1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * The User Datagram Protocol (UDP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 12 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 13 * Hirokazu Takahashi, <taka@valinux.co.jp> 14 * 15 * Fixes: 16 * Alan Cox : verify_area() calls 17 * Alan Cox : stopped close while in use off icmp 18 * messages. Not a fix but a botch that 19 * for udp at least is 'valid'. 20 * Alan Cox : Fixed icmp handling properly 21 * Alan Cox : Correct error for oversized datagrams 22 * Alan Cox : Tidied select() semantics. 23 * Alan Cox : udp_err() fixed properly, also now 24 * select and read wake correctly on errors 25 * Alan Cox : udp_send verify_area moved to avoid mem leak 26 * Alan Cox : UDP can count its memory 27 * Alan Cox : send to an unknown connection causes 28 * an ECONNREFUSED off the icmp, but 29 * does NOT close. 30 * Alan Cox : Switched to new sk_buff handlers. No more backlog! 31 * Alan Cox : Using generic datagram code. Even smaller and the PEEK 32 * bug no longer crashes it. 33 * Fred Van Kempen : Net2e support for sk->broadcast. 34 * Alan Cox : Uses skb_free_datagram 35 * Alan Cox : Added get/set sockopt support. 36 * Alan Cox : Broadcasting without option set returns EACCES. 37 * Alan Cox : No wakeup calls. Instead we now use the callbacks. 38 * Alan Cox : Use ip_tos and ip_ttl 39 * Alan Cox : SNMP Mibs 40 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support. 41 * Matt Dillon : UDP length checks. 42 * Alan Cox : Smarter af_inet used properly. 43 * Alan Cox : Use new kernel side addressing. 44 * Alan Cox : Incorrect return on truncated datagram receive. 45 * Arnt Gulbrandsen : New udp_send and stuff 46 * Alan Cox : Cache last socket 47 * Alan Cox : Route cache 48 * Jon Peatfield : Minor efficiency fix to sendto(). 49 * Mike Shaver : RFC1122 checks. 50 * Alan Cox : Nonblocking error fix. 51 * Willy Konynenberg : Transparent proxying support. 52 * Mike McLagan : Routing by source 53 * David S. Miller : New socket lookup architecture. 54 * Last socket cache retained as it 55 * does have a high hit rate. 56 * Olaf Kirch : Don't linearise iovec on sendmsg. 57 * Andi Kleen : Some cleanups, cache destination entry 58 * for connect. 59 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 60 * Melvin Smith : Check msg_name not msg_namelen in sendto(), 61 * return ENOTCONN for unconnected sockets (POSIX) 62 * Janos Farkas : don't deliver multi/broadcasts to a different 63 * bound-to-device socket 64 * Hirokazu Takahashi : HW checksumming for outgoing UDP 65 * datagrams. 66 * Hirokazu Takahashi : sendfile() on UDP works now. 67 * Arnaldo C. Melo : convert /proc/net/udp to seq_file 68 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 69 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind 70 * a single port at the same time. 71 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support 72 * James Chapman : Add L2TP encapsulation type. 73 */ 74 75 #define pr_fmt(fmt) "UDP: " fmt 76 77 #include <linux/bpf-cgroup.h> 78 #include <linux/uaccess.h> 79 #include <asm/ioctls.h> 80 #include <linux/memblock.h> 81 #include <linux/highmem.h> 82 #include <linux/types.h> 83 #include <linux/fcntl.h> 84 #include <linux/module.h> 85 #include <linux/socket.h> 86 #include <linux/sockios.h> 87 #include <linux/igmp.h> 88 #include <linux/inetdevice.h> 89 #include <linux/in.h> 90 #include <linux/errno.h> 91 #include <linux/timer.h> 92 #include <linux/mm.h> 93 #include <linux/inet.h> 94 #include <linux/netdevice.h> 95 #include <linux/slab.h> 96 #include <net/tcp_states.h> 97 #include <linux/skbuff.h> 98 #include <linux/proc_fs.h> 99 #include <linux/seq_file.h> 100 #include <net/net_namespace.h> 101 #include <net/icmp.h> 102 #include <net/inet_hashtables.h> 103 #include <net/ip.h> 104 #include <net/ip_tunnels.h> 105 #include <net/route.h> 106 #include <net/checksum.h> 107 #include <net/gso.h> 108 #include <net/xfrm.h> 109 #include <trace/events/udp.h> 110 #include <linux/static_key.h> 111 #include <linux/btf_ids.h> 112 #include <trace/events/skb.h> 113 #include <net/busy_poll.h> 114 #include "udp_impl.h" 115 #include <net/sock_reuseport.h> 116 #include <net/addrconf.h> 117 #include <net/udp_tunnel.h> 118 #include <net/gro.h> 119 #if IS_ENABLED(CONFIG_IPV6) 120 #include <net/ipv6_stubs.h> 121 #endif 122 123 struct udp_table udp_table __read_mostly; 124 EXPORT_SYMBOL(udp_table); 125 126 long sysctl_udp_mem[3] __read_mostly; 127 EXPORT_SYMBOL(sysctl_udp_mem); 128 129 atomic_long_t udp_memory_allocated ____cacheline_aligned_in_smp; 130 EXPORT_SYMBOL(udp_memory_allocated); 131 DEFINE_PER_CPU(int, udp_memory_per_cpu_fw_alloc); 132 EXPORT_PER_CPU_SYMBOL_GPL(udp_memory_per_cpu_fw_alloc); 133 134 #define MAX_UDP_PORTS 65536 135 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN_PERNET) 136 137 static struct udp_table *udp_get_table_prot(struct sock *sk) 138 { 139 return sk->sk_prot->h.udp_table ? : sock_net(sk)->ipv4.udp_table; 140 } 141 142 static int udp_lib_lport_inuse(struct net *net, __u16 num, 143 const struct udp_hslot *hslot, 144 unsigned long *bitmap, 145 struct sock *sk, unsigned int log) 146 { 147 struct sock *sk2; 148 kuid_t uid = sock_i_uid(sk); 149 150 sk_for_each(sk2, &hslot->head) { 151 if (net_eq(sock_net(sk2), net) && 152 sk2 != sk && 153 (bitmap || udp_sk(sk2)->udp_port_hash == num) && 154 (!sk2->sk_reuse || !sk->sk_reuse) && 155 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 156 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 157 inet_rcv_saddr_equal(sk, sk2, true)) { 158 if (sk2->sk_reuseport && sk->sk_reuseport && 159 !rcu_access_pointer(sk->sk_reuseport_cb) && 160 uid_eq(uid, sock_i_uid(sk2))) { 161 if (!bitmap) 162 return 0; 163 } else { 164 if (!bitmap) 165 return 1; 166 __set_bit(udp_sk(sk2)->udp_port_hash >> log, 167 bitmap); 168 } 169 } 170 } 171 return 0; 172 } 173 174 /* 175 * Note: we still hold spinlock of primary hash chain, so no other writer 176 * can insert/delete a socket with local_port == num 177 */ 178 static int udp_lib_lport_inuse2(struct net *net, __u16 num, 179 struct udp_hslot *hslot2, 180 struct sock *sk) 181 { 182 struct sock *sk2; 183 kuid_t uid = sock_i_uid(sk); 184 int res = 0; 185 186 spin_lock(&hslot2->lock); 187 udp_portaddr_for_each_entry(sk2, &hslot2->head) { 188 if (net_eq(sock_net(sk2), net) && 189 sk2 != sk && 190 (udp_sk(sk2)->udp_port_hash == num) && 191 (!sk2->sk_reuse || !sk->sk_reuse) && 192 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 193 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 194 inet_rcv_saddr_equal(sk, sk2, true)) { 195 if (sk2->sk_reuseport && sk->sk_reuseport && 196 !rcu_access_pointer(sk->sk_reuseport_cb) && 197 uid_eq(uid, sock_i_uid(sk2))) { 198 res = 0; 199 } else { 200 res = 1; 201 } 202 break; 203 } 204 } 205 spin_unlock(&hslot2->lock); 206 return res; 207 } 208 209 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot) 210 { 211 struct net *net = sock_net(sk); 212 kuid_t uid = sock_i_uid(sk); 213 struct sock *sk2; 214 215 sk_for_each(sk2, &hslot->head) { 216 if (net_eq(sock_net(sk2), net) && 217 sk2 != sk && 218 sk2->sk_family == sk->sk_family && 219 ipv6_only_sock(sk2) == ipv6_only_sock(sk) && 220 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) && 221 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 222 sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) && 223 inet_rcv_saddr_equal(sk, sk2, false)) { 224 return reuseport_add_sock(sk, sk2, 225 inet_rcv_saddr_any(sk)); 226 } 227 } 228 229 return reuseport_alloc(sk, inet_rcv_saddr_any(sk)); 230 } 231 232 /** 233 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6 234 * 235 * @sk: socket struct in question 236 * @snum: port number to look up 237 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains, 238 * with NULL address 239 */ 240 int udp_lib_get_port(struct sock *sk, unsigned short snum, 241 unsigned int hash2_nulladdr) 242 { 243 struct udp_table *udptable = udp_get_table_prot(sk); 244 struct udp_hslot *hslot, *hslot2; 245 struct net *net = sock_net(sk); 246 int error = -EADDRINUSE; 247 248 if (!snum) { 249 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN); 250 unsigned short first, last; 251 int low, high, remaining; 252 unsigned int rand; 253 254 inet_sk_get_local_port_range(sk, &low, &high); 255 remaining = (high - low) + 1; 256 257 rand = get_random_u32(); 258 first = reciprocal_scale(rand, remaining) + low; 259 /* 260 * force rand to be an odd multiple of UDP_HTABLE_SIZE 261 */ 262 rand = (rand | 1) * (udptable->mask + 1); 263 last = first + udptable->mask + 1; 264 do { 265 hslot = udp_hashslot(udptable, net, first); 266 bitmap_zero(bitmap, PORTS_PER_CHAIN); 267 spin_lock_bh(&hslot->lock); 268 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk, 269 udptable->log); 270 271 snum = first; 272 /* 273 * Iterate on all possible values of snum for this hash. 274 * Using steps of an odd multiple of UDP_HTABLE_SIZE 275 * give us randomization and full range coverage. 276 */ 277 do { 278 if (low <= snum && snum <= high && 279 !test_bit(snum >> udptable->log, bitmap) && 280 !inet_is_local_reserved_port(net, snum)) 281 goto found; 282 snum += rand; 283 } while (snum != first); 284 spin_unlock_bh(&hslot->lock); 285 cond_resched(); 286 } while (++first != last); 287 goto fail; 288 } else { 289 hslot = udp_hashslot(udptable, net, snum); 290 spin_lock_bh(&hslot->lock); 291 if (hslot->count > 10) { 292 int exist; 293 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum; 294 295 slot2 &= udptable->mask; 296 hash2_nulladdr &= udptable->mask; 297 298 hslot2 = udp_hashslot2(udptable, slot2); 299 if (hslot->count < hslot2->count) 300 goto scan_primary_hash; 301 302 exist = udp_lib_lport_inuse2(net, snum, hslot2, sk); 303 if (!exist && (hash2_nulladdr != slot2)) { 304 hslot2 = udp_hashslot2(udptable, hash2_nulladdr); 305 exist = udp_lib_lport_inuse2(net, snum, hslot2, 306 sk); 307 } 308 if (exist) 309 goto fail_unlock; 310 else 311 goto found; 312 } 313 scan_primary_hash: 314 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0)) 315 goto fail_unlock; 316 } 317 found: 318 inet_sk(sk)->inet_num = snum; 319 udp_sk(sk)->udp_port_hash = snum; 320 udp_sk(sk)->udp_portaddr_hash ^= snum; 321 if (sk_unhashed(sk)) { 322 if (sk->sk_reuseport && 323 udp_reuseport_add_sock(sk, hslot)) { 324 inet_sk(sk)->inet_num = 0; 325 udp_sk(sk)->udp_port_hash = 0; 326 udp_sk(sk)->udp_portaddr_hash ^= snum; 327 goto fail_unlock; 328 } 329 330 sock_set_flag(sk, SOCK_RCU_FREE); 331 332 sk_add_node_rcu(sk, &hslot->head); 333 hslot->count++; 334 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 335 336 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 337 spin_lock(&hslot2->lock); 338 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 339 sk->sk_family == AF_INET6) 340 hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node, 341 &hslot2->head); 342 else 343 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 344 &hslot2->head); 345 hslot2->count++; 346 spin_unlock(&hslot2->lock); 347 } 348 349 error = 0; 350 fail_unlock: 351 spin_unlock_bh(&hslot->lock); 352 fail: 353 return error; 354 } 355 EXPORT_SYMBOL(udp_lib_get_port); 356 357 int udp_v4_get_port(struct sock *sk, unsigned short snum) 358 { 359 unsigned int hash2_nulladdr = 360 ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum); 361 unsigned int hash2_partial = 362 ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0); 363 364 /* precompute partial secondary hash */ 365 udp_sk(sk)->udp_portaddr_hash = hash2_partial; 366 return udp_lib_get_port(sk, snum, hash2_nulladdr); 367 } 368 369 static int compute_score(struct sock *sk, const struct net *net, 370 __be32 saddr, __be16 sport, 371 __be32 daddr, unsigned short hnum, 372 int dif, int sdif) 373 { 374 int score; 375 struct inet_sock *inet; 376 bool dev_match; 377 378 if (!net_eq(sock_net(sk), net) || 379 udp_sk(sk)->udp_port_hash != hnum || 380 ipv6_only_sock(sk)) 381 return -1; 382 383 if (sk->sk_rcv_saddr != daddr) 384 return -1; 385 386 score = (sk->sk_family == PF_INET) ? 2 : 1; 387 388 inet = inet_sk(sk); 389 if (inet->inet_daddr) { 390 if (inet->inet_daddr != saddr) 391 return -1; 392 score += 4; 393 } 394 395 if (inet->inet_dport) { 396 if (inet->inet_dport != sport) 397 return -1; 398 score += 4; 399 } 400 401 dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, 402 dif, sdif); 403 if (!dev_match) 404 return -1; 405 if (sk->sk_bound_dev_if) 406 score += 4; 407 408 if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id()) 409 score++; 410 return score; 411 } 412 413 u32 udp_ehashfn(const struct net *net, const __be32 laddr, const __u16 lport, 414 const __be32 faddr, const __be16 fport) 415 { 416 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret)); 417 418 return __inet_ehashfn(laddr, lport, faddr, fport, 419 udp_ehash_secret + net_hash_mix(net)); 420 } 421 EXPORT_SYMBOL(udp_ehashfn); 422 423 /* called with rcu_read_lock() */ 424 static struct sock *udp4_lib_lookup2(const struct net *net, 425 __be32 saddr, __be16 sport, 426 __be32 daddr, unsigned int hnum, 427 int dif, int sdif, 428 struct udp_hslot *hslot2, 429 struct sk_buff *skb) 430 { 431 struct sock *sk, *result; 432 int score, badness; 433 bool need_rescore; 434 435 result = NULL; 436 badness = 0; 437 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 438 need_rescore = false; 439 rescore: 440 score = compute_score(need_rescore ? result : sk, net, saddr, 441 sport, daddr, hnum, dif, sdif); 442 if (score > badness) { 443 badness = score; 444 445 if (need_rescore) 446 continue; 447 448 if (sk->sk_state == TCP_ESTABLISHED) { 449 result = sk; 450 continue; 451 } 452 453 result = inet_lookup_reuseport(net, sk, skb, sizeof(struct udphdr), 454 saddr, sport, daddr, hnum, udp_ehashfn); 455 if (!result) { 456 result = sk; 457 continue; 458 } 459 460 /* Fall back to scoring if group has connections */ 461 if (!reuseport_has_conns(sk)) 462 return result; 463 464 /* Reuseport logic returned an error, keep original score. */ 465 if (IS_ERR(result)) 466 continue; 467 468 /* compute_score is too long of a function to be 469 * inlined, and calling it again here yields 470 * measureable overhead for some 471 * workloads. Work around it by jumping 472 * backwards to rescore 'result'. 