xref: /linux/net/ipv4/udp.c (revision 7a5f93ea5862da91488975acaa0c7abd508f192b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		The User Datagram Protocol (UDP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
12  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
13  *		Hirokazu Takahashi, <taka@valinux.co.jp>
14  *
15  * Fixes:
16  *		Alan Cox	:	verify_area() calls
17  *		Alan Cox	: 	stopped close while in use off icmp
18  *					messages. Not a fix but a botch that
19  *					for udp at least is 'valid'.
20  *		Alan Cox	:	Fixed icmp handling properly
21  *		Alan Cox	: 	Correct error for oversized datagrams
22  *		Alan Cox	:	Tidied select() semantics.
23  *		Alan Cox	:	udp_err() fixed properly, also now
24  *					select and read wake correctly on errors
25  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
26  *		Alan Cox	:	UDP can count its memory
27  *		Alan Cox	:	send to an unknown connection causes
28  *					an ECONNREFUSED off the icmp, but
29  *					does NOT close.
30  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
31  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
32  *					bug no longer crashes it.
33  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
34  *		Alan Cox	:	Uses skb_free_datagram
35  *		Alan Cox	:	Added get/set sockopt support.
36  *		Alan Cox	:	Broadcasting without option set returns EACCES.
37  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
38  *		Alan Cox	:	Use ip_tos and ip_ttl
39  *		Alan Cox	:	SNMP Mibs
40  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
41  *		Matt Dillon	:	UDP length checks.
42  *		Alan Cox	:	Smarter af_inet used properly.
43  *		Alan Cox	:	Use new kernel side addressing.
44  *		Alan Cox	:	Incorrect return on truncated datagram receive.
45  *	Arnt Gulbrandsen 	:	New udp_send and stuff
46  *		Alan Cox	:	Cache last socket
47  *		Alan Cox	:	Route cache
48  *		Jon Peatfield	:	Minor efficiency fix to sendto().
49  *		Mike Shaver	:	RFC1122 checks.
50  *		Alan Cox	:	Nonblocking error fix.
51  *	Willy Konynenberg	:	Transparent proxying support.
52  *		Mike McLagan	:	Routing by source
53  *		David S. Miller	:	New socket lookup architecture.
54  *					Last socket cache retained as it
55  *					does have a high hit rate.
56  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
57  *		Andi Kleen	:	Some cleanups, cache destination entry
58  *					for connect.
59  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
60  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
61  *					return ENOTCONN for unconnected sockets (POSIX)
62  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
63  *					bound-to-device socket
64  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
65  *					datagrams.
66  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
67  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
68  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
69  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
70  *					a single port at the same time.
71  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
72  *	James Chapman		:	Add L2TP encapsulation type.
73  */
74 
75 #define pr_fmt(fmt) "UDP: " fmt
76 
77 #include <linux/bpf-cgroup.h>
78 #include <linux/uaccess.h>
79 #include <asm/ioctls.h>
80 #include <linux/memblock.h>
81 #include <linux/highmem.h>
82 #include <linux/types.h>
83 #include <linux/fcntl.h>
84 #include <linux/module.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/igmp.h>
88 #include <linux/inetdevice.h>
89 #include <linux/in.h>
90 #include <linux/errno.h>
91 #include <linux/timer.h>
92 #include <linux/mm.h>
93 #include <linux/inet.h>
94 #include <linux/netdevice.h>
95 #include <linux/slab.h>
96 #include <net/tcp_states.h>
97 #include <linux/skbuff.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <net/net_namespace.h>
101 #include <net/icmp.h>
102 #include <net/inet_hashtables.h>
103 #include <net/ip.h>
104 #include <net/ip_tunnels.h>
105 #include <net/route.h>
106 #include <net/checksum.h>
107 #include <net/gso.h>
108 #include <net/xfrm.h>
109 #include <trace/events/udp.h>
110 #include <linux/static_key.h>
111 #include <linux/btf_ids.h>
112 #include <trace/events/skb.h>
113 #include <net/busy_poll.h>
114 #include "udp_impl.h"
115 #include <net/sock_reuseport.h>
116 #include <net/addrconf.h>
117 #include <net/udp_tunnel.h>
118 #include <net/gro.h>
119 #if IS_ENABLED(CONFIG_IPV6)
120 #include <net/ipv6_stubs.h>
121 #endif
122 
123 struct udp_table udp_table __read_mostly;
124 EXPORT_SYMBOL(udp_table);
125 
126 long sysctl_udp_mem[3] __read_mostly;
127 EXPORT_SYMBOL(sysctl_udp_mem);
128 
129 atomic_long_t udp_memory_allocated ____cacheline_aligned_in_smp;
130 EXPORT_SYMBOL(udp_memory_allocated);
131 DEFINE_PER_CPU(int, udp_memory_per_cpu_fw_alloc);
132 EXPORT_PER_CPU_SYMBOL_GPL(udp_memory_per_cpu_fw_alloc);
133 
134 #define MAX_UDP_PORTS 65536
135 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN_PERNET)
136 
137 static struct udp_table *udp_get_table_prot(struct sock *sk)
138 {
139 	return sk->sk_prot->h.udp_table ? : sock_net(sk)->ipv4.udp_table;
140 }
141 
142 static int udp_lib_lport_inuse(struct net *net, __u16 num,
143 			       const struct udp_hslot *hslot,
144 			       unsigned long *bitmap,
145 			       struct sock *sk, unsigned int log)
146 {
147 	struct sock *sk2;
148 	kuid_t uid = sock_i_uid(sk);
149 
150 	sk_for_each(sk2, &hslot->head) {
151 		if (net_eq(sock_net(sk2), net) &&
152 		    sk2 != sk &&
153 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
154 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
155 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
156 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
157 		    inet_rcv_saddr_equal(sk, sk2, true)) {
158 			if (sk2->sk_reuseport && sk->sk_reuseport &&
159 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
160 			    uid_eq(uid, sock_i_uid(sk2))) {
161 				if (!bitmap)
162 					return 0;
163 			} else {
164 				if (!bitmap)
165 					return 1;
166 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
167 					  bitmap);
168 			}
169 		}
170 	}
171 	return 0;
172 }
173 
174 /*
175  * Note: we still hold spinlock of primary hash chain, so no other writer
176  * can insert/delete a socket with local_port == num
177  */
178 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
179 				struct udp_hslot *hslot2,
180 				struct sock *sk)
181 {
182 	struct sock *sk2;
183 	kuid_t uid = sock_i_uid(sk);
184 	int res = 0;
185 
186 	spin_lock(&hslot2->lock);
187 	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
188 		if (net_eq(sock_net(sk2), net) &&
189 		    sk2 != sk &&
190 		    (udp_sk(sk2)->udp_port_hash == num) &&
191 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
192 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
193 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
194 		    inet_rcv_saddr_equal(sk, sk2, true)) {
195 			if (sk2->sk_reuseport && sk->sk_reuseport &&
196 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
197 			    uid_eq(uid, sock_i_uid(sk2))) {
198 				res = 0;
199 			} else {
200 				res = 1;
201 			}
202 			break;
203 		}
204 	}
205 	spin_unlock(&hslot2->lock);
206 	return res;
207 }
208 
209 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
210 {
211 	struct net *net = sock_net(sk);
212 	kuid_t uid = sock_i_uid(sk);
213 	struct sock *sk2;
214 
215 	sk_for_each(sk2, &hslot->head) {
216 		if (net_eq(sock_net(sk2), net) &&
217 		    sk2 != sk &&
218 		    sk2->sk_family == sk->sk_family &&
219 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
220 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
221 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
222 		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
223 		    inet_rcv_saddr_equal(sk, sk2, false)) {
224 			return reuseport_add_sock(sk, sk2,
225 						  inet_rcv_saddr_any(sk));
226 		}
227 	}
228 
229 	return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
230 }
231 
232 /**
233  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
234  *
235  *  @sk:          socket struct in question
236  *  @snum:        port number to look up
237  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
238  *                   with NULL address
239  */
240 int udp_lib_get_port(struct sock *sk, unsigned short snum,
241 		     unsigned int hash2_nulladdr)
242 {
243 	struct udp_table *udptable = udp_get_table_prot(sk);
244 	struct udp_hslot *hslot, *hslot2;
245 	struct net *net = sock_net(sk);
246 	int error = -EADDRINUSE;
247 
248 	if (!snum) {
249 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
250 		unsigned short first, last;
251 		int low, high, remaining;
252 		unsigned int rand;
253 
254 		inet_sk_get_local_port_range(sk, &low, &high);
255 		remaining = (high - low) + 1;
256 
257 		rand = get_random_u32();
258 		first = reciprocal_scale(rand, remaining) + low;
259 		/*
260 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
261 		 */
262 		rand = (rand | 1) * (udptable->mask + 1);
263 		last = first + udptable->mask + 1;
264 		do {
265 			hslot = udp_hashslot(udptable, net, first);
266 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
267 			spin_lock_bh(&hslot->lock);
268 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
269 					    udptable->log);
270 
271 			snum = first;
272 			/*
273 			 * Iterate on all possible values of snum for this hash.
274 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
275 			 * give us randomization and full range coverage.
276 			 */
277 			do {
278 				if (low <= snum && snum <= high &&
279 				    !test_bit(snum >> udptable->log, bitmap) &&
280 				    !inet_is_local_reserved_port(net, snum))
281 					goto found;
282 				snum += rand;
283 			} while (snum != first);
284 			spin_unlock_bh(&hslot->lock);
285 			cond_resched();
286 		} while (++first != last);
287 		goto fail;
288 	} else {
289 		hslot = udp_hashslot(udptable, net, snum);
290 		spin_lock_bh(&hslot->lock);
291 		if (hslot->count > 10) {
292 			int exist;
293 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
294 
295 			slot2          &= udptable->mask;
296 			hash2_nulladdr &= udptable->mask;
297 
298 			hslot2 = udp_hashslot2(udptable, slot2);
299 			if (hslot->count < hslot2->count)
300 				goto scan_primary_hash;
301 
302 			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
303 			if (!exist && (hash2_nulladdr != slot2)) {
304 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
305 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
306 							     sk);
307 			}
308 			if (exist)
309 				goto fail_unlock;
310 			else
311 				goto found;
312 		}
313 scan_primary_hash:
314 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
315 			goto fail_unlock;
316 	}
317 found:
318 	inet_sk(sk)->inet_num = snum;
319 	udp_sk(sk)->udp_port_hash = snum;
320 	udp_sk(sk)->udp_portaddr_hash ^= snum;
321 	if (sk_unhashed(sk)) {
322 		if (sk->sk_reuseport &&
323 		    udp_reuseport_add_sock(sk, hslot)) {
324 			inet_sk(sk)->inet_num = 0;
325 			udp_sk(sk)->udp_port_hash = 0;
326 			udp_sk(sk)->udp_portaddr_hash ^= snum;
327 			goto fail_unlock;
328 		}
329 
330 		sock_set_flag(sk, SOCK_RCU_FREE);
331 
332 		sk_add_node_rcu(sk, &hslot->head);
333 		hslot->count++;
334 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
335 
336 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
337 		spin_lock(&hslot2->lock);
338 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
339 		    sk->sk_family == AF_INET6)
340 			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
341 					   &hslot2->head);
342 		else
343 			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
344 					   &hslot2->head);
345 		hslot2->count++;
346 		spin_unlock(&hslot2->lock);
347 	}
348 
349 	error = 0;
350 fail_unlock:
351 	spin_unlock_bh(&hslot->lock);
352 fail:
353 	return error;
354 }
355 EXPORT_SYMBOL(udp_lib_get_port);
356 
357 int udp_v4_get_port(struct sock *sk, unsigned short snum)
358 {
359 	unsigned int hash2_nulladdr =
360 		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
361 	unsigned int hash2_partial =
362 		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
363 
364 	/* precompute partial secondary hash */
365 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
366 	return udp_lib_get_port(sk, snum, hash2_nulladdr);
367 }
368 
369 static int compute_score(struct sock *sk, const struct net *net,
370 			 __be32 saddr, __be16 sport,
371 			 __be32 daddr, unsigned short hnum,
372 			 int dif, int sdif)
373 {
374 	int score;
375 	struct inet_sock *inet;
376 	bool dev_match;
377 
378 	if (!net_eq(sock_net(sk), net) ||
379 	    udp_sk(sk)->udp_port_hash != hnum ||
380 	    ipv6_only_sock(sk))
381 		return -1;
382 
383 	if (sk->sk_rcv_saddr != daddr)
384 		return -1;
385 
386 	score = (sk->sk_family == PF_INET) ? 2 : 1;
387 
388 	inet = inet_sk(sk);
389 	if (inet->inet_daddr) {
390 		if (inet->inet_daddr != saddr)
391 			return -1;
392 		score += 4;
393 	}
394 
395 	if (inet->inet_dport) {
396 		if (inet->inet_dport != sport)
397 			return -1;
398 		score += 4;
399 	}
400 
401 	dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
402 					dif, sdif);
403 	if (!dev_match)
404 		return -1;
405 	if (sk->sk_bound_dev_if)
406 		score += 4;
407 
408 	if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
409 		score++;
410 	return score;
411 }
412 
413 u32 udp_ehashfn(const struct net *net, const __be32 laddr, const __u16 lport,
414 		const __be32 faddr, const __be16 fport)
415 {
416 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
417 
418 	return __inet_ehashfn(laddr, lport, faddr, fport,
419 			      udp_ehash_secret + net_hash_mix(net));
420 }
421 EXPORT_SYMBOL(udp_ehashfn);
422 
423 /* called with rcu_read_lock() */
424 static struct sock *udp4_lib_lookup2(const struct net *net,
425 				     __be32 saddr, __be16 sport,
426 				     __be32 daddr, unsigned int hnum,
427 				     int dif, int sdif,
428 				     struct udp_hslot *hslot2,
429 				     struct sk_buff *skb)
430 {
431 	struct sock *sk, *result;
432 	int score, badness;
433 	bool need_rescore;
434 
435 	result = NULL;
436 	badness = 0;
437 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
438 		need_rescore = false;
439 rescore:
440 		score = compute_score(need_rescore ? result : sk, net, saddr,
441 				      sport, daddr, hnum, dif, sdif);
442 		if (score > badness) {
443 			badness = score;
444 
445 			if (need_rescore)
446 				continue;
447 
448 			if (sk->sk_state == TCP_ESTABLISHED) {
449 				result = sk;
450 				continue;
451 			}
452 
453 			result = inet_lookup_reuseport(net, sk, skb, sizeof(struct udphdr),
454 						       saddr, sport, daddr, hnum, udp_ehashfn);
455 			if (!result) {
456 				result = sk;
457 				continue;
458 			}
459 
460 			/* Fall back to scoring if group has connections */
461 			if (!reuseport_has_conns(sk))
462 				return result;
463 
464 			/* Reuseport logic returned an error, keep original score. */
465 			if (IS_ERR(result))
466 				continue;
467 
468 			/* compute_score is too long of a function to be
469 			 * inlined, and calling it again here yields
470 			 * measureable overhead for some
471 			 * workloads. Work around it by jumping
472 			 * backwards to rescore 'result'.
473 			 */
474 			need_rescore = true;
475 			goto rescore;
476 		}
477 	}
478 	return result;
479 }
480 
481 #if IS_ENABLED(CONFIG_BASE_SMALL)
482 static struct sock *udp4_lib_lookup4(const struct net *net,
483 				     __be32 saddr, __be16 sport,
484 				     __be32 daddr, unsigned int hnum,
485 				     int dif, int sdif,
486 				     struct udp_table *udptable)
487 {
488 	return NULL;
489 }
490 
491 static void udp_rehash4(struct udp_table *udptable, struct sock *sk,
492 			u16 newhash4)
493 {
494 }
495 
496 static void udp_unhash4(struct udp_table *udptable, struct sock *sk)
497 {
498 }
499 #else /* !CONFIG_BASE_SMALL */
500 static struct sock *udp4_lib_lookup4(const struct net *net,
501 				     __be32 saddr, __be16 sport,
502 				     __be32 daddr, unsigned int hnum,
503 				     int dif, int sdif,
504 				     struct udp_table *udptable)
505 {
506 	const __portpair ports = INET_COMBINED_PORTS(sport, hnum);
507 	const struct hlist_nulls_node *node;
508 	struct udp_hslot *hslot4;
509 	unsigned int hash4, slot;
510 	struct udp_sock *up;
511 	struct sock *sk;
512 
513 	hash4 = udp_ehashfn(net, daddr, hnum, saddr, sport);
514 	slot = hash4 & udptable->mask;
515 	hslot4 = &udptable->hash4[slot];
516 	INET_ADDR_COOKIE(acookie, saddr, daddr);
517 
518 begin:
519 	/* SLAB_TYPESAFE_BY_RCU not used, so we don't need to touch sk_refcnt */
520 	udp_lrpa_for_each_entry_rcu(up, node, &hslot4->nulls_head) {
521 		sk = (struct sock *)up;
522 		if (inet_match(net, sk, acookie, ports, dif, sdif))
523 			return sk;
524 	}
525 
526 	/* if the nulls value we got at the end of this lookup is not the
527 	 * expected one, we must restart lookup. We probably met an item that
528 	 * was moved to another chain due to rehash.
