xref: /linux/net/ipv4/udp.c (revision 6ebe6dbd6886af07b102aca42e44edbee94a22d9)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The User Datagram Protocol (UDP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
12  *		Hirokazu Takahashi, <taka@valinux.co.jp>
13  *
14  * Fixes:
15  *		Alan Cox	:	verify_area() calls
16  *		Alan Cox	: 	stopped close while in use off icmp
17  *					messages. Not a fix but a botch that
18  *					for udp at least is 'valid'.
19  *		Alan Cox	:	Fixed icmp handling properly
20  *		Alan Cox	: 	Correct error for oversized datagrams
21  *		Alan Cox	:	Tidied select() semantics.
22  *		Alan Cox	:	udp_err() fixed properly, also now
23  *					select and read wake correctly on errors
24  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
25  *		Alan Cox	:	UDP can count its memory
26  *		Alan Cox	:	send to an unknown connection causes
27  *					an ECONNREFUSED off the icmp, but
28  *					does NOT close.
29  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
30  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
31  *					bug no longer crashes it.
32  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
33  *		Alan Cox	:	Uses skb_free_datagram
34  *		Alan Cox	:	Added get/set sockopt support.
35  *		Alan Cox	:	Broadcasting without option set returns EACCES.
36  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
37  *		Alan Cox	:	Use ip_tos and ip_ttl
38  *		Alan Cox	:	SNMP Mibs
39  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
40  *		Matt Dillon	:	UDP length checks.
41  *		Alan Cox	:	Smarter af_inet used properly.
42  *		Alan Cox	:	Use new kernel side addressing.
43  *		Alan Cox	:	Incorrect return on truncated datagram receive.
44  *	Arnt Gulbrandsen 	:	New udp_send and stuff
45  *		Alan Cox	:	Cache last socket
46  *		Alan Cox	:	Route cache
47  *		Jon Peatfield	:	Minor efficiency fix to sendto().
48  *		Mike Shaver	:	RFC1122 checks.
49  *		Alan Cox	:	Nonblocking error fix.
50  *	Willy Konynenberg	:	Transparent proxying support.
51  *		Mike McLagan	:	Routing by source
52  *		David S. Miller	:	New socket lookup architecture.
53  *					Last socket cache retained as it
54  *					does have a high hit rate.
55  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
56  *		Andi Kleen	:	Some cleanups, cache destination entry
57  *					for connect.
58  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
59  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
60  *					return ENOTCONN for unconnected sockets (POSIX)
61  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
62  *					bound-to-device socket
63  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
64  *					datagrams.
65  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
66  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
67  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
68  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
69  *					a single port at the same time.
70  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71  *	James Chapman		:	Add L2TP encapsulation type.
72  *
73  *
74  *		This program is free software; you can redistribute it and/or
75  *		modify it under the terms of the GNU General Public License
76  *		as published by the Free Software Foundation; either version
77  *		2 of the License, or (at your option) any later version.
78  */
79 
80 #define pr_fmt(fmt) "UDP: " fmt
81 
82 #include <linux/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/bootmem.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
93 #include <linux/inetdevice.h>
94 #include <linux/in.h>
95 #include <linux/errno.h>
96 #include <linux/timer.h>
97 #include <linux/mm.h>
98 #include <linux/inet.h>
99 #include <linux/netdevice.h>
100 #include <linux/slab.h>
101 #include <net/tcp_states.h>
102 #include <linux/skbuff.h>
103 #include <linux/proc_fs.h>
104 #include <linux/seq_file.h>
105 #include <net/net_namespace.h>
106 #include <net/icmp.h>
107 #include <net/inet_hashtables.h>
108 #include <net/route.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <trace/events/udp.h>
112 #include <linux/static_key.h>
113 #include <trace/events/skb.h>
114 #include <net/busy_poll.h>
115 #include "udp_impl.h"
116 #include <net/sock_reuseport.h>
117 #include <net/addrconf.h>
118 
119 struct udp_table udp_table __read_mostly;
120 EXPORT_SYMBOL(udp_table);
121 
122 long sysctl_udp_mem[3] __read_mostly;
123 EXPORT_SYMBOL(sysctl_udp_mem);
124 
125 int sysctl_udp_rmem_min __read_mostly;
126 EXPORT_SYMBOL(sysctl_udp_rmem_min);
127 
128 int sysctl_udp_wmem_min __read_mostly;
129 EXPORT_SYMBOL(sysctl_udp_wmem_min);
130 
131 atomic_long_t udp_memory_allocated;
132 EXPORT_SYMBOL(udp_memory_allocated);
133 
134 #define MAX_UDP_PORTS 65536
135 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
136 
137 /* IPCB reference means this can not be used from early demux */
138 static bool udp_lib_exact_dif_match(struct net *net, struct sk_buff *skb)
139 {
140 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
141 	if (!net->ipv4.sysctl_udp_l3mdev_accept &&
142 	    skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
143 		return true;
144 #endif
145 	return false;
146 }
147 
148 static int udp_lib_lport_inuse(struct net *net, __u16 num,
149 			       const struct udp_hslot *hslot,
150 			       unsigned long *bitmap,
151 			       struct sock *sk, unsigned int log)
152 {
153 	struct sock *sk2;
154 	kuid_t uid = sock_i_uid(sk);
155 
156 	sk_for_each(sk2, &hslot->head) {
157 		if (net_eq(sock_net(sk2), net) &&
158 		    sk2 != sk &&
159 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
160 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
161 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
162 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
163 		    inet_rcv_saddr_equal(sk, sk2, true)) {
164 			if (sk2->sk_reuseport && sk->sk_reuseport &&
165 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
166 			    uid_eq(uid, sock_i_uid(sk2))) {
167 				if (!bitmap)
168 					return 0;
169 			} else {
170 				if (!bitmap)
171 					return 1;
172 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
173 					  bitmap);
174 			}
175 		}
176 	}
177 	return 0;
178 }
179 
180 /*
181  * Note: we still hold spinlock of primary hash chain, so no other writer
182  * can insert/delete a socket with local_port == num
183  */
184 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
185 				struct udp_hslot *hslot2,
186 				struct sock *sk)
187 {
188 	struct sock *sk2;
189 	kuid_t uid = sock_i_uid(sk);
190 	int res = 0;
191 
192 	spin_lock(&hslot2->lock);
193 	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
194 		if (net_eq(sock_net(sk2), net) &&
195 		    sk2 != sk &&
196 		    (udp_sk(sk2)->udp_port_hash == num) &&
197 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
198 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
199 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
200 		    inet_rcv_saddr_equal(sk, sk2, true)) {
201 			if (sk2->sk_reuseport && sk->sk_reuseport &&
202 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
203 			    uid_eq(uid, sock_i_uid(sk2))) {
204 				res = 0;
205 			} else {
206 				res = 1;
207 			}
208 			break;
209 		}
210 	}
211 	spin_unlock(&hslot2->lock);
212 	return res;
213 }
214 
215 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
216 {
217 	struct net *net = sock_net(sk);
218 	kuid_t uid = sock_i_uid(sk);
219 	struct sock *sk2;
220 
221 	sk_for_each(sk2, &hslot->head) {
222 		if (net_eq(sock_net(sk2), net) &&
223 		    sk2 != sk &&
224 		    sk2->sk_family == sk->sk_family &&
225 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
226 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
227 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
228 		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
229 		    inet_rcv_saddr_equal(sk, sk2, false)) {
230 			return reuseport_add_sock(sk, sk2);
231 		}
232 	}
233 
234 	return reuseport_alloc(sk);
235 }
236 
237 /**
238  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
239  *
240  *  @sk:          socket struct in question
241  *  @snum:        port number to look up
242  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
243  *                   with NULL address
244  */
245 int udp_lib_get_port(struct sock *sk, unsigned short snum,
246 		     unsigned int hash2_nulladdr)
247 {
248 	struct udp_hslot *hslot, *hslot2;
249 	struct udp_table *udptable = sk->sk_prot->h.udp_table;
250 	int    error = 1;
251 	struct net *net = sock_net(sk);
252 
253 	if (!snum) {
254 		int low, high, remaining;
255 		unsigned int rand;
256 		unsigned short first, last;
257 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
258 
259 		inet_get_local_port_range(net, &low, &high);
260 		remaining = (high - low) + 1;
261 
262 		rand = prandom_u32();
263 		first = reciprocal_scale(rand, remaining) + low;
264 		/*
265 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
266 		 */
267 		rand = (rand | 1) * (udptable->mask + 1);
268 		last = first + udptable->mask + 1;
269 		do {
270 			hslot = udp_hashslot(udptable, net, first);
271 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
272 			spin_lock_bh(&hslot->lock);
273 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
274 					    udptable->log);
275 
276 			snum = first;
277 			/*
278 			 * Iterate on all possible values of snum for this hash.
279 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
280 			 * give us randomization and full range coverage.
