xref: /linux/net/ipv4/udp.c (revision 6224db7881936c8e1c3b352b5debbbbd8856911a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		The User Datagram Protocol (UDP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
12  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
13  *		Hirokazu Takahashi, <taka@valinux.co.jp>
14  *
15  * Fixes:
16  *		Alan Cox	:	verify_area() calls
17  *		Alan Cox	: 	stopped close while in use off icmp
18  *					messages. Not a fix but a botch that
19  *					for udp at least is 'valid'.
20  *		Alan Cox	:	Fixed icmp handling properly
21  *		Alan Cox	: 	Correct error for oversized datagrams
22  *		Alan Cox	:	Tidied select() semantics.
23  *		Alan Cox	:	udp_err() fixed properly, also now
24  *					select and read wake correctly on errors
25  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
26  *		Alan Cox	:	UDP can count its memory
27  *		Alan Cox	:	send to an unknown connection causes
28  *					an ECONNREFUSED off the icmp, but
29  *					does NOT close.
30  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
31  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
32  *					bug no longer crashes it.
33  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
34  *		Alan Cox	:	Uses skb_free_datagram
35  *		Alan Cox	:	Added get/set sockopt support.
36  *		Alan Cox	:	Broadcasting without option set returns EACCES.
37  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
38  *		Alan Cox	:	Use ip_tos and ip_ttl
39  *		Alan Cox	:	SNMP Mibs
40  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
41  *		Matt Dillon	:	UDP length checks.
42  *		Alan Cox	:	Smarter af_inet used properly.
43  *		Alan Cox	:	Use new kernel side addressing.
44  *		Alan Cox	:	Incorrect return on truncated datagram receive.
45  *	Arnt Gulbrandsen 	:	New udp_send and stuff
46  *		Alan Cox	:	Cache last socket
47  *		Alan Cox	:	Route cache
48  *		Jon Peatfield	:	Minor efficiency fix to sendto().
49  *		Mike Shaver	:	RFC1122 checks.
50  *		Alan Cox	:	Nonblocking error fix.
51  *	Willy Konynenberg	:	Transparent proxying support.
52  *		Mike McLagan	:	Routing by source
53  *		David S. Miller	:	New socket lookup architecture.
54  *					Last socket cache retained as it
55  *					does have a high hit rate.
56  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
57  *		Andi Kleen	:	Some cleanups, cache destination entry
58  *					for connect.
59  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
60  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
61  *					return ENOTCONN for unconnected sockets (POSIX)
62  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
63  *					bound-to-device socket
64  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
65  *					datagrams.
66  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
67  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
68  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
69  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
70  *					a single port at the same time.
71  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
72  *	James Chapman		:	Add L2TP encapsulation type.
73  */
74 
75 #define pr_fmt(fmt) "UDP: " fmt
76 
77 #include <linux/bpf-cgroup.h>
78 #include <linux/uaccess.h>
79 #include <asm/ioctls.h>
80 #include <linux/memblock.h>
81 #include <linux/highmem.h>
82 #include <linux/types.h>
83 #include <linux/fcntl.h>
84 #include <linux/module.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/igmp.h>
88 #include <linux/inetdevice.h>
89 #include <linux/in.h>
90 #include <linux/errno.h>
91 #include <linux/timer.h>
92 #include <linux/mm.h>
93 #include <linux/inet.h>
94 #include <linux/netdevice.h>
95 #include <linux/slab.h>
96 #include <net/tcp_states.h>
97 #include <linux/skbuff.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <net/net_namespace.h>
101 #include <net/icmp.h>
102 #include <net/inet_hashtables.h>
103 #include <net/ip_tunnels.h>
104 #include <net/route.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <trace/events/udp.h>
108 #include <linux/static_key.h>
109 #include <linux/btf_ids.h>
110 #include <trace/events/skb.h>
111 #include <net/busy_poll.h>
112 #include "udp_impl.h"
113 #include <net/sock_reuseport.h>
114 #include <net/addrconf.h>
115 #include <net/udp_tunnel.h>
116 #if IS_ENABLED(CONFIG_IPV6)
117 #include <net/ipv6_stubs.h>
118 #endif
119 
120 struct udp_table udp_table __read_mostly;
121 EXPORT_SYMBOL(udp_table);
122 
123 long sysctl_udp_mem[3] __read_mostly;
124 EXPORT_SYMBOL(sysctl_udp_mem);
125 
126 atomic_long_t udp_memory_allocated ____cacheline_aligned_in_smp;
127 EXPORT_SYMBOL(udp_memory_allocated);
128 DEFINE_PER_CPU(int, udp_memory_per_cpu_fw_alloc);
129 EXPORT_PER_CPU_SYMBOL_GPL(udp_memory_per_cpu_fw_alloc);
130 
131 #define MAX_UDP_PORTS 65536
132 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
133 
134 static int udp_lib_lport_inuse(struct net *net, __u16 num,
135 			       const struct udp_hslot *hslot,
136 			       unsigned long *bitmap,
137 			       struct sock *sk, unsigned int log)
138 {
139 	struct sock *sk2;
140 	kuid_t uid = sock_i_uid(sk);
141 
142 	sk_for_each(sk2, &hslot->head) {
143 		if (net_eq(sock_net(sk2), net) &&
144 		    sk2 != sk &&
145 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
146 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
147 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
148 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
149 		    inet_rcv_saddr_equal(sk, sk2, true)) {
150 			if (sk2->sk_reuseport && sk->sk_reuseport &&
151 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
152 			    uid_eq(uid, sock_i_uid(sk2))) {
153 				if (!bitmap)
154 					return 0;
155 			} else {
156 				if (!bitmap)
157 					return 1;
158 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
159 					  bitmap);
160 			}
161 		}
162 	}
163 	return 0;
164 }
165 
166 /*
167  * Note: we still hold spinlock of primary hash chain, so no other writer
168  * can insert/delete a socket with local_port == num
169  */
170 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
171 				struct udp_hslot *hslot2,
172 				struct sock *sk)
173 {
174 	struct sock *sk2;
175 	kuid_t uid = sock_i_uid(sk);
176 	int res = 0;
177 
178 	spin_lock(&hslot2->lock);
179 	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
180 		if (net_eq(sock_net(sk2), net) &&
181 		    sk2 != sk &&
182 		    (udp_sk(sk2)->udp_port_hash == num) &&
183 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
184 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
185 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
186 		    inet_rcv_saddr_equal(sk, sk2, true)) {
187 			if (sk2->sk_reuseport && sk->sk_reuseport &&
188 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
189 			    uid_eq(uid, sock_i_uid(sk2))) {
190 				res = 0;
191 			} else {
192 				res = 1;
193 			}
194 			break;
195 		}
196 	}
197 	spin_unlock(&hslot2->lock);
198 	return res;
199 }
200 
201 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
202 {
203 	struct net *net = sock_net(sk);
204 	kuid_t uid = sock_i_uid(sk);
205 	struct sock *sk2;
206 
207 	sk_for_each(sk2, &hslot->head) {
208 		if (net_eq(sock_net(sk2), net) &&
209 		    sk2 != sk &&
210 		    sk2->sk_family == sk->sk_family &&
211 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
212 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
213 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
214 		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
215 		    inet_rcv_saddr_equal(sk, sk2, false)) {
216 			return reuseport_add_sock(sk, sk2,
217 						  inet_rcv_saddr_any(sk));
218 		}
219 	}
220 
221 	return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
222 }
223 
224 /**
225  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
226  *
227  *  @sk:          socket struct in question
228  *  @snum:        port number to look up
229  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
230  *                   with NULL address
231  */
232 int udp_lib_get_port(struct sock *sk, unsigned short snum,
233 		     unsigned int hash2_nulladdr)
234 {
235 	struct udp_hslot *hslot, *hslot2;
236 	struct udp_table *udptable = sk->sk_prot->h.udp_table;
237 	int    error = 1;
238 	struct net *net = sock_net(sk);
239 
240 	if (!snum) {
241 		int low, high, remaining;
242 		unsigned int rand;
243 		unsigned short first, last;
244 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
245 
246 		inet_get_local_port_range(net, &low, &high);
247 		remaining = (high - low) + 1;
248 
249 		rand = prandom_u32();
250 		first = reciprocal_scale(rand, remaining) + low;
251 		/*
252 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
253 		 */
254 		rand = (rand | 1) * (udptable->mask + 1);
255 		last = first + udptable->mask + 1;
256 		do {
257 			hslot = udp_hashslot(udptable, net, first);
258 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
259 			spin_lock_bh(&hslot->lock);
260 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
261 					    udptable->log);
262 
263 			snum = first;
264 			/*
265 			 * Iterate on all possible values of snum for this hash.
266 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
267 			 * give us randomization and full range coverage.