473 */ 474 need_rescore = true; 475 goto rescore; 476 } 477 } 478 return result; 479 } 480 481 #if IS_ENABLED(CONFIG_BASE_SMALL) 482 static struct sock *udp4_lib_lookup4(const struct net *net, 483 __be32 saddr, __be16 sport, 484 __be32 daddr, unsigned int hnum, 485 int dif, int sdif, 486 struct udp_table *udptable) 487 { 488 return NULL; 489 } 490 491 static void udp_rehash4(struct udp_table *udptable, struct sock *sk, 492 u16 newhash4) 493 { 494 } 495 496 static void udp_unhash4(struct udp_table *udptable, struct sock *sk) 497 { 498 } 499 #else /* !CONFIG_BASE_SMALL */ 500 static struct sock *udp4_lib_lookup4(const struct net *net, 501 __be32 saddr, __be16 sport, 502 __be32 daddr, unsigned int hnum, 503 int dif, int sdif, 504 struct udp_table *udptable) 505 { 506 const __portpair ports = INET_COMBINED_PORTS(sport, hnum); 507 const struct hlist_nulls_node *node; 508 struct udp_hslot *hslot4; 509 unsigned int hash4, slot; 510 struct udp_sock *up; 511 struct sock *sk; 512 513 hash4 = udp_ehashfn(net, daddr, hnum, saddr, sport); 514 slot = hash4 & udptable->mask; 515 hslot4 = &udptable->hash4[slot]; 516 INET_ADDR_COOKIE(acookie, saddr, daddr); 517 518 begin: 519 /* SLAB_TYPESAFE_BY_RCU not used, so we don't need to touch sk_refcnt */ 520 udp_lrpa_for_each_entry_rcu(up, node, &hslot4->nulls_head) { 521 sk = (struct sock *)up; 522 if (inet_match(net, sk, acookie, ports, dif, sdif)) 523 return sk; 524 } 525 526 /* if the nulls value we got at the end of this lookup is not the 527 * expected one, we must restart lookup. We probably met an item that 528 * was moved to another chain due to rehash. 529 */ 530 if (get_nulls_value(node) != slot) 531 goto begin; 532 533 return NULL; 534 } 535 536 /* In hash4, rehash can happen in connect(), where hash4_cnt keeps unchanged. */ 537 static void udp_rehash4(struct udp_table *udptable, struct sock *sk, 538 u16 newhash4) 539 { 540 struct udp_hslot *hslot4, *nhslot4; 541 542 hslot4 = udp_hashslot4(udptable, udp_sk(sk)->udp_lrpa_hash); 543 nhslot4 = udp_hashslot4(udptable, newhash4); 544 udp_sk(sk)->udp_lrpa_hash = newhash4; 545 546 if (hslot4 != nhslot4) { 547 spin_lock_bh(&hslot4->lock); 548 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_lrpa_node); 549 hslot4->count--; 550 spin_unlock_bh(&hslot4->lock); 551 552 spin_lock_bh(&nhslot4->lock); 553 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_lrpa_node, 554 &nhslot4->nulls_head); 555 nhslot4->count++; 556 spin_unlock_bh(&nhslot4->lock); 557 } 558 } 559 560 static void udp_unhash4(struct udp_table *udptable, struct sock *sk) 561 { 562 struct udp_hslot *hslot2, *hslot4; 563 564 if (udp_hashed4(sk)) { 565 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 566 hslot4 = udp_hashslot4(udptable, udp_sk(sk)->udp_lrpa_hash); 567 568 spin_lock(&hslot4->lock); 569 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_lrpa_node); 570 hslot4->count--; 571 spin_unlock(&hslot4->lock); 572 573 spin_lock(&hslot2->lock); 574 udp_hash4_dec(hslot2); 575 spin_unlock(&hslot2->lock); 576 } 577 } 578 579 void udp_lib_hash4(struct sock *sk, u16 hash) 580 { 581 struct udp_hslot *hslot, *hslot2, *hslot4; 582 struct net *net = sock_net(sk); 583 struct udp_table *udptable; 584 585 /* Connected udp socket can re-connect to another remote address, 586 * so rehash4 is needed. 587 */ 588 udptable = net->ipv4.udp_table; 589 if (udp_hashed4(sk)) { 590 udp_rehash4(udptable, sk, hash); 591 return; 592 } 593 594 hslot = udp_hashslot(udptable, net, udp_sk(sk)->udp_port_hash); 595 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 596 hslot4 = udp_hashslot4(udptable, hash); 597 udp_sk(sk)->udp_lrpa_hash = hash; 598 599 spin_lock_bh(&hslot->lock); 600 if (rcu_access_pointer(sk->sk_reuseport_cb)) 601 reuseport_detach_sock(sk); 602 603 spin_lock(&hslot4->lock); 604 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_lrpa_node, 605 &hslot4->nulls_head); 606 hslot4->count++; 607 spin_unlock(&hslot4->lock); 608 609 spin_lock(&hslot2->lock); 610 udp_hash4_inc(hslot2); 611 spin_unlock(&hslot2->lock); 612 613 spin_unlock_bh(&hslot->lock); 614 } 615 EXPORT_SYMBOL(udp_lib_hash4); 616 617 /* call with sock lock */ 618 void udp4_hash4(struct sock *sk) 619 { 620 struct net *net = sock_net(sk); 621 unsigned int hash; 622 623 if (sk_unhashed(sk) || sk->sk_rcv_saddr == htonl(INADDR_ANY)) 624 return; 625 626 hash = udp_ehashfn(net, sk->sk_rcv_saddr, sk->sk_num, 627 sk->sk_daddr, sk->sk_dport); 628 629 udp_lib_hash4(sk, hash); 630 } 631 EXPORT_SYMBOL(udp4_hash4); 632 #endif /* CONFIG_BASE_SMALL */ 633 634 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try 635 * harder than this. -DaveM 636 */ 637 struct sock *__udp4_lib_lookup(const struct net *net, __be32 saddr, 638 __be16 sport, __be32 daddr, __be16 dport, int dif, 639 int sdif, struct udp_table *udptable, struct sk_buff *skb) 640 { 641 unsigned short hnum = ntohs(dport); 642 struct udp_hslot *hslot2; 643 struct sock *result, *sk; 644 unsigned int hash2; 645 646 hash2 = ipv4_portaddr_hash(net, daddr, hnum); 647 hslot2 = udp_hashslot2(udptable, hash2); 648 649 if (udp_has_hash4(hslot2)) { 650 result = udp4_lib_lookup4(net, saddr, sport, daddr, hnum, 651 dif, sdif, udptable); 652 if (result) /* udp4_lib_lookup4 return sk or NULL */ 653 return result; 654 } 655 656 /* Lookup connected or non-wildcard socket */ 657 result = udp4_lib_lookup2(net, saddr, sport, 658 daddr, hnum, dif, sdif, 659 hslot2, skb); 660 if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED) 661 goto done; 662 663 /* Lookup redirect from BPF */ 664 if (static_branch_unlikely(&bpf_sk_lookup_enabled) && 665 udptable == net->ipv4.udp_table) { 666 sk = inet_lookup_run_sk_lookup(net, IPPROTO_UDP, skb, sizeof(struct udphdr), 667 saddr, sport, daddr, hnum, dif, 668 udp_ehashfn); 669 if (sk) { 670 result = sk; 671 goto done; 672 } 673 } 674 675 /* Got non-wildcard socket or error on first lookup */ 676 if (result) 677 goto done; 678 679 /* Lookup wildcard sockets */ 680 hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum); 681 hslot2 = udp_hashslot2(udptable, hash2); 682 683 result = udp4_lib_lookup2(net, saddr, sport, 684 htonl(INADDR_ANY), hnum, dif, sdif, 685 hslot2, skb); 686 done: 687 if (IS_ERR(result)) 688 return NULL; 689 return result; 690 } 691 EXPORT_SYMBOL_GPL(__udp4_lib_lookup); 692 693 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb, 694 __be16 sport, __be16 dport, 695 struct udp_table *udptable) 696 { 697 const struct iphdr *iph = ip_hdr(skb); 698 699 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport, 700 iph->daddr, dport, inet_iif(skb), 701 inet_sdif(skb), udptable, skb); 702 } 703 704 struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb, 705 __be16 sport, __be16 dport) 706 { 707 const u16 offset = NAPI_GRO_CB(skb)->network_offsets[skb->encapsulation]; 708 const struct iphdr *iph = (struct iphdr *)(skb->data + offset); 709 struct net *net = dev_net(skb->dev); 710 int iif, sdif; 711 712 inet_get_iif_sdif(skb, &iif, &sdif); 713 714 return __udp4_lib_lookup(net, iph->saddr, sport, 715 iph->daddr, dport, iif, 716 sdif, net->ipv4.udp_table, NULL); 717 } 718 719 /* Must be called under rcu_read_lock(). 720 * Does increment socket refcount. 721 */ 722 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4) 723 struct sock *udp4_lib_lookup(const struct net *net, __be32 saddr, __be16 sport, 724 __be32 daddr, __be16 dport, int dif) 725 { 726 struct sock *sk; 727 728 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport, 729 dif, 0, net->ipv4.udp_table, NULL); 730 if (sk && !refcount_inc_not_zero(&sk->sk_refcnt)) 731 sk = NULL; 732 return sk; 733 } 734 EXPORT_SYMBOL_GPL(udp4_lib_lookup); 735 #endif 736 737 static inline bool __udp_is_mcast_sock(struct net *net, const struct sock *sk, 738 __be16 loc_port, __be32 loc_addr, 739 __be16 rmt_port, __be32 rmt_addr, 740 int dif, int sdif, unsigned short hnum) 741 { 742 const struct inet_sock *inet = inet_sk(sk); 743 744 if (!net_eq(sock_net(sk), net) || 745 udp_sk(sk)->udp_port_hash != hnum || 746 (inet->inet_daddr && inet->inet_daddr != rmt_addr) || 747 (inet->inet_dport != rmt_port && inet->inet_dport) || 748 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) || 749 ipv6_only_sock(sk) || 750 !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif)) 751 return false; 752 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif)) 753 return false; 754 return true; 755 } 756 757 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key); 758 EXPORT_SYMBOL(udp_encap_needed_key); 759 760 #if IS_ENABLED(CONFIG_IPV6) 761 DEFINE_STATIC_KEY_FALSE(udpv6_encap_needed_key); 762 EXPORT_SYMBOL(udpv6_encap_needed_key); 763 #endif 764 765 void udp_encap_enable(void) 766 { 767 static_branch_inc(&udp_encap_needed_key); 768 } 769 EXPORT_SYMBOL(udp_encap_enable); 770 771 void udp_encap_disable(void) 772 { 773 static_branch_dec(&udp_encap_needed_key); 774 } 775 EXPORT_SYMBOL(udp_encap_disable); 776 777 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go 778 * through error handlers in encapsulations looking for a match. 779 */ 780 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info) 781 { 782 int i; 783 784 for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) { 785 int (*handler)(struct sk_buff *skb, u32 info); 786 const struct ip_tunnel_encap_ops *encap; 787 788 encap = rcu_dereference(iptun_encaps[i]); 789 if (!encap) 790 continue; 791 handler = encap->err_handler; 792 if (handler && !handler(skb, info)) 793 return 0; 794 } 795 796 return -ENOENT; 797 } 798 799 /* Try to match ICMP errors to UDP tunnels by looking up a socket without 800 * reversing source and destination port: this will match tunnels that force the 801 * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that 802 * lwtunnels might actually break this assumption by being configured with 803 * different destination ports on endpoints, in this case we won't be able to 804 * trace ICMP messages back to them. 805 * 806 * If this doesn't match any socket, probe tunnels with arbitrary destination 807 * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port 808 * we've sent packets to won't necessarily match the local destination port. 809 * 810 * Then ask the tunnel implementation to match the error against a valid 811 * association. 812 * 813 * Return an error if we can't find a match, the socket if we need further 814 * processing, zero otherwise. 815 */ 816 static struct sock *__udp4_lib_err_encap(struct net *net, 817 const struct iphdr *iph, 818 struct udphdr *uh, 819 struct udp_table *udptable, 820 struct sock *sk, 821 struct sk_buff *skb, u32 info) 822 { 823 int (*lookup)(struct sock *sk, struct sk_buff *skb); 824 int network_offset, transport_offset; 825 struct udp_sock *up; 826 827 network_offset = skb_network_offset(skb); 828 transport_offset = skb_transport_offset(skb); 829 830 /* Network header needs to point to the outer IPv4 header inside ICMP */ 831 skb_reset_network_header(skb); 832 833 /* Transport header needs to point to the UDP header */ 834 skb_set_transport_header(skb, iph->ihl << 2); 835 836 if (sk) { 837 up = udp_sk(sk); 838 839 lookup = READ_ONCE(up->encap_err_lookup); 840 if (lookup && lookup(sk, skb)) 841 sk = NULL; 842 843 goto out; 844 } 845 846 sk = __udp4_lib_lookup(net, iph->daddr, uh->source, 847 iph->saddr, uh->dest, skb->dev->ifindex, 0, 848 udptable, NULL); 849 if (sk) { 850 up = udp_sk(sk); 851 852 lookup = READ_ONCE(up->encap_err_lookup); 853 if (!lookup || lookup(sk, skb)) 854 sk = NULL; 855 } 856 857 out: 858 if (!sk) 859 sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info)); 860 861 skb_set_transport_header(skb, transport_offset); 862 skb_set_network_header(skb, network_offset); 863 864 return sk; 865 } 866 867 /* 868 * This routine is called by the ICMP module when it gets some 869 * sort of error condition. If err < 0 then the socket should 870 * be closed and the error returned to the user. If err > 0 871 * it's just the icmp type << 8 | icmp code. 872 * Header points to the ip header of the error packet. We move 873 * on past this. Then (as it used to claim before adjustment) 874 * header points to the first 8 bytes of the udp header. We need 875 * to find the appropriate port. 876 */ 877 878 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable) 879 { 880 struct inet_sock *inet; 881 const struct iphdr *iph = (const struct iphdr *)skb->data; 882 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2)); 883 const int type = icmp_hdr(skb)->type; 884 const int code = icmp_hdr(skb)->code; 885 bool tunnel = false; 886 struct sock *sk; 887 int harderr; 888 int err; 889 struct net *net = dev_net(skb->dev); 890 891 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest, 892 iph->saddr, uh->source, skb->dev->ifindex, 893 inet_sdif(skb), udptable, NULL); 894 895 if (!sk || READ_ONCE(udp_sk(sk)->encap_type)) { 896 /* No socket for error: try tunnels before discarding */ 897 if (static_branch_unlikely(&udp_encap_needed_key)) { 898 sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb, 899 info); 900 if (!sk) 901 return 0; 902 } else 903 sk = ERR_PTR(-ENOENT); 904 905 if (IS_ERR(sk)) { 906 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); 907 return PTR_ERR(sk); 908 } 909 910 tunnel = true; 911 } 912 913 err = 0; 914 harderr = 0; 915 inet = inet_sk(sk); 916 917 switch (type) { 918 default: 919 case ICMP_TIME_EXCEEDED: 920 err = EHOSTUNREACH; 921 break; 922 case ICMP_SOURCE_QUENCH: 923 goto out; 924 case ICMP_PARAMETERPROB: 925 err = EPROTO; 926 harderr = 1; 927 break; 928 case ICMP_DEST_UNREACH: 929 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */ 930 ipv4_sk_update_pmtu(skb, sk, info); 931 if (READ_ONCE(inet->pmtudisc) != IP_PMTUDISC_DONT) { 932 err = EMSGSIZE; 933 harderr = 1; 934 break; 935 } 936 goto out; 937 } 938 err = EHOSTUNREACH; 939 if (code <= NR_ICMP_UNREACH) { 940 harderr = icmp_err_convert[code].fatal; 941 err = icmp_err_convert[code].errno; 942 } 943 break; 944 case ICMP_REDIRECT: 945 ipv4_sk_redirect(skb, sk); 946 goto out; 947 } 948 949 /* 950 * RFC1122: OK. Passes ICMP errors back to application, as per 951 * 4.1.3.3. 