sock_owned_by_user(sk))
1560 		rc = __udp_queue_rcv_skb(sk, skb);
1561 	else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
1562 		bh_unlock_sock(sk);
1563 		goto drop;
1564 	}
1565 	bh_unlock_sock(sk);
1566 
1567 	return rc;
1568 
1569 csum_error:
1570 	UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1571 drop:
1572 	UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1573 	atomic_inc(&sk->sk_drops);
1574 	kfree_skb(skb);
1575 	return -1;
1576 }
1577 
1578 
1579 static void flush_stack(struct sock **stack, unsigned int count,
1580 			struct sk_buff *skb, unsigned int final)
1581 {
1582 	unsigned int i;
1583 	struct sk_buff *skb1 = NULL;
1584 	struct sock *sk;
1585 
1586 	for (i = 0; i < count; i++) {
1587 		sk = stack[i];
1588 		if (likely(skb1 == NULL))
1589 			skb1 = (i == final) ? skb : skb_clone(skb, GFP_ATOMIC);
1590 
1591 		if (!skb1) {
1592 			atomic_inc(&sk->sk_drops);
1593 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1594 					 IS_UDPLITE(sk));
1595 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1596 					 IS_UDPLITE(sk));
1597 		}
1598 
1599 		if (skb1 && udp_queue_rcv_skb(sk, skb1) <= 0)
1600 			skb1 = NULL;
1601 	}
1602 	if (unlikely(skb1))
1603 		kfree_skb(skb1);
1604 }
1605 
1606 static void udp_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
1607 {
1608 	struct dst_entry *dst = skb_dst(skb);
1609 
1610 	dst_hold(dst);
1611 	sk->sk_rx_dst = dst;
1612 }
1613 
1614 /*
1615  *	Multicasts and broadcasts go to each listener.
1616  *
1617  *	Note: called only from the BH handler context.
1618  */
1619 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1620 				    struct udphdr  *uh,
1621 				    __be32 saddr, __be32 daddr,
1622 				    struct udp_table *udptable)
1623 {
1624 	struct sock *sk, *stack[256 / sizeof(struct sock *)];
1625 	struct udp_hslot *hslot = udp_hashslot(udptable, net, ntohs(uh->dest));
1626 	int dif;
1627 	unsigned int i, count = 0;
1628 
1629 	spin_lock(&hslot->lock);
1630 	sk = sk_nulls_head(&hslot->head);
1631 	dif = skb->dev->ifindex;
1632 	sk = udp_v4_mcast_next(net, sk, uh->dest, daddr, uh->source, saddr, dif);
1633 	while (sk) {
1634 		stack[count++] = sk;
1635 		sk = udp_v4_mcast_next(net, sk_nulls_next(sk), uh->dest,
1636 				       daddr, uh->source, saddr, dif);
1637 		if (unlikely(count == ARRAY_SIZE(stack))) {
1638 			if (!sk)
1639 				break;
1640 			flush_stack(stack, count, skb, ~0);
1641 			count = 0;
1642 		}
1643 	}
1644 	/*
1645 	 * before releasing chain lock, we must take a reference on sockets
1646 	 */
1647 	for (i = 0; i < count; i++)
1648 		sock_hold(stack[i]);
1649 
1650 	spin_unlock(&hslot->lock);
1651 
1652 	/*
1653 	 * do the slow work with no lock held
1654 	 */
1655 	if (count) {
1656 		flush_stack(stack, count, skb, count - 1);
1657 
1658 		for (i = 0; i < count; i++)
1659 			sock_put(stack[i]);
1660 	} else {
1661 		kfree_skb(skb);
1662 	}
1663 	return 0;
1664 }
1665 
1666 /* Initialize UDP checksum. If exited with zero value (success),
1667  * CHECKSUM_UNNECESSARY means, that no more checks are required.
1668  * Otherwise, csum completion requires chacksumming packet body,
1669  * including udp header and folding it to skb->csum.