529 	 */
530 	if (get_nulls_value(node) != slot)
531 		goto begin;
532 
533 	return NULL;
534 }
535 
536 /* In hash4, rehash can happen in connect(), where hash4_cnt keeps unchanged. */
537 static void udp_rehash4(struct udp_table *udptable, struct sock *sk,
538 			u16 newhash4)
539 {
540 	struct udp_hslot *hslot4, *nhslot4;
541 
542 	hslot4 = udp_hashslot4(udptable, udp_sk(sk)->udp_lrpa_hash);
543 	nhslot4 = udp_hashslot4(udptable, newhash4);
544 	udp_sk(sk)->udp_lrpa_hash = newhash4;
545 
546 	if (hslot4 != nhslot4) {
547 		spin_lock_bh(&hslot4->lock);
548 		hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_lrpa_node);
549 		hslot4->count--;
550 		spin_unlock_bh(&hslot4->lock);
551 
552 		spin_lock_bh(&nhslot4->lock);
553 		hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_lrpa_node,
554 					 &nhslot4->nulls_head);
555 		nhslot4->count++;
556 		spin_unlock_bh(&nhslot4->lock);
557 	}
558 }
559 
560 static void udp_unhash4(struct udp_table *udptable, struct sock *sk)
561 {
562 	struct udp_hslot *hslot2, *hslot4;
563 
564 	if (udp_hashed4(sk)) {
565 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
566 		hslot4 = udp_hashslot4(udptable, udp_sk(sk)->udp_lrpa_hash);
567 
568 		spin_lock(&hslot4->lock);
569 		hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_lrpa_node);
570 		hslot4->count--;
571 		spin_unlock(&hslot4->lock);
572 
573 		spin_lock(&hslot2->lock);
574 		udp_hash4_dec(hslot2);
575 		spin_unlock(&hslot2->lock);
576 	}
577 }
578 
579 void udp_lib_hash4(struct sock *sk, u16 hash)
580 {
581 	struct udp_hslot *hslot, *hslot2, *hslot4;
582 	struct net *net = sock_net(sk);
583 	struct udp_table *udptable;
584 
585 	/* Connected udp socket can re-connect to another remote address,
586 	 * so rehash4 is needed.
587 	 */
588 	udptable = net->ipv4.udp_table;
589 	if (udp_hashed4(sk)) {
590 		udp_rehash4(udptable, sk, hash);
591 		return;
592 	}
593 
594 	hslot = udp_hashslot(udptable, net, udp_sk(sk)->udp_port_hash);
595 	hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
596 	hslot4 = udp_hashslot4(udptable, hash);
597 	udp_sk(sk)->udp_lrpa_hash = hash;
598 
599 	spin_lock_bh(&hslot->lock);
600 	if (rcu_access_pointer(sk->sk_reuseport_cb))
601 		reuseport_detach_sock(sk);
602 
603 	spin_lock(&hslot4->lock);
604 	hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_lrpa_node,
605 				 &hslot4->nulls_head);
606 	hslot4->count++;
607 	spin_unlock(&hslot4->lock);
608 
609 	spin_lock(&hslot2->lock);
610 	udp_hash4_inc(hslot2);
611 	spin_unlock(&hslot2->lock);
612 
613 	spin_unlock_bh(&hslot->lock);
614 }
615 EXPORT_SYMBOL(udp_lib_hash4);
616 
617 /* call with sock lock */
618 void udp4_hash4(struct sock *sk)
619 {
620 	struct net *net = sock_net(sk);
621 	unsigned int hash;
622 
623 	if (sk_unhashed(sk) || sk->sk_rcv_saddr == htonl(INADDR_ANY))
624 		return;
625 
626 	hash = udp_ehashfn(net, sk->sk_rcv_saddr, sk->sk_num,
627 			   sk->sk_daddr, sk->sk_dport);
628 
629 	udp_lib_hash4(sk, hash);
630 }
631 EXPORT_SYMBOL(udp4_hash4);
632 #endif /* CONFIG_BASE_SMALL */
633 
634 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
635  * harder than this. -DaveM
636  */
637 struct sock *__udp4_lib_lookup(const struct net *net, __be32 saddr,
638 		__be16 sport, __be32 daddr, __be16 dport, int dif,
639 		int sdif, struct udp_table *udptable, struct sk_buff *skb)
640 {
641 	unsigned short hnum = ntohs(dport);
642 	struct udp_hslot *hslot2;
643 	struct sock *result, *sk;
644 	unsigned int hash2;
645 
646 	hash2 = ipv4_portaddr_hash(net, daddr, hnum);
647 	hslot2 = udp_hashslot2(udptable, hash2);
648 
649 	if (udp_has_hash4(hslot2)) {
650 		result = udp4_lib_lookup4(net, saddr, sport, daddr, hnum,
651 					  dif, sdif, udptable);
652 		if (result) /* udp4_lib_lookup4 return sk or NULL */
653 			return result;
654 	}
655 
656 	/* Lookup connected or non-wildcard socket */
657 	result = udp4_lib_lookup2(net, saddr, sport,
658 				  daddr, hnum, dif, sdif,
659 				  hslot2, skb);
660 	if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED)
661 		goto done;
662 
663 	/* Lookup redirect from BPF */
664 	if (static_branch_unlikely(&bpf_sk_lookup_enabled) &&
665 	    udptable == net->ipv4.udp_table) {
666 		sk = inet_lookup_run_sk_lookup(net, IPPROTO_UDP, skb, sizeof(struct udphdr),
667 					       saddr, sport, daddr, hnum, dif,
668 					       udp_ehashfn);
669 		if (sk) {
670 			result = sk;
671 			goto done;
672 		}
673 	}
674 
675 	/* Got non-wildcard socket or error on first lookup */
676 	if (result)
677 		goto done;
678 
679 	/* Lookup wildcard sockets */
680 	hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
681 	hslot2 = udp_hashslot2(udptable, hash2);
682 
683 	result = udp4_lib_lookup2(net, saddr, sport,
684 				  htonl(INADDR_ANY), hnum, dif, sdif,
685 				  hslot2, skb);
686 done:
687 	if (IS_ERR(result))
688 		return NULL;
689 	return result;
690 }
691 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
692 
693 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
694 						 __be16 sport, __be16 dport,
695 						 struct udp_table *udptable)
696 {
697 	const struct iphdr *iph = ip_hdr(skb);
698 
699 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
700 				 iph->daddr, dport, inet_iif(skb),
701 				 inet_sdif(skb), udptable, skb);
702 }
703 
704 struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb,
705 				 __be16 sport, __be16 dport)
706 {
707 	const u16 offset = NAPI_GRO_CB(skb)->network_offsets[skb->encapsulation];
708 	const struct iphdr *iph = (struct iphdr *)(skb->data + offset);
709 	struct net *net = dev_net(skb->dev);
710 	int iif, sdif;
711 
712 	inet_get_iif_sdif(skb, &iif, &sdif);
713 
714 	return __udp4_lib_lookup(net, iph->saddr, sport,
715 				 iph->daddr, dport, iif,
716 				 sdif, net->ipv4.udp_table, NULL);
717 }
718 
719 /* Must be called under rcu_read_lock().
720  * Does increment socket refcount.
721  */
722 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
723 struct sock *udp4_lib_lookup(const struct net *net, __be32 saddr, __be16 sport,
724 			     __be32 daddr, __be16 dport, int dif)
725 {
726 	struct sock *sk;
727 
728 	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
729 			       dif, 0, net->ipv4.udp_table, NULL);
730 	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
731 		sk = NULL;
732 	return sk;
733 }
734 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
735 #endif
736 
737 static inline bool __udp_is_mcast_sock(struct net *net, const struct sock *sk,
738 				       __be16 loc_port, __be32 loc_addr,
739 				       __be16 rmt_port, __be32 rmt_addr,
740 				       int dif, int sdif, unsigned short hnum)
741 {
742 	const struct inet_sock *inet = inet_sk(sk);
743 
744 	if (!net_eq(sock_net(sk), net) ||
745 	    udp_sk(sk)->udp_port_hash != hnum ||
746 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
747 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
748 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
749 	    ipv6_only_sock(sk) ||
750 	    !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
751 		return false;
752 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
753 		return false;
754 	return true;
755 }
756 
757 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
758 EXPORT_SYMBOL(udp_encap_needed_key);
759 
760 #if IS_ENABLED(CONFIG_IPV6)
761 DEFINE_STATIC_KEY_FALSE(udpv6_encap_needed_key);
762 EXPORT_SYMBOL(udpv6_encap_needed_key);
763 #endif
764 
765 void udp_encap_enable(void)
766 {
767 	static_branch_inc(&udp_encap_needed_key);
768 }
769 EXPORT_SYMBOL(udp_encap_enable);
770 
771 void udp_encap_disable(void)
772 {
773 	static_branch_dec(&udp_encap_needed_key);
774 }
775 EXPORT_SYMBOL(udp_encap_disable);
776 
777 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go
778  * through error handlers in encapsulations looking for a match.
779  */
780 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
781 {
782 	int i;
783 
784 	for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
785 		int (*handler)(struct sk_buff *skb, u32 info);
786 		const struct ip_tunnel_encap_ops *encap;
787 
788 		encap = rcu_dereference(iptun_encaps[i]);
789 		if (!encap)
790 			continue;
791 		handler = encap->err_handler;
792 		if (handler && !handler(skb, info))
793 			return 0;
794 	}
795 
796 	return -ENOENT;
797 }
798 
799 /* Try to match ICMP errors to UDP tunnels by looking up a socket without
800  * reversing source and destination port: this will match tunnels that force the
801  * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
802  * lwtunnels might actually break this assumption by being configured with
803  * different destination ports on endpoints, in this case we won't be able to
804  * trace ICMP messages back to them.
805  *
806  * If this doesn't match any socket, probe tunnels with arbitrary destination
807  * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
808  * we've sent packets to won't necessarily match the local destination port.
809  *
810  * Then ask the tunnel implementation to match the error against a valid
811  * association.
812  *
813  * Return an error if we can't find a match, the socket if we need further
814  * processing, zero otherwise.
815  */
816 static struct sock *__udp4_lib_err_encap(struct net *net,
817 					 const struct iphdr *iph,
818 					 struct udphdr *uh,
819 					 struct udp_table *udptable,
820 					 struct sock *sk,
821 					 struct sk_buff *skb, u32 info)
822 {
823 	int (*lookup)(struct sock *sk, struct sk_buff *skb);
824 	int network_offset, transport_offset;
825 	struct udp_sock *up;
826 
827 	network_offset = skb_network_offset(skb);
828 	transport_offset = skb_transport_offset(skb);
829 
830 	/* Network header needs to point to the outer IPv4 header inside ICMP */
831 	skb_reset_network_header(skb);
832 
833 	/* Transport header needs to point to the UDP header */
834 	skb_set_transport_header(skb, iph->ihl << 2);
835 
836 	if (sk) {
837 		up = udp_sk(sk);
838 
839 		lookup = READ_ONCE(up->encap_err_lookup);
840 		if (lookup && lookup(sk, skb))
841 			sk = NULL;
842 
843 		goto out;
844 	}
845 
846 	sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
847 			       iph->saddr, uh->dest, skb->dev->ifindex, 0,
848 			       udptable, NULL);
849 	if (sk) {
850 		up = udp_sk(sk);
851 
852 		lookup = READ_ONCE(up->encap_err_lookup);
853 		if (!lookup || lookup(sk, skb))
854 			sk = NULL;
855 	}
856 
857 out:
858 	if (!sk)
859 		sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
860 
861 	skb_set_transport_header(skb, transport_offset);
862 	skb_set_network_header(skb, network_offset);
863 
864 	return sk;
865 }
866 
867 /*
868  * This routine is called by the ICMP module when it gets some
869  * sort of error condition.  If err < 0 then the socket should
870  * be closed and the error returned to the user.  If err > 0
871  * it's just the icmp type << 8 | icmp code.
872  * Header points to the ip header of the error packet. We move
873  * on past this. Then (as it used to claim before adjustment)
874  * header points to the first 8 bytes of the udp header.  We need
875  * to find the appropriate port.
876  */
877 
878 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
879 {
880 	struct inet_sock *inet;
881 	const struct iphdr *iph = (const struct iphdr *)skb->data;
882 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
883 	const int type = icmp_hdr(skb)->type;
884 	const int code = icmp_hdr(skb)->code;
885 	bool tunnel = false;
886 	struct sock *sk;
887 	int harderr;
888 	int err;
889 	struct net *net = dev_net(skb->dev);
890 
891 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
892 			       iph->saddr, uh->source, skb->dev->ifindex,
893 			       inet_sdif(skb), udptable, NULL);
894 
895 	if (!sk || READ_ONCE(udp_sk(sk)->encap_type)) {
896 		/* No socket for error: try tunnels before discarding */
897 		if (static_branch_unlikely(&udp_encap_needed_key)) {
898 			sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb,
899 						  info);
900 			if (!sk)
901 				return 0;
902 		} else
903 			sk = ERR_PTR(-ENOENT);
904 
905 		if (IS_ERR(sk)) {
906 			__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
907 			return PTR_ERR(sk);
908 		}
909 
910 		tunnel = true;
911 	}
912 
913 	err = 0;
914 	harderr = 0;
915 	inet = inet_sk(sk);
916 
917 	switch (type) {
918 	default:
919 	case ICMP_TIME_EXCEEDED:
920 		err = EHOSTUNREACH;
921 		break;
922 	case ICMP_SOURCE_QUENCH:
923 		goto out;
924 	case ICMP_PARAMETERPROB:
925 		err = EPROTO;
926 		harderr = 1;
927 		break;
928 	case ICMP_DEST_UNREACH:
929 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
930 			ipv4_sk_update_pmtu(skb, sk, info);
931 			if (READ_ONCE(inet->pmtudisc) != IP_PMTUDISC_DONT) {
932 				err = EMSGSIZE;
933 				harderr = 1;
934 				break;
935 			}
936 			goto out;
937 		}
938 		err = EHOSTUNREACH;
939 		if (code <= NR_ICMP_UNREACH) {
940 			harderr = icmp_err_convert[code].fatal;
941 			err = icmp_err_convert[code].errno;
942 		}
943 		break;
944 	case ICMP_REDIRECT:
945 		ipv4_sk_redirect(skb, sk);
946 		goto out;
947 	}
948 
949 	/*
950 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
951 	 *	4.1.3.3.
952 	 */
953 	if (tunnel) {
954 		/* ...not for tunnels though: we don't have a sending socket */
955 		if (udp_sk(sk)->encap_err_rcv)
956 			udp_sk(sk)->encap_err_rcv(sk, skb, err, uh->dest, info,
957 						  (u8 *)(uh+1));
958 		goto out;
959 	}
960 	if (!inet_test_bit(RECVERR, sk)) {
961 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
962 			goto out;
963 	} else
964 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
965 
966 	sk->sk_err = err;
967 	sk_error_report(sk);
968 out:
969 	return 0;
970 }
971 
972 int udp_err(struct sk_buff *skb, u32 info)
973 {
974 	return __udp4_lib_err(skb, info, dev_net(skb->dev)->ipv4.udp_table);
975 }
976 
977 /*
978  * Throw away all pending data and cancel the corking. Socket is locked.