952 */ 953 if (tunnel) { 954 /* ...not for tunnels though: we don't have a sending socket */ 955 if (udp_sk(sk)->encap_err_rcv) 956 udp_sk(sk)->encap_err_rcv(sk, skb, err, uh->dest, info, 957 (u8 *)(uh+1)); 958 goto out; 959 } 960 if (!inet_test_bit(RECVERR, sk)) { 961 if (!harderr || sk->sk_state != TCP_ESTABLISHED) 962 goto out; 963 } else 964 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1)); 965 966 sk->sk_err = err; 967 sk_error_report(sk); 968 out: 969 return 0; 970 } 971 972 int udp_err(struct sk_buff *skb, u32 info) 973 { 974 return __udp4_lib_err(skb, info, dev_net(skb->dev)->ipv4.udp_table); 975 } 976 977 /* 978 * Throw away all pending data and cancel the corking. Socket is locked. 979 */ 980 void udp_flush_pending_frames(struct sock *sk) 981 { 982 struct udp_sock *up = udp_sk(sk); 983 984 if (up->pending) { 985 up->len = 0; 986 WRITE_ONCE(up->pending, 0); 987 ip_flush_pending_frames(sk); 988 } 989 } 990 EXPORT_SYMBOL(udp_flush_pending_frames); 991 992 /** 993 * udp4_hwcsum - handle outgoing HW checksumming 994 * @skb: sk_buff containing the filled-in UDP header 995 * (checksum field must be zeroed out) 996 * @src: source IP address 997 * @dst: destination IP address 998 */ 999 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst) 1000 { 1001 struct udphdr *uh = udp_hdr(skb); 1002 int offset = skb_transport_offset(skb); 1003 int len = skb->len - offset; 1004 int hlen = len; 1005 __wsum csum = 0; 1006 1007 if (!skb_has_frag_list(skb)) { 1008 /* 1009 * Only one fragment on the socket. 1010 */ 1011 skb->csum_start = skb_transport_header(skb) - skb->head; 1012 skb->csum_offset = offsetof(struct udphdr, check); 1013 uh->check = ~csum_tcpudp_magic(src, dst, len, 1014 IPPROTO_UDP, 0); 1015 } else { 1016 struct sk_buff *frags; 1017 1018 /* 1019 * HW-checksum won't work as there are two or more 1020 * fragments on the socket so that all csums of sk_buffs 1021 * should be together 1022 */ 1023 skb_walk_frags(skb, frags) { 1024 csum = csum_add(csum, frags->csum); 1025 hlen -= frags->len; 1026 } 1027 1028 csum = skb_checksum(skb, offset, hlen, csum); 1029 skb->ip_summed = CHECKSUM_NONE; 1030 1031 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum); 1032 if (uh->check == 0) 1033 uh->check = CSUM_MANGLED_0; 1034 } 1035 } 1036 EXPORT_SYMBOL_GPL(udp4_hwcsum); 1037 1038 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended 1039 * for the simple case like when setting the checksum for a UDP tunnel. 1040 */ 1041 void udp_set_csum(bool nocheck, struct sk_buff *skb, 1042 __be32 saddr, __be32 daddr, int len) 1043 { 1044 struct udphdr *uh = udp_hdr(skb); 1045 1046 if (nocheck) { 1047 uh->check = 0; 1048 } else if (skb_is_gso(skb)) { 1049 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 1050 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 1051 uh->check = 0; 1052 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb)); 1053 if (uh->check == 0) 1054 uh->check = CSUM_MANGLED_0; 1055 } else { 1056 skb->ip_summed = CHECKSUM_PARTIAL; 1057 skb->csum_start = skb_transport_header(skb) - skb->head; 1058 skb->csum_offset = offsetof(struct udphdr, check); 1059 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 1060 } 1061 } 1062 EXPORT_SYMBOL(udp_set_csum); 1063 1064 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4, 1065 struct inet_cork *cork) 1066 { 1067 struct sock *sk = skb->sk; 1068 struct inet_sock *inet = inet_sk(sk); 1069 struct udphdr *uh; 1070 int err; 1071 int is_udplite = IS_UDPLITE(sk); 1072 int offset = skb_transport_offset(skb); 1073 int len = skb->len - offset; 1074 int datalen = len - sizeof(*uh); 1075 __wsum csum = 0; 1076 1077 /* 1078 * Create a UDP header 1079 */ 1080 uh = udp_hdr(skb); 1081 uh->source = inet->inet_sport; 1082 uh->dest = fl4->fl4_dport; 1083 uh->len = htons(len); 1084 uh->check = 0; 1085 1086 if (cork->gso_size) { 1087 const int hlen = skb_network_header_len(skb) + 1088 sizeof(struct udphdr); 1089 1090 if (hlen + cork->gso_size > cork->fragsize) { 1091 kfree_skb(skb); 1092 return -EINVAL; 1093 } 1094 if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) { 1095 kfree_skb(skb); 1096 return -EINVAL; 1097 } 1098 if (sk->sk_no_check_tx) { 1099 kfree_skb(skb); 1100 return -EINVAL; 1101 } 1102 if (is_udplite || dst_xfrm(skb_dst(skb))) { 1103 kfree_skb(skb); 1104 return -EIO; 1105 } 1106 1107 if (datalen > cork->gso_size) { 1108 skb_shinfo(skb)->gso_size = cork->gso_size; 1109 skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4; 1110 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen, 1111 cork->gso_size); 1112 1113 /* Don't checksum the payload, skb will get segmented */ 1114 goto csum_partial; 1115 } 1116 } 1117 1118 if (is_udplite) /* UDP-Lite */ 1119 csum = udplite_csum(skb); 1120 1121 else if (sk->sk_no_check_tx) { /* UDP csum off */ 1122 1123 skb->ip_summed = CHECKSUM_NONE; 1124 goto send; 1125 1126 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */ 1127 csum_partial: 1128 1129 udp4_hwcsum(skb, fl4->saddr, fl4->daddr); 1130 goto send; 1131 1132 } else 1133 csum = udp_csum(skb); 1134 1135 /* add protocol-dependent pseudo-header */ 1136 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len, 1137 sk->sk_protocol, csum); 1138 if (uh->check == 0) 1139 uh->check = CSUM_MANGLED_0; 1140 1141 send: 1142 err = ip_send_skb(sock_net(sk), skb); 1143 if (err) { 1144 if (err == -ENOBUFS && 1145 !inet_test_bit(RECVERR, sk)) { 1146 UDP_INC_STATS(sock_net(sk), 1147 UDP_MIB_SNDBUFERRORS, is_udplite); 1148 err = 0; 1149 } 1150 } else 1151 UDP_INC_STATS(sock_net(sk), 1152 UDP_MIB_OUTDATAGRAMS, is_udplite); 1153 return err; 1154 } 1155 1156 /* 1157 * Push out all pending data as one UDP datagram. Socket is locked. 1158 */ 1159 int udp_push_pending_frames(struct sock *sk) 1160 { 1161 struct udp_sock *up = udp_sk(sk); 1162 struct inet_sock *inet = inet_sk(sk); 1163 struct flowi4 *fl4 = &inet->cork.fl.u.ip4; 1164 struct sk_buff *skb; 1165 int err = 0; 1166 1167 skb = ip_finish_skb(sk, fl4); 1168 if (!skb) 1169 goto out; 1170 1171 err = udp_send_skb(skb, fl4, &inet->cork.base); 1172 1173 out: 1174 up->len = 0; 1175 WRITE_ONCE(up->pending, 0); 1176 return err; 1177 } 1178 EXPORT_SYMBOL(udp_push_pending_frames); 1179 1180 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size) 1181 { 1182 switch (cmsg->cmsg_type) { 1183 case UDP_SEGMENT: 1184 if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16))) 1185 return -EINVAL; 1186 *gso_size = *(__u16 *)CMSG_DATA(cmsg); 1187 return 0; 1188 default: 1189 return -EINVAL; 1190 } 1191 } 1192 1193 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size) 1194 { 1195 struct cmsghdr *cmsg; 1196 bool need_ip = false; 1197 int err; 1198 1199 for_each_cmsghdr(cmsg, msg) { 1200 if (!CMSG_OK(msg, cmsg)) 1201 return -EINVAL; 1202 1203 if (cmsg->cmsg_level != SOL_UDP) { 1204 need_ip = true; 1205 continue; 1206 } 1207 1208 err = __udp_cmsg_send(cmsg, gso_size); 1209 if (err) 1210 return err; 1211 } 1212 1213 return need_ip; 1214 } 1215 EXPORT_SYMBOL_GPL(udp_cmsg_send); 1216 1217 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1218 { 1219 struct inet_sock *inet = inet_sk(sk); 1220 struct udp_sock *up = udp_sk(sk); 1221 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name); 1222 struct flowi4 fl4_stack; 1223 struct flowi4 *fl4; 1224 int ulen = len; 1225 struct ipcm_cookie ipc; 1226 struct rtable *rt = NULL; 1227 int free = 0; 1228 int connected = 0; 1229 __be32 daddr, faddr, saddr; 1230 u8 tos, scope; 1231 __be16 dport; 1232 int err, is_udplite = IS_UDPLITE(sk); 1233 int corkreq = udp_test_bit(CORK, sk) || msg->msg_flags & MSG_MORE; 1234 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *); 1235 struct sk_buff *skb; 1236 struct ip_options_data opt_copy; 1237 int uc_index; 1238 1239 if (len > 0xFFFF) 1240 return -EMSGSIZE; 1241 1242 /* 1243 * Check the flags. 1244 */ 1245 1246 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */ 1247 return -EOPNOTSUPP; 1248 1249 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag; 1250 1251 fl4 = &inet->cork.fl.u.ip4; 1252 if (READ_ONCE(up->pending)) { 1253 /* 1254 * There are pending frames. 1255 * The socket lock must be held while it's corked. 1256 */ 1257 lock_sock(sk); 1258 if (likely(up->pending)) { 1259 if (unlikely(up->pending != AF_INET)) { 1260 release_sock(sk); 1261 return -EINVAL; 1262 } 1263 goto do_append_data; 1264 } 1265 release_sock(sk); 1266 } 1267 ulen += sizeof(struct udphdr); 1268 1269 /* 1270 * Get and verify the address. 1271 */ 1272 if (usin) { 1273 if (msg->msg_namelen < sizeof(*usin)) 1274 return -EINVAL; 1275 if (usin->sin_family != AF_INET) { 1276 if (usin->sin_family != AF_UNSPEC) 1277 return -EAFNOSUPPORT; 1278 } 1279 1280 daddr = usin->sin_addr.s_addr; 1281 dport = usin->sin_port; 1282 if (dport == 0) 1283 return -EINVAL; 1284 } else { 1285 if (sk->sk_state != TCP_ESTABLISHED) 1286 return -EDESTADDRREQ; 1287 daddr = inet->inet_daddr; 1288 dport = inet->inet_dport; 1289 /* Open fast path for connected socket. 1290 Route will not be used, if at least one option is set. 1291 */ 1292 connected = 1; 1293 } 1294 1295 ipcm_init_sk(&ipc, inet); 1296 ipc.gso_size = READ_ONCE(up->gso_size); 1297 1298 if (msg->msg_controllen) { 1299 err = udp_cmsg_send(sk, msg, &ipc.gso_size); 1300 if (err > 0) { 1301 err = ip_cmsg_send(sk, msg, &ipc, 1302 sk->sk_family == AF_INET6); 1303 connected = 0; 1304 } 1305 if (unlikely(err < 0)) { 1306 kfree(ipc.opt); 1307 return err; 1308 } 1309 if (ipc.opt) 1310 free = 1; 1311 } 1312 if (!ipc.opt) { 1313 struct ip_options_rcu *inet_opt; 1314 1315 rcu_read_lock(); 1316 inet_opt = rcu_dereference(inet->inet_opt); 1317 if (inet_opt) { 1318 memcpy(&opt_copy, inet_opt, 1319 sizeof(*inet_opt) + inet_opt->opt.optlen); 1320 ipc.opt = &opt_copy.opt; 1321 } 1322 rcu_read_unlock(); 1323 } 1324 1325 if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) { 1326 err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk, 1327 (struct sockaddr *)usin, 1328 &msg->msg_namelen, 1329 &ipc.addr); 1330 if (err) 1331 goto out_free; 1332 if (usin) { 1333 if (usin->sin_port == 0) { 1334 /* BPF program set invalid port. Reject it. */ 1335 err = -EINVAL; 1336 goto out_free; 1337 } 1338 daddr = usin->sin_addr.s_addr; 1339 dport = usin->sin_port; 1340 } 1341 } 1342 1343 saddr = ipc.addr; 1344 ipc.addr = faddr = daddr; 1345 1346 if (ipc.opt && ipc.opt->opt.srr) { 1347 if (!daddr) { 1348 err = -EINVAL; 1349 goto out_free; 1350 } 1351 faddr = ipc.opt->opt.faddr; 1352 connected = 0; 1353 } 1354 tos = get_rttos(&ipc, inet); 1355 scope = ip_sendmsg_scope(inet, &ipc, msg); 1356 if (scope == RT_SCOPE_LINK) 1357 connected = 0; 1358 1359 uc_index = READ_ONCE(inet->uc_index); 1360 if (ipv4_is_multicast(daddr)) { 1361 if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif)) 1362 ipc.oif = READ_ONCE(inet->mc_index); 1363 if (!saddr) 1364 saddr = READ_ONCE(inet->mc_addr); 1365 connected = 0; 1366 } else if (!ipc.oif) { 1367 ipc.oif = uc_index; 1368 } else if (ipv4_is_lbcast(daddr) && uc_index) { 1369 /* oif is set, packet is to local broadcast and 1370 * uc_index is set. oif is most likely set 1371 * by sk_bound_dev_if. If uc_index != oif check if the 1372 * oif is an L3 master and uc_index is an L3 slave. 1373 * If so, we want to allow the send using the uc_index. 1374 */ 1375 if (ipc.oif != uc_index && 1376 ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk), 1377 uc_index)) { 1378 ipc.oif = uc_index; 1379 } 1380 } 1381 1382 if (connected) 1383 rt = dst_rtable(sk_dst_check(sk, 0)); 1384 1385 if (!rt) { 1386 struct net *net = sock_net(sk); 1387 __u8 flow_flags = inet_sk_flowi_flags(sk); 1388 1389 fl4 = &fl4_stack; 1390 1391 flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos, scope, 1392 sk->sk_protocol, flow_flags, faddr, saddr, 1393 dport, inet->inet_sport, sk->sk_uid); 1394 1395 security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4)); 1396 rt = ip_route_output_flow(net, fl4, sk); 1397 if (IS_ERR(rt)) { 1398 err = PTR_ERR(rt); 1399 rt = NULL; 1400 if (err == -ENETUNREACH) 1401 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 1402 goto out; 1403 } 1404 1405 err = -EACCES; 1406 if ((rt->rt_flags & RTCF_BROADCAST) && 1407 !sock_flag(sk, SOCK_BROADCAST)) 1408 goto out; 1409 if (connected) 1410 sk_dst_set(sk, dst_clone(&rt->dst)); 1411 } 1412 1413 if (msg->msg_flags&MSG_CONFIRM) 1414 goto do_confirm; 1415 back_from_confirm: 1416 1417 saddr = fl4->saddr; 1418 if (!ipc.addr) 1419 daddr = ipc.addr = fl4->daddr; 1420 1421 /* Lockless fast path for the non-corking case. */ 1422 if (!corkreq) { 1423 struct inet_cork cork; 1424 1425 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen, 1426 sizeof(struct udphdr), &ipc, &rt, 1427 &cork, msg->msg_flags); 1428 err = PTR_ERR(skb); 1429 if (!IS_ERR_OR_NULL(skb)) 1430 err = udp_send_skb(skb, fl4, &cork); 1431 goto out; 1432 } 1433 1434 lock_sock(sk); 1435 if (unlikely(up->pending)) { 1436 /* The socket is already corked while preparing it. */ 1437 /* ... which is an evident application bug. --ANK */ 1438 release_sock(sk); 1439 1440 net_dbg_ratelimited("socket already corked\n"); 1441 err = -EINVAL; 1442 goto out; 1443 } 1444 /* 1445 * Now cork the socket to pend data. 1446 */ 1447 fl4 = &inet->cork.fl.u.ip4; 1448 fl4->daddr = daddr; 1449 fl4->saddr = saddr; 1450 fl4->fl4_dport = dport; 1451 fl4->fl4_sport = inet->inet_sport; 1452 WRITE_ONCE(up->pending, AF_INET); 1453 1454 do_append_data: 1455 up->len += ulen; 1456 err = ip_append_data(sk, fl4, getfrag, msg, ulen, 1457 sizeof(struct udphdr), &ipc, &rt, 1458 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags); 1459 if (err) 1460 udp_flush_pending_frames(sk); 1461 else if (!corkreq) 1462 err = udp_push_pending_frames(sk); 1463 else if (unlikely(skb_queue_empty(&sk->sk_write_queue))) 1464 WRITE_ONCE(up->pending, 0); 1465 release_sock(sk); 1466 1467 out: 1468 ip_rt_put(rt); 1469 out_free: 1470 if (free) 1471 kfree(ipc.opt); 1472 if (!err) 1473 return len; 1474 /* 1475 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting 1476 * ENOBUFS might not be good (it's not tunable per se), but otherwise 1477 * we don't have a good statistic (IpOutDiscards but it can be too many 1478 * things). We could add another new stat but at least for now that 1479 * seems like overkill. 