xref: /linux/net/ipv4/udp.c (revision 6a069876eb1402478900ee0eb7d7fe276bb1f4e3)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		The User Datagram Protocol (UDP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
12  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
13  *		Hirokazu Takahashi, <taka@valinux.co.jp>
14  *
15  * Fixes:
16  *		Alan Cox	:	verify_area() calls
17  *		Alan Cox	: 	stopped close while in use off icmp
18  *					messages. Not a fix but a botch that
19  *					for udp at least is 'valid'.
20  *		Alan Cox	:	Fixed icmp handling properly
21  *		Alan Cox	: 	Correct error for oversized datagrams
22  *		Alan Cox	:	Tidied select() semantics.
23  *		Alan Cox	:	udp_err() fixed properly, also now
24  *					select and read wake correctly on errors
25  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
26  *		Alan Cox	:	UDP can count its memory
27  *		Alan Cox	:	send to an unknown connection causes
28  *					an ECONNREFUSED off the icmp, but
29  *					does NOT close.
30  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
31  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
32  *					bug no longer crashes it.
33  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
34  *		Alan Cox	:	Uses skb_free_datagram
35  *		Alan Cox	:	Added get/set sockopt support.
36  *		Alan Cox	:	Broadcasting without option set returns EACCES.
37  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
38  *		Alan Cox	:	Use ip_tos and ip_ttl
39  *		Alan Cox	:	SNMP Mibs
40  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
41  *		Matt Dillon	:	UDP length checks.
42  *		Alan Cox	:	Smarter af_inet used properly.
43  *		Alan Cox	:	Use new kernel side addressing.
44  *		Alan Cox	:	Incorrect return on truncated datagram receive.
45  *	Arnt Gulbrandsen 	:	New udp_send and stuff
46  *		Alan Cox	:	Cache last socket
47  *		Alan Cox	:	Route cache
48  *		Jon Peatfield	:	Minor efficiency fix to sendto().
49  *		Mike Shaver	:	RFC1122 checks.
50  *		Alan Cox	:	Nonblocking error fix.
51  *	Willy Konynenberg	:	Transparent proxying support.
52  *		Mike McLagan	:	Routing by source
53  *		David S. Miller	:	New socket lookup architecture.
54  *					Last socket cache retained as it
55  *					does have a high hit rate.
56  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
57  *		Andi Kleen	:	Some cleanups, cache destination entry
58  *					for connect.
59  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
60  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
61  *					return ENOTCONN for unconnected sockets (POSIX)
62  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
63  *					bound-to-device socket
64  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
65  *					datagrams.
66  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
67  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
68  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
69  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
70  *					a single port at the same time.
71  *	Derek Atkins <derek@ihtfp.com>: Add Encapsulation Support
72  *	James Chapman		:	Add L2TP encapsulation type.
73  */
74 
75 #define pr_fmt(fmt) "UDP: " fmt
76 
77 #include <linux/bpf-cgroup.h>
78 #include <linux/uaccess.h>
79 #include <asm/ioctls.h>
80 #include <linux/memblock.h>
81 #include <linux/highmem.h>
82 #include <linux/types.h>
83 #include <linux/fcntl.h>
84 #include <linux/module.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/igmp.h>
88 #include <linux/inetdevice.h>
89 #include <linux/in.h>
90 #include <linux/errno.h>
91 #include <linux/timer.h>
92 #include <linux/mm.h>
93 #include <linux/inet.h>
94 #include <linux/netdevice.h>
95 #include <linux/slab.h>
96 #include <linux/sock_diag.h>
97 #include <net/tcp_states.h>
98 #include <linux/skbuff.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <net/net_namespace.h>
102 #include <net/icmp.h>
103 #include <net/inet_hashtables.h>
104 #include <net/ip.h>
105 #include <net/ip_tunnels.h>
106 #include <net/route.h>
107 #include <net/checksum.h>
108 #include <net/gso.h>
109 #include <net/xfrm.h>
110 #include <trace/events/udp.h>
111 #include <linux/static_key.h>
112 #include <linux/btf_ids.h>
113 #include <trace/events/skb.h>
114 #include <net/busy_poll.h>
115 #include "udp_impl.h"
116 #include <net/sock_reuseport.h>
117 #include <net/addrconf.h>
118 #include <net/udp_tunnel.h>
119 #include <net/gro.h>
120 #if IS_ENABLED(CONFIG_IPV6)
121 #include <net/ipv6_stubs.h>
122 #endif
123 #include <net/rps.h>
124 
125 struct udp_table udp_table __read_mostly;
126 
127 long sysctl_udp_mem[3] __read_mostly;
128 EXPORT_IPV6_MOD(sysctl_udp_mem);
129 
130 DEFINE_PER_CPU(int, udp_memory_per_cpu_fw_alloc);
131 EXPORT_PER_CPU_SYMBOL_GPL(udp_memory_per_cpu_fw_alloc);
132 
133 #define MAX_UDP_PORTS 65536
134 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN_PERNET)
135 
136 static struct udp_table *udp_get_table_prot(struct sock *sk)
137 {
138 	return sk->sk_prot->h.udp_table ? : sock_net(sk)->ipv4.udp_table;
139 }
140 
141 static int udp_lib_lport_inuse(struct net *net, __u16 num,
142 			       const struct udp_hslot *hslot,
143 			       unsigned long *bitmap,
144 			       struct sock *sk, unsigned int log)
145 {
146 	kuid_t uid = sk_uid(sk);
147 	struct sock *sk2;
148 
149 	sk_for_each(sk2, &hslot->head) {
150 		if (net_eq(sock_net(sk2), net) &&
151 		    sk2 != sk &&
152 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
153 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
154 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
155 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
156 		    inet_rcv_saddr_equal(sk, sk2, true)) {
157 			if (sk2->sk_reuseport && sk->sk_reuseport &&
158 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
159 			    uid_eq(uid, sk_uid(sk2))) {
160 				if (!bitmap)
161 					return 0;
162 			} else {
163 				if (!bitmap)
164 					return 1;
165 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
166 					  bitmap);
167 			}
168 		}
169 	}
170 	return 0;
171 }
172 
173 /*
174  * Note: we still hold spinlock of primary hash chain, so no other writer
175  * can insert/delete a socket with local_port == num
176  */
177 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
178 				struct udp_hslot *hslot2,
179 				struct sock *sk)
180 {
181 	kuid_t uid = sk_uid(sk);
182 	struct sock *sk2;
183 	int res = 0;
184 
185 	spin_lock(&hslot2->lock);
186 	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
187 		if (net_eq(sock_net(sk2), net) &&
188 		    sk2 != sk &&
189 		    (udp_sk(sk2)->udp_port_hash == num) &&
190 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
191 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
192 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
193 		    inet_rcv_saddr_equal(sk, sk2, true)) {
194 			if (sk2->sk_reuseport && sk->sk_reuseport &&
195 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
196 			    uid_eq(uid, sk_uid(sk2))) {
197 				res = 0;
198 			} else {
199 				res = 1;
200 			}
201 			break;
202 		}
203 	}
204 	spin_unlock(&hslot2->lock);
205 	return res;
206 }
207 
208 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
209 {
210 	struct net *net = sock_net(sk);
211 	kuid_t uid = sk_uid(sk);
212 	struct sock *sk2;
213 
214 	sk_for_each(sk2, &hslot->head) {
215 		if (net_eq(sock_net(sk2), net) &&
216 		    sk2 != sk &&
217 		    sk2->sk_family == sk->sk_family &&
218 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
219 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
220 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
221 		    sk2->sk_reuseport && uid_eq(uid, sk_uid(sk2)) &&
222 		    inet_rcv_saddr_equal(sk, sk2, false)) {
223 			return reuseport_add_sock(sk, sk2,
224 						  inet_rcv_saddr_any(sk));
225 		}
226 	}
227 
228 	return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
229 }
230 
231 /**
232  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
233  *
234  *  @sk:          socket struct in question
235  *  @snum:        port number to look up
236  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
237  *                   with NULL address
238  */
239 int udp_lib_get_port(struct sock *sk, unsigned short snum,
240 		     unsigned int hash2_nulladdr)
241 {
242 	struct udp_table *udptable = udp_get_table_prot(sk);
243 	struct udp_hslot *hslot, *hslot2;
244 	struct net *net = sock_net(sk);
245 	int error = -EADDRINUSE;
246 
247 	if (!snum) {
248 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
249 		unsigned short first, last;
250 		int low, high, remaining;
251 		unsigned int rand;
252 
253 		inet_sk_get_local_port_range(sk, &low, &high);
254 		remaining = (high - low) + 1;
255 
256 		rand = get_random_u32();
257 		first = reciprocal_scale(rand, remaining) + low;
258 		/*
259 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
260 		 */
261 		rand = (rand | 1) * (udptable->mask + 1);
262 		last = first + udptable->mask + 1;
263 		do {
264 			hslot = udp_hashslot(udptable, net, first);
265 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
266 			spin_lock_bh(&hslot->lock);
267 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
268 					    udptable->log);
269 
270 			snum = first;
271 			/*
272 			 * Iterate on all possible values of snum for this hash.
273 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
274 			 * give us randomization and full range coverage.
275 			 */
276 			do {
277 				if (low <= snum && snum <= high &&
278 				    !test_bit(snum >> udptable->log, bitmap) &&
279 				    !inet_is_local_reserved_port(net, snum))
280 					goto found;
281 				snum += rand;
282 			} while (snum != first);
283 			spin_unlock_bh(&hslot->lock);
284 			cond_resched();
285 		} while (++first != last);
286 		goto fail;
287 	} else {
288 		hslot = udp_hashslot(udptable, net, snum);
289 		spin_lock_bh(&hslot->lock);
290 		if (hslot->count > 10) {
291 			int exist;
292 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
293 
294 			slot2          &= udptable->mask;
295 			hash2_nulladdr &= udptable->mask;
296 
297 			hslot2 = udp_hashslot2(udptable, slot2);
298 			if (hslot->count < hslot2->count)
299 				goto scan_primary_hash;
300 
301 			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
302 			if (!exist && (hash2_nulladdr != slot2)) {
303 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
304 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
305 							     sk);
306 			}
307 			if (exist)
308 				goto fail_unlock;
309 			else
310 				goto found;
311 		}
312 scan_primary_hash:
313 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
314 			goto fail_unlock;
315 	}
316 found:
317 	inet_sk(sk)->inet_num = snum;
318 	udp_sk(sk)->udp_port_hash = snum;
319 	udp_sk(sk)->udp_portaddr_hash ^= snum;
320 	if (sk_unhashed(sk)) {
321 		if (sk->sk_reuseport &&
322 		    udp_reuseport_add_sock(sk, hslot)) {
323 			inet_sk(sk)->inet_num = 0;
324 			udp_sk(sk)->udp_port_hash = 0;
325 			udp_sk(sk)->udp_portaddr_hash ^= snum;
326 			goto fail_unlock;
327 		}
328 
329 		sock_set_flag(sk, SOCK_RCU_FREE);
330 
331 		sk_add_node_rcu(sk, &hslot->head);
332 		hslot->count++;
333 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
334 
335 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
336 		spin_lock(&hslot2->lock);
337 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
338 		    sk->sk_family == AF_INET6)
339 			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
340 					   &hslot2->head);
341 		else
342 			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
343 					   &hslot2->head);
344 		hslot2->count++;
345 		spin_unlock(&hslot2->lock);
346 	}
347 
348 	error = 0;
349 fail_unlock:
350 	spin_unlock_bh(&hslot->lock);
351 fail:
352 	return error;
353 }
354 EXPORT_IPV6_MOD(udp_lib_get_port);
355 
356 int udp_v4_get_port(struct sock *sk, unsigned short snum)
357 {
358 	unsigned int hash2_nulladdr =
359 		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
360 	unsigned int hash2_partial =
361 		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
362 
363 	/* precompute partial secondary hash */
364 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
365 	return udp_lib_get_port(sk, snum, hash2_nulladdr);
366 }
367 
368 static int compute_score(struct sock *sk, const struct net *net,
369 			 __be32 saddr, __be16 sport,
370 			 __be32 daddr, unsigned short hnum,
371 			 int dif, int sdif)
372 {
373 	int score;
374 	struct inet_sock *inet;
375 	bool dev_match;
376 
377 	if (!net_eq(sock_net(sk), net) ||
378 	    udp_sk(sk)->udp_port_hash != hnum ||
379 	    ipv6_only_sock(sk))
380 		return -1;
381 
382 	if (sk->sk_rcv_saddr != daddr)
383 		return -1;
384 
385 	score = (sk->sk_family == PF_INET) ? 2 : 1;
386 
387 	inet = inet_sk(sk);
388 	if (inet->inet_daddr) {
389 		if (inet->inet_daddr != saddr)
390 			return -1;
391 		score += 4;
392 	}
393 
394 	if (inet->inet_dport) {
395 		if (inet->inet_dport != sport)
396 			return -1;
397 		score += 4;
398 	}
399 
400 	dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
401 					dif, sdif);
402 	if (!dev_match)
403 		return -1;
404 	if (sk->sk_bound_dev_if)
405 		score += 4;
406 
407 	if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
408 		score++;
409 	return score;
410 }
411 
412 u32 udp_ehashfn(const struct net *net, const __be32 laddr, const __u16 lport,
413 		const __be32 faddr, const __be16 fport)
414 {
415 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
416 
417 	return __inet_ehashfn(laddr, lport, faddr, fport,
418 			      udp_ehash_secret + net_hash_mix(net));
419 }
420 EXPORT_IPV6_MOD(udp_ehashfn);
421 
422 /**
423  * udp4_lib_lookup1() - Simplified lookup using primary hash (destination port)
424  * @net:	Network namespace
425  * @saddr:	Source address, network order
426  * @sport:	Source port, network order
427  * @daddr:	Destination address, network order
428  * @hnum:	Destination port, host order
429  * @dif:	Destination interface index
430  * @sdif:	Destination bridge port index, if relevant
431  * @udptable:	Set of UDP hash tables
432  *
433  * Simplified lookup to be used as fallback if no sockets are found due to a
434  * potential race between (receive) address change, and lookup happening before
435  * the rehash operation. This function ignores SO_REUSEPORT groups while scoring
436  * result sockets, because if we have one, we don't need the fallback at all.
437  *
438  * Called under rcu_read_lock().
439  *
440  * Return: socket with highest matching score if any, NULL if none
441  */
442 static struct sock *udp4_lib_lookup1(const struct net *net,
443 				     __be32 saddr, __be16 sport,
444 				     __be32 daddr, unsigned int hnum,
445 				     int dif, int sdif,
446 				     const struct udp_table *udptable)
447 {
448 	unsigned int slot = udp_hashfn(net, hnum, udptable->mask);
449 	struct udp_hslot *hslot = &udptable->hash[slot];
450 	struct sock *sk, *result = NULL;
451 	int score, badness = 0;
452 
453 	sk_for_each_rcu(sk, &hslot->head) {
454 		score = compute_score(sk, net,
455 				      saddr, sport, daddr, hnum, dif, sdif);
456 		if (score > badness) {
457 			result = sk;
458 			badness = score;
459 		}
460 	}
461 
462 	return result;
463 }
464 
465 /* called with rcu_read_lock() */
466 static struct sock *udp4_lib_lookup2(const struct net *net,
467 				     __be32 saddr, __be16 sport,
468 				     __be32 daddr, unsigned int hnum,
469 				     int dif, int sdif,
470 				     struct udp_hslot *hslot2,
471 				     struct sk_buff *skb)
472 {
473 	struct sock *sk, *result;
474 	int score, badness;
475 	bool need_rescore;
476 
477 	result = NULL;
478 	badness = 0;
479 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
480 		need_rescore = false;
481 rescore:
482 		score = compute_score(need_rescore ? result : sk, net, saddr,
483 				      sport, daddr, hnum, dif, sdif);
484 		if (score > badness) {
485 			badness = score;
486 
487 			if (need_rescore)
488 				continue;
489 
490 			if (sk->sk_state == TCP_ESTABLISHED) {
491 				result = sk;
492 				continue;
493 			}
494 
495 			result = inet_lookup_reuseport(net, sk, skb, sizeof(struct udphdr),
496 						       saddr, sport, daddr, hnum, udp_ehashfn);
497 			if (!result) {
498 				result = sk;
499 				continue;
500 			}
501 
502 			/* Fall back to scoring if group has connections */
503 			if (!reuseport_has_conns(sk))
504 				return result;
505 
506 			/* Reuseport logic returned an error, keep original score. */
507 			if (IS_ERR(result))
508 				continue;
509 
510 			/* compute_score is too long of a function to be
511 			 * inlined, and calling it again here yields
512 			 * measurable overhead for some
513 			 * workloads. Work around it by jumping
514 			 * backwards to rescore 'result'.