281 			 */
282 			do {
283 				if (low <= snum && snum <= high &&
284 				    !test_bit(snum >> udptable->log, bitmap) &&
285 				    !inet_is_local_reserved_port(net, snum))
286 					goto found;
287 				snum += rand;
288 			} while (snum != first);
289 			spin_unlock_bh(&hslot->lock);
290 			cond_resched();
291 		} while (++first != last);
292 		goto fail;
293 	} else {
294 		hslot = udp_hashslot(udptable, net, snum);
295 		spin_lock_bh(&hslot->lock);
296 		if (hslot->count > 10) {
297 			int exist;
298 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
299 
300 			slot2          &= udptable->mask;
301 			hash2_nulladdr &= udptable->mask;
302 
303 			hslot2 = udp_hashslot2(udptable, slot2);
304 			if (hslot->count < hslot2->count)
305 				goto scan_primary_hash;
306 
307 			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
308 			if (!exist && (hash2_nulladdr != slot2)) {
309 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
310 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
311 							     sk);
312 			}
313 			if (exist)
314 				goto fail_unlock;
315 			else
316 				goto found;
317 		}
318 scan_primary_hash:
319 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
320 			goto fail_unlock;
321 	}
322 found:
323 	inet_sk(sk)->inet_num = snum;
324 	udp_sk(sk)->udp_port_hash = snum;
325 	udp_sk(sk)->udp_portaddr_hash ^= snum;
326 	if (sk_unhashed(sk)) {
327 		if (sk->sk_reuseport &&
328 		    udp_reuseport_add_sock(sk, hslot)) {
329 			inet_sk(sk)->inet_num = 0;
330 			udp_sk(sk)->udp_port_hash = 0;
331 			udp_sk(sk)->udp_portaddr_hash ^= snum;
332 			goto fail_unlock;
333 		}
334 
335 		sk_add_node_rcu(sk, &hslot->head);
336 		hslot->count++;
337 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
338 
339 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
340 		spin_lock(&hslot2->lock);
341 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
342 		    sk->sk_family == AF_INET6)
343 			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
344 					   &hslot2->head);
345 		else
346 			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
347 					   &hslot2->head);
348 		hslot2->count++;
349 		spin_unlock(&hslot2->lock);
350 	}
351 	sock_set_flag(sk, SOCK_RCU_FREE);
352 	error = 0;
353 fail_unlock:
354 	spin_unlock_bh(&hslot->lock);
355 fail:
356 	return error;
357 }
358 EXPORT_SYMBOL(udp_lib_get_port);
359 
360 int udp_v4_get_port(struct sock *sk, unsigned short snum)
361 {
362 	unsigned int hash2_nulladdr =
363 		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
364 	unsigned int hash2_partial =
365 		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
366 
367 	/* precompute partial secondary hash */
368 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
369 	return udp_lib_get_port(sk, snum, hash2_nulladdr);
370 }
371 
372 static int compute_score(struct sock *sk, struct net *net,
373 			 __be32 saddr, __be16 sport,
374 			 __be32 daddr, unsigned short hnum,
375 			 int dif, int sdif, bool exact_dif)
376 {
377 	int score;
378 	struct inet_sock *inet;
379 
380 	if (!net_eq(sock_net(sk), net) ||
381 	    udp_sk(sk)->udp_port_hash != hnum ||
382 	    ipv6_only_sock(sk))
383 		return -1;
384 
385 	score = (sk->sk_family == PF_INET) ? 2 : 1;
386 	inet = inet_sk(sk);
387 
388 	if (inet->inet_rcv_saddr) {
389 		if (inet->inet_rcv_saddr != daddr)
390 			return -1;
391 		score += 4;
392 	}
393 
394 	if (inet->inet_daddr) {
395 		if (inet->inet_daddr != saddr)
396 			return -1;
397 		score += 4;
398 	}
399 
400 	if (inet->inet_dport) {
401 		if (inet->inet_dport != sport)
402 			return -1;
403 		score += 4;
404 	}
405 
406 	if (sk->sk_bound_dev_if || exact_dif) {
407 		bool dev_match = (sk->sk_bound_dev_if == dif ||
408 				  sk->sk_bound_dev_if == sdif);
409 
410 		if (exact_dif && !dev_match)
411 			return -1;
412 		if (sk->sk_bound_dev_if && dev_match)
413 			score += 4;
414 	}
415 
416 	if (sk->sk_incoming_cpu == raw_smp_processor_id())
417 		score++;
418 	return score;
419 }
420 
421 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
422 		       const __u16 lport, const __be32 faddr,
423 		       const __be16 fport)
424 {
425 	static u32 udp_ehash_secret __read_mostly;
426 
427 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
428 
429 	return __inet_ehashfn(laddr, lport, faddr, fport,
430 			      udp_ehash_secret + net_hash_mix(net));
431 }
432 
433 /* called with rcu_read_lock() */
434 static struct sock *udp4_lib_lookup2(struct net *net,
435 				     __be32 saddr, __be16 sport,
436 				     __be32 daddr, unsigned int hnum,
437 				     int dif, int sdif, bool exact_dif,
438 				     struct udp_hslot *hslot2,
439 				     struct sk_buff *skb)
440 {
441 	struct sock *sk, *result;
442 	int score, badness;
443 	u32 hash = 0;
444 
445 	result = NULL;
446 	badness = 0;
447 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
448 		score = compute_score(sk, net, saddr, sport,
449 				      daddr, hnum, dif, sdif, exact_dif);
450 		if (score > badness) {
451 			if (sk->sk_reuseport) {
452 				hash = udp_ehashfn(net, daddr, hnum,
453 						   saddr, sport);
454 				result = reuseport_select_sock(sk, hash, skb,
455 							sizeof(struct udphdr));
456 				if (result)
457 					return result;
458 			}
459 			badness = score;
460 			result = sk;
461 		}
462 	}
463 	return result;
464 }
465 
466 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
467  * harder than this. -DaveM
468  */
469 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
470 		__be16 sport, __be32 daddr, __be16 dport, int dif,
471 		int sdif, struct udp_table *udptable, struct sk_buff *skb)
472 {
473 	struct sock *sk, *result;
474 	unsigned short hnum = ntohs(dport);
475 	unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
476 	struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
477 	bool exact_dif = udp_lib_exact_dif_match(net, skb);
478 	int score, badness;
479 	u32 hash = 0;
480 
481 	if (hslot->count > 10) {
482 		hash2 = ipv4_portaddr_hash(net, daddr, hnum);
483 		slot2 = hash2 & udptable->mask;
484 		hslot2 = &udptable->hash2[slot2];
485 		if (hslot->count < hslot2->count)
486 			goto begin;
487 
488 		result = udp4_lib_lookup2(net, saddr, sport,
489 					  daddr, hnum, dif, sdif,
490 					  exact_dif, hslot2, skb);
491 		if (!result) {
492 			unsigned int old_slot2 = slot2;
493 			hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
494 			slot2 = hash2 & udptable->mask;
495 			/* avoid searching the same slot again. */
496 			if (unlikely(slot2 == old_slot2))
497 				return result;
498 
499 			hslot2 = &udptable->hash2[slot2];
500 			if (hslot->count < hslot2->count)
501 				goto begin;
502 
503 			result = udp4_lib_lookup2(net, saddr, sport,
504 						  daddr, hnum, dif, sdif,
505 						  exact_dif, hslot2, skb);
506 		}
507 		return result;
508 	}
509 begin:
510 	result = NULL;
511 	badness = 0;
512 	sk_for_each_rcu(sk, &hslot->head) {
513 		score = compute_score(sk, net, saddr, sport,
514 				      daddr, hnum, dif, sdif, exact_dif);
515 		if (score > badness) {
516 			if (sk->sk_reuseport) {
517 				hash = udp_ehashfn(net, daddr, hnum,
518 						   saddr, sport);
519 				result = reuseport_select_sock(sk, hash, skb,
520 							sizeof(struct udphdr));
521 				if (result)
522 					return result;
523 			}
524 			result = sk;
525 			badness = score;
526 		}
527 	}
528 	return result;
529 }
530 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
531 
532 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
533 						 __be16 sport, __be16 dport,
534 						 struct udp_table *udptable)
535 {
536 	const struct iphdr *iph = ip_hdr(skb);
537 
538 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
539 				 iph->daddr, dport, inet_iif(skb),
540 				 inet_sdif(skb), udptable, skb);
541 }
542 
543 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb,
544 				 __be16 sport, __be16 dport)
545 {
546 	return __udp4_lib_lookup_skb(skb, sport, dport, &udp_table);
547 }
548 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb);
549 
550 /* Must be called under rcu_read_lock().
551  * Does increment socket refcount.
552  */
553 #if IS_ENABLED(CONFIG_NETFILTER_XT_MATCH_SOCKET) || \
554     IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TPROXY) || \
555     IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
556 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
557 			     __be32 daddr, __be16 dport, int dif)
558 {
559 	struct sock *sk;
560 
561 	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
562 			       dif, 0, &udp_table, NULL);
563 	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
564 		sk = NULL;
565 	return sk;
566 }
567 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
568 #endif
569 
570 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
571 				       __be16 loc_port, __be32 loc_addr,
572 				       __be16 rmt_port, __be32 rmt_addr,
573 				       int dif, int sdif, unsigned short hnum)
574 {
575 	struct inet_sock *inet = inet_sk(sk);
576 
577 	if (!net_eq(sock_net(sk), net) ||
578 	    udp_sk(sk)->udp_port_hash != hnum ||
579 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
580 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
581 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
582 	    ipv6_only_sock(sk) ||
583 	    (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif &&
584 	     sk->sk_bound_dev_if != sdif))
585 		return false;
586 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
587 		return false;
588 	return true;
589 }
590 
591 /*
592  * This routine is called by the ICMP module when it gets some
593  * sort of error condition.  If err < 0 then the socket should
594  * be closed and the error returned to the user.  If err > 0
595  * it's just the icmp type << 8 | icmp code.
596  * Header points to the ip header of the error packet. We move
597  * on past this. Then (as it used to claim before adjustment)
598  * header points to the first 8 bytes of the udp header.  We need
599  * to find the appropriate port.
600  */
601 
602 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
603 {
604 	struct inet_sock *inet;
605 	const struct iphdr *iph = (const struct iphdr *)skb->data;
606 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
607 	const int type = icmp_hdr(skb)->type;
608 	const int code = icmp_hdr(skb)->code;
609 	struct sock *sk;
610 	int harderr;
611 	int err;
612 	struct net *net = dev_net(skb->dev);
613 
614 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
615 			       iph->saddr, uh->source, skb->dev->ifindex, 0,
616 			       udptable, NULL);
617 	if (!sk) {
618 		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
619 		return;	/* No socket for error */
620 	}
621 
622 	err = 0;
623 	harderr = 0;
624 	inet = inet_sk(sk);
625 
626 	switch (type) {
627 	default:
628 	case ICMP_TIME_EXCEEDED:
629 		err = EHOSTUNREACH;
630 		break;
631 	case ICMP_SOURCE_QUENCH:
632 		goto out;
633 	case ICMP_PARAMETERPROB:
634 		err = EPROTO;
635 		harderr = 1;
636 		break;
637 	case ICMP_DEST_UNREACH:
638 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
639 			ipv4_sk_update_pmtu(skb, sk, info);
640 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
641 				err = EMSGSIZE;
642 				harderr = 1;
643 				break;
644 			}
645 			goto out;
646 		}
647 		err = EHOSTUNREACH;
648 		if (code <= NR_ICMP_UNREACH) {
649 			harderr = icmp_err_convert[code].fatal;
650 			err = icmp_err_convert[code].errno;
651 		}
652 		break;
653 	case ICMP_REDIRECT:
654 		ipv4_sk_redirect(skb, sk);
655 		goto out;
656 	}
657 
658 	/*
659 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
660 	 *	4.1.3.3.
661 	 */
662 	if (!inet->recverr) {
663 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
664 			goto out;
665 	} else
666 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
667 
668 	sk->sk_err = err;
669 	sk->sk_error_report(sk);
670 out:
671 	return;
672 }
673 
674 void udp_err(struct sk_buff *skb, u32 info)
675 {
676 	__udp4_lib_err(skb, info, &udp_table);
677 }
678 
679 /*
680  * Throw away all pending data and cancel the corking. Socket is locked.
681  */
682 void udp_flush_pending_frames(struct sock *sk)
683 {
684 	struct udp_sock *up = udp_sk(sk);
685 
686 	if (up->pending) {
687 		up->len = 0;
688 		up->pending = 0;
689 		ip_flush_pending_frames(sk);
690 	}
691 }
692 EXPORT_SYMBOL(udp_flush_pending_frames);
693 
694 /**
695  * 	udp4_hwcsum  -  handle outgoing HW checksumming
696  * 	@skb: 	sk_buff containing the filled-in UDP header
697  * 	        (checksum field must be zeroed out)
698  *	@src:	source IP address
699  *	@dst:	destination IP address
700  */
701 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
702 {
703 	struct udphdr *uh = udp_hdr(skb);
704 	int offset = skb_transport_offset(skb);
705 	int len = skb->len - offset;
706 	int hlen = len;
707 	__wsum csum = 0;
708 
709 	if (!skb_has_frag_list(skb)) {
710 		/*
711 		 * Only one fragment on the socket.
712 		 */
713 		skb->csum_start = skb_transport_header(skb) - skb->head;
714 		skb->csum_offset = offsetof(struct udphdr, check);
715 		uh->check = ~csum_tcpudp_magic(src, dst, len,
716 					       IPPROTO_UDP, 0);
717 	} else {
718 		struct sk_buff *frags;
719 
720 		/*
721 		 * HW-checksum won't work as there are two or more
722 		 * fragments on the socket so that all csums of sk_buffs
723 		 * should be together
724 		 */
725 		skb_walk_frags(skb, frags) {
726 			csum = csum_add(csum, frags->csum);
727 			hlen -= frags->len;
728 		}
729 
730 		csum = skb_checksum(skb, offset, hlen, csum);
731 		skb->ip_summed = CHECKSUM_NONE;
732 
733 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
734 		if (uh->check == 0)
735 			uh->check = CSUM_MANGLED_0;
736 	}
737 }
738 EXPORT_SYMBOL_GPL(udp4_hwcsum);
739 
740 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
741  * for the simple case like when setting the checksum for a UDP tunnel.