1670  */
1671 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1672 				 int proto)
1673 {
1674 	const struct iphdr *iph;
1675 	int err;
1676 
1677 	UDP_SKB_CB(skb)->partial_cov = 0;
1678 	UDP_SKB_CB(skb)->cscov = skb->len;
1679 
1680 	if (proto == IPPROTO_UDPLITE) {
1681 		err = udplite_checksum_init(skb, uh);
1682 		if (err)
1683 			return err;
1684 	}
1685 
1686 	iph = ip_hdr(skb);
1687 	if (uh->check == 0) {
1688 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1689 	} else if (skb->ip_summed == CHECKSUM_COMPLETE) {
1690 		if (!csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
1691 				      proto, skb->csum))
1692 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1693 	}
1694 	if (!skb_csum_unnecessary(skb))
1695 		skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1696 					       skb->len, proto, 0);
1697 	/* Probably, we should checksum udp header (it should be in cache
1698 	 * in any case) and data in tiny packets (< rx copybreak).
1699 	 */
1700 
1701 	return 0;
1702 }
1703 
1704 /*
1705  *	All we need to do is get the socket, and then do a checksum.
1706  */
1707 
1708 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
1709 		   int proto)
1710 {
1711 	struct sock *sk;
1712 	struct udphdr *uh;
1713 	unsigned short ulen;
1714 	struct rtable *rt = skb_rtable(skb);
1715 	__be32 saddr, daddr;
1716 	struct net *net = dev_net(skb->dev);
1717 
1718 	/*
1719 	 *  Validate the packet.
1720 	 */
1721 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1722 		goto drop;		/* No space for header. */
1723 
1724 	uh   = udp_hdr(skb);
1725 	ulen = ntohs(uh->len);
1726 	saddr = ip_hdr(skb)->saddr;
1727 	daddr = ip_hdr(skb)->daddr;
1728 
1729 	if (ulen > skb->len)
1730 		goto short_packet;
1731 
1732 	if (proto == IPPROTO_UDP) {
1733 		/* UDP validates ulen. */
1734 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1735 			goto short_packet;
1736 		uh = udp_hdr(skb);
1737 	}
1738 
1739 	if (udp4_csum_init(skb, uh, proto))
1740 		goto csum_error;
1741 
1742 	if (skb->sk) {
1743 		int ret;
1744 		sk = skb->sk;
1745 
1746 		if (unlikely(sk->sk_rx_dst == NULL))
1747 			udp_sk_rx_dst_set(sk, skb);
1748 
1749 		ret = udp_queue_rcv_skb(sk, skb);
1750 
1751 		/* a return value > 0 means to resubmit the input, but
1752 		 * it wants the return to be -protocol, or 0
1753 		 */
1754 		if (ret > 0)
1755 			return -ret;
1756 		return 0;
1757 	} else {
1758 		if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1759 			return __udp4_lib_mcast_deliver(net, skb, uh,
1760 					saddr, daddr, udptable);
1761 
1762 		sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
1763 	}
1764 
1765 	if (sk != NULL) {
1766 		int ret;
1767 
1768 		ret = udp_queue_rcv_skb(sk, skb);
1769 		sock_put(sk);
1770 
1771 		/* a return value > 0 means to resubmit the input, but
1772 		 * it wants the return to be -protocol, or 0
1773 		 */
1774 		if (ret > 0)
1775 			return -ret;
1776 		return 0;
1777 	}
1778 
1779 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1780 		goto drop;
1781 	nf_reset(skb);
1782 
1783 	/* No socket. Drop packet silently, if checksum is wrong */
1784 	if (udp_lib_checksum_complete(skb))
1785 		goto csum_error;
1786 
1787 	UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1788 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1789 
1790 	/*
1791 	 * Hmm.  We got an UDP packet to a port to which we
1792 	 * don't wanna listen.  Ignore it.
1793 	 */
1794 	kfree_skb(skb);
1795 	return 0;
1796 
1797 short_packet:
1798 	LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
1799 		       proto == IPPROTO_UDPLITE ? "Lite" : "",
1800 		       &saddr, ntohs(uh->source),
1801 		       ulen, skb->len,
1802 		       &daddr, ntohs(uh->dest));
1803 	goto drop;
1804 
1805 csum_error:
1806 	/*
1807 	 * RFC1122: OK.  Discards the bad packet silently (as far as
1808 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1809 	 */
1810 	LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
1811 		       proto == IPPROTO_UDPLITE ? "Lite" : "",
1812 		       &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
1813 		       ulen);
1814 	UDP_INC_STATS_BH(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
1815 drop:
1816 	UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1817 	kfree_skb(skb);
1818 	return 0;
1819 }
1820 
1821 /* We can only early demux multicast if there is a single matching socket.