979  */
980 void udp_flush_pending_frames(struct sock *sk)
981 {
982 	struct udp_sock *up = udp_sk(sk);
983 
984 	if (up->pending) {
985 		up->len = 0;
986 		WRITE_ONCE(up->pending, 0);
987 		ip_flush_pending_frames(sk);
988 	}
989 }
990 EXPORT_SYMBOL(udp_flush_pending_frames);
991 
992 /**
993  * 	udp4_hwcsum  -  handle outgoing HW checksumming
994  * 	@skb: 	sk_buff containing the filled-in UDP header
995  * 	        (checksum field must be zeroed out)
996  *	@src:	source IP address
997  *	@dst:	destination IP address
998  */
999 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
1000 {
1001 	struct udphdr *uh = udp_hdr(skb);
1002 	int offset = skb_transport_offset(skb);
1003 	int len = skb->len - offset;
1004 	int hlen = len;
1005 	__wsum csum = 0;
1006 
1007 	if (!skb_has_frag_list(skb)) {
1008 		/*
1009 		 * Only one fragment on the socket.
1010 		 */
1011 		skb->csum_start = skb_transport_header(skb) - skb->head;
1012 		skb->csum_offset = offsetof(struct udphdr, check);
1013 		uh->check = ~csum_tcpudp_magic(src, dst, len,
1014 					       IPPROTO_UDP, 0);
1015 	} else {
1016 		struct sk_buff *frags;
1017 
1018 		/*
1019 		 * HW-checksum won't work as there are two or more
1020 		 * fragments on the socket so that all csums of sk_buffs
1021 		 * should be together
1022 		 */
1023 		skb_walk_frags(skb, frags) {
1024 			csum = csum_add(csum, frags->csum);
1025 			hlen -= frags->len;
1026 		}
1027 
1028 		csum = skb_checksum(skb, offset, hlen, csum);
1029 		skb->ip_summed = CHECKSUM_NONE;
1030 
1031 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
1032 		if (uh->check == 0)
1033 			uh->check = CSUM_MANGLED_0;
1034 	}
1035 }
1036 EXPORT_SYMBOL_GPL(udp4_hwcsum);
1037 
1038 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
1039  * for the simple case like when setting the checksum for a UDP tunnel.
1040  */
1041 void udp_set_csum(bool nocheck, struct sk_buff *skb,
1042 		  __be32 saddr, __be32 daddr, int len)
1043 {
1044 	struct udphdr *uh = udp_hdr(skb);
1045 
1046 	if (nocheck) {
1047 		uh->check = 0;
1048 	} else if (skb_is_gso(skb)) {
1049 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
1050 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
1051 		uh->check = 0;
1052 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
1053 		if (uh->check == 0)
1054 			uh->check = CSUM_MANGLED_0;
1055 	} else {
1056 		skb->ip_summed = CHECKSUM_PARTIAL;
1057 		skb->csum_start = skb_transport_header(skb) - skb->head;
1058 		skb->csum_offset = offsetof(struct udphdr, check);
1059 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
1060 	}
1061 }
1062 EXPORT_SYMBOL(udp_set_csum);
1063 
1064 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
1065 			struct inet_cork *cork)
1066 {
1067 	struct sock *sk = skb->sk;
1068 	struct inet_sock *inet = inet_sk(sk);
1069 	struct udphdr *uh;
1070 	int err;
1071 	int is_udplite = IS_UDPLITE(sk);
1072 	int offset = skb_transport_offset(skb);
1073 	int len = skb->len - offset;
1074 	int datalen = len - sizeof(*uh);
1075 	__wsum csum = 0;
1076 
1077 	/*
1078 	 * Create a UDP header
1079 	 */
1080 	uh = udp_hdr(skb);
1081 	uh->source = inet->inet_sport;
1082 	uh->dest = fl4->fl4_dport;
1083 	uh->len = htons(len);
1084 	uh->check = 0;
1085 
1086 	if (cork->gso_size) {
1087 		const int hlen = skb_network_header_len(skb) +
1088 				 sizeof(struct udphdr);
1089 
1090 		if (hlen + cork->gso_size > cork->fragsize) {
1091 			kfree_skb(skb);
1092 			return -EINVAL;
1093 		}
1094 		if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) {
1095 			kfree_skb(skb);
1096 			return -EINVAL;
1097 		}
1098 		if (sk->sk_no_check_tx) {
1099 			kfree_skb(skb);
1100 			return -EINVAL;
1101 		}
1102 		if (is_udplite || dst_xfrm(skb_dst(skb))) {
1103 			kfree_skb(skb);
1104 			return -EIO;
1105 		}
1106 
1107 		if (datalen > cork->gso_size) {
1108 			skb_shinfo(skb)->gso_size = cork->gso_size;
1109 			skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
1110 			skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
1111 								 cork->gso_size);
1112 
1113 			/* Don't checksum the payload, skb will get segmented */
1114 			goto csum_partial;
1115 		}
1116 	}
1117 
1118 	if (is_udplite)  				 /*     UDP-Lite      */
1119 		csum = udplite_csum(skb);
1120 
1121 	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
1122 
1123 		skb->ip_summed = CHECKSUM_NONE;
1124 		goto send;
1125 
1126 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
1127 csum_partial:
1128 
1129 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
1130 		goto send;
1131 
1132 	} else
1133 		csum = udp_csum(skb);
1134 
1135 	/* add protocol-dependent pseudo-header */
1136 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
1137 				      sk->sk_protocol, csum);
1138 	if (uh->check == 0)
1139 		uh->check = CSUM_MANGLED_0;
1140 
1141 send:
1142 	err = ip_send_skb(sock_net(sk), skb);
1143 	if (err) {
1144 		if (err == -ENOBUFS &&
1145 		    !inet_test_bit(RECVERR, sk)) {
1146 			UDP_INC_STATS(sock_net(sk),
1147 				      UDP_MIB_SNDBUFERRORS, is_udplite);
1148 			err = 0;
1149 		}
1150 	} else
1151 		UDP_INC_STATS(sock_net(sk),
1152 			      UDP_MIB_OUTDATAGRAMS, is_udplite);
1153 	return err;
1154 }
1155 
1156 /*
1157  * Push out all pending data as one UDP datagram. Socket is locked.
1158  */
1159 int udp_push_pending_frames(struct sock *sk)
1160 {
1161 	struct udp_sock  *up = udp_sk(sk);
1162 	struct inet_sock *inet = inet_sk(sk);
1163 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
1164 	struct sk_buff *skb;
1165 	int err = 0;
1166 
1167 	skb = ip_finish_skb(sk, fl4);
1168 	if (!skb)
1169 		goto out;
1170 
1171 	err = udp_send_skb(skb, fl4, &inet->cork.base);
1172 
1173 out:
1174 	up->len = 0;
1175 	WRITE_ONCE(up->pending, 0);
1176 	return err;
1177 }
1178 EXPORT_SYMBOL(udp_push_pending_frames);
1179 
1180 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
1181 {
1182 	switch (cmsg->cmsg_type) {
1183 	case UDP_SEGMENT:
1184 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
1185 			return -EINVAL;
1186 		*gso_size = *(__u16 *)CMSG_DATA(cmsg);
1187 		return 0;
1188 	default:
1189 		return -EINVAL;
1190 	}
1191 }
1192 
1193 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
1194 {
1195 	struct cmsghdr *cmsg;
1196 	bool need_ip = false;
1197 	int err;
1198 
1199 	for_each_cmsghdr(cmsg, msg) {
1200 		if (!CMSG_OK(msg, cmsg))
1201 			return -EINVAL;
1202 
1203 		if (cmsg->cmsg_level != SOL_UDP) {
1204 			need_ip = true;
1205 			continue;
1206 		}
1207 
1208 		err = __udp_cmsg_send(cmsg, gso_size);
1209 		if (err)
1210 			return err;
1211 	}
1212 
1213 	return need_ip;
1214 }
1215 EXPORT_SYMBOL_GPL(udp_cmsg_send);
1216 
1217 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1218 {
1219 	struct inet_sock *inet = inet_sk(sk);
1220 	struct udp_sock *up = udp_sk(sk);
1221 	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1222 	struct flowi4 fl4_stack;
1223 	struct flowi4 *fl4;
1224 	int ulen = len;
1225 	struct ipcm_cookie ipc;
1226 	struct rtable *rt = NULL;
1227 	int free = 0;
1228 	int connected = 0;
1229 	__be32 daddr, faddr, saddr;
1230 	u8 tos, scope;
1231 	__be16 dport;
1232 	int err, is_udplite = IS_UDPLITE(sk);
1233 	int corkreq = udp_test_bit(CORK, sk) || msg->msg_flags & MSG_MORE;
1234 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
1235 	struct sk_buff *skb;
1236 	struct ip_options_data opt_copy;
1237 	int uc_index;
1238 
1239 	if (len > 0xFFFF)
1240 		return -EMSGSIZE;
1241 
1242 	/*
1243 	 *	Check the flags.
1244 	 */
1245 
1246 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1247 		return -EOPNOTSUPP;
1248 
1249 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1250 
1251 	fl4 = &inet->cork.fl.u.ip4;
1252 	if (READ_ONCE(up->pending)) {
1253 		/*
1254 		 * There are pending frames.
1255 		 * The socket lock must be held while it's corked.
1256 		 */
1257 		lock_sock(sk);
1258 		if (likely(up->pending)) {
1259 			if (unlikely(up->pending != AF_INET)) {
1260 				release_sock(sk);
1261 				return -EINVAL;
1262 			}
1263 			goto do_append_data;
1264 		}
1265 		release_sock(sk);
1266 	}
1267 	ulen += sizeof(struct udphdr);
1268 
1269 	/*
1270 	 *	Get and verify the address.
1271 	 */
1272 	if (usin) {
1273 		if (msg->msg_namelen < sizeof(*usin))
1274 			return -EINVAL;
1275 		if (usin->sin_family != AF_INET) {
1276 			if (usin->sin_family != AF_UNSPEC)
1277 				return -EAFNOSUPPORT;
1278 		}
1279 
1280 		daddr = usin->sin_addr.s_addr;
1281 		dport = usin->sin_port;
1282 		if (dport == 0)
1283 			return -EINVAL;
1284 	} else {
1285 		if (sk->sk_state != TCP_ESTABLISHED)
1286 			return -EDESTADDRREQ;
1287 		daddr = inet->inet_daddr;
1288 		dport = inet->inet_dport;
1289 		/* Open fast path for connected socket.
1290 		   Route will not be used, if at least one option is set.
1291 		 */
1292 		connected = 1;
1293 	}
1294 
1295 	ipcm_init_sk(&ipc, inet);
1296 	ipc.gso_size = READ_ONCE(up->gso_size);
1297 
1298 	if (msg->msg_controllen) {
1299 		err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1300 		if (err > 0) {
1301 			err = ip_cmsg_send(sk, msg, &ipc,
1302 					   sk->sk_family == AF_INET6);
1303 			connected = 0;
1304 		}
1305 		if (unlikely(err < 0)) {
1306 			kfree(ipc.opt);
1307 			return err;
1308 		}
1309 		if (ipc.opt)
1310 			free = 1;
1311 	}
1312 	if (!ipc.opt) {
1313 		struct ip_options_rcu *inet_opt;
1314 
1315 		rcu_read_lock();
1316 		inet_opt = rcu_dereference(inet->inet_opt);
1317 		if (inet_opt) {
1318 			memcpy(&opt_copy, inet_opt,
1319 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
1320 			ipc.opt = &opt_copy.opt;
1321 		}
1322 		rcu_read_unlock();
1323 	}
1324 
1325 	if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) {
1326 		err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1327 					    (struct sockaddr *)usin,
1328 					    &msg->msg_namelen,
1329 					    &ipc.addr);
1330 		if (err)
1331 			goto out_free;
1332 		if (usin) {
1333 			if (usin->sin_port == 0) {
1334 				/* BPF program set invalid port. Reject it. */
1335 				err = -EINVAL;
1336 				goto out_free;
1337 			}
1338 			daddr = usin->sin_addr.s_addr;
1339 			dport = usin->sin_port;
1340 		}
1341 	}
1342 
1343 	saddr = ipc.addr;
1344 	ipc.addr = faddr = daddr;
1345 
1346 	if (ipc.opt && ipc.opt->opt.srr) {
1347 		if (!daddr) {
1348 			err = -EINVAL;
1349 			goto out_free;
1350 		}
1351 		faddr = ipc.opt->opt.faddr;
1352 		connected = 0;
1353 	}
1354 	tos = get_rttos(&ipc, inet);
1355 	scope = ip_sendmsg_scope(inet, &ipc, msg);
1356 	if (scope == RT_SCOPE_LINK)
1357 		connected = 0;
1358 
1359 	uc_index = READ_ONCE(inet->uc_index);
1360 	if (ipv4_is_multicast(daddr)) {
1361 		if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1362 			ipc.oif = READ_ONCE(inet->mc_index);
1363 		if (!saddr)
1364 			saddr = READ_ONCE(inet->mc_addr);
1365 		connected = 0;
1366 	} else if (!ipc.oif) {
1367 		ipc.oif = uc_index;
1368 	} else if (ipv4_is_lbcast(daddr) && uc_index) {
1369 		/* oif is set, packet is to local broadcast and
1370 		 * uc_index is set. oif is most likely set
1371 		 * by sk_bound_dev_if. If uc_index != oif check if the
1372 		 * oif is an L3 master and uc_index is an L3 slave.
1373 		 * If so, we want to allow the send using the uc_index.
1374 		 */
1375 		if (ipc.oif != uc_index &&
1376 		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1377 							      uc_index)) {
1378 			ipc.oif = uc_index;
1379 		}
1380 	}
1381 
1382 	if (connected)
1383 		rt = dst_rtable(sk_dst_check(sk, 0));
1384 
1385 	if (!rt) {
1386 		struct net *net = sock_net(sk);
1387 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1388 
1389 		fl4 = &fl4_stack;
1390 
1391 		flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos, scope,
1392 				   sk->sk_protocol, flow_flags, faddr, saddr,
1393 				   dport, inet->inet_sport, sk->sk_uid);
1394 
1395 		security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
1396 		rt = ip_route_output_flow(net, fl4, sk);
1397 		if (IS_ERR(rt)) {
1398 			err = PTR_ERR(rt);
1399 			rt = NULL;
1400 			if (err == -ENETUNREACH)
1401 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1402 			goto out;
1403 		}
1404 
1405 		err = -EACCES;
1406 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1407 		    !sock_flag(sk, SOCK_BROADCAST))
1408 			goto out;
1409 		if (connected)
1410 			sk_dst_set(sk, dst_clone(&rt->dst));
1411 	}
1412 
1413 	if (msg->msg_flags&MSG_CONFIRM)
1414 		goto do_confirm;
1415 back_from_confirm:
1416 
1417 	saddr = fl4->saddr;
1418 	if (!ipc.addr)
1419 		daddr = ipc.addr = fl4->daddr;
1420 
1421 	/* Lockless fast path for the non-corking case. */
1422 	if (!corkreq) {
1423 		struct inet_cork cork;
1424 
1425 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1426 				  sizeof(struct udphdr), &ipc, &rt,
1427 				  &cork, msg->msg_flags);
1428 		err = PTR_ERR(skb);
1429 		if (!IS_ERR_OR_NULL(skb))
1430 			err = udp_send_skb(skb, fl4, &cork);
1431 		goto out;
1432 	}
1433 
1434 	lock_sock(sk);
1435 	if (unlikely(up->pending)) {
1436 		/* The socket is already corked while preparing it. */
1437 		/* ... which is an evident application bug. --ANK */
1438 		release_sock(sk);
1439 
1440 		net_dbg_ratelimited("socket already corked\n");
1441 		err = -EINVAL;
1442 		goto out;
1443 	}
1444 	/*
1445 	 *	Now cork the socket to pend data.
1446 	 */
1447 	fl4 = &inet->cork.fl.u.ip4;
1448 	fl4->daddr = daddr;
1449 	fl4->saddr = saddr;
1450 	fl4->fl4_dport = dport;
1451 	fl4->fl4_sport = inet->inet_sport;
1452 	WRITE_ONCE(up->pending, AF_INET);
1453 
1454 do_append_data:
1455 	up->len += ulen;
1456 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1457 			     sizeof(struct udphdr), &ipc, &rt,
1458 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1459 	if (err)
1460 		udp_flush_pending_frames(sk);
1461 	else if (!corkreq)
1462 		err = udp_push_pending_frames(sk);
1463 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1464 		WRITE_ONCE(up->pending, 0);
1465 	release_sock(sk);
1466 
1467 out:
1468 	ip_rt_put(rt);
1469 out_free:
1470 	if (free)
1471 		kfree(ipc.opt);
1472 	if (!err)
1473 		return len;
1474 	/*
1475 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1476 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1477 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1478 	 * things).  We could add another new stat but at least for now that
1479 	 * seems like overkill.