742  */
743 void udp_set_csum(bool nocheck, struct sk_buff *skb,
744 		  __be32 saddr, __be32 daddr, int len)
745 {
746 	struct udphdr *uh = udp_hdr(skb);
747 
748 	if (nocheck) {
749 		uh->check = 0;
750 	} else if (skb_is_gso(skb)) {
751 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
752 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
753 		uh->check = 0;
754 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
755 		if (uh->check == 0)
756 			uh->check = CSUM_MANGLED_0;
757 	} else {
758 		skb->ip_summed = CHECKSUM_PARTIAL;
759 		skb->csum_start = skb_transport_header(skb) - skb->head;
760 		skb->csum_offset = offsetof(struct udphdr, check);
761 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
762 	}
763 }
764 EXPORT_SYMBOL(udp_set_csum);
765 
766 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
767 {
768 	struct sock *sk = skb->sk;
769 	struct inet_sock *inet = inet_sk(sk);
770 	struct udphdr *uh;
771 	int err = 0;
772 	int is_udplite = IS_UDPLITE(sk);
773 	int offset = skb_transport_offset(skb);
774 	int len = skb->len - offset;
775 	__wsum csum = 0;
776 
777 	/*
778 	 * Create a UDP header
779 	 */
780 	uh = udp_hdr(skb);
781 	uh->source = inet->inet_sport;
782 	uh->dest = fl4->fl4_dport;
783 	uh->len = htons(len);
784 	uh->check = 0;
785 
786 	if (is_udplite)  				 /*     UDP-Lite      */
787 		csum = udplite_csum(skb);
788 
789 	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
790 
791 		skb->ip_summed = CHECKSUM_NONE;
792 		goto send;
793 
794 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
795 
796 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
797 		goto send;
798 
799 	} else
800 		csum = udp_csum(skb);
801 
802 	/* add protocol-dependent pseudo-header */
803 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
804 				      sk->sk_protocol, csum);
805 	if (uh->check == 0)
806 		uh->check = CSUM_MANGLED_0;
807 
808 send:
809 	err = ip_send_skb(sock_net(sk), skb);
810 	if (err) {
811 		if (err == -ENOBUFS && !inet->recverr) {
812 			UDP_INC_STATS(sock_net(sk),
813 				      UDP_MIB_SNDBUFERRORS, is_udplite);
814 			err = 0;
815 		}
816 	} else
817 		UDP_INC_STATS(sock_net(sk),
818 			      UDP_MIB_OUTDATAGRAMS, is_udplite);
819 	return err;
820 }
821 
822 /*
823  * Push out all pending data as one UDP datagram. Socket is locked.
824  */
825 int udp_push_pending_frames(struct sock *sk)
826 {
827 	struct udp_sock  *up = udp_sk(sk);
828 	struct inet_sock *inet = inet_sk(sk);
829 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
830 	struct sk_buff *skb;
831 	int err = 0;
832 
833 	skb = ip_finish_skb(sk, fl4);
834 	if (!skb)
835 		goto out;
836 
837 	err = udp_send_skb(skb, fl4);
838 
839 out:
840 	up->len = 0;
841 	up->pending = 0;
842 	return err;
843 }
844 EXPORT_SYMBOL(udp_push_pending_frames);
845 
846 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
847 {
848 	struct inet_sock *inet = inet_sk(sk);
849 	struct udp_sock *up = udp_sk(sk);
850 	struct flowi4 fl4_stack;
851 	struct flowi4 *fl4;
852 	int ulen = len;
853 	struct ipcm_cookie ipc;
854 	struct rtable *rt = NULL;
855 	int free = 0;
856 	int connected = 0;
857 	__be32 daddr, faddr, saddr;
858 	__be16 dport;
859 	u8  tos;
860 	int err, is_udplite = IS_UDPLITE(sk);
861 	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
862 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
863 	struct sk_buff *skb;
864 	struct ip_options_data opt_copy;
865 
866 	if (len > 0xFFFF)
867 		return -EMSGSIZE;
868 
869 	/*
870 	 *	Check the flags.
871 	 */
872 
873 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
874 		return -EOPNOTSUPP;
875 
876 	ipc.opt = NULL;
877 	ipc.tx_flags = 0;
878 	ipc.ttl = 0;
879 	ipc.tos = -1;
880 
881 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
882 
883 	fl4 = &inet->cork.fl.u.ip4;
884 	if (up->pending) {
885 		/*
886 		 * There are pending frames.
887 		 * The socket lock must be held while it's corked.
888 		 */
889 		lock_sock(sk);
890 		if (likely(up->pending)) {
891 			if (unlikely(up->pending != AF_INET)) {
892 				release_sock(sk);
893 				return -EINVAL;
894 			}
895 			goto do_append_data;
896 		}
897 		release_sock(sk);
898 	}
899 	ulen += sizeof(struct udphdr);
900 
901 	/*
902 	 *	Get and verify the address.
903 	 */
904 	if (msg->msg_name) {
905 		DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
906 		if (msg->msg_namelen < sizeof(*usin))
907 			return -EINVAL;
908 		if (usin->sin_family != AF_INET) {
909 			if (usin->sin_family != AF_UNSPEC)
910 				return -EAFNOSUPPORT;
911 		}
912 
913 		daddr = usin->sin_addr.s_addr;
914 		dport = usin->sin_port;
915 		if (dport == 0)
916 			return -EINVAL;
917 	} else {
918 		if (sk->sk_state != TCP_ESTABLISHED)
919 			return -EDESTADDRREQ;
920 		daddr = inet->inet_daddr;
921 		dport = inet->inet_dport;
922 		/* Open fast path for connected socket.
923 		   Route will not be used, if at least one option is set.
924 		 */
925 		connected = 1;
926 	}
927 
928 	ipc.sockc.tsflags = sk->sk_tsflags;
929 	ipc.addr = inet->inet_saddr;
930 	ipc.oif = sk->sk_bound_dev_if;
931 
932 	if (msg->msg_controllen) {
933 		err = ip_cmsg_send(sk, msg, &ipc, sk->sk_family == AF_INET6);
934 		if (unlikely(err)) {
935 			kfree(ipc.opt);
936 			return err;
937 		}
938 		if (ipc.opt)
939 			free = 1;
940 		connected = 0;
941 	}
942 	if (!ipc.opt) {
943 		struct ip_options_rcu *inet_opt;
944 
945 		rcu_read_lock();
946 		inet_opt = rcu_dereference(inet->inet_opt);
947 		if (inet_opt) {
948 			memcpy(&opt_copy, inet_opt,
949 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
950 			ipc.opt = &opt_copy.opt;
951 		}
952 		rcu_read_unlock();
953 	}
954 
955 	saddr = ipc.addr;
956 	ipc.addr = faddr = daddr;
957 
958 	sock_tx_timestamp(sk, ipc.sockc.tsflags, &ipc.tx_flags);
959 
960 	if (ipc.opt && ipc.opt->opt.srr) {
961 		if (!daddr)
962 			return -EINVAL;
963 		faddr = ipc.opt->opt.faddr;
964 		connected = 0;
965 	}
966 	tos = get_rttos(&ipc, inet);
967 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
968 	    (msg->msg_flags & MSG_DONTROUTE) ||
969 	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
970 		tos |= RTO_ONLINK;
971 		connected = 0;
972 	}
973 
974 	if (ipv4_is_multicast(daddr)) {
975 		if (!ipc.oif)
976 			ipc.oif = inet->mc_index;
977 		if (!saddr)
978 			saddr = inet->mc_addr;
979 		connected = 0;
980 	} else if (!ipc.oif)
981 		ipc.oif = inet->uc_index;
982 
983 	if (connected)
984 		rt = (struct rtable *)sk_dst_check(sk, 0);
985 
986 	if (!rt) {
987 		struct net *net = sock_net(sk);
988 		__u8 flow_flags = inet_sk_flowi_flags(sk);
989 
990 		fl4 = &fl4_stack;
991 
992 		flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
993 				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
994 				   flow_flags,
995 				   faddr, saddr, dport, inet->inet_sport,
996 				   sk->sk_uid);
997 
998 		security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
999 		rt = ip_route_output_flow(net, fl4, sk);
1000 		if (IS_ERR(rt)) {
1001 			err = PTR_ERR(rt);
1002 			rt = NULL;
1003 			if (err == -ENETUNREACH)
1004 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1005 			goto out;
1006 		}
1007 
1008 		err = -EACCES;
1009 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1010 		    !sock_flag(sk, SOCK_BROADCAST))
1011 			goto out;
1012 		if (connected)
1013 			sk_dst_set(sk, dst_clone(&rt->dst));
1014 	}
1015 
1016 	if (msg->msg_flags&MSG_CONFIRM)
1017 		goto do_confirm;
1018 back_from_confirm:
1019 
1020 	saddr = fl4->saddr;
1021 	if (!ipc.addr)
1022 		daddr = ipc.addr = fl4->daddr;
1023 
1024 	/* Lockless fast path for the non-corking case. */
1025 	if (!corkreq) {
1026 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1027 				  sizeof(struct udphdr), &ipc, &rt,
1028 				  msg->msg_flags);
1029 		err = PTR_ERR(skb);
1030 		if (!IS_ERR_OR_NULL(skb))
1031 			err = udp_send_skb(skb, fl4);
1032 		goto out;
1033 	}
1034 
1035 	lock_sock(sk);
1036 	if (unlikely(up->pending)) {
1037 		/* The socket is already corked while preparing it. */
1038 		/* ... which is an evident application bug. --ANK */
1039 		release_sock(sk);
1040 
1041 		net_dbg_ratelimited("socket already corked\n");
1042 		err = -EINVAL;
1043 		goto out;
1044 	}
1045 	/*
1046 	 *	Now cork the socket to pend data.
1047 	 */
1048 	fl4 = &inet->cork.fl.u.ip4;
1049 	fl4->daddr = daddr;
1050 	fl4->saddr = saddr;
1051 	fl4->fl4_dport = dport;
1052 	fl4->fl4_sport = inet->inet_sport;
1053 	up->pending = AF_INET;
1054 
1055 do_append_data:
1056 	up->len += ulen;
1057 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1058 			     sizeof(struct udphdr), &ipc, &rt,
1059 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1060 	if (err)
1061 		udp_flush_pending_frames(sk);
1062 	else if (!corkreq)
1063 		err = udp_push_pending_frames(sk);
1064 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1065 		up->pending = 0;
1066 	release_sock(sk);
1067 
1068 out:
1069 	ip_rt_put(rt);
1070 	if (free)
1071 		kfree(ipc.opt);
1072 	if (!err)
1073 		return len;
1074 	/*
1075 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1076 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1077 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1078 	 * things).  We could add another new stat but at least for now that
1079 	 * seems like overkill.