1822  * If more than one socket found returns NULL
1823  */
1824 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
1825 						  __be16 loc_port, __be32 loc_addr,
1826 						  __be16 rmt_port, __be32 rmt_addr,
1827 						  int dif)
1828 {
1829 	struct sock *sk, *result;
1830 	struct hlist_nulls_node *node;
1831 	unsigned short hnum = ntohs(loc_port);
1832 	unsigned int count, slot = udp_hashfn(net, hnum, udp_table.mask);
1833 	struct udp_hslot *hslot = &udp_table.hash[slot];
1834 
1835 	rcu_read_lock();
1836 begin:
1837 	count = 0;
1838 	result = NULL;
1839 	sk_nulls_for_each_rcu(sk, node, &hslot->head) {
1840 		if (__udp_is_mcast_sock(net, sk,
1841 					loc_port, loc_addr,
1842 					rmt_port, rmt_addr,
1843 					dif, hnum)) {
1844 			result = sk;
1845 			++count;
1846 		}
1847 	}
1848 	/*
1849 	 * if the nulls value we got at the end of this lookup is
1850 	 * not the expected one, we must restart lookup.
1851 	 * We probably met an item that was moved to another chain.
1852 	 */
1853 	if (get_nulls_value(node) != slot)
1854 		goto begin;
1855 
1856 	if (result) {
1857 		if (count != 1 ||
1858 		    unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
1859 			result = NULL;
1860 		else if (unlikely(!__udp_is_mcast_sock(net, result,
1861 						       loc_port, loc_addr,
1862 						       rmt_port, rmt_addr,
1863 						       dif, hnum))) {
1864 			sock_put(result);
1865 			result = NULL;
1866 		}
1867 	}
1868 	rcu_read_unlock();
1869 	return result;
1870 }
1871 
1872 /* For unicast we should only early demux connected sockets or we can
1873  * break forwarding setups.  The chains here can be long so only check
1874  * if the first socket is an exact match and if not move on.
1875  */
1876 static struct sock *__udp4_lib_demux_lookup(struct net *net,
1877 					    __be16 loc_port, __be32 loc_addr,
1878 					    __be16 rmt_port, __be32 rmt_addr,
1879 					    int dif)
1880 {
1881 	struct sock *sk, *result;
1882 	struct hlist_nulls_node *node;
1883 	unsigned short hnum = ntohs(loc_port);
1884 	unsigned int hash2 = udp4_portaddr_hash(net, loc_addr, hnum);
1885 	unsigned int slot2 = hash2 & udp_table.mask;
1886 	struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
1887 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr)
1888 	const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
1889 
1890 	rcu_read_lock();
1891 	result = NULL;
1892 	udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
1893 		if (INET_MATCH(sk, net, acookie,
1894 			       rmt_addr, loc_addr, ports, dif))
1895 			result = sk;
1896 		/* Only check first socket in chain */
1897 		break;
1898 	}
1899 
1900 	if (result) {
1901 		if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
1902 			result = NULL;
1903 		else if (unlikely(!INET_MATCH(sk, net, acookie,
1904 					      rmt_addr, loc_addr,
1905 					      ports, dif))) {
1906 			sock_put(result);
1907 			result = NULL;
1908 		}
1909 	}
1910 	rcu_read_unlock();
1911 	return result;
1912 }
1913 
1914 void udp_v4_early_demux(struct sk_buff *skb)
1915 {
1916 	const struct iphdr *iph = ip_hdr(skb);
1917 	const struct udphdr *uh = udp_hdr(skb);
1918 	struct sock *sk;
1919 	struct dst_entry *dst;
1920 	struct net *net = dev_net(skb->dev);
1921 	int dif = skb->dev->ifindex;
1922 
1923 	/* validate the packet */
1924 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
1925 		return;
1926 
1927 	if (skb->pkt_type == PACKET_BROADCAST ||
1928 	    skb->pkt_type == PACKET_MULTICAST)
1929 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
1930 						   uh->source, iph->saddr, dif);
1931 	else if (skb->pkt_type == PACKET_HOST)
1932 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