1480 */ 1481 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1482 UDP_INC_STATS(sock_net(sk), 1483 UDP_MIB_SNDBUFERRORS, is_udplite); 1484 } 1485 return err; 1486 1487 do_confirm: 1488 if (msg->msg_flags & MSG_PROBE) 1489 dst_confirm_neigh(&rt->dst, &fl4->daddr); 1490 if (!(msg->msg_flags&MSG_PROBE) || len) 1491 goto back_from_confirm; 1492 err = 0; 1493 goto out; 1494 } 1495 EXPORT_SYMBOL(udp_sendmsg); 1496 1497 void udp_splice_eof(struct socket *sock) 1498 { 1499 struct sock *sk = sock->sk; 1500 struct udp_sock *up = udp_sk(sk); 1501 1502 if (!READ_ONCE(up->pending) || udp_test_bit(CORK, sk)) 1503 return; 1504 1505 lock_sock(sk); 1506 if (up->pending && !udp_test_bit(CORK, sk)) 1507 udp_push_pending_frames(sk); 1508 release_sock(sk); 1509 } 1510 EXPORT_SYMBOL_GPL(udp_splice_eof); 1511 1512 #define UDP_SKB_IS_STATELESS 0x80000000 1513 1514 /* all head states (dst, sk, nf conntrack) except skb extensions are 1515 * cleared by udp_rcv(). 1516 * 1517 * We need to preserve secpath, if present, to eventually process 1518 * IP_CMSG_PASSSEC at recvmsg() time. 1519 * 1520 * Other extensions can be cleared. 1521 */ 1522 static bool udp_try_make_stateless(struct sk_buff *skb) 1523 { 1524 if (!skb_has_extensions(skb)) 1525 return true; 1526 1527 if (!secpath_exists(skb)) { 1528 skb_ext_reset(skb); 1529 return true; 1530 } 1531 1532 return false; 1533 } 1534 1535 static void udp_set_dev_scratch(struct sk_buff *skb) 1536 { 1537 struct udp_dev_scratch *scratch = udp_skb_scratch(skb); 1538 1539 BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long)); 1540 scratch->_tsize_state = skb->truesize; 1541 #if BITS_PER_LONG == 64 1542 scratch->len = skb->len; 1543 scratch->csum_unnecessary = !!skb_csum_unnecessary(skb); 1544 scratch->is_linear = !skb_is_nonlinear(skb); 1545 #endif 1546 if (udp_try_make_stateless(skb)) 1547 scratch->_tsize_state |= UDP_SKB_IS_STATELESS; 1548 } 1549 1550 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb) 1551 { 1552 /* We come here after udp_lib_checksum_complete() returned 0. 1553 * This means that __skb_checksum_complete() might have 1554 * set skb->csum_valid to 1. 1555 * On 64bit platforms, we can set csum_unnecessary 1556 * to true, but only if the skb is not shared. 1557 */ 1558 #if BITS_PER_LONG == 64 1559 if (!skb_shared(skb)) 1560 udp_skb_scratch(skb)->csum_unnecessary = true; 1561 #endif 1562 } 1563 1564 static int udp_skb_truesize(struct sk_buff *skb) 1565 { 1566 return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS; 1567 } 1568 1569 static bool udp_skb_has_head_state(struct sk_buff *skb) 1570 { 1571 return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS); 1572 } 1573 1574 /* fully reclaim rmem/fwd memory allocated for skb */ 1575 static void udp_rmem_release(struct sock *sk, int size, int partial, 1576 bool rx_queue_lock_held) 1577 { 1578 struct udp_sock *up = udp_sk(sk); 1579 struct sk_buff_head *sk_queue; 1580 int amt; 1581 1582 if (likely(partial)) { 1583 up->forward_deficit += size; 1584 size = up->forward_deficit; 1585 if (size < READ_ONCE(up->forward_threshold) && 1586 !skb_queue_empty(&up->reader_queue)) 1587 return; 1588 } else { 1589 size += up->forward_deficit; 1590 } 1591 up->forward_deficit = 0; 1592 1593 /* acquire the sk_receive_queue for fwd allocated memory scheduling, 1594 * if the called don't held it already 1595 */ 1596 sk_queue = &sk->sk_receive_queue; 1597 if (!rx_queue_lock_held) 1598 spin_lock(&sk_queue->lock); 1599 1600 1601 sk_forward_alloc_add(sk, size); 1602 amt = (sk->sk_forward_alloc - partial) & ~(PAGE_SIZE - 1); 1603 sk_forward_alloc_add(sk, -amt); 1604 1605 if (amt) 1606 __sk_mem_reduce_allocated(sk, amt >> PAGE_SHIFT); 1607 1608 atomic_sub(size, &sk->sk_rmem_alloc); 1609 1610 /* this can save us from acquiring the rx queue lock on next receive */ 1611 skb_queue_splice_tail_init(sk_queue, &up->reader_queue); 1612 1613 if (!rx_queue_lock_held) 1614 spin_unlock(&sk_queue->lock); 1615 } 1616 1617 /* Note: called with reader_queue.lock held. 1618 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch 1619 * This avoids a cache line miss while receive_queue lock is held. 1620 * Look at __udp_enqueue_schedule_skb() to find where this copy is done. 1621 */ 1622 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb) 1623 { 1624 prefetch(&skb->data); 1625 udp_rmem_release(sk, udp_skb_truesize(skb), 1, false); 1626 } 1627 EXPORT_SYMBOL(udp_skb_destructor); 1628 1629 /* as above, but the caller held the rx queue lock, too */ 1630 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb) 1631 { 1632 prefetch(&skb->data); 1633 udp_rmem_release(sk, udp_skb_truesize(skb), 1, true); 1634 } 1635 1636 /* Idea of busylocks is to let producers grab an extra spinlock 1637 * to relieve pressure on the receive_queue spinlock shared by consumer. 1638 * Under flood, this means that only one producer can be in line 1639 * trying to acquire the receive_queue spinlock. 1640 * These busylock can be allocated on a per cpu manner, instead of a 1641 * per socket one (that would consume a cache line per socket) 1642 */ 1643 static int udp_busylocks_log __read_mostly; 1644 static spinlock_t *udp_busylocks __read_mostly; 1645 1646 static spinlock_t *busylock_acquire(void *ptr) 1647 { 1648 spinlock_t *busy; 1649 1650 busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log); 1651 spin_lock(busy); 1652 return busy; 1653 } 1654 1655 static void busylock_release(spinlock_t *busy) 1656 { 1657 if (busy) 1658 spin_unlock(busy); 1659 } 1660 1661 static int udp_rmem_schedule(struct sock *sk, int size) 1662 { 1663 int delta; 1664 1665 delta = size - sk->sk_forward_alloc; 1666 if (delta > 0 && !__sk_mem_schedule(sk, delta, SK_MEM_RECV)) 1667 return -ENOBUFS; 1668 1669 return 0; 1670 } 1671 1672 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb) 1673 { 1674 struct sk_buff_head *list = &sk->sk_receive_queue; 1675 int rmem, err = -ENOMEM; 1676 spinlock_t *busy = NULL; 1677 int size, rcvbuf; 1678 1679 /* Immediately drop when the receive queue is full. 1680 * Always allow at least one packet. 1681 */ 1682 rmem = atomic_read(&sk->sk_rmem_alloc); 1683 rcvbuf = READ_ONCE(sk->sk_rcvbuf); 1684 if (rmem > rcvbuf) 1685 goto drop; 1686 1687 /* Under mem pressure, it might be helpful to help udp_recvmsg() 1688 * having linear skbs : 1689 * - Reduce memory overhead and thus increase receive queue capacity 1690 * - Less cache line misses at copyout() time 1691 * - Less work at consume_skb() (less alien page frag freeing) 1692 */ 1693 if (rmem > (rcvbuf >> 1)) { 1694 skb_condense(skb); 1695 1696 busy = busylock_acquire(sk); 1697 } 1698 size = skb->truesize; 1699 udp_set_dev_scratch(skb); 1700 1701 atomic_add(size, &sk->sk_rmem_alloc); 1702 1703 spin_lock(&list->lock); 1704 err = udp_rmem_schedule(sk, size); 1705 if (err) { 1706 spin_unlock(&list->lock); 1707 goto uncharge_drop; 1708 } 1709 1710 sk_forward_alloc_add(sk, -size); 1711 1712 /* no need to setup a destructor, we will explicitly release the 1713 * forward allocated memory on dequeue 1714 */ 1715 sock_skb_set_dropcount(sk, skb); 1716 1717 __skb_queue_tail(list, skb); 1718 spin_unlock(&list->lock); 1719 1720 if (!sock_flag(sk, SOCK_DEAD)) 1721 INDIRECT_CALL_1(sk->sk_data_ready, sock_def_readable, sk); 1722 1723 busylock_release(busy); 1724 return 0; 1725 1726 uncharge_drop: 1727 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 1728 1729 drop: 1730 atomic_inc(&sk->sk_drops); 1731 busylock_release(busy); 1732 return err; 1733 } 1734 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb); 1735 1736 void udp_destruct_common(struct sock *sk) 1737 { 1738 /* reclaim completely the forward allocated memory */ 1739 struct udp_sock *up = udp_sk(sk); 1740 unsigned int total = 0; 1741 struct sk_buff *skb; 1742 1743 skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue); 1744 while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) { 1745 total += skb->truesize; 1746 kfree_skb(skb); 1747 } 1748 udp_rmem_release(sk, total, 0, true); 1749 } 1750 EXPORT_SYMBOL_GPL(udp_destruct_common); 1751 1752 static void udp_destruct_sock(struct sock *sk) 1753 { 1754 udp_destruct_common(sk); 1755 inet_sock_destruct(sk); 1756 } 1757 1758 int udp_init_sock(struct sock *sk) 1759 { 1760 udp_lib_init_sock(sk); 1761 sk->sk_destruct = udp_destruct_sock; 1762 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); 1763 return 0; 1764 } 1765 1766 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len) 1767 { 1768 if (unlikely(READ_ONCE(udp_sk(sk)->peeking_with_offset))) 1769 sk_peek_offset_bwd(sk, len); 1770 1771 if (!skb_unref(skb)) 1772 return; 1773 1774 /* In the more common cases we cleared the head states previously, 1775 * see __udp_queue_rcv_skb(). 1776 */ 1777 if (unlikely(udp_skb_has_head_state(skb))) 1778 skb_release_head_state(skb); 1779 __consume_stateless_skb(skb); 1780 } 1781 EXPORT_SYMBOL_GPL(skb_consume_udp); 1782 1783 static struct sk_buff *__first_packet_length(struct sock *sk, 1784 struct sk_buff_head *rcvq, 1785 int *total) 1786 { 1787 struct sk_buff *skb; 1788 1789 while ((skb = skb_peek(rcvq)) != NULL) { 1790 if (udp_lib_checksum_complete(skb)) { 1791 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, 1792 IS_UDPLITE(sk)); 1793 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, 1794 IS_UDPLITE(sk)); 1795 atomic_inc(&sk->sk_drops); 1796 __skb_unlink(skb, rcvq); 1797 *total += skb->truesize; 1798 kfree_skb(skb); 1799 } else { 1800 udp_skb_csum_unnecessary_set(skb); 1801 break; 1802 } 1803 } 1804 return skb; 1805 } 1806 1807 /** 1808 * first_packet_length - return length of first packet in receive queue 1809 * @sk: socket 1810 * 1811 * Drops all bad checksum frames, until a valid one is found. 1812 * Returns the length of found skb, or -1 if none is found. 1813 */ 1814 static int first_packet_length(struct sock *sk) 1815 { 1816 struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue; 1817 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1818 struct sk_buff *skb; 1819 int total = 0; 1820 int res; 1821 1822 spin_lock_bh(&rcvq->lock); 1823 skb = __first_packet_length(sk, rcvq, &total); 1824 if (!skb && !skb_queue_empty_lockless(sk_queue)) { 1825 spin_lock(&sk_queue->lock); 1826 skb_queue_splice_tail_init(sk_queue, rcvq); 1827 spin_unlock(&sk_queue->lock); 1828 1829 skb = __first_packet_length(sk, rcvq, &total); 1830 } 1831 res = skb ? skb->len : -1; 1832 if (total) 1833 udp_rmem_release(sk, total, 1, false); 1834 spin_unlock_bh(&rcvq->lock); 1835 return res; 1836 } 1837 1838 /* 1839 * IOCTL requests applicable to the UDP protocol 1840 */ 1841 1842 int udp_ioctl(struct sock *sk, int cmd, int *karg) 1843 { 1844 switch (cmd) { 1845 case SIOCOUTQ: 1846 { 1847 *karg = sk_wmem_alloc_get(sk); 1848 return 0; 1849 } 1850 1851 case SIOCINQ: 1852 { 1853 *karg = max_t(int, 0, first_packet_length(sk)); 1854 return 0; 1855 } 1856 1857 default: 1858 return -ENOIOCTLCMD; 1859 } 1860 1861 return 0; 1862 } 1863 EXPORT_SYMBOL(udp_ioctl); 1864 1865 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags, 1866 int *off, int *err) 1867 { 1868 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1869 struct sk_buff_head *queue; 1870 struct sk_buff *last; 1871 long timeo; 1872 int error; 1873 1874 queue = &udp_sk(sk)->reader_queue; 1875 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1876 do { 1877 struct sk_buff *skb; 1878 1879 error = sock_error(sk); 1880 if (error) 1881 break; 1882 1883 error = -EAGAIN; 1884 do { 1885 spin_lock_bh(&queue->lock); 1886 skb = __skb_try_recv_from_queue(sk, queue, flags, off, 1887 err, &last); 1888 if (skb) { 1889 if (!(flags & MSG_PEEK)) 1890 udp_skb_destructor(sk, skb); 1891 spin_unlock_bh(&queue->lock); 1892 return skb; 1893 } 1894 1895 if (skb_queue_empty_lockless(sk_queue)) { 1896 spin_unlock_bh(&queue->lock); 1897 goto busy_check; 1898 } 1899 1900 /* refill the reader queue and walk it again 1901 * keep both queues locked to avoid re-acquiring 1902 * the sk_receive_queue lock if fwd memory scheduling 1903 * is needed. 1904 */ 1905 spin_lock(&sk_queue->lock); 1906 skb_queue_splice_tail_init(sk_queue, queue); 1907 1908 skb = __skb_try_recv_from_queue(sk, queue, flags, off, 1909 err, &last); 1910 if (skb && !