1480 	 */
1481 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1482 		UDP_INC_STATS(sock_net(sk),
1483 			      UDP_MIB_SNDBUFERRORS, is_udplite);
1484 	}
1485 	return err;
1486 
1487 do_confirm:
1488 	if (msg->msg_flags & MSG_PROBE)
1489 		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1490 	if (!(msg->msg_flags&MSG_PROBE) || len)
1491 		goto back_from_confirm;
1492 	err = 0;
1493 	goto out;
1494 }
1495 EXPORT_SYMBOL(udp_sendmsg);
1496 
1497 void udp_splice_eof(struct socket *sock)
1498 {
1499 	struct sock *sk = sock->sk;
1500 	struct udp_sock *up = udp_sk(sk);
1501 
1502 	if (!READ_ONCE(up->pending) || udp_test_bit(CORK, sk))
1503 		return;
1504 
1505 	lock_sock(sk);
1506 	if (up->pending && !udp_test_bit(CORK, sk))
1507 		udp_push_pending_frames(sk);
1508 	release_sock(sk);
1509 }
1510 EXPORT_SYMBOL_GPL(udp_splice_eof);
1511 
1512 #define UDP_SKB_IS_STATELESS 0x80000000
1513 
1514 /* all head states (dst, sk, nf conntrack) except skb extensions are
1515  * cleared by udp_rcv().
1516  *
1517  * We need to preserve secpath, if present, to eventually process
1518  * IP_CMSG_PASSSEC at recvmsg() time.
1519  *
1520  * Other extensions can be cleared.
1521  */
1522 static bool udp_try_make_stateless(struct sk_buff *skb)
1523 {
1524 	if (!skb_has_extensions(skb))
1525 		return true;
1526 
1527 	if (!secpath_exists(skb)) {
1528 		skb_ext_reset(skb);
1529 		return true;
1530 	}
1531 
1532 	return false;
1533 }
1534 
1535 static void udp_set_dev_scratch(struct sk_buff *skb)
1536 {
1537 	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1538 
1539 	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1540 	scratch->_tsize_state = skb->truesize;
1541 #if BITS_PER_LONG == 64
1542 	scratch->len = skb->len;
1543 	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1544 	scratch->is_linear = !skb_is_nonlinear(skb);
1545 #endif
1546 	if (udp_try_make_stateless(skb))
1547 		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1548 }
1549 
1550 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1551 {
1552 	/* We come here after udp_lib_checksum_complete() returned 0.
1553 	 * This means that __skb_checksum_complete() might have
1554 	 * set skb->csum_valid to 1.
1555 	 * On 64bit platforms, we can set csum_unnecessary
1556 	 * to true, but only if the skb is not shared.
1557 	 */
1558 #if BITS_PER_LONG == 64
1559 	if (!skb_shared(skb))
1560 		udp_skb_scratch(skb)->csum_unnecessary = true;
1561 #endif
1562 }
1563 
1564 static int udp_skb_truesize(struct sk_buff *skb)
1565 {
1566 	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1567 }
1568 
1569 static bool udp_skb_has_head_state(struct sk_buff *skb)
1570 {
1571 	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1572 }
1573 
1574 /* fully reclaim rmem/fwd memory allocated for skb */
1575 static void udp_rmem_release(struct sock *sk, int size, int partial,
1576 			     bool rx_queue_lock_held)
1577 {
1578 	struct udp_sock *up = udp_sk(sk);
1579 	struct sk_buff_head *sk_queue;
1580 	int amt;
1581 
1582 	if (likely(partial)) {
1583 		up->forward_deficit += size;
1584 		size = up->forward_deficit;
1585 		if (size < READ_ONCE(up->forward_threshold) &&
1586 		    !skb_queue_empty(&up->reader_queue))
1587 			return;
1588 	} else {
1589 		size += up->forward_deficit;
1590 	}
1591 	up->forward_deficit = 0;
1592 
1593 	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1594 	 * if the called don't held it already
1595 	 */
1596 	sk_queue = &sk->sk_receive_queue;
1597 	if (!rx_queue_lock_held)
1598 		spin_lock(&sk_queue->lock);
1599 
1600 
1601 	sk_forward_alloc_add(sk, size);
1602 	amt = (sk->sk_forward_alloc - partial) & ~(PAGE_SIZE - 1);
1603 	sk_forward_alloc_add(sk, -amt);
1604 
1605 	if (amt)
1606 		__sk_mem_reduce_allocated(sk, amt >> PAGE_SHIFT);
1607 
1608 	atomic_sub(size, &sk->sk_rmem_alloc);
1609 
1610 	/* this can save us from acquiring the rx queue lock on next receive */
1611 	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1612 
1613 	if (!rx_queue_lock_held)
1614 		spin_unlock(&sk_queue->lock);
1615 }
1616 
1617 /* Note: called with reader_queue.lock held.
1618  * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1619  * This avoids a cache line miss while receive_queue lock is held.
1620  * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1621  */
1622 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1623 {
1624 	prefetch(&skb->data);
1625 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1626 }
1627 EXPORT_SYMBOL(udp_skb_destructor);
1628 
1629 /* as above, but the caller held the rx queue lock, too */
1630 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1631 {
1632 	prefetch(&skb->data);
1633 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1634 }
1635 
1636 /* Idea of busylocks is to let producers grab an extra spinlock
1637  * to relieve pressure on the receive_queue spinlock shared by consumer.
1638  * Under flood, this means that only one producer can be in line
1639  * trying to acquire the receive_queue spinlock.
1640  * These busylock can be allocated on a per cpu manner, instead of a
1641  * per socket one (that would consume a cache line per socket)
1642  */
1643 static int udp_busylocks_log __read_mostly;
1644 static spinlock_t *udp_busylocks __read_mostly;
1645 
1646 static spinlock_t *busylock_acquire(void *ptr)
1647 {
1648 	spinlock_t *busy;
1649 
1650 	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1651 	spin_lock(busy);
1652 	return busy;
1653 }
1654 
1655 static void busylock_release(spinlock_t *busy)
1656 {
1657 	if (busy)
1658 		spin_unlock(busy);
1659 }
1660 
1661 static int udp_rmem_schedule(struct sock *sk, int size)
1662 {
1663 	int delta;
1664 
1665 	delta = size - sk->sk_forward_alloc;
1666 	if (delta > 0 && !__sk_mem_schedule(sk, delta, SK_MEM_RECV))
1667 		return -ENOBUFS;
1668 
1669 	return 0;
1670 }
1671 
1672 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1673 {
1674 	struct sk_buff_head *list = &sk->sk_receive_queue;
1675 	int rmem, err = -ENOMEM;
1676 	spinlock_t *busy = NULL;
1677 	int size, rcvbuf;
1678 
1679 	/* Immediately drop when the receive queue is full.
1680 	 * Always allow at least one packet.
1681 	 */
1682 	rmem = atomic_read(&sk->sk_rmem_alloc);
1683 	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1684 	if (rmem > rcvbuf)
1685 		goto drop;
1686 
1687 	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1688 	 * having linear skbs :
1689 	 * - Reduce memory overhead and thus increase receive queue capacity
1690 	 * - Less cache line misses at copyout() time
1691 	 * - Less work at consume_skb() (less alien page frag freeing)
1692 	 */
1693 	if (rmem > (rcvbuf >> 1)) {
1694 		skb_condense(skb);
1695 
1696 		busy = busylock_acquire(sk);
1697 	}
1698 	size = skb->truesize;
1699 	udp_set_dev_scratch(skb);
1700 
1701 	atomic_add(size, &sk->sk_rmem_alloc);
1702 
1703 	spin_lock(&list->lock);
1704 	err = udp_rmem_schedule(sk, size);
1705 	if (err) {
1706 		spin_unlock(&list->lock);
1707 		goto uncharge_drop;
1708 	}
1709 
1710 	sk_forward_alloc_add(sk, -size);
1711 
1712 	/* no need to setup a destructor, we will explicitly release the
1713 	 * forward allocated memory on dequeue
1714 	 */
1715 	sock_skb_set_dropcount(sk, skb);
1716 
1717 	__skb_queue_tail(list, skb);
1718 	spin_unlock(&list->lock);
1719 
1720 	if (!sock_flag(sk, SOCK_DEAD))
1721 		INDIRECT_CALL_1(sk->sk_data_ready, sock_def_readable, sk);
1722 
1723 	busylock_release(busy);
1724 	return 0;
1725 
1726 uncharge_drop:
1727 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1728 
1729 drop:
1730 	atomic_inc(&sk->sk_drops);
1731 	busylock_release(busy);
1732 	return err;
1733 }
1734 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1735 
1736 void udp_destruct_common(struct sock *sk)
1737 {
1738 	/* reclaim completely the forward allocated memory */
1739 	struct udp_sock *up = udp_sk(sk);
1740 	unsigned int total = 0;
1741 	struct sk_buff *skb;
1742 
1743 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1744 	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1745 		total += skb->truesize;
1746 		kfree_skb(skb);
1747 	}
1748 	udp_rmem_release(sk, total, 0, true);
1749 }
1750 EXPORT_SYMBOL_GPL(udp_destruct_common);
1751 
1752 static void udp_destruct_sock(struct sock *sk)
1753 {
1754 	udp_destruct_common(sk);
1755 	inet_sock_destruct(sk);
1756 }
1757 
1758 int udp_init_sock(struct sock *sk)
1759 {
1760 	udp_lib_init_sock(sk);
1761 	sk->sk_destruct = udp_destruct_sock;
1762 	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1763 	return 0;
1764 }
1765 
1766 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1767 {
1768 	if (unlikely(READ_ONCE(udp_sk(sk)->peeking_with_offset)))
1769 		sk_peek_offset_bwd(sk, len);
1770 
1771 	if (!skb_unref(skb))
1772 		return;
1773 
1774 	/* In the more common cases we cleared the head states previously,
1775 	 * see __udp_queue_rcv_skb().
1776 	 */
1777 	if (unlikely(udp_skb_has_head_state(skb)))
1778 		skb_release_head_state(skb);
1779 	__consume_stateless_skb(skb);
1780 }
1781 EXPORT_SYMBOL_GPL(skb_consume_udp);
1782 
1783 static struct sk_buff *__first_packet_length(struct sock *sk,
1784 					     struct sk_buff_head *rcvq,
1785 					     int *total)
1786 {
1787 	struct sk_buff *skb;
1788 
1789 	while ((skb = skb_peek(rcvq)) != NULL) {
1790 		if (udp_lib_checksum_complete(skb)) {
1791 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1792 					IS_UDPLITE(sk));
1793 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1794 					IS_UDPLITE(sk));
1795 			atomic_inc(&sk->sk_drops);
1796 			__skb_unlink(skb, rcvq);
1797 			*total += skb->truesize;
1798 			kfree_skb(skb);
1799 		} else {
1800 			udp_skb_csum_unnecessary_set(skb);
1801 			break;
1802 		}
1803 	}
1804 	return skb;
1805 }
1806 
1807 /**
1808  *	first_packet_length	- return length of first packet in receive queue
1809  *	@sk: socket
1810  *
1811  *	Drops all bad checksum frames, until a valid one is found.
1812  *	Returns the length of found skb, or -1 if none is found.
1813  */
1814 static int first_packet_length(struct sock *sk)
1815 {
1816 	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1817 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1818 	struct sk_buff *skb;
1819 	int total = 0;
1820 	int res;
1821 
1822 	spin_lock_bh(&rcvq->lock);
1823 	skb = __first_packet_length(sk, rcvq, &total);
1824 	if (!skb && !skb_queue_empty_lockless(sk_queue)) {
1825 		spin_lock(&sk_queue->lock);
1826 		skb_queue_splice_tail_init(sk_queue, rcvq);
1827 		spin_unlock(&sk_queue->lock);
1828 
1829 		skb = __first_packet_length(sk, rcvq, &total);
1830 	}
1831 	res = skb ? skb->len : -1;
1832 	if (total)
1833 		udp_rmem_release(sk, total, 1, false);
1834 	spin_unlock_bh(&rcvq->lock);
1835 	return res;
1836 }
1837 
1838 /*
1839  *	IOCTL requests applicable to the UDP protocol
1840  */
1841 
1842 int udp_ioctl(struct sock *sk, int cmd, int *karg)
1843 {
1844 	switch (cmd) {
1845 	case SIOCOUTQ:
1846 	{
1847 		*karg = sk_wmem_alloc_get(sk);
1848 		return 0;
1849 	}
1850 
1851 	case SIOCINQ:
1852 	{
1853 		*karg = max_t(int, 0, first_packet_length(sk));
1854 		return 0;
1855 	}
1856 
1857 	default:
1858 		return -ENOIOCTLCMD;
1859 	}
1860 
1861 	return 0;
1862 }
1863 EXPORT_SYMBOL(udp_ioctl);
1864 
1865 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1866 			       int *off, int *err)
1867 {
1868 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1869 	struct sk_buff_head *queue;
1870 	struct sk_buff *last;
1871 	long timeo;
1872 	int error;
1873 
1874 	queue = &udp_sk(sk)->reader_queue;
1875 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1876 	do {
1877 		struct sk_buff *skb;
1878 
1879 		error = sock_error(sk);
1880 		if (error)
1881 			break;
1882 
1883 		error = -EAGAIN;
1884 		do {
1885 			spin_lock_bh(&queue->lock);
1886 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1887 							err, &last);
1888 			if (skb) {
1889 				if (!(flags & MSG_PEEK))
1890 					udp_skb_destructor(sk, skb);
1891 				spin_unlock_bh(&queue->lock);
1892 				return skb;
1893 			}
1894 
1895 			if (skb_queue_empty_lockless(sk_queue)) {
1896 				spin_unlock_bh(&queue->lock);
1897 				goto busy_check;
1898 			}
1899 
1900 			/* refill the reader queue and walk it again
1901 			 * keep both queues locked to avoid re-acquiring
1902 			 * the sk_receive_queue lock if fwd memory scheduling
1903 			 * is needed.
1904 			 */
1905 			spin_lock(&sk_queue->lock);
1906 			skb_queue_splice_tail_init(sk_queue, queue);
1907 
1908 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1909 							err, &last);
1910 			if (skb && !(flags & MSG_PEEK))
1911 				udp_skb_dtor_locked(sk, skb);
1912 			spin_unlock(&sk_queue->lock);
1913 			spin_unlock_bh(&queue->lock);
1914 			if (skb)
1915 				return skb;
1916 
1917 busy_check:
1918 			if (!sk_can_busy_loop(sk))
1919 				break;
1920 
1921 			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1922 		} while (!skb_queue_empty_lockless(sk_queue));
1923 
1924 		/* sk_queue is empty, reader_queue may contain peeked packets */
1925 	} while (timeo &&
1926 		 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
1927 					      &error, &timeo,
1928 					      (struct sk_buff *)sk_queue));
1929 
1930 	*err = error;
1931 	return NULL;
1932 }
1933 EXPORT_SYMBOL(__skb_recv_udp);
1934 
1935 int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1936 {
1937 	struct sk_buff *skb;
1938 	int err;
1939 
1940 try_again:
1941 	skb = skb_recv_udp(sk, MSG_DONTWAIT, &err);
1942 	if (!skb)
1943 		return err;
1944 
1945 	if (udp_lib_checksum_complete(skb)) {
1946 		int is_udplite = IS_UDPLITE(sk);
1947 		struct net *net = sock_net(sk);
1948 
1949 		__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, is_udplite);
1950 		__UDP_INC_STATS(net, UDP_MIB_INERRORS, is_udplite);
1951 		atomic_inc(&sk->sk_drops);
1952 		kfree_skb(skb);
1953 		goto try_again;
1954 	}
1955 
1956 	WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1957 	return recv_actor(sk, skb);
1958 }
1959 EXPORT_SYMBOL(udp_read_skb);
1960 
1961 /*
1962  * 	This should be easy, if there is something there we
1963  * 	return it, otherwise we block.