268 			 */
269 			do {
270 				if (low <= snum && snum <= high &&
271 				    !test_bit(snum >> udptable->log, bitmap) &&
272 				    !inet_is_local_reserved_port(net, snum))
273 					goto found;
274 				snum += rand;
275 			} while (snum != first);
276 			spin_unlock_bh(&hslot->lock);
277 			cond_resched();
278 		} while (++first != last);
279 		goto fail;
280 	} else {
281 		hslot = udp_hashslot(udptable, net, snum);
282 		spin_lock_bh(&hslot->lock);
283 		if (hslot->count > 10) {
284 			int exist;
285 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
286 
287 			slot2          &= udptable->mask;
288 			hash2_nulladdr &= udptable->mask;
289 
290 			hslot2 = udp_hashslot2(udptable, slot2);
291 			if (hslot->count < hslot2->count)
292 				goto scan_primary_hash;
293 
294 			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
295 			if (!exist && (hash2_nulladdr != slot2)) {
296 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
297 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
298 							     sk);
299 			}
300 			if (exist)
301 				goto fail_unlock;
302 			else
303 				goto found;
304 		}
305 scan_primary_hash:
306 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
307 			goto fail_unlock;
308 	}
309 found:
310 	inet_sk(sk)->inet_num = snum;
311 	udp_sk(sk)->udp_port_hash = snum;
312 	udp_sk(sk)->udp_portaddr_hash ^= snum;
313 	if (sk_unhashed(sk)) {
314 		if (sk->sk_reuseport &&
315 		    udp_reuseport_add_sock(sk, hslot)) {
316 			inet_sk(sk)->inet_num = 0;
317 			udp_sk(sk)->udp_port_hash = 0;
318 			udp_sk(sk)->udp_portaddr_hash ^= snum;
319 			goto fail_unlock;
320 		}
321 
322 		sk_add_node_rcu(sk, &hslot->head);
323 		hslot->count++;
324 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
325 
326 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
327 		spin_lock(&hslot2->lock);
328 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
329 		    sk->sk_family == AF_INET6)
330 			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
331 					   &hslot2->head);
332 		else
333 			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
334 					   &hslot2->head);
335 		hslot2->count++;
336 		spin_unlock(&hslot2->lock);
337 	}
338 	sock_set_flag(sk, SOCK_RCU_FREE);
339 	error = 0;
340 fail_unlock:
341 	spin_unlock_bh(&hslot->lock);
342 fail:
343 	return error;
344 }
345 EXPORT_SYMBOL(udp_lib_get_port);
346 
347 int udp_v4_get_port(struct sock *sk, unsigned short snum)
348 {
349 	unsigned int hash2_nulladdr =
350 		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
351 	unsigned int hash2_partial =
352 		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
353 
354 	/* precompute partial secondary hash */
355 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
356 	return udp_lib_get_port(sk, snum, hash2_nulladdr);
357 }
358 
359 static int compute_score(struct sock *sk, struct net *net,
360 			 __be32 saddr, __be16 sport,
361 			 __be32 daddr, unsigned short hnum,
362 			 int dif, int sdif)
363 {
364 	int score;
365 	struct inet_sock *inet;
366 	bool dev_match;
367 
368 	if (!net_eq(sock_net(sk), net) ||
369 	    udp_sk(sk)->udp_port_hash != hnum ||
370 	    ipv6_only_sock(sk))
371 		return -1;
372 
373 	if (sk->sk_rcv_saddr != daddr)
374 		return -1;
375 
376 	score = (sk->sk_family == PF_INET) ? 2 : 1;
377 
378 	inet = inet_sk(sk);
379 	if (inet->inet_daddr) {
380 		if (inet->inet_daddr != saddr)
381 			return -1;
382 		score += 4;
383 	}
384 
385 	if (inet->inet_dport) {
386 		if (inet->inet_dport != sport)
387 			return -1;
388 		score += 4;
389 	}
390 
391 	dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
392 					dif, sdif);
393 	if (!dev_match)
394 		return -1;
395 	if (sk->sk_bound_dev_if)
396 		score += 4;
397 
398 	if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
399 		score++;
400 	return score;
401 }
402 
403 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
404 		       const __u16 lport, const __be32 faddr,
405 		       const __be16 fport)
406 {
407 	static u32 udp_ehash_secret __read_mostly;
408 
409 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
410 
411 	return __inet_ehashfn(laddr, lport, faddr, fport,
412 			      udp_ehash_secret + net_hash_mix(net));
413 }
414 
415 static struct sock *lookup_reuseport(struct net *net, struct sock *sk,
416 				     struct sk_buff *skb,
417 				     __be32 saddr, __be16 sport,
418 				     __be32 daddr, unsigned short hnum)
419 {
420 	struct sock *reuse_sk = NULL;
421 	u32 hash;
422 
423 	if (sk->sk_reuseport && sk->sk_state != TCP_ESTABLISHED) {
424 		hash = udp_ehashfn(net, daddr, hnum, saddr, sport);
425 		reuse_sk = reuseport_select_sock(sk, hash, skb,
426 						 sizeof(struct udphdr));
427 	}
428 	return reuse_sk;
429 }
430 
431 /* called with rcu_read_lock() */
432 static struct sock *udp4_lib_lookup2(struct net *net,
433 				     __be32 saddr, __be16 sport,
434 				     __be32 daddr, unsigned int hnum,
435 				     int dif, int sdif,
436 				     struct udp_hslot *hslot2,
437 				     struct sk_buff *skb)
438 {
439 	struct sock *sk, *result;
440 	int score, badness;
441 
442 	result = NULL;
443 	badness = 0;
444 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
445 		score = compute_score(sk, net, saddr, sport,
446 				      daddr, hnum, dif, sdif);
447 		if (score > badness) {
448 			result = lookup_reuseport(net, sk, skb,
449 						  saddr, sport, daddr, hnum);
450 			/* Fall back to scoring if group has connections */
451 			if (result && !reuseport_has_conns(sk, false))
452 				return result;
453 
454 			result = result ? : sk;
455 			badness = score;
456 		}
457 	}
458 	return result;
459 }
460 
461 static struct sock *udp4_lookup_run_bpf(struct net *net,
462 					struct udp_table *udptable,
463 					struct sk_buff *skb,
464 					__be32 saddr, __be16 sport,
465 					__be32 daddr, u16 hnum, const int dif)
466 {
467 	struct sock *sk, *reuse_sk;
468 	bool no_reuseport;
469 
470 	if (udptable != &udp_table)
471 		return NULL; /* only UDP is supported */
472 
473 	no_reuseport = bpf_sk_lookup_run_v4(net, IPPROTO_UDP, saddr, sport,
474 					    daddr, hnum, dif, &sk);
475 	if (no_reuseport || IS_ERR_OR_NULL(sk))
476 		return sk;
477 
478 	reuse_sk = lookup_reuseport(net, sk, skb, saddr, sport, daddr, hnum);
479 	if (reuse_sk)
480 		sk = reuse_sk;
481 	return sk;
482 }
483 
484 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
485  * harder than this. -DaveM
486  */
487 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
488 		__be16 sport, __be32 daddr, __be16 dport, int dif,
489 		int sdif, struct udp_table *udptable, struct sk_buff *skb)
490 {
491 	unsigned short hnum = ntohs(dport);
492 	unsigned int hash2, slot2;
493 	struct udp_hslot *hslot2;
494 	struct sock *result, *sk;
495 
496 	hash2 = ipv4_portaddr_hash(net, daddr, hnum);
497 	slot2 = hash2 & udptable->mask;
498 	hslot2 = &udptable->hash2[slot2];
499 
500 	/* Lookup connected or non-wildcard socket */
501 	result = udp4_lib_lookup2(net, saddr, sport,
502 				  daddr, hnum, dif, sdif,
503 				  hslot2, skb);
504 	if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED)
505 		goto done;
506 
507 	/* Lookup redirect from BPF */
508 	if (static_branch_unlikely(&bpf_sk_lookup_enabled)) {
509 		sk = udp4_lookup_run_bpf(net, udptable, skb,
510 					 saddr, sport, daddr, hnum, dif);
511 		if (sk) {
512 			result = sk;
513 			goto done;
514 		}
515 	}
516 
517 	/* Got non-wildcard socket or error on first lookup */
518 	if (result)
519 		goto done;
520 
521 	/* Lookup wildcard sockets */
522 	hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
523 	slot2 = hash2 & udptable->mask;
524 	hslot2 = &udptable->hash2[slot2];
525 
526 	result = udp4_lib_lookup2(net, saddr, sport,
527 				  htonl(INADDR_ANY), hnum, dif, sdif,
528 				  hslot2, skb);
529 done:
530 	if (IS_ERR(result))
531 		return NULL;
532 	return result;
533 }
534 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
535 
536 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
537 						 __be16 sport, __be16 dport,
538 						 struct udp_table *udptable)
539 {
540 	const struct iphdr *iph = ip_hdr(skb);
541 
542 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
543 				 iph->daddr, dport, inet_iif(skb),
544 				 inet_sdif(skb), udptable, skb);
545 }
546 
547 struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb,
548 				 __be16 sport, __be16 dport)
549 {
550 	const struct iphdr *iph = ip_hdr(skb);
551 
552 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
553 				 iph->daddr, dport, inet_iif(skb),
554 				 inet_sdif(skb), &udp_table, NULL);
555 }
556 
557 /* Must be called under rcu_read_lock().