(flags & MSG_PEEK)) 1911 udp_skb_dtor_locked(sk, skb); 1912 spin_unlock(&sk_queue->lock); 1913 spin_unlock_bh(&queue->lock); 1914 if (skb) 1915 return skb; 1916 1917 busy_check: 1918 if (!sk_can_busy_loop(sk)) 1919 break; 1920 1921 sk_busy_loop(sk, flags & MSG_DONTWAIT); 1922 } while (!skb_queue_empty_lockless(sk_queue)); 1923 1924 /* sk_queue is empty, reader_queue may contain peeked packets */ 1925 } while (timeo && 1926 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue, 1927 &error, &timeo, 1928 (struct sk_buff *)sk_queue)); 1929 1930 *err = error; 1931 return NULL; 1932 } 1933 EXPORT_SYMBOL(__skb_recv_udp); 1934 1935 int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor) 1936 { 1937 struct sk_buff *skb; 1938 int err; 1939 1940 try_again: 1941 skb = skb_recv_udp(sk, MSG_DONTWAIT, &err); 1942 if (!skb) 1943 return err; 1944 1945 if (udp_lib_checksum_complete(skb)) { 1946 int is_udplite = IS_UDPLITE(sk); 1947 struct net *net = sock_net(sk); 1948 1949 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, is_udplite); 1950 __UDP_INC_STATS(net, UDP_MIB_INERRORS, is_udplite); 1951 atomic_inc(&sk->sk_drops); 1952 kfree_skb(skb); 1953 goto try_again; 1954 } 1955 1956 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk)); 1957 return recv_actor(sk, skb); 1958 } 1959 EXPORT_SYMBOL(udp_read_skb); 1960 1961 /* 1962 * This should be easy, if there is something there we 1963 * return it, otherwise we block. 1964 */ 1965 1966 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, 1967 int *addr_len) 1968 { 1969 struct inet_sock *inet = inet_sk(sk); 1970 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name); 1971 struct sk_buff *skb; 1972 unsigned int ulen, copied; 1973 int off, err, peeking = flags & MSG_PEEK; 1974 int is_udplite = IS_UDPLITE(sk); 1975 bool checksum_valid = false; 1976 1977 if (flags & MSG_ERRQUEUE) 1978 return ip_recv_error(sk, msg, len, addr_len); 1979 1980 try_again: 1981 off = sk_peek_offset(sk, flags); 1982 skb = __skb_recv_udp(sk, flags, &off, &err); 1983 if (!skb) 1984 return err; 1985 1986 ulen = udp_skb_len(skb); 1987 copied = len; 1988 if (copied > ulen - off) 1989 copied = ulen - off; 1990 else if (copied < ulen) 1991 msg->msg_flags |= MSG_TRUNC; 1992 1993 /* 1994 * If checksum is needed at all, try to do it while copying the 1995 * data. If the data is truncated, or if we only want a partial 1996 * coverage checksum (UDP-Lite), do it before the copy. 1997 */ 1998 1999 if (copied < ulen || peeking || 2000 (is_udplite && UDP_SKB_CB(skb)->partial_cov)) { 2001 checksum_valid = udp_skb_csum_unnecessary(skb) || 2002 !__udp_lib_checksum_complete(skb); 2003 if (!checksum_valid) 2004 goto csum_copy_err; 2005 } 2006 2007 if (checksum_valid || udp_skb_csum_unnecessary(skb)) { 2008 if (udp_skb_is_linear(skb)) 2009 err = copy_linear_skb(skb, copied, off, &msg->msg_iter); 2010 else 2011 err = skb_copy_datagram_msg(skb, off, msg, copied); 2012 } else { 2013 err = skb_copy_and_csum_datagram_msg(skb, off, msg); 2014 2015 if (err == -EINVAL) 2016 goto csum_copy_err; 2017 } 2018 2019 if (unlikely(err)) { 2020 if (!peeking) { 2021 atomic_inc(&sk->sk_drops); 2022 UDP_INC_STATS(sock_net(sk), 2023 UDP_MIB_INERRORS, is_udplite); 2024 } 2025 kfree_skb(skb); 2026 return err; 2027 } 2028 2029 if (!peeking) 2030 UDP_INC_STATS(sock_net(sk), 2031 UDP_MIB_INDATAGRAMS, is_udplite); 2032 2033 sock_recv_cmsgs(msg, sk, skb); 2034 2035 /* Copy the address. */ 2036 if (sin) { 2037 sin->sin_family = AF_INET; 2038 sin->sin_port = udp_hdr(skb)->source; 2039 sin->sin_addr.s_addr = ip_hdr(skb)->saddr; 2040 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 2041 *addr_len = sizeof(*sin); 2042 2043 BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk, 2044 (struct sockaddr *)sin, 2045 addr_len); 2046 } 2047 2048 if (udp_test_bit(GRO_ENABLED, sk)) 2049 udp_cmsg_recv(msg, sk, skb); 2050 2051 if (inet_cmsg_flags(inet)) 2052 ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off); 2053 2054 err = copied; 2055 if (flags & MSG_TRUNC) 2056 err = ulen; 2057 2058 skb_consume_udp(sk, skb, peeking ? -err : err); 2059 return err; 2060 2061 csum_copy_err: 2062 if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags, 2063 udp_skb_destructor)) { 2064 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 2065 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 2066 } 2067 kfree_skb(skb); 2068 2069 /* starting over for a new packet, but check if we need to yield */ 2070 cond_resched(); 2071 msg->msg_flags &= ~MSG_TRUNC; 2072 goto try_again; 2073 } 2074 2075 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 2076 { 2077 /* This check is replicated from __ip4_datagram_connect() and 2078 * intended to prevent BPF program called below from accessing bytes 2079 * that are out of the bound specified by user in addr_len. 2080 */ 2081 if (addr_len < sizeof(struct sockaddr_in)) 2082 return -EINVAL; 2083 2084 return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr, &addr_len); 2085 } 2086 EXPORT_SYMBOL(udp_pre_connect); 2087 2088 static int udp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 2089 { 2090 int res; 2091 2092 lock_sock(sk); 2093 res = __ip4_datagram_connect(sk, uaddr, addr_len); 2094 if (!res) 2095 udp4_hash4(sk); 2096 release_sock(sk); 2097 return res; 2098 } 2099 2100 int __udp_disconnect(struct sock *sk, int flags) 2101 { 2102 struct inet_sock *inet = inet_sk(sk); 2103 /* 2104 * 1003.1g - break association. 2105 */ 2106 2107 sk->sk_state = TCP_CLOSE; 2108 inet->inet_daddr = 0; 2109 inet->inet_dport = 0; 2110 sock_rps_reset_rxhash(sk); 2111 sk->sk_bound_dev_if = 0; 2112 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) { 2113 inet_reset_saddr(sk); 2114 if (sk->sk_prot->rehash && 2115 (sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2116 sk->sk_prot->rehash(sk); 2117 } 2118 2119 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) { 2120 sk->sk_prot->unhash(sk); 2121 inet->inet_sport = 0; 2122 } 2123 sk_dst_reset(sk); 2124 return 0; 2125 } 2126 EXPORT_SYMBOL(__udp_disconnect); 2127 2128 int udp_disconnect(struct sock *sk, int flags) 2129 { 2130 lock_sock(sk); 2131 __udp_disconnect(sk, flags); 2132 release_sock(sk); 2133 return 0; 2134 } 2135 EXPORT_SYMBOL(udp_disconnect); 2136 2137 void udp_lib_unhash(struct sock *sk) 2138 { 2139 if (sk_hashed(sk)) { 2140 struct udp_table *udptable = udp_get_table_prot(sk); 2141 struct udp_hslot *hslot, *hslot2; 2142 2143 hslot = udp_hashslot(udptable, sock_net(sk), 2144 udp_sk(sk)->udp_port_hash); 2145 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 2146 2147 spin_lock_bh(&hslot->lock); 2148 if (rcu_access_pointer(sk->sk_reuseport_cb)) 2149 reuseport_detach_sock(sk); 2150 if (sk_del_node_init_rcu(sk)) { 2151 hslot->count--; 2152 inet_sk(sk)->inet_num = 0; 2153 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 2154 2155 spin_lock(&hslot2->lock); 2156 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 2157 hslot2->count--; 2158 spin_unlock(&hslot2->lock); 2159 2160 udp_unhash4(udptable, sk); 2161 } 2162 spin_unlock_bh(&hslot->lock); 2163 } 2164 } 2165 EXPORT_SYMBOL(udp_lib_unhash); 2166 2167 /* 2168 * inet_rcv_saddr was changed, we must rehash secondary hash 2169 */ 2170 void udp_lib_rehash(struct sock *sk, u16 newhash, u16 newhash4) 2171 { 2172 if (sk_hashed(sk)) { 2173 struct udp_table *udptable = udp_get_table_prot(sk); 2174 struct udp_hslot *hslot, *hslot2, *nhslot2; 2175 2176 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 2177 nhslot2 = udp_hashslot2(udptable, newhash); 2178 udp_sk(sk)->udp_portaddr_hash = newhash; 2179 2180 if (hslot2 != nhslot2 || 2181 rcu_access_pointer(sk->sk_reuseport_cb)) { 2182 hslot = udp_hashslot(udptable, sock_net(sk), 2183 udp_sk(sk)->udp_port_hash); 2184 /* we must lock primary chain too */ 2185 spin_lock_bh(&hslot->lock); 2186 if (rcu_access_pointer(sk->sk_reuseport_cb)) 2187 reuseport_detach_sock(sk); 2188 2189 if (hslot2 != nhslot2) { 2190 spin_lock(&hslot2->lock); 2191 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 2192 hslot2->count--; 2193 spin_unlock(&hslot2->lock); 2194 2195 spin_lock(&nhslot2->lock); 2196 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 2197 &nhslot2->head); 2198 nhslot2->count++; 2199 spin_unlock(&nhslot2->lock); 2200 } 2201 2202 if (udp_hashed4(sk)) { 2203 udp_rehash4(udptable, sk, newhash4); 2204 2205 if (hslot2 != nhslot2) { 2206 spin_lock(&hslot2->lock); 2207 udp_hash4_dec(hslot2); 2208 spin_unlock(&hslot2->lock); 2209 2210 spin_lock(&nhslot2->lock); 2211 udp_hash4_inc(nhslot2); 2212 spin_unlock(&nhslot2->lock); 2213 } 2214 } 2215 spin_unlock_bh(&hslot->lock); 2216 } 2217 } 2218 } 2219 EXPORT_SYMBOL(udp_lib_rehash); 2220 2221 void udp_v4_rehash(struct sock *sk) 2222 { 2223 u16 new_hash = ipv4_portaddr_hash(sock_net(sk), 2224 inet_sk(sk)->inet_rcv_saddr, 2225 inet_sk(sk)->inet_num); 2226 u16 new_hash4 = udp_ehashfn(sock_net(sk), 2227 sk->sk_rcv_saddr, sk->sk_num, 2228 sk->sk_daddr, sk->sk_dport); 2229 2230 udp_lib_rehash(sk, new_hash, new_hash4); 2231 } 2232 2233 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 2234 { 2235 int rc; 2236 2237 if (inet_sk(sk)->inet_daddr) { 2238 sock_rps_save_rxhash(sk, skb); 2239 sk_mark_napi_id(sk, skb); 2240 sk_incoming_cpu_update(sk); 2241 } else { 2242 sk_mark_napi_id_once(sk, skb); 2243 } 2244 2245 rc = __udp_enqueue_schedule_skb(sk, skb); 2246 if (rc < 0) { 2247 int is_udplite = IS_UDPLITE(sk); 2248 int drop_reason; 2249 2250 /* Note that an ENOMEM error is charged twice */ 2251 if (rc == -ENOMEM) { 2252 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS, 2253 is_udplite); 2254 drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF; 2255 } else { 2256 UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS, 2257 is_udplite); 2258 drop_reason = SKB_DROP_REASON_PROTO_MEM; 2259 } 2260 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 2261 trace_udp_fail_queue_rcv_skb(rc, sk, skb); 2262 sk_skb_reason_drop(sk, skb, drop_reason); 2263 return -1; 2264 } 2265 2266 return 0; 2267 } 2268 2269 /* returns: 2270 * -1: error 2271 * 0: success 2272 * >0: "udp encap" protocol resubmission 2273 * 2274 * Note that in the success and error cases, the skb is assumed to 2275 * have either been requeued or freed. 2276 */ 2277 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb) 2278 { 2279 int drop_reason = SKB_DROP_REASON_NOT_SPECIFIED; 2280 struct udp_sock *up = udp_sk(sk); 2281 int is_udplite = IS_UDPLITE(sk); 2282 2283 /* 2284 * Charge it to the socket, dropping if the queue is full. 2285 */ 2286 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) { 2287 drop_reason = SKB_DROP_REASON_XFRM_POLICY; 2288 goto drop; 2289 } 2290 nf_reset_ct(skb); 2291 2292 if (static_branch_unlikely(&udp_encap_needed_key) && 2293 READ_ONCE(up->encap_type)) { 2294 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb); 2295 2296 /* 2297 * This is an encapsulation socket so pass the skb to 2298 * the socket's udp_encap_rcv() hook. Otherwise, just 2299 * fall through and pass this up the UDP socket. 2300 * up->encap_rcv() returns the following value: 2301 * =0 if skb was successfully passed to the encap 2302 * handler or was discarded by it. 2303 * >0 if skb should be passed on to UDP. 2304 * <0 if skb should be resubmitted as proto -N 2305 */ 2306 2307 /* if we're overly short, let UDP handle it */ 2308 encap_rcv = READ_ONCE(up->encap_rcv); 2309 if (encap_rcv) { 2310 int ret; 2311 2312 /* Verify checksum before giving to encap */ 2313 if (udp_lib_checksum_complete(skb)) 2314 goto csum_error; 2315 2316 ret = encap_rcv(sk, skb); 2317 if (ret <= 0) { 2318 __UDP_INC_STATS(sock_net(sk), 2319 UDP_MIB_INDATAGRAMS, 2320 is_udplite); 2321 return -ret; 2322 } 2323 } 2324 2325 /* FALLTHROUGH -- it's a UDP Packet */ 2326 } 2327 2328 /* 2329 * UDP-Lite specific tests, ignored on UDP sockets 2330 */ 2331 if (udp_test_bit(UDPLITE_RECV_CC, sk) && UDP_SKB_CB(skb)->partial_cov) { 2332 u16 pcrlen = READ_ONCE(up->pcrlen); 2333 2334 /* 2335 * MIB statistics other than incrementing the error count are 2336 * disabled for the following two types of errors: these depend 2337 * on the application settings, not on the functioning of the 2338 * protocol stack as such. 2339 * 2340 * RFC 3828 here recommends (sec 3.3): "There should also be a 2341 * way ... to ... at least let the receiving application block 2342 * delivery of packets with coverage values less than a value 2343 * provided by the application." 2344 */ 2345 if (pcrlen == 0) { /* full coverage was set */ 2346 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n", 2347 UDP_SKB_CB(skb)->cscov, skb->len); 2348 goto drop; 2349 } 2350 /* The next case involves violating the min. coverage requested 2351 * by the receiver. This is subtle: if receiver wants x and x is 2352 * greater than the buffersize/MTU then receiver will complain 2353 * that it wants x while sender emits packets of smaller size y. 2354 * Therefore the above ...()->partial_cov statement is essential. 2355 */ 2356 if (UDP_SKB_CB(skb)->cscov < pcrlen) { 2357 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n", 2358 UDP_SKB_CB(skb)->cscov, pcrlen); 2359 goto drop; 2360 } 2361 } 2362 2363 prefetch(&sk->sk_rmem_alloc); 2364 if (rcu_access_pointer(sk->sk_filter) && 2365 udp_lib_checksum_complete(skb)) 2366 goto csum_error; 2367 2368 if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) { 2369 drop_reason = SKB_DROP_REASON_SOCKET_FILTER; 2370 goto drop; 2371 } 2372 2373 udp_csum_pull_header(skb); 2374 2375 ipv4_pktinfo_prepare(sk, skb, true); 2376 return __udp_queue_rcv_skb(sk, skb); 2377 2378 csum_error: 2379 drop_reason = SKB_DROP_REASON_UDP_CSUM; 2380 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 2381 drop: 2382 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 2383 atomic_inc(&sk->sk_drops); 2384 sk_skb_reason_drop(sk, skb, drop_reason); 2385 return -1; 2386 } 2387 2388 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 2389 { 2390 struct sk_buff *next, *segs; 2391 int ret; 2392 2393 if (likely(!udp_unexpected_gso(sk, skb))) 2394 return udp_queue_rcv_one_skb(sk, skb); 2395 2396 BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET); 2397 __skb_push(skb, -skb_mac_offset(skb)); 2398 segs = udp_rcv_segment(sk, skb, true); 2399 skb_list_walk_safe(segs, skb, next) { 2400 __skb_pull(skb, skb_transport_offset(skb)); 2401 2402 udp_post_segment_fix_csum(skb); 2403 ret = udp_queue_rcv_one_skb(sk, skb); 2404 if (ret > 0) 2405 ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret); 2406 } 2407 return 0; 2408 } 2409 2410 /* For TCP sockets, sk_rx_dst is protected by socket lock 2411 * For UDP, we use xchg() to guard against concurrent changes. 