1080 	 */
1081 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1082 		UDP_INC_STATS(sock_net(sk),
1083 			      UDP_MIB_SNDBUFERRORS, is_udplite);
1084 	}
1085 	return err;
1086 
1087 do_confirm:
1088 	if (msg->msg_flags & MSG_PROBE)
1089 		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1090 	if (!(msg->msg_flags&MSG_PROBE) || len)
1091 		goto back_from_confirm;
1092 	err = 0;
1093 	goto out;
1094 }
1095 EXPORT_SYMBOL(udp_sendmsg);
1096 
1097 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1098 		 size_t size, int flags)
1099 {
1100 	struct inet_sock *inet = inet_sk(sk);
1101 	struct udp_sock *up = udp_sk(sk);
1102 	int ret;
1103 
1104 	if (flags & MSG_SENDPAGE_NOTLAST)
1105 		flags |= MSG_MORE;
1106 
1107 	if (!up->pending) {
1108 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1109 
1110 		/* Call udp_sendmsg to specify destination address which
1111 		 * sendpage interface can't pass.
1112 		 * This will succeed only when the socket is connected.
1113 		 */
1114 		ret = udp_sendmsg(sk, &msg, 0);
1115 		if (ret < 0)
1116 			return ret;
1117 	}
1118 
1119 	lock_sock(sk);
1120 
1121 	if (unlikely(!up->pending)) {
1122 		release_sock(sk);
1123 
1124 		net_dbg_ratelimited("cork failed\n");
1125 		return -EINVAL;
1126 	}
1127 
1128 	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1129 			     page, offset, size, flags);
1130 	if (ret == -EOPNOTSUPP) {
1131 		release_sock(sk);
1132 		return sock_no_sendpage(sk->sk_socket, page, offset,
1133 					size, flags);
1134 	}
1135 	if (ret < 0) {
1136 		udp_flush_pending_frames(sk);
1137 		goto out;
1138 	}
1139 
1140 	up->len += size;
1141 	if (!(up->corkflag || (flags&MSG_MORE)))
1142 		ret = udp_push_pending_frames(sk);
1143 	if (!ret)
1144 		ret = size;
1145 out:
1146 	release_sock(sk);
1147 	return ret;
1148 }
1149 
1150 #define UDP_SKB_IS_STATELESS 0x80000000
1151 
1152 static void udp_set_dev_scratch(struct sk_buff *skb)
1153 {
1154 	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1155 
1156 	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1157 	scratch->_tsize_state = skb->truesize;
1158 #if BITS_PER_LONG == 64
1159 	scratch->len = skb->len;
1160 	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1161 	scratch->is_linear = !skb_is_nonlinear(skb);
1162 #endif
1163 	/* all head states execept sp (dst, sk, nf) are always cleared by
1164 	 * udp_rcv() and we need to preserve secpath, if present, to eventually
1165 	 * process IP_CMSG_PASSSEC at recvmsg() time
1166 	 */
1167 	if (likely(!skb_sec_path(skb)))
1168 		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1169 }
1170 
1171 static int udp_skb_truesize(struct sk_buff *skb)
1172 {
1173 	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1174 }
1175 
1176 static bool udp_skb_has_head_state(struct sk_buff *skb)
1177 {
1178 	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1179 }
1180 
1181 /* fully reclaim rmem/fwd memory allocated for skb */
1182 static void udp_rmem_release(struct sock *sk, int size, int partial,
1183 			     bool rx_queue_lock_held)
1184 {
1185 	struct udp_sock *up = udp_sk(sk);
1186 	struct sk_buff_head *sk_queue;
1187 	int amt;
1188 
1189 	if (likely(partial)) {
1190 		up->forward_deficit += size;
1191 		size = up->forward_deficit;
1192 		if (size < (sk->sk_rcvbuf >> 2))
1193 			return;
1194 	} else {
1195 		size += up->forward_deficit;
1196 	}
1197 	up->forward_deficit = 0;
1198 
1199 	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1200 	 * if the called don't held it already
1201 	 */
1202 	sk_queue = &sk->sk_receive_queue;
1203 	if (!rx_queue_lock_held)
1204 		spin_lock(&sk_queue->lock);
1205 
1206 
1207 	sk->sk_forward_alloc += size;
1208 	amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1);
1209 	sk->sk_forward_alloc -= amt;
1210 
1211 	if (amt)
1212 		__sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT);
1213 
1214 	atomic_sub(size, &sk->sk_rmem_alloc);
1215 
1216 	/* this can save us from acquiring the rx queue lock on next receive */
1217 	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1218 
1219 	if (!rx_queue_lock_held)
1220 		spin_unlock(&sk_queue->lock);
1221 }
1222 
1223 /* Note: called with reader_queue.lock held.
1224  * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1225  * This avoids a cache line miss while receive_queue lock is held.
1226  * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1227  */
1228 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1229 {
1230 	prefetch(&skb->data);
1231 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1232 }
1233 EXPORT_SYMBOL(udp_skb_destructor);
1234 
1235 /* as above, but the caller held the rx queue lock, too */
1236 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1237 {
1238 	prefetch(&skb->data);
1239 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1240 }
1241 
1242 /* Idea of busylocks is to let producers grab an extra spinlock
1243  * to relieve pressure on the receive_queue spinlock shared by consumer.
1244  * Under flood, this means that only one producer can be in line
1245  * trying to acquire the receive_queue spinlock.
1246  * These busylock can be allocated on a per cpu manner, instead of a
1247  * per socket one (that would consume a cache line per socket)
1248  */
1249 static int udp_busylocks_log __read_mostly;
1250 static spinlock_t *udp_busylocks __read_mostly;
1251 
1252 static spinlock_t *busylock_acquire(void *ptr)
1253 {
1254 	spinlock_t *busy;
1255 
1256 	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1257 	spin_lock(busy);
1258 	return busy;
1259 }
1260 
1261 static void busylock_release(spinlock_t *busy)
1262 {
1263 	if (busy)
1264 		spin_unlock(busy);
1265 }
1266 
1267 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1268 {
1269 	struct sk_buff_head *list = &sk->sk_receive_queue;
1270 	int rmem, delta, amt, err = -ENOMEM;
1271 	spinlock_t *busy = NULL;
1272 	int size;
1273 
1274 	/* try to avoid the costly atomic add/sub pair when the receive
1275 	 * queue is full; always allow at least a packet
1276 	 */
1277 	rmem = atomic_read(&sk->sk_rmem_alloc);
1278 	if (rmem > sk->sk_rcvbuf)
1279 		goto drop;
1280 
1281 	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1282 	 * having linear skbs :
1283 	 * - Reduce memory overhead and thus increase receive queue capacity
1284 	 * - Less cache line misses at copyout() time
1285 	 * - Less work at consume_skb() (less alien page frag freeing)
1286 	 */
1287 	if (rmem > (sk->sk_rcvbuf >> 1)) {
1288 		skb_condense(skb);
1289 
1290 		busy = busylock_acquire(sk);
1291 	}
1292 	size = skb->truesize;
1293 	udp_set_dev_scratch(skb);
1294 
1295 	/* we drop only if the receive buf is full and the receive
1296 	 * queue contains some other skb
1297 	 */
1298 	rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1299 	if (rmem > (size + sk->sk_rcvbuf))
1300 		goto uncharge_drop;
1301 
1302 	spin_lock(&list->lock);
1303 	if (size >= sk->sk_forward_alloc) {
1304 		amt = sk_mem_pages(size);
1305 		delta = amt << SK_MEM_QUANTUM_SHIFT;
1306 		if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) {
1307 			err = -ENOBUFS;
1308 			spin_unlock(&list->lock);
1309 			goto uncharge_drop;
1310 		}
1311 
1312 		sk->sk_forward_alloc += delta;
1313 	}
1314 
1315 	sk->sk_forward_alloc -= size;
1316 
1317 	/* no need to setup a destructor, we will explicitly release the
1318 	 * forward allocated memory on dequeue
1319 	 */
1320 	sock_skb_set_dropcount(sk, skb);
1321 
1322 	__skb_queue_tail(list, skb);
1323 	spin_unlock(&list->lock);
1324 
1325 	if (!sock_flag(sk, SOCK_DEAD))
1326 		sk->sk_data_ready(sk);
1327 
1328 	busylock_release(busy);
1329 	return 0;
1330 
1331 uncharge_drop:
1332 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1333 
1334 drop:
1335 	atomic_inc(&sk->sk_drops);
1336 	busylock_release(busy);
1337 	return err;
1338 }
1339 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1340 
1341 void udp_destruct_sock(struct sock *sk)
1342 {
1343 	/* reclaim completely the forward allocated memory */
1344 	struct udp_sock *up = udp_sk(sk);
1345 	unsigned int total = 0;
1346 	struct sk_buff *skb;
1347 
1348 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1349 	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1350 		total += skb->truesize;
1351 		kfree_skb(skb);
1352 	}
1353 	udp_rmem_release(sk, total, 0, true);
1354 
1355 	inet_sock_destruct(sk);
1356 }
1357 EXPORT_SYMBOL_GPL(udp_destruct_sock);
1358 
1359 int udp_init_sock(struct sock *sk)
1360 {
1361 	skb_queue_head_init(&udp_sk(sk)->reader_queue);
1362 	sk->sk_destruct = udp_destruct_sock;
1363 	return 0;
1364 }
1365 EXPORT_SYMBOL_GPL(udp_init_sock);
1366 
1367 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1368 {
1369 	if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1370 		bool slow = lock_sock_fast(sk);
1371 
1372 		sk_peek_offset_bwd(sk, len);
1373 		unlock_sock_fast(sk, slow);
1374 	}
1375 
1376 	if (!skb_unref(skb))
1377 		return;
1378 
1379 	/* In the more common cases we cleared the head states previously,
1380 	 * see __udp_queue_rcv_skb().
1381 	 */
1382 	if (unlikely(udp_skb_has_head_state(skb)))
1383 		skb_release_head_state(skb);
1384 	__consume_stateless_skb(skb);
1385 }
1386 EXPORT_SYMBOL_GPL(skb_consume_udp);
1387 
1388 static struct sk_buff *__first_packet_length(struct sock *sk,
1389 					     struct sk_buff_head *rcvq,
1390 					     int *total)
1391 {
1392 	struct sk_buff *skb;
1393 
1394 	while ((skb = skb_peek(rcvq)) != NULL) {
1395 		if (udp_lib_checksum_complete(skb)) {
1396 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1397 					IS_UDPLITE(sk));
1398 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1399 					IS_UDPLITE(sk));
1400 			atomic_inc(&sk->sk_drops);
1401 			__skb_unlink(skb, rcvq);
1402 			*total += skb->truesize;
1403 			kfree_skb(skb);
1404 		} else {
1405 			/* the csum related bits could be changed, refresh
1406 			 * the scratch area
1407 			 */
1408 			udp_set_dev_scratch(skb);
1409 			break;
1410 		}
1411 	}
1412 	return skb;
1413 }
1414 
1415 /**
1416  *	first_packet_length	- return length of first packet in receive queue
1417  *	@sk: socket
1418  *
1419  *	Drops all bad checksum frames, until a valid one is found.
1420  *	Returns the length of found skb, or -1 if none is found.
