xref: /linux/net/ipv4/udp.c (revision 80fa3300b7e5d738365698052d999ea71bb24723)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		The User Datagram Protocol (UDP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
12  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
13  *		Hirokazu Takahashi, <taka@valinux.co.jp>
14  *
15  * Fixes:
16  *		Alan Cox	:	verify_area() calls
17  *		Alan Cox	: 	stopped close while in use off icmp
18  *					messages. Not a fix but a botch that
19  *					for udp at least is 'valid'.
20  *		Alan Cox	:	Fixed icmp handling properly
21  *		Alan Cox	: 	Correct error for oversized datagrams
22  *		Alan Cox	:	Tidied select() semantics.
23  *		Alan Cox	:	udp_err() fixed properly, also now
24  *					select and read wake correctly on errors
25  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
26  *		Alan Cox	:	UDP can count its memory
27  *		Alan Cox	:	send to an unknown connection causes
28  *					an ECONNREFUSED off the icmp, but
29  *					does NOT close.
30  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
31  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
32  *					bug no longer crashes it.
33  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
34  *		Alan Cox	:	Uses skb_free_datagram
35  *		Alan Cox	:	Added get/set sockopt support.
36  *		Alan Cox	:	Broadcasting without option set returns EACCES.
37  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
38  *		Alan Cox	:	Use ip_tos and ip_ttl
39  *		Alan Cox	:	SNMP Mibs
40  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
41  *		Matt Dillon	:	UDP length checks.
42  *		Alan Cox	:	Smarter af_inet used properly.
43  *		Alan Cox	:	Use new kernel side addressing.
44  *		Alan Cox	:	Incorrect return on truncated datagram receive.
45  *	Arnt Gulbrandsen 	:	New udp_send and stuff
46  *		Alan Cox	:	Cache last socket
47  *		Alan Cox	:	Route cache
48  *		Jon Peatfield	:	Minor efficiency fix to sendto().
49  *		Mike Shaver	:	RFC1122 checks.
50  *		Alan Cox	:	Nonblocking error fix.
51  *	Willy Konynenberg	:	Transparent proxying support.
52  *		Mike McLagan	:	Routing by source
53  *		David S. Miller	:	New socket lookup architecture.
54  *					Last socket cache retained as it
55  *					does have a high hit rate.
56  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
57  *		Andi Kleen	:	Some cleanups, cache destination entry
58  *					for connect.
59  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
60  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
61  *					return ENOTCONN for unconnected sockets (POSIX)
62  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
63  *					bound-to-device socket
64  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
65  *					datagrams.
66  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
67  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
68  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
69  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
70  *					a single port at the same time.
71  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
72  *	James Chapman		:	Add L2TP encapsulation type.
73  */
74 
75 #define pr_fmt(fmt) "UDP: " fmt
76 
77 #include <linux/uaccess.h>
78 #include <asm/ioctls.h>
79 #include <linux/memblock.h>
80 #include <linux/highmem.h>
81 #include <linux/swap.h>
82 #include <linux/types.h>
83 #include <linux/fcntl.h>
84 #include <linux/module.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/igmp.h>
88 #include <linux/inetdevice.h>
89 #include <linux/in.h>
90 #include <linux/errno.h>
91 #include <linux/timer.h>
92 #include <linux/mm.h>
93 #include <linux/inet.h>
94 #include <linux/netdevice.h>
95 #include <linux/slab.h>
96 #include <net/tcp_states.h>
97 #include <linux/skbuff.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <net/net_namespace.h>
101 #include <net/icmp.h>
102 #include <net/inet_hashtables.h>
103 #include <net/ip_tunnels.h>
104 #include <net/route.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <trace/events/udp.h>
108 #include <linux/static_key.h>
109 #include <trace/events/skb.h>
110 #include <net/busy_poll.h>
111 #include "udp_impl.h"
112 #include <net/sock_reuseport.h>
113 #include <net/addrconf.h>
114 #include <net/udp_tunnel.h>
115 #if IS_ENABLED(CONFIG_IPV6)
116 #include <net/ipv6_stubs.h>
117 #endif
118 
119 struct udp_table udp_table __read_mostly;
120 EXPORT_SYMBOL(udp_table);
121 
122 long sysctl_udp_mem[3] __read_mostly;
123 EXPORT_SYMBOL(sysctl_udp_mem);
124 
125 atomic_long_t udp_memory_allocated;
126 EXPORT_SYMBOL(udp_memory_allocated);
127 
128 #define MAX_UDP_PORTS 65536
129 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
130 
131 static int udp_lib_lport_inuse(struct net *net, __u16 num,
132 			       const struct udp_hslot *hslot,
133 			       unsigned long *bitmap,
134 			       struct sock *sk, unsigned int log)
135 {
136 	struct sock *sk2;
137 	kuid_t uid = sock_i_uid(sk);
138 
139 	sk_for_each(sk2, &hslot->head) {
140 		if (net_eq(sock_net(sk2), net) &&
141 		    sk2 != sk &&
142 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
143 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
144 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
145 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
146 		    inet_rcv_saddr_equal(sk, sk2, true)) {
147 			if (sk2->sk_reuseport && sk->sk_reuseport &&
148 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
149 			    uid_eq(uid, sock_i_uid(sk2))) {
150 				if (!bitmap)
151 					return 0;
152 			} else {
153 				if (!bitmap)
154 					return 1;
155 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
156 					  bitmap);
157 			}
158 		}
159 	}
160 	return 0;
161 }
162 
163 /*
164  * Note: we still hold spinlock of primary hash chain, so no other writer
165  * can insert/delete a socket with local_port == num
166  */
167 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
168 				struct udp_hslot *hslot2,
169 				struct sock *sk)
170 {
171 	struct sock *sk2;
172 	kuid_t uid = sock_i_uid(sk);
173 	int res = 0;
174 
175 	spin_lock(&hslot2->lock);
176 	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
177 		if (net_eq(sock_net(sk2), net) &&
178 		    sk2 != sk &&
179 		    (udp_sk(sk2)->udp_port_hash == num) &&
180 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
181 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
182 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
183 		    inet_rcv_saddr_equal(sk, sk2, true)) {
184 			if (sk2->sk_reuseport && sk->sk_reuseport &&
185 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
186 			    uid_eq(uid, sock_i_uid(sk2))) {
187 				res = 0;
188 			} else {
189 				res = 1;
190 			}
191 			break;
192 		}
193 	}
194 	spin_unlock(&hslot2->lock);
195 	return res;
196 }
197 
198 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
199 {
200 	struct net *net = sock_net(sk);
201 	kuid_t uid = sock_i_uid(sk);
202 	struct sock *sk2;
203 
204 	sk_for_each(sk2, &hslot->head) {
205 		if (net_eq(sock_net(sk2), net) &&
206 		    sk2 != sk &&
207 		    sk2->sk_family == sk->sk_family &&
208 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
209 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
210 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
211 		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
212 		    inet_rcv_saddr_equal(sk, sk2, false)) {
213 			return reuseport_add_sock(sk, sk2,
214 						  inet_rcv_saddr_any(sk));
215 		}
216 	}
217 
218 	return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
219 }
220 
221 /**
222  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
223  *
224  *  @sk:          socket struct in question
225  *  @snum:        port number to look up
226  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
227  *                   with NULL address
228  */
229 int udp_lib_get_port(struct sock *sk, unsigned short snum,
230 		     unsigned int hash2_nulladdr)
231 {
232 	struct udp_hslot *hslot, *hslot2;
233 	struct udp_table *udptable = sk->sk_prot->h.udp_table;
234 	int    error = 1;
235 	struct net *net = sock_net(sk);
236 
237 	if (!snum) {
238 		int low, high, remaining;
239 		unsigned int rand;
240 		unsigned short first, last;
241 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
242 
243 		inet_get_local_port_range(net, &low, &high);
244 		remaining = (high - low) + 1;
245 
246 		rand = prandom_u32();
247 		first = reciprocal_scale(rand, remaining) + low;
248 		/*
249 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
250 		 */
251 		rand = (rand | 1) * (udptable->mask + 1);
252 		last = first + udptable->mask + 1;
253 		do {
254 			hslot = udp_hashslot(udptable, net, first);
255 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
256 			spin_lock_bh(&hslot->lock);
257 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
258 					    udptable->log);
259 
260 			snum = first;
261 			/*
262 			 * Iterate on all possible values of snum for this hash.
263 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
264 			 * give us randomization and full range coverage.
265 			 */
266 			do {
267 				if (low <= snum && snum <= high &&
268 				    !test_bit(snum >> udptable->log, bitmap) &&
269 				    !inet_is_local_reserved_port(net, snum))
270 					goto found;
271 				snum += rand;
272 			} while (snum != first);
273 			spin_unlock_bh(&hslot->lock);
274 			cond_resched();
275 		} while (++first != last);
276 		goto fail;
277 	} else {
278 		hslot = udp_hashslot(udptable, net, snum);
279 		spin_lock_bh(&hslot->lock);
280 		if (hslot->count > 10) {
281 			int exist;
282 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
283 
284 			slot2          &= udptable->mask;
285 			hash2_nulladdr &= udptable->mask;
286 
287 			hslot2 = udp_hashslot2(udptable, slot2);
288 			if (hslot->count < hslot2->count)
289 				goto scan_primary_hash;
290 
291 			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
292 			if (!exist && (hash2_nulladdr != slot2)) {
293 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
294 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
295 							     sk);
296 			}
297 			if (exist)
298 				goto fail_unlock;
299 			else
300 				goto found;
301 		}
302 scan_primary_hash:
303 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
304 			goto fail_unlock;
305 	}
306 found:
307 	inet_sk(sk)->inet_num = snum;
308 	udp_sk(sk)->udp_port_hash = snum;
309 	udp_sk(sk)->udp_portaddr_hash ^= snum;
310 	if (sk_unhashed(sk)) {
311 		if (sk->sk_reuseport &&
312 		    udp_reuseport_add_sock(sk, hslot)) {
313 			inet_sk(sk)->inet_num = 0;
314 			udp_sk(sk)->udp_port_hash = 0;
315 			udp_sk(sk)->udp_portaddr_hash ^= snum;
316 			goto fail_unlock;
317 		}
318 
319 		sk_add_node_rcu(sk, &hslot->head);
320 		hslot->count++;
321 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
322 
323 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
324 		spin_lock(&hslot2->lock);
325 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
326 		    sk->sk_family == AF_INET6)
327 			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
328 					   &hslot2->head);
329 		else
330 			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
331 					   &hslot2->head);
332 		hslot2->count++;
333 		spin_unlock(&hslot2->lock);
334 	}
335 	sock_set_flag(sk, SOCK_RCU_FREE);
336 	error = 0;
337 fail_unlock:
338 	spin_unlock_bh(&hslot->lock);
339 fail:
340 	return error;
341 }
342 EXPORT_SYMBOL(udp_lib_get_port);
343 
344 int udp_v4_get_port(struct sock *sk, unsigned short snum)
345 {
346 	unsigned int hash2_nulladdr =
347 		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
348 	unsigned int hash2_partial =
349 		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
350 
351 	/* precompute partial secondary hash */
352 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
353 	return udp_lib_get_port(sk, snum, hash2_nulladdr);
354 }
355 
356 static int compute_score(struct sock *sk, struct net *net,
357 			 __be32 saddr, __be16 sport,
358 			 __be32 daddr, unsigned short hnum,
359 			 int dif, int sdif)
360 {
361 	int score;
362 	struct inet_sock *inet;
363 	bool dev_match;
364 
365 	if (!net_eq(sock_net(sk), net) ||
366 	    udp_sk(sk)->udp_port_hash != hnum ||
367 	    ipv6_only_sock(sk))
368 		return -1;
369 
370 	if (sk->sk_rcv_saddr != daddr)
371 		return -1;
372 
373 	score = (sk->sk_family == PF_INET) ? 2 : 1;
374 
375 	inet = inet_sk(sk);
376 	if (inet->inet_daddr) {
377 		if (inet->inet_daddr != saddr)
378 			return -1;
379 		score += 4;
380 	}
381 
382 	if (inet->inet_dport) {
383 		if (inet->inet_dport != sport)
384 			return -1;
385 		score += 4;
386 	}
387 
388 	dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
389 					dif, sdif);
390 	if (!dev_match)
391 		return -1;
392 	score += 4;
393 
394 	if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
395 		score++;
396 	return score;
397 }
398 
399 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
400 		       const __u16 lport, const __be32 faddr,
401 		       const __be16 fport)
402 {
403 	static u32 udp_ehash_secret __read_mostly;
404 
405 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
406 
407 	return __inet_ehashfn(laddr, lport, faddr, fport,
408 			      udp_ehash_secret + net_hash_mix(net));
409 }
410 
411 /* called with rcu_read_lock() */
412 static struct sock *udp4_lib_lookup2(struct net *net,
413 				     __be32 saddr, __be16 sport,
414 				     __be32 daddr, unsigned int hnum,
415 				     int dif, int sdif,
416 				     struct udp_hslot *hslot2,
417 				     struct sk_buff *skb)
418 {
419 	struct sock *sk, *result;
420 	int score, badness;
421 	u32 hash = 0;
422 
423 	result = NULL;
424 	badness = 0;
425 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
426 		score = compute_score(sk, net, saddr, sport,
427 				      daddr, hnum, dif, sdif);
428 		if (score > badness) {
429 			if (sk->sk_reuseport &&
430 			    sk->sk_state != TCP_ESTABLISHED) {
431 				hash = udp_ehashfn(net, daddr, hnum,
432 						   saddr, sport);
433 				result = reuseport_select_sock(sk, hash, skb,
434 							sizeof(struct udphdr));
435 				if (result && !reuseport_has_conns(sk, false))
436 					return result;
437 			}
438 			badness = score;
439 			result = sk;
440 		}
441 	}
442 	return result;
443 }
444 
445 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
446  * harder than this. -DaveM
447  */
448 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
449 		__be16 sport, __be32 daddr, __be16 dport, int dif,
450 		int sdif, struct udp_table *udptable, struct sk_buff *skb)
451 {
452 	struct sock *result;
453 	unsigned short hnum = ntohs(dport);
454 	unsigned int hash2, slot2;
455 	struct udp_hslot *hslot2;
456 
457 	hash2 = ipv4_portaddr_hash(net, daddr, hnum);
458 	slot2 = hash2 & udptable->mask;
459 	hslot2 = &udptable->hash2[slot2];
460 
461 	result = udp4_lib_lookup2(net, saddr, sport,
462 				  daddr, hnum, dif, sdif,
463 				  hslot2, skb);
464 	if (!result) {
465 		hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
466 		slot2 = hash2 & udptable->mask;
467 		hslot2 = &udptable->hash2[slot2];
468 
469 		result = udp4_lib_lookup2(net, saddr, sport,
470 					  htonl(INADDR_ANY), hnum, dif, sdif,
471 					  hslot2, skb);
472 	}
473 	if (IS_ERR(result))
474 		return NULL;
475 	return result;
476 }
477 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
478 
479 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
480 						 __be16 sport, __be16 dport,
481 						 struct udp_table *udptable)
482 {
483 	const struct iphdr *iph = ip_hdr(skb);
484 
485 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
486 				 iph->daddr, dport, inet_iif(skb),
487 				 inet_sdif(skb), udptable, skb);
488 }
489 
490 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb,
491 				 __be16 sport, __be16 dport)
492 {
493 	const struct iphdr *iph = ip_hdr(skb);
494 
495 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
496 				 iph->daddr, dport, inet_iif(skb),
497 				 inet_sdif(skb), &udp_table, NULL);
498 }
499 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb);
500 
501 /* Must be called under rcu_read_lock().