1933 					     uh->source, iph->saddr, dif);
1934 	else
1935 		return;
1936 
1937 	if (!sk)
1938 		return;
1939 
1940 	skb->sk = sk;
1941 	skb->destructor = sock_edemux;
1942 	dst = sk->sk_rx_dst;
1943 
1944 	if (dst)
1945 		dst = dst_check(dst, 0);
1946 	if (dst)
1947 		skb_dst_set_noref(skb, dst);
1948 }
1949 
1950 int udp_rcv(struct sk_buff *skb)
1951 {
1952 	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
1953 }
1954 
1955 void udp_destroy_sock(struct sock *sk)
1956 {
1957 	struct udp_sock *up = udp_sk(sk);
1958 	bool slow = lock_sock_fast(sk);
1959 	udp_flush_pending_frames(sk);
1960 	unlock_sock_fast(sk, slow);
1961 	if (static_key_false(&udp_encap_needed) && up->encap_type) {
1962 		void (*encap_destroy)(struct sock *sk);
1963 		encap_destroy = ACCESS_ONCE(up->encap_destroy);
1964 		if (encap_destroy)
1965 			encap_destroy(sk);
1966 	}
1967 }
1968 
1969 /*
1970  *	Socket option code for UDP
1971  */
1972 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
1973 		       char __user *optval, unsigned int optlen,
1974 		       int (*push_pending_frames)(struct sock *))
1975 {
1976 	struct udp_sock *up = udp_sk(sk);
1977 	int val;
1978 	int err = 0;
1979 	int is_udplite = IS_UDPLITE(sk);
1980 
1981 	if (optlen < sizeof(int))
1982 		return -EINVAL;
1983 
1984 	if (get_user(val, (int __user *)optval))
1985 		return -EFAULT;
1986 
1987 	switch (optname) {
1988 	case UDP_CORK:
1989 		if (val != 0) {
1990 			up->corkflag = 1;
1991 		} else {
1992 			up->corkflag = 0;
1993 			lock_sock(sk);
1994 			(*push_pending_frames)(sk);
1995 			release_sock(sk);
1996 		}
1997 		break;
1998 
1999 	case UDP_ENCAP:
2000 		switch (val) {
2001 		case 0:
2002 		case UDP_ENCAP_ESPINUDP:
2003 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2004 			up->encap_rcv = xfrm4_udp_encap_rcv;
2005 			/* FALLTHROUGH */
2006 		case UDP_ENCAP_L2TPINUDP:
2007 			up->encap_type = val;
2008 			udp_encap_enable();
2009 			break;
2010 		default:
2011 			err = -ENOPROTOOPT;
2012 			break;
2013 		}
2014 		break;
2015 
2016 	/*
2017 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2018 	 */
2019 	/* The sender sets actual checksum coverage length via this option.
2020 	 * The case coverage > packet length is handled by send module. */
2021 	case UDPLITE_SEND_CSCOV:
2022 		if (!is_udplite)         /* Disable the option on UDP sockets */
2023 			return -ENOPROTOOPT;
2024 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2025 			val = 8;
2026 		else if (val > USHRT_MAX)
2027 			val = USHRT_MAX;
2028 		up->pcslen = val;
2029 		up->pcflag |= UDPLITE_SEND_CC;
2030 		break;
2031 
2032 	/* The receiver specifies a minimum checksum coverage value. To make
2033 	 * sense, this should be set to at least 8 (as done below). If zero is
2034 	 * used, this again means full checksum coverage.                     */
2035 	case UDPLITE_RECV_CSCOV:
2036 		if (!is_udplite)         /* Disable the option on UDP sockets */
2037 			return -ENOPROTOOPT;
2038 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2039 			val = 8;
2040 		else if (val > USHRT_MAX)
2041 			val = USHRT_MAX;
2042 		up->pcrlen = val;
2043 		up->pcflag |= UDPLITE_RECV_CC;
2044 		break;
2045 
2046 	default:
2047 		err = -ENOPROTOOPT;
2048 		break;
2049 	}
2050 
2051 	return err;
2052 }
2053 EXPORT_SYMBOL(udp_lib_setsockopt);
2054 
2055 int udp_setsockopt(struct sock *sk, int level, int optname,
2056 		   char __user *optval, unsigned int optlen)
2057 {
2058 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2059 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2060 					  udp_push_pending_frames);
2061 	return ip_setsockopt(sk, level, optname, optval, optlen);
2062 }
2063 