515 			 */
516 			need_rescore = true;
517 			goto rescore;
518 		}
519 	}
520 	return result;
521 }
522 
523 #if IS_ENABLED(CONFIG_BASE_SMALL)
524 static struct sock *udp4_lib_lookup4(const struct net *net,
525 				     __be32 saddr, __be16 sport,
526 				     __be32 daddr, unsigned int hnum,
527 				     int dif, int sdif,
528 				     struct udp_table *udptable)
529 {
530 	return NULL;
531 }
532 
533 static void udp_rehash4(struct udp_table *udptable, struct sock *sk,
534 			u16 newhash4)
535 {
536 }
537 
538 static void udp_unhash4(struct udp_table *udptable, struct sock *sk)
539 {
540 }
541 #else /* !CONFIG_BASE_SMALL */
542 static struct sock *udp4_lib_lookup4(const struct net *net,
543 				     __be32 saddr, __be16 sport,
544 				     __be32 daddr, unsigned int hnum,
545 				     int dif, int sdif,
546 				     struct udp_table *udptable)
547 {
548 	const __portpair ports = INET_COMBINED_PORTS(sport, hnum);
549 	const struct hlist_nulls_node *node;
550 	struct udp_hslot *hslot4;
551 	unsigned int hash4, slot;
552 	struct udp_sock *up;
553 	struct sock *sk;
554 
555 	hash4 = udp_ehashfn(net, daddr, hnum, saddr, sport);
556 	slot = hash4 & udptable->mask;
557 	hslot4 = &udptable->hash4[slot];
558 	INET_ADDR_COOKIE(acookie, saddr, daddr);
559 
560 begin:
561 	/* SLAB_TYPESAFE_BY_RCU not used, so we don't need to touch sk_refcnt */
562 	udp_lrpa_for_each_entry_rcu(up, node, &hslot4->nulls_head) {
563 		sk = (struct sock *)up;
564 		if (inet_match(net, sk, acookie, ports, dif, sdif))
565 			return sk;
566 	}
567 
568 	/* if the nulls value we got at the end of this lookup is not the
569 	 * expected one, we must restart lookup. We probably met an item that
570 	 * was moved to another chain due to rehash.
571 	 */
572 	if (get_nulls_value(node) != slot)
573 		goto begin;
574 
575 	return NULL;
576 }
577 
578 /* udp_rehash4() only checks hslot4, and hash4_cnt is not processed. */
579 static void udp_rehash4(struct udp_table *udptable, struct sock *sk,
580 			u16 newhash4)
581 {
582 	struct udp_hslot *hslot4, *nhslot4;
583 
584 	hslot4 = udp_hashslot4(udptable, udp_sk(sk)->udp_lrpa_hash);
585 	nhslot4 = udp_hashslot4(udptable, newhash4);
586 	udp_sk(sk)->udp_lrpa_hash = newhash4;
587 
588 	if (hslot4 != nhslot4) {
589 		spin_lock_bh(&hslot4->lock);
590 		hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_lrpa_node);
591 		hslot4->count--;
592 		spin_unlock_bh(&hslot4->lock);
593 
594 		spin_lock_bh(&nhslot4->lock);
595 		hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_lrpa_node,
596 					 &nhslot4->nulls_head);
597 		nhslot4->count++;
598 		spin_unlock_bh(&nhslot4->lock);
599 	}
600 }
601 
602 static void udp_unhash4(struct udp_table *udptable, struct sock *sk)
603 {
604 	struct udp_hslot *hslot2, *hslot4;
605 
606 	if (udp_hashed4(sk)) {
607 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
608 		hslot4 = udp_hashslot4(udptable, udp_sk(sk)->udp_lrpa_hash);
609 
610 		spin_lock(&hslot4->lock);
611 		hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_lrpa_node);
612 		hslot4->count--;
613 		spin_unlock(&hslot4->lock);
614 
615 		spin_lock(&hslot2->lock);
616 		udp_hash4_dec(hslot2);
617 		spin_unlock(&hslot2->lock);
618 	}
619 }
620 
621 void udp_lib_hash4(struct sock *sk, u16 hash)
622 {
623 	struct udp_hslot *hslot, *hslot2, *hslot4;
624 	struct net *net = sock_net(sk);
625 	struct udp_table *udptable;
626 
627 	/* Connected udp socket can re-connect to another remote address, which
628 	 * will be handled by rehash. Thus no need to redo hash4 here.
629 	 */
630 	if (udp_hashed4(sk))
631 		return;
632 
633 	udptable = net->ipv4.udp_table;
634 	hslot = udp_hashslot(udptable, net, udp_sk(sk)->udp_port_hash);
635 	hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
636 	hslot4 = udp_hashslot4(udptable, hash);
637 	udp_sk(sk)->udp_lrpa_hash = hash;
638 
639 	spin_lock_bh(&hslot->lock);
640 	if (rcu_access_pointer(sk->sk_reuseport_cb))
641 		reuseport_detach_sock(sk);
642 
643 	spin_lock(&hslot4->lock);
644 	hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_lrpa_node,
645 				 &hslot4->nulls_head);
646 	hslot4->count++;
647 	spin_unlock(&hslot4->lock);
648 
649 	spin_lock(&hslot2->lock);
650 	udp_hash4_inc(hslot2);
651 	spin_unlock(&hslot2->lock);
652 
653 	spin_unlock_bh(&hslot->lock);
654 }
655 EXPORT_IPV6_MOD(udp_lib_hash4);
656 
657 /* call with sock lock */
658 void udp4_hash4(struct sock *sk)
659 {
660 	struct net *net = sock_net(sk);
661 	unsigned int hash;
662 
663 	if (sk_unhashed(sk) || sk->sk_rcv_saddr == htonl(INADDR_ANY))
664 		return;
665 
666 	hash = udp_ehashfn(net, sk->sk_rcv_saddr, sk->sk_num,
667 			   sk->sk_daddr, sk->sk_dport);
668 
669 	udp_lib_hash4(sk, hash);
670 }
671 EXPORT_IPV6_MOD(udp4_hash4);
672 #endif /* CONFIG_BASE_SMALL */
673 
674 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
675  * harder than this. -DaveM
676  */
677 struct sock *__udp4_lib_lookup(const struct net *net, __be32 saddr,
678 		__be16 sport, __be32 daddr, __be16 dport, int dif,
679 		int sdif, struct udp_table *udptable, struct sk_buff *skb)
680 {
681 	unsigned short hnum = ntohs(dport);
682 	struct udp_hslot *hslot2;
683 	struct sock *result, *sk;
684 	unsigned int hash2;
685 
686 	hash2 = ipv4_portaddr_hash(net, daddr, hnum);
687 	hslot2 = udp_hashslot2(udptable, hash2);
688 
689 	if (udp_has_hash4(hslot2)) {
690 		result = udp4_lib_lookup4(net, saddr, sport, daddr, hnum,
691 					  dif, sdif, udptable);
692 		if (result) /* udp4_lib_lookup4 return sk or NULL */
693 			return result;
694 	}
695 
696 	/* Lookup connected or non-wildcard socket */
697 	result = udp4_lib_lookup2(net, saddr, sport,
698 				  daddr, hnum, dif, sdif,
699 				  hslot2, skb);
700 	if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED)
701 		goto done;
702 
703 	/* Lookup redirect from BPF */
704 	if (static_branch_unlikely(&bpf_sk_lookup_enabled) &&
705 	    udptable == net->ipv4.udp_table) {
706 		sk = inet_lookup_run_sk_lookup(net, IPPROTO_UDP, skb, sizeof(struct udphdr),
707 					       saddr, sport, daddr, hnum, dif,
708 					       udp_ehashfn);
709 		if (sk) {
710 			result = sk;
711 			goto done;
712 		}
713 	}
714 
715 	/* Got non-wildcard socket or error on first lookup */
716 	if (result)
717 		goto done;
718 
719 	/* Lookup wildcard sockets */
720 	hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
721 	hslot2 = udp_hashslot2(udptable, hash2);
722 
723 	result = udp4_lib_lookup2(net, saddr, sport,
724 				  htonl(INADDR_ANY), hnum, dif, sdif,
725 				  hslot2, skb);
726 	if (!IS_ERR_OR_NULL(result))
727 		goto done;
728 
729 	/* Primary hash (destination port) lookup as fallback for this race:
730 	 *   1. __ip4_datagram_connect() sets sk_rcv_saddr
731 	 *   2. lookup (this function): new sk_rcv_saddr, hashes not updated yet
732 	 *   3. rehash operation updating _secondary and four-tuple_ hashes
733 	 * The primary hash doesn't need an update after 1., so, thanks to this
734 	 * further step, 1. and 3. don't need to be atomic against the lookup.
735 	 */
736 	result = udp4_lib_lookup1(net, saddr, sport, daddr, hnum, dif, sdif,
737 				  udptable);
738 
739 done:
740 	if (IS_ERR(result))
741 		return NULL;
742 	return result;
743 }
744 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
745 
746 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
747 						 __be16 sport, __be16 dport,
748 						 struct udp_table *udptable)
749 {
750 	const struct iphdr *iph = ip_hdr(skb);
751 
752 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
753 				 iph->daddr, dport, inet_iif(skb),
754 				 inet_sdif(skb), udptable, skb);
755 }
756 
757 struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb,
758 				 __be16 sport, __be16 dport)
759 {
760 	const u16 offset = NAPI_GRO_CB(skb)->network_offsets[skb->encapsulation];
761 	const struct iphdr *iph = (struct iphdr *)(skb->data + offset);
762 	struct net *net = dev_net(skb->dev);
763 	int iif, sdif;
764 
765 	inet_get_iif_sdif(skb, &iif, &sdif);
766 
767 	return __udp4_lib_lookup(net, iph->saddr, sport,
768 				 iph->daddr, dport, iif,
769 				 sdif, net->ipv4.udp_table, NULL);
770 }
771 
772 /* Must be called under rcu_read_lock().
773  * Does increment socket refcount.
774  */
775 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
776 struct sock *udp4_lib_lookup(const struct net *net, __be32 saddr, __be16 sport,
777 			     __be32 daddr, __be16 dport, int dif)
778 {
779 	struct sock *sk;
780 
781 	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
782 			       dif, 0, net->ipv4.udp_table, NULL);
783 	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
784 		sk = NULL;
785 	return sk;
786 }
787 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
788 #endif
789 
790 static inline bool __udp_is_mcast_sock(struct net *net, const struct sock *sk,
791 				       __be16 loc_port, __be32 loc_addr,
792 				       __be16 rmt_port, __be32 rmt_addr,
793 				       int dif, int sdif, unsigned short hnum)
794 {
795 	const struct inet_sock *inet = inet_sk(sk);
796 
797 	if (!net_eq(sock_net(sk), net) ||
798 	    udp_sk(sk)->udp_port_hash != hnum ||
799 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
800 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
801 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
802 	    ipv6_only_sock(sk) ||
803 	    !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
804 		return false;
805 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
806 		return false;
807 	return true;
808 }
809 
810 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
811 EXPORT_IPV6_MOD(udp_encap_needed_key);
812 
813 #if IS_ENABLED(CONFIG_IPV6)
814 DEFINE_STATIC_KEY_FALSE(udpv6_encap_needed_key);
815 EXPORT_IPV6_MOD(udpv6_encap_needed_key);
816 #endif
817 
818 void udp_encap_enable(void)
819 {
820 	static_branch_inc(&udp_encap_needed_key);
821 }
822 EXPORT_SYMBOL(udp_encap_enable);
823 
824 void udp_encap_disable(void)
825 {
826 	static_branch_dec(&udp_encap_needed_key);
827 }
828 EXPORT_SYMBOL(udp_encap_disable);
829 
830 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go
831  * through error handlers in encapsulations looking for a match.
832  */
833 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
834 {
835 	int i;
836 
837 	for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
838 		int (*handler)(struct sk_buff *skb, u32 info);
839 		const struct ip_tunnel_encap_ops *encap;
840 
841 		encap = rcu_dereference(iptun_encaps[i]);
842 		if (!encap)
843 			continue;
844 		handler = encap->err_handler;
845 		if (handler && !handler(skb, info))
846 			return 0;
847 	}
848 
849 	return -ENOENT;
850 }
851 
852 /* Try to match ICMP errors to UDP tunnels by looking up a socket without
853  * reversing source and destination port: this will match tunnels that force the
854  * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
855  * lwtunnels might actually break this assumption by being configured with
856  * different destination ports on endpoints, in this case we won't be able to
857  * trace ICMP messages back to them.
858  *
859  * If this doesn't match any socket, probe tunnels with arbitrary destination
860  * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
861  * we've sent packets to won't necessarily match the local destination port.
862  *
863  * Then ask the tunnel implementation to match the error against a valid
864  * association.
865  *
866  * Return an error if we can't find a match, the socket if we need further
867  * processing, zero otherwise.
868  */
869 static struct sock *__udp4_lib_err_encap(struct net *net,
870 					 const struct iphdr *iph,
871 					 struct udphdr *uh,
872 					 struct udp_table *udptable,
873 					 struct sock *sk,
874 					 struct sk_buff *skb, u32 info)
875 {
876 	int (*lookup)(struct sock *sk, struct sk_buff *skb);
877 	int network_offset, transport_offset;
878 	struct udp_sock *up;
879 
880 	network_offset = skb_network_offset(skb);
881 	transport_offset = skb_transport_offset(skb);
882 
883 	/* Network header needs to point to the outer IPv4 header inside ICMP */
884 	skb_reset_network_header(skb);
885 
886 	/* Transport header needs to point to the UDP header */
887 	skb_set_transport_header(skb, iph->ihl << 2);
888 
889 	if (sk) {
890 		up = udp_sk(sk);
891 
892 		lookup = READ_ONCE(up->encap_err_lookup);
893 		if (lookup && lookup(sk, skb))
894 			sk = NULL;
895 
896 		goto out;
897 	}
898 
899 	sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
900 			       iph->saddr, uh->dest, skb->dev->ifindex, 0,
901 			       udptable, NULL);
902 	if (sk) {
903 		up = udp_sk(sk);
904 
905 		lookup = READ_ONCE(up->encap_err_lookup);
906 		if (!lookup || lookup(sk, skb))
907 			sk = NULL;
908 	}
909 
910 out:
911 	if (!sk)
912 		sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
913 
914 	skb_set_transport_header(skb, transport_offset);
915 	skb_set_network_header(skb, network_offset);
916 
917 	return sk;
918 }
919 
920 /*
921  * This routine is called by the ICMP module when it gets some
922  * sort of error condition.  If err < 0 then the socket should
923  * be closed and the error returned to the user.  If err > 0
924  * it's just the icmp type << 8 | icmp code.
925  * Header points to the ip header of the error packet. We move
926  * on past this. Then (as it used to claim before adjustment)
927  * header points to the first 8 bytes of the udp header.  We need
928  * to find the appropriate port.
929  */
930 
931 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
932 {
933 	struct inet_sock *inet;
934 	const struct iphdr *iph = (const struct iphdr *)skb->data;
935 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
936 	const int type = icmp_hdr(skb)->type;
937 	const int code = icmp_hdr(skb)->code;
938 	bool tunnel = false;
939 	struct sock *sk;
940 	int harderr;
941 	int err;
942 	struct net *net = dev_net(skb->dev);
943 
944 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
945 			       iph->saddr, uh->source, skb->dev->ifindex,
946 			       inet_sdif(skb), udptable, NULL);
947 
948 	if (!sk || READ_ONCE(udp_sk(sk)->encap_type)) {
949 		/* No socket for error: try tunnels before discarding */
950 		if (static_branch_unlikely(&udp_encap_needed_key)) {
951 			sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb,
952 						  info);
953 			if (!sk)
954 				return 0;
955 		} else
956 			sk = ERR_PTR(-ENOENT);
957 
958 		if (IS_ERR(sk)) {
959 			__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
960 			return PTR_ERR(sk);
961 		}
962 
963 		tunnel = true;
964 	}
965 
966 	err = 0;
967 	harderr = 0;
968 	inet = inet_sk(sk);
969 
970 	switch (type) {
971 	default:
972 	case ICMP_TIME_EXCEEDED:
973 		err = EHOSTUNREACH;
974 		break;
975 	case ICMP_SOURCE_QUENCH:
976 		goto out;
977 	case ICMP_PARAMETERPROB:
978 		err = EPROTO;
979 		harderr = 1;
980 		break;
981 	case ICMP_DEST_UNREACH:
982 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
983 			ipv4_sk_update_pmtu(skb, sk, info);
984 			if (READ_ONCE(inet->pmtudisc) != IP_PMTUDISC_DONT) {
985 				err = EMSGSIZE;
986 				harderr = 1;
987 				break;
988 			}
989 			goto out;
990 		}
991 		err = EHOSTUNREACH;
992 		if (code <= NR_ICMP_UNREACH) {
993 			harderr = icmp_err_convert[code].fatal;
994 			err = icmp_err_convert[code].errno;
995 		}
996 		break;
997 	case ICMP_REDIRECT:
998 		ipv4_sk_redirect(skb, sk);
999 		goto out;
1000 	}
1001 
1002 	/*
1003 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
1004 	 *	4.1.3.3.
1005 	 */
1006 	if (tunnel) {
1007 		/* ...not for tunnels though: we don't have a sending socket */
1008 		if (udp_sk(sk)->encap_err_rcv)
1009 			udp_sk(sk)->encap_err_rcv(sk, skb, err, uh->dest, info,
1010 						  (u8 *)(uh+1));
1011 		goto out;
1012 	}
1013 	if (!inet_test_bit(RECVERR, sk)) {
1014 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
1015 			goto out;
1016 	} else
1017 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
1018 
1019 	sk->sk_err = err;
1020 	sk_error_report(sk);
1021 out:
1022 	return 0;
1023 }
1024 
1025 int udp_err(struct sk_buff *skb, u32 info)
1026 {
1027 	return __udp4_lib_err(skb, info, dev_net(skb->dev)->ipv4.udp_table);
1028 }
1029 
1030 /*
1031  * Throw away all pending data and cancel the corking. Socket is locked.