502  * Does increment socket refcount.
503  */
504 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
505 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
506 			     __be32 daddr, __be16 dport, int dif)
507 {
508 	struct sock *sk;
509 
510 	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
511 			       dif, 0, &udp_table, NULL);
512 	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
513 		sk = NULL;
514 	return sk;
515 }
516 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
517 #endif
518 
519 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
520 				       __be16 loc_port, __be32 loc_addr,
521 				       __be16 rmt_port, __be32 rmt_addr,
522 				       int dif, int sdif, unsigned short hnum)
523 {
524 	struct inet_sock *inet = inet_sk(sk);
525 
526 	if (!net_eq(sock_net(sk), net) ||
527 	    udp_sk(sk)->udp_port_hash != hnum ||
528 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
529 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
530 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
531 	    ipv6_only_sock(sk) ||
532 	    !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
533 		return false;
534 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
535 		return false;
536 	return true;
537 }
538 
539 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
540 void udp_encap_enable(void)
541 {
542 	static_branch_inc(&udp_encap_needed_key);
543 }
544 EXPORT_SYMBOL(udp_encap_enable);
545 
546 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go
547  * through error handlers in encapsulations looking for a match.
548  */
549 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
550 {
551 	int i;
552 
553 	for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
554 		int (*handler)(struct sk_buff *skb, u32 info);
555 		const struct ip_tunnel_encap_ops *encap;
556 
557 		encap = rcu_dereference(iptun_encaps[i]);
558 		if (!encap)
559 			continue;
560 		handler = encap->err_handler;
561 		if (handler && !handler(skb, info))
562 			return 0;
563 	}
564 
565 	return -ENOENT;
566 }
567 
568 /* Try to match ICMP errors to UDP tunnels by looking up a socket without
569  * reversing source and destination port: this will match tunnels that force the
570  * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
571  * lwtunnels might actually break this assumption by being configured with
572  * different destination ports on endpoints, in this case we won't be able to
573  * trace ICMP messages back to them.
574  *
575  * If this doesn't match any socket, probe tunnels with arbitrary destination
576  * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
577  * we've sent packets to won't necessarily match the local destination port.
578  *
579  * Then ask the tunnel implementation to match the error against a valid
580  * association.
581  *
582  * Return an error if we can't find a match, the socket if we need further
583  * processing, zero otherwise.
584  */
585 static struct sock *__udp4_lib_err_encap(struct net *net,
586 					 const struct iphdr *iph,
587 					 struct udphdr *uh,
588 					 struct udp_table *udptable,
589 					 struct sk_buff *skb, u32 info)
590 {
591 	int network_offset, transport_offset;
592 	struct sock *sk;
593 
594 	network_offset = skb_network_offset(skb);
595 	transport_offset = skb_transport_offset(skb);
596 
597 	/* Network header needs to point to the outer IPv4 header inside ICMP */
598 	skb_reset_network_header(skb);
599 
600 	/* Transport header needs to point to the UDP header */
601 	skb_set_transport_header(skb, iph->ihl << 2);
602 
603 	sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
604 			       iph->saddr, uh->dest, skb->dev->ifindex, 0,
605 			       udptable, NULL);
606 	if (sk) {
607 		int (*lookup)(struct sock *sk, struct sk_buff *skb);
608 		struct udp_sock *up = udp_sk(sk);
609 
610 		lookup = READ_ONCE(up->encap_err_lookup);
611 		if (!lookup || lookup(sk, skb))
612 			sk = NULL;
613 	}
614 
615 	if (!sk)
616 		sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
617 
618 	skb_set_transport_header(skb, transport_offset);
619 	skb_set_network_header(skb, network_offset);
620 
621 	return sk;
622 }
623 
624 /*
625  * This routine is called by the ICMP module when it gets some
626  * sort of error condition.  If err < 0 then the socket should
627  * be closed and the error returned to the user.  If err > 0
628  * it's just the icmp type << 8 | icmp code.
629  * Header points to the ip header of the error packet. We move
630  * on past this. Then (as it used to claim before adjustment)
631  * header points to the first 8 bytes of the udp header.  We need
632  * to find the appropriate port.
633  */
634 
635 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
636 {
637 	struct inet_sock *inet;
638 	const struct iphdr *iph = (const struct iphdr *)skb->data;
639 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
640 	const int type = icmp_hdr(skb)->type;
641 	const int code = icmp_hdr(skb)->code;
642 	bool tunnel = false;
643 	struct sock *sk;
644 	int harderr;
645 	int err;
646 	struct net *net = dev_net(skb->dev);
647 
648 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
649 			       iph->saddr, uh->source, skb->dev->ifindex,
650 			       inet_sdif(skb), udptable, NULL);
651 	if (!sk) {
652 		/* No socket for error: try tunnels before discarding */
653 		sk = ERR_PTR(-ENOENT);
654 		if (static_branch_unlikely(&udp_encap_needed_key)) {
655 			sk = __udp4_lib_err_encap(net, iph, uh, udptable, skb,
656 						  info);
657 			if (!sk)
658 				return 0;
659 		}
660 
661 		if (IS_ERR(sk)) {
662 			__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
663 			return PTR_ERR(sk);
664 		}
665 
666 		tunnel = true;
667 	}
668 
669 	err = 0;
670 	harderr = 0;
671 	inet = inet_sk(sk);
672 
673 	switch (type) {
674 	default:
675 	case ICMP_TIME_EXCEEDED:
676 		err = EHOSTUNREACH;
677 		break;
678 	case ICMP_SOURCE_QUENCH:
679 		goto out;
680 	case ICMP_PARAMETERPROB:
681 		err = EPROTO;
682 		harderr = 1;
683 		break;
684 	case ICMP_DEST_UNREACH:
685 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
686 			ipv4_sk_update_pmtu(skb, sk, info);
687 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
688 				err = EMSGSIZE;
689 				harderr = 1;
690 				break;
691 			}
692 			goto out;
693 		}
694 		err = EHOSTUNREACH;
695 		if (code <= NR_ICMP_UNREACH) {
696 			harderr = icmp_err_convert[code].fatal;
697 			err = icmp_err_convert[code].errno;
698 		}
699 		break;
700 	case ICMP_REDIRECT:
701 		ipv4_sk_redirect(skb, sk);
702 		goto out;
703 	}
704 
705 	/*
706 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
707 	 *	4.1.3.3.
708 	 */
709 	if (tunnel) {
710 		/* ...not for tunnels though: we don't have a sending socket */
711 		goto out;
712 	}
713 	if (!inet->recverr) {
714 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
715 			goto out;
716 	} else
717 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
718 
719 	sk->sk_err = err;
720 	sk->sk_error_report(sk);
721 out:
722 	return 0;
723 }
724 
725 int udp_err(struct sk_buff *skb, u32 info)
726 {
727 	return __udp4_lib_err(skb, info, &udp_table);
728 }
729 
730 /*
731  * Throw away all pending data and cancel the corking. Socket is locked.
732  */
733 void udp_flush_pending_frames(struct sock *sk)
734 {
735 	struct udp_sock *up = udp_sk(sk);
736 
737 	if (up->pending) {
738 		up->len = 0;
739 		up->pending = 0;
740 		ip_flush_pending_frames(sk);
741 	}
742 }
743 EXPORT_SYMBOL(udp_flush_pending_frames);
744 
745 /**
746  * 	udp4_hwcsum  -  handle outgoing HW checksumming
747  * 	@skb: 	sk_buff containing the filled-in UDP header
748  * 	        (checksum field must be zeroed out)
749  *	@src:	source IP address
750  *	@dst:	destination IP address
751  */
752 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
753 {
754 	struct udphdr *uh = udp_hdr(skb);
755 	int offset = skb_transport_offset(skb);
756 	int len = skb->len - offset;
757 	int hlen = len;
758 	__wsum csum = 0;
759 
760 	if (!skb_has_frag_list(skb)) {
761 		/*
762 		 * Only one fragment on the socket.
763 		 */
764 		skb->csum_start = skb_transport_header(skb) - skb->head;
765 		skb->csum_offset = offsetof(struct udphdr, check);
766 		uh->check = ~csum_tcpudp_magic(src, dst, len,
767 					       IPPROTO_UDP, 0);
768 	} else {
769 		struct sk_buff *frags;
770 
771 		/*
772 		 * HW-checksum won't work as there are two or more
773 		 * fragments on the socket so that all csums of sk_buffs
774 		 * should be together
775 		 */
776 		skb_walk_frags(skb, frags) {
777 			csum = csum_add(csum, frags->csum);
778 			hlen -= frags->len;
779 		}
780 
781 		csum = skb_checksum(skb, offset, hlen, csum);
782 		skb->ip_summed = CHECKSUM_NONE;
783 
784 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
785 		if (uh->check == 0)
786 			uh->check = CSUM_MANGLED_0;
787 	}
788 }
789 EXPORT_SYMBOL_GPL(udp4_hwcsum);
790 
791 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
792  * for the simple case like when setting the checksum for a UDP tunnel.