558  * Does increment socket refcount.
559  */
560 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
561 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
562 			     __be32 daddr, __be16 dport, int dif)
563 {
564 	struct sock *sk;
565 
566 	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
567 			       dif, 0, &udp_table, NULL);
568 	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
569 		sk = NULL;
570 	return sk;
571 }
572 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
573 #endif
574 
575 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
576 				       __be16 loc_port, __be32 loc_addr,
577 				       __be16 rmt_port, __be32 rmt_addr,
578 				       int dif, int sdif, unsigned short hnum)
579 {
580 	struct inet_sock *inet = inet_sk(sk);
581 
582 	if (!net_eq(sock_net(sk), net) ||
583 	    udp_sk(sk)->udp_port_hash != hnum ||
584 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
585 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
586 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
587 	    ipv6_only_sock(sk) ||
588 	    !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
589 		return false;
590 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
591 		return false;
592 	return true;
593 }
594 
595 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
596 void udp_encap_enable(void)
597 {
598 	static_branch_inc(&udp_encap_needed_key);
599 }
600 EXPORT_SYMBOL(udp_encap_enable);
601 
602 void udp_encap_disable(void)
603 {
604 	static_branch_dec(&udp_encap_needed_key);
605 }
606 EXPORT_SYMBOL(udp_encap_disable);
607 
608 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go
609  * through error handlers in encapsulations looking for a match.
610  */
611 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
612 {
613 	int i;
614 
615 	for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
616 		int (*handler)(struct sk_buff *skb, u32 info);
617 		const struct ip_tunnel_encap_ops *encap;
618 
619 		encap = rcu_dereference(iptun_encaps[i]);
620 		if (!encap)
621 			continue;
622 		handler = encap->err_handler;
623 		if (handler && !handler(skb, info))
624 			return 0;
625 	}
626 
627 	return -ENOENT;
628 }
629 
630 /* Try to match ICMP errors to UDP tunnels by looking up a socket without
631  * reversing source and destination port: this will match tunnels that force the
632  * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
633  * lwtunnels might actually break this assumption by being configured with
634  * different destination ports on endpoints, in this case we won't be able to
635  * trace ICMP messages back to them.
636  *
637  * If this doesn't match any socket, probe tunnels with arbitrary destination
638  * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
639  * we've sent packets to won't necessarily match the local destination port.
640  *
641  * Then ask the tunnel implementation to match the error against a valid
642  * association.
643  *
644  * Return an error if we can't find a match, the socket if we need further
645  * processing, zero otherwise.
646  */
647 static struct sock *__udp4_lib_err_encap(struct net *net,
648 					 const struct iphdr *iph,
649 					 struct udphdr *uh,
650 					 struct udp_table *udptable,
651 					 struct sock *sk,
652 					 struct sk_buff *skb, u32 info)
653 {
654 	int (*lookup)(struct sock *sk, struct sk_buff *skb);
655 	int network_offset, transport_offset;
656 	struct udp_sock *up;
657 
658 	network_offset = skb_network_offset(skb);
659 	transport_offset = skb_transport_offset(skb);
660 
661 	/* Network header needs to point to the outer IPv4 header inside ICMP */
662 	skb_reset_network_header(skb);
663 
664 	/* Transport header needs to point to the UDP header */
665 	skb_set_transport_header(skb, iph->ihl << 2);
666 
667 	if (sk) {
668 		up = udp_sk(sk);
669 
670 		lookup = READ_ONCE(up->encap_err_lookup);
671 		if (lookup && lookup(sk, skb))
672 			sk = NULL;
673 
674 		goto out;
675 	}
676 
677 	sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
678 			       iph->saddr, uh->dest, skb->dev->ifindex, 0,
679 			       udptable, NULL);
680 	if (sk) {
681 		up = udp_sk(sk);
682 
683 		lookup = READ_ONCE(up->encap_err_lookup);
684 		if (!lookup || lookup(sk, skb))
685 			sk = NULL;
686 	}
687 
688 out:
689 	if (!sk)
690 		sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
691 
692 	skb_set_transport_header(skb, transport_offset);
693 	skb_set_network_header(skb, network_offset);
694 
695 	return sk;
696 }
697 
698 /*
699  * This routine is called by the ICMP module when it gets some
700  * sort of error condition.  If err < 0 then the socket should
701  * be closed and the error returned to the user.  If err > 0
702  * it's just the icmp type << 8 | icmp code.
703  * Header points to the ip header of the error packet. We move
704  * on past this. Then (as it used to claim before adjustment)
705  * header points to the first 8 bytes of the udp header.  We need
706  * to find the appropriate port.
707  */
708 
709 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
710 {
711 	struct inet_sock *inet;
712 	const struct iphdr *iph = (const struct iphdr *)skb->data;
713 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
714 	const int type = icmp_hdr(skb)->type;
715 	const int code = icmp_hdr(skb)->code;
716 	bool tunnel = false;
717 	struct sock *sk;
718 	int harderr;
719 	int err;
720 	struct net *net = dev_net(skb->dev);
721 
722 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
723 			       iph->saddr, uh->source, skb->dev->ifindex,
724 			       inet_sdif(skb), udptable, NULL);
725 
726 	if (!sk || udp_sk(sk)->encap_type) {
727 		/* No socket for error: try tunnels before discarding */
728 		if (static_branch_unlikely(&udp_encap_needed_key)) {
729 			sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb,
730 						  info);
731 			if (!sk)
732 				return 0;
733 		} else
734 			sk = ERR_PTR(-ENOENT);
735 
736 		if (IS_ERR(sk)) {
737 			__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
738 			return PTR_ERR(sk);
739 		}
740 
741 		tunnel = true;
742 	}
743 
744 	err = 0;
745 	harderr = 0;
746 	inet = inet_sk(sk);
747 
748 	switch (type) {
749 	default:
750 	case ICMP_TIME_EXCEEDED:
751 		err = EHOSTUNREACH;
752 		break;
753 	case ICMP_SOURCE_QUENCH:
754 		goto out;
755 	case ICMP_PARAMETERPROB:
756 		err = EPROTO;
757 		harderr = 1;
758 		break;
759 	case ICMP_DEST_UNREACH:
760 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
761 			ipv4_sk_update_pmtu(skb, sk, info);
762 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
763 				err = EMSGSIZE;
764 				harderr = 1;
765 				break;
766 			}
767 			goto out;
768 		}
769 		err = EHOSTUNREACH;
770 		if (code <= NR_ICMP_UNREACH) {
771 			harderr = icmp_err_convert[code].fatal;
772 			err = icmp_err_convert[code].errno;
773 		}
774 		break;
775 	case ICMP_REDIRECT:
776 		ipv4_sk_redirect(skb, sk);
777 		goto out;
778 	}
779 
780 	/*
781 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
782 	 *	4.1.3.3.
783 	 */
784 	if (tunnel) {
785 		/* ...not for tunnels though: we don't have a sending socket */
786 		if (udp_sk(sk)->encap_err_rcv)
787 			udp_sk(sk)->encap_err_rcv(sk, skb, iph->ihl << 2);
788 		goto out;
789 	}
790 	if (!inet->recverr) {
791 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
792 			goto out;
793 	} else
794 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
795 
796 	sk->sk_err = err;
797 	sk_error_report(sk);
798 out:
799 	return 0;
800 }
801 
802 int udp_err(struct sk_buff *skb, u32 info)
803 {
804 	return __udp4_lib_err(skb, info, &udp_table);
805 }
806 
807 /*
808  * Throw away all pending data and cancel the corking. Socket is locked.
809  */
810 void udp_flush_pending_frames(struct sock *sk)
811 {
812 	struct udp_sock *up = udp_sk(sk);
813 
814 	if (up->pending) {
815 		up->len = 0;
816 		up->pending = 0;
817 		ip_flush_pending_frames(sk);
818 	}
819 }
820 EXPORT_SYMBOL(udp_flush_pending_frames);
821 
822 /**
823  * 	udp4_hwcsum  -  handle outgoing HW checksumming
824  * 	@skb: 	sk_buff containing the filled-in UDP header
825  * 	        (checksum field must be zeroed out)
826  *	@src:	source IP address
827  *	@dst:	destination IP address
828  */
829 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
830 {
831 	struct udphdr *uh = udp_hdr(skb);
832 	int offset = skb_transport_offset(skb);
833 	int len = skb->len - offset;
834 	int hlen = len;
835 	__wsum csum = 0;
836 
837 	if (!skb_has_frag_list(skb)) {
838 		/*
839 		 * Only one fragment on the socket.