1032  */
1033 void udp_flush_pending_frames(struct sock *sk)
1034 {
1035 	struct udp_sock *up = udp_sk(sk);
1036 
1037 	if (up->pending) {
1038 		up->len = 0;
1039 		WRITE_ONCE(up->pending, 0);
1040 		ip_flush_pending_frames(sk);
1041 	}
1042 }
1043 EXPORT_IPV6_MOD(udp_flush_pending_frames);
1044 
1045 /**
1046  * 	udp4_hwcsum  -  handle outgoing HW checksumming
1047  * 	@skb: 	sk_buff containing the filled-in UDP header
1048  * 	        (checksum field must be zeroed out)
1049  *	@src:	source IP address
1050  *	@dst:	destination IP address
1051  */
1052 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
1053 {
1054 	struct udphdr *uh = udp_hdr(skb);
1055 	int offset = skb_transport_offset(skb);
1056 	int len = skb->len - offset;
1057 	int hlen = len;
1058 	__wsum csum = 0;
1059 
1060 	if (!skb_has_frag_list(skb)) {
1061 		/*
1062 		 * Only one fragment on the socket.
1063 		 */
1064 		skb->csum_start = skb_transport_header(skb) - skb->head;
1065 		skb->csum_offset = offsetof(struct udphdr, check);
1066 		uh->check = ~csum_tcpudp_magic(src, dst, len,
1067 					       IPPROTO_UDP, 0);
1068 	} else {
1069 		struct sk_buff *frags;
1070 
1071 		/*
1072 		 * HW-checksum won't work as there are two or more
1073 		 * fragments on the socket so that all csums of sk_buffs
1074 		 * should be together
1075 		 */
1076 		skb_walk_frags(skb, frags) {
1077 			csum = csum_add(csum, frags->csum);
1078 			hlen -= frags->len;
1079 		}
1080 
1081 		csum = skb_checksum(skb, offset, hlen, csum);
1082 		skb->ip_summed = CHECKSUM_NONE;
1083 
1084 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
1085 		if (uh->check == 0)
1086 			uh->check = CSUM_MANGLED_0;
1087 	}
1088 }
1089 EXPORT_SYMBOL_GPL(udp4_hwcsum);
1090 
1091 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
1092  * for the simple case like when setting the checksum for a UDP tunnel.
1093  */
1094 void udp_set_csum(bool nocheck, struct sk_buff *skb,
1095 		  __be32 saddr, __be32 daddr, int len)
1096 {
1097 	struct udphdr *uh = udp_hdr(skb);
1098 
1099 	if (nocheck) {
1100 		uh->check = 0;
1101 	} else if (skb_is_gso(skb)) {
1102 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
1103 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
1104 		uh->check = 0;
1105 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
1106 		if (uh->check == 0)
1107 			uh->check = CSUM_MANGLED_0;
1108 	} else {
1109 		skb->ip_summed = CHECKSUM_PARTIAL;
1110 		skb->csum_start = skb_transport_header(skb) - skb->head;
1111 		skb->csum_offset = offsetof(struct udphdr, check);
1112 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
1113 	}
1114 }
1115 EXPORT_SYMBOL(udp_set_csum);
1116 
1117 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
1118 			struct inet_cork *cork)
1119 {
1120 	struct sock *sk = skb->sk;
1121 	struct inet_sock *inet = inet_sk(sk);
1122 	struct udphdr *uh;
1123 	int err;
1124 	int is_udplite = IS_UDPLITE(sk);
1125 	int offset = skb_transport_offset(skb);
1126 	int len = skb->len - offset;
1127 	int datalen = len - sizeof(*uh);
1128 	__wsum csum = 0;
1129 
1130 	/*
1131 	 * Create a UDP header
1132 	 */
1133 	uh = udp_hdr(skb);
1134 	uh->source = inet->inet_sport;
1135 	uh->dest = fl4->fl4_dport;
1136 	uh->len = htons(len);
1137 	uh->check = 0;
1138 
1139 	if (cork->gso_size) {
1140 		const int hlen = skb_network_header_len(skb) +
1141 				 sizeof(struct udphdr);
1142 
1143 		if (hlen + min(datalen, cork->gso_size) > cork->fragsize) {
1144 			kfree_skb(skb);
1145 			return -EMSGSIZE;
1146 		}
1147 		if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) {
1148 			kfree_skb(skb);
1149 			return -EINVAL;
1150 		}
1151 		if (sk->sk_no_check_tx) {
1152 			kfree_skb(skb);
1153 			return -EINVAL;
1154 		}
1155 		if (is_udplite || dst_xfrm(skb_dst(skb))) {
1156 			kfree_skb(skb);
1157 			return -EIO;
1158 		}
1159 
1160 		if (datalen > cork->gso_size) {
1161 			skb_shinfo(skb)->gso_size = cork->gso_size;
1162 			skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
1163 			skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
1164 								 cork->gso_size);
1165 
1166 			/* Don't checksum the payload, skb will get segmented */
1167 			goto csum_partial;
1168 		}
1169 	}
1170 
1171 	if (is_udplite)  				 /*     UDP-Lite      */
1172 		csum = udplite_csum(skb);
1173 
1174 	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
1175 
1176 		skb->ip_summed = CHECKSUM_NONE;
1177 		goto send;
1178 
1179 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
1180 csum_partial:
1181 
1182 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
1183 		goto send;
1184 
1185 	} else
1186 		csum = udp_csum(skb);
1187 
1188 	/* add protocol-dependent pseudo-header */
1189 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
1190 				      sk->sk_protocol, csum);
1191 	if (uh->check == 0)
1192 		uh->check = CSUM_MANGLED_0;
1193 
1194 send:
1195 	err = ip_send_skb(sock_net(sk), skb);
1196 	if (err) {
1197 		if (err == -ENOBUFS &&
1198 		    !inet_test_bit(RECVERR, sk)) {
1199 			UDP_INC_STATS(sock_net(sk),
1200 				      UDP_MIB_SNDBUFERRORS, is_udplite);
1201 			err = 0;
1202 		}
1203 	} else
1204 		UDP_INC_STATS(sock_net(sk),
1205 			      UDP_MIB_OUTDATAGRAMS, is_udplite);
1206 	return err;
1207 }
1208 
1209 /*
1210  * Push out all pending data as one UDP datagram. Socket is locked.
1211  */
1212 int udp_push_pending_frames(struct sock *sk)
1213 {
1214 	struct udp_sock  *up = udp_sk(sk);
1215 	struct inet_sock *inet = inet_sk(sk);
1216 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
1217 	struct sk_buff *skb;
1218 	int err = 0;
1219 
1220 	skb = ip_finish_skb(sk, fl4);
1221 	if (!skb)
1222 		goto out;
1223 
1224 	err = udp_send_skb(skb, fl4, &inet->cork.base);
1225 
1226 out:
1227 	up->len = 0;
1228 	WRITE_ONCE(up->pending, 0);
1229 	return err;
1230 }
1231 EXPORT_IPV6_MOD(udp_push_pending_frames);
1232 
1233 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
1234 {
1235 	switch (cmsg->cmsg_type) {
1236 	case UDP_SEGMENT:
1237 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
1238 			return -EINVAL;
1239 		*gso_size = *(__u16 *)CMSG_DATA(cmsg);
1240 		return 0;
1241 	default:
1242 		return -EINVAL;
1243 	}
1244 }
1245 
1246 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
1247 {
1248 	struct cmsghdr *cmsg;
1249 	bool need_ip = false;
1250 	int err;
1251 
1252 	for_each_cmsghdr(cmsg, msg) {
1253 		if (!CMSG_OK(msg, cmsg))
1254 			return -EINVAL;
1255 
1256 		if (cmsg->cmsg_level != SOL_UDP) {
1257 			need_ip = true;
1258 			continue;
1259 		}
1260 
1261 		err = __udp_cmsg_send(cmsg, gso_size);
1262 		if (err)
1263 			return err;
1264 	}
1265 
1266 	return need_ip;
1267 }
1268 EXPORT_IPV6_MOD_GPL(udp_cmsg_send);
1269 
1270 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1271 {
1272 	struct inet_sock *inet = inet_sk(sk);
1273 	struct udp_sock *up = udp_sk(sk);
1274 	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1275 	struct flowi4 fl4_stack;
1276 	struct flowi4 *fl4;
1277 	int ulen = len;
1278 	struct ipcm_cookie ipc;
1279 	struct rtable *rt = NULL;
1280 	int free = 0;
1281 	int connected = 0;
1282 	__be32 daddr, faddr, saddr;
1283 	u8 scope;
1284 	__be16 dport;
1285 	int err, is_udplite = IS_UDPLITE(sk);
1286 	int corkreq = udp_test_bit(CORK, sk) || msg->msg_flags & MSG_MORE;
1287 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
1288 	struct sk_buff *skb;
1289 	struct ip_options_data opt_copy;
1290 	int uc_index;
1291 
1292 	if (len > 0xFFFF)
1293 		return -EMSGSIZE;
1294 
1295 	/*
1296 	 *	Check the flags.
1297 	 */
1298 
1299 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1300 		return -EOPNOTSUPP;
1301 
1302 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1303 
1304 	fl4 = &inet->cork.fl.u.ip4;
1305 	if (READ_ONCE(up->pending)) {
1306 		/*
1307 		 * There are pending frames.
1308 		 * The socket lock must be held while it's corked.
1309 		 */
1310 		lock_sock(sk);
1311 		if (likely(up->pending)) {
1312 			if (unlikely(up->pending != AF_INET)) {
1313 				release_sock(sk);
1314 				return -EINVAL;
1315 			}
1316 			goto do_append_data;
1317 		}
1318 		release_sock(sk);
1319 	}
1320 	ulen += sizeof(struct udphdr);
1321 
1322 	/*
1323 	 *	Get and verify the address.
1324 	 */
1325 	if (usin) {
1326 		if (msg->msg_namelen < sizeof(*usin))
1327 			return -EINVAL;
1328 		if (usin->sin_family != AF_INET) {
1329 			if (usin->sin_family != AF_UNSPEC)
1330 				return -EAFNOSUPPORT;
1331 		}
1332 
1333 		daddr = usin->sin_addr.s_addr;
1334 		dport = usin->sin_port;
1335 		if (dport == 0)
1336 			return -EINVAL;
1337 	} else {
1338 		if (sk->sk_state != TCP_ESTABLISHED)
1339 			return -EDESTADDRREQ;
1340 		daddr = inet->inet_daddr;
1341 		dport = inet->inet_dport;
1342 		/* Open fast path for connected socket.
1343 		   Route will not be used, if at least one option is set.
1344 		 */
1345 		connected = 1;
1346 	}
1347 
1348 	ipcm_init_sk(&ipc, inet);
1349 	ipc.gso_size = READ_ONCE(up->gso_size);
1350 
1351 	if (msg->msg_controllen) {
1352 		err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1353 		if (err > 0) {
1354 			err = ip_cmsg_send(sk, msg, &ipc,
1355 					   sk->sk_family == AF_INET6);
1356 			connected = 0;
1357 		}
1358 		if (unlikely(err < 0)) {
1359 			kfree(ipc.opt);
1360 			return err;
1361 		}
1362 		if (ipc.opt)
1363 			free = 1;
1364 	}
1365 	if (!ipc.opt) {
1366 		struct ip_options_rcu *inet_opt;
1367 
1368 		rcu_read_lock();
1369 		inet_opt = rcu_dereference(inet->inet_opt);
1370 		if (inet_opt) {
1371 			memcpy(&opt_copy, inet_opt,
1372 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
1373 			ipc.opt = &opt_copy.opt;
1374 		}
1375 		rcu_read_unlock();
1376 	}
1377 
1378 	if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) {
1379 		err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1380 					    (struct sockaddr *)usin,
1381 					    &msg->msg_namelen,
1382 					    &ipc.addr);
1383 		if (err)
1384 			goto out_free;
1385 		if (usin) {
1386 			if (usin->sin_port == 0) {
1387 				/* BPF program set invalid port. Reject it. */
1388 				err = -EINVAL;
1389 				goto out_free;
1390 			}
1391 			daddr = usin->sin_addr.s_addr;
1392 			dport = usin->sin_port;
1393 		}
1394 	}
1395 
1396 	saddr = ipc.addr;
1397 	ipc.addr = faddr = daddr;
1398 
1399 	if (ipc.opt && ipc.opt->opt.srr) {
1400 		if (!daddr) {
1401 			err = -EINVAL;
1402 			goto out_free;
1403 		}
1404 		faddr = ipc.opt->opt.faddr;
1405 		connected = 0;
1406 	}
1407 	scope = ip_sendmsg_scope(inet, &ipc, msg);
1408 	if (scope == RT_SCOPE_LINK)
1409 		connected = 0;
1410 
1411 	uc_index = READ_ONCE(inet->uc_index);
1412 	if (ipv4_is_multicast(daddr)) {
1413 		if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1414 			ipc.oif = READ_ONCE(inet->mc_index);
1415 		if (!saddr)
1416 			saddr = READ_ONCE(inet->mc_addr);
1417 		connected = 0;
1418 	} else if (!ipc.oif) {
1419 		ipc.oif = uc_index;
1420 	} else if (ipv4_is_lbcast(daddr) && uc_index) {
1421 		/* oif is set, packet is to local broadcast and
1422 		 * uc_index is set. oif is most likely set
1423 		 * by sk_bound_dev_if. If uc_index != oif check if the
1424 		 * oif is an L3 master and uc_index is an L3 slave.
1425 		 * If so, we want to allow the send using the uc_index.
1426 		 */
1427 		if (ipc.oif != uc_index &&
1428 		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1429 							      uc_index)) {
1430 			ipc.oif = uc_index;
1431 		}
1432 	}
1433 
1434 	if (connected)
1435 		rt = dst_rtable(sk_dst_check(sk, 0));
1436 
1437 	if (!rt) {
1438 		struct net *net = sock_net(sk);
1439 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1440 
1441 		fl4 = &fl4_stack;
1442 
1443 		flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark,
1444 				   ipc.tos & INET_DSCP_MASK, scope,
1445 				   sk->sk_protocol, flow_flags, faddr, saddr,
1446 				   dport, inet->inet_sport,
1447 				   sk_uid(sk));
1448 
1449 		security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
1450 		rt = ip_route_output_flow(net, fl4, sk);
1451 		if (IS_ERR(rt)) {
1452 			err = PTR_ERR(rt);
1453 			rt = NULL;
1454 			if (err == -ENETUNREACH)
1455 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1456 			goto out;
1457 		}
1458 
1459 		err = -EACCES;
1460 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1461 		    !sock_flag(sk, SOCK_BROADCAST))
1462 			goto out;
1463 		if (connected)
1464 			sk_dst_set(sk, dst_clone(&rt->dst));
1465 	}
1466 
1467 	if (msg->msg_flags&MSG_CONFIRM)
1468 		goto do_confirm;
1469 back_from_confirm:
1470 
1471 	saddr = fl4->saddr;
1472 	if (!ipc.addr)
1473 		daddr = ipc.addr = fl4->daddr;
1474 
1475 	/* Lockless fast path for the non-corking case. */
1476 	if (!corkreq) {
1477 		struct inet_cork cork;
1478 
1479 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1480 				  sizeof(struct udphdr), &ipc, &rt,
1481 				  &cork, msg->msg_flags);
1482 		err = PTR_ERR(skb);
1483 		if (!IS_ERR_OR_NULL(skb))
1484 			err = udp_send_skb(skb, fl4, &cork);
1485 		goto out;
1486 	}
1487 
1488 	lock_sock(sk);
1489 	if (unlikely(up->pending)) {
1490 		/* The socket is already corked while preparing it. */
1491 		/* ... which is an evident application bug. --ANK */
1492 		release_sock(sk);
1493 
1494 		net_dbg_ratelimited("socket already corked\n");
1495 		err = -EINVAL;
1496 		goto out;
1497 	}
1498 	/*
1499 	 *	Now cork the socket to pend data.
1500 	 */
1501 	fl4 = &inet->cork.fl.u.ip4;
1502 	fl4->daddr = daddr;
1503 	fl4->saddr = saddr;
1504 	fl4->fl4_dport = dport;
1505 	fl4->fl4_sport = inet->inet_sport;
1506 	WRITE_ONCE(up->pending, AF_INET);
1507 
1508 do_append_data:
1509 	up->len += ulen;
1510 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1511 			     sizeof(struct udphdr), &ipc, &rt,
1512 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1513 	if (err)
1514 		udp_flush_pending_frames(sk);
1515 	else if (!corkreq)
1516 		err = udp_push_pending_frames(sk);
1517 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1518 		WRITE_ONCE(up->pending, 0);
1519 	release_sock(sk);
1520 
1521 out:
1522 	ip_rt_put(rt);
1523 out_free:
1524 	if (free)
1525 		kfree(ipc.opt);
1526 	if (!err)
1527 		return len;
1528 	/*
1529 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1530 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1531 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1532 	 * things).  We could add another new stat but at least for now that
1533 	 * seems like overkill.
1534 	 */
1535 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1536 		UDP_INC_STATS(sock_net(sk),
1537 			      UDP_MIB_SNDBUFERRORS, is_udplite);
1538 	}
1539 	return err;
1540 
1541 do_confirm:
1542 	if (msg->msg_flags & MSG_PROBE)
1543 		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1544 	if (!(msg->msg_flags&MSG_PROBE) || len)
1545 		goto back_from_confirm;
1546 	err = 0;
1547 	goto out;
1548 }
1549 EXPORT_SYMBOL(udp_sendmsg);
1550 
1551 void udp_splice_eof(struct socket *sock)
1552 {
1553 	struct sock *sk = sock->sk;
1554 	struct udp_sock *up = udp_sk(sk);
1555 
1556 	if (!READ_ONCE(up->pending) || udp_test_bit(CORK, sk))
1557 		return;
1558 
1559 	lock_sock(sk);
1560 	if (up->pending && !udp_test_bit(CORK, sk))
1561 		udp_push_pending_frames(sk);
1562 	release_sock(sk);
1563 }
1564 EXPORT_IPV6_MOD_GPL(udp_splice_eof);
1565 
1566 #define UDP_SKB_IS_STATELESS 0x80000000
1567 
1568 /* all head states (dst, sk, nf conntrack) except skb extensions are
1569  * cleared by udp_rcv().