1964  */
1965 
1966 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
1967 		int *addr_len)
1968 {
1969 	struct inet_sock *inet = inet_sk(sk);
1970 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1971 	struct sk_buff *skb;
1972 	unsigned int ulen, copied;
1973 	int off, err, peeking = flags & MSG_PEEK;
1974 	int is_udplite = IS_UDPLITE(sk);
1975 	bool checksum_valid = false;
1976 
1977 	if (flags & MSG_ERRQUEUE)
1978 		return ip_recv_error(sk, msg, len, addr_len);
1979 
1980 try_again:
1981 	off = sk_peek_offset(sk, flags);
1982 	skb = __skb_recv_udp(sk, flags, &off, &err);
1983 	if (!skb)
1984 		return err;
1985 
1986 	ulen = udp_skb_len(skb);
1987 	copied = len;
1988 	if (copied > ulen - off)
1989 		copied = ulen - off;
1990 	else if (copied < ulen)
1991 		msg->msg_flags |= MSG_TRUNC;
1992 
1993 	/*
1994 	 * If checksum is needed at all, try to do it while copying the
1995 	 * data.  If the data is truncated, or if we only want a partial
1996 	 * coverage checksum (UDP-Lite), do it before the copy.
1997 	 */
1998 
1999 	if (copied < ulen || peeking ||
2000 	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
2001 		checksum_valid = udp_skb_csum_unnecessary(skb) ||
2002 				!__udp_lib_checksum_complete(skb);
2003 		if (!checksum_valid)
2004 			goto csum_copy_err;
2005 	}
2006 
2007 	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
2008 		if (udp_skb_is_linear(skb))
2009 			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
2010 		else
2011 			err = skb_copy_datagram_msg(skb, off, msg, copied);
2012 	} else {
2013 		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
2014 
2015 		if (err == -EINVAL)
2016 			goto csum_copy_err;
2017 	}
2018 
2019 	if (unlikely(err)) {
2020 		if (!peeking) {
2021 			atomic_inc(&sk->sk_drops);
2022 			UDP_INC_STATS(sock_net(sk),
2023 				      UDP_MIB_INERRORS, is_udplite);
2024 		}
2025 		kfree_skb(skb);
2026 		return err;
2027 	}
2028 
2029 	if (!peeking)
2030 		UDP_INC_STATS(sock_net(sk),
2031 			      UDP_MIB_INDATAGRAMS, is_udplite);
2032 
2033 	sock_recv_cmsgs(msg, sk, skb);
2034 
2035 	/* Copy the address. */
2036 	if (sin) {
2037 		sin->sin_family = AF_INET;
2038 		sin->sin_port = udp_hdr(skb)->source;
2039 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
2040 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
2041 		*addr_len = sizeof(*sin);
2042 
2043 		BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
2044 						      (struct sockaddr *)sin,
2045 						      addr_len);
2046 	}
2047 
2048 	if (udp_test_bit(GRO_ENABLED, sk))
2049 		udp_cmsg_recv(msg, sk, skb);
2050 
2051 	if (inet_cmsg_flags(inet))
2052 		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
2053 
2054 	err = copied;
2055 	if (flags & MSG_TRUNC)
2056 		err = ulen;
2057 
2058 	skb_consume_udp(sk, skb, peeking ? -err : err);
2059 	return err;
2060 
2061 csum_copy_err:
2062 	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
2063 				 udp_skb_destructor)) {
2064 		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2065 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2066 	}
2067 	kfree_skb(skb);
2068 
2069 	/* starting over for a new packet, but check if we need to yield */
2070 	cond_resched();
2071 	msg->msg_flags &= ~MSG_TRUNC;
2072 	goto try_again;
2073 }
2074 
2075 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
2076 {
2077 	/* This check is replicated from __ip4_datagram_connect() and
2078 	 * intended to prevent BPF program called below from accessing bytes
2079 	 * that are out of the bound specified by user in addr_len.
2080 	 */
2081 	if (addr_len < sizeof(struct sockaddr_in))
2082 		return -EINVAL;
2083 
2084 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr, &addr_len);
2085 }
2086 EXPORT_SYMBOL(udp_pre_connect);
2087 
2088 static int udp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
2089 {
2090 	int res;
2091 
2092 	lock_sock(sk);
2093 	res = __ip4_datagram_connect(sk, uaddr, addr_len);
2094 	if (!res)
2095 		udp4_hash4(sk);
2096 	release_sock(sk);
2097 	return res;
2098 }
2099 
2100 int __udp_disconnect(struct sock *sk, int flags)
2101 {
2102 	struct inet_sock *inet = inet_sk(sk);
2103 	/*
2104 	 *	1003.1g - break association.
2105 	 */
2106 
2107 	sk->sk_state = TCP_CLOSE;
2108 	inet->inet_daddr = 0;
2109 	inet->inet_dport = 0;
2110 	sock_rps_reset_rxhash(sk);
2111 	sk->sk_bound_dev_if = 0;
2112 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) {
2113 		inet_reset_saddr(sk);
2114 		if (sk->sk_prot->rehash &&
2115 		    (sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2116 			sk->sk_prot->rehash(sk);
2117 	}
2118 
2119 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
2120 		sk->sk_prot->unhash(sk);
2121 		inet->inet_sport = 0;
2122 	}
2123 	sk_dst_reset(sk);
2124 	return 0;
2125 }
2126 EXPORT_SYMBOL(__udp_disconnect);
2127 
2128 int udp_disconnect(struct sock *sk, int flags)
2129 {
2130 	lock_sock(sk);
2131 	__udp_disconnect(sk, flags);
2132 	release_sock(sk);
2133 	return 0;
2134 }
2135 EXPORT_SYMBOL(udp_disconnect);
2136 
2137 void udp_lib_unhash(struct sock *sk)
2138 {
2139 	if (sk_hashed(sk)) {
2140 		struct udp_table *udptable = udp_get_table_prot(sk);
2141 		struct udp_hslot *hslot, *hslot2;
2142 
2143 		hslot  = udp_hashslot(udptable, sock_net(sk),
2144 				      udp_sk(sk)->udp_port_hash);
2145 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2146 
2147 		spin_lock_bh(&hslot->lock);
2148 		if (rcu_access_pointer(sk->sk_reuseport_cb))
2149 			reuseport_detach_sock(sk);
2150 		if (sk_del_node_init_rcu(sk)) {
2151 			hslot->count--;
2152 			inet_sk(sk)->inet_num = 0;
2153 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
2154 
2155 			spin_lock(&hslot2->lock);
2156 			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2157 			hslot2->count--;
2158 			spin_unlock(&hslot2->lock);
2159 
2160 			udp_unhash4(udptable, sk);
2161 		}
2162 		spin_unlock_bh(&hslot->lock);
2163 	}
2164 }
2165 EXPORT_SYMBOL(udp_lib_unhash);
2166 
2167 /*
2168  * inet_rcv_saddr was changed, we must rehash secondary hash
2169  */
2170 void udp_lib_rehash(struct sock *sk, u16 newhash, u16 newhash4)
2171 {
2172 	if (sk_hashed(sk)) {
2173 		struct udp_table *udptable = udp_get_table_prot(sk);
2174 		struct udp_hslot *hslot, *hslot2, *nhslot2;
2175 
2176 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2177 		nhslot2 = udp_hashslot2(udptable, newhash);
2178 		udp_sk(sk)->udp_portaddr_hash = newhash;
2179 
2180 		if (hslot2 != nhslot2 ||
2181 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
2182 			hslot = udp_hashslot(udptable, sock_net(sk),
2183 					     udp_sk(sk)->udp_port_hash);
2184 			/* we must lock primary chain too */
2185 			spin_lock_bh(&hslot->lock);
2186 			if (rcu_access_pointer(sk->sk_reuseport_cb))
2187 				reuseport_detach_sock(sk);
2188 
2189 			if (hslot2 != nhslot2) {
2190 				spin_lock(&hslot2->lock);
2191 				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2192 				hslot2->count--;
2193 				spin_unlock(&hslot2->lock);
2194 
2195 				spin_lock(&nhslot2->lock);
2196 				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
2197 							 &nhslot2->head);
2198 				nhslot2->count++;
2199 				spin_unlock(&nhslot2->lock);
2200 			}
2201 
2202 			if (udp_hashed4(sk)) {
2203 				udp_rehash4(udptable, sk, newhash4);
2204 
2205 				if (hslot2 != nhslot2) {
2206 					spin_lock(&hslot2->lock);
2207 					udp_hash4_dec(hslot2);
2208 					spin_unlock(&hslot2->lock);
2209 
2210 					spin_lock(&nhslot2->lock);
2211 					udp_hash4_inc(nhslot2);
2212 					spin_unlock(&nhslot2->lock);
2213 				}
2214 			}
2215 			spin_unlock_bh(&hslot->lock);
2216 		}
2217 	}
2218 }
2219 EXPORT_SYMBOL(udp_lib_rehash);
2220 
2221 void udp_v4_rehash(struct sock *sk)
2222 {
2223 	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
2224 					  inet_sk(sk)->inet_rcv_saddr,
2225 					  inet_sk(sk)->inet_num);
2226 	u16 new_hash4 = udp_ehashfn(sock_net(sk),
2227 				    sk->sk_rcv_saddr, sk->sk_num,
2228 				    sk->sk_daddr, sk->sk_dport);
2229 
2230 	udp_lib_rehash(sk, new_hash, new_hash4);
2231 }
2232 
2233 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2234 {
2235 	int rc;
2236 
2237 	if (inet_sk(sk)->inet_daddr) {
2238 		sock_rps_save_rxhash(sk, skb);
2239 		sk_mark_napi_id(sk, skb);
2240 		sk_incoming_cpu_update(sk);
2241 	} else {
2242 		sk_mark_napi_id_once(sk, skb);
2243 	}
2244 
2245 	rc = __udp_enqueue_schedule_skb(sk, skb);
2246 	if (rc < 0) {
2247 		int is_udplite = IS_UDPLITE(sk);
2248 		int drop_reason;
2249 
2250 		/* Note that an ENOMEM error is charged twice */
2251 		if (rc == -ENOMEM) {
2252 			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
2253 					is_udplite);
2254 			drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
2255 		} else {
2256 			UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS,
2257 				      is_udplite);
2258 			drop_reason = SKB_DROP_REASON_PROTO_MEM;
2259 		}
2260 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2261 		trace_udp_fail_queue_rcv_skb(rc, sk, skb);
2262 		sk_skb_reason_drop(sk, skb, drop_reason);
2263 		return -1;
2264 	}
2265 
2266 	return 0;
2267 }
2268 
2269 /* returns:
2270  *  -1: error
2271  *   0: success
2272  *  >0: "udp encap" protocol resubmission
2273  *
2274  * Note that in the success and error cases, the skb is assumed to
2275  * have either been requeued or freed.
2276  */
2277 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
2278 {
2279 	int drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2280 	struct udp_sock *up = udp_sk(sk);
2281 	int is_udplite = IS_UDPLITE(sk);
2282 
2283 	/*
2284 	 *	Charge it to the socket, dropping if the queue is full.
2285 	 */
2286 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
2287 		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2288 		goto drop;
2289 	}
2290 	nf_reset_ct(skb);
2291 
2292 	if (static_branch_unlikely(&udp_encap_needed_key) &&
2293 	    READ_ONCE(up->encap_type)) {
2294 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2295 
2296 		/*
2297 		 * This is an encapsulation socket so pass the skb to
2298 		 * the socket's udp_encap_rcv() hook. Otherwise, just
2299 		 * fall through and pass this up the UDP socket.
2300 		 * up->encap_rcv() returns the following value:
2301 		 * =0 if skb was successfully passed to the encap
2302 		 *    handler or was discarded by it.
2303 		 * >0 if skb should be passed on to UDP.
2304 		 * <0 if skb should be resubmitted as proto -N
2305 		 */
2306 
2307 		/* if we're overly short, let UDP handle it */
2308 		encap_rcv = READ_ONCE(up->encap_rcv);
2309 		if (encap_rcv) {
2310 			int ret;
2311 
2312 			/* Verify checksum before giving to encap */
2313 			if (udp_lib_checksum_complete(skb))
2314 				goto csum_error;
2315 
2316 			ret = encap_rcv(sk, skb);
2317 			if (ret <= 0) {
2318 				__UDP_INC_STATS(sock_net(sk),
2319 						UDP_MIB_INDATAGRAMS,
2320 						is_udplite);
2321 				return -ret;
2322 			}
2323 		}
2324 
2325 		/* FALLTHROUGH -- it's a UDP Packet */
2326 	}
2327 
2328 	/*
2329 	 * 	UDP-Lite specific tests, ignored on UDP sockets
2330 	 */
2331 	if (udp_test_bit(UDPLITE_RECV_CC, sk) && UDP_SKB_CB(skb)->partial_cov) {
2332 		u16 pcrlen = READ_ONCE(up->pcrlen);
2333 
2334 		/*
2335 		 * MIB statistics other than incrementing the error count are
2336 		 * disabled for the following two types of errors: these depend
2337 		 * on the application settings, not on the functioning of the
2338 		 * protocol stack as such.
2339 		 *
2340 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
2341 		 * way ... to ... at least let the receiving application block
2342 		 * delivery of packets with coverage values less than a value
2343 		 * provided by the application."
2344 		 */
2345 		if (pcrlen == 0) {          /* full coverage was set  */
2346 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2347 					    UDP_SKB_CB(skb)->cscov, skb->len);
2348 			goto drop;
2349 		}
2350 		/* The next case involves violating the min. coverage requested
2351 		 * by the receiver. This is subtle: if receiver wants x and x is
2352 		 * greater than the buffersize/MTU then receiver will complain
2353 		 * that it wants x while sender emits packets of smaller size y.
2354 		 * Therefore the above ...()->partial_cov statement is essential.
2355 		 */
2356 		if (UDP_SKB_CB(skb)->cscov < pcrlen) {
2357 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2358 					    UDP_SKB_CB(skb)->cscov, pcrlen);
2359 			goto drop;
2360 		}
2361 	}
2362 
2363 	prefetch(&sk->sk_rmem_alloc);
2364 	if (rcu_access_pointer(sk->sk_filter) &&
2365 	    udp_lib_checksum_complete(skb))
2366 			goto csum_error;
2367 
2368 	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) {
2369 		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2370 		goto drop;
2371 	}
2372 
2373 	udp_csum_pull_header(skb);
2374 
2375 	ipv4_pktinfo_prepare(sk, skb, true);
2376 	return __udp_queue_rcv_skb(sk, skb);
2377 
2378 csum_error:
2379 	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2380 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2381 drop:
2382 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2383 	atomic_inc(&sk->sk_drops);
2384 	sk_skb_reason_drop(sk, skb, drop_reason);
2385 	return -1;
2386 }
2387 
2388 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2389 {
2390 	struct sk_buff *next, *segs;
2391 	int ret;
2392 
2393 	if (likely(!udp_unexpected_gso(sk, skb)))
2394 		return udp_queue_rcv_one_skb(sk, skb);
2395 
2396 	BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET);
2397 	__skb_push(skb, -skb_mac_offset(skb));
2398 	segs = udp_rcv_segment(sk, skb, true);
2399 	skb_list_walk_safe(segs, skb, next) {
2400 		__skb_pull(skb, skb_transport_offset(skb));
2401 
2402 		udp_post_segment_fix_csum(skb);
2403 		ret = udp_queue_rcv_one_skb(sk, skb);
2404 		if (ret > 0)
2405 			ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret);
2406 	}
2407 	return 0;
2408 }
2409 
2410 /* For TCP sockets, sk_rx_dst is protected by socket lock
2411  * For UDP, we use xchg() to guard against concurrent changes.
2412  */
2413 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2414 {
2415 	struct dst_entry *old;
2416 
2417 	if (dst_hold_safe(dst)) {
2418 		old = unrcu_pointer(xchg(&sk->sk_rx_dst, RCU_INITIALIZER(dst)));
2419 		dst_release(old);
2420 		return old != dst;
2421 	}
2422 	return false;
2423 }
2424 EXPORT_SYMBOL(udp_sk_rx_dst_set);
2425 
2426 /*
2427  *	Multicasts and broadcasts go to each listener.
2428  *
2429  *	Note: called only from the BH handler context.