793  */
794 void udp_set_csum(bool nocheck, struct sk_buff *skb,
795 		  __be32 saddr, __be32 daddr, int len)
796 {
797 	struct udphdr *uh = udp_hdr(skb);
798 
799 	if (nocheck) {
800 		uh->check = 0;
801 	} else if (skb_is_gso(skb)) {
802 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
803 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
804 		uh->check = 0;
805 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
806 		if (uh->check == 0)
807 			uh->check = CSUM_MANGLED_0;
808 	} else {
809 		skb->ip_summed = CHECKSUM_PARTIAL;
810 		skb->csum_start = skb_transport_header(skb) - skb->head;
811 		skb->csum_offset = offsetof(struct udphdr, check);
812 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
813 	}
814 }
815 EXPORT_SYMBOL(udp_set_csum);
816 
817 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
818 			struct inet_cork *cork)
819 {
820 	struct sock *sk = skb->sk;
821 	struct inet_sock *inet = inet_sk(sk);
822 	struct udphdr *uh;
823 	int err = 0;
824 	int is_udplite = IS_UDPLITE(sk);
825 	int offset = skb_transport_offset(skb);
826 	int len = skb->len - offset;
827 	int datalen = len - sizeof(*uh);
828 	__wsum csum = 0;
829 
830 	/*
831 	 * Create a UDP header
832 	 */
833 	uh = udp_hdr(skb);
834 	uh->source = inet->inet_sport;
835 	uh->dest = fl4->fl4_dport;
836 	uh->len = htons(len);
837 	uh->check = 0;
838 
839 	if (cork->gso_size) {
840 		const int hlen = skb_network_header_len(skb) +
841 				 sizeof(struct udphdr);
842 
843 		if (hlen + cork->gso_size > cork->fragsize) {
844 			kfree_skb(skb);
845 			return -EINVAL;
846 		}
847 		if (skb->len > cork->gso_size * UDP_MAX_SEGMENTS) {
848 			kfree_skb(skb);
849 			return -EINVAL;
850 		}
851 		if (sk->sk_no_check_tx) {
852 			kfree_skb(skb);
853 			return -EINVAL;
854 		}
855 		if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
856 		    dst_xfrm(skb_dst(skb))) {
857 			kfree_skb(skb);
858 			return -EIO;
859 		}
860 
861 		if (datalen > cork->gso_size) {
862 			skb_shinfo(skb)->gso_size = cork->gso_size;
863 			skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
864 			skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
865 								 cork->gso_size);
866 		}
867 		goto csum_partial;
868 	}
869 
870 	if (is_udplite)  				 /*     UDP-Lite      */
871 		csum = udplite_csum(skb);
872 
873 	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
874 
875 		skb->ip_summed = CHECKSUM_NONE;
876 		goto send;
877 
878 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
879 csum_partial:
880 
881 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
882 		goto send;
883 
884 	} else
885 		csum = udp_csum(skb);
886 
887 	/* add protocol-dependent pseudo-header */
888 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
889 				      sk->sk_protocol, csum);
890 	if (uh->check == 0)
891 		uh->check = CSUM_MANGLED_0;
892 
893 send:
894 	err = ip_send_skb(sock_net(sk), skb);
895 	if (err) {
896 		if (err == -ENOBUFS && !inet->recverr) {
897 			UDP_INC_STATS(sock_net(sk),
898 				      UDP_MIB_SNDBUFERRORS, is_udplite);
899 			err = 0;
900 		}
901 	} else
902 		UDP_INC_STATS(sock_net(sk),
903 			      UDP_MIB_OUTDATAGRAMS, is_udplite);
904 	return err;
905 }
906 
907 /*
908  * Push out all pending data as one UDP datagram. Socket is locked.
909  */
910 int udp_push_pending_frames(struct sock *sk)
911 {
912 	struct udp_sock  *up = udp_sk(sk);
913 	struct inet_sock *inet = inet_sk(sk);
914 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
915 	struct sk_buff *skb;
916 	int err = 0;
917 
918 	skb = ip_finish_skb(sk, fl4);
919 	if (!skb)
920 		goto out;
921 
922 	err = udp_send_skb(skb, fl4, &inet->cork.base);
923 
924 out:
925 	up->len = 0;
926 	up->pending = 0;
927 	return err;
928 }
929 EXPORT_SYMBOL(udp_push_pending_frames);
930 
931 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
932 {
933 	switch (cmsg->cmsg_type) {
934 	case UDP_SEGMENT:
935 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
936 			return -EINVAL;
937 		*gso_size = *(__u16 *)CMSG_DATA(cmsg);
938 		return 0;
939 	default:
940 		return -EINVAL;
941 	}
942 }
943 
944 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
945 {
946 	struct cmsghdr *cmsg;
947 	bool need_ip = false;
948 	int err;
949 
950 	for_each_cmsghdr(cmsg, msg) {
951 		if (!CMSG_OK(msg, cmsg))
952 			return -EINVAL;
953 
954 		if (cmsg->cmsg_level != SOL_UDP) {
955 			need_ip = true;
956 			continue;
957 		}
958 
959 		err = __udp_cmsg_send(cmsg, gso_size);
960 		if (err)
961 			return err;
962 	}
963 
964 	return need_ip;
965 }
966 EXPORT_SYMBOL_GPL(udp_cmsg_send);
967 
968 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
969 {
970 	struct inet_sock *inet = inet_sk(sk);
971 	struct udp_sock *up = udp_sk(sk);
972 	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
973 	struct flowi4 fl4_stack;
974 	struct flowi4 *fl4;
975 	int ulen = len;
976 	struct ipcm_cookie ipc;
977 	struct rtable *rt = NULL;
978 	int free = 0;
979 	int connected = 0;
980 	__be32 daddr, faddr, saddr;
981 	__be16 dport;
982 	u8  tos;
983 	int err, is_udplite = IS_UDPLITE(sk);
984 	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
985 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
986 	struct sk_buff *skb;
987 	struct ip_options_data opt_copy;
988 
989 	if (len > 0xFFFF)
990 		return -EMSGSIZE;
991 
992 	/*
993 	 *	Check the flags.
994 	 */
995 
996 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
997 		return -EOPNOTSUPP;
998 
999 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1000 
1001 	fl4 = &inet->cork.fl.u.ip4;
1002 	if (up->pending) {
1003 		/*
1004 		 * There are pending frames.
1005 		 * The socket lock must be held while it's corked.
1006 		 */
1007 		lock_sock(sk);
1008 		if (likely(up->pending)) {
1009 			if (unlikely(up->pending != AF_INET)) {
1010 				release_sock(sk);
1011 				return -EINVAL;
1012 			}
1013 			goto do_append_data;
1014 		}
1015 		release_sock(sk);
1016 	}
1017 	ulen += sizeof(struct udphdr);
1018 
1019 	/*
1020 	 *	Get and verify the address.
1021 	 */
1022 	if (usin) {
1023 		if (msg->msg_namelen < sizeof(*usin))
1024 			return -EINVAL;
1025 		if (usin->sin_family != AF_INET) {
1026 			if (usin->sin_family != AF_UNSPEC)
1027 				return -EAFNOSUPPORT;
1028 		}
1029 
1030 		daddr = usin->sin_addr.s_addr;
1031 		dport = usin->sin_port;
1032 		if (dport == 0)
1033 			return -EINVAL;
1034 	} else {
1035 		if (sk->sk_state != TCP_ESTABLISHED)
1036 			return -EDESTADDRREQ;
1037 		daddr = inet->inet_daddr;
1038 		dport = inet->inet_dport;
1039 		/* Open fast path for connected socket.
1040 		   Route will not be used, if at least one option is set.
1041 		 */
1042 		connected = 1;
1043 	}
1044 
1045 	ipcm_init_sk(&ipc, inet);
1046 	ipc.gso_size = up->gso_size;
1047 
1048 	if (msg->msg_controllen) {
1049 		err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1050 		if (err > 0)
1051 			err = ip_cmsg_send(sk, msg, &ipc,
1052 					   sk->sk_family == AF_INET6);
1053 		if (unlikely(err < 0)) {
1054 			kfree(ipc.opt);
1055 			return err;
1056 		}
1057 		if (ipc.opt)
1058 			free = 1;
1059 		connected = 0;
1060 	}
1061 	if (!ipc.opt) {
1062 		struct ip_options_rcu *inet_opt;
1063 
1064 		rcu_read_lock();
1065 		inet_opt = rcu_dereference(inet->inet_opt);
1066 		if (inet_opt) {
1067 			memcpy(&opt_copy, inet_opt,
1068 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
1069 			ipc.opt = &opt_copy.opt;
1070 		}
1071 		rcu_read_unlock();
1072 	}
1073 
1074 	if (cgroup_bpf_enabled && !connected) {
1075 		err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1076 					    (struct sockaddr *)usin, &ipc.addr);
1077 		if (err)
1078 			goto out_free;
1079 		if (usin) {
1080 			if (usin->sin_port == 0) {
1081 				/* BPF program set invalid port. Reject it. */
1082 				err = -EINVAL;
1083 				goto out_free;
1084 			}
1085 			daddr = usin->sin_addr.s_addr;
1086 			dport = usin->sin_port;
1087 		}
1088 	}
1089 
1090 	saddr = ipc.addr;
1091 	ipc.addr = faddr = daddr;
1092 
1093 	if (ipc.opt && ipc.opt->opt.srr) {
1094 		if (!daddr) {
1095 			err = -EINVAL;
1096 			goto out_free;
1097 		}
1098 		faddr = ipc.opt->opt.faddr;
1099 		connected = 0;
1100 	}
1101 	tos = get_rttos(&ipc, inet);
1102 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
1103 	    (msg->msg_flags & MSG_DONTROUTE) ||
1104 	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
1105 		tos |= RTO_ONLINK;
1106 		connected = 0;
1107 	}
1108 
1109 	if (ipv4_is_multicast(daddr)) {
1110 		if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1111 			ipc.oif = inet->mc_index;
1112 		if (!saddr)
1113 			saddr = inet->mc_addr;
1114 		connected = 0;
1115 	} else if (!ipc.oif) {
1116 		ipc.oif = inet->uc_index;
1117 	} else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
1118 		/* oif is set, packet is to local broadcast and
1119 		 * and uc_index is set. oif is most likely set
1120 		 * by sk_bound_dev_if. If uc_index != oif check if the
1121 		 * oif is an L3 master and uc_index is an L3 slave.
1122 		 * If so, we want to allow the send using the uc_index.
1123 		 */
1124 		if (ipc.oif != inet->uc_index &&
1125 		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1126 							      inet->uc_index)) {
1127 			ipc.oif = inet->uc_index;
1128 		}
1129 	}
1130 
1131 	if (connected)
1132 		rt = (struct rtable *)sk_dst_check(sk, 0);
1133 
1134 	if (!rt) {
1135 		struct net *net = sock_net(sk);
1136 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1137 
1138 		fl4 = &fl4_stack;
1139 
1140 		flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos,
1141 				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
1142 				   flow_flags,
1143 				   faddr, saddr, dport, inet->inet_sport,
1144 				   sk->sk_uid);
1145 
1146 		security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1147 		rt = ip_route_output_flow(net, fl4, sk);
1148 		if (IS_ERR(rt)) {
1149 			err = PTR_ERR(rt);
1150 			rt = NULL;
1151 			if (err == -ENETUNREACH)
1152 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1153 			goto out;
1154 		}
1155 
1156 		err = -EACCES;
1157 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1158 		    !sock_flag(sk, SOCK_BROADCAST))
1159 			goto out;
1160 		if (connected)
1161 			sk_dst_set(sk, dst_clone(&rt->dst));
1162 	}
1163 
1164 	if (msg->msg_flags&MSG_CONFIRM)
1165 		goto do_confirm;
1166 back_from_confirm:
1167 
1168 	saddr = fl4->saddr;
1169 	if (!ipc.addr)
1170 		daddr = ipc.addr = fl4->daddr;
1171 
1172 	/* Lockless fast path for the non-corking case. */
1173 	if (!corkreq) {
1174 		struct inet_cork cork;
1175 
1176 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1177 				  sizeof(struct udphdr), &ipc, &rt,
1178 				  &cork, msg->msg_flags);
1179 		err = PTR_ERR(skb);
1180 		if (!IS_ERR_OR_NULL(skb))
1181 			err = udp_send_skb(skb, fl4, &cork);
1182 		goto out;
1183 	}
1184 
1185 	lock_sock(sk);
1186 	if (unlikely(up->pending)) {
1187 		/* The socket is already corked while preparing it. */
1188 		/* ... which is an evident application bug. --ANK */
1189 		release_sock(sk);
1190 
1191 		net_dbg_ratelimited("socket already corked\n");
1192 		err = -EINVAL;
1193 		goto out;
1194 	}
1195 	/*
1196 	 *	Now cork the socket to pend data.