1570  *
1571  * We need to preserve secpath, if present, to eventually process
1572  * IP_CMSG_PASSSEC at recvmsg() time.
1573  *
1574  * Other extensions can be cleared.
1575  */
1576 static bool udp_try_make_stateless(struct sk_buff *skb)
1577 {
1578 	if (!skb_has_extensions(skb))
1579 		return true;
1580 
1581 	if (!secpath_exists(skb)) {
1582 		skb_ext_reset(skb);
1583 		return true;
1584 	}
1585 
1586 	return false;
1587 }
1588 
1589 static void udp_set_dev_scratch(struct sk_buff *skb)
1590 {
1591 	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1592 
1593 	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1594 	scratch->_tsize_state = skb->truesize;
1595 #if BITS_PER_LONG == 64
1596 	scratch->len = skb->len;
1597 	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1598 	scratch->is_linear = !skb_is_nonlinear(skb);
1599 #endif
1600 	if (udp_try_make_stateless(skb))
1601 		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1602 }
1603 
1604 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1605 {
1606 	/* We come here after udp_lib_checksum_complete() returned 0.
1607 	 * This means that __skb_checksum_complete() might have
1608 	 * set skb->csum_valid to 1.
1609 	 * On 64bit platforms, we can set csum_unnecessary
1610 	 * to true, but only if the skb is not shared.
1611 	 */
1612 #if BITS_PER_LONG == 64
1613 	if (!skb_shared(skb))
1614 		udp_skb_scratch(skb)->csum_unnecessary = true;
1615 #endif
1616 }
1617 
1618 static int udp_skb_truesize(struct sk_buff *skb)
1619 {
1620 	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1621 }
1622 
1623 static bool udp_skb_has_head_state(struct sk_buff *skb)
1624 {
1625 	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1626 }
1627 
1628 /* fully reclaim rmem/fwd memory allocated for skb */
1629 static void udp_rmem_release(struct sock *sk, unsigned int size,
1630 			     int partial, bool rx_queue_lock_held)
1631 {
1632 	struct udp_sock *up = udp_sk(sk);
1633 	struct sk_buff_head *sk_queue;
1634 	unsigned int amt;
1635 
1636 	if (likely(partial)) {
1637 		up->forward_deficit += size;
1638 		size = up->forward_deficit;
1639 		if (size < READ_ONCE(up->forward_threshold) &&
1640 		    !skb_queue_empty(&up->reader_queue))
1641 			return;
1642 	} else {
1643 		size += up->forward_deficit;
1644 	}
1645 	up->forward_deficit = 0;
1646 
1647 	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1648 	 * if the called don't held it already
1649 	 */
1650 	sk_queue = &sk->sk_receive_queue;
1651 	if (!rx_queue_lock_held)
1652 		spin_lock(&sk_queue->lock);
1653 
1654 	amt = (size + sk->sk_forward_alloc - partial) & ~(PAGE_SIZE - 1);
1655 	sk_forward_alloc_add(sk, size - amt);
1656 
1657 	if (amt)
1658 		__sk_mem_reduce_allocated(sk, amt >> PAGE_SHIFT);
1659 
1660 	atomic_sub(size, &sk->sk_rmem_alloc);
1661 
1662 	/* this can save us from acquiring the rx queue lock on next receive */
1663 	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1664 
1665 	if (!rx_queue_lock_held)
1666 		spin_unlock(&sk_queue->lock);
1667 }
1668 
1669 /* Note: called with reader_queue.lock held.
1670  * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1671  * This avoids a cache line miss while receive_queue lock is held.
1672  * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1673  */
1674 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1675 {
1676 	prefetch(&skb->data);
1677 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1678 }
1679 EXPORT_IPV6_MOD(udp_skb_destructor);
1680 
1681 /* as above, but the caller held the rx queue lock, too */
1682 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1683 {
1684 	prefetch(&skb->data);
1685 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1686 }
1687 
1688 static int udp_rmem_schedule(struct sock *sk, int size)
1689 {
1690 	int delta;
1691 
1692 	delta = size - sk->sk_forward_alloc;
1693 	if (delta > 0 && !__sk_mem_schedule(sk, delta, SK_MEM_RECV))
1694 		return -ENOBUFS;
1695 
1696 	return 0;
1697 }
1698 
1699 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1700 {
1701 	struct sk_buff_head *list = &sk->sk_receive_queue;
1702 	struct udp_prod_queue *udp_prod_queue;
1703 	struct sk_buff *next, *to_drop = NULL;
1704 	struct llist_node *ll_list;
1705 	unsigned int rmem, rcvbuf;
1706 	int size, err = -ENOMEM;
1707 	int total_size = 0;
1708 	int q_size = 0;
1709 	int dropcount;
1710 	int nb = 0;
1711 
1712 	rmem = atomic_read(&sk->sk_rmem_alloc);
1713 	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1714 	size = skb->truesize;
1715 
1716 	udp_prod_queue = &udp_sk(sk)->udp_prod_queue[numa_node_id()];
1717 
1718 	rmem += atomic_read(&udp_prod_queue->rmem_alloc);
1719 
1720 	/* Immediately drop when the receive queue is full.
1721 	 * Cast to unsigned int performs the boundary check for INT_MAX.
1722 	 */
1723 	if (rmem + size > rcvbuf) {
1724 		if (rcvbuf > INT_MAX >> 1)
1725 			goto drop;
1726 
1727 		/* Accept the packet if queue is empty. */
1728 		if (rmem)
1729 			goto drop;
1730 	}
1731 
1732 	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1733 	 * having linear skbs :
1734 	 * - Reduce memory overhead and thus increase receive queue capacity
1735 	 * - Less cache line misses at copyout() time
1736 	 * - Less work at consume_skb() (less alien page frag freeing)
1737 	 */
1738 	if (rmem > (rcvbuf >> 1)) {
1739 		skb_condense(skb);
1740 		size = skb->truesize;
1741 	}
1742 
1743 	udp_set_dev_scratch(skb);
1744 
1745 	atomic_add(size, &udp_prod_queue->rmem_alloc);
1746 
1747 	if (!llist_add(&skb->ll_node, &udp_prod_queue->ll_root))
1748 		return 0;
1749 
1750 	dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ? sk_drops_read(sk) : 0;
1751 
1752 	spin_lock(&list->lock);
1753 
1754 	ll_list = llist_del_all(&udp_prod_queue->ll_root);
1755 
1756 	ll_list = llist_reverse_order(ll_list);
1757 
1758 	llist_for_each_entry_safe(skb, next, ll_list, ll_node) {
1759 		size = udp_skb_truesize(skb);
1760 		total_size += size;
1761 		err = udp_rmem_schedule(sk, size);
1762 		if (unlikely(err)) {
1763 			/*  Free the skbs outside of locked section. */
1764 			skb->next = to_drop;
1765 			to_drop = skb;
1766 			continue;
1767 		}
1768 
1769 		q_size += size;
1770 		sk_forward_alloc_add(sk, -size);
1771 
1772 		/* no need to setup a destructor, we will explicitly release the
1773 		 * forward allocated memory on dequeue
1774 		 */
1775 		SOCK_SKB_CB(skb)->dropcount = dropcount;
1776 		nb++;
1777 		__skb_queue_tail(list, skb);
1778 	}
1779 
1780 	atomic_add(q_size, &sk->sk_rmem_alloc);
1781 
1782 	spin_unlock(&list->lock);
1783 
1784 	if (!sock_flag(sk, SOCK_DEAD)) {
1785 		/* Multiple threads might be blocked in recvmsg(),
1786 		 * using prepare_to_wait_exclusive().
1787 		 */
1788 		while (nb) {
1789 			INDIRECT_CALL_1(sk->sk_data_ready,
1790 					sock_def_readable, sk);
1791 			nb--;
1792 		}
1793 	}
1794 
1795 	if (unlikely(to_drop)) {
1796 		for (nb = 0; to_drop != NULL; nb++) {
1797 			skb = to_drop;
1798 			to_drop = skb->next;
1799 			skb_mark_not_on_list(skb);
1800 			/* TODO: update SNMP values. */
1801 			sk_skb_reason_drop(sk, skb, SKB_DROP_REASON_PROTO_MEM);
1802 		}
1803 		numa_drop_add(&udp_sk(sk)->drop_counters, nb);
1804 	}
1805 
1806 	atomic_sub(total_size, &udp_prod_queue->rmem_alloc);
1807 
1808 	return 0;
1809 
1810 drop:
1811 	udp_drops_inc(sk);
1812 	return err;
1813 }
1814 EXPORT_IPV6_MOD_GPL(__udp_enqueue_schedule_skb);
1815 
1816 void udp_destruct_common(struct sock *sk)
1817 {
1818 	/* reclaim completely the forward allocated memory */
1819 	struct udp_sock *up = udp_sk(sk);
1820 	unsigned int total = 0;
1821 	struct sk_buff *skb;
1822 
1823 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1824 	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1825 		total += skb->truesize;
1826 		kfree_skb(skb);
1827 	}
1828 	udp_rmem_release(sk, total, 0, true);
1829 	kfree(up->udp_prod_queue);
1830 }
1831 EXPORT_IPV6_MOD_GPL(udp_destruct_common);
1832 
1833 static void udp_destruct_sock(struct sock *sk)
1834 {
1835 	udp_destruct_common(sk);
1836 	inet_sock_destruct(sk);
1837 }
1838 
1839 int udp_init_sock(struct sock *sk)
1840 {
1841 	int res = udp_lib_init_sock(sk);
1842 
1843 	sk->sk_destruct = udp_destruct_sock;
1844 	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1845 	return res;
1846 }
1847 
1848 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1849 {
1850 	if (unlikely(READ_ONCE(udp_sk(sk)->peeking_with_offset)))
1851 		sk_peek_offset_bwd(sk, len);
1852 
1853 	if (!skb_shared(skb)) {
1854 		skb_orphan(skb);
1855 		skb_attempt_defer_free(skb);
1856 		return;
1857 	}
1858 
1859 	if (!skb_unref(skb))
1860 		return;
1861 
1862 	/* In the more common cases we cleared the head states previously,
1863 	 * see __udp_queue_rcv_skb().
1864 	 */
1865 	if (unlikely(udp_skb_has_head_state(skb)))
1866 		skb_release_head_state(skb);
1867 	__consume_stateless_skb(skb);
1868 }
1869 EXPORT_IPV6_MOD_GPL(skb_consume_udp);
1870 
1871 static struct sk_buff *__first_packet_length(struct sock *sk,
1872 					     struct sk_buff_head *rcvq,
1873 					     unsigned int *total)
1874 {
1875 	struct sk_buff *skb;
1876 
1877 	while ((skb = skb_peek(rcvq)) != NULL) {
1878 		if (udp_lib_checksum_complete(skb)) {
1879 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1880 					IS_UDPLITE(sk));
1881 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1882 					IS_UDPLITE(sk));
1883 			udp_drops_inc(sk);
1884 			__skb_unlink(skb, rcvq);
1885 			*total += skb->truesize;
1886 			kfree_skb_reason(skb, SKB_DROP_REASON_UDP_CSUM);
1887 		} else {
1888 			udp_skb_csum_unnecessary_set(skb);
1889 			break;
1890 		}
1891 	}
1892 	return skb;
1893 }
1894 
1895 /**
1896  *	first_packet_length	- return length of first packet in receive queue
1897  *	@sk: socket
1898  *
1899  *	Drops all bad checksum frames, until a valid one is found.
1900  *	Returns the length of found skb, or -1 if none is found.
1901  */
1902 static int first_packet_length(struct sock *sk)
1903 {
1904 	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1905 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1906 	unsigned int total = 0;
1907 	struct sk_buff *skb;
1908 	int res;
1909 
1910 	spin_lock_bh(&rcvq->lock);
1911 	skb = __first_packet_length(sk, rcvq, &total);
1912 	if (!skb && !skb_queue_empty_lockless(sk_queue)) {
1913 		spin_lock(&sk_queue->lock);
1914 		skb_queue_splice_tail_init(sk_queue, rcvq);
1915 		spin_unlock(&sk_queue->lock);
1916 
1917 		skb = __first_packet_length(sk, rcvq, &total);
1918 	}
1919 	res = skb ? skb->len : -1;
1920 	if (total)
1921 		udp_rmem_release(sk, total, 1, false);
1922 	spin_unlock_bh(&rcvq->lock);
1923 	return res;
1924 }
1925 
1926 /*
1927  *	IOCTL requests applicable to the UDP protocol
1928  */
1929 
1930 int udp_ioctl(struct sock *sk, int cmd, int *karg)
1931 {
1932 	switch (cmd) {
1933 	case SIOCOUTQ:
1934 	{
1935 		*karg = sk_wmem_alloc_get(sk);
1936 		return 0;
1937 	}
1938 
1939 	case SIOCINQ:
1940 	{
1941 		*karg = max_t(int, 0, first_packet_length(sk));
1942 		return 0;
1943 	}
1944 
1945 	default:
1946 		return -ENOIOCTLCMD;
1947 	}
1948 
1949 	return 0;
1950 }
1951 EXPORT_IPV6_MOD(udp_ioctl);
1952 
1953 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1954 			       int *off, int *err)
1955 {
1956 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1957 	struct sk_buff_head *queue;
1958 	struct sk_buff *last;
1959 	long timeo;
1960 	int error;
1961 
1962 	queue = &udp_sk(sk)->reader_queue;
1963 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1964 	do {
1965 		struct sk_buff *skb;
1966 
1967 		error = sock_error(sk);
1968 		if (error)
1969 			break;
1970 
1971 		error = -EAGAIN;
1972 		do {
1973 			spin_lock_bh(&queue->lock);
1974 			skb = __skb_try_recv_from_queue(queue, flags, off, err,
1975 							&last);
1976 			if (skb) {
1977 				if (!(flags & MSG_PEEK))
1978 					udp_skb_destructor(sk, skb);
1979 				spin_unlock_bh(&queue->lock);
1980 				return skb;
1981 			}
1982 
1983 			if (skb_queue_empty_lockless(sk_queue)) {
1984 				spin_unlock_bh(&queue->lock);
1985 				goto busy_check;
1986 			}
1987 
1988 			/* refill the reader queue and walk it again
1989 			 * keep both queues locked to avoid re-acquiring
1990 			 * the sk_receive_queue lock if fwd memory scheduling
1991 			 * is needed.
1992 			 */
1993 			spin_lock(&sk_queue->lock);
1994 			skb_queue_splice_tail_init(sk_queue, queue);
1995 
1996 			skb = __skb_try_recv_from_queue(queue, flags, off, err,
1997 							&last);
1998 			if (skb && !(flags & MSG_PEEK))
1999 				udp_skb_dtor_locked(sk, skb);
2000 			spin_unlock(&sk_queue->lock);
2001 			spin_unlock_bh(&queue->lock);
2002 			if (skb)
2003 				return skb;
2004 
2005 busy_check:
2006 			if (!sk_can_busy_loop(sk))
2007 				break;
2008 
2009 			sk_busy_loop(sk, flags & MSG_DONTWAIT);
2010 		} while (!skb_queue_empty_lockless(sk_queue));
2011 
2012 		/* sk_queue is empty, reader_queue may contain peeked packets */
2013 	} while (timeo &&
2014 		 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
2015 					      &error, &timeo,
2016 					      (struct sk_buff *)sk_queue));
2017 
2018 	*err = error;
2019 	return NULL;
2020 }
2021 EXPORT_SYMBOL(__skb_recv_udp);
2022 
2023 int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
2024 {
2025 	struct sk_buff *skb;
2026 	int err;
2027 
2028 try_again:
2029 	skb = skb_recv_udp(sk, MSG_DONTWAIT, &err);
2030 	if (!skb)
2031 		return err;
2032 
2033 	if (udp_lib_checksum_complete(skb)) {
2034 		int is_udplite = IS_UDPLITE(sk);
2035 		struct net *net = sock_net(sk);
2036 
2037 		__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, is_udplite);
2038 		__UDP_INC_STATS(net, UDP_MIB_INERRORS, is_udplite);
2039 		udp_drops_inc(sk);
2040 		kfree_skb_reason(skb, SKB_DROP_REASON_UDP_CSUM);
2041 		goto try_again;
2042 	}
2043 
2044 	WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
2045 	return recv_actor(sk, skb);
2046 }
2047 EXPORT_IPV6_MOD(udp_read_skb);
2048 
2049 /*
2050  * 	This should be easy, if there is something there we
2051  * 	return it, otherwise we block.
2052  */
2053 
2054 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2055 		int *addr_len)
2056 {
2057 	struct inet_sock *inet = inet_sk(sk);
2058 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
2059 	struct sk_buff *skb;
2060 	unsigned int ulen, copied;
2061 	int off, err, peeking = flags & MSG_PEEK;
2062 	int is_udplite = IS_UDPLITE(sk);
2063 	bool checksum_valid = false;
2064 
2065 	if (flags & MSG_ERRQUEUE)
2066 		return ip_recv_error(sk, msg, len, addr_len);
2067 
2068 try_again:
2069 	off = sk_peek_offset(sk, flags);
2070 	skb = __skb_recv_udp(sk, flags, &off, &err);
2071 	if (!skb)
2072 		return err;
2073 
2074 	ulen = udp_skb_len(skb);
2075 	copied = len;
2076 	if (copied > ulen - off)
2077 		copied = ulen - off;
2078 	else if (copied < ulen)
2079 		msg->msg_flags |= MSG_TRUNC;
2080 
2081 	/*
2082 	 * If checksum is needed at all, try to do it while copying the
2083 	 * data.  If the data is truncated, or if we only want a partial
2084 	 * coverage checksum (UDP-Lite), do it before the copy.