2064 #ifdef CONFIG_COMPAT
2065 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2066 			  char __user *optval, unsigned int optlen)
2067 {
2068 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2069 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2070 					  udp_push_pending_frames);
2071 	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2072 }
2073 #endif
2074 
2075 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2076 		       char __user *optval, int __user *optlen)
2077 {
2078 	struct udp_sock *up = udp_sk(sk);
2079 	int val, len;
2080 
2081 	if (get_user(len, optlen))
2082 		return -EFAULT;
2083 
2084 	len = min_t(unsigned int, len, sizeof(int));
2085 
2086 	if (len < 0)
2087 		return -EINVAL;
2088 
2089 	switch (optname) {
2090 	case UDP_CORK:
2091 		val = up->corkflag;
2092 		break;
2093 
2094 	case UDP_ENCAP:
2095 		val = up->encap_type;
2096 		break;
2097 
2098 	/* The following two cannot be changed on UDP sockets, the return is
2099 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2100 	case UDPLITE_SEND_CSCOV:
2101 		val = up->pcslen;
2102 		break;
2103 
2104 	case UDPLITE_RECV_CSCOV:
2105 		val = up->pcrlen;
2106 		break;
2107 
2108 	default:
2109 		return -ENOPROTOOPT;
2110 	}
2111 
2112 	if (put_user(len, optlen))
2113 		return -EFAULT;
2114 	if (copy_to_user(optval, &val, len))
2115 		return -EFAULT;
2116 	return 0;
2117 }
2118 EXPORT_SYMBOL(udp_lib_getsockopt);
2119 
2120 int udp_getsockopt(struct sock *sk, int level, int optname,
2121 		   char __user *optval, int __user *optlen)
2122 {
2123 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2124 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2125 	return ip_getsockopt(sk, level, optname, optval, optlen);
2126 }
2127 
2128 #ifdef CONFIG_COMPAT
2129 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2130 				 char __user *optval, int __user *optlen)
2131 {
2132 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2133 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2134 	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2135 }
2136 #endif
2137 /**
2138  * 	udp_poll - wait for a UDP event.
2139  *	@file - file struct
2140  *	@sock - socket
2141  *	@wait - poll table
2142  *
2143  *	This is same as datagram poll, except for the special case of
2144  *	blocking sockets. If application is using a blocking fd
2145  *	and a packet with checksum error is in the queue;
2146  *	then it could get return from select indicating data available
2147  *	but then block when reading it. Add special case code
2148  *	to work around these arguably broken applications.
2149  */
2150 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2151 {
2152 	unsigned int mask = datagram_poll(file, sock, wait);
2153 	struct sock *sk = sock->sk;
2154 
2155 	sock_rps_record_flow(sk);
2156 
2157 	/* Check for false positives due to checksum errors */
2158 	if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2159 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk))
2160 		mask &= ~(POLLIN | POLLRDNORM);
2161 
2162 	return mask;
2163 
2164 }
2165 EXPORT_SYMBOL(udp_poll);
2166 
2167 struct proto udp_prot = {
2168 	.name		   = "UDP",
2169 	.owner		   = THIS_MODULE,
2170 	.close		   = udp_lib_close,
2171 	.connect	   = ip4_datagram_connect,
2172 	.disconnect	   = udp_disconnect,
2173 	.ioctl		   = udp_ioctl,
2174 	.destroy	   = udp_destroy_sock,
2175 	.setsockopt	   = udp_setsockopt,
2176 	.getsockopt	   = udp_getsockopt,
2177 	.sendmsg	   = udp_sendmsg,
2178 	.recvmsg	   = udp_recvmsg,
2179 	.sendpage	   = udp_sendpage,
2180 	.backlog_rcv	   = __udp_queue_rcv_skb,
2181 	.release_cb	   = ip4_datagram_release_cb,
2182 	.hash		   = udp_lib_hash,