1197 	 */
1198 	fl4 = &inet->cork.fl.u.ip4;
1199 	fl4->daddr = daddr;
1200 	fl4->saddr = saddr;
1201 	fl4->fl4_dport = dport;
1202 	fl4->fl4_sport = inet->inet_sport;
1203 	up->pending = AF_INET;
1204 
1205 do_append_data:
1206 	up->len += ulen;
1207 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1208 			     sizeof(struct udphdr), &ipc, &rt,
1209 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1210 	if (err)
1211 		udp_flush_pending_frames(sk);
1212 	else if (!corkreq)
1213 		err = udp_push_pending_frames(sk);
1214 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1215 		up->pending = 0;
1216 	release_sock(sk);
1217 
1218 out:
1219 	ip_rt_put(rt);
1220 out_free:
1221 	if (free)
1222 		kfree(ipc.opt);
1223 	if (!err)
1224 		return len;
1225 	/*
1226 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1227 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1228 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1229 	 * things).  We could add another new stat but at least for now that
1230 	 * seems like overkill.
1231 	 */
1232 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1233 		UDP_INC_STATS(sock_net(sk),
1234 			      UDP_MIB_SNDBUFERRORS, is_udplite);
1235 	}
1236 	return err;
1237 
1238 do_confirm:
1239 	if (msg->msg_flags & MSG_PROBE)
1240 		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1241 	if (!(msg->msg_flags&MSG_PROBE) || len)
1242 		goto back_from_confirm;
1243 	err = 0;
1244 	goto out;
1245 }
1246 EXPORT_SYMBOL(udp_sendmsg);
1247 
1248 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1249 		 size_t size, int flags)
1250 {
1251 	struct inet_sock *inet = inet_sk(sk);
1252 	struct udp_sock *up = udp_sk(sk);
1253 	int ret;
1254 
1255 	if (flags & MSG_SENDPAGE_NOTLAST)
1256 		flags |= MSG_MORE;
1257 
1258 	if (!up->pending) {
1259 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1260 
1261 		/* Call udp_sendmsg to specify destination address which
1262 		 * sendpage interface can't pass.
1263 		 * This will succeed only when the socket is connected.
1264 		 */
1265 		ret = udp_sendmsg(sk, &msg, 0);
1266 		if (ret < 0)
1267 			return ret;
1268 	}
1269 
1270 	lock_sock(sk);
1271 
1272 	if (unlikely(!up->pending)) {
1273 		release_sock(sk);
1274 
1275 		net_dbg_ratelimited("cork failed\n");
1276 		return -EINVAL;
1277 	}
1278 
1279 	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1280 			     page, offset, size, flags);
1281 	if (ret == -EOPNOTSUPP) {
1282 		release_sock(sk);
1283 		return sock_no_sendpage(sk->sk_socket, page, offset,
1284 					size, flags);
1285 	}
1286 	if (ret < 0) {
1287 		udp_flush_pending_frames(sk);
1288 		goto out;
1289 	}
1290 
1291 	up->len += size;
1292 	if (!(up->corkflag || (flags&MSG_MORE)))
1293 		ret = udp_push_pending_frames(sk);
1294 	if (!ret)
1295 		ret = size;
1296 out:
1297 	release_sock(sk);
1298 	return ret;
1299 }
1300 
1301 #define UDP_SKB_IS_STATELESS 0x80000000
1302 
1303 /* all head states (dst, sk, nf conntrack) except skb extensions are
1304  * cleared by udp_rcv().
1305  *
1306  * We need to preserve secpath, if present, to eventually process
1307  * IP_CMSG_PASSSEC at recvmsg() time.
1308  *
1309  * Other extensions can be cleared.
1310  */
1311 static bool udp_try_make_stateless(struct sk_buff *skb)
1312 {
1313 	if (!skb_has_extensions(skb))
1314 		return true;
1315 
1316 	if (!secpath_exists(skb)) {
1317 		skb_ext_reset(skb);
1318 		return true;
1319 	}
1320 
1321 	return false;
1322 }
1323 
1324 static void udp_set_dev_scratch(struct sk_buff *skb)
1325 {
1326 	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1327 
1328 	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1329 	scratch->_tsize_state = skb->truesize;
1330 #if BITS_PER_LONG == 64
1331 	scratch->len = skb->len;
1332 	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1333 	scratch->is_linear = !skb_is_nonlinear(skb);
1334 #endif
1335 	if (udp_try_make_stateless(skb))
1336 		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1337 }
1338 
1339 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1340 {
1341 	/* We come here after udp_lib_checksum_complete() returned 0.
1342 	 * This means that __skb_checksum_complete() might have
1343 	 * set skb->csum_valid to 1.
1344 	 * On 64bit platforms, we can set csum_unnecessary
1345 	 * to true, but only if the skb is not shared.
1346 	 */
1347 #if BITS_PER_LONG == 64
1348 	if (!skb_shared(skb))
1349 		udp_skb_scratch(skb)->csum_unnecessary = true;
1350 #endif
1351 }
1352 
1353 static int udp_skb_truesize(struct sk_buff *skb)
1354 {
1355 	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1356 }
1357 
1358 static bool udp_skb_has_head_state(struct sk_buff *skb)
1359 {
1360 	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1361 }
1362 
1363 /* fully reclaim rmem/fwd memory allocated for skb */
1364 static void udp_rmem_release(struct sock *sk, int size, int partial,
1365 			     bool rx_queue_lock_held)
1366 {
1367 	struct udp_sock *up = udp_sk(sk);
1368 	struct sk_buff_head *sk_queue;
1369 	int amt;
1370 
1371 	if (likely(partial)) {
1372 		up->forward_deficit += size;
1373 		size = up->forward_deficit;
1374 		if (size < (sk->sk_rcvbuf >> 2) &&
1375 		    !skb_queue_empty(&up->reader_queue))
1376 			return;
1377 	} else {
1378 		size += up->forward_deficit;
1379 	}
1380 	up->forward_deficit = 0;
1381 
1382 	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1383 	 * if the called don't held it already
1384 	 */
1385 	sk_queue = &sk->sk_receive_queue;
1386 	if (!rx_queue_lock_held)
1387 		spin_lock(&sk_queue->lock);
1388 
1389 
1390 	sk->sk_forward_alloc += size;
1391 	amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1);
1392 	sk->sk_forward_alloc -= amt;
1393 
1394 	if (amt)
1395 		__sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT);
1396 
1397 	atomic_sub(size, &sk->sk_rmem_alloc);
1398 
1399 	/* this can save us from acquiring the rx queue lock on next receive */
1400 	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1401 
1402 	if (!rx_queue_lock_held)
1403 		spin_unlock(&sk_queue->lock);
1404 }
1405 
1406 /* Note: called with reader_queue.lock held.
1407  * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1408  * This avoids a cache line miss while receive_queue lock is held.
1409  * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1410  */
1411 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1412 {
1413 	prefetch(&skb->data);
1414 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1415 }
1416 EXPORT_SYMBOL(udp_skb_destructor);
1417 
1418 /* as above, but the caller held the rx queue lock, too */
1419 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1420 {
1421 	prefetch(&skb->data);
1422 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1423 }
1424 
1425 /* Idea of busylocks is to let producers grab an extra spinlock
1426  * to relieve pressure on the receive_queue spinlock shared by consumer.
1427  * Under flood, this means that only one producer can be in line
1428  * trying to acquire the receive_queue spinlock.
1429  * These busylock can be allocated on a per cpu manner, instead of a
1430  * per socket one (that would consume a cache line per socket)
1431  */
1432 static int udp_busylocks_log __read_mostly;
1433 static spinlock_t *udp_busylocks __read_mostly;
1434 
1435 static spinlock_t *busylock_acquire(void *ptr)
1436 {
1437 	spinlock_t *busy;
1438 
1439 	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1440 	spin_lock(busy);
1441 	return busy;
1442 }
1443 
1444 static void busylock_release(spinlock_t *busy)
1445 {
1446 	if (busy)
1447 		spin_unlock(busy);
1448 }
1449 
1450 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1451 {
1452 	struct sk_buff_head *list = &sk->sk_receive_queue;
1453 	int rmem, delta, amt, err = -ENOMEM;
1454 	spinlock_t *busy = NULL;
1455 	int size;
1456 
1457 	/* try to avoid the costly atomic add/sub pair when the receive
1458 	 * queue is full; always allow at least a packet
1459 	 */
1460 	rmem = atomic_read(&sk->sk_rmem_alloc);
1461 	if (rmem > sk->sk_rcvbuf)
1462 		goto drop;
1463 
1464 	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1465 	 * having linear skbs :
1466 	 * - Reduce memory overhead and thus increase receive queue capacity
1467 	 * - Less cache line misses at copyout() time
1468 	 * - Less work at consume_skb() (less alien page frag freeing)
1469 	 */
1470 	if (rmem > (sk->sk_rcvbuf >> 1)) {
1471 		skb_condense(skb);
1472 
1473 		busy = busylock_acquire(sk);
1474 	}
1475 	size = skb->truesize;
1476 	udp_set_dev_scratch(skb);
1477 
1478 	/* we drop only if the receive buf is full and the receive
1479 	 * queue contains some other skb
1480 	 */
1481 	rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1482 	if (rmem > (size + (unsigned int)sk->sk_rcvbuf))
1483 		goto uncharge_drop;
1484 
1485 	spin_lock(&list->lock);
1486 	if (size >= sk->sk_forward_alloc) {
1487 		amt = sk_mem_pages(size);
1488 		delta = amt << SK_MEM_QUANTUM_SHIFT;
1489 		if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) {
1490 			err = -ENOBUFS;
1491 			spin_unlock(&list->lock);
1492 			goto uncharge_drop;
1493 		}
1494 
1495 		sk->sk_forward_alloc += delta;
1496 	}
1497 
1498 	sk->sk_forward_alloc -= size;
1499 
1500 	/* no need to setup a destructor, we will explicitly release the
1501 	 * forward allocated memory on dequeue
1502 	 */
1503 	sock_skb_set_dropcount(sk, skb);
1504 
1505 	__skb_queue_tail(list, skb);
1506 	spin_unlock(&list->lock);
1507 
1508 	if (!sock_flag(sk, SOCK_DEAD))
1509 		sk->sk_data_ready(sk);
1510 
1511 	busylock_release(busy);
1512 	return 0;
1513 
1514 uncharge_drop:
1515 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1516 
1517 drop:
1518 	atomic_inc(&sk->sk_drops);
1519 	busylock_release(busy);
1520 	return err;
1521 }
1522 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1523 
1524 void udp_destruct_sock(struct sock *sk)
1525 {
1526 	/* reclaim completely the forward allocated memory */
1527 	struct udp_sock *up = udp_sk(sk);
1528 	unsigned int total = 0;
1529 	struct sk_buff *skb;
1530 
1531 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1532 	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1533 		total += skb->truesize;
1534 		kfree_skb(skb);
1535 	}
1536 	udp_rmem_release(sk, total, 0, true);
1537 
1538 	inet_sock_destruct(sk);
1539 }
1540 EXPORT_SYMBOL_GPL(udp_destruct_sock);
1541 
1542 int udp_init_sock(struct sock *sk)
1543 {
1544 	skb_queue_head_init(&udp_sk(sk)->reader_queue);
1545 	sk->sk_destruct = udp_destruct_sock;
1546 	return 0;
1547 }
1548 EXPORT_SYMBOL_GPL(udp_init_sock);
1549 
1550 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1551 {
1552 	if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1553 		bool slow = lock_sock_fast(sk);
1554 
1555 		sk_peek_offset_bwd(sk, len);
1556 		unlock_sock_fast(sk, slow);
1557 	}
1558 
1559 	if (!skb_unref(skb))
1560 		return;
1561 
1562 	/* In the more common cases we cleared the head states previously,
1563 	 * see __udp_queue_rcv_skb().