2085 	 */
2086 
2087 	if (copied < ulen || peeking ||
2088 	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
2089 		checksum_valid = udp_skb_csum_unnecessary(skb) ||
2090 				!__udp_lib_checksum_complete(skb);
2091 		if (!checksum_valid)
2092 			goto csum_copy_err;
2093 	}
2094 
2095 	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
2096 		if (udp_skb_is_linear(skb))
2097 			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
2098 		else
2099 			err = skb_copy_datagram_msg(skb, off, msg, copied);
2100 	} else {
2101 		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
2102 
2103 		if (err == -EINVAL)
2104 			goto csum_copy_err;
2105 	}
2106 
2107 	if (unlikely(err)) {
2108 		if (!peeking) {
2109 			udp_drops_inc(sk);
2110 			UDP_INC_STATS(sock_net(sk),
2111 				      UDP_MIB_INERRORS, is_udplite);
2112 		}
2113 		kfree_skb(skb);
2114 		return err;
2115 	}
2116 
2117 	if (!peeking)
2118 		UDP_INC_STATS(sock_net(sk),
2119 			      UDP_MIB_INDATAGRAMS, is_udplite);
2120 
2121 	sock_recv_cmsgs(msg, sk, skb);
2122 
2123 	/* Copy the address. */
2124 	if (sin) {
2125 		sin->sin_family = AF_INET;
2126 		sin->sin_port = udp_hdr(skb)->source;
2127 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
2128 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
2129 		*addr_len = sizeof(*sin);
2130 
2131 		BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
2132 						      (struct sockaddr *)sin,
2133 						      addr_len);
2134 	}
2135 
2136 	if (udp_test_bit(GRO_ENABLED, sk))
2137 		udp_cmsg_recv(msg, sk, skb);
2138 
2139 	if (inet_cmsg_flags(inet))
2140 		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
2141 
2142 	err = copied;
2143 	if (flags & MSG_TRUNC)
2144 		err = ulen;
2145 
2146 	skb_consume_udp(sk, skb, peeking ? -err : err);
2147 	return err;
2148 
2149 csum_copy_err:
2150 	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
2151 				 udp_skb_destructor)) {
2152 		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2153 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2154 	}
2155 	kfree_skb_reason(skb, SKB_DROP_REASON_UDP_CSUM);
2156 
2157 	/* starting over for a new packet, but check if we need to yield */
2158 	cond_resched();
2159 	msg->msg_flags &= ~MSG_TRUNC;
2160 	goto try_again;
2161 }
2162 
2163 int udp_pre_connect(struct sock *sk, struct sockaddr_unsized *uaddr,
2164 		    int addr_len)
2165 {
2166 	/* This check is replicated from __ip4_datagram_connect() and
2167 	 * intended to prevent BPF program called below from accessing bytes
2168 	 * that are out of the bound specified by user in addr_len.
2169 	 */
2170 	if (addr_len < sizeof(struct sockaddr_in))
2171 		return -EINVAL;
2172 
2173 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr, &addr_len);
2174 }
2175 EXPORT_IPV6_MOD(udp_pre_connect);
2176 
2177 static int udp_connect(struct sock *sk, struct sockaddr_unsized *uaddr,
2178 		       int addr_len)
2179 {
2180 	int res;
2181 
2182 	lock_sock(sk);
2183 	res = __ip4_datagram_connect(sk, uaddr, addr_len);
2184 	if (!res)
2185 		udp4_hash4(sk);
2186 	release_sock(sk);
2187 	return res;
2188 }
2189 
2190 int __udp_disconnect(struct sock *sk, int flags)
2191 {
2192 	struct inet_sock *inet = inet_sk(sk);
2193 	/*
2194 	 *	1003.1g - break association.
2195 	 */
2196 
2197 	sk->sk_state = TCP_CLOSE;
2198 	inet->inet_daddr = 0;
2199 	inet->inet_dport = 0;
2200 	sock_rps_reset_rxhash(sk);
2201 	sk->sk_bound_dev_if = 0;
2202 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) {
2203 		inet_reset_saddr(sk);
2204 		if (sk->sk_prot->rehash &&
2205 		    (sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2206 			sk->sk_prot->rehash(sk);
2207 	}
2208 
2209 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
2210 		sk->sk_prot->unhash(sk);
2211 		inet->inet_sport = 0;
2212 	}
2213 	sk_dst_reset(sk);
2214 	return 0;
2215 }
2216 EXPORT_SYMBOL(__udp_disconnect);
2217 
2218 int udp_disconnect(struct sock *sk, int flags)
2219 {
2220 	lock_sock(sk);
2221 	__udp_disconnect(sk, flags);
2222 	release_sock(sk);
2223 	return 0;
2224 }
2225 EXPORT_IPV6_MOD(udp_disconnect);
2226 
2227 void udp_lib_unhash(struct sock *sk)
2228 {
2229 	if (sk_hashed(sk)) {
2230 		struct udp_table *udptable = udp_get_table_prot(sk);
2231 		struct udp_hslot *hslot, *hslot2;
2232 
2233 		sock_rps_delete_flow(sk);
2234 		hslot  = udp_hashslot(udptable, sock_net(sk),
2235 				      udp_sk(sk)->udp_port_hash);
2236 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2237 
2238 		spin_lock_bh(&hslot->lock);
2239 		if (rcu_access_pointer(sk->sk_reuseport_cb))
2240 			reuseport_detach_sock(sk);
2241 		if (sk_del_node_init_rcu(sk)) {
2242 			hslot->count--;
2243 			inet_sk(sk)->inet_num = 0;
2244 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
2245 
2246 			spin_lock(&hslot2->lock);
2247 			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2248 			hslot2->count--;
2249 			spin_unlock(&hslot2->lock);
2250 
2251 			udp_unhash4(udptable, sk);
2252 		}
2253 		spin_unlock_bh(&hslot->lock);
2254 	}
2255 }
2256 EXPORT_IPV6_MOD(udp_lib_unhash);
2257 
2258 /*
2259  * inet_rcv_saddr was changed, we must rehash secondary hash
2260  */
2261 void udp_lib_rehash(struct sock *sk, u16 newhash, u16 newhash4)
2262 {
2263 	if (sk_hashed(sk)) {
2264 		struct udp_table *udptable = udp_get_table_prot(sk);
2265 		struct udp_hslot *hslot, *hslot2, *nhslot2;
2266 
2267 		hslot = udp_hashslot(udptable, sock_net(sk),
2268 				     udp_sk(sk)->udp_port_hash);
2269 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2270 		nhslot2 = udp_hashslot2(udptable, newhash);
2271 		udp_sk(sk)->udp_portaddr_hash = newhash;
2272 
2273 		if (hslot2 != nhslot2 ||
2274 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
2275 			/* we must lock primary chain too */
2276 			spin_lock_bh(&hslot->lock);
2277 			if (rcu_access_pointer(sk->sk_reuseport_cb))
2278 				reuseport_detach_sock(sk);
2279 
2280 			if (hslot2 != nhslot2) {
2281 				spin_lock(&hslot2->lock);
2282 				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2283 				hslot2->count--;
2284 				spin_unlock(&hslot2->lock);
2285 
2286 				spin_lock(&nhslot2->lock);
2287 				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
2288 							 &nhslot2->head);
2289 				nhslot2->count++;
2290 				spin_unlock(&nhslot2->lock);
2291 			}
2292 
2293 			spin_unlock_bh(&hslot->lock);
2294 		}
2295 
2296 		/* Now process hash4 if necessary:
2297 		 * (1) update hslot4;
2298 		 * (2) update hslot2->hash4_cnt.
2299 		 * Note that hslot2/hslot4 should be checked separately, as
2300 		 * either of them may change with the other unchanged.
2301 		 */
2302 		if (udp_hashed4(sk)) {
2303 			spin_lock_bh(&hslot->lock);
2304 
2305 			udp_rehash4(udptable, sk, newhash4);
2306 			if (hslot2 != nhslot2) {
2307 				spin_lock(&hslot2->lock);
2308 				udp_hash4_dec(hslot2);
2309 				spin_unlock(&hslot2->lock);
2310 
2311 				spin_lock(&nhslot2->lock);
2312 				udp_hash4_inc(nhslot2);
2313 				spin_unlock(&nhslot2->lock);
2314 			}
2315 
2316 			spin_unlock_bh(&hslot->lock);
2317 		}
2318 	}
2319 }
2320 EXPORT_IPV6_MOD(udp_lib_rehash);
2321 
2322 void udp_v4_rehash(struct sock *sk)
2323 {
2324 	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
2325 					  inet_sk(sk)->inet_rcv_saddr,
2326 					  inet_sk(sk)->inet_num);
2327 	u16 new_hash4 = udp_ehashfn(sock_net(sk),
2328 				    sk->sk_rcv_saddr, sk->sk_num,
2329 				    sk->sk_daddr, sk->sk_dport);
2330 
2331 	udp_lib_rehash(sk, new_hash, new_hash4);
2332 }
2333 
2334 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2335 {
2336 	int rc;
2337 
2338 	if (inet_sk(sk)->inet_daddr) {
2339 		sock_rps_save_rxhash(sk, skb);
2340 		sk_mark_napi_id(sk, skb);
2341 		sk_incoming_cpu_update(sk);
2342 	} else {
2343 		sk_mark_napi_id_once(sk, skb);
2344 	}
2345 
2346 	rc = __udp_enqueue_schedule_skb(sk, skb);
2347 	if (rc < 0) {
2348 		int is_udplite = IS_UDPLITE(sk);
2349 		int drop_reason;
2350 
2351 		/* Note that an ENOMEM error is charged twice */
2352 		if (rc == -ENOMEM) {
2353 			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
2354 					is_udplite);
2355 			drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
2356 		} else {
2357 			UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS,
2358 				      is_udplite);
2359 			drop_reason = SKB_DROP_REASON_PROTO_MEM;
2360 		}
2361 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2362 		trace_udp_fail_queue_rcv_skb(rc, sk, skb);
2363 		sk_skb_reason_drop(sk, skb, drop_reason);
2364 		return -1;
2365 	}
2366 
2367 	return 0;
2368 }
2369 
2370 /* returns:
2371  *  -1: error
2372  *   0: success
2373  *  >0: "udp encap" protocol resubmission
2374  *
2375  * Note that in the success and error cases, the skb is assumed to
2376  * have either been requeued or freed.
2377  */
2378 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
2379 {
2380 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2381 	struct udp_sock *up = udp_sk(sk);
2382 	int is_udplite = IS_UDPLITE(sk);
2383 
2384 	/*
2385 	 *	Charge it to the socket, dropping if the queue is full.
2386 	 */
2387 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
2388 		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2389 		goto drop;
2390 	}
2391 	nf_reset_ct(skb);
2392 
2393 	if (static_branch_unlikely(&udp_encap_needed_key) &&
2394 	    READ_ONCE(up->encap_type)) {
2395 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2396 
2397 		/*
2398 		 * This is an encapsulation socket so pass the skb to
2399 		 * the socket's udp_encap_rcv() hook. Otherwise, just
2400 		 * fall through and pass this up the UDP socket.
2401 		 * up->encap_rcv() returns the following value:
2402 		 * =0 if skb was successfully passed to the encap
2403 		 *    handler or was discarded by it.
2404 		 * >0 if skb should be passed on to UDP.
2405 		 * <0 if skb should be resubmitted as proto -N
2406 		 */
2407 
2408 		/* if we're overly short, let UDP handle it */
2409 		encap_rcv = READ_ONCE(up->encap_rcv);
2410 		if (encap_rcv) {
2411 			int ret;
2412 
2413 			/* Verify checksum before giving to encap */
2414 			if (udp_lib_checksum_complete(skb))
2415 				goto csum_error;
2416 
2417 			ret = encap_rcv(sk, skb);
2418 			if (ret <= 0) {
2419 				__UDP_INC_STATS(sock_net(sk),
2420 						UDP_MIB_INDATAGRAMS,
2421 						is_udplite);
2422 				return -ret;
2423 			}
2424 		}
2425 
2426 		/* FALLTHROUGH -- it's a UDP Packet */
2427 	}
2428 
2429 	/*
2430 	 * 	UDP-Lite specific tests, ignored on UDP sockets
2431 	 */
2432 	if (udp_test_bit(UDPLITE_RECV_CC, sk) && UDP_SKB_CB(skb)->partial_cov) {
2433 		u16 pcrlen = READ_ONCE(up->pcrlen);
2434 
2435 		/*
2436 		 * MIB statistics other than incrementing the error count are
2437 		 * disabled for the following two types of errors: these depend
2438 		 * on the application settings, not on the functioning of the
2439 		 * protocol stack as such.
2440 		 *
2441 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
2442 		 * way ... to ... at least let the receiving application block
2443 		 * delivery of packets with coverage values less than a value
2444 		 * provided by the application."
2445 		 */
2446 		if (pcrlen == 0) {          /* full coverage was set  */
2447 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2448 					    UDP_SKB_CB(skb)->cscov, skb->len);
2449 			goto drop;
2450 		}
2451 		/* The next case involves violating the min. coverage requested
2452 		 * by the receiver. This is subtle: if receiver wants x and x is
2453 		 * greater than the buffersize/MTU then receiver will complain
2454 		 * that it wants x while sender emits packets of smaller size y.
2455 		 * Therefore the above ...()->partial_cov statement is essential.
2456 		 */
2457 		if (UDP_SKB_CB(skb)->cscov < pcrlen) {
2458 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2459 					    UDP_SKB_CB(skb)->cscov, pcrlen);
2460 			goto drop;
2461 		}
2462 	}
2463 
2464 	prefetch(&sk->sk_rmem_alloc);
2465 	if (rcu_access_pointer(sk->sk_filter) &&
2466 	    udp_lib_checksum_complete(skb))
2467 			goto csum_error;
2468 
2469 	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr), &drop_reason))
2470 		goto drop;
2471 
2472 	udp_csum_pull_header(skb);
2473 
2474 	ipv4_pktinfo_prepare(sk, skb, true);
2475 	return __udp_queue_rcv_skb(sk, skb);
2476 
2477 csum_error:
2478 	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2479 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2480 drop:
2481 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2482 	udp_drops_inc(sk);
2483 	sk_skb_reason_drop(sk, skb, drop_reason);
2484 	return -1;
2485 }
2486 
2487 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2488 {
2489 	struct sk_buff *next, *segs;
2490 	int ret;
2491 
2492 	if (likely(!udp_unexpected_gso(sk, skb)))
2493 		return udp_queue_rcv_one_skb(sk, skb);
2494 
2495 	BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET);
2496 	__skb_push(skb, -skb_mac_offset(skb));
2497 	segs = udp_rcv_segment(sk, skb, true);
2498 	skb_list_walk_safe(segs, skb, next) {
2499 		__skb_pull(skb, skb_transport_offset(skb));
2500 
2501 		udp_post_segment_fix_csum(skb);
2502 		ret = udp_queue_rcv_one_skb(sk, skb);
2503 		if (ret > 0)
2504 			ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret);
2505 	}
2506 	return 0;
2507 }
2508 
2509 /* For TCP sockets, sk_rx_dst is protected by socket lock
2510  * For UDP, we use xchg() to guard against concurrent changes.
2511  */
2512 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2513 {
2514 	struct dst_entry *old;
2515 
2516 	if (dst_hold_safe(dst)) {
2517 		old = unrcu_pointer(xchg(&sk->sk_rx_dst, RCU_INITIALIZER(dst)));
2518 		dst_release(old);
2519 		return old != dst;
2520 	}
2521 	return false;
2522 }
2523 EXPORT_IPV6_MOD(udp_sk_rx_dst_set);
2524 
2525 /*
2526  *	Multicasts and broadcasts go to each listener.
2527  *
2528  *	Note: called only from the BH handler context.
2529  */
2530 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2531 				    struct udphdr  *uh,
2532 				    __be32 saddr, __be32 daddr,
2533 				    struct udp_table *udptable,
2534 				    int proto)
2535 {
2536 	struct sock *sk, *first = NULL;
2537 	unsigned short hnum = ntohs(uh->dest);
2538 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2539 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2540 	unsigned int offset = offsetof(typeof(*sk), sk_node);
2541 	int dif = skb->dev->ifindex;
2542 	int sdif = inet_sdif(skb);
2543 	struct hlist_node *node;
2544 	struct sk_buff *nskb;
2545 
2546 	if (use_hash2) {
2547 		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2548 			    udptable->mask;
2549 		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2550 start_lookup:
2551 		hslot = &udptable->hash2[hash2].hslot;
2552 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2553 	}
2554 
2555 	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2556 		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2557 					 uh->source, saddr, dif, sdif, hnum))
2558 			continue;
2559 
2560 		if (!first) {
2561 			first = sk;
2562 			continue;
2563 		}
2564 		nskb = skb_clone(skb, GFP_ATOMIC);
2565 
2566 		if (unlikely(!nskb)) {
2567 			udp_drops_inc(sk);
2568 			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2569 					IS_UDPLITE(sk));
2570 			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
2571 					IS_UDPLITE(sk));
2572 			continue;
2573 		}
2574 		if (udp_queue_rcv_skb(sk, nskb) > 0)
2575 			consume_skb(nskb);
2576 	}
2577 
2578 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2579 	if (use_hash2 && hash2 != hash2_any) {
2580 		hash2 = hash2_any;
2581 		goto start_lookup;
2582 	}
2583 
2584 	if (first) {
2585 		if (udp_queue_rcv_skb(first, skb) > 0)
2586 			consume_skb(skb);
2587 	} else {
2588 		kfree_skb(skb);
2589 		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2590 				proto == IPPROTO_UDPLITE);
2591 	}
2592 	return 0;
2593 }
2594 
2595 /* Initialize UDP checksum. If exited with zero value (success),
2596  * CHECKSUM_UNNECESSARY means, that no more checks are required.