1421  */
1422 static int first_packet_length(struct sock *sk)
1423 {
1424 	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1425 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1426 	struct sk_buff *skb;
1427 	int total = 0;
1428 	int res;
1429 
1430 	spin_lock_bh(&rcvq->lock);
1431 	skb = __first_packet_length(sk, rcvq, &total);
1432 	if (!skb && !skb_queue_empty(sk_queue)) {
1433 		spin_lock(&sk_queue->lock);
1434 		skb_queue_splice_tail_init(sk_queue, rcvq);
1435 		spin_unlock(&sk_queue->lock);
1436 
1437 		skb = __first_packet_length(sk, rcvq, &total);
1438 	}
1439 	res = skb ? skb->len : -1;
1440 	if (total)
1441 		udp_rmem_release(sk, total, 1, false);
1442 	spin_unlock_bh(&rcvq->lock);
1443 	return res;
1444 }
1445 
1446 /*
1447  *	IOCTL requests applicable to the UDP protocol
1448  */
1449 
1450 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1451 {
1452 	switch (cmd) {
1453 	case SIOCOUTQ:
1454 	{
1455 		int amount = sk_wmem_alloc_get(sk);
1456 
1457 		return put_user(amount, (int __user *)arg);
1458 	}
1459 
1460 	case SIOCINQ:
1461 	{
1462 		int amount = max_t(int, 0, first_packet_length(sk));
1463 
1464 		return put_user(amount, (int __user *)arg);
1465 	}
1466 
1467 	default:
1468 		return -ENOIOCTLCMD;
1469 	}
1470 
1471 	return 0;
1472 }
1473 EXPORT_SYMBOL(udp_ioctl);
1474 
1475 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1476 			       int noblock, int *peeked, int *off, int *err)
1477 {
1478 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1479 	struct sk_buff_head *queue;
1480 	struct sk_buff *last;
1481 	long timeo;
1482 	int error;
1483 
1484 	queue = &udp_sk(sk)->reader_queue;
1485 	flags |= noblock ? MSG_DONTWAIT : 0;
1486 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1487 	do {
1488 		struct sk_buff *skb;
1489 
1490 		error = sock_error(sk);
1491 		if (error)
1492 			break;
1493 
1494 		error = -EAGAIN;
1495 		*peeked = 0;
1496 		do {
1497 			spin_lock_bh(&queue->lock);
1498 			skb = __skb_try_recv_from_queue(sk, queue, flags,
1499 							udp_skb_destructor,
1500 							peeked, off, err,
1501 							&last);
1502 			if (skb) {
1503 				spin_unlock_bh(&queue->lock);
1504 				return skb;
1505 			}
1506 
1507 			if (skb_queue_empty(sk_queue)) {
1508 				spin_unlock_bh(&queue->lock);
1509 				goto busy_check;
1510 			}
1511 
1512 			/* refill the reader queue and walk it again
1513 			 * keep both queues locked to avoid re-acquiring
1514 			 * the sk_receive_queue lock if fwd memory scheduling
1515 			 * is needed.
1516 			 */
1517 			spin_lock(&sk_queue->lock);
1518 			skb_queue_splice_tail_init(sk_queue, queue);
1519 
1520 			skb = __skb_try_recv_from_queue(sk, queue, flags,
1521 							udp_skb_dtor_locked,
1522 							peeked, off, err,
1523 							&last);
1524 			spin_unlock(&sk_queue->lock);
1525 			spin_unlock_bh(&queue->lock);
1526 			if (skb)
1527 				return skb;
1528 
1529 busy_check:
1530 			if (!sk_can_busy_loop(sk))
1531 				break;
1532 
1533 			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1534 		} while (!skb_queue_empty(sk_queue));
1535 
1536 		/* sk_queue is empty, reader_queue may contain peeked packets */
1537 	} while (timeo &&
1538 		 !__skb_wait_for_more_packets(sk, &error, &timeo,
1539 					      (struct sk_buff *)sk_queue));
1540 
1541 	*err = error;
1542 	return NULL;
1543 }
1544 EXPORT_SYMBOL_GPL(__skb_recv_udp);
1545 
1546 /*
1547  * 	This should be easy, if there is something there we
1548  * 	return it, otherwise we block.
1549  */
1550 
1551 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1552 		int flags, int *addr_len)
1553 {
1554 	struct inet_sock *inet = inet_sk(sk);
1555 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1556 	struct sk_buff *skb;
1557 	unsigned int ulen, copied;
1558 	int peeked, peeking, off;
1559 	int err;
1560 	int is_udplite = IS_UDPLITE(sk);
1561 	bool checksum_valid = false;
1562 
1563 	if (flags & MSG_ERRQUEUE)
1564 		return ip_recv_error(sk, msg, len, addr_len);
1565 
1566 try_again:
1567 	peeking = flags & MSG_PEEK;
1568 	off = sk_peek_offset(sk, flags);
1569 	skb = __skb_recv_udp(sk, flags, noblock, &peeked, &off, &err);
1570 	if (!skb)
1571 		return err;
1572 
1573 	ulen = udp_skb_len(skb);
1574 	copied = len;
1575 	if (copied > ulen - off)
1576 		copied = ulen - off;
1577 	else if (copied < ulen)
1578 		msg->msg_flags |= MSG_TRUNC;
1579 
1580 	/*
1581 	 * If checksum is needed at all, try to do it while copying the
1582 	 * data.  If the data is truncated, or if we only want a partial
1583 	 * coverage checksum (UDP-Lite), do it before the copy.
1584 	 */
1585 
1586 	if (copied < ulen || peeking ||
1587 	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1588 		checksum_valid = udp_skb_csum_unnecessary(skb) ||
1589 				!__udp_lib_checksum_complete(skb);
1590 		if (!checksum_valid)
1591 			goto csum_copy_err;
1592 	}
1593 
1594 	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1595 		if (udp_skb_is_linear(skb))
1596 			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1597 		else
1598 			err = skb_copy_datagram_msg(skb, off, msg, copied);
1599 	} else {
1600 		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1601 
1602 		if (err == -EINVAL)
1603 			goto csum_copy_err;
1604 	}
1605 
1606 	if (unlikely(err)) {
1607 		if (!peeked) {
1608 			atomic_inc(&sk->sk_drops);
1609 			UDP_INC_STATS(sock_net(sk),
1610 				      UDP_MIB_INERRORS, is_udplite);
1611 		}
1612 		kfree_skb(skb);
1613 		return err;
1614 	}
1615 
1616 	if (!peeked)
1617 		UDP_INC_STATS(sock_net(sk),
1618 			      UDP_MIB_INDATAGRAMS, is_udplite);
1619 
1620 	sock_recv_ts_and_drops(msg, sk, skb);
1621 
1622 	/* Copy the address. */
1623 	if (sin) {
1624 		sin->sin_family = AF_INET;
1625 		sin->sin_port = udp_hdr(skb)->source;
1626 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1627 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1628 		*addr_len = sizeof(*sin);
1629 	}
1630 	if (inet->cmsg_flags)
1631 		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1632 
1633 	err = copied;
1634 	if (flags & MSG_TRUNC)
1635 		err = ulen;
1636 
1637 	skb_consume_udp(sk, skb, peeking ? -err : err);
1638 	return err;
1639 
1640 csum_copy_err:
1641 	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1642 				 udp_skb_destructor)) {
1643 		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1644 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1645 	}
1646 	kfree_skb(skb);
1647 
1648 	/* starting over for a new packet, but check if we need to yield */
1649 	cond_resched();
1650 	msg->msg_flags &= ~MSG_TRUNC;
1651 	goto try_again;
1652 }
1653 
1654 int __udp_disconnect(struct sock *sk, int flags)
1655 {
1656 	struct inet_sock *inet = inet_sk(sk);
1657 	/*
1658 	 *	1003.1g - break association.
1659 	 */
1660 
1661 	sk->sk_state = TCP_CLOSE;
1662 	inet->inet_daddr = 0;
1663 	inet->inet_dport = 0;
1664 	sock_rps_reset_rxhash(sk);
1665 	sk->sk_bound_dev_if = 0;
1666 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1667 		inet_reset_saddr(sk);
1668 
1669 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1670 		sk->sk_prot->unhash(sk);
1671 		inet->inet_sport = 0;
1672 	}
1673 	sk_dst_reset(sk);
1674 	return 0;
1675 }
1676 EXPORT_SYMBOL(__udp_disconnect);
1677 
1678 int udp_disconnect(struct sock *sk, int flags)
1679 {
1680 	lock_sock(sk);
1681 	__udp_disconnect(sk, flags);
1682 	release_sock(sk);
1683 	return 0;
1684 }
1685 EXPORT_SYMBOL(udp_disconnect);
1686 
1687 void udp_lib_unhash(struct sock *sk)
1688 {
1689 	if (sk_hashed(sk)) {
1690 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1691 		struct udp_hslot *hslot, *hslot2;
1692 
1693 		hslot  = udp_hashslot(udptable, sock_net(sk),
1694 				      udp_sk(sk)->udp_port_hash);
1695 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1696 
1697 		spin_lock_bh(&hslot->lock);
1698 		if (rcu_access_pointer(sk->sk_reuseport_cb))
1699 			reuseport_detach_sock(sk);
1700 		if (sk_del_node_init_rcu(sk)) {
1701 			hslot->count--;
1702 			inet_sk(sk)->inet_num = 0;
1703 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1704 
1705 			spin_lock(&hslot2->lock);
1706 			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1707 			hslot2->count--;
1708 			spin_unlock(&hslot2->lock);
1709 		}
1710 		spin_unlock_bh(&hslot->lock);
1711 	}
1712 }
1713 EXPORT_SYMBOL(udp_lib_unhash);
1714 
1715 /*
1716  * inet_rcv_saddr was changed, we must rehash secondary hash
1717  */
1718 void udp_lib_rehash(struct sock *sk, u16 newhash)
1719 {
1720 	if (sk_hashed(sk)) {
1721 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1722 		struct udp_hslot *hslot, *hslot2, *nhslot2;
1723 
1724 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1725 		nhslot2 = udp_hashslot2(udptable, newhash);
1726 		udp_sk(sk)->udp_portaddr_hash = newhash;
1727 
1728 		if (hslot2 != nhslot2 ||
1729 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
1730 			hslot = udp_hashslot(udptable, sock_net(sk),
1731 					     udp_sk(sk)->udp_port_hash);
1732 			/* we must lock primary chain too */
1733 			spin_lock_bh(&hslot->lock);
1734 			if (rcu_access_pointer(sk->sk_reuseport_cb))
1735 				reuseport_detach_sock(sk);
1736 
1737 			if (hslot2 != nhslot2) {
1738 				spin_lock(&hslot2->lock);
1739 				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1740 				hslot2->count--;
1741 				spin_unlock(&hslot2->lock);
1742 
1743 				spin_lock(&nhslot2->lock);
1744 				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1745 							 &nhslot2->head);
1746 				nhslot2->count++;
1747 				spin_unlock(&nhslot2->lock);
1748 			}
1749 
1750 			spin_unlock_bh(&hslot->lock);
1751 		}
1752 	}
1753 }
1754 EXPORT_SYMBOL(udp_lib_rehash);
1755 
1756 static void udp_v4_rehash(struct sock *sk)
1757 {
1758 	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
1759 					  inet_sk(sk)->inet_rcv_saddr,
1760 					  inet_sk(sk)->inet_num);
1761 	udp_lib_rehash(sk, new_hash);
1762 }
1763 
1764 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1765 {
1766 	int rc;
1767 
1768 	if (inet_sk(sk)->inet_daddr) {
1769 		sock_rps_save_rxhash(sk, skb);
1770 		sk_mark_napi_id(sk, skb);
1771 		sk_incoming_cpu_update(sk);
1772 	} else {
1773 		sk_mark_napi_id_once(sk, skb);
1774 	}
1775 
1776 	rc = __udp_enqueue_schedule_skb(sk, skb);
1777 	if (rc < 0) {
1778 		int is_udplite = IS_UDPLITE(sk);
1779 
1780 		/* Note that an ENOMEM error is charged twice */
1781 		if (rc == -ENOMEM)
1782 			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1783 					is_udplite);
1784 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1785 		kfree_skb(skb);
1786 		trace_udp_fail_queue_rcv_skb(rc, sk);
1787 		return -1;
1788 	}
1789 
1790 	return 0;
1791 }
1792 
1793 static struct static_key udp_encap_needed __read_mostly;
1794 void udp_encap_enable(void)
1795 {
1796 	static_key_enable(&udp_encap_needed);
1797 }
1798 EXPORT_SYMBOL(udp_encap_enable);
1799 
1800 /* returns:
1801  *  -1: error
1802  *   0: success
1803  *  >0: "udp encap" protocol resubmission
1804  *
1805  * Note that in the success and error cases, the skb is assumed to
1806  * have either been requeued or freed.