2430  */
2431 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2432 				    struct udphdr  *uh,
2433 				    __be32 saddr, __be32 daddr,
2434 				    struct udp_table *udptable,
2435 				    int proto)
2436 {
2437 	struct sock *sk, *first = NULL;
2438 	unsigned short hnum = ntohs(uh->dest);
2439 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2440 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2441 	unsigned int offset = offsetof(typeof(*sk), sk_node);
2442 	int dif = skb->dev->ifindex;
2443 	int sdif = inet_sdif(skb);
2444 	struct hlist_node *node;
2445 	struct sk_buff *nskb;
2446 
2447 	if (use_hash2) {
2448 		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2449 			    udptable->mask;
2450 		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2451 start_lookup:
2452 		hslot = &udptable->hash2[hash2].hslot;
2453 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2454 	}
2455 
2456 	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2457 		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2458 					 uh->source, saddr, dif, sdif, hnum))
2459 			continue;
2460 
2461 		if (!first) {
2462 			first = sk;
2463 			continue;
2464 		}
2465 		nskb = skb_clone(skb, GFP_ATOMIC);
2466 
2467 		if (unlikely(!nskb)) {
2468 			atomic_inc(&sk->sk_drops);
2469 			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2470 					IS_UDPLITE(sk));
2471 			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
2472 					IS_UDPLITE(sk));
2473 			continue;
2474 		}
2475 		if (udp_queue_rcv_skb(sk, nskb) > 0)
2476 			consume_skb(nskb);
2477 	}
2478 
2479 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2480 	if (use_hash2 && hash2 != hash2_any) {
2481 		hash2 = hash2_any;
2482 		goto start_lookup;
2483 	}
2484 
2485 	if (first) {
2486 		if (udp_queue_rcv_skb(first, skb) > 0)
2487 			consume_skb(skb);
2488 	} else {
2489 		kfree_skb(skb);
2490 		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2491 				proto == IPPROTO_UDPLITE);
2492 	}
2493 	return 0;
2494 }
2495 
2496 /* Initialize UDP checksum. If exited with zero value (success),
2497  * CHECKSUM_UNNECESSARY means, that no more checks are required.
2498  * Otherwise, csum completion requires checksumming packet body,
2499  * including udp header and folding it to skb->csum.
2500  */
2501 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2502 				 int proto)
2503 {
2504 	int err;
2505 
2506 	UDP_SKB_CB(skb)->partial_cov = 0;
2507 	UDP_SKB_CB(skb)->cscov = skb->len;
2508 
2509 	if (proto == IPPROTO_UDPLITE) {
2510 		err = udplite_checksum_init(skb, uh);
2511 		if (err)
2512 			return err;
2513 
2514 		if (UDP_SKB_CB(skb)->partial_cov) {
2515 			skb->csum = inet_compute_pseudo(skb, proto);
2516 			return 0;
2517 		}
2518 	}
2519 
2520 	/* Note, we are only interested in != 0 or == 0, thus the
2521 	 * force to int.
2522 	 */
2523 	err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2524 							inet_compute_pseudo);
2525 	if (err)
2526 		return err;
2527 
2528 	if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2529 		/* If SW calculated the value, we know it's bad */
2530 		if (skb->csum_complete_sw)
2531 			return 1;
2532 
2533 		/* HW says the value is bad. Let's validate that.
2534 		 * skb->csum is no longer the full packet checksum,
2535 		 * so don't treat it as such.
2536 		 */
2537 		skb_checksum_complete_unset(skb);
2538 	}
2539 
2540 	return 0;
2541 }
2542 
2543 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2544  * return code conversion for ip layer consumption
2545  */
2546 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2547 			       struct udphdr *uh)
2548 {
2549 	int ret;
2550 
2551 	if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2552 		skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2553 
2554 	ret = udp_queue_rcv_skb(sk, skb);
2555 
2556 	/* a return value > 0 means to resubmit the input, but
2557 	 * it wants the return to be -protocol, or 0
2558 	 */
2559 	if (ret > 0)
2560 		return -ret;
2561 	return 0;
2562 }
2563 
2564 /*
2565  *	All we need to do is get the socket, and then do a checksum.
2566  */
2567 
2568 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2569 		   int proto)
2570 {
2571 	struct sock *sk = NULL;
2572 	struct udphdr *uh;
2573 	unsigned short ulen;
2574 	struct rtable *rt = skb_rtable(skb);
2575 	__be32 saddr, daddr;
2576 	struct net *net = dev_net(skb->dev);
2577 	bool refcounted;
2578 	int drop_reason;
2579 
2580 	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2581 
2582 	/*
2583 	 *  Validate the packet.
2584 	 */
2585 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2586 		goto drop;		/* No space for header. */
2587 
2588 	uh   = udp_hdr(skb);
2589 	ulen = ntohs(uh->len);
2590 	saddr = ip_hdr(skb)->saddr;
2591 	daddr = ip_hdr(skb)->daddr;
2592 
2593 	if (ulen > skb->len)
2594 		goto short_packet;
2595 
2596 	if (proto == IPPROTO_UDP) {
2597 		/* UDP validates ulen. */
2598 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2599 			goto short_packet;
2600 		uh = udp_hdr(skb);
2601 	}
2602 
2603 	if (udp4_csum_init(skb, uh, proto))
2604 		goto csum_error;
2605 
2606 	sk = inet_steal_sock(net, skb, sizeof(struct udphdr), saddr, uh->source, daddr, uh->dest,
2607 			     &refcounted, udp_ehashfn);
2608 	if (IS_ERR(sk))
2609 		goto no_sk;
2610 
2611 	if (sk) {
2612 		struct dst_entry *dst = skb_dst(skb);
2613 		int ret;
2614 
2615 		if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst))
2616 			udp_sk_rx_dst_set(sk, dst);
2617 
2618 		ret = udp_unicast_rcv_skb(sk, skb, uh);
2619 		if (refcounted)
2620 			sock_put(sk);
2621 		return ret;
2622 	}
2623 
2624 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2625 		return __udp4_lib_mcast_deliver(net, skb, uh,
2626 						saddr, daddr, udptable, proto);
2627 
2628 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2629 	if (sk)
2630 		return udp_unicast_rcv_skb(sk, skb, uh);
2631 no_sk:
2632 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2633 		goto drop;
2634 	nf_reset_ct(skb);
2635 
2636 	/* No socket. Drop packet silently, if checksum is wrong */
2637 	if (udp_lib_checksum_complete(skb))
2638 		goto csum_error;
2639 
2640 	drop_reason = SKB_DROP_REASON_NO_SOCKET;
2641 	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2642 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2643 
2644 	/*
2645 	 * Hmm.  We got an UDP packet to a port to which we
2646 	 * don't wanna listen.  Ignore it.
2647 	 */
2648 	sk_skb_reason_drop(sk, skb, drop_reason);
2649 	return 0;
2650 
2651 short_packet:
2652 	drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
2653 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2654 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2655 			    &saddr, ntohs(uh->source),
2656 			    ulen, skb->len,
2657 			    &daddr, ntohs(uh->dest));
2658 	goto drop;
2659 
2660 csum_error:
2661 	/*
2662 	 * RFC1122: OK.  Discards the bad packet silently (as far as
2663 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2664 	 */
2665 	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2666 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2667 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2668 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2669 			    ulen);
2670 	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2671 drop:
2672 	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2673 	sk_skb_reason_drop(sk, skb, drop_reason);
2674 	return 0;
2675 }
2676 
2677 /* We can only early demux multicast if there is a single matching socket.
2678  * If more than one socket found returns NULL
2679  */
2680 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2681 						  __be16 loc_port, __be32 loc_addr,
2682 						  __be16 rmt_port, __be32 rmt_addr,
2683 						  int dif, int sdif)
2684 {
2685 	struct udp_table *udptable = net->ipv4.udp_table;
2686 	unsigned short hnum = ntohs(loc_port);
2687 	struct sock *sk, *result;
2688 	struct udp_hslot *hslot;
2689 	unsigned int slot;
2690 
2691 	slot = udp_hashfn(net, hnum, udptable->mask);
2692 	hslot = &udptable->hash[slot];
2693 
2694 	/* Do not bother scanning a too big list */
2695 	if (hslot->count > 10)
2696 		return NULL;
2697 
2698 	result = NULL;
2699 	sk_for_each_rcu(sk, &hslot->head) {
2700 		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2701 					rmt_port, rmt_addr, dif, sdif, hnum)) {
2702 			if (result)
2703 				return NULL;
2704 			result = sk;
2705 		}
2706 	}
2707 
2708 	return result;
2709 }
2710 
2711 /* For unicast we should only early demux connected sockets or we can
2712  * break forwarding setups.  The chains here can be long so only check
2713  * if the first socket is an exact match and if not move on.
2714  */
2715 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2716 					    __be16 loc_port, __be32 loc_addr,
2717 					    __be16 rmt_port, __be32 rmt_addr,
2718 					    int dif, int sdif)
2719 {
2720 	struct udp_table *udptable = net->ipv4.udp_table;
2721 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2722 	unsigned short hnum = ntohs(loc_port);
2723 	struct udp_hslot *hslot2;
2724 	unsigned int hash2;
2725 	__portpair ports;
2726 	struct sock *sk;
2727 
2728 	hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2729 	hslot2 = udp_hashslot2(udptable, hash2);
2730 	ports = INET_COMBINED_PORTS(rmt_port, hnum);
2731 
2732 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2733 		if (inet_match(net, sk, acookie, ports, dif, sdif))
2734 			return sk;
2735 		/* Only check first socket in chain */
2736 		break;
2737 	}
2738 	return NULL;
2739 }
2740 
2741 int udp_v4_early_demux(struct sk_buff *skb)
2742 {
2743 	struct net *net = dev_net(skb->dev);
2744 	struct in_device *in_dev = NULL;
2745 	const struct iphdr *iph;
2746 	const struct udphdr *uh;
2747 	struct sock *sk = NULL;
2748 	struct dst_entry *dst;
2749 	int dif = skb->dev->ifindex;
2750 	int sdif = inet_sdif(skb);
2751 	int ours;
2752 
2753 	/* validate the packet */
2754 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2755 		return 0;
2756 
2757 	iph = ip_hdr(skb);
2758 	uh = udp_hdr(skb);
2759 
2760 	if (skb->pkt_type == PACKET_MULTICAST) {
2761 		in_dev = __in_dev_get_rcu(skb->dev);
2762 
2763 		if (!in_dev)
2764 			return 0;
2765 
2766 		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2767 				       iph->protocol);
2768 		if (!ours)
2769 			return 0;
2770 
2771 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2772 						   uh->source, iph->saddr,
2773 						   dif, sdif);
2774 	} else if (skb->pkt_type == PACKET_HOST) {
2775 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2776 					     uh->source, iph->saddr, dif, sdif);
2777 	}
2778 
2779 	if (!sk)
2780 		return 0;
2781 
2782 	skb->sk = sk;
2783 	DEBUG_NET_WARN_ON_ONCE(sk_is_refcounted(sk));
2784 	skb->destructor = sock_pfree;
2785 	dst = rcu_dereference(sk->sk_rx_dst);
2786 
2787 	if (dst)
2788 		dst = dst_check(dst, 0);
2789 	if (dst) {
2790 		u32 itag = 0;
2791 
2792 		/* set noref for now.
2793 		 * any place which wants to hold dst has to call
2794 		 * dst_hold_safe()
2795 		 */
2796 		skb_dst_set_noref(skb, dst);
2797 
2798 		/* for unconnected multicast sockets we need to validate
2799 		 * the source on each packet
2800 		 */
2801 		if (!inet_sk(sk)->inet_daddr && in_dev)
2802 			return ip_mc_validate_source(skb, iph->daddr,
2803 						     iph->saddr,
2804 						     ip4h_dscp(iph),
2805 						     skb->dev, in_dev, &itag);
2806 	}
2807 	return 0;
2808 }
2809 
2810 int udp_rcv(struct sk_buff *skb)
2811 {
2812 	return __udp4_lib_rcv(skb, dev_net(skb->dev)->ipv4.udp_table, IPPROTO_UDP);
2813 }
2814 
2815 void udp_destroy_sock(struct sock *sk)
2816 {
2817 	struct udp_sock *up = udp_sk(sk);
2818 	bool slow = lock_sock_fast(sk);
2819 
2820 	/* protects from races with udp_abort() */
2821 	sock_set_flag(sk, SOCK_DEAD);
2822 	udp_flush_pending_frames(sk);
2823 	unlock_sock_fast(sk, slow);
2824 	if (static_branch_unlikely(&udp_encap_needed_key)) {
2825 		if (up->encap_type) {
2826 			void (*encap_destroy)(struct sock *sk);
2827 			encap_destroy = READ_ONCE(up->encap_destroy);
2828 			if (encap_destroy)
2829 				encap_destroy(sk);
2830 		}
2831 		if (udp_test_bit(ENCAP_ENABLED, sk))
2832 			static_branch_dec(&udp_encap_needed_key);
2833 	}
2834 }
2835 
2836 static void set_xfrm_gro_udp_encap_rcv(__u16 encap_type, unsigned short family,
2837 				       struct sock *sk)
2838 {
2839 #ifdef CONFIG_XFRM
2840 	if (udp_test_bit(GRO_ENABLED, sk) && encap_type == UDP_ENCAP_ESPINUDP) {
2841 		if (family == AF_INET)
2842 			WRITE_ONCE(udp_sk(sk)->gro_receive, xfrm4_gro_udp_encap_rcv);
2843 		else if (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6)
2844 			WRITE_ONCE(udp_sk(sk)->gro_receive, ipv6_stub->xfrm6_gro_udp_encap_rcv);
2845 	}
2846 #endif
2847 }
2848 
2849 /*
2850  *	Socket option code for UDP
2851  */
2852 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2853 		       sockptr_t optval, unsigned int optlen,
2854 		       int (*push_pending_frames)(struct sock *))
2855 {
2856 	struct udp_sock *up = udp_sk(sk);
2857 	int val, valbool;
2858 	int err = 0;
2859 	int is_udplite = IS_UDPLITE(sk);
2860 
2861 	if (level == SOL_SOCKET) {
2862 		err = sk_setsockopt(sk, level, optname, optval, optlen);
2863 
2864 		if (optname == SO_RCVBUF || optname == SO_RCVBUFFORCE) {
2865 			sockopt_lock_sock(sk);
2866 			/* paired with READ_ONCE in udp_rmem_release() */
2867 			WRITE_ONCE(up->forward_threshold, sk->sk_rcvbuf >> 2);
2868 			sockopt_release_sock(sk);
2869 		}
2870 		return err;
2871 	}
2872 
2873 	if (optlen < sizeof(int))
2874 		return -EINVAL;
2875 
2876 	if (copy_from_sockptr(&val, optval, sizeof(val)))
2877 		return -EFAULT;
2878 
2879 	valbool = val ? 1 : 0;
2880 
2881 	switch (optname) {
2882 	case UDP_CORK:
2883 		if (val != 0) {
2884 			udp_set_bit(CORK, sk);
2885 		} else {
2886 			udp_clear_bit(CORK, sk);
2887 			lock_sock(sk);
2888 			push_pending_frames(sk);
2889 			release_sock(sk);
2890 		}
2891 		break;
2892 
2893 	case UDP_ENCAP:
2894 		switch (val) {
2895 		case 0:
2896 #ifdef CONFIG_XFRM
2897 		case UDP_ENCAP_ESPINUDP:
2898 			set_xfrm_gro_udp_encap_rcv(val, sk->sk_family, sk);
2899 #if IS_ENABLED(CONFIG_IPV6)
2900 			if (sk->sk_family == AF_INET6)
2901 				WRITE_ONCE(up->encap_rcv,
2902 					   ipv6_stub->xfrm6_udp_encap_rcv);
2903 			else
2904 #endif
2905 				WRITE_ONCE(up->encap_rcv,
2906 					   xfrm4_udp_encap_rcv);
2907 #endif
2908 			fallthrough;
2909 		case UDP_ENCAP_L2TPINUDP:
2910 			WRITE_ONCE(up->encap_type, val);
2911 			udp_tunnel_encap_enable(sk);
2912 			break;
2913 		default:
2914 			err = -ENOPROTOOPT;
2915 			break;
2916 		}
2917 		break;
2918 
2919 	case UDP_NO_CHECK6_TX:
2920 		udp_set_no_check6_tx(sk, valbool);
2921 		break;
2922 
2923 	case UDP_NO_CHECK6_RX:
2924 		udp_set_no_check6_rx(sk, valbool);
2925 		break;
2926 
2927 	case UDP_SEGMENT:
2928 		if (val < 0 || val > USHRT_MAX)
2929 			return -EINVAL;
2930 		WRITE_ONCE(up->gso_size, val);
2931 		break;
2932 
2933 	case UDP_GRO:
2934 
2935 		/* when enabling GRO, accept the related GSO packet type */
2936 		if (valbool)
2937 			udp_tunnel_encap_enable(sk);
2938 		udp_assign_bit(GRO_ENABLED, sk, valbool);
2939 		udp_assign_bit(ACCEPT_L4, sk, valbool);
2940 		set_xfrm_gro_udp_encap_rcv(up->encap_type, sk->sk_family, sk);
2941 		break;
2942 
2943 	/*
2944 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2945 	 */
2946 	/* The sender sets actual checksum coverage length via this option.