840 		 */
841 		skb->csum_start = skb_transport_header(skb) - skb->head;
842 		skb->csum_offset = offsetof(struct udphdr, check);
843 		uh->check = ~csum_tcpudp_magic(src, dst, len,
844 					       IPPROTO_UDP, 0);
845 	} else {
846 		struct sk_buff *frags;
847 
848 		/*
849 		 * HW-checksum won't work as there are two or more
850 		 * fragments on the socket so that all csums of sk_buffs
851 		 * should be together
852 		 */
853 		skb_walk_frags(skb, frags) {
854 			csum = csum_add(csum, frags->csum);
855 			hlen -= frags->len;
856 		}
857 
858 		csum = skb_checksum(skb, offset, hlen, csum);
859 		skb->ip_summed = CHECKSUM_NONE;
860 
861 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
862 		if (uh->check == 0)
863 			uh->check = CSUM_MANGLED_0;
864 	}
865 }
866 EXPORT_SYMBOL_GPL(udp4_hwcsum);
867 
868 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
869  * for the simple case like when setting the checksum for a UDP tunnel.
870  */
871 void udp_set_csum(bool nocheck, struct sk_buff *skb,
872 		  __be32 saddr, __be32 daddr, int len)
873 {
874 	struct udphdr *uh = udp_hdr(skb);
875 
876 	if (nocheck) {
877 		uh->check = 0;
878 	} else if (skb_is_gso(skb)) {
879 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
880 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
881 		uh->check = 0;
882 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
883 		if (uh->check == 0)
884 			uh->check = CSUM_MANGLED_0;
885 	} else {
886 		skb->ip_summed = CHECKSUM_PARTIAL;
887 		skb->csum_start = skb_transport_header(skb) - skb->head;
888 		skb->csum_offset = offsetof(struct udphdr, check);
889 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
890 	}
891 }
892 EXPORT_SYMBOL(udp_set_csum);
893 
894 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
895 			struct inet_cork *cork)
896 {
897 	struct sock *sk = skb->sk;
898 	struct inet_sock *inet = inet_sk(sk);
899 	struct udphdr *uh;
900 	int err;
901 	int is_udplite = IS_UDPLITE(sk);
902 	int offset = skb_transport_offset(skb);
903 	int len = skb->len - offset;
904 	int datalen = len - sizeof(*uh);
905 	__wsum csum = 0;
906 
907 	/*
908 	 * Create a UDP header
909 	 */
910 	uh = udp_hdr(skb);
911 	uh->source = inet->inet_sport;
912 	uh->dest = fl4->fl4_dport;
913 	uh->len = htons(len);
914 	uh->check = 0;
915 
916 	if (cork->gso_size) {
917 		const int hlen = skb_network_header_len(skb) +
918 				 sizeof(struct udphdr);
919 
920 		if (hlen + cork->gso_size > cork->fragsize) {
921 			kfree_skb(skb);
922 			return -EINVAL;
923 		}
924 		if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) {
925 			kfree_skb(skb);
926 			return -EINVAL;
927 		}
928 		if (sk->sk_no_check_tx) {
929 			kfree_skb(skb);
930 			return -EINVAL;
931 		}
932 		if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
933 		    dst_xfrm(skb_dst(skb))) {
934 			kfree_skb(skb);
935 			return -EIO;
936 		}
937 
938 		if (datalen > cork->gso_size) {
939 			skb_shinfo(skb)->gso_size = cork->gso_size;
940 			skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
941 			skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
942 								 cork->gso_size);
943 		}
944 		goto csum_partial;
945 	}
946 
947 	if (is_udplite)  				 /*     UDP-Lite      */
948 		csum = udplite_csum(skb);
949 
950 	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
951 
952 		skb->ip_summed = CHECKSUM_NONE;
953 		goto send;
954 
955 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
956 csum_partial:
957 
958 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
959 		goto send;
960 
961 	} else
962 		csum = udp_csum(skb);
963 
964 	/* add protocol-dependent pseudo-header */
965 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
966 				      sk->sk_protocol, csum);
967 	if (uh->check == 0)
968 		uh->check = CSUM_MANGLED_0;
969 
970 send:
971 	err = ip_send_skb(sock_net(sk), skb);
972 	if (err) {
973 		if (err == -ENOBUFS && !inet->recverr) {
974 			UDP_INC_STATS(sock_net(sk),
975 				      UDP_MIB_SNDBUFERRORS, is_udplite);
976 			err = 0;
977 		}
978 	} else
979 		UDP_INC_STATS(sock_net(sk),
980 			      UDP_MIB_OUTDATAGRAMS, is_udplite);
981 	return err;
982 }
983 
984 /*
985  * Push out all pending data as one UDP datagram. Socket is locked.
986  */
987 int udp_push_pending_frames(struct sock *sk)
988 {
989 	struct udp_sock  *up = udp_sk(sk);
990 	struct inet_sock *inet = inet_sk(sk);
991 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
992 	struct sk_buff *skb;
993 	int err = 0;
994 
995 	skb = ip_finish_skb(sk, fl4);
996 	if (!skb)
997 		goto out;
998 
999 	err = udp_send_skb(skb, fl4, &inet->cork.base);
1000 
1001 out:
1002 	up->len = 0;
1003 	up->pending = 0;
1004 	return err;
1005 }
1006 EXPORT_SYMBOL(udp_push_pending_frames);
1007 
1008 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
1009 {
1010 	switch (cmsg->cmsg_type) {
1011 	case UDP_SEGMENT:
1012 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
1013 			return -EINVAL;
1014 		*gso_size = *(__u16 *)CMSG_DATA(cmsg);
1015 		return 0;
1016 	default:
1017 		return -EINVAL;
1018 	}
1019 }
1020 
1021 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
1022 {
1023 	struct cmsghdr *cmsg;
1024 	bool need_ip = false;
1025 	int err;
1026 
1027 	for_each_cmsghdr(cmsg, msg) {
1028 		if (!CMSG_OK(msg, cmsg))
1029 			return -EINVAL;
1030 
1031 		if (cmsg->cmsg_level != SOL_UDP) {
1032 			need_ip = true;
1033 			continue;
1034 		}
1035 
1036 		err = __udp_cmsg_send(cmsg, gso_size);
1037 		if (err)
1038 			return err;
1039 	}
1040 
1041 	return need_ip;
1042 }
1043 EXPORT_SYMBOL_GPL(udp_cmsg_send);
1044 
1045 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1046 {
1047 	struct inet_sock *inet = inet_sk(sk);
1048 	struct udp_sock *up = udp_sk(sk);
1049 	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1050 	struct flowi4 fl4_stack;
1051 	struct flowi4 *fl4;
1052 	int ulen = len;
1053 	struct ipcm_cookie ipc;
1054 	struct rtable *rt = NULL;
1055 	int free = 0;
1056 	int connected = 0;
1057 	__be32 daddr, faddr, saddr;
1058 	__be16 dport;
1059 	u8  tos;
1060 	int err, is_udplite = IS_UDPLITE(sk);
1061 	int corkreq = READ_ONCE(up->corkflag) || msg->msg_flags&MSG_MORE;
1062 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
1063 	struct sk_buff *skb;
1064 	struct ip_options_data opt_copy;
1065 
1066 	if (len > 0xFFFF)
1067 		return -EMSGSIZE;
1068 
1069 	/*
1070 	 *	Check the flags.
1071 	 */
1072 
1073 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1074 		return -EOPNOTSUPP;
1075 
1076 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1077 
1078 	fl4 = &inet->cork.fl.u.ip4;
1079 	if (up->pending) {
1080 		/*
1081 		 * There are pending frames.
1082 		 * The socket lock must be held while it's corked.
1083 		 */
1084 		lock_sock(sk);
1085 		if (likely(up->pending)) {
1086 			if (unlikely(up->pending != AF_INET)) {
1087 				release_sock(sk);
1088 				return -EINVAL;
1089 			}
1090 			goto do_append_data;
1091 		}
1092 		release_sock(sk);
1093 	}
1094 	ulen += sizeof(struct udphdr);
1095 
1096 	/*
1097 	 *	Get and verify the address.