1807  */
1808 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1809 {
1810 	struct udp_sock *up = udp_sk(sk);
1811 	int is_udplite = IS_UDPLITE(sk);
1812 
1813 	/*
1814 	 *	Charge it to the socket, dropping if the queue is full.
1815 	 */
1816 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1817 		goto drop;
1818 	nf_reset(skb);
1819 
1820 	if (static_key_false(&udp_encap_needed) && up->encap_type) {
1821 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1822 
1823 		/*
1824 		 * This is an encapsulation socket so pass the skb to
1825 		 * the socket's udp_encap_rcv() hook. Otherwise, just
1826 		 * fall through and pass this up the UDP socket.
1827 		 * up->encap_rcv() returns the following value:
1828 		 * =0 if skb was successfully passed to the encap
1829 		 *    handler or was discarded by it.
1830 		 * >0 if skb should be passed on to UDP.
1831 		 * <0 if skb should be resubmitted as proto -N
1832 		 */
1833 
1834 		/* if we're overly short, let UDP handle it */
1835 		encap_rcv = READ_ONCE(up->encap_rcv);
1836 		if (encap_rcv) {
1837 			int ret;
1838 
1839 			/* Verify checksum before giving to encap */
1840 			if (udp_lib_checksum_complete(skb))
1841 				goto csum_error;
1842 
1843 			ret = encap_rcv(sk, skb);
1844 			if (ret <= 0) {
1845 				__UDP_INC_STATS(sock_net(sk),
1846 						UDP_MIB_INDATAGRAMS,
1847 						is_udplite);
1848 				return -ret;
1849 			}
1850 		}
1851 
1852 		/* FALLTHROUGH -- it's a UDP Packet */
1853 	}
1854 
1855 	/*
1856 	 * 	UDP-Lite specific tests, ignored on UDP sockets
1857 	 */
1858 	if ((is_udplite & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
1859 
1860 		/*
1861 		 * MIB statistics other than incrementing the error count are
1862 		 * disabled for the following two types of errors: these depend
1863 		 * on the application settings, not on the functioning of the
1864 		 * protocol stack as such.
1865 		 *
1866 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
1867 		 * way ... to ... at least let the receiving application block
1868 		 * delivery of packets with coverage values less than a value
1869 		 * provided by the application."
1870 		 */
1871 		if (up->pcrlen == 0) {          /* full coverage was set  */
1872 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
1873 					    UDP_SKB_CB(skb)->cscov, skb->len);
1874 			goto drop;
1875 		}
1876 		/* The next case involves violating the min. coverage requested
1877 		 * by the receiver. This is subtle: if receiver wants x and x is
1878 		 * greater than the buffersize/MTU then receiver will complain
1879 		 * that it wants x while sender emits packets of smaller size y.
1880 		 * Therefore the above ...()->partial_cov statement is essential.
1881 		 */
1882 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
1883 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
1884 					    UDP_SKB_CB(skb)->cscov, up->pcrlen);
1885 			goto drop;
1886 		}
1887 	}
1888 
1889 	prefetch(&sk->sk_rmem_alloc);
1890 	if (rcu_access_pointer(sk->sk_filter) &&
1891 	    udp_lib_checksum_complete(skb))
1892 			goto csum_error;
1893 
1894 	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr)))
1895 		goto drop;
1896 
1897 	udp_csum_pull_header(skb);
1898 
1899 	ipv4_pktinfo_prepare(sk, skb);
1900 	return __udp_queue_rcv_skb(sk, skb);
1901 
1902 csum_error:
1903 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1904 drop:
1905 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1906 	atomic_inc(&sk->sk_drops);
1907 	kfree_skb(skb);
1908 	return -1;
1909 }
1910 
1911 /* For TCP sockets, sk_rx_dst is protected by socket lock
1912  * For UDP, we use xchg() to guard against concurrent changes.
1913  */
1914 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
1915 {
1916 	struct dst_entry *old;
1917 
1918 	if (dst_hold_safe(dst)) {
1919 		old = xchg(&sk->sk_rx_dst, dst);
1920 		dst_release(old);
1921 		return old != dst;
1922 	}
1923 	return false;
1924 }
1925 EXPORT_SYMBOL(udp_sk_rx_dst_set);
1926 
1927 /*
1928  *	Multicasts and broadcasts go to each listener.
1929  *
1930  *	Note: called only from the BH handler context.
1931  */
1932 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1933 				    struct udphdr  *uh,
1934 				    __be32 saddr, __be32 daddr,
1935 				    struct udp_table *udptable,
1936 				    int proto)
1937 {
1938 	struct sock *sk, *first = NULL;
1939 	unsigned short hnum = ntohs(uh->dest);
1940 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
1941 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
1942 	unsigned int offset = offsetof(typeof(*sk), sk_node);
1943 	int dif = skb->dev->ifindex;
1944 	int sdif = inet_sdif(skb);
1945 	struct hlist_node *node;
1946 	struct sk_buff *nskb;
1947 
1948 	if (use_hash2) {
1949 		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
1950 			    udptable->mask;
1951 		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
1952 start_lookup:
1953 		hslot = &udptable->hash2[hash2];
1954 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
1955 	}
1956 
1957 	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
1958 		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
1959 					 uh->source, saddr, dif, sdif, hnum))
1960 			continue;
1961 
1962 		if (!first) {
1963 			first = sk;
1964 			continue;
1965 		}
1966 		nskb = skb_clone(skb, GFP_ATOMIC);
1967 
1968 		if (unlikely(!nskb)) {
1969 			atomic_inc(&sk->sk_drops);
1970 			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
1971 					IS_UDPLITE(sk));
1972 			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
1973 					IS_UDPLITE(sk));
1974 			continue;
1975 		}
1976 		if (udp_queue_rcv_skb(sk, nskb) > 0)
1977 			consume_skb(nskb);
1978 	}
1979 
1980 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
1981 	if (use_hash2 && hash2 != hash2_any) {
1982 		hash2 = hash2_any;
1983 		goto start_lookup;
1984 	}
1985 
1986 	if (first) {
1987 		if (udp_queue_rcv_skb(first, skb) > 0)
1988 			consume_skb(skb);
1989 	} else {
1990 		kfree_skb(skb);
1991 		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
1992 				proto == IPPROTO_UDPLITE);
1993 	}
1994 	return 0;
1995 }
1996 
1997 /* Initialize UDP checksum. If exited with zero value (success),
1998  * CHECKSUM_UNNECESSARY means, that no more checks are required.
1999  * Otherwise, csum completion requires chacksumming packet body,
2000  * including udp header and folding it to skb->csum.
2001  */
2002 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2003 				 int proto)
2004 {
2005 	int err;
2006 
2007 	UDP_SKB_CB(skb)->partial_cov = 0;
2008 	UDP_SKB_CB(skb)->cscov = skb->len;
2009 
2010 	if (proto == IPPROTO_UDPLITE) {
2011 		err = udplite_checksum_init(skb, uh);
2012 		if (err)
2013 			return err;
2014 	}
2015 
2016 	/* Note, we are only interested in != 0 or == 0, thus the
2017 	 * force to int.
2018 	 */
2019 	return (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2020 							 inet_compute_pseudo);
2021 }
2022 
2023 /*
2024  *	All we need to do is get the socket, and then do a checksum.
2025  */
2026 
2027 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2028 		   int proto)
2029 {
2030 	struct sock *sk;
2031 	struct udphdr *uh;
2032 	unsigned short ulen;
2033 	struct rtable *rt = skb_rtable(skb);
2034 	__be32 saddr, daddr;
2035 	struct net *net = dev_net(skb->dev);
2036 
2037 	/*
2038 	 *  Validate the packet.
2039 	 */
2040 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2041 		goto drop;		/* No space for header. */
2042 
2043 	uh   = udp_hdr(skb);
2044 	ulen = ntohs(uh->len);
2045 	saddr = ip_hdr(skb)->saddr;
2046 	daddr = ip_hdr(skb)->daddr;
2047 
2048 	if (ulen > skb->len)
2049 		goto short_packet;
2050 
2051 	if (proto == IPPROTO_UDP) {
2052 		/* UDP validates ulen. */
2053 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2054 			goto short_packet;
2055 		uh = udp_hdr(skb);
2056 	}
2057 
2058 	if (udp4_csum_init(skb, uh, proto))
2059 		goto csum_error;
2060 
2061 	sk = skb_steal_sock(skb);
2062 	if (sk) {
2063 		struct dst_entry *dst = skb_dst(skb);
2064 		int ret;
2065 
2066 		if (unlikely(sk->sk_rx_dst != dst))
2067 			udp_sk_rx_dst_set(sk, dst);
2068 
2069 		ret = udp_queue_rcv_skb(sk, skb);
2070 		sock_put(sk);
2071 		/* a return value > 0 means to resubmit the input, but
2072 		 * it wants the return to be -protocol, or 0
2073 		 */
2074 		if (ret > 0)
2075 			return -ret;
2076 		return 0;
2077 	}
2078 
2079 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2080 		return __udp4_lib_mcast_deliver(net, skb, uh,
2081 						saddr, daddr, udptable, proto);
2082 
2083 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2084 	if (sk) {
2085 		int ret;
2086 
2087 		if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2088 			skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check,
2089 						 inet_compute_pseudo);
2090 
2091 		ret = udp_queue_rcv_skb(sk, skb);
2092 
2093 		/* a return value > 0 means to resubmit the input, but
2094 		 * it wants the return to be -protocol, or 0
2095 		 */
2096 		if (ret > 0)
2097 			return -ret;
2098 		return 0;
2099 	}
2100 
2101 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2102 		goto drop;
2103 	nf_reset(skb);
2104 
2105 	/* No socket. Drop packet silently, if checksum is wrong */
2106 	if (udp_lib_checksum_complete(skb))
2107 		goto csum_error;
2108 
2109 	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2110 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2111 
2112 	/*
2113 	 * Hmm.  We got an UDP packet to a port to which we
2114 	 * don't wanna listen.  Ignore it.
2115 	 */
2116 	kfree_skb(skb);
2117 	return 0;
2118 
2119 short_packet:
2120 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2121 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2122 			    &saddr, ntohs(uh->source),
2123 			    ulen, skb->len,
2124 			    &daddr, ntohs(uh->dest));
2125 	goto drop;
2126 
2127 csum_error:
2128 	/*
2129 	 * RFC1122: OK.  Discards the bad packet silently (as far as
2130 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2131 	 */
2132 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2133 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2134 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2135 			    ulen);
2136 	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2137 drop:
2138 	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2139 	kfree_skb(skb);
2140 	return 0;
2141 }
2142 
2143 /* We can only early demux multicast if there is a single matching socket.