2597  * Otherwise, csum completion requires checksumming packet body,
2598  * including udp header and folding it to skb->csum.
2599  */
2600 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2601 				 int proto)
2602 {
2603 	int err;
2604 
2605 	UDP_SKB_CB(skb)->partial_cov = 0;
2606 	UDP_SKB_CB(skb)->cscov = skb->len;
2607 
2608 	if (proto == IPPROTO_UDPLITE) {
2609 		err = udplite_checksum_init(skb, uh);
2610 		if (err)
2611 			return err;
2612 
2613 		if (UDP_SKB_CB(skb)->partial_cov) {
2614 			skb->csum = inet_compute_pseudo(skb, proto);
2615 			return 0;
2616 		}
2617 	}
2618 
2619 	/* Note, we are only interested in != 0 or == 0, thus the
2620 	 * force to int.
2621 	 */
2622 	err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2623 							inet_compute_pseudo);
2624 	if (err)
2625 		return err;
2626 
2627 	if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2628 		/* If SW calculated the value, we know it's bad */
2629 		if (skb->csum_complete_sw)
2630 			return 1;
2631 
2632 		/* HW says the value is bad. Let's validate that.
2633 		 * skb->csum is no longer the full packet checksum,
2634 		 * so don't treat it as such.
2635 		 */
2636 		skb_checksum_complete_unset(skb);
2637 	}
2638 
2639 	return 0;
2640 }
2641 
2642 /* wrapper for udp_queue_rcv_skb taking care of csum conversion and
2643  * return code conversion for ip layer consumption
2644  */
2645 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2646 			       struct udphdr *uh)
2647 {
2648 	int ret;
2649 
2650 	if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2651 		skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2652 
2653 	ret = udp_queue_rcv_skb(sk, skb);
2654 
2655 	/* a return value > 0 means to resubmit the input, but
2656 	 * it wants the return to be -protocol, or 0
2657 	 */
2658 	if (ret > 0)
2659 		return -ret;
2660 	return 0;
2661 }
2662 
2663 /*
2664  *	All we need to do is get the socket, and then do a checksum.
2665  */
2666 
2667 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2668 		   int proto)
2669 {
2670 	struct sock *sk = NULL;
2671 	struct udphdr *uh;
2672 	unsigned short ulen;
2673 	struct rtable *rt = skb_rtable(skb);
2674 	__be32 saddr, daddr;
2675 	struct net *net = dev_net(skb->dev);
2676 	bool refcounted;
2677 	int drop_reason;
2678 
2679 	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2680 
2681 	/*
2682 	 *  Validate the packet.
2683 	 */
2684 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2685 		goto drop;		/* No space for header. */
2686 
2687 	uh   = udp_hdr(skb);
2688 	ulen = ntohs(uh->len);
2689 	saddr = ip_hdr(skb)->saddr;
2690 	daddr = ip_hdr(skb)->daddr;
2691 
2692 	if (ulen > skb->len)
2693 		goto short_packet;
2694 
2695 	if (proto == IPPROTO_UDP) {
2696 		/* UDP validates ulen. */
2697 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2698 			goto short_packet;
2699 		uh = udp_hdr(skb);
2700 	}
2701 
2702 	if (udp4_csum_init(skb, uh, proto))
2703 		goto csum_error;
2704 
2705 	sk = inet_steal_sock(net, skb, sizeof(struct udphdr), saddr, uh->source, daddr, uh->dest,
2706 			     &refcounted, udp_ehashfn);
2707 	if (IS_ERR(sk))
2708 		goto no_sk;
2709 
2710 	if (sk) {
2711 		struct dst_entry *dst = skb_dst(skb);
2712 		int ret;
2713 
2714 		if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst))
2715 			udp_sk_rx_dst_set(sk, dst);
2716 
2717 		ret = udp_unicast_rcv_skb(sk, skb, uh);
2718 		if (refcounted)
2719 			sock_put(sk);
2720 		return ret;
2721 	}
2722 
2723 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2724 		return __udp4_lib_mcast_deliver(net, skb, uh,
2725 						saddr, daddr, udptable, proto);
2726 
2727 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2728 	if (sk)
2729 		return udp_unicast_rcv_skb(sk, skb, uh);
2730 no_sk:
2731 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2732 		goto drop;
2733 	nf_reset_ct(skb);
2734 
2735 	/* No socket. Drop packet silently, if checksum is wrong */
2736 	if (udp_lib_checksum_complete(skb))
2737 		goto csum_error;
2738 
2739 	drop_reason = SKB_DROP_REASON_NO_SOCKET;
2740 	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2741 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2742 
2743 	/*
2744 	 * Hmm.  We got an UDP packet to a port to which we
2745 	 * don't wanna listen.  Ignore it.
2746 	 */
2747 	sk_skb_reason_drop(sk, skb, drop_reason);
2748 	return 0;
2749 
2750 short_packet:
2751 	drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
2752 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2753 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2754 			    &saddr, ntohs(uh->source),
2755 			    ulen, skb->len,
2756 			    &daddr, ntohs(uh->dest));
2757 	goto drop;
2758 
2759 csum_error:
2760 	/*
2761 	 * RFC1122: OK.  Discards the bad packet silently (as far as
2762 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2763 	 */
2764 	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2765 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2766 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2767 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2768 			    ulen);
2769 	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2770 drop:
2771 	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2772 	sk_skb_reason_drop(sk, skb, drop_reason);
2773 	return 0;
2774 }
2775 
2776 /* We can only early demux multicast if there is a single matching socket.
2777  * If more than one socket found returns NULL
2778  */
2779 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2780 						  __be16 loc_port, __be32 loc_addr,
2781 						  __be16 rmt_port, __be32 rmt_addr,
2782 						  int dif, int sdif)
2783 {
2784 	struct udp_table *udptable = net->ipv4.udp_table;
2785 	unsigned short hnum = ntohs(loc_port);
2786 	struct sock *sk, *result;
2787 	struct udp_hslot *hslot;
2788 	unsigned int slot;
2789 
2790 	slot = udp_hashfn(net, hnum, udptable->mask);
2791 	hslot = &udptable->hash[slot];
2792 
2793 	/* Do not bother scanning a too big list */
2794 	if (hslot->count > 10)
2795 		return NULL;
2796 
2797 	result = NULL;
2798 	sk_for_each_rcu(sk, &hslot->head) {
2799 		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2800 					rmt_port, rmt_addr, dif, sdif, hnum)) {
2801 			if (result)
2802 				return NULL;
2803 			result = sk;
2804 		}
2805 	}
2806 
2807 	return result;
2808 }
2809 
2810 /* For unicast we should only early demux connected sockets or we can
2811  * break forwarding setups.  The chains here can be long so only check
2812  * if the first socket is an exact match and if not move on.
2813  */
2814 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2815 					    __be16 loc_port, __be32 loc_addr,
2816 					    __be16 rmt_port, __be32 rmt_addr,
2817 					    int dif, int sdif)
2818 {
2819 	struct udp_table *udptable = net->ipv4.udp_table;
2820 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2821 	unsigned short hnum = ntohs(loc_port);
2822 	struct udp_hslot *hslot2;
2823 	unsigned int hash2;
2824 	__portpair ports;
2825 	struct sock *sk;
2826 
2827 	hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2828 	hslot2 = udp_hashslot2(udptable, hash2);
2829 	ports = INET_COMBINED_PORTS(rmt_port, hnum);
2830 
2831 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2832 		if (inet_match(net, sk, acookie, ports, dif, sdif))
2833 			return sk;
2834 		/* Only check first socket in chain */
2835 		break;
2836 	}
2837 	return NULL;
2838 }
2839 
2840 enum skb_drop_reason udp_v4_early_demux(struct sk_buff *skb)
2841 {
2842 	struct net *net = dev_net(skb->dev);
2843 	struct in_device *in_dev = NULL;
2844 	const struct iphdr *iph;
2845 	const struct udphdr *uh;
2846 	struct sock *sk = NULL;
2847 	struct dst_entry *dst;
2848 	int dif = skb->dev->ifindex;
2849 	int sdif = inet_sdif(skb);
2850 	int ours;
2851 
2852 	/* validate the packet */
2853 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2854 		return SKB_NOT_DROPPED_YET;
2855 
2856 	iph = ip_hdr(skb);
2857 	uh = udp_hdr(skb);
2858 
2859 	if (skb->pkt_type == PACKET_MULTICAST) {
2860 		in_dev = __in_dev_get_rcu(skb->dev);
2861 
2862 		if (!in_dev)
2863 			return SKB_NOT_DROPPED_YET;
2864 
2865 		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2866 				       iph->protocol);
2867 		if (!ours)
2868 			return SKB_NOT_DROPPED_YET;
2869 
2870 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2871 						   uh->source, iph->saddr,
2872 						   dif, sdif);
2873 	} else if (skb->pkt_type == PACKET_HOST) {
2874 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2875 					     uh->source, iph->saddr, dif, sdif);
2876 	}
2877 
2878 	if (!sk)
2879 		return SKB_NOT_DROPPED_YET;
2880 
2881 	skb->sk = sk;
2882 	DEBUG_NET_WARN_ON_ONCE(sk_is_refcounted(sk));
2883 	skb->destructor = sock_pfree;
2884 	dst = rcu_dereference(sk->sk_rx_dst);
2885 
2886 	if (dst)
2887 		dst = dst_check(dst, 0);
2888 	if (dst) {
2889 		u32 itag = 0;
2890 
2891 		/* set noref for now.
2892 		 * any place which wants to hold dst has to call
2893 		 * dst_hold_safe()
2894 		 */
2895 		skb_dst_set_noref(skb, dst);
2896 
2897 		/* for unconnected multicast sockets we need to validate
2898 		 * the source on each packet
2899 		 */
2900 		if (!inet_sk(sk)->inet_daddr && in_dev)
2901 			return ip_mc_validate_source(skb, iph->daddr,
2902 						     iph->saddr,
2903 						     ip4h_dscp(iph),
2904 						     skb->dev, in_dev, &itag);
2905 	}
2906 	return SKB_NOT_DROPPED_YET;
2907 }
2908 
2909 int udp_rcv(struct sk_buff *skb)
2910 {
2911 	return __udp4_lib_rcv(skb, dev_net(skb->dev)->ipv4.udp_table, IPPROTO_UDP);
2912 }
2913 
2914 void udp_destroy_sock(struct sock *sk)
2915 {
2916 	struct udp_sock *up = udp_sk(sk);
2917 	bool slow = lock_sock_fast(sk);
2918 
2919 	/* protects from races with udp_abort() */
2920 	sock_set_flag(sk, SOCK_DEAD);
2921 	udp_flush_pending_frames(sk);
2922 	unlock_sock_fast(sk, slow);
2923 	if (static_branch_unlikely(&udp_encap_needed_key)) {
2924 		if (up->encap_type) {
2925 			void (*encap_destroy)(struct sock *sk);
2926 			encap_destroy = READ_ONCE(up->encap_destroy);
2927 			if (encap_destroy)
2928 				encap_destroy(sk);
2929 		}
2930 		if (udp_test_bit(ENCAP_ENABLED, sk)) {
2931 			static_branch_dec(&udp_encap_needed_key);
2932 			udp_tunnel_cleanup_gro(sk);
2933 		}
2934 	}
2935 }
2936 
2937 typedef struct sk_buff *(*udp_gro_receive_t)(struct sock *sk,
2938 					     struct list_head *head,
2939 					     struct sk_buff *skb);
2940 
2941 static void set_xfrm_gro_udp_encap_rcv(__u16 encap_type, unsigned short family,
2942 				       struct sock *sk)
2943 {
2944 #ifdef CONFIG_XFRM
2945 	udp_gro_receive_t new_gro_receive;
2946 
2947 	if (udp_test_bit(GRO_ENABLED, sk) && encap_type == UDP_ENCAP_ESPINUDP) {
2948 		if (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6)
2949 			new_gro_receive = ipv6_stub->xfrm6_gro_udp_encap_rcv;
2950 		else
2951 			new_gro_receive = xfrm4_gro_udp_encap_rcv;
2952 
2953 		if (udp_sk(sk)->gro_receive != new_gro_receive) {
2954 			/*
2955 			 * With IPV6_ADDRFORM the gro callback could change
2956 			 * after being set, unregister the old one, if valid.
2957 			 */
2958 			if (udp_sk(sk)->gro_receive)
2959 				udp_tunnel_update_gro_rcv(sk, false);
2960 
2961 			WRITE_ONCE(udp_sk(sk)->gro_receive, new_gro_receive);
2962 			udp_tunnel_update_gro_rcv(sk, true);
2963 		}
2964 	}
2965 #endif
2966 }
2967 
2968 /*
2969  *	Socket option code for UDP
2970  */
2971 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2972 		       sockptr_t optval, unsigned int optlen,
2973 		       int (*push_pending_frames)(struct sock *))
2974 {
2975 	struct udp_sock *up = udp_sk(sk);
2976 	int val, valbool;
2977 	int err = 0;
2978 	int is_udplite = IS_UDPLITE(sk);
2979 
2980 	if (level == SOL_SOCKET) {
2981 		err = sk_setsockopt(sk, level, optname, optval, optlen);
2982 
2983 		if (optname == SO_RCVBUF || optname == SO_RCVBUFFORCE) {
2984 			sockopt_lock_sock(sk);
2985 			/* paired with READ_ONCE in udp_rmem_release() */
2986 			WRITE_ONCE(up->forward_threshold, sk->sk_rcvbuf >> 2);
2987 			sockopt_release_sock(sk);
2988 		}
2989 		return err;
2990 	}
2991 
2992 	if (optlen < sizeof(int))
2993 		return -EINVAL;
2994 
2995 	if (copy_from_sockptr(&val, optval, sizeof(val)))
2996 		return -EFAULT;
2997 
2998 	valbool = val ? 1 : 0;
2999 
3000 	switch (optname) {
3001 	case UDP_CORK:
3002 		if (val != 0) {
3003 			udp_set_bit(CORK, sk);
3004 		} else {
3005 			udp_clear_bit(CORK, sk);
3006 			lock_sock(sk);
3007 			push_pending_frames(sk);
3008 			release_sock(sk);
3009 		}
3010 		break;
3011 
3012 	case UDP_ENCAP:
3013 		sockopt_lock_sock(sk);
3014 		switch (val) {
3015 		case 0:
3016 #ifdef CONFIG_XFRM
3017 		case UDP_ENCAP_ESPINUDP:
3018 			set_xfrm_gro_udp_encap_rcv(val, sk->sk_family, sk);
3019 #if IS_ENABLED(CONFIG_IPV6)
3020 			if (sk->sk_family == AF_INET6)
3021 				WRITE_ONCE(up->encap_rcv,
3022 					   ipv6_stub->xfrm6_udp_encap_rcv);
3023 			else
3024 #endif
3025 				WRITE_ONCE(up->encap_rcv,
3026 					   xfrm4_udp_encap_rcv);
3027 #endif
3028 			fallthrough;
3029 		case UDP_ENCAP_L2TPINUDP:
3030 			WRITE_ONCE(up->encap_type, val);
3031 			udp_tunnel_encap_enable(sk);
3032 			break;
3033 		default:
3034 			err = -ENOPROTOOPT;
3035 			break;
3036 		}
3037 		sockopt_release_sock(sk);
3038 		break;
3039 
3040 	case UDP_NO_CHECK6_TX:
3041 		udp_set_no_check6_tx(sk, valbool);
3042 		break;
3043 
3044 	case UDP_NO_CHECK6_RX:
3045 		udp_set_no_check6_rx(sk, valbool);
3046 		break;
3047 
3048 	case UDP_SEGMENT:
3049 		if (val < 0 || val > USHRT_MAX)
3050 			return -EINVAL;
3051 		WRITE_ONCE(up->gso_size, val);
3052 		break;
3053 
3054 	case UDP_GRO:
3055 		sockopt_lock_sock(sk);
3056 		/* when enabling GRO, accept the related GSO packet type */
3057 		if (valbool)
3058 			udp_tunnel_encap_enable(sk);
3059 		udp_assign_bit(GRO_ENABLED, sk, valbool);
3060 		udp_assign_bit(ACCEPT_L4, sk, valbool);
3061 		set_xfrm_gro_udp_encap_rcv(up->encap_type, sk->sk_family, sk);
3062 		sockopt_release_sock(sk);
3063 		break;
3064 
3065 	/*
3066 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
3067 	 */
3068 	/* The sender sets actual checksum coverage length via this option.