1564 	 */
1565 	if (unlikely(udp_skb_has_head_state(skb)))
1566 		skb_release_head_state(skb);
1567 	__consume_stateless_skb(skb);
1568 }
1569 EXPORT_SYMBOL_GPL(skb_consume_udp);
1570 
1571 static struct sk_buff *__first_packet_length(struct sock *sk,
1572 					     struct sk_buff_head *rcvq,
1573 					     int *total)
1574 {
1575 	struct sk_buff *skb;
1576 
1577 	while ((skb = skb_peek(rcvq)) != NULL) {
1578 		if (udp_lib_checksum_complete(skb)) {
1579 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1580 					IS_UDPLITE(sk));
1581 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1582 					IS_UDPLITE(sk));
1583 			atomic_inc(&sk->sk_drops);
1584 			__skb_unlink(skb, rcvq);
1585 			*total += skb->truesize;
1586 			kfree_skb(skb);
1587 		} else {
1588 			udp_skb_csum_unnecessary_set(skb);
1589 			break;
1590 		}
1591 	}
1592 	return skb;
1593 }
1594 
1595 /**
1596  *	first_packet_length	- return length of first packet in receive queue
1597  *	@sk: socket
1598  *
1599  *	Drops all bad checksum frames, until a valid one is found.
1600  *	Returns the length of found skb, or -1 if none is found.
1601  */
1602 static int first_packet_length(struct sock *sk)
1603 {
1604 	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1605 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1606 	struct sk_buff *skb;
1607 	int total = 0;
1608 	int res;
1609 
1610 	spin_lock_bh(&rcvq->lock);
1611 	skb = __first_packet_length(sk, rcvq, &total);
1612 	if (!skb && !skb_queue_empty_lockless(sk_queue)) {
1613 		spin_lock(&sk_queue->lock);
1614 		skb_queue_splice_tail_init(sk_queue, rcvq);
1615 		spin_unlock(&sk_queue->lock);
1616 
1617 		skb = __first_packet_length(sk, rcvq, &total);
1618 	}
1619 	res = skb ? skb->len : -1;
1620 	if (total)
1621 		udp_rmem_release(sk, total, 1, false);
1622 	spin_unlock_bh(&rcvq->lock);
1623 	return res;
1624 }
1625 
1626 /*
1627  *	IOCTL requests applicable to the UDP protocol
1628  */
1629 
1630 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1631 {
1632 	switch (cmd) {
1633 	case SIOCOUTQ:
1634 	{
1635 		int amount = sk_wmem_alloc_get(sk);
1636 
1637 		return put_user(amount, (int __user *)arg);
1638 	}
1639 
1640 	case SIOCINQ:
1641 	{
1642 		int amount = max_t(int, 0, first_packet_length(sk));
1643 
1644 		return put_user(amount, (int __user *)arg);
1645 	}
1646 
1647 	default:
1648 		return -ENOIOCTLCMD;
1649 	}
1650 
1651 	return 0;
1652 }
1653 EXPORT_SYMBOL(udp_ioctl);
1654 
1655 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1656 			       int noblock, int *off, int *err)
1657 {
1658 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1659 	struct sk_buff_head *queue;
1660 	struct sk_buff *last;
1661 	long timeo;
1662 	int error;
1663 
1664 	queue = &udp_sk(sk)->reader_queue;
1665 	flags |= noblock ? MSG_DONTWAIT : 0;
1666 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1667 	do {
1668 		struct sk_buff *skb;
1669 
1670 		error = sock_error(sk);
1671 		if (error)
1672 			break;
1673 
1674 		error = -EAGAIN;
1675 		do {
1676 			spin_lock_bh(&queue->lock);
1677 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1678 							err, &last);
1679 			if (skb) {
1680 				if (!(flags & MSG_PEEK))
1681 					udp_skb_destructor(sk, skb);
1682 				spin_unlock_bh(&queue->lock);
1683 				return skb;
1684 			}
1685 
1686 			if (skb_queue_empty_lockless(sk_queue)) {
1687 				spin_unlock_bh(&queue->lock);
1688 				goto busy_check;
1689 			}
1690 
1691 			/* refill the reader queue and walk it again
1692 			 * keep both queues locked to avoid re-acquiring
1693 			 * the sk_receive_queue lock if fwd memory scheduling
1694 			 * is needed.
1695 			 */
1696 			spin_lock(&sk_queue->lock);
1697 			skb_queue_splice_tail_init(sk_queue, queue);
1698 
1699 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1700 							err, &last);
1701 			if (skb && !(flags & MSG_PEEK))
1702 				udp_skb_dtor_locked(sk, skb);
1703 			spin_unlock(&sk_queue->lock);
1704 			spin_unlock_bh(&queue->lock);
1705 			if (skb)
1706 				return skb;
1707 
1708 busy_check:
1709 			if (!sk_can_busy_loop(sk))
1710 				break;
1711 
1712 			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1713 		} while (!skb_queue_empty_lockless(sk_queue));
1714 
1715 		/* sk_queue is empty, reader_queue may contain peeked packets */
1716 	} while (timeo &&
1717 		 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
1718 					      &error, &timeo,
1719 					      (struct sk_buff *)sk_queue));
1720 
1721 	*err = error;
1722 	return NULL;
1723 }
1724 EXPORT_SYMBOL(__skb_recv_udp);
1725 
1726 /*
1727  * 	This should be easy, if there is something there we
1728  * 	return it, otherwise we block.
1729  */
1730 
1731 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1732 		int flags, int *addr_len)
1733 {
1734 	struct inet_sock *inet = inet_sk(sk);
1735 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1736 	struct sk_buff *skb;
1737 	unsigned int ulen, copied;
1738 	int off, err, peeking = flags & MSG_PEEK;
1739 	int is_udplite = IS_UDPLITE(sk);
1740 	bool checksum_valid = false;
1741 
1742 	if (flags & MSG_ERRQUEUE)
1743 		return ip_recv_error(sk, msg, len, addr_len);
1744 
1745 try_again:
1746 	off = sk_peek_offset(sk, flags);
1747 	skb = __skb_recv_udp(sk, flags, noblock, &off, &err);
1748 	if (!skb)
1749 		return err;
1750 
1751 	ulen = udp_skb_len(skb);
1752 	copied = len;
1753 	if (copied > ulen - off)
1754 		copied = ulen - off;
1755 	else if (copied < ulen)
1756 		msg->msg_flags |= MSG_TRUNC;
1757 
1758 	/*
1759 	 * If checksum is needed at all, try to do it while copying the
1760 	 * data.  If the data is truncated, or if we only want a partial
1761 	 * coverage checksum (UDP-Lite), do it before the copy.
1762 	 */
1763 
1764 	if (copied < ulen || peeking ||
1765 	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1766 		checksum_valid = udp_skb_csum_unnecessary(skb) ||
1767 				!__udp_lib_checksum_complete(skb);
1768 		if (!checksum_valid)
1769 			goto csum_copy_err;
1770 	}
1771 
1772 	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1773 		if (udp_skb_is_linear(skb))
1774 			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1775 		else
1776 			err = skb_copy_datagram_msg(skb, off, msg, copied);
1777 	} else {
1778 		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1779 
1780 		if (err == -EINVAL)
1781 			goto csum_copy_err;
1782 	}
1783 
1784 	if (unlikely(err)) {
1785 		if (!peeking) {
1786 			atomic_inc(&sk->sk_drops);
1787 			UDP_INC_STATS(sock_net(sk),
1788 				      UDP_MIB_INERRORS, is_udplite);
1789 		}
1790 		kfree_skb(skb);
1791 		return err;
1792 	}
1793 
1794 	if (!peeking)
1795 		UDP_INC_STATS(sock_net(sk),
1796 			      UDP_MIB_INDATAGRAMS, is_udplite);
1797 
1798 	sock_recv_ts_and_drops(msg, sk, skb);
1799 
1800 	/* Copy the address. */
1801 	if (sin) {
1802 		sin->sin_family = AF_INET;
1803 		sin->sin_port = udp_hdr(skb)->source;
1804 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1805 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1806 		*addr_len = sizeof(*sin);
1807 
1808 		if (cgroup_bpf_enabled)
1809 			BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
1810 							(struct sockaddr *)sin);
1811 	}
1812 
1813 	if (udp_sk(sk)->gro_enabled)
1814 		udp_cmsg_recv(msg, sk, skb);
1815 
1816 	if (inet->cmsg_flags)
1817 		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1818 
1819 	err = copied;
1820 	if (flags & MSG_TRUNC)
1821 		err = ulen;
1822 
1823 	skb_consume_udp(sk, skb, peeking ? -err : err);
1824 	return err;
1825 
1826 csum_copy_err:
1827 	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1828 				 udp_skb_destructor)) {
1829 		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1830 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1831 	}
1832 	kfree_skb(skb);
1833 
1834 	/* starting over for a new packet, but check if we need to yield */
1835 	cond_resched();
1836 	msg->msg_flags &= ~MSG_TRUNC;
1837 	goto try_again;
1838 }
1839 
1840 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1841 {
1842 	/* This check is replicated from __ip4_datagram_connect() and
1843 	 * intended to prevent BPF program called below from accessing bytes
1844 	 * that are out of the bound specified by user in addr_len.
1845 	 */
1846 	if (addr_len < sizeof(struct sockaddr_in))
1847 		return -EINVAL;
1848 
1849 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr);
1850 }
1851 EXPORT_SYMBOL(udp_pre_connect);
1852 
1853 int __udp_disconnect(struct sock *sk, int flags)
1854 {
1855 	struct inet_sock *inet = inet_sk(sk);
1856 	/*
1857 	 *	1003.1g - break association.
1858 	 */
1859 
1860 	sk->sk_state = TCP_CLOSE;
1861 	inet->inet_daddr = 0;
1862 	inet->inet_dport = 0;
1863 	sock_rps_reset_rxhash(sk);
1864 	sk->sk_bound_dev_if = 0;
1865 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) {
1866 		inet_reset_saddr(sk);
1867 		if (sk->sk_prot->rehash &&
1868 		    (sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1869 			sk->sk_prot->rehash(sk);
1870 	}
1871 
1872 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1873 		sk->sk_prot->unhash(sk);
1874 		inet->inet_sport = 0;
1875 	}
1876 	sk_dst_reset(sk);
1877 	return 0;
1878 }
1879 EXPORT_SYMBOL(__udp_disconnect);
1880 
1881 int udp_disconnect(struct sock *sk, int flags)
1882 {
1883 	lock_sock(sk);
1884 	__udp_disconnect(sk, flags);
1885 	release_sock(sk);
1886 	return 0;
1887 }
1888 EXPORT_SYMBOL(udp_disconnect);
1889 
1890 void udp_lib_unhash(struct sock *sk)
1891 {
1892 	if (sk_hashed(sk)) {
1893 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1894 		struct udp_hslot *hslot, *hslot2;
1895 
1896 		hslot  = udp_hashslot(udptable, sock_net(sk),
1897 				      udp_sk(sk)->udp_port_hash);
1898 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1899 
1900 		spin_lock_bh(&hslot->lock);
1901 		if (rcu_access_pointer(sk->sk_reuseport_cb))
1902 			reuseport_detach_sock(sk);
1903 		if (sk_del_node_init_rcu(sk)) {
1904 			hslot->count--;
1905 			inet_sk(sk)->inet_num = 0;
1906 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1907 
1908 			spin_lock(&hslot2->lock);
1909 			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1910 			hslot2->count--;
1911 			spin_unlock(&hslot2->lock);
1912 		}
1913 		spin_unlock_bh(&hslot->lock);
1914 	}
1915 }
1916 EXPORT_SYMBOL(udp_lib_unhash);
1917 
1918 /*
1919  * inet_rcv_saddr was changed, we must rehash secondary hash
1920  */
1921 void udp_lib_rehash(struct sock *sk, u16 newhash)
1922 {
1923 	if (sk_hashed(sk)) {
1924 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1925 		struct udp_hslot *hslot, *hslot2, *nhslot2;
1926 
1927 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1928 		nhslot2 = udp_hashslot2(udptable, newhash);
1929 		udp_sk(sk)->udp_portaddr_hash = newhash;
1930 
1931 		if (hslot2 != nhslot2 ||
1932 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
1933 			hslot = udp_hashslot(udptable, sock_net(sk),
1934 					     udp_sk(sk)->udp_port_hash);
1935 			/* we must lock primary chain too */
1936 			spin_lock_bh(&hslot->lock);
1937 			if (rcu_access_pointer(sk->sk_reuseport_cb))
1938 				reuseport_detach_sock(sk);
1939 
1940 			if (hslot2 != nhslot2) {
1941 				spin_lock(&hslot2->lock);
1942 				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1943 				hslot2->count--;
1944 				spin_unlock(&hslot2->lock);
1945 
1946 				spin_lock(&nhslot2->lock);
1947 				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1948 							 &nhslot2->head);
1949 				nhslot2->count++;
1950 				spin_unlock(&nhslot2->lock);
1951 			}
1952 
1953 			spin_unlock_bh(&hslot->lock);
1954 		}
1955 	}
1956 }
1957 EXPORT_SYMBOL(udp_lib_rehash);
1958 
1959 void udp_v4_rehash(struct sock *sk)
1960 {
1961 	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
1962 					  inet_sk(sk)->inet_rcv_saddr,
1963 					  inet_sk(sk)->inet_num);
1964 	udp_lib_rehash(sk, new_hash);
1965 }
1966 
1967 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1968 {
1969 	int rc;
1970 
1971 	if (inet_sk(sk)->inet_daddr) {
1972 		sock_rps_save_rxhash(sk, skb);
1973 		sk_mark_napi_id(sk, skb);
1974 		sk_incoming_cpu_update(sk);
1975 	} else {
1976 		sk_mark_napi_id_once(sk, skb);
1977 	}
1978 
1979 	rc = __udp_enqueue_schedule_skb(sk, skb);
1980 	if (rc < 0) {
1981 		int is_udplite = IS_UDPLITE(sk);
1982 
1983 		/* Note that an ENOMEM error is charged twice */
1984 		if (rc == -ENOMEM)
1985 			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1986 					is_udplite);
1987 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1988 		kfree_skb(skb);
1989 		trace_udp_fail_queue_rcv_skb(rc, sk);
1990 		return -1;
1991 	}
1992 
1993 	return 0;
1994 }
1995 
1996 /* returns:
1997  *  -1: error
1998  *   0: success
1999  *  >0: "udp encap" protocol resubmission
2000  *
2001  * Note that in the success and error cases, the skb is assumed to
2002  * have either been requeued or freed.