2947 	 * The case coverage > packet length is handled by send module. */
2948 	case UDPLITE_SEND_CSCOV:
2949 		if (!is_udplite)         /* Disable the option on UDP sockets */
2950 			return -ENOPROTOOPT;
2951 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2952 			val = 8;
2953 		else if (val > USHRT_MAX)
2954 			val = USHRT_MAX;
2955 		WRITE_ONCE(up->pcslen, val);
2956 		udp_set_bit(UDPLITE_SEND_CC, sk);
2957 		break;
2958 
2959 	/* The receiver specifies a minimum checksum coverage value. To make
2960 	 * sense, this should be set to at least 8 (as done below). If zero is
2961 	 * used, this again means full checksum coverage.                     */
2962 	case UDPLITE_RECV_CSCOV:
2963 		if (!is_udplite)         /* Disable the option on UDP sockets */
2964 			return -ENOPROTOOPT;
2965 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2966 			val = 8;
2967 		else if (val > USHRT_MAX)
2968 			val = USHRT_MAX;
2969 		WRITE_ONCE(up->pcrlen, val);
2970 		udp_set_bit(UDPLITE_RECV_CC, sk);
2971 		break;
2972 
2973 	default:
2974 		err = -ENOPROTOOPT;
2975 		break;
2976 	}
2977 
2978 	return err;
2979 }
2980 EXPORT_SYMBOL(udp_lib_setsockopt);
2981 
2982 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
2983 		   unsigned int optlen)
2984 {
2985 	if (level == SOL_UDP  ||  level == SOL_UDPLITE || level == SOL_SOCKET)
2986 		return udp_lib_setsockopt(sk, level, optname,
2987 					  optval, optlen,
2988 					  udp_push_pending_frames);
2989 	return ip_setsockopt(sk, level, optname, optval, optlen);
2990 }
2991 
2992 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2993 		       char __user *optval, int __user *optlen)
2994 {
2995 	struct udp_sock *up = udp_sk(sk);
2996 	int val, len;
2997 
2998 	if (get_user(len, optlen))
2999 		return -EFAULT;
3000 
3001 	if (len < 0)
3002 		return -EINVAL;
3003 
3004 	len = min_t(unsigned int, len, sizeof(int));
3005 
3006 	switch (optname) {
3007 	case UDP_CORK:
3008 		val = udp_test_bit(CORK, sk);
3009 		break;
3010 
3011 	case UDP_ENCAP:
3012 		val = READ_ONCE(up->encap_type);
3013 		break;
3014 
3015 	case UDP_NO_CHECK6_TX:
3016 		val = udp_get_no_check6_tx(sk);
3017 		break;
3018 
3019 	case UDP_NO_CHECK6_RX:
3020 		val = udp_get_no_check6_rx(sk);
3021 		break;
3022 
3023 	case UDP_SEGMENT:
3024 		val = READ_ONCE(up->gso_size);
3025 		break;
3026 
3027 	case UDP_GRO:
3028 		val = udp_test_bit(GRO_ENABLED, sk);
3029 		break;
3030 
3031 	/* The following two cannot be changed on UDP sockets, the return is
3032 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
3033 	case UDPLITE_SEND_CSCOV:
3034 		val = READ_ONCE(up->pcslen);
3035 		break;
3036 
3037 	case UDPLITE_RECV_CSCOV:
3038 		val = READ_ONCE(up->pcrlen);
3039 		break;
3040 
3041 	default:
3042 		return -ENOPROTOOPT;
3043 	}
3044 
3045 	if (put_user(len, optlen))
3046 		return -EFAULT;
3047 	if (copy_to_user(optval, &val, len))
3048 		return -EFAULT;
3049 	return 0;
3050 }
3051 EXPORT_SYMBOL(udp_lib_getsockopt);
3052 
3053 int udp_getsockopt(struct sock *sk, int level, int optname,
3054 		   char __user *optval, int __user *optlen)
3055 {
3056 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
3057 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
3058 	return ip_getsockopt(sk, level, optname, optval, optlen);
3059 }
3060 
3061 /**
3062  * 	udp_poll - wait for a UDP event.
3063  *	@file: - file struct
3064  *	@sock: - socket
3065  *	@wait: - poll table
3066  *
3067  *	This is same as datagram poll, except for the special case of
3068  *	blocking sockets. If application is using a blocking fd
3069  *	and a packet with checksum error is in the queue;
3070  *	then it could get return from select indicating data available
3071  *	but then block when reading it. Add special case code
3072  *	to work around these arguably broken applications.
3073  */
3074 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
3075 {
3076 	__poll_t mask = datagram_poll(file, sock, wait);
3077 	struct sock *sk = sock->sk;
3078 
3079 	if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
3080 		mask |= EPOLLIN | EPOLLRDNORM;
3081 
3082 	/* Check for false positives due to checksum errors */
3083 	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
3084 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
3085 		mask &= ~(EPOLLIN | EPOLLRDNORM);
3086 
3087 	/* psock ingress_msg queue should not contain any bad checksum frames */
3088 	if (sk_is_readable(sk))
3089 		mask |= EPOLLIN | EPOLLRDNORM;
3090 	return mask;
3091 
3092 }
3093 EXPORT_SYMBOL(udp_poll);
3094 
3095 int udp_abort(struct sock *sk, int err)
3096 {
3097 	if (!has_current_bpf_ctx())
3098 		lock_sock(sk);
3099 
3100 	/* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing
3101 	 * with close()
3102 	 */
3103 	if (sock_flag(sk, SOCK_DEAD))
3104 		goto out;
3105 
3106 	sk->sk_err = err;
3107 	sk_error_report(sk);
3108 	__udp_disconnect(sk, 0);
3109 
3110 out:
3111 	if (!has_current_bpf_ctx())
3112 		release_sock(sk);
3113 
3114 	return 0;
3115 }
3116 EXPORT_SYMBOL_GPL(udp_abort);
3117 
3118 struct proto udp_prot = {
3119 	.name			= "UDP",
3120 	.owner			= THIS_MODULE,
3121 	.close			= udp_lib_close,
3122 	.pre_connect		= udp_pre_connect,
3123 	.connect		= udp_connect,
3124 	.disconnect		= udp_disconnect,
3125 	.ioctl			= udp_ioctl,
3126 	.init			= udp_init_sock,
3127 	.destroy		= udp_destroy_sock,
3128 	.setsockopt		= udp_setsockopt,
3129 	.getsockopt		= udp_getsockopt,
3130 	.sendmsg		= udp_sendmsg,
3131 	.recvmsg		= udp_recvmsg,
3132 	.splice_eof		= udp_splice_eof,
3133 	.release_cb		= ip4_datagram_release_cb,
3134 	.hash			= udp_lib_hash,
3135 	.unhash			= udp_lib_unhash,
3136 	.rehash			= udp_v4_rehash,
3137 	.get_port		= udp_v4_get_port,
3138 	.put_port		= udp_lib_unhash,
3139 #ifdef CONFIG_BPF_SYSCALL
3140 	.psock_update_sk_prot	= udp_bpf_update_proto,
3141 #endif
3142 	.memory_allocated	= &udp_memory_allocated,
3143 	.per_cpu_fw_alloc	= &udp_memory_per_cpu_fw_alloc,
3144 
3145 	.sysctl_mem		= sysctl_udp_mem,
3146 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min),
3147 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min),
3148 	.obj_size		= sizeof(struct udp_sock),
3149 	.h.udp_table		= NULL,
3150 	.diag_destroy		= udp_abort,
3151 };
3152 EXPORT_SYMBOL(udp_prot);
3153 
3154 /* ------------------------------------------------------------------------ */
3155 #ifdef CONFIG_PROC_FS
3156 
3157 static unsigned short seq_file_family(const struct seq_file *seq);
3158 static bool seq_sk_match(struct seq_file *seq, const struct sock *sk)
3159 {
3160 	unsigned short family = seq_file_family(seq);
3161 
3162 	/* AF_UNSPEC is used as a match all */
3163 	return ((family == AF_UNSPEC || family == sk->sk_family) &&
3164 		net_eq(sock_net(sk), seq_file_net(seq)));
3165 }
3166 
3167 #ifdef CONFIG_BPF_SYSCALL
3168 static const struct seq_operations bpf_iter_udp_seq_ops;
3169 #endif
3170 static struct udp_table *udp_get_table_seq(struct seq_file *seq,
3171 					   struct net *net)
3172 {
3173 	const struct udp_seq_afinfo *afinfo;
3174 
3175 #ifdef CONFIG_BPF_SYSCALL
3176 	if (seq->op == &bpf_iter_udp_seq_ops)
3177 		return net->ipv4.udp_table;
3178 #endif
3179 
3180 	afinfo = pde_data(file_inode(seq->file));
3181 	return afinfo->udp_table ? : net->ipv4.udp_table;
3182 }
3183 
3184 static struct sock *udp_get_first(struct seq_file *seq, int start)
3185 {
3186 	struct udp_iter_state *state = seq->private;
3187 	struct net *net = seq_file_net(seq);
3188 	struct udp_table *udptable;
3189 	struct sock *sk;
3190 
3191 	udptable = udp_get_table_seq(seq, net);
3192 
3193 	for (state->bucket = start; state->bucket <= udptable->mask;
3194 	     ++state->bucket) {
3195 		struct udp_hslot *hslot = &udptable->hash[state->bucket];
3196 
3197 		if (hlist_empty(&hslot->head))
3198 			continue;
3199 
3200 		spin_lock_bh(&hslot->lock);
3201 		sk_for_each(sk, &hslot->head) {
3202 			if (seq_sk_match(seq, sk))
3203 				goto found;
3204 		}
3205 		spin_unlock_bh(&hslot->lock);
3206 	}
3207 	sk = NULL;
3208 found:
3209 	return sk;
3210 }
3211 
3212 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
3213 {
3214 	struct udp_iter_state *state = seq->private;
3215 	struct net *net = seq_file_net(seq);
3216 	struct udp_table *udptable;
3217 
3218 	do {
3219 		sk = sk_next(sk);
3220 	} while (sk && !seq_sk_match(seq, sk));
3221 
3222 	if (!sk) {
3223 		udptable = udp_get_table_seq(seq, net);
3224 
3225 		if (state->bucket <= udptable->mask)
3226 			spin_unlock_bh(&udptable->hash[state->bucket].lock);
3227 
3228 		return udp_get_first(seq, state->bucket + 1);
3229 	}
3230 	return sk;
3231 }
3232 
3233 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
3234 {
3235 	struct sock *sk = udp_get_first(seq, 0);
3236 
3237 	if (sk)
3238 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
3239 			--pos;
3240 	return pos ? NULL : sk;
3241 }
3242 
3243 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
3244 {
3245 	struct udp_iter_state *state = seq->private;
3246 	state->bucket = MAX_UDP_PORTS;
3247 
3248 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
3249 }
3250 EXPORT_SYMBOL(udp_seq_start);
3251 
3252 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3253 {
3254 	struct sock *sk;
3255 
3256 	if (v == SEQ_START_TOKEN)
3257 		sk = udp_get_idx(seq, 0);
3258 	else
3259 		sk = udp_get_next(seq, v);
3260 
3261 	++*pos;
3262 	return sk;
3263 }
3264 EXPORT_SYMBOL(udp_seq_next);
3265 
3266 void udp_seq_stop(struct seq_file *seq, void *v)
3267 {
3268 	struct udp_iter_state *state = seq->private;
3269 	struct udp_table *udptable;
3270 
3271 	udptable = udp_get_table_seq(seq, seq_file_net(seq));
3272 
3273 	if (state->bucket <= udptable->mask)
3274 		spin_unlock_bh(&udptable->hash[state->bucket].lock);
3275 }
3276 EXPORT_SYMBOL(udp_seq_stop);
3277 
3278 /* ------------------------------------------------------------------------ */
3279 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
3280 		int bucket)
3281 {
3282 	struct inet_sock *inet = inet_sk(sp);
3283 	__be32 dest = inet->inet_daddr;
3284 	__be32 src  = inet->inet_rcv_saddr;
3285 	__u16 destp	  = ntohs(inet->inet_dport);
3286 	__u16 srcp	  = ntohs(inet->inet_sport);
3287 
3288 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
3289 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
3290 		bucket, src, srcp, dest, destp, sp->sk_state,
3291 		sk_wmem_alloc_get(sp),
3292 		udp_rqueue_get(sp),
3293 		0, 0L, 0,
3294 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
3295 		0, sock_i_ino(sp),
3296 		refcount_read(&sp->sk_refcnt), sp,
3297 		atomic_read(&sp->sk_drops));
3298 }
3299 
3300 int udp4_seq_show(struct seq_file *seq, void *v)
3301 {
3302 	seq_setwidth(seq, 127);
3303 	if (v == SEQ_START_TOKEN)
3304 		seq_puts(seq, "   sl  local_address rem_address   st tx_queue "
3305 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
3306 			   "inode ref pointer drops");
3307 	else {
3308 		struct udp_iter_state *state = seq->private;
3309 
3310 		udp4_format_sock(v, seq, state->bucket);
3311 	}
3312 	seq_pad(seq, '\n');
3313 	return 0;
3314 }
3315 
3316 #ifdef CONFIG_BPF_SYSCALL
3317 struct bpf_iter__udp {
3318 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
3319 	__bpf_md_ptr(struct udp_sock *, udp_sk);
3320 	uid_t uid __aligned(8);
3321 	int bucket __aligned(8);
3322 };
3323 
3324 struct bpf_udp_iter_state {
3325 	struct udp_iter_state state;
3326 	unsigned int cur_sk;
3327 	unsigned int end_sk;
3328 	unsigned int max_sk;
3329 	int offset;
3330 	struct sock **batch;
3331 	bool st_bucket_done;
3332 };
3333 
3334 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3335 				      unsigned int new_batch_sz);
3336 static struct sock *bpf_iter_udp_batch(struct seq_file *seq)
3337 {
3338 	struct bpf_udp_iter_state *iter = seq->private;
3339 	struct udp_iter_state *state = &iter->state;
3340 	struct net *net = seq_file_net(seq);
3341 	int resume_bucket, resume_offset;
3342 	struct udp_table *udptable;
3343 	unsigned int batch_sks = 0;
3344 	bool resized = false;
3345 	struct sock *sk;
3346 
3347 	resume_bucket = state->bucket;
3348 	resume_offset = iter->offset;
3349 
3350 	/* The current batch is done, so advance the bucket. */
3351 	if (iter->st_bucket_done)
3352 		state->bucket++;
3353 
3354 	udptable = udp_get_table_seq(seq, net);
3355 
3356 again:
3357 	/* New batch for the next bucket.
3358 	 * Iterate over the hash table to find a bucket with sockets matching
3359 	 * the iterator attributes, and return the first matching socket from
3360 	 * the bucket. The remaining matched sockets from the bucket are batched
3361 	 * before releasing the bucket lock. This allows BPF programs that are
3362 	 * called in seq_show to acquire the bucket lock if needed.
3363 	 */
3364 	iter->cur_sk = 0;
3365 	iter->end_sk = 0;
3366 	iter->st_bucket_done = false;
3367 	batch_sks = 0;
3368 
3369 	for (; state->bucket <= udptable->mask; state->bucket++) {
3370 		struct udp_hslot *hslot2 = &udptable->hash2[state->bucket].hslot;
3371 
3372 		if (hlist_empty(&hslot2->head))
3373 			continue;
3374 
3375 		iter->offset = 0;
3376 		spin_lock_bh(&hslot2->lock);
3377 		udp_portaddr_for_each_entry(sk, &hslot2->head) {
3378 			if (seq_sk_match(seq, sk)) {
3379 				/* Resume from the last iterated socket at the
3380 				 * offset in the bucket before iterator was stopped.
3381 				 */
3382 				if (state->bucket == resume_bucket &&
3383 				    iter->offset < resume_offset) {
3384 					++iter->offset;
3385 					continue;
3386 				}
3387 				if (iter->end_sk < iter->max_sk) {
3388 					sock_hold(sk);
3389 					iter->batch[iter->end_sk++] = sk;
3390 				}
3391 				batch_sks++;
3392 			}
3393 		}
3394 		spin_unlock_bh(&hslot2->lock);
3395 
3396 		if (iter->end_sk)
3397 			break;
3398 	}
3399 
3400 	/* All done: no batch made. */
3401 	if (!iter->end_sk)
3402 		return NULL;
3403 
3404 	if (iter->end_sk == batch_sks) {
3405 		/* Batching is done for the current bucket; return the first
3406 		 * socket to be iterated from the batch.