3069 	 * The case coverage > packet length is handled by send module. */
3070 	case UDPLITE_SEND_CSCOV:
3071 		if (!is_udplite)         /* Disable the option on UDP sockets */
3072 			return -ENOPROTOOPT;
3073 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
3074 			val = 8;
3075 		else if (val > USHRT_MAX)
3076 			val = USHRT_MAX;
3077 		WRITE_ONCE(up->pcslen, val);
3078 		udp_set_bit(UDPLITE_SEND_CC, sk);
3079 		break;
3080 
3081 	/* The receiver specifies a minimum checksum coverage value. To make
3082 	 * sense, this should be set to at least 8 (as done below). If zero is
3083 	 * used, this again means full checksum coverage.                     */
3084 	case UDPLITE_RECV_CSCOV:
3085 		if (!is_udplite)         /* Disable the option on UDP sockets */
3086 			return -ENOPROTOOPT;
3087 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
3088 			val = 8;
3089 		else if (val > USHRT_MAX)
3090 			val = USHRT_MAX;
3091 		WRITE_ONCE(up->pcrlen, val);
3092 		udp_set_bit(UDPLITE_RECV_CC, sk);
3093 		break;
3094 
3095 	default:
3096 		err = -ENOPROTOOPT;
3097 		break;
3098 	}
3099 
3100 	return err;
3101 }
3102 EXPORT_IPV6_MOD(udp_lib_setsockopt);
3103 
3104 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3105 		   unsigned int optlen)
3106 {
3107 	if (level == SOL_UDP  ||  level == SOL_UDPLITE || level == SOL_SOCKET)
3108 		return udp_lib_setsockopt(sk, level, optname,
3109 					  optval, optlen,
3110 					  udp_push_pending_frames);
3111 	return ip_setsockopt(sk, level, optname, optval, optlen);
3112 }
3113 
3114 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
3115 		       char __user *optval, int __user *optlen)
3116 {
3117 	struct udp_sock *up = udp_sk(sk);
3118 	int val, len;
3119 
3120 	if (get_user(len, optlen))
3121 		return -EFAULT;
3122 
3123 	if (len < 0)
3124 		return -EINVAL;
3125 
3126 	len = min_t(unsigned int, len, sizeof(int));
3127 
3128 	switch (optname) {
3129 	case UDP_CORK:
3130 		val = udp_test_bit(CORK, sk);
3131 		break;
3132 
3133 	case UDP_ENCAP:
3134 		val = READ_ONCE(up->encap_type);
3135 		break;
3136 
3137 	case UDP_NO_CHECK6_TX:
3138 		val = udp_get_no_check6_tx(sk);
3139 		break;
3140 
3141 	case UDP_NO_CHECK6_RX:
3142 		val = udp_get_no_check6_rx(sk);
3143 		break;
3144 
3145 	case UDP_SEGMENT:
3146 		val = READ_ONCE(up->gso_size);
3147 		break;
3148 
3149 	case UDP_GRO:
3150 		val = udp_test_bit(GRO_ENABLED, sk);
3151 		break;
3152 
3153 	/* The following two cannot be changed on UDP sockets, the return is
3154 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
3155 	case UDPLITE_SEND_CSCOV:
3156 		val = READ_ONCE(up->pcslen);
3157 		break;
3158 
3159 	case UDPLITE_RECV_CSCOV:
3160 		val = READ_ONCE(up->pcrlen);
3161 		break;
3162 
3163 	default:
3164 		return -ENOPROTOOPT;
3165 	}
3166 
3167 	if (put_user(len, optlen))
3168 		return -EFAULT;
3169 	if (copy_to_user(optval, &val, len))
3170 		return -EFAULT;
3171 	return 0;
3172 }
3173 EXPORT_IPV6_MOD(udp_lib_getsockopt);
3174 
3175 int udp_getsockopt(struct sock *sk, int level, int optname,
3176 		   char __user *optval, int __user *optlen)
3177 {
3178 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
3179 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
3180 	return ip_getsockopt(sk, level, optname, optval, optlen);
3181 }
3182 
3183 /**
3184  * 	udp_poll - wait for a UDP event.
3185  *	@file: - file struct
3186  *	@sock: - socket
3187  *	@wait: - poll table
3188  *
3189  *	This is same as datagram poll, except for the special case of
3190  *	blocking sockets. If application is using a blocking fd
3191  *	and a packet with checksum error is in the queue;
3192  *	then it could get return from select indicating data available
3193  *	but then block when reading it. Add special case code
3194  *	to work around these arguably broken applications.
3195  */
3196 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
3197 {
3198 	__poll_t mask = datagram_poll(file, sock, wait);
3199 	struct sock *sk = sock->sk;
3200 
3201 	if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
3202 		mask |= EPOLLIN | EPOLLRDNORM;
3203 
3204 	/* Check for false positives due to checksum errors */
3205 	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
3206 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
3207 		mask &= ~(EPOLLIN | EPOLLRDNORM);
3208 
3209 	/* psock ingress_msg queue should not contain any bad checksum frames */
3210 	if (sk_is_readable(sk))
3211 		mask |= EPOLLIN | EPOLLRDNORM;
3212 	return mask;
3213 
3214 }
3215 EXPORT_IPV6_MOD(udp_poll);
3216 
3217 int udp_abort(struct sock *sk, int err)
3218 {
3219 	if (!has_current_bpf_ctx())
3220 		lock_sock(sk);
3221 
3222 	/* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing
3223 	 * with close()
3224 	 */
3225 	if (sock_flag(sk, SOCK_DEAD))
3226 		goto out;
3227 
3228 	sk->sk_err = err;
3229 	sk_error_report(sk);
3230 	__udp_disconnect(sk, 0);
3231 
3232 out:
3233 	if (!has_current_bpf_ctx())
3234 		release_sock(sk);
3235 
3236 	return 0;
3237 }
3238 EXPORT_IPV6_MOD_GPL(udp_abort);
3239 
3240 struct proto udp_prot = {
3241 	.name			= "UDP",
3242 	.owner			= THIS_MODULE,
3243 	.close			= udp_lib_close,
3244 	.pre_connect		= udp_pre_connect,
3245 	.connect		= udp_connect,
3246 	.disconnect		= udp_disconnect,
3247 	.ioctl			= udp_ioctl,
3248 	.init			= udp_init_sock,
3249 	.destroy		= udp_destroy_sock,
3250 	.setsockopt		= udp_setsockopt,
3251 	.getsockopt		= udp_getsockopt,
3252 	.sendmsg		= udp_sendmsg,
3253 	.recvmsg		= udp_recvmsg,
3254 	.splice_eof		= udp_splice_eof,
3255 	.release_cb		= ip4_datagram_release_cb,
3256 	.hash			= udp_lib_hash,
3257 	.unhash			= udp_lib_unhash,
3258 	.rehash			= udp_v4_rehash,
3259 	.get_port		= udp_v4_get_port,
3260 	.put_port		= udp_lib_unhash,
3261 #ifdef CONFIG_BPF_SYSCALL
3262 	.psock_update_sk_prot	= udp_bpf_update_proto,
3263 #endif
3264 	.memory_allocated	= &net_aligned_data.udp_memory_allocated,
3265 	.per_cpu_fw_alloc	= &udp_memory_per_cpu_fw_alloc,
3266 
3267 	.sysctl_mem		= sysctl_udp_mem,
3268 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min),
3269 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min),
3270 	.obj_size		= sizeof(struct udp_sock),
3271 	.h.udp_table		= NULL,
3272 	.diag_destroy		= udp_abort,
3273 };
3274 EXPORT_SYMBOL(udp_prot);
3275 
3276 /* ------------------------------------------------------------------------ */
3277 #ifdef CONFIG_PROC_FS
3278 
3279 static unsigned short seq_file_family(const struct seq_file *seq);
3280 static bool seq_sk_match(struct seq_file *seq, const struct sock *sk)
3281 {
3282 	unsigned short family = seq_file_family(seq);
3283 
3284 	/* AF_UNSPEC is used as a match all */
3285 	return ((family == AF_UNSPEC || family == sk->sk_family) &&
3286 		net_eq(sock_net(sk), seq_file_net(seq)));
3287 }
3288 
3289 #ifdef CONFIG_BPF_SYSCALL
3290 static const struct seq_operations bpf_iter_udp_seq_ops;
3291 #endif
3292 static struct udp_table *udp_get_table_seq(struct seq_file *seq,
3293 					   struct net *net)
3294 {
3295 	const struct udp_seq_afinfo *afinfo;
3296 
3297 #ifdef CONFIG_BPF_SYSCALL
3298 	if (seq->op == &bpf_iter_udp_seq_ops)
3299 		return net->ipv4.udp_table;
3300 #endif
3301 
3302 	afinfo = pde_data(file_inode(seq->file));
3303 	return afinfo->udp_table ? : net->ipv4.udp_table;
3304 }
3305 
3306 static struct sock *udp_get_first(struct seq_file *seq, int start)
3307 {
3308 	struct udp_iter_state *state = seq->private;
3309 	struct net *net = seq_file_net(seq);
3310 	struct udp_table *udptable;
3311 	struct sock *sk;
3312 
3313 	udptable = udp_get_table_seq(seq, net);
3314 
3315 	for (state->bucket = start; state->bucket <= udptable->mask;
3316 	     ++state->bucket) {
3317 		struct udp_hslot *hslot = &udptable->hash[state->bucket];
3318 
3319 		if (hlist_empty(&hslot->head))
3320 			continue;
3321 
3322 		spin_lock_bh(&hslot->lock);
3323 		sk_for_each(sk, &hslot->head) {
3324 			if (seq_sk_match(seq, sk))
3325 				goto found;
3326 		}
3327 		spin_unlock_bh(&hslot->lock);
3328 	}
3329 	sk = NULL;
3330 found:
3331 	return sk;
3332 }
3333 
3334 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
3335 {
3336 	struct udp_iter_state *state = seq->private;
3337 	struct net *net = seq_file_net(seq);
3338 	struct udp_table *udptable;
3339 
3340 	do {
3341 		sk = sk_next(sk);
3342 	} while (sk && !seq_sk_match(seq, sk));
3343 
3344 	if (!sk) {
3345 		udptable = udp_get_table_seq(seq, net);
3346 
3347 		if (state->bucket <= udptable->mask)
3348 			spin_unlock_bh(&udptable->hash[state->bucket].lock);
3349 
3350 		return udp_get_first(seq, state->bucket + 1);
3351 	}
3352 	return sk;
3353 }
3354 
3355 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
3356 {
3357 	struct sock *sk = udp_get_first(seq, 0);
3358 
3359 	if (sk)
3360 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
3361 			--pos;
3362 	return pos ? NULL : sk;
3363 }
3364 
3365 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
3366 {
3367 	struct udp_iter_state *state = seq->private;
3368 	state->bucket = MAX_UDP_PORTS;
3369 
3370 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
3371 }
3372 EXPORT_IPV6_MOD(udp_seq_start);
3373 
3374 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3375 {
3376 	struct sock *sk;
3377 
3378 	if (v == SEQ_START_TOKEN)
3379 		sk = udp_get_idx(seq, 0);
3380 	else
3381 		sk = udp_get_next(seq, v);
3382 
3383 	++*pos;
3384 	return sk;
3385 }
3386 EXPORT_IPV6_MOD(udp_seq_next);
3387 
3388 void udp_seq_stop(struct seq_file *seq, void *v)
3389 {
3390 	struct udp_iter_state *state = seq->private;
3391 	struct udp_table *udptable;
3392 
3393 	udptable = udp_get_table_seq(seq, seq_file_net(seq));
3394 
3395 	if (state->bucket <= udptable->mask)
3396 		spin_unlock_bh(&udptable->hash[state->bucket].lock);
3397 }
3398 EXPORT_IPV6_MOD(udp_seq_stop);
3399 
3400 /* ------------------------------------------------------------------------ */
3401 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
3402 		int bucket)
3403 {
3404 	struct inet_sock *inet = inet_sk(sp);
3405 	__be32 dest = inet->inet_daddr;
3406 	__be32 src  = inet->inet_rcv_saddr;
3407 	__u16 destp	  = ntohs(inet->inet_dport);
3408 	__u16 srcp	  = ntohs(inet->inet_sport);
3409 
3410 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
3411 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
3412 		bucket, src, srcp, dest, destp, sp->sk_state,
3413 		sk_wmem_alloc_get(sp),
3414 		udp_rqueue_get(sp),
3415 		0, 0L, 0,
3416 		from_kuid_munged(seq_user_ns(f), sk_uid(sp)),
3417 		0, sock_i_ino(sp),
3418 		refcount_read(&sp->sk_refcnt), sp,
3419 		sk_drops_read(sp));
3420 }
3421 
3422 int udp4_seq_show(struct seq_file *seq, void *v)
3423 {
3424 	seq_setwidth(seq, 127);
3425 	if (v == SEQ_START_TOKEN)
3426 		seq_puts(seq, "   sl  local_address rem_address   st tx_queue "
3427 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
3428 			   "inode ref pointer drops");
3429 	else {
3430 		struct udp_iter_state *state = seq->private;
3431 
3432 		udp4_format_sock(v, seq, state->bucket);
3433 	}
3434 	seq_pad(seq, '\n');
3435 	return 0;
3436 }
3437 
3438 #ifdef CONFIG_BPF_SYSCALL
3439 struct bpf_iter__udp {
3440 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
3441 	__bpf_md_ptr(struct udp_sock *, udp_sk);
3442 	uid_t uid __aligned(8);
3443 	int bucket __aligned(8);
3444 };
3445 
3446 union bpf_udp_iter_batch_item {
3447 	struct sock *sk;
3448 	__u64 cookie;
3449 };
3450 
3451 struct bpf_udp_iter_state {
3452 	struct udp_iter_state state;
3453 	unsigned int cur_sk;
3454 	unsigned int end_sk;
3455 	unsigned int max_sk;
3456 	union bpf_udp_iter_batch_item *batch;
3457 };
3458 
3459 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3460 				      unsigned int new_batch_sz, gfp_t flags);
3461 static struct sock *bpf_iter_udp_resume(struct sock *first_sk,
3462 					union bpf_udp_iter_batch_item *cookies,
3463 					int n_cookies)
3464 {
3465 	struct sock *sk = NULL;
3466 	int i;
3467 
3468 	for (i = 0; i < n_cookies; i++) {
3469 		sk = first_sk;
3470 		udp_portaddr_for_each_entry_from(sk)
3471 			if (cookies[i].cookie == atomic64_read(&sk->sk_cookie))
3472 				goto done;
3473 	}
3474 done:
3475 	return sk;
3476 }
3477 
3478 static struct sock *bpf_iter_udp_batch(struct seq_file *seq)
3479 {
3480 	struct bpf_udp_iter_state *iter = seq->private;
3481 	struct udp_iter_state *state = &iter->state;
3482 	unsigned int find_cookie, end_cookie;
3483 	struct net *net = seq_file_net(seq);
3484 	struct udp_table *udptable;
3485 	unsigned int batch_sks = 0;
3486 	int resume_bucket;
3487 	int resizes = 0;
3488 	struct sock *sk;
3489 	int err = 0;
3490 
3491 	resume_bucket = state->bucket;
3492 
3493 	/* The current batch is done, so advance the bucket. */
3494 	if (iter->cur_sk == iter->end_sk)
3495 		state->bucket++;
3496 
3497 	udptable = udp_get_table_seq(seq, net);
3498 
3499 again:
3500 	/* New batch for the next bucket.
3501 	 * Iterate over the hash table to find a bucket with sockets matching
3502 	 * the iterator attributes, and return the first matching socket from
3503 	 * the bucket. The remaining matched sockets from the bucket are batched
3504 	 * before releasing the bucket lock. This allows BPF programs that are
3505 	 * called in seq_show to acquire the bucket lock if needed.
3506 	 */
3507 	find_cookie = iter->cur_sk;
3508 	end_cookie = iter->end_sk;
3509 	iter->cur_sk = 0;
3510 	iter->end_sk = 0;
3511 	batch_sks = 0;
3512 
3513 	for (; state->bucket <= udptable->mask; state->bucket++) {
3514 		struct udp_hslot *hslot2 = &udptable->hash2[state->bucket].hslot;
3515 
3516 		if (hlist_empty(&hslot2->head))
3517 			goto next_bucket;
3518 
3519 		spin_lock_bh(&hslot2->lock);
3520 		sk = hlist_entry_safe(hslot2->head.first, struct sock,
3521 				      __sk_common.skc_portaddr_node);
3522 		/* Resume from the first (in iteration order) unseen socket from
3523 		 * the last batch that still exists in resume_bucket. Most of
3524 		 * the time this will just be where the last iteration left off
3525 		 * in resume_bucket unless that socket disappeared between
3526 		 * reads.
3527 		 */
3528 		if (state->bucket == resume_bucket)
3529 			sk = bpf_iter_udp_resume(sk, &iter->batch[find_cookie],
3530 						 end_cookie - find_cookie);
3531 fill_batch:
3532 		udp_portaddr_for_each_entry_from(sk) {
3533 			if (seq_sk_match(seq, sk)) {
3534 				if (iter->end_sk < iter->max_sk) {
3535 					sock_hold(sk);
3536 					iter->batch[iter->end_sk++].sk = sk;
3537 				}
3538 				batch_sks++;
3539 			}
3540 		}
3541 
3542 		/* Allocate a larger batch and try again. */
3543 		if (unlikely(resizes <= 1 && iter->end_sk &&
3544 			     iter->end_sk != batch_sks)) {
3545 			resizes++;
3546 
3547 			/* First, try with GFP_USER to maximize the chances of
3548 			 * grabbing more memory.
3549 			 */
3550 			if (resizes == 1) {
3551 				spin_unlock_bh(&hslot2->lock);
3552 				err = bpf_iter_udp_realloc_batch(iter,
3553 								 batch_sks * 3 / 2,
3554 								 GFP_USER);
3555 				if (err)
3556 					return ERR_PTR(err);
3557 				/* Start over. */
3558 				goto again;
3559 			}
3560 
3561 			/* Next, hold onto the lock, so the bucket doesn't
3562 			 * change while we get the rest of the sockets.