1098 	 */
1099 	if (usin) {
1100 		if (msg->msg_namelen < sizeof(*usin))
1101 			return -EINVAL;
1102 		if (usin->sin_family != AF_INET) {
1103 			if (usin->sin_family != AF_UNSPEC)
1104 				return -EAFNOSUPPORT;
1105 		}
1106 
1107 		daddr = usin->sin_addr.s_addr;
1108 		dport = usin->sin_port;
1109 		if (dport == 0)
1110 			return -EINVAL;
1111 	} else {
1112 		if (sk->sk_state != TCP_ESTABLISHED)
1113 			return -EDESTADDRREQ;
1114 		daddr = inet->inet_daddr;
1115 		dport = inet->inet_dport;
1116 		/* Open fast path for connected socket.
1117 		   Route will not be used, if at least one option is set.
1118 		 */
1119 		connected = 1;
1120 	}
1121 
1122 	ipcm_init_sk(&ipc, inet);
1123 	ipc.gso_size = READ_ONCE(up->gso_size);
1124 
1125 	if (msg->msg_controllen) {
1126 		err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1127 		if (err > 0)
1128 			err = ip_cmsg_send(sk, msg, &ipc,
1129 					   sk->sk_family == AF_INET6);
1130 		if (unlikely(err < 0)) {
1131 			kfree(ipc.opt);
1132 			return err;
1133 		}
1134 		if (ipc.opt)
1135 			free = 1;
1136 		connected = 0;
1137 	}
1138 	if (!ipc.opt) {
1139 		struct ip_options_rcu *inet_opt;
1140 
1141 		rcu_read_lock();
1142 		inet_opt = rcu_dereference(inet->inet_opt);
1143 		if (inet_opt) {
1144 			memcpy(&opt_copy, inet_opt,
1145 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
1146 			ipc.opt = &opt_copy.opt;
1147 		}
1148 		rcu_read_unlock();
1149 	}
1150 
1151 	if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) {
1152 		err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1153 					    (struct sockaddr *)usin, &ipc.addr);
1154 		if (err)
1155 			goto out_free;
1156 		if (usin) {
1157 			if (usin->sin_port == 0) {
1158 				/* BPF program set invalid port. Reject it. */
1159 				err = -EINVAL;
1160 				goto out_free;
1161 			}
1162 			daddr = usin->sin_addr.s_addr;
1163 			dport = usin->sin_port;
1164 		}
1165 	}
1166 
1167 	saddr = ipc.addr;
1168 	ipc.addr = faddr = daddr;
1169 
1170 	if (ipc.opt && ipc.opt->opt.srr) {
1171 		if (!daddr) {
1172 			err = -EINVAL;
1173 			goto out_free;
1174 		}
1175 		faddr = ipc.opt->opt.faddr;
1176 		connected = 0;
1177 	}
1178 	tos = get_rttos(&ipc, inet);
1179 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
1180 	    (msg->msg_flags & MSG_DONTROUTE) ||
1181 	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
1182 		tos |= RTO_ONLINK;
1183 		connected = 0;
1184 	}
1185 
1186 	if (ipv4_is_multicast(daddr)) {
1187 		if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1188 			ipc.oif = inet->mc_index;
1189 		if (!saddr)
1190 			saddr = inet->mc_addr;
1191 		connected = 0;
1192 	} else if (!ipc.oif) {
1193 		ipc.oif = inet->uc_index;
1194 	} else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
1195 		/* oif is set, packet is to local broadcast and
1196 		 * uc_index is set. oif is most likely set
1197 		 * by sk_bound_dev_if. If uc_index != oif check if the
1198 		 * oif is an L3 master and uc_index is an L3 slave.
1199 		 * If so, we want to allow the send using the uc_index.
1200 		 */
1201 		if (ipc.oif != inet->uc_index &&
1202 		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1203 							      inet->uc_index)) {
1204 			ipc.oif = inet->uc_index;
1205 		}
1206 	}
1207 
1208 	if (connected)
1209 		rt = (struct rtable *)sk_dst_check(sk, 0);
1210 
1211 	if (!rt) {
1212 		struct net *net = sock_net(sk);
1213 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1214 
1215 		fl4 = &fl4_stack;
1216 
1217 		flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos,
1218 				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
1219 				   flow_flags,
1220 				   faddr, saddr, dport, inet->inet_sport,
1221 				   sk->sk_uid);
1222 
1223 		security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
1224 		rt = ip_route_output_flow(net, fl4, sk);
1225 		if (IS_ERR(rt)) {
1226 			err = PTR_ERR(rt);
1227 			rt = NULL;
1228 			if (err == -ENETUNREACH)
1229 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1230 			goto out;
1231 		}
1232 
1233 		err = -EACCES;
1234 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1235 		    !sock_flag(sk, SOCK_BROADCAST))
1236 			goto out;
1237 		if (connected)
1238 			sk_dst_set(sk, dst_clone(&rt->dst));
1239 	}
1240 
1241 	if (msg->msg_flags&MSG_CONFIRM)
1242 		goto do_confirm;
1243 back_from_confirm:
1244 
1245 	saddr = fl4->saddr;
1246 	if (!ipc.addr)
1247 		daddr = ipc.addr = fl4->daddr;
1248 
1249 	/* Lockless fast path for the non-corking case. */
1250 	if (!corkreq) {
1251 		struct inet_cork cork;
1252 
1253 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1254 				  sizeof(struct udphdr), &ipc, &rt,
1255 				  &cork, msg->msg_flags);
1256 		err = PTR_ERR(skb);
1257 		if (!IS_ERR_OR_NULL(skb))
1258 			err = udp_send_skb(skb, fl4, &cork);
1259 		goto out;
1260 	}
1261 
1262 	lock_sock(sk);
1263 	if (unlikely(up->pending)) {
1264 		/* The socket is already corked while preparing it. */
1265 		/* ... which is an evident application bug. --ANK */
1266 		release_sock(sk);
1267 
1268 		net_dbg_ratelimited("socket already corked\n");
1269 		err = -EINVAL;
1270 		goto out;
1271 	}
1272 	/*
1273 	 *	Now cork the socket to pend data.
1274 	 */
1275 	fl4 = &inet->cork.fl.u.ip4;
1276 	fl4->daddr = daddr;
1277 	fl4->saddr = saddr;
1278 	fl4->fl4_dport = dport;
1279 	fl4->fl4_sport = inet->inet_sport;
1280 	up->pending = AF_INET;
1281 
1282 do_append_data:
1283 	up->len += ulen;
1284 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1285 			     sizeof(struct udphdr), &ipc, &rt,
1286 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1287 	if (err)
1288 		udp_flush_pending_frames(sk);
1289 	else if (!corkreq)
1290 		err = udp_push_pending_frames(sk);
1291 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1292 		up->pending = 0;
1293 	release_sock(sk);
1294 
1295 out:
1296 	ip_rt_put(rt);
1297 out_free:
1298 	if (free)
1299 		kfree(ipc.opt);
1300 	if (!err)
1301 		return len;
1302 	/*
1303 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1304 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1305 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1306 	 * things).  We could add another new stat but at least for now that
1307 	 * seems like overkill.
1308 	 */
1309 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1310 		UDP_INC_STATS(sock_net(sk),
1311 			      UDP_MIB_SNDBUFERRORS, is_udplite);
1312 	}
1313 	return err;
1314 
1315 do_confirm:
1316 	if (msg->msg_flags & MSG_PROBE)
1317 		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1318 	if (!(msg->msg_flags&MSG_PROBE) || len)
1319 		goto back_from_confirm;
1320 	err = 0;
1321 	goto out;
1322 }
1323 EXPORT_SYMBOL(udp_sendmsg);
1324 
1325 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1326 		 size_t size, int flags)
1327 {
1328 	struct inet_sock *inet = inet_sk(sk);
1329 	struct udp_sock *up = udp_sk(sk);
1330 	int ret;
1331 
1332 	if (flags & MSG_SENDPAGE_NOTLAST)
1333 		flags |= MSG_MORE;
1334 
1335 	if (!up->pending) {
1336 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1337 
1338 		/* Call udp_sendmsg to specify destination address which
1339 		 * sendpage interface can't pass.
1340 		 * This will succeed only when the socket is connected.
1341 		 */
1342 		ret = udp_sendmsg(sk, &msg, 0);
1343 		if (ret < 0)
1344 			return ret;
1345 	}
1346 
1347 	lock_sock(sk);
1348 
1349 	if (unlikely(!up->pending)) {
1350 		release_sock(sk);
1351 
1352 		net_dbg_ratelimited("cork failed\n");
1353 		return -EINVAL;
1354 	}
1355 
1356 	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1357 			     page, offset, size, flags);
1358 	if (ret == -EOPNOTSUPP) {
1359 		release_sock(sk);
1360 		return sock_no_sendpage(sk->sk_socket, page, offset,
1361 					size, flags);
1362 	}
1363 	if (ret < 0) {
1364 		udp_flush_pending_frames(sk);
1365 		goto out;
1366 	}
1367 
1368 	up->len += size;
1369 	if (!(READ_ONCE(up->corkflag) || (flags&MSG_MORE)))
1370 		ret = udp_push_pending_frames(sk);
1371 	if (!ret)
1372 		ret = size;
1373 out:
1374 	release_sock(sk);
1375 	return ret;
1376 }
1377 
1378 #define UDP_SKB_IS_STATELESS 0x80000000
1379 
1380 /* all head states (dst, sk, nf conntrack) except skb extensions are
1381  * cleared by udp_rcv().