2412 */ 2413 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst) 2414 { 2415 struct dst_entry *old; 2416 2417 if (dst_hold_safe(dst)) { 2418 old = unrcu_pointer(xchg(&sk->sk_rx_dst, RCU_INITIALIZER(dst))); 2419 dst_release(old); 2420 return old != dst; 2421 } 2422 return false; 2423 } 2424 EXPORT_SYMBOL(udp_sk_rx_dst_set); 2425 2426 /* 2427 * Multicasts and broadcasts go to each listener. 2428 * 2429 * Note: called only from the BH handler context. 2430 */ 2431 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb, 2432 struct udphdr *uh, 2433 __be32 saddr, __be32 daddr, 2434 struct udp_table *udptable, 2435 int proto) 2436 { 2437 struct sock *sk, *first = NULL; 2438 unsigned short hnum = ntohs(uh->dest); 2439 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum); 2440 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10); 2441 unsigned int offset = offsetof(typeof(*sk), sk_node); 2442 int dif = skb->dev->ifindex; 2443 int sdif = inet_sdif(skb); 2444 struct hlist_node *node; 2445 struct sk_buff *nskb; 2446 2447 if (use_hash2) { 2448 hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) & 2449 udptable->mask; 2450 hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask; 2451 start_lookup: 2452 hslot = &udptable->hash2[hash2].hslot; 2453 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node); 2454 } 2455 2456 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) { 2457 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr, 2458 uh->source, saddr, dif, sdif, hnum)) 2459 continue; 2460 2461 if (!first) { 2462 first = sk; 2463 continue; 2464 } 2465 nskb = skb_clone(skb, GFP_ATOMIC); 2466 2467 if (unlikely(!nskb)) { 2468 atomic_inc(&sk->sk_drops); 2469 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS, 2470 IS_UDPLITE(sk)); 2471 __UDP_INC_STATS(net, UDP_MIB_INERRORS, 2472 IS_UDPLITE(sk)); 2473 continue; 2474 } 2475 if (udp_queue_rcv_skb(sk, nskb) > 0) 2476 consume_skb(nskb); 2477 } 2478 2479 /* Also lookup *:port if we are using hash2 and haven't done so yet. */ 2480 if (use_hash2 && hash2 != hash2_any) { 2481 hash2 = hash2_any; 2482 goto start_lookup; 2483 } 2484 2485 if (first) { 2486 if (udp_queue_rcv_skb(first, skb) > 0) 2487 consume_skb(skb); 2488 } else { 2489 kfree_skb(skb); 2490 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI, 2491 proto == IPPROTO_UDPLITE); 2492 } 2493 return 0; 2494 } 2495 2496 /* Initialize UDP checksum. If exited with zero value (success), 2497 * CHECKSUM_UNNECESSARY means, that no more checks are required. 2498 * Otherwise, csum completion requires checksumming packet body, 2499 * including udp header and folding it to skb->csum. 2500 */ 2501 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh, 2502 int proto) 2503 { 2504 int err; 2505 2506 UDP_SKB_CB(skb)->partial_cov = 0; 2507 UDP_SKB_CB(skb)->cscov = skb->len; 2508 2509 if (proto == IPPROTO_UDPLITE) { 2510 err = udplite_checksum_init(skb, uh); 2511 if (err) 2512 return err; 2513 2514 if (UDP_SKB_CB(skb)->partial_cov) { 2515 skb->csum = inet_compute_pseudo(skb, proto); 2516 return 0; 2517 } 2518 } 2519 2520 /* Note, we are only interested in != 0 or == 0, thus the 2521 * force to int. 2522 */ 2523 err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check, 2524 inet_compute_pseudo); 2525 if (err) 2526 return err; 2527 2528 if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) { 2529 /* If SW calculated the value, we know it's bad */ 2530 if (skb->csum_complete_sw) 2531 return 1; 2532 2533 /* HW says the value is bad. Let's validate that. 2534 * skb->csum is no longer the full packet checksum, 2535 * so don't treat it as such. 2536 */ 2537 skb_checksum_complete_unset(skb); 2538 } 2539 2540 return 0; 2541 } 2542 2543 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and 2544 * return code conversion for ip layer consumption 2545 */ 2546 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb, 2547 struct udphdr *uh) 2548 { 2549 int ret; 2550 2551 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk)) 2552 skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo); 2553 2554 ret = udp_queue_rcv_skb(sk, skb); 2555 2556 /* a return value > 0 means to resubmit the input, but 2557 * it wants the return to be -protocol, or 0 2558 */ 2559 if (ret > 0) 2560 return -ret; 2561 return 0; 2562 } 2563 2564 /* 2565 * All we need to do is get the socket, and then do a checksum. 2566 */ 2567 2568 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable, 2569 int proto) 2570 { 2571 struct sock *sk = NULL; 2572 struct udphdr *uh; 2573 unsigned short ulen; 2574 struct rtable *rt = skb_rtable(skb); 2575 __be32 saddr, daddr; 2576 struct net *net = dev_net(skb->dev); 2577 bool refcounted; 2578 int drop_reason; 2579 2580 drop_reason = SKB_DROP_REASON_NOT_SPECIFIED; 2581 2582 /* 2583 * Validate the packet. 2584 */ 2585 if (!pskb_may_pull(skb, sizeof(struct udphdr))) 2586 goto drop; /* No space for header. */ 2587 2588 uh = udp_hdr(skb); 2589 ulen = ntohs(uh->len); 2590 saddr = ip_hdr(skb)->saddr; 2591 daddr = ip_hdr(skb)->daddr; 2592 2593 if (ulen > skb->len) 2594 goto short_packet; 2595 2596 if (proto == IPPROTO_UDP) { 2597 /* UDP validates ulen. */ 2598 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen)) 2599 goto short_packet; 2600 uh = udp_hdr(skb); 2601 } 2602 2603 if (udp4_csum_init(skb, uh, proto)) 2604 goto csum_error; 2605 2606 sk = inet_steal_sock(net, skb, sizeof(struct udphdr), saddr, uh->source, daddr, uh->dest, 2607 &refcounted, udp_ehashfn); 2608 if (IS_ERR(sk)) 2609 goto no_sk; 2610 2611 if (sk) { 2612 struct dst_entry *dst = skb_dst(skb); 2613 int ret; 2614 2615 if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst)) 2616 udp_sk_rx_dst_set(sk, dst); 2617 2618 ret = udp_unicast_rcv_skb(sk, skb, uh); 2619 if (refcounted) 2620 sock_put(sk); 2621 return ret; 2622 } 2623 2624 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST)) 2625 return __udp4_lib_mcast_deliver(net, skb, uh, 2626 saddr, daddr, udptable, proto); 2627 2628 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable); 2629 if (sk) 2630 return udp_unicast_rcv_skb(sk, skb, uh); 2631 no_sk: 2632 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 2633 goto drop; 2634 nf_reset_ct(skb); 2635 2636 /* No socket. Drop packet silently, if checksum is wrong */ 2637 if (udp_lib_checksum_complete(skb)) 2638 goto csum_error; 2639 2640 drop_reason = SKB_DROP_REASON_NO_SOCKET; 2641 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE); 2642 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0); 2643 2644 /* 2645 * Hmm. We got an UDP packet to a port to which we 2646 * don't wanna listen. Ignore it. 2647 */ 2648 sk_skb_reason_drop(sk, skb, drop_reason); 2649 return 0; 2650 2651 short_packet: 2652 drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL; 2653 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n", 2654 proto == IPPROTO_UDPLITE ? "Lite" : "", 2655 &saddr, ntohs(uh->source), 2656 ulen, skb->len, 2657 &daddr, ntohs(uh->dest)); 2658 goto drop; 2659 2660 csum_error: 2661 /* 2662 * RFC1122: OK. Discards the bad packet silently (as far as 2663 * the network is concerned, anyway) as per 4.1.3.4 (MUST). 2664 */ 2665 drop_reason = SKB_DROP_REASON_UDP_CSUM; 2666 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n", 2667 proto == IPPROTO_UDPLITE ? "Lite" : "", 2668 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest), 2669 ulen); 2670 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE); 2671 drop: 2672 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE); 2673 sk_skb_reason_drop(sk, skb, drop_reason); 2674 return 0; 2675 } 2676 2677 /* We can only early demux multicast if there is a single matching socket. 2678 * If more than one socket found returns NULL 2679 */ 2680 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net, 2681 __be16 loc_port, __be32 loc_addr, 2682 __be16 rmt_port, __be32 rmt_addr, 2683 int dif, int sdif) 2684 { 2685 struct udp_table *udptable = net->ipv4.udp_table; 2686 unsigned short hnum = ntohs(loc_port); 2687 struct sock *sk, *result; 2688 struct udp_hslot *hslot; 2689 unsigned int slot; 2690 2691 slot = udp_hashfn(net, hnum, udptable->mask); 2692 hslot = &udptable->hash[slot]; 2693 2694 /* Do not bother scanning a too big list */ 2695 if (hslot->count > 10) 2696 return NULL; 2697 2698 result = NULL; 2699 sk_for_each_rcu(sk, &hslot->head) { 2700 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr, 2701 rmt_port, rmt_addr, dif, sdif, hnum)) { 2702 if (result) 2703 return NULL; 2704 result = sk; 2705 } 2706 } 2707 2708 return result; 2709 } 2710 2711 /* For unicast we should only early demux connected sockets or we can 2712 * break forwarding setups. The chains here can be long so only check 2713 * if the first socket is an exact match and if not move on. 2714 */ 2715 static struct sock *__udp4_lib_demux_lookup(struct net *net, 2716 __be16 loc_port, __be32 loc_addr, 2717 __be16 rmt_port, __be32 rmt_addr, 2718 int dif, int sdif) 2719 { 2720 struct udp_table *udptable = net->ipv4.udp_table; 2721 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr); 2722 unsigned short hnum = ntohs(loc_port); 2723 struct udp_hslot *hslot2; 2724 unsigned int hash2; 2725 __portpair ports; 2726 struct sock *sk; 2727 2728 hash2 = ipv4_portaddr_hash(net, loc_addr, hnum); 2729 hslot2 = udp_hashslot2(udptable, hash2); 2730 ports = INET_COMBINED_PORTS(rmt_port, hnum); 2731 2732 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 2733 if (inet_match(net, sk, acookie, ports, dif, sdif)) 2734 return sk; 2735 /* Only check first socket in chain */ 2736 break; 2737 } 2738 return NULL; 2739 } 2740 2741 int udp_v4_early_demux(struct sk_buff *skb) 2742 { 2743 struct net *net = dev_net(skb->dev); 2744 struct in_device *in_dev = NULL; 2745 const struct iphdr *iph; 2746 const struct udphdr *uh; 2747 struct sock *sk = NULL; 2748 struct dst_entry *dst; 2749 int dif = skb->dev->ifindex; 2750 int sdif = inet_sdif(skb); 2751 int ours; 2752 2753 /* validate the packet */ 2754 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr))) 2755 return 0; 2756 2757 iph = ip_hdr(skb); 2758 uh = udp_hdr(skb); 2759 2760 if (skb->pkt_type == PACKET_MULTICAST) { 2761 in_dev = __in_dev_get_rcu(skb->dev); 2762 2763 if (!in_dev) 2764 return 0; 2765 2766 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr, 2767 iph->protocol); 2768 if (!ours) 2769 return 0; 2770 2771 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr, 2772 uh->source, iph->saddr, 2773 dif, sdif); 2774 } else if (skb->pkt_type == PACKET_HOST) { 2775 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr, 2776 uh->source, iph->saddr, dif, sdif); 2777 } 2778 2779 if (!sk) 2780 return 0; 2781 2782 skb->sk = sk; 2783 DEBUG_NET_WARN_ON_ONCE(sk_is_refcounted(sk)); 2784 skb->destructor = sock_pfree; 2785 dst = rcu_dereference(sk->sk_rx_dst); 2786 2787 if (dst) 2788 dst = dst_check(dst, 0); 2789 if (dst) { 2790 u32 itag = 0; 2791 2792 /* set noref for now. 2793 * any place which wants to hold dst has to call 2794 * dst_hold_safe() 2795 */ 2796 skb_dst_set_noref(skb, dst); 2797 2798 /* for unconnected multicast sockets we need to validate 2799 * the source on each packet 2800 */ 2801 if (!inet_sk(sk)->inet_daddr && in_dev) 2802 return ip_mc_validate_source(skb, iph->daddr, 2803 iph->saddr, 2804 ip4h_dscp(iph), 2805 skb->dev, in_dev, &itag); 2806 } 2807 return 0; 2808 } 2809 2810 int udp_rcv(struct sk_buff *skb) 2811 { 2812 return __udp4_lib_rcv(skb, dev_net(skb->dev)->ipv4.udp_table, IPPROTO_UDP); 2813 } 2814 2815 void udp_destroy_sock(struct sock *sk) 2816 { 2817 struct udp_sock *up = udp_sk(sk); 2818 bool slow = lock_sock_fast(sk); 2819 2820 /* protects from races with udp_abort() */ 2821 sock_set_flag(sk, SOCK_DEAD); 2822 udp_flush_pending_frames(sk); 2823 unlock_sock_fast(sk, slow); 2824 if (static_branch_unlikely(&udp_encap_needed_key)) { 2825 if (up->encap_type) { 2826 void (*encap_destroy)(struct sock *sk); 2827 encap_destroy = READ_ONCE(up->encap_destroy); 2828 if (encap_destroy) 2829 encap_destroy(sk); 2830 } 2831 if (udp_test_bit(ENCAP_ENABLED, sk)) 2832 static_branch_dec(&udp_encap_needed_key); 2833 } 2834 } 2835 2836 static void set_xfrm_gro_udp_encap_rcv(__u16 encap_type, unsigned short family, 2837 struct sock *sk) 2838 { 2839 #ifdef CONFIG_XFRM 2840 if (udp_test_bit(GRO_ENABLED, sk) && encap_type == UDP_ENCAP_ESPINUDP) { 2841 if (family == AF_INET) 2842 WRITE_ONCE(udp_sk(sk)->gro_receive, xfrm4_gro_udp_encap_rcv); 2843 else if (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6) 2844 WRITE_ONCE(udp_sk(sk)->gro_receive, ipv6_stub->xfrm6_gro_udp_encap_rcv); 2845 } 2846 #endif 2847 } 2848 2849 /* 2850 * Socket option code for UDP 2851 */ 2852 int udp_lib_setsockopt(struct sock *sk, int level, int optname, 2853 sockptr_t optval, unsigned int optlen, 2854 int (*push_pending_frames)(struct sock *)) 2855 { 2856 struct udp_sock *up = udp_sk(sk); 2857 int val, valbool; 2858 int err = 0; 2859 int is_udplite = IS_UDPLITE(sk); 2860 2861 if (level == SOL_SOCKET) { 2862 err = sk_setsockopt(sk, level, optname, optval, optlen); 2863 2864 if (optname == SO_RCVBUF || optname == SO_RCVBUFFORCE) { 2865 sockopt_lock_sock(sk); 2866 /* paired with READ_ONCE in udp_rmem_release() */ 2867 WRITE_ONCE(up->forward_threshold, sk->sk_rcvbuf >> 2); 2868 sockopt_release_sock(sk); 2869 } 2870 return err; 2871 } 2872 2873 if (optlen < sizeof(int)) 2874 return -EINVAL; 2875 2876 if (copy_from_sockptr(&val, optval, sizeof(val))) 2877 return -EFAULT; 2878 2879 valbool = val ? 