2144  * If more than one socket found returns NULL
2145  */
2146 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2147 						  __be16 loc_port, __be32 loc_addr,
2148 						  __be16 rmt_port, __be32 rmt_addr,
2149 						  int dif, int sdif)
2150 {
2151 	struct sock *sk, *result;
2152 	unsigned short hnum = ntohs(loc_port);
2153 	unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
2154 	struct udp_hslot *hslot = &udp_table.hash[slot];
2155 
2156 	/* Do not bother scanning a too big list */
2157 	if (hslot->count > 10)
2158 		return NULL;
2159 
2160 	result = NULL;
2161 	sk_for_each_rcu(sk, &hslot->head) {
2162 		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2163 					rmt_port, rmt_addr, dif, sdif, hnum)) {
2164 			if (result)
2165 				return NULL;
2166 			result = sk;
2167 		}
2168 	}
2169 
2170 	return result;
2171 }
2172 
2173 /* For unicast we should only early demux connected sockets or we can
2174  * break forwarding setups.  The chains here can be long so only check
2175  * if the first socket is an exact match and if not move on.
2176  */
2177 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2178 					    __be16 loc_port, __be32 loc_addr,
2179 					    __be16 rmt_port, __be32 rmt_addr,
2180 					    int dif, int sdif)
2181 {
2182 	unsigned short hnum = ntohs(loc_port);
2183 	unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2184 	unsigned int slot2 = hash2 & udp_table.mask;
2185 	struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
2186 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2187 	const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
2188 	struct sock *sk;
2189 
2190 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2191 		if (INET_MATCH(sk, net, acookie, rmt_addr,
2192 			       loc_addr, ports, dif, sdif))
2193 			return sk;
2194 		/* Only check first socket in chain */
2195 		break;
2196 	}
2197 	return NULL;
2198 }
2199 
2200 int udp_v4_early_demux(struct sk_buff *skb)
2201 {
2202 	struct net *net = dev_net(skb->dev);
2203 	struct in_device *in_dev = NULL;
2204 	const struct iphdr *iph;
2205 	const struct udphdr *uh;
2206 	struct sock *sk = NULL;
2207 	struct dst_entry *dst;
2208 	int dif = skb->dev->ifindex;
2209 	int sdif = inet_sdif(skb);
2210 	int ours;
2211 
2212 	/* validate the packet */
2213 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2214 		return 0;
2215 
2216 	iph = ip_hdr(skb);
2217 	uh = udp_hdr(skb);
2218 
2219 	if (skb->pkt_type == PACKET_MULTICAST) {
2220 		in_dev = __in_dev_get_rcu(skb->dev);
2221 
2222 		if (!in_dev)
2223 			return 0;
2224 
2225 		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2226 				       iph->protocol);
2227 		if (!ours)
2228 			return 0;
2229 
2230 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2231 						   uh->source, iph->saddr,
2232 						   dif, sdif);
2233 	} else if (skb->pkt_type == PACKET_HOST) {
2234 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2235 					     uh->source, iph->saddr, dif, sdif);
2236 	}
2237 
2238 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2239 		return 0;
2240 
2241 	skb->sk = sk;
2242 	skb->destructor = sock_efree;
2243 	dst = READ_ONCE(sk->sk_rx_dst);
2244 
2245 	if (dst)
2246 		dst = dst_check(dst, 0);
2247 	if (dst) {
2248 		u32 itag = 0;
2249 
2250 		/* set noref for now.
2251 		 * any place which wants to hold dst has to call
2252 		 * dst_hold_safe()
2253 		 */
2254 		skb_dst_set_noref(skb, dst);
2255 
2256 		/* for unconnected multicast sockets we need to validate
2257 		 * the source on each packet
2258 		 */
2259 		if (!inet_sk(sk)->inet_daddr && in_dev)
2260 			return ip_mc_validate_source(skb, iph->daddr,
2261 						     iph->saddr, iph->tos,
2262 						     skb->dev, in_dev, &itag);
2263 	}
2264 	return 0;
2265 }
2266 
2267 int udp_rcv(struct sk_buff *skb)
2268 {
2269 	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2270 }
2271 
2272 void udp_destroy_sock(struct sock *sk)
2273 {
2274 	struct udp_sock *up = udp_sk(sk);
2275 	bool slow = lock_sock_fast(sk);
2276 	udp_flush_pending_frames(sk);
2277 	unlock_sock_fast(sk, slow);
2278 	if (static_key_false(&udp_encap_needed) && up->encap_type) {
2279 		void (*encap_destroy)(struct sock *sk);
2280 		encap_destroy = READ_ONCE(up->encap_destroy);
2281 		if (encap_destroy)
2282 			encap_destroy(sk);
2283 	}
2284 }
2285 
2286 /*
2287  *	Socket option code for UDP
2288  */
2289 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2290 		       char __user *optval, unsigned int optlen,
2291 		       int (*push_pending_frames)(struct sock *))
2292 {
2293 	struct udp_sock *up = udp_sk(sk);
2294 	int val, valbool;
2295 	int err = 0;
2296 	int is_udplite = IS_UDPLITE(sk);
2297 
2298 	if (optlen < sizeof(int))
2299 		return -EINVAL;
2300 
2301 	if (get_user(val, (int __user *)optval))
2302 		return -EFAULT;
2303 
2304 	valbool = val ? 1 : 0;
2305 
2306 	switch (optname) {
2307 	case UDP_CORK:
2308 		if (val != 0) {
2309 			up->corkflag = 1;
2310 		} else {
2311 			up->corkflag = 0;
2312 			lock_sock(sk);
2313 			push_pending_frames(sk);
2314 			release_sock(sk);
2315 		}
2316 		break;
2317 
2318 	case UDP_ENCAP:
2319 		switch (val) {
2320 		case 0:
2321 		case UDP_ENCAP_ESPINUDP:
2322 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2323 			up->encap_rcv = xfrm4_udp_encap_rcv;
2324 			/* FALLTHROUGH */
2325 		case UDP_ENCAP_L2TPINUDP:
2326 			up->encap_type = val;
2327 			udp_encap_enable();
2328 			break;
2329 		default:
2330 			err = -ENOPROTOOPT;
2331 			break;
2332 		}
2333 		break;
2334 
2335 	case UDP_NO_CHECK6_TX:
2336 		up->no_check6_tx = valbool;
2337 		break;
2338 
2339 	case UDP_NO_CHECK6_RX:
2340 		up->no_check6_rx = valbool;
2341 		break;
2342 
2343 	/*
2344 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2345 	 */
2346 	/* The sender sets actual checksum coverage length via this option.
2347 	 * The case coverage > packet length is handled by send module. */
2348 	case UDPLITE_SEND_CSCOV:
2349 		if (!is_udplite)         /* Disable the option on UDP sockets */
2350 			return -ENOPROTOOPT;
2351 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2352 			val = 8;
2353 		else if (val > USHRT_MAX)
2354 			val = USHRT_MAX;
2355 		up->pcslen = val;
2356 		up->pcflag |= UDPLITE_SEND_CC;
2357 		break;
2358 
2359 	/* The receiver specifies a minimum checksum coverage value. To make
2360 	 * sense, this should be set to at least 8 (as done below). If zero is
2361 	 * used, this again means full checksum coverage.                     */
2362 	case UDPLITE_RECV_CSCOV:
2363 		if (!is_udplite)         /* Disable the option on UDP sockets */
2364 			return -ENOPROTOOPT;
2365 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2366 			val = 8;
2367 		else if (val > USHRT_MAX)
2368 			val = USHRT_MAX;
2369 		up->pcrlen = val;
2370 		up->pcflag |= UDPLITE_RECV_CC;
2371 		break;
2372 
2373 	default:
2374 		err = -ENOPROTOOPT;
2375 		break;
2376 	}
2377 
2378 	return err;
2379 }
2380 EXPORT_SYMBOL(udp_lib_setsockopt);
2381 
2382 int udp_setsockopt(struct sock *sk, int level, int optname,
2383 		   char __user *optval, unsigned int optlen)
2384 {
2385 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2386 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2387 					  udp_push_pending_frames);
2388 	return ip_setsockopt(sk, level, optname, optval, optlen);
2389 }
2390 
2391 #ifdef CONFIG_COMPAT
2392 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2393 			  char __user *optval, unsigned int optlen)
2394 {
2395 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2396 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2397 					  udp_push_pending_frames);
2398 	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2399 }
2400 #endif
2401 
2402 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2403 		       char __user *optval, int __user *optlen)
2404 {
2405 	struct udp_sock *up = udp_sk(sk);
2406 	int val, len;
2407 
2408 	if (get_user(len, optlen))
2409 		return -EFAULT;
2410 
2411 	len = min_t(unsigned int, len, sizeof(int));
2412 
2413 	if (len < 0)
2414 		return -EINVAL;
2415 
2416 	switch (optname) {
2417 	case UDP_CORK:
2418 		val = up->corkflag;
2419 		break;
2420 
2421 	case UDP_ENCAP:
2422 		val = up->encap_type;
2423 		break;
2424 
2425 	case UDP_NO_CHECK6_TX:
2426 		val = up->no_check6_tx;
2427 		break;
2428 
2429 	case UDP_NO_CHECK6_RX:
2430 		val = up->no_check6_rx;
2431 		break;
2432 
2433 	/* The following two cannot be changed on UDP sockets, the return is
2434 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2435 	case UDPLITE_SEND_CSCOV:
2436 		val = up->pcslen;
2437 		break;
2438 
2439 	case UDPLITE_RECV_CSCOV:
2440 		val = up->pcrlen;
2441 		break;
2442 
2443 	default:
2444 		return -ENOPROTOOPT;
2445 	}
2446 
2447 	if (put_user(len, optlen))
2448 		return -EFAULT;
2449 	if (copy_to_user(optval, &val, len))
2450 		return -EFAULT;
2451 	return 0;
2452 }
2453 EXPORT_SYMBOL(udp_lib_getsockopt);
2454 
2455 int udp_getsockopt(struct sock *sk, int level, int optname,
2456 		   char __user *optval, int __user *optlen)
2457 {
2458 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2459 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2460 	return ip_getsockopt(sk, level, optname, optval, optlen);
2461 }
2462 
2463 #ifdef CONFIG_COMPAT
2464 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2465 				 char __user *optval, int __user *optlen)
2466 {
2467 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2468 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2469 	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2470 }
2471 #endif
2472 /**
2473  * 	udp_poll - wait for a UDP event.
2474  *	@file - file struct
2475  *	@sock - socket
2476  *	@wait - poll table
2477  *
2478  *	This is same as datagram poll, except for the special case of
2479  *	blocking sockets. If application is using a blocking fd
2480  *	and a packet with checksum error is in the queue;
2481  *	then it could get return from select indicating data available
2482  *	but then block when reading it. Add special case code
2483  *	to work around these arguably broken applications.