1382  *
1383  * We need to preserve secpath, if present, to eventually process
1384  * IP_CMSG_PASSSEC at recvmsg() time.
1385  *
1386  * Other extensions can be cleared.
1387  */
1388 static bool udp_try_make_stateless(struct sk_buff *skb)
1389 {
1390 	if (!skb_has_extensions(skb))
1391 		return true;
1392 
1393 	if (!secpath_exists(skb)) {
1394 		skb_ext_reset(skb);
1395 		return true;
1396 	}
1397 
1398 	return false;
1399 }
1400 
1401 static void udp_set_dev_scratch(struct sk_buff *skb)
1402 {
1403 	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1404 
1405 	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1406 	scratch->_tsize_state = skb->truesize;
1407 #if BITS_PER_LONG == 64
1408 	scratch->len = skb->len;
1409 	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1410 	scratch->is_linear = !skb_is_nonlinear(skb);
1411 #endif
1412 	if (udp_try_make_stateless(skb))
1413 		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1414 }
1415 
1416 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1417 {
1418 	/* We come here after udp_lib_checksum_complete() returned 0.
1419 	 * This means that __skb_checksum_complete() might have
1420 	 * set skb->csum_valid to 1.
1421 	 * On 64bit platforms, we can set csum_unnecessary
1422 	 * to true, but only if the skb is not shared.
1423 	 */
1424 #if BITS_PER_LONG == 64
1425 	if (!skb_shared(skb))
1426 		udp_skb_scratch(skb)->csum_unnecessary = true;
1427 #endif
1428 }
1429 
1430 static int udp_skb_truesize(struct sk_buff *skb)
1431 {
1432 	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1433 }
1434 
1435 static bool udp_skb_has_head_state(struct sk_buff *skb)
1436 {
1437 	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1438 }
1439 
1440 /* fully reclaim rmem/fwd memory allocated for skb */
1441 static void udp_rmem_release(struct sock *sk, int size, int partial,
1442 			     bool rx_queue_lock_held)
1443 {
1444 	struct udp_sock *up = udp_sk(sk);
1445 	struct sk_buff_head *sk_queue;
1446 	int amt;
1447 
1448 	if (likely(partial)) {
1449 		up->forward_deficit += size;
1450 		size = up->forward_deficit;
1451 		if (size < (sk->sk_rcvbuf >> 2) &&
1452 		    !skb_queue_empty(&up->reader_queue))
1453 			return;
1454 	} else {
1455 		size += up->forward_deficit;
1456 	}
1457 	up->forward_deficit = 0;
1458 
1459 	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1460 	 * if the called don't held it already
1461 	 */
1462 	sk_queue = &sk->sk_receive_queue;
1463 	if (!rx_queue_lock_held)
1464 		spin_lock(&sk_queue->lock);
1465 
1466 
1467 	sk->sk_forward_alloc += size;
1468 	amt = (sk->sk_forward_alloc - partial) & ~(PAGE_SIZE - 1);
1469 	sk->sk_forward_alloc -= amt;
1470 
1471 	if (amt)
1472 		__sk_mem_reduce_allocated(sk, amt >> PAGE_SHIFT);
1473 
1474 	atomic_sub(size, &sk->sk_rmem_alloc);
1475 
1476 	/* this can save us from acquiring the rx queue lock on next receive */
1477 	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1478 
1479 	if (!rx_queue_lock_held)
1480 		spin_unlock(&sk_queue->lock);
1481 }
1482 
1483 /* Note: called with reader_queue.lock held.
1484  * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1485  * This avoids a cache line miss while receive_queue lock is held.
1486  * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1487  */
1488 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1489 {
1490 	prefetch(&skb->data);
1491 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1492 }
1493 EXPORT_SYMBOL(udp_skb_destructor);
1494 
1495 /* as above, but the caller held the rx queue lock, too */
1496 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1497 {
1498 	prefetch(&skb->data);
1499 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1500 }
1501 
1502 /* Idea of busylocks is to let producers grab an extra spinlock
1503  * to relieve pressure on the receive_queue spinlock shared by consumer.
1504  * Under flood, this means that only one producer can be in line
1505  * trying to acquire the receive_queue spinlock.
1506  * These busylock can be allocated on a per cpu manner, instead of a
1507  * per socket one (that would consume a cache line per socket)
1508  */
1509 static int udp_busylocks_log __read_mostly;
1510 static spinlock_t *udp_busylocks __read_mostly;
1511 
1512 static spinlock_t *busylock_acquire(void *ptr)
1513 {
1514 	spinlock_t *busy;
1515 
1516 	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1517 	spin_lock(busy);
1518 	return busy;
1519 }
1520 
1521 static void busylock_release(spinlock_t *busy)
1522 {
1523 	if (busy)
1524 		spin_unlock(busy);
1525 }
1526 
1527 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1528 {
1529 	struct sk_buff_head *list = &sk->sk_receive_queue;
1530 	int rmem, delta, amt, err = -ENOMEM;
1531 	spinlock_t *busy = NULL;
1532 	int size;
1533 
1534 	/* try to avoid the costly atomic add/sub pair when the receive
1535 	 * queue is full; always allow at least a packet
1536 	 */
1537 	rmem = atomic_read(&sk->sk_rmem_alloc);
1538 	if (rmem > sk->sk_rcvbuf)
1539 		goto drop;
1540 
1541 	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1542 	 * having linear skbs :
1543 	 * - Reduce memory overhead and thus increase receive queue capacity
1544 	 * - Less cache line misses at copyout() time
1545 	 * - Less work at consume_skb() (less alien page frag freeing)
1546 	 */
1547 	if (rmem > (sk->sk_rcvbuf >> 1)) {
1548 		skb_condense(skb);
1549 
1550 		busy = busylock_acquire(sk);
1551 	}
1552 	size = skb->truesize;
1553 	udp_set_dev_scratch(skb);
1554 
1555 	/* we drop only if the receive buf is full and the receive
1556 	 * queue contains some other skb
1557 	 */
1558 	rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1559 	if (rmem > (size + (unsigned int)sk->sk_rcvbuf))
1560 		goto uncharge_drop;
1561 
1562 	spin_lock(&list->lock);
1563 	if (size >= sk->sk_forward_alloc) {
1564 		amt = sk_mem_pages(size);
1565 		delta = amt << PAGE_SHIFT;
1566 		if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) {
1567 			err = -ENOBUFS;
1568 			spin_unlock(&list->lock);
1569 			goto uncharge_drop;
1570 		}
1571 
1572 		sk->sk_forward_alloc += delta;
1573 	}
1574 
1575 	sk->sk_forward_alloc -= size;
1576 
1577 	/* no need to setup a destructor, we will explicitly release the
1578 	 * forward allocated memory on dequeue
1579 	 */
1580 	sock_skb_set_dropcount(sk, skb);
1581 
1582 	__skb_queue_tail(list, skb);
1583 	spin_unlock(&list->lock);
1584 
1585 	if (!sock_flag(sk, SOCK_DEAD))
1586 		sk->sk_data_ready(sk);
1587 
1588 	busylock_release(busy);
1589 	return 0;
1590 
1591 uncharge_drop:
1592 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1593 
1594 drop:
1595 	atomic_inc(&sk->sk_drops);
1596 	busylock_release(busy);
1597 	return err;
1598 }
1599 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1600 
1601 void udp_destruct_sock(struct sock *sk)
1602 {
1603 	/* reclaim completely the forward allocated memory */
1604 	struct udp_sock *up = udp_sk(sk);
1605 	unsigned int total = 0;
1606 	struct sk_buff *skb;
1607 
1608 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1609 	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1610 		total += skb->truesize;
1611 		kfree_skb(skb);
1612 	}
1613 	udp_rmem_release(sk, total, 0, true);
1614 
1615 	inet_sock_destruct(sk);
1616 }
1617 EXPORT_SYMBOL_GPL(udp_destruct_sock);
1618 
1619 int udp_init_sock(struct sock *sk)
1620 {
1621 	skb_queue_head_init(&udp_sk(sk)->reader_queue);
1622 	sk->sk_destruct = udp_destruct_sock;
1623 	return 0;
1624 }
1625 EXPORT_SYMBOL_GPL(udp_init_sock);
1626 
1627 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1628 {
1629 	if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1630 		bool slow = lock_sock_fast(sk);
1631 
1632 		sk_peek_offset_bwd(sk, len);
1633 		unlock_sock_fast(sk, slow);
1634 	}
1635 
1636 	if (!skb_unref(skb))
1637 		return;
1638 
1639 	/* In the more common cases we cleared the head states previously,
1640 	 * see __udp_queue_rcv_skb().