2003  */
2004 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
2005 {
2006 	struct udp_sock *up = udp_sk(sk);
2007 	int is_udplite = IS_UDPLITE(sk);
2008 
2009 	/*
2010 	 *	Charge it to the socket, dropping if the queue is full.
2011 	 */
2012 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
2013 		goto drop;
2014 	nf_reset_ct(skb);
2015 
2016 	if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) {
2017 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2018 
2019 		/*
2020 		 * This is an encapsulation socket so pass the skb to
2021 		 * the socket's udp_encap_rcv() hook. Otherwise, just
2022 		 * fall through and pass this up the UDP socket.
2023 		 * up->encap_rcv() returns the following value:
2024 		 * =0 if skb was successfully passed to the encap
2025 		 *    handler or was discarded by it.
2026 		 * >0 if skb should be passed on to UDP.
2027 		 * <0 if skb should be resubmitted as proto -N
2028 		 */
2029 
2030 		/* if we're overly short, let UDP handle it */
2031 		encap_rcv = READ_ONCE(up->encap_rcv);
2032 		if (encap_rcv) {
2033 			int ret;
2034 
2035 			/* Verify checksum before giving to encap */
2036 			if (udp_lib_checksum_complete(skb))
2037 				goto csum_error;
2038 
2039 			ret = encap_rcv(sk, skb);
2040 			if (ret <= 0) {
2041 				__UDP_INC_STATS(sock_net(sk),
2042 						UDP_MIB_INDATAGRAMS,
2043 						is_udplite);
2044 				return -ret;
2045 			}
2046 		}
2047 
2048 		/* FALLTHROUGH -- it's a UDP Packet */
2049 	}
2050 
2051 	/*
2052 	 * 	UDP-Lite specific tests, ignored on UDP sockets
2053 	 */
2054 	if ((is_udplite & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
2055 
2056 		/*
2057 		 * MIB statistics other than incrementing the error count are
2058 		 * disabled for the following two types of errors: these depend
2059 		 * on the application settings, not on the functioning of the
2060 		 * protocol stack as such.
2061 		 *
2062 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
2063 		 * way ... to ... at least let the receiving application block
2064 		 * delivery of packets with coverage values less than a value
2065 		 * provided by the application."
2066 		 */
2067 		if (up->pcrlen == 0) {          /* full coverage was set  */
2068 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2069 					    UDP_SKB_CB(skb)->cscov, skb->len);
2070 			goto drop;
2071 		}
2072 		/* The next case involves violating the min. coverage requested
2073 		 * by the receiver. This is subtle: if receiver wants x and x is
2074 		 * greater than the buffersize/MTU then receiver will complain
2075 		 * that it wants x while sender emits packets of smaller size y.
2076 		 * Therefore the above ...()->partial_cov statement is essential.
2077 		 */
2078 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
2079 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2080 					    UDP_SKB_CB(skb)->cscov, up->pcrlen);
2081 			goto drop;
2082 		}
2083 	}
2084 
2085 	prefetch(&sk->sk_rmem_alloc);
2086 	if (rcu_access_pointer(sk->sk_filter) &&
2087 	    udp_lib_checksum_complete(skb))
2088 			goto csum_error;
2089 
2090 	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr)))
2091 		goto drop;
2092 
2093 	udp_csum_pull_header(skb);
2094 
2095 	ipv4_pktinfo_prepare(sk, skb);
2096 	return __udp_queue_rcv_skb(sk, skb);
2097 
2098 csum_error:
2099 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2100 drop:
2101 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2102 	atomic_inc(&sk->sk_drops);
2103 	kfree_skb(skb);
2104 	return -1;
2105 }
2106 
2107 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2108 {
2109 	struct sk_buff *next, *segs;
2110 	int ret;
2111 
2112 	if (likely(!udp_unexpected_gso(sk, skb)))
2113 		return udp_queue_rcv_one_skb(sk, skb);
2114 
2115 	BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET);
2116 	__skb_push(skb, -skb_mac_offset(skb));
2117 	segs = udp_rcv_segment(sk, skb, true);
2118 	skb_list_walk_safe(segs, skb, next) {
2119 		__skb_pull(skb, skb_transport_offset(skb));
2120 		ret = udp_queue_rcv_one_skb(sk, skb);
2121 		if (ret > 0)
2122 			ip_protocol_deliver_rcu(dev_net(skb->dev), skb, -ret);
2123 	}
2124 	return 0;
2125 }
2126 
2127 /* For TCP sockets, sk_rx_dst is protected by socket lock
2128  * For UDP, we use xchg() to guard against concurrent changes.
2129  */
2130 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2131 {
2132 	struct dst_entry *old;
2133 
2134 	if (dst_hold_safe(dst)) {
2135 		old = xchg(&sk->sk_rx_dst, dst);
2136 		dst_release(old);
2137 		return old != dst;
2138 	}
2139 	return false;
2140 }
2141 EXPORT_SYMBOL(udp_sk_rx_dst_set);
2142 
2143 /*
2144  *	Multicasts and broadcasts go to each listener.
2145  *
2146  *	Note: called only from the BH handler context.
2147  */
2148 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2149 				    struct udphdr  *uh,
2150 				    __be32 saddr, __be32 daddr,
2151 				    struct udp_table *udptable,
2152 				    int proto)
2153 {
2154 	struct sock *sk, *first = NULL;
2155 	unsigned short hnum = ntohs(uh->dest);
2156 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2157 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2158 	unsigned int offset = offsetof(typeof(*sk), sk_node);
2159 	int dif = skb->dev->ifindex;
2160 	int sdif = inet_sdif(skb);
2161 	struct hlist_node *node;
2162 	struct sk_buff *nskb;
2163 
2164 	if (use_hash2) {
2165 		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2166 			    udptable->mask;
2167 		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2168 start_lookup:
2169 		hslot = &udptable->hash2[hash2];
2170 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2171 	}
2172 
2173 	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2174 		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2175 					 uh->source, saddr, dif, sdif, hnum))
2176 			continue;
2177 
2178 		if (!first) {
2179 			first = sk;
2180 			continue;
2181 		}
2182 		nskb = skb_clone(skb, GFP_ATOMIC);
2183 
2184 		if (unlikely(!nskb)) {
2185 			atomic_inc(&sk->sk_drops);
2186 			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2187 					IS_UDPLITE(sk));
2188 			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
2189 					IS_UDPLITE(sk));
2190 			continue;
2191 		}
2192 		if (udp_queue_rcv_skb(sk, nskb) > 0)
2193 			consume_skb(nskb);
2194 	}
2195 
2196 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2197 	if (use_hash2 && hash2 != hash2_any) {
2198 		hash2 = hash2_any;
2199 		goto start_lookup;
2200 	}
2201 
2202 	if (first) {
2203 		if (udp_queue_rcv_skb(first, skb) > 0)
2204 			consume_skb(skb);
2205 	} else {
2206 		kfree_skb(skb);
2207 		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2208 				proto == IPPROTO_UDPLITE);
2209 	}
2210 	return 0;
2211 }
2212 
2213 /* Initialize UDP checksum. If exited with zero value (success),
2214  * CHECKSUM_UNNECESSARY means, that no more checks are required.
2215  * Otherwise, csum completion requires checksumming packet body,
2216  * including udp header and folding it to skb->csum.
2217  */
2218 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2219 				 int proto)
2220 {
2221 	int err;
2222 
2223 	UDP_SKB_CB(skb)->partial_cov = 0;
2224 	UDP_SKB_CB(skb)->cscov = skb->len;
2225 
2226 	if (proto == IPPROTO_UDPLITE) {
2227 		err = udplite_checksum_init(skb, uh);
2228 		if (err)
2229 			return err;
2230 
2231 		if (UDP_SKB_CB(skb)->partial_cov) {
2232 			skb->csum = inet_compute_pseudo(skb, proto);
2233 			return 0;
2234 		}
2235 	}
2236 
2237 	/* Note, we are only interested in != 0 or == 0, thus the
2238 	 * force to int.
2239 	 */
2240 	err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2241 							inet_compute_pseudo);
2242 	if (err)
2243 		return err;
2244 
2245 	if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2246 		/* If SW calculated the value, we know it's bad */
2247 		if (skb->csum_complete_sw)
2248 			return 1;
2249 
2250 		/* HW says the value is bad. Let's validate that.
2251 		 * skb->csum is no longer the full packet checksum,
2252 		 * so don't treat it as such.
2253 		 */
2254 		skb_checksum_complete_unset(skb);
2255 	}
2256 
2257 	return 0;
2258 }
2259 
2260 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2261  * return code conversion for ip layer consumption
2262  */
2263 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2264 			       struct udphdr *uh)
2265 {
2266 	int ret;
2267 
2268 	if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2269 		skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2270 
2271 	ret = udp_queue_rcv_skb(sk, skb);
2272 
2273 	/* a return value > 0 means to resubmit the input, but
2274 	 * it wants the return to be -protocol, or 0
2275 	 */
2276 	if (ret > 0)
2277 		return -ret;
2278 	return 0;
2279 }
2280 
2281 /*
2282  *	All we need to do is get the socket, and then do a checksum.
2283  */
2284 
2285 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2286 		   int proto)
2287 {
2288 	struct sock *sk;
2289 	struct udphdr *uh;
2290 	unsigned short ulen;
2291 	struct rtable *rt = skb_rtable(skb);
2292 	__be32 saddr, daddr;
2293 	struct net *net = dev_net(skb->dev);
2294 	bool refcounted;
2295 
2296 	/*
2297 	 *  Validate the packet.
2298 	 */
2299 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2300 		goto drop;		/* No space for header. */
2301 
2302 	uh   = udp_hdr(skb);
2303 	ulen = ntohs(uh->len);
2304 	saddr = ip_hdr(skb)->saddr;
2305 	daddr = ip_hdr(skb)->daddr;
2306 
2307 	if (ulen > skb->len)
2308 		goto short_packet;
2309 
2310 	if (proto == IPPROTO_UDP) {
2311 		/* UDP validates ulen. */
2312 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2313 			goto short_packet;
2314 		uh = udp_hdr(skb);
2315 	}
2316 
2317 	if (udp4_csum_init(skb, uh, proto))
2318 		goto csum_error;
2319 
2320 	sk = skb_steal_sock(skb, &refcounted);
2321 	if (sk) {
2322 		struct dst_entry *dst = skb_dst(skb);
2323 		int ret;
2324 
2325 		if (unlikely(sk->sk_rx_dst != dst))
2326 			udp_sk_rx_dst_set(sk, dst);
2327 
2328 		ret = udp_unicast_rcv_skb(sk, skb, uh);
2329 		if (refcounted)
2330 			sock_put(sk);
2331 		return ret;
2332 	}
2333 
2334 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2335 		return __udp4_lib_mcast_deliver(net, skb, uh,
2336 						saddr, daddr, udptable, proto);
2337 
2338 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2339 	if (sk)
2340 		return udp_unicast_rcv_skb(sk, skb, uh);
2341 
2342 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2343 		goto drop;
2344 	nf_reset_ct(skb);
2345 
2346 	/* No socket. Drop packet silently, if checksum is wrong */
2347 	if (udp_lib_checksum_complete(skb))
2348 		goto csum_error;
2349 
2350 	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2351 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2352 
2353 	/*
2354 	 * Hmm.  We got an UDP packet to a port to which we
2355 	 * don't wanna listen.  Ignore it.