1 : 0; 2880 2881 switch (optname) { 2882 case UDP_CORK: 2883 if (val != 0) { 2884 udp_set_bit(CORK, sk); 2885 } else { 2886 udp_clear_bit(CORK, sk); 2887 lock_sock(sk); 2888 push_pending_frames(sk); 2889 release_sock(sk); 2890 } 2891 break; 2892 2893 case UDP_ENCAP: 2894 switch (val) { 2895 case 0: 2896 #ifdef CONFIG_XFRM 2897 case UDP_ENCAP_ESPINUDP: 2898 set_xfrm_gro_udp_encap_rcv(val, sk->sk_family, sk); 2899 #if IS_ENABLED(CONFIG_IPV6) 2900 if (sk->sk_family == AF_INET6) 2901 WRITE_ONCE(up->encap_rcv, 2902 ipv6_stub->xfrm6_udp_encap_rcv); 2903 else 2904 #endif 2905 WRITE_ONCE(up->encap_rcv, 2906 xfrm4_udp_encap_rcv); 2907 #endif 2908 fallthrough; 2909 case UDP_ENCAP_L2TPINUDP: 2910 WRITE_ONCE(up->encap_type, val); 2911 udp_tunnel_encap_enable(sk); 2912 break; 2913 default: 2914 err = -ENOPROTOOPT; 2915 break; 2916 } 2917 break; 2918 2919 case UDP_NO_CHECK6_TX: 2920 udp_set_no_check6_tx(sk, valbool); 2921 break; 2922 2923 case UDP_NO_CHECK6_RX: 2924 udp_set_no_check6_rx(sk, valbool); 2925 break; 2926 2927 case UDP_SEGMENT: 2928 if (val < 0 || val > USHRT_MAX) 2929 return -EINVAL; 2930 WRITE_ONCE(up->gso_size, val); 2931 break; 2932 2933 case UDP_GRO: 2934 2935 /* when enabling GRO, accept the related GSO packet type */ 2936 if (valbool) 2937 udp_tunnel_encap_enable(sk); 2938 udp_assign_bit(GRO_ENABLED, sk, valbool); 2939 udp_assign_bit(ACCEPT_L4, sk, valbool); 2940 set_xfrm_gro_udp_encap_rcv(up->encap_type, sk->sk_family, sk); 2941 break; 2942 2943 /* 2944 * UDP-Lite's partial checksum coverage (RFC 3828). 2945 */ 2946 /* The sender sets actual checksum coverage length via this option. 2947 * The case coverage > packet length is handled by send module. */ 2948 case UDPLITE_SEND_CSCOV: 2949 if (!is_udplite) /* Disable the option on UDP sockets */ 2950 return -ENOPROTOOPT; 2951 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */ 2952 val = 8; 2953 else if (val > USHRT_MAX) 2954 val = USHRT_MAX; 2955 WRITE_ONCE(up->pcslen, val); 2956 udp_set_bit(UDPLITE_SEND_CC, sk); 2957 break; 2958 2959 /* The receiver specifies a minimum checksum coverage value. To make 2960 * sense, this should be set to at least 8 (as done below). If zero is 2961 * used, this again means full checksum coverage. */ 2962 case UDPLITE_RECV_CSCOV: 2963 if (!is_udplite) /* Disable the option on UDP sockets */ 2964 return -ENOPROTOOPT; 2965 if (val != 0 && val < 8) /* Avoid silly minimal values. */ 2966 val = 8; 2967 else if (val > USHRT_MAX) 2968 val = USHRT_MAX; 2969 WRITE_ONCE(up->pcrlen, val); 2970 udp_set_bit(UDPLITE_RECV_CC, sk); 2971 break; 2972 2973 default: 2974 err = -ENOPROTOOPT; 2975 break; 2976 } 2977 2978 return err; 2979 } 2980 EXPORT_SYMBOL(udp_lib_setsockopt); 2981 2982 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 2983 unsigned int optlen) 2984 { 2985 if (level == SOL_UDP || level == SOL_UDPLITE || level == SOL_SOCKET) 2986 return udp_lib_setsockopt(sk, level, optname, 2987 optval, optlen, 2988 udp_push_pending_frames); 2989 return ip_setsockopt(sk, level, optname, optval, optlen); 2990 } 2991 2992 int udp_lib_getsockopt(struct sock *sk, int level, int optname, 2993 char __user *optval, int __user *optlen) 2994 { 2995 struct udp_sock *up = udp_sk(sk); 2996 int val, len; 2997 2998 if (get_user(len, optlen)) 2999 return -EFAULT; 3000 3001 if (len < 0) 3002 return -EINVAL; 3003 3004 len = min_t(unsigned int, len, sizeof(int)); 3005 3006 switch (optname) { 3007 case UDP_CORK: 3008 val = udp_test_bit(CORK, sk); 3009 break; 3010 3011 case UDP_ENCAP: 3012 val = READ_ONCE(up->encap_type); 3013 break; 3014 3015 case UDP_NO_CHECK6_TX: 3016 val = udp_get_no_check6_tx(sk); 3017 break; 3018 3019 case UDP_NO_CHECK6_RX: 3020 val = udp_get_no_check6_rx(sk); 3021 break; 3022 3023 case UDP_SEGMENT: 3024 val = READ_ONCE(up->gso_size); 3025 break; 3026 3027 case UDP_GRO: 3028 val = udp_test_bit(GRO_ENABLED, sk); 3029 break; 3030 3031 /* The following two cannot be changed on UDP sockets, the return is 3032 * always 0 (which corresponds to the full checksum coverage of UDP). */ 3033 case UDPLITE_SEND_CSCOV: 3034 val = READ_ONCE(up->pcslen); 3035 break; 3036 3037 case UDPLITE_RECV_CSCOV: 3038 val = READ_ONCE(up->pcrlen); 3039 break; 3040 3041 default: 3042 return -ENOPROTOOPT; 3043 } 3044 3045 if (put_user(len, optlen)) 3046 return -EFAULT; 3047 if (copy_to_user(optval, &val, len)) 3048 return -EFAULT; 3049 return 0; 3050 } 3051 EXPORT_SYMBOL(udp_lib_getsockopt); 3052 3053 int udp_getsockopt(struct sock *sk, int level, int optname, 3054 char __user *optval, int __user *optlen) 3055 { 3056 if (level == SOL_UDP || level == SOL_UDPLITE) 3057 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 3058 return ip_getsockopt(sk, level, optname, optval, optlen); 3059 } 3060 3061 /** 3062 * udp_poll - wait for a UDP event. 3063 * @file: - file struct 3064 * @sock: - socket 3065 * @wait: - poll table 3066 * 3067 * This is same as datagram poll, except for the special case of 3068 * blocking sockets. If application is using a blocking fd 3069 * and a packet with checksum error is in the queue; 3070 * then it could get return from select indicating data available 3071 * but then block when reading it. Add special case code 3072 * to work around these arguably broken applications. 3073 */ 3074 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait) 3075 { 3076 __poll_t mask = datagram_poll(file, sock, wait); 3077 struct sock *sk = sock->sk; 3078 3079 if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue)) 3080 mask |= EPOLLIN | EPOLLRDNORM; 3081 3082 /* Check for false positives due to checksum errors */ 3083 if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) && 3084 !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1) 3085 mask &= ~(EPOLLIN | EPOLLRDNORM); 3086 3087 /* psock ingress_msg queue should not contain any bad checksum frames */ 3088 if (sk_is_readable(sk)) 3089 mask |= EPOLLIN | EPOLLRDNORM; 3090 return mask; 3091 3092 } 3093 EXPORT_SYMBOL(udp_poll); 3094 3095 int udp_abort(struct sock *sk, int err) 3096 { 3097 if (!has_current_bpf_ctx()) 3098 lock_sock(sk); 3099 3100 /* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing 3101 * with close() 3102 */ 3103 if (sock_flag(sk, SOCK_DEAD)) 3104 goto out; 3105 3106 sk->sk_err = err; 3107 sk_error_report(sk); 3108 __udp_disconnect(sk, 0); 3109 3110 out: 3111 if (!has_current_bpf_ctx()) 3112 release_sock(sk); 3113 3114 return 0; 3115 } 3116 EXPORT_SYMBOL_GPL(udp_abort); 3117 3118 struct proto udp_prot = { 3119 .name = "UDP", 3120 .owner = THIS_MODULE, 3121 .close = udp_lib_close, 3122 .pre_connect = udp_pre_connect, 3123 .connect = udp_connect, 3124 .disconnect = udp_disconnect, 3125 .ioctl = udp_ioctl, 3126 .init = udp_init_sock, 3127 .destroy = udp_destroy_sock, 3128 .setsockopt = udp_setsockopt, 3129 .getsockopt = udp_getsockopt, 3130 .sendmsg = udp_sendmsg, 3131 .recvmsg = udp_recvmsg, 3132 .splice_eof = udp_splice_eof, 3133 .release_cb = ip4_datagram_release_cb, 3134 .hash = udp_lib_hash, 3135 .unhash = udp_lib_unhash, 3136 .rehash = udp_v4_rehash, 3137 .get_port = udp_v4_get_port, 3138 .put_port = udp_lib_unhash, 3139 #ifdef CONFIG_BPF_SYSCALL 3140 .psock_update_sk_prot = udp_bpf_update_proto, 3141 #endif 3142 .memory_allocated = &udp_memory_allocated, 3143 .per_cpu_fw_alloc = &udp_memory_per_cpu_fw_alloc, 3144 3145 .sysctl_mem = sysctl_udp_mem, 3146 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_udp_wmem_min), 3147 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_udp_rmem_min), 3148 .obj_size = sizeof(struct udp_sock), 3149 .h.udp_table = NULL, 3150 .diag_destroy = udp_abort, 3151 }; 3152 EXPORT_SYMBOL(udp_prot); 3153 3154 /* ------------------------------------------------------------------------ */ 3155 #ifdef CONFIG_PROC_FS 3156 3157 static unsigned short seq_file_family(const struct seq_file *seq); 3158 static bool seq_sk_match(struct seq_file *seq, const struct sock *sk) 3159 { 3160 unsigned short family = seq_file_family(seq); 3161 3162 /* AF_UNSPEC is used as a match all */ 3163 return ((family == AF_UNSPEC || family == sk->sk_family) && 3164 net_eq(sock_net(sk), seq_file_net(seq))); 3165 } 3166 3167 #ifdef CONFIG_BPF_SYSCALL 3168 static const struct seq_operations bpf_iter_udp_seq_ops; 3169 #endif 3170 static struct udp_table *udp_get_table_seq(struct seq_file *seq, 3171 struct net *net) 3172 { 3173 const struct udp_seq_afinfo *afinfo; 3174 3175 #ifdef CONFIG_BPF_SYSCALL 3176 if (seq->op == &bpf_iter_udp_seq_ops) 3177 return net->ipv4.udp_table; 3178 #endif 3179 3180 afinfo = pde_data(file_inode(seq->file)); 3181 return afinfo->udp_table ? : net->ipv4.udp_table; 3182 } 3183 3184 static struct sock *udp_get_first(struct seq_file *seq, int start) 3185 { 3186 struct udp_iter_state *state = seq->private; 3187 struct net *net = seq_file_net(seq); 3188 struct udp_table *udptable; 3189 struct sock *sk; 3190 3191 udptable = udp_get_table_seq(seq, net); 3192 3193 for (state->bucket = start; state->bucket <= udptable->mask; 3194 ++state->bucket) { 3195 struct udp_hslot *hslot = &udptable->hash[state->bucket]; 3196 3197 if (hlist_empty(&hslot->head)) 3198 continue; 3199 3200 spin_lock_bh(&hslot->lock); 3201 sk_for_each(sk, &hslot->head) { 3202 if (seq_sk_match(seq, sk)) 3203 goto found; 3204 } 3205 spin_unlock_bh(&hslot->lock); 3206 } 3207 sk = NULL; 3208 found: 3209 return sk; 3210 } 3211 3212 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk) 3213 { 3214 struct udp_iter_state *state = seq->private; 3215 struct net *net = seq_file_net(seq); 3216 struct udp_table *udptable; 3217 3218 do { 3219 sk = sk_next(sk); 3220 } while (sk && !seq_sk_match(seq, sk)); 3221 3222 if (!sk) { 3223 udptable = udp_get_table_seq(seq, net); 3224 3225 if (state->bucket <= udptable->mask) 3226 spin_unlock_bh(&udptable->hash[state->bucket].lock); 3227 3228 return udp_get_first(seq, state->bucket + 1); 3229 } 3230 return sk; 3231 } 3232 3233 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos) 3234 { 3235 struct sock *sk = udp_get_first(seq, 0); 3236 3237 if (sk) 3238 while (pos && (sk = udp_get_next(seq, sk)) != NULL) 3239 --pos; 3240 return pos ? NULL : sk; 3241 } 3242 3243 void *udp_seq_start(struct seq_file *seq, loff_t *pos) 3244 { 3245 struct udp_iter_state *state = seq->private; 3246 state->bucket = MAX_UDP_PORTS; 3247 3248 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN; 3249 } 3250 EXPORT_SYMBOL(udp_seq_start); 3251 3252 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3253 { 3254 struct sock *sk; 3255 3256 if (v == SEQ_START_TOKEN) 3257 sk = udp_get_idx(seq, 0); 3258 else 3259 sk = udp_get_next(seq, v); 3260 3261 ++*pos; 3262 return sk; 3263 } 3264 EXPORT_SYMBOL(udp_seq_next); 3265 3266 void udp_seq_stop(struct seq_file *seq, void *v) 3267 { 3268 struct udp_iter_state *state = seq->private; 3269 struct udp_table *udptable; 3270 3271 udptable = udp_get_table_seq(seq, seq_file_net(seq)); 3272 3273 if (state->bucket <= udptable->mask) 3274 spin_unlock_bh(&udptable->hash[state->bucket].lock); 3275 } 3276 EXPORT_SYMBOL(udp_seq_stop); 3277 3278 /* ------------------------------------------------------------------------ */ 3279 static void udp4_format_sock(struct sock *sp, struct seq_file *f, 3280 int bucket) 3281 { 3282 struct inet_sock *inet = inet_sk(sp); 3283 __be32 dest = inet->inet_daddr; 3284 __be32 src = inet->inet_rcv_saddr; 3285 __u16 destp = ntohs(inet->inet_dport); 3286 __u16 srcp = ntohs(inet->inet_sport); 3287 3288 seq_printf(f, "%5d: %08X:%04X %08X:%04X" 3289 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u", 3290 bucket, src, srcp, dest, destp, sp->sk_state, 3291 sk_wmem_alloc_get(sp), 3292 udp_rqueue_get(sp), 3293 0, 0L, 0, 3294 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)), 3295 0, sock_i_ino(sp), 3296 refcount_read(&sp->sk_refcnt), sp, 3297 atomic_read(&sp->sk_drops)); 3298 } 3299 3300 int udp4_seq_show(struct seq_file *seq, void *v) 3301 { 3302 seq_setwidth(seq, 127); 3303 if (v == SEQ_START_TOKEN) 3304 seq_puts(seq, " sl local_address rem_address st tx_queue " 3305 "rx_queue tr tm->when retrnsmt uid timeout " 3306 "inode ref pointer drops"); 3307 else { 3308 struct udp_iter_state *state = seq->private; 3309 3310 udp4_format_sock(v, seq, state->bucket); 3311 } 3312 seq_pad(seq, '\n'); 3313 return 0; 3314 } 3315 3316 #ifdef CONFIG_BPF_SYSCALL 3317 struct bpf_iter__udp { 3318 __bpf_md_ptr(struct bpf_iter_meta *, meta); 3319 __bpf_md_ptr(struct udp_sock *, udp_sk); 3320 uid_t uid __aligned(8); 3321 int bucket __aligned(8); 3322 }; 3323 3324 struct bpf_udp_iter_state { 3325 struct udp_iter_state state; 3326 unsigned int cur_sk; 3327 unsigned int end_sk; 3328 unsigned int max_sk; 3329 int offset; 3330 struct sock **batch; 3331 bool st_bucket_done; 3332 }; 3333 3334 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter, 3335 unsigned int new_batch_sz); 3336 static struct sock *bpf_iter_udp_batch(struct seq_file *seq) 3337 { 3338 struct bpf_udp_iter_state *iter = seq->private; 3339 struct udp_iter_state *state = &iter->state; 3340 struct net *net = seq_file_net(seq); 3341 int resume_bucket, resume_offset; 3342 struct udp_table *udptable; 3343 unsigned int batch_sks = 0; 3344 bool resized = false; 3345 struct sock *sk; 3346 3347 resume_bucket = state->bucket; 3348 resume_offset = iter->offset; 3349 3350 /* The current batch is done, so advance the bucket. */ 3351 if (iter->st_bucket_done) 3352 state->bucket++; 3353 3354 udptable = udp_get_table_seq(seq, net); 3355 3356 again: 3357 /* New batch for the next bucket. 