1641 	 */
1642 	if (unlikely(udp_skb_has_head_state(skb)))
1643 		skb_release_head_state(skb);
1644 	__consume_stateless_skb(skb);
1645 }
1646 EXPORT_SYMBOL_GPL(skb_consume_udp);
1647 
1648 static struct sk_buff *__first_packet_length(struct sock *sk,
1649 					     struct sk_buff_head *rcvq,
1650 					     int *total)
1651 {
1652 	struct sk_buff *skb;
1653 
1654 	while ((skb = skb_peek(rcvq)) != NULL) {
1655 		if (udp_lib_checksum_complete(skb)) {
1656 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1657 					IS_UDPLITE(sk));
1658 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1659 					IS_UDPLITE(sk));
1660 			atomic_inc(&sk->sk_drops);
1661 			__skb_unlink(skb, rcvq);
1662 			*total += skb->truesize;
1663 			kfree_skb(skb);
1664 		} else {
1665 			udp_skb_csum_unnecessary_set(skb);
1666 			break;
1667 		}
1668 	}
1669 	return skb;
1670 }
1671 
1672 /**
1673  *	first_packet_length	- return length of first packet in receive queue
1674  *	@sk: socket
1675  *
1676  *	Drops all bad checksum frames, until a valid one is found.
1677  *	Returns the length of found skb, or -1 if none is found.
1678  */
1679 static int first_packet_length(struct sock *sk)
1680 {
1681 	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1682 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1683 	struct sk_buff *skb;
1684 	int total = 0;
1685 	int res;
1686 
1687 	spin_lock_bh(&rcvq->lock);
1688 	skb = __first_packet_length(sk, rcvq, &total);
1689 	if (!skb && !skb_queue_empty_lockless(sk_queue)) {
1690 		spin_lock(&sk_queue->lock);
1691 		skb_queue_splice_tail_init(sk_queue, rcvq);
1692 		spin_unlock(&sk_queue->lock);
1693 
1694 		skb = __first_packet_length(sk, rcvq, &total);
1695 	}
1696 	res = skb ? skb->len : -1;
1697 	if (total)
1698 		udp_rmem_release(sk, total, 1, false);
1699 	spin_unlock_bh(&rcvq->lock);
1700 	return res;
1701 }
1702 
1703 /*
1704  *	IOCTL requests applicable to the UDP protocol
1705  */
1706 
1707 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1708 {
1709 	switch (cmd) {
1710 	case SIOCOUTQ:
1711 	{
1712 		int amount = sk_wmem_alloc_get(sk);
1713 
1714 		return put_user(amount, (int __user *)arg);
1715 	}
1716 
1717 	case SIOCINQ:
1718 	{
1719 		int amount = max_t(int, 0, first_packet_length(sk));
1720 
1721 		return put_user(amount, (int __user *)arg);
1722 	}
1723 
1724 	default:
1725 		return -ENOIOCTLCMD;
1726 	}
1727 
1728 	return 0;
1729 }
1730 EXPORT_SYMBOL(udp_ioctl);
1731 
1732 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1733 			       int *off, int *err)
1734 {
1735 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1736 	struct sk_buff_head *queue;
1737 	struct sk_buff *last;
1738 	long timeo;
1739 	int error;
1740 
1741 	queue = &udp_sk(sk)->reader_queue;
1742 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1743 	do {
1744 		struct sk_buff *skb;
1745 
1746 		error = sock_error(sk);
1747 		if (error)
1748 			break;
1749 
1750 		error = -EAGAIN;
1751 		do {
1752 			spin_lock_bh(&queue->lock);
1753 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1754 							err, &last);
1755 			if (skb) {
1756 				if (!(flags & MSG_PEEK))
1757 					udp_skb_destructor(sk, skb);
1758 				spin_unlock_bh(&queue->lock);
1759 				return skb;
1760 			}
1761 
1762 			if (skb_queue_empty_lockless(sk_queue)) {
1763 				spin_unlock_bh(&queue->lock);
1764 				goto busy_check;
1765 			}
1766 
1767 			/* refill the reader queue and walk it again
1768 			 * keep both queues locked to avoid re-acquiring
1769 			 * the sk_receive_queue lock if fwd memory scheduling
1770 			 * is needed.
1771 			 */
1772 			spin_lock(&sk_queue->lock);
1773 			skb_queue_splice_tail_init(sk_queue, queue);
1774 
1775 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1776 							err, &last);
1777 			if (skb && !(flags & MSG_PEEK))
1778 				udp_skb_dtor_locked(sk, skb);
1779 			spin_unlock(&sk_queue->lock);
1780 			spin_unlock_bh(&queue->lock);
1781 			if (skb)
1782 				return skb;
1783 
1784 busy_check:
1785 			if (!sk_can_busy_loop(sk))
1786 				break;
1787 
1788 			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1789 		} while (!skb_queue_empty_lockless(sk_queue));
1790 
1791 		/* sk_queue is empty, reader_queue may contain peeked packets */
1792 	} while (timeo &&
1793 		 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
1794 					      &error, &timeo,
1795 					      (struct sk_buff *)sk_queue));
1796 
1797 	*err = error;
1798 	return NULL;
1799 }
1800 EXPORT_SYMBOL(__skb_recv_udp);
1801 
1802 int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1803 {
1804 	struct sk_buff *skb;
1805 	int err, copied;
1806 
1807 try_again:
1808 	skb = skb_recv_udp(sk, MSG_DONTWAIT, &err);
1809 	if (!skb)
1810 		return err;
1811 
1812 	if (udp_lib_checksum_complete(skb)) {
1813 		int is_udplite = IS_UDPLITE(sk);
1814 		struct net *net = sock_net(sk);
1815 
1816 		__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, is_udplite);
1817 		__UDP_INC_STATS(net, UDP_MIB_INERRORS, is_udplite);
1818 		atomic_inc(&sk->sk_drops);
1819 		kfree_skb(skb);
1820 		goto try_again;
1821 	}
1822 
1823 	WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1824 	copied = recv_actor(sk, skb);
1825 	kfree_skb(skb);
1826 
1827 	return copied;
1828 }
1829 EXPORT_SYMBOL(udp_read_skb);
1830 
1831 /*
1832  * 	This should be easy, if there is something there we
1833  * 	return it, otherwise we block.
1834  */
1835 
1836 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
1837 		int *addr_len)
1838 {
1839 	struct inet_sock *inet = inet_sk(sk);
1840 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1841 	struct sk_buff *skb;
1842 	unsigned int ulen, copied;
1843 	int off, err, peeking = flags & MSG_PEEK;
1844 	int is_udplite = IS_UDPLITE(sk);
1845 	bool checksum_valid = false;
1846 
1847 	if (flags & MSG_ERRQUEUE)
1848 		return ip_recv_error(sk, msg, len, addr_len);
1849 
1850 try_again:
1851 	off = sk_peek_offset(sk, flags);
1852 	skb = __skb_recv_udp(sk, flags, &off, &err);
1853 	if (!skb)
1854 		return err;
1855 
1856 	ulen = udp_skb_len(skb);
1857 	copied = len;
1858 	if (copied > ulen - off)
1859 		copied = ulen - off;
1860 	else if (copied < ulen)
1861 		msg->msg_flags |= MSG_TRUNC;
1862 
1863 	/*
1864 	 * If checksum is needed at all, try to do it while copying the
1865 	 * data.  If the data is truncated, or if we only want a partial
1866 	 * coverage checksum (UDP-Lite), do it before the copy.