2183 	.unhash		   = udp_lib_unhash,
2184 	.rehash		   = udp_v4_rehash,
2185 	.get_port	   = udp_v4_get_port,
2186 	.memory_allocated  = &udp_memory_allocated,
2187 	.sysctl_mem	   = sysctl_udp_mem,
2188 	.sysctl_wmem	   = &sysctl_udp_wmem_min,
2189 	.sysctl_rmem	   = &sysctl_udp_rmem_min,
2190 	.obj_size	   = sizeof(struct udp_sock),
2191 	.slab_flags	   = SLAB_DESTROY_BY_RCU,
2192 	.h.udp_table	   = &udp_table,
2193 #ifdef CONFIG_COMPAT
2194 	.compat_setsockopt = compat_udp_setsockopt,
2195 	.compat_getsockopt = compat_udp_getsockopt,
2196 #endif
2197 	.clear_sk	   = sk_prot_clear_portaddr_nulls,
2198 };
2199 EXPORT_SYMBOL(udp_prot);
2200 
2201 /* ------------------------------------------------------------------------ */
2202 #ifdef CONFIG_PROC_FS
2203 
2204 static struct sock *udp_get_first(struct seq_file *seq, int start)
2205 {
2206 	struct sock *sk;
2207 	struct udp_iter_state *state = seq->private;
2208 	struct net *net = seq_file_net(seq);
2209 
2210 	for (state->bucket = start; state->bucket <= state->udp_table->mask;
2211 	     ++state->bucket) {
2212 		struct hlist_nulls_node *node;
2213 		struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
2214 
2215 		if (hlist_nulls_empty(&hslot->head))
2216 			continue;
2217 
2218 		spin_lock_bh(&hslot->lock);
2219 		sk_nulls_for_each(sk, node, &hslot->head) {
2220 			if (!net_eq(sock_net(sk), net))
2221 				continue;
2222 			if (sk->sk_family == state->family)
2223 				goto found;
2224 		}
2225 		spin_unlock_bh(&hslot->lock);
2226 	}
2227 	sk = NULL;
2228 found:
2229 	return sk;
2230 }
2231 
2232 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2233 {
2234 	struct udp_iter_state *state = seq->private;
2235 	struct net *net = seq_file_net(seq);
2236 
2237 	do {
2238 		sk = sk_nulls_next(sk);
2239 	} while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
2240 
2241 	if (!sk) {
2242 		if (state->bucket <= state->udp_table->mask)
2243 			spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2244 		return udp_get_first(seq, state->bucket + 1);
2245 	}
2246 	return sk;
2247 }
2248 
2249 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2250 {
2251 	struct sock *sk = udp_get_first(seq, 0);
2252 
2253 	if (sk)
2254 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2255 			--pos;
2256 	return pos ? NULL : sk;
2257 }
2258 
2259 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2260 {
2261 	struct udp_iter_state *state = seq->private;
2262 	state->bucket = MAX_UDP_PORTS;
2263 
2264 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2265 }
2266 
2267 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2268 {
2269 	struct sock *sk;
2270 
2271 	if (v == SEQ_START_TOKEN)
2272 		sk = udp_get_idx(seq, 0);
2273 	else
2274 		sk = udp_get_next(seq, v);
2275 
2276 	++*pos;
2277 	return sk;
2278 }
2279 
2280 static void udp_seq_stop(struct seq_file *seq, void *v)
2281 {
2282 	struct udp_iter_state *state = seq->private;
2283 
2284 	if (state->bucket <= state->udp_table->mask)
2285 		spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2286 }
2287 
2288 int udp_seq_open(struct inode *inode, struct file *file)
2289 {
2290 	struct udp_seq_afinfo *afinfo = PDE_DATA(inode);
2291 	struct udp_iter_state *s;
2292 	int err;
2293 
2294 	err = seq_open_net(inode, file, &afinfo->seq_ops,
2295 			   sizeof(struct udp_iter_state));
2296 	if (err < 0)
2297 		return err;
2298 
2299 	s = ((struct seq_file *)file->private_data)->private;
2300 	s->family		= afinfo->family;
2301 	s->udp_table		= afinfo->udp_table;
2302 	return err;
2303 }
2304 EXPORT_SYMBOL(udp_seq_open);
2305 
2306 /* ------------------------------------------------------------------------ */