3407 		 */
3408 		iter->st_bucket_done = true;
3409 		goto done;
3410 	}
3411 	if (!resized && !bpf_iter_udp_realloc_batch(iter, batch_sks * 3 / 2)) {
3412 		resized = true;
3413 		/* After allocating a larger batch, retry one more time to grab
3414 		 * the whole bucket.
3415 		 */
3416 		goto again;
3417 	}
3418 done:
3419 	return iter->batch[0];
3420 }
3421 
3422 static void *bpf_iter_udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3423 {
3424 	struct bpf_udp_iter_state *iter = seq->private;
3425 	struct sock *sk;
3426 
3427 	/* Whenever seq_next() is called, the iter->cur_sk is
3428 	 * done with seq_show(), so unref the iter->cur_sk.
3429 	 */
3430 	if (iter->cur_sk < iter->end_sk) {
3431 		sock_put(iter->batch[iter->cur_sk++]);
3432 		++iter->offset;
3433 	}
3434 
3435 	/* After updating iter->cur_sk, check if there are more sockets
3436 	 * available in the current bucket batch.
3437 	 */
3438 	if (iter->cur_sk < iter->end_sk)
3439 		sk = iter->batch[iter->cur_sk];
3440 	else
3441 		/* Prepare a new batch. */
3442 		sk = bpf_iter_udp_batch(seq);
3443 
3444 	++*pos;
3445 	return sk;
3446 }
3447 
3448 static void *bpf_iter_udp_seq_start(struct seq_file *seq, loff_t *pos)
3449 {
3450 	/* bpf iter does not support lseek, so it always
3451 	 * continue from where it was stop()-ped.
3452 	 */
3453 	if (*pos)
3454 		return bpf_iter_udp_batch(seq);
3455 
3456 	return SEQ_START_TOKEN;
3457 }
3458 
3459 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3460 			     struct udp_sock *udp_sk, uid_t uid, int bucket)
3461 {
3462 	struct bpf_iter__udp ctx;
3463 
3464 	meta->seq_num--;  /* skip SEQ_START_TOKEN */
3465 	ctx.meta = meta;
3466 	ctx.udp_sk = udp_sk;
3467 	ctx.uid = uid;
3468 	ctx.bucket = bucket;
3469 	return bpf_iter_run_prog(prog, &ctx);
3470 }
3471 
3472 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v)
3473 {
3474 	struct udp_iter_state *state = seq->private;
3475 	struct bpf_iter_meta meta;
3476 	struct bpf_prog *prog;
3477 	struct sock *sk = v;
3478 	uid_t uid;
3479 	int ret;
3480 
3481 	if (v == SEQ_START_TOKEN)
3482 		return 0;
3483 
3484 	lock_sock(sk);
3485 
3486 	if (unlikely(sk_unhashed(sk))) {
3487 		ret = SEQ_SKIP;
3488 		goto unlock;
3489 	}
3490 
3491 	uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3492 	meta.seq = seq;
3493 	prog = bpf_iter_get_info(&meta, false);
3494 	ret = udp_prog_seq_show(prog, &meta, v, uid, state->bucket);
3495 
3496 unlock:
3497 	release_sock(sk);
3498 	return ret;
3499 }
3500 
3501 static void bpf_iter_udp_put_batch(struct bpf_udp_iter_state *iter)
3502 {
3503 	while (iter->cur_sk < iter->end_sk)
3504 		sock_put(iter->batch[iter->cur_sk++]);
3505 }
3506 
3507 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v)
3508 {
3509 	struct bpf_udp_iter_state *iter = seq->private;
3510 	struct bpf_iter_meta meta;
3511 	struct bpf_prog *prog;
3512 
3513 	if (!v) {
3514 		meta.seq = seq;
3515 		prog = bpf_iter_get_info(&meta, true);
3516 		if (prog)
3517 			(void)udp_prog_seq_show(prog, &meta, v, 0, 0);
3518 	}
3519 
3520 	if (iter->cur_sk < iter->end_sk) {
3521 		bpf_iter_udp_put_batch(iter);
3522 		iter->st_bucket_done = false;
3523 	}
3524 }
3525 
3526 static const struct seq_operations bpf_iter_udp_seq_ops = {
3527 	.start		= bpf_iter_udp_seq_start,
3528 	.next		= bpf_iter_udp_seq_next,
3529 	.stop		= bpf_iter_udp_seq_stop,
3530 	.show		= bpf_iter_udp_seq_show,
3531 };
3532 #endif
3533 
3534 static unsigned short seq_file_family(const struct seq_file *seq)
3535 {
3536 	const struct udp_seq_afinfo *afinfo;
3537 
3538 #ifdef CONFIG_BPF_SYSCALL
3539 	/* BPF iterator: bpf programs to filter sockets. */
3540 	if (seq->op == &bpf_iter_udp_seq_ops)
3541 		return AF_UNSPEC;
3542 #endif
3543 
3544 	/* Proc fs iterator */
3545 	afinfo = pde_data(file_inode(seq->file));
3546 	return afinfo->family;
3547 }
3548 
3549 const struct seq_operations udp_seq_ops = {
3550 	.start		= udp_seq_start,
3551 	.next		= udp_seq_next,
3552 	.stop		= udp_seq_stop,
3553 	.show		= udp4_seq_show,
3554 };
3555 EXPORT_SYMBOL(udp_seq_ops);
3556 
3557 static struct udp_seq_afinfo udp4_seq_afinfo = {
3558 	.family		= AF_INET,
3559 	.udp_table	= NULL,
3560 };
3561 
3562 static int __net_init udp4_proc_init_net(struct net *net)
3563 {
3564 	if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
3565 			sizeof(struct udp_iter_state), &udp4_seq_afinfo))
3566 		return -ENOMEM;
3567 	return 0;
3568 }
3569 
3570 static void __net_exit udp4_proc_exit_net(struct net *net)
3571 {
3572 	remove_proc_entry("udp", net->proc_net);
3573 }
3574 
3575 static struct pernet_operations udp4_net_ops = {
3576 	.init = udp4_proc_init_net,
3577 	.exit = udp4_proc_exit_net,
3578 };
3579 
3580 int __init udp4_proc_init(void)
3581 {
3582 	return register_pernet_subsys(&udp4_net_ops);
3583 }
3584 
3585 void udp4_proc_exit(void)
3586 {
3587 	unregister_pernet_subsys(&udp4_net_ops);
3588 }
3589 #endif /* CONFIG_PROC_FS */
3590 
3591 static __initdata unsigned long uhash_entries;
3592 static int __init set_uhash_entries(char *str)
3593 {
3594 	ssize_t ret;
3595 
3596 	if (!str)
3597 		return 0;
3598 
3599 	ret = kstrtoul(str, 0, &uhash_entries);
3600 	if (ret)
3601 		return 0;
3602 
3603 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
3604 		uhash_entries = UDP_HTABLE_SIZE_MIN;
3605 	return 1;
3606 }
3607 __setup("uhash_entries=", set_uhash_entries);
3608 
3609 void __init udp_table_init(struct udp_table *table, const char *name)
3610 {
3611 	unsigned int i, slot_size;
3612 
3613 	slot_size = sizeof(struct udp_hslot) + sizeof(struct udp_hslot_main) +
3614 		    udp_hash4_slot_size();
3615 	table->hash = alloc_large_system_hash(name,
3616 					      slot_size,
3617 					      uhash_entries,
3618 					      21, /* one slot per 2 MB */
3619 					      0,
3620 					      &table->log,
3621 					      &table->mask,
3622 					      UDP_HTABLE_SIZE_MIN,
3623 					      UDP_HTABLE_SIZE_MAX);
3624 
3625 	table->hash2 = (void *)(table->hash + (table->mask + 1));
3626 	for (i = 0; i <= table->mask; i++) {
3627 		INIT_HLIST_HEAD(&table->hash[i].head);
3628 		table->hash[i].count = 0;
3629 		spin_lock_init(&table->hash[i].lock);
3630 	}
3631 	for (i = 0; i <= table->mask; i++) {
3632 		INIT_HLIST_HEAD(&table->hash2[i].hslot.head);
3633 		table->hash2[i].hslot.count = 0;
3634 		spin_lock_init(&table->hash2[i].hslot.lock);
3635 	}
3636 	udp_table_hash4_init(table);
3637 }
3638 
3639 u32 udp_flow_hashrnd(void)
3640 {
3641 	static u32 hashrnd __read_mostly;
3642 
3643 	net_get_random_once(&hashrnd, sizeof(hashrnd));
3644 
3645 	return hashrnd;
3646 }
3647 EXPORT_SYMBOL(udp_flow_hashrnd);
3648 
3649 static void __net_init udp_sysctl_init(struct net *net)
3650 {
3651 	net->ipv4.sysctl_udp_rmem_min = PAGE_SIZE;
3652 	net->ipv4.sysctl_udp_wmem_min = PAGE_SIZE;
3653 
3654 #ifdef CONFIG_NET_L3_MASTER_DEV
3655 	net->ipv4.sysctl_udp_l3mdev_accept = 0;
3656 #endif
3657 }
3658 
3659 static struct udp_table __net_init *udp_pernet_table_alloc(unsigned int hash_entries)
3660 {
3661 	struct udp_table *udptable;
3662 	unsigned int slot_size;
3663 	int i;
3664 
3665 	udptable = kmalloc(sizeof(*udptable), GFP_KERNEL);
3666 	if (!udptable)
3667 		goto out;
3668 
3669 	slot_size = sizeof(struct udp_hslot) + sizeof(struct udp_hslot_main) +
3670 		    udp_hash4_slot_size();
3671 	udptable->hash = vmalloc_huge(hash_entries * slot_size,
3672 				      GFP_KERNEL_ACCOUNT);
3673 	if (!udptable->hash)
3674 		goto free_table;
3675 
3676 	udptable->hash2 = (void *)(udptable->hash + hash_entries);
3677 	udptable->mask = hash_entries - 1;
3678 	udptable->log = ilog2(hash_entries);
3679 
3680 	for (i = 0; i < hash_entries; i++) {
3681 		INIT_HLIST_HEAD(&udptable->hash[i].head);
3682 		udptable->hash[i].count = 0;
3683 		spin_lock_init(&udptable->hash[i].lock);
3684 
3685 		INIT_HLIST_HEAD(&udptable->hash2[i].hslot.head);
3686 		udptable->hash2[i].hslot.count = 0;
3687 		spin_lock_init(&udptable->hash2[i].hslot.lock);
3688 	}
3689 	udp_table_hash4_init(udptable);
3690 
3691 	return udptable;
3692 
3693 free_table:
3694 	kfree(udptable);
3695 out:
3696 	return NULL;
3697 }
3698 
3699 static void __net_exit udp_pernet_table_free(struct net *net)
3700 {
3701 	struct udp_table *udptable = net->ipv4.udp_table;
3702 
3703 	if (udptable == &udp_table)
3704 		return;
3705 
3706 	kvfree(udptable->hash);
3707 	kfree(udptable);
3708 }
3709 
3710 static void __net_init udp_set_table(struct net *net)
3711 {
3712 	struct udp_table *udptable;
3713 	unsigned int hash_entries;
3714 	struct net *old_net;
3715 
3716 	if (net_eq(net, &init_net))
3717 		goto fallback;
3718 
3719 	old_net = current->nsproxy->net_ns;
3720 	hash_entries = READ_ONCE(old_net->ipv4.sysctl_udp_child_hash_entries);
3721 	if (!hash_entries)
3722 		goto fallback;
3723 
3724 	/* Set min to keep the bitmap on stack in udp_lib_get_port() */
3725 	if (hash_entries < UDP_HTABLE_SIZE_MIN_PERNET)
3726 		hash_entries = UDP_HTABLE_SIZE_MIN_PERNET;
3727 	else
3728 		hash_entries = roundup_pow_of_two(hash_entries);
3729 
3730 	udptable = udp_pernet_table_alloc(hash_entries);
3731 	if (udptable) {
3732 		net->ipv4.udp_table = udptable;
3733 	} else {
3734 		pr_warn("Failed to allocate UDP hash table (entries: %u) "
3735 			"for a netns, fallback to the global one\n",
3736 			hash_entries);
3737 fallback:
3738 		net->ipv4.udp_table = &udp_table;
3739 	}
3740 }
3741 
3742 static int __net_init udp_pernet_init(struct net *net)
3743 {
3744 	udp_sysctl_init(net);
3745 	udp_set_table(net);
3746 
3747 	return 0;
3748 }
3749 
3750 static void __net_exit udp_pernet_exit(struct net *net)
3751 {
3752 	udp_pernet_table_free(net);
3753 }
3754 
3755 static struct pernet_operations __net_initdata udp_sysctl_ops = {
3756 	.init	= udp_pernet_init,
3757 	.exit	= udp_pernet_exit,
3758 };
3759 
3760 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3761 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta,
3762 		     struct udp_sock *udp_sk, uid_t uid, int bucket)
3763 
3764 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3765 				      unsigned int new_batch_sz)
3766 {
3767 	struct sock **new_batch;
3768 
3769 	new_batch = kvmalloc_array(new_batch_sz, sizeof(*new_batch),
3770 				   GFP_USER | __GFP_NOWARN);
3771 	if (!new_batch)
3772 		return -ENOMEM;
3773 
3774 	bpf_iter_udp_put_batch(iter);
3775 	kvfree(iter->batch);
3776 	iter->batch = new_batch;
3777 	iter->max_sk = new_batch_sz;
3778 
3779 	return 0;
3780 }
3781 
3782 #define INIT_BATCH_SZ 16
3783 
3784 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux)
3785 {
3786 	struct bpf_udp_iter_state *iter = priv_data;
3787 	int ret;
3788 
3789 	ret = bpf_iter_init_seq_net(priv_data, aux);
3790 	if (ret)
3791 		return ret;
3792 
3793 	ret = bpf_iter_udp_realloc_batch(iter, INIT_BATCH_SZ);
3794 	if (ret)
3795 		bpf_iter_fini_seq_net(priv_data);
3796 
3797 	return ret;
3798 }
3799 
3800 static void bpf_iter_fini_udp(void *priv_data)
3801 {
3802 	struct bpf_udp_iter_state *iter = priv_data;
3803 
3804 	bpf_iter_fini_seq_net(priv_data);
3805 	kvfree(iter->batch);
3806 }
3807 
3808 static const struct bpf_iter_seq_info udp_seq_info = {
3809 	.seq_ops		= &bpf_iter_udp_seq_ops,
3810 	.init_seq_private	= bpf_iter_init_udp,
3811 	.fini_seq_private	= bpf_iter_fini_udp,
3812 	.seq_priv_size		= sizeof(struct bpf_udp_iter_state),
3813 };
3814 
3815 static struct bpf_iter_reg udp_reg_info = {
3816 	.target			= "udp",
3817 	.ctx_arg_info_size	= 1,
3818 	.ctx_arg_info		= {
3819 		{ offsetof(struct bpf_iter__udp, udp_sk),
3820 		  PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED },
3821 	},
3822 	.seq_info		= &udp_seq_info,
3823 };
3824 
3825 static void __init bpf_iter_register(void)
3826 {
3827 	udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP];
3828 	if (bpf_iter_reg_target(&udp_reg_info))
3829 		pr_warn("Warning: could not register bpf iterator udp\n");
3830 }
3831 #endif
3832 
3833 void __init udp_init(void)
3834 {
3835 	unsigned long limit;
3836 	unsigned int i;
3837 
3838 	udp_table_init(&udp_table, "UDP");
3839 	limit = nr_free_buffer_pages() / 8;
3840 	limit = max(limit, 128UL);
3841 	sysctl_udp_mem[0] = limit / 4 * 3;
3842 	sysctl_udp_mem[1] = limit;
3843 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3844 
3845 	/* 16 spinlocks per cpu */
3846 	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3847 	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3848 				GFP_KERNEL);
3849 	if (!udp_busylocks)
3850 		panic("UDP: failed to alloc udp_busylocks\n");
3851 	for (i = 0; i < (1U << udp_busylocks_log); i++)
3852 		spin_lock_init(udp_busylocks + i);
3853 
3854 	if (register_pernet_subsys(&udp_sysctl_ops))
3855 		panic("UDP: failed to init sysctl parameters.\n");
3856 
3857 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3858 	bpf_iter_register();
3859 #endif
3860 }
3861