3563 			 */
3564 			err = bpf_iter_udp_realloc_batch(iter, batch_sks,
3565 							 GFP_NOWAIT);
3566 			if (err) {
3567 				spin_unlock_bh(&hslot2->lock);
3568 				return ERR_PTR(err);
3569 			}
3570 
3571 			/* Pick up where we left off. */
3572 			sk = iter->batch[iter->end_sk - 1].sk;
3573 			sk = hlist_entry_safe(sk->__sk_common.skc_portaddr_node.next,
3574 					      struct sock,
3575 					      __sk_common.skc_portaddr_node);
3576 			batch_sks = iter->end_sk;
3577 			goto fill_batch;
3578 		}
3579 
3580 		spin_unlock_bh(&hslot2->lock);
3581 
3582 		if (iter->end_sk)
3583 			break;
3584 next_bucket:
3585 		resizes = 0;
3586 	}
3587 
3588 	WARN_ON_ONCE(iter->end_sk != batch_sks);
3589 	return iter->end_sk ? iter->batch[0].sk : NULL;
3590 }
3591 
3592 static void *bpf_iter_udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3593 {
3594 	struct bpf_udp_iter_state *iter = seq->private;
3595 	struct sock *sk;
3596 
3597 	/* Whenever seq_next() is called, the iter->cur_sk is
3598 	 * done with seq_show(), so unref the iter->cur_sk.
3599 	 */
3600 	if (iter->cur_sk < iter->end_sk)
3601 		sock_put(iter->batch[iter->cur_sk++].sk);
3602 
3603 	/* After updating iter->cur_sk, check if there are more sockets
3604 	 * available in the current bucket batch.
3605 	 */
3606 	if (iter->cur_sk < iter->end_sk)
3607 		sk = iter->batch[iter->cur_sk].sk;
3608 	else
3609 		/* Prepare a new batch. */
3610 		sk = bpf_iter_udp_batch(seq);
3611 
3612 	++*pos;
3613 	return sk;
3614 }
3615 
3616 static void *bpf_iter_udp_seq_start(struct seq_file *seq, loff_t *pos)
3617 {
3618 	/* bpf iter does not support lseek, so it always
3619 	 * continue from where it was stop()-ped.
3620 	 */
3621 	if (*pos)
3622 		return bpf_iter_udp_batch(seq);
3623 
3624 	return SEQ_START_TOKEN;
3625 }
3626 
3627 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3628 			     struct udp_sock *udp_sk, uid_t uid, int bucket)
3629 {
3630 	struct bpf_iter__udp ctx;
3631 
3632 	meta->seq_num--;  /* skip SEQ_START_TOKEN */
3633 	ctx.meta = meta;
3634 	ctx.udp_sk = udp_sk;
3635 	ctx.uid = uid;
3636 	ctx.bucket = bucket;
3637 	return bpf_iter_run_prog(prog, &ctx);
3638 }
3639 
3640 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v)
3641 {
3642 	struct udp_iter_state *state = seq->private;
3643 	struct bpf_iter_meta meta;
3644 	struct bpf_prog *prog;
3645 	struct sock *sk = v;
3646 	uid_t uid;
3647 	int ret;
3648 
3649 	if (v == SEQ_START_TOKEN)
3650 		return 0;
3651 
3652 	lock_sock(sk);
3653 
3654 	if (unlikely(sk_unhashed(sk))) {
3655 		ret = SEQ_SKIP;
3656 		goto unlock;
3657 	}
3658 
3659 	uid = from_kuid_munged(seq_user_ns(seq), sk_uid(sk));
3660 	meta.seq = seq;
3661 	prog = bpf_iter_get_info(&meta, false);
3662 	ret = udp_prog_seq_show(prog, &meta, v, uid, state->bucket);
3663 
3664 unlock:
3665 	release_sock(sk);
3666 	return ret;
3667 }
3668 
3669 static void bpf_iter_udp_put_batch(struct bpf_udp_iter_state *iter)
3670 {
3671 	union bpf_udp_iter_batch_item *item;
3672 	unsigned int cur_sk = iter->cur_sk;
3673 	__u64 cookie;
3674 
3675 	/* Remember the cookies of the sockets we haven't seen yet, so we can
3676 	 * pick up where we left off next time around.
3677 	 */
3678 	while (cur_sk < iter->end_sk) {
3679 		item = &iter->batch[cur_sk++];
3680 		cookie = sock_gen_cookie(item->sk);
3681 		sock_put(item->sk);
3682 		item->cookie = cookie;
3683 	}
3684 }
3685 
3686 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v)
3687 {
3688 	struct bpf_udp_iter_state *iter = seq->private;
3689 	struct bpf_iter_meta meta;
3690 	struct bpf_prog *prog;
3691 
3692 	if (!v) {
3693 		meta.seq = seq;
3694 		prog = bpf_iter_get_info(&meta, true);
3695 		if (prog)
3696 			(void)udp_prog_seq_show(prog, &meta, v, 0, 0);
3697 	}
3698 
3699 	if (iter->cur_sk < iter->end_sk)
3700 		bpf_iter_udp_put_batch(iter);
3701 }
3702 
3703 static const struct seq_operations bpf_iter_udp_seq_ops = {
3704 	.start		= bpf_iter_udp_seq_start,
3705 	.next		= bpf_iter_udp_seq_next,
3706 	.stop		= bpf_iter_udp_seq_stop,
3707 	.show		= bpf_iter_udp_seq_show,
3708 };
3709 #endif
3710 
3711 static unsigned short seq_file_family(const struct seq_file *seq)
3712 {
3713 	const struct udp_seq_afinfo *afinfo;
3714 
3715 #ifdef CONFIG_BPF_SYSCALL
3716 	/* BPF iterator: bpf programs to filter sockets. */
3717 	if (seq->op == &bpf_iter_udp_seq_ops)
3718 		return AF_UNSPEC;
3719 #endif
3720 
3721 	/* Proc fs iterator */
3722 	afinfo = pde_data(file_inode(seq->file));
3723 	return afinfo->family;
3724 }
3725 
3726 const struct seq_operations udp_seq_ops = {
3727 	.start		= udp_seq_start,
3728 	.next		= udp_seq_next,
3729 	.stop		= udp_seq_stop,
3730 	.show		= udp4_seq_show,
3731 };
3732 EXPORT_IPV6_MOD(udp_seq_ops);
3733 
3734 static struct udp_seq_afinfo udp4_seq_afinfo = {
3735 	.family		= AF_INET,
3736 	.udp_table	= NULL,
3737 };
3738 
3739 static int __net_init udp4_proc_init_net(struct net *net)
3740 {
3741 	if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
3742 			sizeof(struct udp_iter_state), &udp4_seq_afinfo))
3743 		return -ENOMEM;
3744 	return 0;
3745 }
3746 
3747 static void __net_exit udp4_proc_exit_net(struct net *net)
3748 {
3749 	remove_proc_entry("udp", net->proc_net);
3750 }
3751 
3752 static struct pernet_operations udp4_net_ops = {
3753 	.init = udp4_proc_init_net,
3754 	.exit = udp4_proc_exit_net,
3755 };
3756 
3757 int __init udp4_proc_init(void)
3758 {
3759 	return register_pernet_subsys(&udp4_net_ops);
3760 }
3761 
3762 void udp4_proc_exit(void)
3763 {
3764 	unregister_pernet_subsys(&udp4_net_ops);
3765 }
3766 #endif /* CONFIG_PROC_FS */
3767 
3768 static __initdata unsigned long uhash_entries;
3769 static int __init set_uhash_entries(char *str)
3770 {
3771 	ssize_t ret;
3772 
3773 	if (!str)
3774 		return 0;
3775 
3776 	ret = kstrtoul(str, 0, &uhash_entries);
3777 	if (ret)
3778 		return 0;
3779 
3780 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
3781 		uhash_entries = UDP_HTABLE_SIZE_MIN;
3782 	return 1;
3783 }
3784 __setup("uhash_entries=", set_uhash_entries);
3785 
3786 void __init udp_table_init(struct udp_table *table, const char *name)
3787 {
3788 	unsigned int i, slot_size;
3789 
3790 	slot_size = sizeof(struct udp_hslot) + sizeof(struct udp_hslot_main) +
3791 		    udp_hash4_slot_size();
3792 	table->hash = alloc_large_system_hash(name,
3793 					      slot_size,
3794 					      uhash_entries,
3795 					      21, /* one slot per 2 MB */
3796 					      0,
3797 					      &table->log,
3798 					      &table->mask,
3799 					      UDP_HTABLE_SIZE_MIN,
3800 					      UDP_HTABLE_SIZE_MAX);
3801 
3802 	table->hash2 = (void *)(table->hash + (table->mask + 1));
3803 	for (i = 0; i <= table->mask; i++) {
3804 		INIT_HLIST_HEAD(&table->hash[i].head);
3805 		table->hash[i].count = 0;
3806 		spin_lock_init(&table->hash[i].lock);
3807 	}
3808 	for (i = 0; i <= table->mask; i++) {
3809 		INIT_HLIST_HEAD(&table->hash2[i].hslot.head);
3810 		table->hash2[i].hslot.count = 0;
3811 		spin_lock_init(&table->hash2[i].hslot.lock);
3812 	}
3813 	udp_table_hash4_init(table);
3814 }
3815 
3816 u32 udp_flow_hashrnd(void)
3817 {
3818 	static u32 hashrnd __read_mostly;
3819 
3820 	net_get_random_once(&hashrnd, sizeof(hashrnd));
3821 
3822 	return hashrnd;
3823 }
3824 EXPORT_SYMBOL(udp_flow_hashrnd);
3825 
3826 static void __net_init udp_sysctl_init(struct net *net)
3827 {
3828 	net->ipv4.sysctl_udp_rmem_min = PAGE_SIZE;
3829 	net->ipv4.sysctl_udp_wmem_min = PAGE_SIZE;
3830 
3831 #ifdef CONFIG_NET_L3_MASTER_DEV
3832 	net->ipv4.sysctl_udp_l3mdev_accept = 0;
3833 #endif
3834 }
3835 
3836 static struct udp_table __net_init *udp_pernet_table_alloc(unsigned int hash_entries)
3837 {
3838 	struct udp_table *udptable;
3839 	unsigned int slot_size;
3840 	int i;
3841 
3842 	udptable = kmalloc(sizeof(*udptable), GFP_KERNEL);
3843 	if (!udptable)
3844 		goto out;
3845 
3846 	slot_size = sizeof(struct udp_hslot) + sizeof(struct udp_hslot_main) +
3847 		    udp_hash4_slot_size();
3848 	udptable->hash = vmalloc_huge(hash_entries * slot_size,
3849 				      GFP_KERNEL_ACCOUNT);
3850 	if (!udptable->hash)
3851 		goto free_table;
3852 
3853 	udptable->hash2 = (void *)(udptable->hash + hash_entries);
3854 	udptable->mask = hash_entries - 1;
3855 	udptable->log = ilog2(hash_entries);
3856 
3857 	for (i = 0; i < hash_entries; i++) {
3858 		INIT_HLIST_HEAD(&udptable->hash[i].head);
3859 		udptable->hash[i].count = 0;
3860 		spin_lock_init(&udptable->hash[i].lock);
3861 
3862 		INIT_HLIST_HEAD(&udptable->hash2[i].hslot.head);
3863 		udptable->hash2[i].hslot.count = 0;
3864 		spin_lock_init(&udptable->hash2[i].hslot.lock);
3865 	}
3866 	udp_table_hash4_init(udptable);
3867 
3868 	return udptable;
3869 
3870 free_table:
3871 	kfree(udptable);
3872 out:
3873 	return NULL;
3874 }
3875 
3876 static void __net_exit udp_pernet_table_free(struct net *net)
3877 {
3878 	struct udp_table *udptable = net->ipv4.udp_table;
3879 
3880 	if (udptable == &udp_table)
3881 		return;
3882 
3883 	kvfree(udptable->hash);
3884 	kfree(udptable);
3885 }
3886 
3887 static void __net_init udp_set_table(struct net *net)
3888 {
3889 	struct udp_table *udptable;
3890 	unsigned int hash_entries;
3891 	struct net *old_net;
3892 
3893 	if (net_eq(net, &init_net))
3894 		goto fallback;
3895 
3896 	old_net = current->nsproxy->net_ns;
3897 	hash_entries = READ_ONCE(old_net->ipv4.sysctl_udp_child_hash_entries);
3898 	if (!hash_entries)
3899 		goto fallback;
3900 
3901 	/* Set min to keep the bitmap on stack in udp_lib_get_port() */
3902 	if (hash_entries < UDP_HTABLE_SIZE_MIN_PERNET)
3903 		hash_entries = UDP_HTABLE_SIZE_MIN_PERNET;
3904 	else
3905 		hash_entries = roundup_pow_of_two(hash_entries);
3906 
3907 	udptable = udp_pernet_table_alloc(hash_entries);
3908 	if (udptable) {
3909 		net->ipv4.udp_table = udptable;
3910 	} else {
3911 		pr_warn("Failed to allocate UDP hash table (entries: %u) "
3912 			"for a netns, fallback to the global one\n",
3913 			hash_entries);
3914 fallback:
3915 		net->ipv4.udp_table = &udp_table;
3916 	}
3917 }
3918 
3919 static int __net_init udp_pernet_init(struct net *net)
3920 {
3921 #if IS_ENABLED(CONFIG_NET_UDP_TUNNEL)
3922 	int i;
3923 
3924 	/* No tunnel is configured */
3925 	for (i = 0; i < ARRAY_SIZE(net->ipv4.udp_tunnel_gro); ++i) {
3926 		INIT_HLIST_HEAD(&net->ipv4.udp_tunnel_gro[i].list);
3927 		RCU_INIT_POINTER(net->ipv4.udp_tunnel_gro[i].sk, NULL);
3928 	}
3929 #endif
3930 	udp_sysctl_init(net);
3931 	udp_set_table(net);
3932 
3933 	return 0;
3934 }
3935 
3936 static void __net_exit udp_pernet_exit(struct net *net)
3937 {
3938 	udp_pernet_table_free(net);
3939 }
3940 
3941 static struct pernet_operations __net_initdata udp_sysctl_ops = {
3942 	.init	= udp_pernet_init,
3943 	.exit	= udp_pernet_exit,
3944 };
3945 
3946 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3947 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta,
3948 		     struct udp_sock *udp_sk, uid_t uid, int bucket)
3949 
3950 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3951 				      unsigned int new_batch_sz, gfp_t flags)
3952 {
3953 	union bpf_udp_iter_batch_item *new_batch;
3954 
3955 	new_batch = kvmalloc_array(new_batch_sz, sizeof(*new_batch),
3956 				   flags | __GFP_NOWARN);
3957 	if (!new_batch)
3958 		return -ENOMEM;
3959 
3960 	if (flags != GFP_NOWAIT)
3961 		bpf_iter_udp_put_batch(iter);
3962 
3963 	memcpy(new_batch, iter->batch, sizeof(*iter->batch) * iter->end_sk);
3964 	kvfree(iter->batch);
3965 	iter->batch = new_batch;
3966 	iter->max_sk = new_batch_sz;
3967 
3968 	return 0;
3969 }
3970 
3971 #define INIT_BATCH_SZ 16
3972 
3973 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux)
3974 {
3975 	struct bpf_udp_iter_state *iter = priv_data;
3976 	int ret;
3977 
3978 	ret = bpf_iter_init_seq_net(priv_data, aux);
3979 	if (ret)
3980 		return ret;
3981 
3982 	ret = bpf_iter_udp_realloc_batch(iter, INIT_BATCH_SZ, GFP_USER);
3983 	if (ret)
3984 		bpf_iter_fini_seq_net(priv_data);
3985 
3986 	iter->state.bucket = -1;
3987 
3988 	return ret;
3989 }
3990 
3991 static void bpf_iter_fini_udp(void *priv_data)
3992 {
3993 	struct bpf_udp_iter_state *iter = priv_data;
3994 
3995 	bpf_iter_fini_seq_net(priv_data);
3996 	kvfree(iter->batch);
3997 }
3998 
3999 static const struct bpf_iter_seq_info udp_seq_info = {
4000 	.seq_ops		= &bpf_iter_udp_seq_ops,
4001 	.init_seq_private	= bpf_iter_init_udp,
4002 	.fini_seq_private	= bpf_iter_fini_udp,
4003 	.seq_priv_size		= sizeof(struct bpf_udp_iter_state),
4004 };
4005 
4006 static struct bpf_iter_reg udp_reg_info = {
4007 	.target			= "udp",
4008 	.ctx_arg_info_size	= 1,
4009 	.ctx_arg_info		= {
4010 		{ offsetof(struct bpf_iter__udp, udp_sk),
4011 		  PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED },
4012 	},
4013 	.seq_info		= &udp_seq_info,
4014 };
4015 
4016 static void __init bpf_iter_register(void)
4017 {
4018 	udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP];
4019 	if (bpf_iter_reg_target(&udp_reg_info))
4020 		pr_warn("Warning: could not register bpf iterator udp\n");
4021 }
4022 #endif
4023 
4024 void __init udp_init(void)
4025 {
4026 	unsigned long limit;
4027 
4028 	udp_table_init(&udp_table, "UDP");
4029 	limit = nr_free_buffer_pages() / 8;
4030 	limit = max(limit, 128UL);
4031 	sysctl_udp_mem[0] = limit / 4 * 3;
4032 	sysctl_udp_mem[1] = limit;
4033 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
4034 
4035 	if (register_pernet_subsys(&udp_sysctl_ops))
4036 		panic("UDP: failed to init sysctl parameters.\n");
4037 
4038 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
4039 	bpf_iter_register();
4040 #endif
4041 }
4042