2307 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2308 {
2309 	struct proc_dir_entry *p;
2310 	int rc = 0;
2311 
2312 	afinfo->seq_ops.start		= udp_seq_start;
2313 	afinfo->seq_ops.next		= udp_seq_next;
2314 	afinfo->seq_ops.stop		= udp_seq_stop;
2315 
2316 	p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2317 			     afinfo->seq_fops, afinfo);
2318 	if (!p)
2319 		rc = -ENOMEM;
2320 	return rc;
2321 }
2322 EXPORT_SYMBOL(udp_proc_register);
2323 
2324 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2325 {
2326 	remove_proc_entry(afinfo->name, net->proc_net);
2327 }
2328 EXPORT_SYMBOL(udp_proc_unregister);
2329 
2330 /* ------------------------------------------------------------------------ */
2331 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2332 		int bucket)
2333 {
2334 	struct inet_sock *inet = inet_sk(sp);
2335 	__be32 dest = inet->inet_daddr;
2336 	__be32 src  = inet->inet_rcv_saddr;
2337 	__u16 destp	  = ntohs(inet->inet_dport);
2338 	__u16 srcp	  = ntohs(inet->inet_sport);
2339 
2340 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2341 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d",
2342 		bucket, src, srcp, dest, destp, sp->sk_state,
2343 		sk_wmem_alloc_get(sp),
2344 		sk_rmem_alloc_get(sp),
2345 		0, 0L, 0,
2346 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2347 		0, sock_i_ino(sp),
2348 		atomic_read(&sp->sk_refcnt), sp,
2349 		atomic_read(&sp->sk_drops));
2350 }
2351 
2352 int udp4_seq_show(struct seq_file *seq, void *v)
2353 {
2354 	seq_setwidth(seq, 127);
2355 	if (v == SEQ_START_TOKEN)
2356 		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2357 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2358 			   "inode ref pointer drops");
2359 	else {
2360 		struct udp_iter_state *state = seq->private;
2361 
2362 		udp4_format_sock(v, seq, state->bucket);
2363 	}
2364 	seq_pad(seq, '\n');
2365 	return 0;
2366 }
2367 
2368 static const struct file_operations udp_afinfo_seq_fops = {
2369 	.owner    = THIS_MODULE,
2370 	.open     = udp_seq_open,
2371 	.read     = seq_read,
2372 	.llseek   = seq_lseek,
2373 	.release  = seq_release_net
2374 };
2375 
2376 /* ------------------------------------------------------------------------ */
2377 static struct udp_seq_afinfo udp4_seq_afinfo = {
2378 	.name		= "udp",
2379 	.family		= AF_INET,
2380 	.udp_table	= &udp_table,
2381 	.seq_fops	= &udp_afinfo_seq_fops,
2382 	.seq_ops	= {
2383 		.show		= udp4_seq_show,
2384 	},
2385 };
2386 
2387 static int __net_init udp4_proc_init_net(struct net *net)
2388 {
2389 	return udp_proc_register(net, &udp4_seq_afinfo);
2390 }
2391 
2392 static void __net_exit udp4_proc_exit_net(struct net *net)
2393 {
2394 	udp_proc_unregister(net, &udp4_seq_afinfo);
2395 }
2396 
2397 static struct pernet_operations udp4_net_ops = {
2398 	.init = udp4_proc_init_net,
2399 	.exit = udp4_proc_exit_net,
2400 };
2401 
2402 int __init udp4_proc_init(void)
2403 {
2404 	return register_pernet_subsys(&udp4_net_ops);
2405 }
2406 
2407 void udp4_proc_exit(void)
2408 {
2409 	unregister_pernet_subsys(&udp4_net_ops);
2410 }
2411 #endif /* CONFIG_PROC_FS */
2412 
2413 static __initdata unsigned long uhash_entries;
2414 static int __init set_uhash_entries(char *str)
2415 {
2416 	ssize_t ret;
2417 
2418 	if (!str)
2419 		return 0;
2420 
2421 	ret = kstrtoul(str, 0, &uhash_entries);
2422 	if (ret)
2423 		return 0;
2424 
2425 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2426 		uhash_entries = UDP_HTABLE_SIZE_MIN;
2427 	return 1;
2428 }
2429 __setup("uhash_entries=", set_uhash_entries);
2430 
2431 void __init udp_table_init(struct udp_table *table, const char *name)
2432 {
2433 	unsigned int i;
2434 