2356 	 */
2357 	kfree_skb(skb);
2358 	return 0;
2359 
2360 short_packet:
2361 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2362 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2363 			    &saddr, ntohs(uh->source),
2364 			    ulen, skb->len,
2365 			    &daddr, ntohs(uh->dest));
2366 	goto drop;
2367 
2368 csum_error:
2369 	/*
2370 	 * RFC1122: OK.  Discards the bad packet silently (as far as
2371 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2372 	 */
2373 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2374 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2375 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2376 			    ulen);
2377 	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2378 drop:
2379 	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2380 	kfree_skb(skb);
2381 	return 0;
2382 }
2383 
2384 /* We can only early demux multicast if there is a single matching socket.
2385  * If more than one socket found returns NULL
2386  */
2387 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2388 						  __be16 loc_port, __be32 loc_addr,
2389 						  __be16 rmt_port, __be32 rmt_addr,
2390 						  int dif, int sdif)
2391 {
2392 	struct sock *sk, *result;
2393 	unsigned short hnum = ntohs(loc_port);
2394 	unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
2395 	struct udp_hslot *hslot = &udp_table.hash[slot];
2396 
2397 	/* Do not bother scanning a too big list */
2398 	if (hslot->count > 10)
2399 		return NULL;
2400 
2401 	result = NULL;
2402 	sk_for_each_rcu(sk, &hslot->head) {
2403 		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2404 					rmt_port, rmt_addr, dif, sdif, hnum)) {
2405 			if (result)
2406 				return NULL;
2407 			result = sk;
2408 		}
2409 	}
2410 
2411 	return result;
2412 }
2413 
2414 /* For unicast we should only early demux connected sockets or we can
2415  * break forwarding setups.  The chains here can be long so only check
2416  * if the first socket is an exact match and if not move on.
2417  */
2418 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2419 					    __be16 loc_port, __be32 loc_addr,
2420 					    __be16 rmt_port, __be32 rmt_addr,
2421 					    int dif, int sdif)
2422 {
2423 	unsigned short hnum = ntohs(loc_port);
2424 	unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2425 	unsigned int slot2 = hash2 & udp_table.mask;
2426 	struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
2427 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2428 	const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
2429 	struct sock *sk;
2430 
2431 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2432 		if (INET_MATCH(sk, net, acookie, rmt_addr,
2433 			       loc_addr, ports, dif, sdif))
2434 			return sk;
2435 		/* Only check first socket in chain */
2436 		break;
2437 	}
2438 	return NULL;
2439 }
2440 
2441 int udp_v4_early_demux(struct sk_buff *skb)
2442 {
2443 	struct net *net = dev_net(skb->dev);
2444 	struct in_device *in_dev = NULL;
2445 	const struct iphdr *iph;
2446 	const struct udphdr *uh;
2447 	struct sock *sk = NULL;
2448 	struct dst_entry *dst;
2449 	int dif = skb->dev->ifindex;
2450 	int sdif = inet_sdif(skb);
2451 	int ours;
2452 
2453 	/* validate the packet */
2454 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2455 		return 0;
2456 
2457 	iph = ip_hdr(skb);
2458 	uh = udp_hdr(skb);
2459 
2460 	if (skb->pkt_type == PACKET_MULTICAST) {
2461 		in_dev = __in_dev_get_rcu(skb->dev);
2462 
2463 		if (!in_dev)
2464 			return 0;
2465 
2466 		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2467 				       iph->protocol);
2468 		if (!ours)
2469 			return 0;
2470 
2471 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2472 						   uh->source, iph->saddr,
2473 						   dif, sdif);
2474 	} else if (skb->pkt_type == PACKET_HOST) {
2475 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2476 					     uh->source, iph->saddr, dif, sdif);
2477 	}
2478 
2479 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2480 		return 0;
2481 
2482 	skb->sk = sk;
2483 	skb->destructor = sock_efree;
2484 	dst = READ_ONCE(sk->sk_rx_dst);
2485 
2486 	if (dst)
2487 		dst = dst_check(dst, 0);
2488 	if (dst) {
2489 		u32 itag = 0;
2490 
2491 		/* set noref for now.
2492 		 * any place which wants to hold dst has to call
2493 		 * dst_hold_safe()
2494 		 */
2495 		skb_dst_set_noref(skb, dst);
2496 
2497 		/* for unconnected multicast sockets we need to validate
2498 		 * the source on each packet
2499 		 */
2500 		if (!inet_sk(sk)->inet_daddr && in_dev)
2501 			return ip_mc_validate_source(skb, iph->daddr,
2502 						     iph->saddr, iph->tos,
2503 						     skb->dev, in_dev, &itag);
2504 	}
2505 	return 0;
2506 }
2507 
2508 int udp_rcv(struct sk_buff *skb)
2509 {
2510 	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2511 }
2512 
2513 void udp_destroy_sock(struct sock *sk)
2514 {
2515 	struct udp_sock *up = udp_sk(sk);
2516 	bool slow = lock_sock_fast(sk);
2517 	udp_flush_pending_frames(sk);
2518 	unlock_sock_fast(sk, slow);
2519 	if (static_branch_unlikely(&udp_encap_needed_key)) {
2520 		if (up->encap_type) {
2521 			void (*encap_destroy)(struct sock *sk);
2522 			encap_destroy = READ_ONCE(up->encap_destroy);
2523 			if (encap_destroy)
2524 				encap_destroy(sk);
2525 		}
2526 		if (up->encap_enabled)
2527 			static_branch_dec(&udp_encap_needed_key);
2528 	}
2529 }
2530 
2531 /*
2532  *	Socket option code for UDP
2533  */
2534 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2535 		       char __user *optval, unsigned int optlen,
2536 		       int (*push_pending_frames)(struct sock *))
2537 {
2538 	struct udp_sock *up = udp_sk(sk);
2539 	int val, valbool;
2540 	int err = 0;
2541 	int is_udplite = IS_UDPLITE(sk);
2542 
2543 	if (optlen < sizeof(int))
2544 		return -EINVAL;
2545 
2546 	if (get_user(val, (int __user *)optval))
2547 		return -EFAULT;
2548 
2549 	valbool = val ? 1 : 0;
2550 
2551 	switch (optname) {
2552 	case UDP_CORK:
2553 		if (val != 0) {
2554 			up->corkflag = 1;
2555 		} else {
2556 			up->corkflag = 0;
2557 			lock_sock(sk);
2558 			push_pending_frames(sk);
2559 			release_sock(sk);
2560 		}
2561 		break;
2562 
2563 	case UDP_ENCAP:
2564 		switch (val) {
2565 		case 0:
2566 #ifdef CONFIG_XFRM
2567 		case UDP_ENCAP_ESPINUDP:
2568 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2569 #if IS_ENABLED(CONFIG_IPV6)
2570 			if (sk->sk_family == AF_INET6)
2571 				up->encap_rcv = ipv6_stub->xfrm6_udp_encap_rcv;
2572 			else
2573 #endif
2574 				up->encap_rcv = xfrm4_udp_encap_rcv;
2575 #endif
2576 			fallthrough;
2577 		case UDP_ENCAP_L2TPINUDP:
2578 			up->encap_type = val;
2579 			lock_sock(sk);
2580 			udp_tunnel_encap_enable(sk->sk_socket);
2581 			release_sock(sk);
2582 			break;
2583 		default:
2584 			err = -ENOPROTOOPT;
2585 			break;
2586 		}
2587 		break;
2588 
2589 	case UDP_NO_CHECK6_TX:
2590 		up->no_check6_tx = valbool;
2591 		break;
2592 
2593 	case UDP_NO_CHECK6_RX:
2594 		up->no_check6_rx = valbool;
2595 		break;
2596 
2597 	case UDP_SEGMENT:
2598 		if (val < 0 || val > USHRT_MAX)
2599 			return -EINVAL;
2600 		up->gso_size = val;
2601 		break;
2602 
2603 	case UDP_GRO:
2604 		lock_sock(sk);
2605 		if (valbool)
2606 			udp_tunnel_encap_enable(sk->sk_socket);
2607 		up->gro_enabled = valbool;
2608 		release_sock(sk);
2609 		break;
2610 
2611 	/*
2612 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2613 	 */
2614 	/* The sender sets actual checksum coverage length via this option.
2615 	 * The case coverage > packet length is handled by send module. */
2616 	case UDPLITE_SEND_CSCOV:
2617 		if (!is_udplite)         /* Disable the option on UDP sockets */
2618 			return -ENOPROTOOPT;
2619 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2620 			val = 8;
2621 		else if (val > USHRT_MAX)
2622 			val = USHRT_MAX;
2623 		up->pcslen = val;
2624 		up->pcflag |= UDPLITE_SEND_CC;
2625 		break;
2626 
2627 	/* The receiver specifies a minimum checksum coverage value. To make
2628 	 * sense, this should be set to at least 8 (as done below). If zero is
2629 	 * used, this again means full checksum coverage.                     */
2630 	case UDPLITE_RECV_CSCOV:
2631 		if (!is_udplite)         /* Disable the option on UDP sockets */
2632 			return -ENOPROTOOPT;
2633 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2634 			val = 8;
2635 		else if (val > USHRT_MAX)
2636 			val = USHRT_MAX;
2637 		up->pcrlen = val;
2638 		up->pcflag |= UDPLITE_RECV_CC;
2639 		break;
2640 
2641 	default:
2642 		err = -ENOPROTOOPT;
2643 		break;
2644 	}
2645 
2646 	return err;
2647 }
2648 EXPORT_SYMBOL(udp_lib_setsockopt);
2649 
2650 int udp_setsockopt(struct sock *sk, int level, int optname,
2651 		   char __user *optval, unsigned int optlen)
2652 {
2653 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2654 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2655 					  udp_push_pending_frames);
2656 	return ip_setsockopt(sk, level, optname, optval, optlen);
2657 }
2658 
2659 #ifdef CONFIG_COMPAT
2660 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2661 			  char __user *optval, unsigned int optlen)
2662 {
2663 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2664 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2665 					  udp_push_pending_frames);
2666 	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2667 }
2668 #endif
2669 
2670 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2671 		       char __user *optval, int __user *optlen)
2672 {
2673 	struct udp_sock *up = udp_sk(sk);
2674 	int val, len;
2675 
2676 	if (get_user(len, optlen))
2677 		return -EFAULT;
2678 
2679 	len = min_t(unsigned int, len, sizeof(int));
2680 
2681 	if (len < 0)
2682 		return -EINVAL;
2683 
2684 	switch (optname) {
2685 	case UDP_CORK:
2686 		val = up->corkflag;
2687 		break;
2688 
2689 	case UDP_ENCAP:
2690 		val = up->encap_type;
2691 		break;
2692 
2693 	case UDP_NO_CHECK6_TX:
2694 		val = up->no_check6_tx;
2695 		break;
2696 
2697 	case UDP_NO_CHECK6_RX:
2698 		val = up->no_check6_rx;
2699 		break;
2700 
2701 	case UDP_SEGMENT:
2702 		val = up->gso_size;
2703 		break;
2704 
2705 	/* The following two cannot be changed on UDP sockets, the return is
2706 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2707 	case UDPLITE_SEND_CSCOV:
2708 		val = up->pcslen;
2709 		break;
2710 
2711 	case UDPLITE_RECV_CSCOV:
2712 		val = up->pcrlen;
2713 		break;
2714 
2715 	default:
2716 		return -ENOPROTOOPT;
2717 	}
2718 
2719 	if (put_user(len, optlen))
2720 		return -EFAULT;
2721 	if (copy_to_user(optval, &val, len))
2722 		return -EFAULT;
2723 	return 0;
2724 }
2725 EXPORT_SYMBOL(udp_lib_getsockopt);
2726 
2727 int udp_getsockopt(struct sock *sk, int level, int optname,
2728 		   char __user *optval, int __user *optlen)
2729 {
2730 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2731 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2732 	return ip_getsockopt(sk, level, optname, optval, optlen);
2733 }
2734 
2735 #ifdef CONFIG_COMPAT
2736 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2737 				 char __user *optval, int __user *optlen)
2738 {
2739 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2740 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2741 	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2742 }
2743 #endif
2744 /**
2745  * 	udp_poll - wait for a UDP event.