3358 * Iterate over the hash table to find a bucket with sockets matching 3359 * the iterator attributes, and return the first matching socket from 3360 * the bucket. The remaining matched sockets from the bucket are batched 3361 * before releasing the bucket lock. This allows BPF programs that are 3362 * called in seq_show to acquire the bucket lock if needed. 3363 */ 3364 iter->cur_sk = 0; 3365 iter->end_sk = 0; 3366 iter->st_bucket_done = false; 3367 batch_sks = 0; 3368 3369 for (; state->bucket <= udptable->mask; state->bucket++) { 3370 struct udp_hslot *hslot2 = &udptable->hash2[state->bucket].hslot; 3371 3372 if (hlist_empty(&hslot2->head)) 3373 continue; 3374 3375 iter->offset = 0; 3376 spin_lock_bh(&hslot2->lock); 3377 udp_portaddr_for_each_entry(sk, &hslot2->head) { 3378 if (seq_sk_match(seq, sk)) { 3379 /* Resume from the last iterated socket at the 3380 * offset in the bucket before iterator was stopped. 3381 */ 3382 if (state->bucket == resume_bucket && 3383 iter->offset < resume_offset) { 3384 ++iter->offset; 3385 continue; 3386 } 3387 if (iter->end_sk < iter->max_sk) { 3388 sock_hold(sk); 3389 iter->batch[iter->end_sk++] = sk; 3390 } 3391 batch_sks++; 3392 } 3393 } 3394 spin_unlock_bh(&hslot2->lock); 3395 3396 if (iter->end_sk) 3397 break; 3398 } 3399 3400 /* All done: no batch made. */ 3401 if (!iter->end_sk) 3402 return NULL; 3403 3404 if (iter->end_sk == batch_sks) { 3405 /* Batching is done for the current bucket; return the first 3406 * socket to be iterated from the batch. 3407 */ 3408 iter->st_bucket_done = true; 3409 goto done; 3410 } 3411 if (!resized && !bpf_iter_udp_realloc_batch(iter, batch_sks * 3 / 2)) { 3412 resized = true; 3413 /* After allocating a larger batch, retry one more time to grab 3414 * the whole bucket. 3415 */ 3416 goto again; 3417 } 3418 done: 3419 return iter->batch[0]; 3420 } 3421 3422 static void *bpf_iter_udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3423 { 3424 struct bpf_udp_iter_state *iter = seq->private; 3425 struct sock *sk; 3426 3427 /* Whenever seq_next() is called, the iter->cur_sk is 3428 * done with seq_show(), so unref the iter->cur_sk. 3429 */ 3430 if (iter->cur_sk < iter->end_sk) { 3431 sock_put(iter->batch[iter->cur_sk++]); 3432 ++iter->offset; 3433 } 3434 3435 /* After updating iter->cur_sk, check if there are more sockets 3436 * available in the current bucket batch. 3437 */ 3438 if (iter->cur_sk < iter->end_sk) 3439 sk = iter->batch[iter->cur_sk]; 3440 else 3441 /* Prepare a new batch. */ 3442 sk = bpf_iter_udp_batch(seq); 3443 3444 ++*pos; 3445 return sk; 3446 } 3447 3448 static void *bpf_iter_udp_seq_start(struct seq_file *seq, loff_t *pos) 3449 { 3450 /* bpf iter does not support lseek, so it always 3451 * continue from where it was stop()-ped. 3452 */ 3453 if (*pos) 3454 return bpf_iter_udp_batch(seq); 3455 3456 return SEQ_START_TOKEN; 3457 } 3458 3459 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta, 3460 struct udp_sock *udp_sk, uid_t uid, int bucket) 3461 { 3462 struct bpf_iter__udp ctx; 3463 3464 meta->seq_num--; /* skip SEQ_START_TOKEN */ 3465 ctx.meta = meta; 3466 ctx.udp_sk = udp_sk; 3467 ctx.uid = uid; 3468 ctx.bucket = bucket; 3469 return bpf_iter_run_prog(prog, &ctx); 3470 } 3471 3472 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v) 3473 { 3474 struct udp_iter_state *state = seq->private; 3475 struct bpf_iter_meta meta; 3476 struct bpf_prog *prog; 3477 struct sock *sk = v; 3478 uid_t uid; 3479 int ret; 3480 3481 if (v == SEQ_START_TOKEN) 3482 return 0; 3483 3484 lock_sock(sk); 3485 3486 if (unlikely(sk_unhashed(sk))) { 3487 ret = SEQ_SKIP; 3488 goto unlock; 3489 } 3490 3491 uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk)); 3492 meta.seq = seq; 3493 prog = bpf_iter_get_info(&meta, false); 3494 ret = udp_prog_seq_show(prog, &meta, v, uid, state->bucket); 3495 3496 unlock: 3497 release_sock(sk); 3498 return ret; 3499 } 3500 3501 static void bpf_iter_udp_put_batch(struct bpf_udp_iter_state *iter) 3502 { 3503 while (iter->cur_sk < iter->end_sk) 3504 sock_put(iter->batch[iter->cur_sk++]); 3505 } 3506 3507 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v) 3508 { 3509 struct bpf_udp_iter_state *iter = seq->private; 3510 struct bpf_iter_meta meta; 3511 struct bpf_prog *prog; 3512 3513 if (!v) { 3514 meta.seq = seq; 3515 prog = bpf_iter_get_info(&meta, true); 3516 if (prog) 3517 (void)udp_prog_seq_show(prog, &meta, v, 0, 0); 3518 } 3519 3520 if (iter->cur_sk < iter->end_sk) { 3521 bpf_iter_udp_put_batch(iter); 3522 iter->st_bucket_done = false; 3523 } 3524 } 3525 3526 static const struct seq_operations bpf_iter_udp_seq_ops = { 3527 .start = bpf_iter_udp_seq_start, 3528 .next = bpf_iter_udp_seq_next, 3529 .stop = bpf_iter_udp_seq_stop, 3530 .show = bpf_iter_udp_seq_show, 3531 }; 3532 #endif 3533 3534 static unsigned short seq_file_family(const struct seq_file *seq) 3535 { 3536 const struct udp_seq_afinfo *afinfo; 3537 3538 #ifdef CONFIG_BPF_SYSCALL 3539 /* BPF iterator: bpf programs to filter sockets. */ 3540 if (seq->op == &bpf_iter_udp_seq_ops) 3541 return AF_UNSPEC; 3542 #endif 3543 3544 /* Proc fs iterator */ 3545 afinfo = pde_data(file_inode(seq->file)); 3546 return afinfo->family; 3547 } 3548 3549 const struct seq_operations udp_seq_ops = { 3550 .start = udp_seq_start, 3551 .next = udp_seq_next, 3552 .stop = udp_seq_stop, 3553 .show = udp4_seq_show, 3554 }; 3555 EXPORT_SYMBOL(udp_seq_ops); 3556 3557 static struct udp_seq_afinfo udp4_seq_afinfo = { 3558 .family = AF_INET, 3559 .udp_table = NULL, 3560 }; 3561 3562 static int __net_init udp4_proc_init_net(struct net *net) 3563 { 3564 if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops, 3565 sizeof(struct udp_iter_state), &udp4_seq_afinfo)) 3566 return -ENOMEM; 3567 return 0; 3568 } 3569 3570 static void __net_exit udp4_proc_exit_net(struct net *net) 3571 { 3572 remove_proc_entry("udp", net->proc_net); 3573 } 3574 3575 static struct pernet_operations udp4_net_ops = { 3576 .init = udp4_proc_init_net, 3577 .exit = udp4_proc_exit_net, 3578 }; 3579 3580 int __init udp4_proc_init(void) 3581 { 3582 return register_pernet_subsys(&udp4_net_ops); 3583 } 3584 3585 void udp4_proc_exit(void) 3586 { 3587 unregister_pernet_subsys(&udp4_net_ops); 3588 } 3589 #endif /* CONFIG_PROC_FS */ 3590 3591 static __initdata unsigned long uhash_entries; 3592 static int __init set_uhash_entries(char *str) 3593 { 3594 ssize_t ret; 3595 3596 if (!str) 3597 return 0; 3598 3599 ret = kstrtoul(str, 0, &uhash_entries); 3600 if (ret) 3601 return 0; 3602 3603 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN) 3604 uhash_entries = UDP_HTABLE_SIZE_MIN; 3605 return 1; 3606 } 3607 __setup("uhash_entries=", set_uhash_entries); 3608 3609 void __init udp_table_init(struct udp_table *table, const char *name) 3610 { 3611 unsigned int i, slot_size; 3612 3613 slot_size = sizeof(struct udp_hslot) + sizeof(struct udp_hslot_main) + 3614 udp_hash4_slot_size(); 3615 table->hash = alloc_large_system_hash(name, 3616 slot_size, 3617 uhash_entries, 3618 21, /* one slot per 2 MB */ 3619 0, 3620 &table->log, 3621 &table->mask, 3622 UDP_HTABLE_SIZE_MIN, 3623 UDP_HTABLE_SIZE_MAX); 3624 3625 table->hash2 = (void *)(table->hash + (table->mask + 1)); 3626 for (i = 0; i <= table->mask; i++) { 3627 INIT_HLIST_HEAD(&table->hash[i].head); 3628 table->hash[i].count = 0; 3629 spin_lock_init(&table->hash[i].lock); 3630 } 3631 for (i = 0; i <= table->mask; i++) { 3632 INIT_HLIST_HEAD(&table->hash2[i].hslot.head); 3633 table->hash2[i].hslot.count = 0; 3634 spin_lock_init(&table->hash2[i].hslot.lock); 3635 } 3636 udp_table_hash4_init(table); 3637 } 3638 3639 u32 udp_flow_hashrnd(void) 3640 { 3641 static u32 hashrnd __read_mostly; 3642 3643 net_get_random_once(&hashrnd, sizeof(hashrnd)); 3644 3645 return hashrnd; 3646 } 3647 EXPORT_SYMBOL(udp_flow_hashrnd); 3648 3649 static void __net_init udp_sysctl_init(struct net *net) 3650 { 3651 net->ipv4.sysctl_udp_rmem_min = PAGE_SIZE; 3652 net->ipv4.sysctl_udp_wmem_min = PAGE_SIZE; 3653 3654 #ifdef CONFIG_NET_L3_MASTER_DEV 3655 net->ipv4.sysctl_udp_l3mdev_accept = 0; 3656 #endif 3657 } 3658 3659 static struct udp_table __net_init *udp_pernet_table_alloc(unsigned int hash_entries) 3660 { 3661 struct udp_table *udptable; 3662 unsigned int slot_size; 3663 int i; 3664 3665 udptable = kmalloc(sizeof(*udptable), GFP_KERNEL); 3666 if (!udptable) 3667 goto out; 3668 3669 slot_size = sizeof(struct udp_hslot) + sizeof(struct udp_hslot_main) + 3670 udp_hash4_slot_size(); 3671 udptable->hash = vmalloc_huge(hash_entries * slot_size, 3672 GFP_KERNEL_ACCOUNT); 3673 if (!udptable->hash) 3674 goto free_table; 3675 3676 udptable->hash2 = (void *)(udptable->hash + hash_entries); 3677 udptable->mask = hash_entries - 1; 3678 udptable->log = ilog2(hash_entries); 3679 3680 for (i = 0; i < hash_entries; i++) { 3681 INIT_HLIST_HEAD(&udptable->hash[i].head); 3682 udptable->hash[i].count = 0; 3683 spin_lock_init(&udptable->hash[i].lock); 3684 3685 INIT_HLIST_HEAD(&udptable->hash2[i].hslot.head); 3686 udptable->hash2[i].hslot.count = 0; 3687 spin_lock_init(&udptable->hash2[i].hslot.lock); 3688 } 3689 udp_table_hash4_init(udptable); 3690 3691 return udptable; 3692 3693 free_table: 3694 kfree(udptable); 3695 out: 3696 return NULL; 3697 } 3698 3699 static void __net_exit udp_pernet_table_free(struct net *net) 3700 { 3701 struct udp_table *udptable = net->ipv4.udp_table; 3702 3703 if (udptable == &udp_table) 3704 return; 3705 3706 kvfree(udptable->hash); 3707 kfree(udptable); 3708 } 3709 3710 static void __net_init udp_set_table(struct net *net) 3711 { 3712 struct udp_table *udptable; 3713 unsigned int hash_entries; 3714 struct net *old_net; 3715 3716 if (net_eq(net, &init_net)) 3717 goto fallback; 3718 3719 old_net = current->nsproxy->net_ns; 3720 hash_entries = READ_ONCE(old_net->ipv4.sysctl_udp_child_hash_entries); 3721 if (!hash_entries) 3722 goto fallback; 3723 3724 /* Set min to keep the bitmap on stack in udp_lib_get_port() */ 3725 if (hash_entries < UDP_HTABLE_SIZE_MIN_PERNET) 3726 hash_entries = UDP_HTABLE_SIZE_MIN_PERNET; 3727 else 3728 hash_entries = roundup_pow_of_two(hash_entries); 3729 3730 udptable = udp_pernet_table_alloc(hash_entries); 3731 if (udptable) { 3732 net->ipv4.udp_table = udptable; 3733 } else { 3734 pr_warn("Failed to allocate UDP hash table (entries: %u) " 3735 "for a netns, fallback to the global one\n", 3736 hash_entries); 3737 fallback: 3738 net->ipv4.udp_table = &udp_table; 3739 } 3740 } 3741 3742 static int __net_init udp_pernet_init(struct net *net) 3743 { 3744 udp_sysctl_init(net); 3745 udp_set_table(net); 3746 3747 return 0; 3748 } 3749 3750 static void __net_exit udp_pernet_exit(struct net *net) 3751 { 3752 udp_pernet_table_free(net); 3753 } 3754 3755 static struct pernet_operations __net_initdata udp_sysctl_ops = { 3756 .init = udp_pernet_init, 3757 .exit = udp_pernet_exit, 3758 }; 3759 3760 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3761 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta, 3762 struct udp_sock *udp_sk, uid_t uid, int bucket) 3763 3764 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter, 3765 unsigned int new_batch_sz) 3766 { 3767 struct sock **new_batch; 3768 3769 new_batch = kvmalloc_array(new_batch_sz, sizeof(*new_batch), 3770 GFP_USER | __GFP_NOWARN); 3771 if (!new_batch) 3772 return -ENOMEM; 3773 3774 bpf_iter_udp_put_batch(iter); 3775 kvfree(iter->batch); 3776 iter->batch = new_batch; 3777 iter->max_sk = new_batch_sz; 3778 3779 return 0; 3780 } 3781 3782 #define INIT_BATCH_SZ 16 3783 3784 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux) 3785 { 3786 struct bpf_udp_iter_state *iter = priv_data; 3787 int ret; 3788 3789 ret = bpf_iter_init_seq_net(priv_data, aux); 3790 if (ret) 3791 return ret; 3792 3793 ret = bpf_iter_udp_realloc_batch(iter, INIT_BATCH_SZ); 3794 if (ret) 3795 bpf_iter_fini_seq_net(priv_data); 3796 3797 return ret; 3798 } 3799 3800 static void bpf_iter_fini_udp(void *priv_data) 3801 { 3802 struct bpf_udp_iter_state *iter = priv_data; 3803 3804 bpf_iter_fini_seq_net(priv_data); 3805 kvfree(iter->batch); 3806 } 3807 3808 static const struct bpf_iter_seq_info udp_seq_info = { 3809 .seq_ops = &bpf_iter_udp_seq_ops, 3810 .init_seq_private = bpf_iter_init_udp, 3811 .fini_seq_private = bpf_iter_fini_udp, 3812 .seq_priv_size = sizeof(struct bpf_udp_iter_state), 3813 }; 3814 3815 static struct bpf_iter_reg udp_reg_info = { 3816 .target = "udp", 3817 .ctx_arg_info_size = 1, 3818 .ctx_arg_info = { 3819 { offsetof(struct bpf_iter__udp, udp_sk), 3820 PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED }, 3821 }, 3822 .seq_info = &udp_seq_info, 3823 }; 3824 3825 static void __init bpf_iter_register(void) 3826 { 3827 udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP]; 3828 if (bpf_iter_reg_target(&udp_reg_info)) 3829 pr_warn("Warning: could not register bpf iterator udp\n"); 3830 } 3831 #endif 3832 3833 void __init udp_init(void) 3834 { 3835 unsigned long limit; 3836 unsigned int i; 3837 3838 udp_table_init(&udp_table, "UDP"); 3839 limit = nr_free_buffer_pages() / 8; 3840 limit = max(limit, 128UL); 3841 sysctl_udp_mem[0] = limit / 4 * 3; 3842 sysctl_udp_mem[1] = limit; 3843 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2; 3844 3845 /* 16 spinlocks per cpu */ 3846 udp_busylocks_log = ilog2(nr_cpu_ids) + 4; 3847 udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log, 3848 GFP_KERNEL); 3849 if (!udp_busylocks) 3850 panic("UDP: failed to alloc udp_busylocks\n"); 3851 for (i = 0; i < (1U << udp_busylocks_log); i++) 3852 spin_lock_init(udp_busylocks + i); 3853 3854 if (register_pernet_subsys(&udp_sysctl_ops)) 3855 panic("UDP: failed to init sysctl parameters.\n"); 3856 3857 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3858 bpf_iter_register(); 3859 #endif 3860 } 3861