2435 	table->hash = alloc_large_system_hash(name,
2436 					      2 * sizeof(struct udp_hslot),
2437 					      uhash_entries,
2438 					      21, /* one slot per 2 MB */
2439 					      0,
2440 					      &table->log,
2441 					      &table->mask,
2442 					      UDP_HTABLE_SIZE_MIN,
2443 					      64 * 1024);
2444 
2445 	table->hash2 = table->hash + (table->mask + 1);
2446 	for (i = 0; i <= table->mask; i++) {
2447 		INIT_HLIST_NULLS_HEAD(&table->hash[i].head, i);
2448 		table->hash[i].count = 0;
2449 		spin_lock_init(&table->hash[i].lock);
2450 	}
2451 	for (i = 0; i <= table->mask; i++) {
2452 		INIT_HLIST_NULLS_HEAD(&table->hash2[i].head, i);
2453 		table->hash2[i].count = 0;
2454 		spin_lock_init(&table->hash2[i].lock);
2455 	}
2456 }
2457 
2458 void __init udp_init(void)
2459 {
2460 	unsigned long limit;
2461 
2462 	udp_table_init(&udp_table, "UDP");
2463 	limit = nr_free_buffer_pages() / 8;
2464 	limit = max(limit, 128UL);
2465 	sysctl_udp_mem[0] = limit / 4 * 3;
2466 	sysctl_udp_mem[1] = limit;
2467 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2468 
2469 	sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2470 	sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2471 }
2472 
2473 struct sk_buff *skb_udp_tunnel_segment(struct sk_buff *skb,
2474 				       netdev_features_t features)
2475 {
2476 	struct sk_buff *segs = ERR_PTR(-EINVAL);
2477 	int mac_len = skb->mac_len;
2478 	int tnl_hlen = skb_inner_mac_header(skb) - skb_transport_header(skb);
2479 	__be16 protocol = skb->protocol;
2480 	netdev_features_t enc_features;
2481 	int outer_hlen;
2482 
2483 	if (unlikely(!pskb_may_pull(skb, tnl_hlen)))
2484 		goto out;
2485 
2486 	skb->encapsulation = 0;
2487 	__skb_pull(skb, tnl_hlen);
2488 	skb_reset_mac_header(skb);
2489 	skb_set_network_header(skb, skb_inner_network_offset(skb));
2490 	skb->mac_len = skb_inner_network_offset(skb);
2491 	skb->protocol = htons(ETH_P_TEB);
2492 
2493 	/* segment inner packet. */
2494 	enc_features = skb->dev->hw_enc_features & netif_skb_features(skb);
2495 	segs = skb_mac_gso_segment(skb, enc_features);
2496 	if (!segs || IS_ERR(segs))
2497 		goto out;
2498 
2499 	outer_hlen = skb_tnl_header_len(skb);
2500 	skb = segs;
2501 	do {
2502 		struct udphdr *uh;
2503 		int udp_offset = outer_hlen - tnl_hlen;
2504 
2505 		skb_reset_inner_headers(skb);
2506 		skb->encapsulation = 1;
2507 
2508 		skb->mac_len = mac_len;
2509 
2510 		skb_push(skb, outer_hlen);
2511 		skb_reset_mac_header(skb);
2512 		skb_set_network_header(skb, mac_len);
2513 		skb_set_transport_header(skb, udp_offset);
2514 		uh = udp_hdr(skb);
2515 		uh->len = htons(skb->len - udp_offset);
2516 
2517 		/* csum segment if tunnel sets skb with csum. */
2518 		if (protocol == htons(ETH_P_IP) && unlikely(uh->check)) {
2519 			struct iphdr *iph = ip_hdr(skb);
2520 
2521 			uh->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
2522 						       skb->len - udp_offset,
2523 						       IPPROTO_UDP, 0);
2524 			uh->check = csum_fold(skb_checksum(skb, udp_offset,
2525 							   skb->len - udp_offset, 0));
2526 			if (uh->check == 0)
2527 				uh->check = CSUM_MANGLED_0;
2528 
2529 		} else if (protocol == htons(ETH_P_IPV6)) {
2530 			struct ipv6hdr *ipv6h = ipv6_hdr(skb);
2531 			u32 len = skb->len - udp_offset;
2532 
2533 			uh->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
2534 						     len, IPPROTO_UDP, 0);
2535 			uh->check = csum_fold(skb_checksum(skb, udp_offset, len, 0));
2536 			if (uh->check == 0)
2537 				uh->check = CSUM_MANGLED_0;
2538 			skb->ip_summed = CHECKSUM_NONE;
2539 		}
2540 
2541 		skb->protocol = protocol;
2542 	} while ((skb = skb->next));
2543 out:
2544 	return segs;
2545 }
2546