2746  *	@file - file struct
2747  *	@sock - socket
2748  *	@wait - poll table
2749  *
2750  *	This is same as datagram poll, except for the special case of
2751  *	blocking sockets. If application is using a blocking fd
2752  *	and a packet with checksum error is in the queue;
2753  *	then it could get return from select indicating data available
2754  *	but then block when reading it. Add special case code
2755  *	to work around these arguably broken applications.
2756  */
2757 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2758 {
2759 	__poll_t mask = datagram_poll(file, sock, wait);
2760 	struct sock *sk = sock->sk;
2761 
2762 	if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
2763 		mask |= EPOLLIN | EPOLLRDNORM;
2764 
2765 	/* Check for false positives due to checksum errors */
2766 	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2767 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2768 		mask &= ~(EPOLLIN | EPOLLRDNORM);
2769 
2770 	return mask;
2771 
2772 }
2773 EXPORT_SYMBOL(udp_poll);
2774 
2775 int udp_abort(struct sock *sk, int err)
2776 {
2777 	lock_sock(sk);
2778 
2779 	sk->sk_err = err;
2780 	sk->sk_error_report(sk);
2781 	__udp_disconnect(sk, 0);
2782 
2783 	release_sock(sk);
2784 
2785 	return 0;
2786 }
2787 EXPORT_SYMBOL_GPL(udp_abort);
2788 
2789 struct proto udp_prot = {
2790 	.name			= "UDP",
2791 	.owner			= THIS_MODULE,
2792 	.close			= udp_lib_close,
2793 	.pre_connect		= udp_pre_connect,
2794 	.connect		= ip4_datagram_connect,
2795 	.disconnect		= udp_disconnect,
2796 	.ioctl			= udp_ioctl,
2797 	.init			= udp_init_sock,
2798 	.destroy		= udp_destroy_sock,
2799 	.setsockopt		= udp_setsockopt,
2800 	.getsockopt		= udp_getsockopt,
2801 	.sendmsg		= udp_sendmsg,
2802 	.recvmsg		= udp_recvmsg,
2803 	.sendpage		= udp_sendpage,
2804 	.release_cb		= ip4_datagram_release_cb,
2805 	.hash			= udp_lib_hash,
2806 	.unhash			= udp_lib_unhash,
2807 	.rehash			= udp_v4_rehash,
2808 	.get_port		= udp_v4_get_port,
2809 	.memory_allocated	= &udp_memory_allocated,
2810 	.sysctl_mem		= sysctl_udp_mem,
2811 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2812 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2813 	.obj_size		= sizeof(struct udp_sock),
2814 	.h.udp_table		= &udp_table,
2815 #ifdef CONFIG_COMPAT
2816 	.compat_setsockopt	= compat_udp_setsockopt,
2817 	.compat_getsockopt	= compat_udp_getsockopt,
2818 #endif
2819 	.diag_destroy		= udp_abort,
2820 };
2821 EXPORT_SYMBOL(udp_prot);
2822 
2823 /* ------------------------------------------------------------------------ */
2824 #ifdef CONFIG_PROC_FS
2825 
2826 static struct sock *udp_get_first(struct seq_file *seq, int start)
2827 {
2828 	struct sock *sk;
2829 	struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2830 	struct udp_iter_state *state = seq->private;
2831 	struct net *net = seq_file_net(seq);
2832 
2833 	for (state->bucket = start; state->bucket <= afinfo->udp_table->mask;
2834 	     ++state->bucket) {
2835 		struct udp_hslot *hslot = &afinfo->udp_table->hash[state->bucket];
2836 
2837 		if (hlist_empty(&hslot->head))
2838 			continue;
2839 
2840 		spin_lock_bh(&hslot->lock);
2841 		sk_for_each(sk, &hslot->head) {
2842 			if (!net_eq(sock_net(sk), net))
2843 				continue;
2844 			if (sk->sk_family == afinfo->family)
2845 				goto found;
2846 		}
2847 		spin_unlock_bh(&hslot->lock);
2848 	}
2849 	sk = NULL;
2850 found:
2851 	return sk;
2852 }
2853 
2854 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2855 {
2856 	struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2857 	struct udp_iter_state *state = seq->private;
2858 	struct net *net = seq_file_net(seq);
2859 
2860 	do {
2861 		sk = sk_next(sk);
2862 	} while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != afinfo->family));
2863 
2864 	if (!sk) {
2865 		if (state->bucket <= afinfo->udp_table->mask)
2866 			spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
2867 		return udp_get_first(seq, state->bucket + 1);
2868 	}
2869 	return sk;
2870 }
2871 
2872 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2873 {
2874 	struct sock *sk = udp_get_first(seq, 0);
2875 
2876 	if (sk)
2877 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2878 			--pos;
2879 	return pos ? NULL : sk;
2880 }
2881 
2882 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2883 {
2884 	struct udp_iter_state *state = seq->private;
2885 	state->bucket = MAX_UDP_PORTS;
2886 
2887 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2888 }
2889 EXPORT_SYMBOL(udp_seq_start);
2890 
2891 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2892 {
2893 	struct sock *sk;
2894 
2895 	if (v == SEQ_START_TOKEN)
2896 		sk = udp_get_idx(seq, 0);
2897 	else
2898 		sk = udp_get_next(seq, v);
2899 
2900 	++*pos;
2901 	return sk;
2902 }
2903 EXPORT_SYMBOL(udp_seq_next);
2904 
2905 void udp_seq_stop(struct seq_file *seq, void *v)
2906 {
2907 	struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2908 	struct udp_iter_state *state = seq->private;
2909 
2910 	if (state->bucket <= afinfo->udp_table->mask)
2911 		spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
2912 }
2913 EXPORT_SYMBOL(udp_seq_stop);
2914 
2915 /* ------------------------------------------------------------------------ */
2916 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2917 		int bucket)
2918 {
2919 	struct inet_sock *inet = inet_sk(sp);
2920 	__be32 dest = inet->inet_daddr;
2921 	__be32 src  = inet->inet_rcv_saddr;
2922 	__u16 destp	  = ntohs(inet->inet_dport);
2923 	__u16 srcp	  = ntohs(inet->inet_sport);
2924 
2925 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2926 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
2927 		bucket, src, srcp, dest, destp, sp->sk_state,
2928 		sk_wmem_alloc_get(sp),
2929 		udp_rqueue_get(sp),
2930 		0, 0L, 0,
2931 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2932 		0, sock_i_ino(sp),
2933 		refcount_read(&sp->sk_refcnt), sp,
2934 		atomic_read(&sp->sk_drops));
2935 }
2936 
2937 int udp4_seq_show(struct seq_file *seq, void *v)
2938 {
2939 	seq_setwidth(seq, 127);
2940 	if (v == SEQ_START_TOKEN)
2941 		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2942 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2943 			   "inode ref pointer drops");
2944 	else {
2945 		struct udp_iter_state *state = seq->private;
2946 
2947 		udp4_format_sock(v, seq, state->bucket);
2948 	}
2949 	seq_pad(seq, '\n');
2950 	return 0;
2951 }
2952 
2953 const struct seq_operations udp_seq_ops = {
2954 	.start		= udp_seq_start,
2955 	.next		= udp_seq_next,
2956 	.stop		= udp_seq_stop,
2957 	.show		= udp4_seq_show,
2958 };
2959 EXPORT_SYMBOL(udp_seq_ops);
2960 
2961 static struct udp_seq_afinfo udp4_seq_afinfo = {
2962 	.family		= AF_INET,
2963 	.udp_table	= &udp_table,
2964 };
2965 
2966 static int __net_init udp4_proc_init_net(struct net *net)
2967 {
2968 	if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
2969 			sizeof(struct udp_iter_state), &udp4_seq_afinfo))
2970 		return -ENOMEM;
2971 	return 0;
2972 }
2973 
2974 static void __net_exit udp4_proc_exit_net(struct net *net)
2975 {
2976 	remove_proc_entry("udp", net->proc_net);
2977 }
2978 
2979 static struct pernet_operations udp4_net_ops = {
2980 	.init = udp4_proc_init_net,
2981 	.exit = udp4_proc_exit_net,
2982 };
2983 
2984 int __init udp4_proc_init(void)
2985 {
2986 	return register_pernet_subsys(&udp4_net_ops);
2987 }
2988 
2989 void udp4_proc_exit(void)
2990 {
2991 	unregister_pernet_subsys(&udp4_net_ops);
2992 }
2993 #endif /* CONFIG_PROC_FS */
2994 
2995 static __initdata unsigned long uhash_entries;
2996 static int __init set_uhash_entries(char *str)
2997 {
2998 	ssize_t ret;
2999 
3000 	if (!str)
3001 		return 0;
3002 
3003 	ret = kstrtoul(str, 0, &uhash_entries);
3004 	if (ret)
3005 		return 0;
3006 
3007 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
3008 		uhash_entries = UDP_HTABLE_SIZE_MIN;
3009 	return 1;
3010 }
3011 __setup("uhash_entries=", set_uhash_entries);
3012 
3013 void __init udp_table_init(struct udp_table *table, const char *name)
3014 {
3015 	unsigned int i;
3016 
3017 	table->hash = alloc_large_system_hash(name,
3018 					      2 * sizeof(struct udp_hslot),
3019 					      uhash_entries,
3020 					      21, /* one slot per 2 MB */
3021 					      0,
3022 					      &table->log,
3023 					      &table->mask,
3024 					      UDP_HTABLE_SIZE_MIN,
3025 					      64 * 1024);
3026 
3027 	table->hash2 = table->hash + (table->mask + 1);
3028 	for (i = 0; i <= table->mask; i++) {
3029 		INIT_HLIST_HEAD(&table->hash[i].head);
3030 		table->hash[i].count = 0;
3031 		spin_lock_init(&table->hash[i].lock);
3032 	}
3033 	for (i = 0; i <= table->mask; i++) {
3034 		INIT_HLIST_HEAD(&table->hash2[i].head);
3035 		table->hash2[i].count = 0;
3036 		spin_lock_init(&table->hash2[i].lock);
3037 	}
3038 }
3039 
3040 u32 udp_flow_hashrnd(void)
3041 {
3042 	static u32 hashrnd __read_mostly;
3043 
3044 	net_get_random_once(&hashrnd, sizeof(hashrnd));
3045 
3046 	return hashrnd;
3047 }
3048 EXPORT_SYMBOL(udp_flow_hashrnd);
3049 
3050 static void __udp_sysctl_init(struct net *net)
3051 {
3052 	net->ipv4.sysctl_udp_rmem_min = SK_MEM_QUANTUM;
3053 	net->ipv4.sysctl_udp_wmem_min = SK_MEM_QUANTUM;
3054 
3055 #ifdef CONFIG_NET_L3_MASTER_DEV
3056 	net->ipv4.sysctl_udp_l3mdev_accept = 0;
3057 #endif
3058 }
3059 
3060 static int __net_init udp_sysctl_init(struct net *net)
3061 {
3062 	__udp_sysctl_init(net);
3063 	return 0;
3064 }
3065 
3066 static struct pernet_operations __net_initdata udp_sysctl_ops = {
3067 	.init	= udp_sysctl_init,
3068 };
3069 
3070 void __init udp_init(void)
3071 {
3072 	unsigned long limit;
3073 	unsigned int i;
3074 
3075 	udp_table_init(&udp_table, "UDP");
3076 	limit = nr_free_buffer_pages() / 8;
3077 	limit = max(limit, 128UL);
3078 	sysctl_udp_mem[0] = limit / 4 * 3;
3079 	sysctl_udp_mem[1] = limit;
3080 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3081 
3082 	__udp_sysctl_init(&init_net);
3083 
3084 	/* 16 spinlocks per cpu */
3085 	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3086 	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3087 				GFP_KERNEL);
3088 	if (!udp_busylocks)
3089 		panic("UDP: failed to alloc udp_busylocks\n");
3090 	for (i = 0; i < (1U << udp_busylocks_log); i++)
3091 		spin_lock_init(udp_busylocks + i);
3092 
3093 	if (register_pernet_subsys(&udp_sysctl_ops))
3094 		panic("UDP: failed to init sysctl parameters.\n");
3095 }
3096