2484  */
2485 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2486 {
2487 	unsigned int mask = datagram_poll(file, sock, wait);
2488 	struct sock *sk = sock->sk;
2489 
2490 	if (!skb_queue_empty(&udp_sk(sk)->reader_queue))
2491 		mask |= POLLIN | POLLRDNORM;
2492 
2493 	sock_rps_record_flow(sk);
2494 
2495 	/* Check for false positives due to checksum errors */
2496 	if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2497 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2498 		mask &= ~(POLLIN | POLLRDNORM);
2499 
2500 	return mask;
2501 
2502 }
2503 EXPORT_SYMBOL(udp_poll);
2504 
2505 int udp_abort(struct sock *sk, int err)
2506 {
2507 	lock_sock(sk);
2508 
2509 	sk->sk_err = err;
2510 	sk->sk_error_report(sk);
2511 	__udp_disconnect(sk, 0);
2512 
2513 	release_sock(sk);
2514 
2515 	return 0;
2516 }
2517 EXPORT_SYMBOL_GPL(udp_abort);
2518 
2519 struct proto udp_prot = {
2520 	.name		   = "UDP",
2521 	.owner		   = THIS_MODULE,
2522 	.close		   = udp_lib_close,
2523 	.connect	   = ip4_datagram_connect,
2524 	.disconnect	   = udp_disconnect,
2525 	.ioctl		   = udp_ioctl,
2526 	.init		   = udp_init_sock,
2527 	.destroy	   = udp_destroy_sock,
2528 	.setsockopt	   = udp_setsockopt,
2529 	.getsockopt	   = udp_getsockopt,
2530 	.sendmsg	   = udp_sendmsg,
2531 	.recvmsg	   = udp_recvmsg,
2532 	.sendpage	   = udp_sendpage,
2533 	.release_cb	   = ip4_datagram_release_cb,
2534 	.hash		   = udp_lib_hash,
2535 	.unhash		   = udp_lib_unhash,
2536 	.rehash		   = udp_v4_rehash,
2537 	.get_port	   = udp_v4_get_port,
2538 	.memory_allocated  = &udp_memory_allocated,
2539 	.sysctl_mem	   = sysctl_udp_mem,
2540 	.sysctl_wmem	   = &sysctl_udp_wmem_min,
2541 	.sysctl_rmem	   = &sysctl_udp_rmem_min,
2542 	.obj_size	   = sizeof(struct udp_sock),
2543 	.h.udp_table	   = &udp_table,
2544 #ifdef CONFIG_COMPAT
2545 	.compat_setsockopt = compat_udp_setsockopt,
2546 	.compat_getsockopt = compat_udp_getsockopt,
2547 #endif
2548 	.diag_destroy	   = udp_abort,
2549 };
2550 EXPORT_SYMBOL(udp_prot);
2551 
2552 /* ------------------------------------------------------------------------ */
2553 #ifdef CONFIG_PROC_FS
2554 
2555 static struct sock *udp_get_first(struct seq_file *seq, int start)
2556 {
2557 	struct sock *sk;
2558 	struct udp_iter_state *state = seq->private;
2559 	struct net *net = seq_file_net(seq);
2560 
2561 	for (state->bucket = start; state->bucket <= state->udp_table->mask;
2562 	     ++state->bucket) {
2563 		struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
2564 
2565 		if (hlist_empty(&hslot->head))
2566 			continue;
2567 
2568 		spin_lock_bh(&hslot->lock);
2569 		sk_for_each(sk, &hslot->head) {
2570 			if (!net_eq(sock_net(sk), net))
2571 				continue;
2572 			if (sk->sk_family == state->family)
2573 				goto found;
2574 		}
2575 		spin_unlock_bh(&hslot->lock);
2576 	}
2577 	sk = NULL;
2578 found:
2579 	return sk;
2580 }
2581 
2582 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2583 {
2584 	struct udp_iter_state *state = seq->private;
2585 	struct net *net = seq_file_net(seq);
2586 
2587 	do {
2588 		sk = sk_next(sk);
2589 	} while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
2590 
2591 	if (!sk) {
2592 		if (state->bucket <= state->udp_table->mask)
2593 			spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2594 		return udp_get_first(seq, state->bucket + 1);
2595 	}
2596 	return sk;
2597 }
2598 
2599 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2600 {
2601 	struct sock *sk = udp_get_first(seq, 0);
2602 
2603 	if (sk)
2604 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2605 			--pos;
2606 	return pos ? NULL : sk;
2607 }
2608 
2609 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2610 {
2611 	struct udp_iter_state *state = seq->private;
2612 	state->bucket = MAX_UDP_PORTS;
2613 
2614 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2615 }
2616 
2617 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2618 {
2619 	struct sock *sk;
2620 
2621 	if (v == SEQ_START_TOKEN)
2622 		sk = udp_get_idx(seq, 0);
2623 	else
2624 		sk = udp_get_next(seq, v);
2625 
2626 	++*pos;
2627 	return sk;
2628 }
2629 
2630 static void udp_seq_stop(struct seq_file *seq, void *v)
2631 {
2632 	struct udp_iter_state *state = seq->private;
2633 
2634 	if (state->bucket <= state->udp_table->mask)
2635 		spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2636 }
2637 
2638 int udp_seq_open(struct inode *inode, struct file *file)
2639 {
2640 	struct udp_seq_afinfo *afinfo = PDE_DATA(inode);
2641 	struct udp_iter_state *s;
2642 	int err;
2643 
2644 	err = seq_open_net(inode, file, &afinfo->seq_ops,
2645 			   sizeof(struct udp_iter_state));
2646 	if (err < 0)
2647 		return err;
2648 
2649 	s = ((struct seq_file *)file->private_data)->private;
2650 	s->family		= afinfo->family;
2651 	s->udp_table		= afinfo->udp_table;
2652 	return err;
2653 }
2654 EXPORT_SYMBOL(udp_seq_open);
2655 
2656 /* ------------------------------------------------------------------------ */
2657 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2658 {
2659 	struct proc_dir_entry *p;
2660 	int rc = 0;
2661 
2662 	afinfo->seq_ops.start		= udp_seq_start;
2663 	afinfo->seq_ops.next		= udp_seq_next;
2664 	afinfo->seq_ops.stop		= udp_seq_stop;
2665 
2666 	p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2667 			     afinfo->seq_fops, afinfo);
2668 	if (!p)
2669 		rc = -ENOMEM;
2670 	return rc;
2671 }
2672 EXPORT_SYMBOL(udp_proc_register);
2673 
2674 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2675 {
2676 	remove_proc_entry(afinfo->name, net->proc_net);
2677 }
2678 EXPORT_SYMBOL(udp_proc_unregister);
2679 
2680 /* ------------------------------------------------------------------------ */
2681 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2682 		int bucket)
2683 {
2684 	struct inet_sock *inet = inet_sk(sp);
2685 	__be32 dest = inet->inet_daddr;
2686 	__be32 src  = inet->inet_rcv_saddr;
2687 	__u16 destp	  = ntohs(inet->inet_dport);
2688 	__u16 srcp	  = ntohs(inet->inet_sport);
2689 
2690 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2691 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d",
2692 		bucket, src, srcp, dest, destp, sp->sk_state,
2693 		sk_wmem_alloc_get(sp),
2694 		sk_rmem_alloc_get(sp),
2695 		0, 0L, 0,
2696 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2697 		0, sock_i_ino(sp),
2698 		refcount_read(&sp->sk_refcnt), sp,
2699 		atomic_read(&sp->sk_drops));
2700 }
2701 
2702 int udp4_seq_show(struct seq_file *seq, void *v)
2703 {
2704 	seq_setwidth(seq, 127);
2705 	if (v == SEQ_START_TOKEN)
2706 		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2707 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2708 			   "inode ref pointer drops");
2709 	else {
2710 		struct udp_iter_state *state = seq->private;
2711 
2712 		udp4_format_sock(v, seq, state->bucket);
2713 	}
2714 	seq_pad(seq, '\n');
2715 	return 0;
2716 }
2717 
2718 static const struct file_operations udp_afinfo_seq_fops = {
2719 	.owner    = THIS_MODULE,
2720 	.open     = udp_seq_open,
2721 	.read     = seq_read,
2722 	.llseek   = seq_lseek,
2723 	.release  = seq_release_net
2724 };
2725 
2726 /* ------------------------------------------------------------------------ */
2727 static struct udp_seq_afinfo udp4_seq_afinfo = {
2728 	.name		= "udp",
2729 	.family		= AF_INET,
2730 	.udp_table	= &udp_table,
2731 	.seq_fops	= &udp_afinfo_seq_fops,
2732 	.seq_ops	= {
2733 		.show		= udp4_seq_show,
2734 	},
2735 };
2736 
2737 static int __net_init udp4_proc_init_net(struct net *net)
2738 {
2739 	return udp_proc_register(net, &udp4_seq_afinfo);
2740 }
2741 
2742 static void __net_exit udp4_proc_exit_net(struct net *net)
2743 {
2744 	udp_proc_unregister(net, &udp4_seq_afinfo);
2745 }
2746 
2747 static struct pernet_operations udp4_net_ops = {
2748 	.init = udp4_proc_init_net,
2749 	.exit = udp4_proc_exit_net,
2750 };
2751 
2752 int __init udp4_proc_init(void)
2753 {
2754 	return register_pernet_subsys(&udp4_net_ops);
2755 }
2756 
2757 void udp4_proc_exit(void)
2758 {
2759 	unregister_pernet_subsys(&udp4_net_ops);
2760 }
2761 #endif /* CONFIG_PROC_FS */
2762 
2763 static __initdata unsigned long uhash_entries;
2764 static int __init set_uhash_entries(char *str)
2765 {
2766 	ssize_t ret;
2767 
2768 	if (!str)
2769 		return 0;
2770 
2771 	ret = kstrtoul(str, 0, &uhash_entries);
2772 	if (ret)
2773 		return 0;
2774 
2775 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2776 		uhash_entries = UDP_HTABLE_SIZE_MIN;
2777 	return 1;
2778 }
2779 __setup("uhash_entries=", set_uhash_entries);
2780 
2781 void __init udp_table_init(struct udp_table *table, const char *name)
2782 {
2783 	unsigned int i;
2784 
2785 	table->hash = alloc_large_system_hash(name,
2786 					      2 * sizeof(struct udp_hslot),
2787 					      uhash_entries,
2788 					      21, /* one slot per 2 MB */
2789 					      0,
2790 					      &table->log,
2791 					      &table->mask,
2792 					      UDP_HTABLE_SIZE_MIN,
2793 					      64 * 1024);
2794 
2795 	table->hash2 = table->hash + (table->mask + 1);
2796 	for (i = 0; i <= table->mask; i++) {
2797 		INIT_HLIST_HEAD(&table->hash[i].head);
2798 		table->hash[i].count = 0;
2799 		spin_lock_init(&table->hash[i].lock);
2800 	}
2801 	for (i = 0; i <= table->mask; i++) {
2802 		INIT_HLIST_HEAD(&table->hash2[i].head);
2803 		table->hash2[i].count = 0;
2804 		spin_lock_init(&table->hash2[i].lock);
2805 	}
2806 }
2807 
2808 u32 udp_flow_hashrnd(void)
2809 {
2810 	static u32 hashrnd __read_mostly;
2811 
2812 	net_get_random_once(&hashrnd, sizeof(hashrnd));
2813 
2814 	return hashrnd;
2815 }
2816 EXPORT_SYMBOL(udp_flow_hashrnd);
2817 
2818 void __init udp_init(void)
2819 {
2820 	unsigned long limit;
2821 	unsigned int i;
2822 
2823 	udp_table_init(&udp_table, "UDP");
2824 	limit = nr_free_buffer_pages() / 8;
2825 	limit = max(limit, 128UL);
2826 	sysctl_udp_mem[0] = limit / 4 * 3;
2827 	sysctl_udp_mem[1] = limit;
2828 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2829 
2830 	sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2831 	sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2832 
2833 	/* 16 spinlocks per cpu */
2834 	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
2835 	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
2836 				GFP_KERNEL);
2837 	if (!udp_busylocks)
2838 		panic("UDP: failed to alloc udp_busylocks\n");
2839 	for (i = 0; i < (1U << udp_busylocks_log); i++)
2840 		spin_lock_init(udp_busylocks + i);
2841 }
2842