1867 	 */
1868 
1869 	if (copied < ulen || peeking ||
1870 	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1871 		checksum_valid = udp_skb_csum_unnecessary(skb) ||
1872 				!__udp_lib_checksum_complete(skb);
1873 		if (!checksum_valid)
1874 			goto csum_copy_err;
1875 	}
1876 
1877 	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1878 		if (udp_skb_is_linear(skb))
1879 			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1880 		else
1881 			err = skb_copy_datagram_msg(skb, off, msg, copied);
1882 	} else {
1883 		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1884 
1885 		if (err == -EINVAL)
1886 			goto csum_copy_err;
1887 	}
1888 
1889 	if (unlikely(err)) {
1890 		if (!peeking) {
1891 			atomic_inc(&sk->sk_drops);
1892 			UDP_INC_STATS(sock_net(sk),
1893 				      UDP_MIB_INERRORS, is_udplite);
1894 		}
1895 		kfree_skb(skb);
1896 		return err;
1897 	}
1898 
1899 	if (!peeking)
1900 		UDP_INC_STATS(sock_net(sk),
1901 			      UDP_MIB_INDATAGRAMS, is_udplite);
1902 
1903 	sock_recv_cmsgs(msg, sk, skb);
1904 
1905 	/* Copy the address. */
1906 	if (sin) {
1907 		sin->sin_family = AF_INET;
1908 		sin->sin_port = udp_hdr(skb)->source;
1909 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1910 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1911 		*addr_len = sizeof(*sin);
1912 
1913 		BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
1914 						      (struct sockaddr *)sin);
1915 	}
1916 
1917 	if (udp_sk(sk)->gro_enabled)
1918 		udp_cmsg_recv(msg, sk, skb);
1919 
1920 	if (inet->cmsg_flags)
1921 		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1922 
1923 	err = copied;
1924 	if (flags & MSG_TRUNC)
1925 		err = ulen;
1926 
1927 	skb_consume_udp(sk, skb, peeking ? -err : err);
1928 	return err;
1929 
1930 csum_copy_err:
1931 	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1932 				 udp_skb_destructor)) {
1933 		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1934 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1935 	}
1936 	kfree_skb(skb);
1937 
1938 	/* starting over for a new packet, but check if we need to yield */
1939 	cond_resched();
1940 	msg->msg_flags &= ~MSG_TRUNC;
1941 	goto try_again;
1942 }
1943 
1944 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1945 {
1946 	/* This check is replicated from __ip4_datagram_connect() and
1947 	 * intended to prevent BPF program called below from accessing bytes
1948 	 * that are out of the bound specified by user in addr_len.
1949 	 */
1950 	if (addr_len < sizeof(struct sockaddr_in))
1951 		return -EINVAL;
1952 
1953 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr);
1954 }
1955 EXPORT_SYMBOL(udp_pre_connect);
1956 
1957 int __udp_disconnect(struct sock *sk, int flags)
1958 {
1959 	struct inet_sock *inet = inet_sk(sk);
1960 	/*
1961 	 *	1003.1g - break association.
1962 	 */
1963 
1964 	sk->sk_state = TCP_CLOSE;
1965 	inet->inet_daddr = 0;
1966 	inet->inet_dport = 0;
1967 	sock_rps_reset_rxhash(sk);
1968 	sk->sk_bound_dev_if = 0;
1969 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) {
1970 		inet_reset_saddr(sk);
1971 		if (sk->sk_prot->rehash &&
1972 		    (sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1973 			sk->sk_prot->rehash(sk);
1974 	}
1975 
1976 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1977 		sk->sk_prot->unhash(sk);
1978 		inet->inet_sport = 0;
1979 	}
1980 	sk_dst_reset(sk);
1981 	return 0;
1982 }
1983 EXPORT_SYMBOL(__udp_disconnect);
1984 
1985 int udp_disconnect(struct sock *sk, int flags)
1986 {
1987 	lock_sock(sk);
1988 	__udp_disconnect(sk, flags);
1989 	release_sock(sk);
1990 	return 0;
1991 }
1992 EXPORT_SYMBOL(udp_disconnect);
1993 
1994 void udp_lib_unhash(struct sock *sk)
1995 {
1996 	if (sk_hashed(sk)) {
1997 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1998 		struct udp_hslot *hslot, *hslot2;
1999 
2000 		hslot  = udp_hashslot(udptable, sock_net(sk),
2001 				      udp_sk(sk)->udp_port_hash);
2002 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2003 
2004 		spin_lock_bh(&hslot->lock);
2005 		if (rcu_access_pointer(sk->sk_reuseport_cb))
2006 			reuseport_detach_sock(sk);
2007 		if (sk_del_node_init_rcu(sk)) {
2008 			hslot->count--;
2009 			inet_sk(sk)->inet_num = 0;
2010 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
2011 
2012 			spin_lock(&hslot2->lock);
2013 			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2014 			hslot2->count--;
2015 			spin_unlock(&hslot2->lock);
2016 		}
2017 		spin_unlock_bh(&hslot->lock);
2018 	}
2019 }
2020 EXPORT_SYMBOL(udp_lib_unhash);
2021 
2022 /*
2023  * inet_rcv_saddr was changed, we must rehash secondary hash
2024  */
2025 void udp_lib_rehash(struct sock *sk, u16 newhash)
2026 {
2027 	if (sk_hashed(sk)) {
2028 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
2029 		struct udp_hslot *hslot, *hslot2, *nhslot2;
2030 
2031 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2032 		nhslot2 = udp_hashslot2(udptable, newhash);
2033 		udp_sk(sk)->udp_portaddr_hash = newhash;
2034 
2035 		if (hslot2 != nhslot2 ||
2036 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
2037 			hslot = udp_hashslot(udptable, sock_net(sk),
2038 					     udp_sk(sk)->udp_port_hash);
2039 			/* we must lock primary chain too */
2040 			spin_lock_bh(&hslot->lock);
2041 			if (rcu_access_pointer(sk->sk_reuseport_cb))
2042 				reuseport_detach_sock(sk);
2043 
2044 			if (hslot2 != nhslot2) {
2045 				spin_lock(&hslot2->lock);
2046 				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2047 				hslot2->count--;
2048 				spin_unlock(&hslot2->lock);
2049 
2050 				spin_lock(&nhslot2->lock);
2051 				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
2052 							 &nhslot2->head);
2053 				nhslot2->count++;
2054 				spin_unlock(&nhslot2->lock);
2055 			}
2056 
2057 			spin_unlock_bh(&hslot->lock);
2058 		}
2059 	}
2060 }
2061 EXPORT_SYMBOL(udp_lib_rehash);
2062 
2063 void udp_v4_rehash(struct sock *sk)
2064 {
2065 	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
2066 					  inet_sk(sk)->inet_rcv_saddr,
2067 					  inet_sk(sk)->inet_num);
2068 	udp_lib_rehash(sk, new_hash);
2069 }
2070 
2071 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2072 {
2073 	int rc;
2074 
2075 	if (inet_sk(sk)->inet_daddr) {
2076 		sock_rps_save_rxhash(sk, skb);
2077 		sk_mark_napi_id(sk, skb);
2078 		sk_incoming_cpu_update(sk);
2079 	} else {
2080 		sk_mark_napi_id_once(sk, skb);
2081 	}
2082 
2083 	rc = __udp_enqueue_schedule_skb(sk, skb);
2084 	if (rc < 0) {
2085 		int is_udplite = IS_UDPLITE(sk);
2086 		int drop_reason;
2087 
2088 		/* Note that an ENOMEM error is charged twice */
2089 		if (rc == -ENOMEM) {
2090 			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
2091 					is_udplite);
2092 			drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
2093 		} else {
2094 			UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS,
2095 				      is_udplite);
2096 			drop_reason = SKB_DROP_REASON_PROTO_MEM;
2097 		}
2098 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2099 		kfree_skb_reason(skb, drop_reason);
2100 		trace_udp_fail_queue_rcv_skb(rc, sk);
2101 		return -1;
2102 	}
2103 
2104 	return 0;
2105 }
2106 
2107 /* returns:
2108  *  -1: error
2109  *   0: success
2110  *  >0: "udp encap" protocol resubmission
2111  *
2112  * Note that in the success and error cases, the skb is assumed to
2113  * have either been requeued or freed.
2114  */
2115 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
2116 {
2117 	int drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2118 	struct udp_sock *up = udp_sk(sk);
2119 	int is_udplite = IS_UDPLITE(sk);
2120 
2121 	/*
2122 	 *	Charge it to the socket, dropping if the queue is full.
2123 	 */
2124 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
2125 		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2126 		goto drop;
2127 	}
2128 	nf_reset_ct(skb);
2129 
2130 	if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) {
2131 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2132 
2133 		/*
2134 		 * This is an encapsulation socket so pass the skb to
2135 		 * the socket's udp_encap_rcv() hook. Otherwise, just
2136 		 * fall through and pass this up the UDP socket.
2137 		 * up->encap_rcv() returns the following value:
2138 		 * =0 if skb was successfully passed to the encap
2139 		 *    handler or was discarded by it.
2140 		 * >0 if skb should be passed on to UDP.
2141 		 * <0 if skb should be resubmitted as proto -N
2142 		 */
2143 
2144 		/* if we're overly short, let UDP handle it */
2145 		encap_rcv = READ_ONCE(up->encap_rcv);
2146 		if (encap_rcv) {
2147 			int ret;
2148 
2149 			/* Verify checksum before giving to encap */
2150 			if (udp_lib_checksum_complete(skb))
2151 				goto csum_error;
2152 
2153 			ret = encap_rcv(sk, skb);
2154 			if (ret <= 0) {
2155 				__UDP_INC_STATS(sock_net(sk),
2156 						UDP_MIB_INDATAGRAMS,
2157 						is_udplite);
2158 				return -ret;
2159 			}
2160 		}
2161 
2162 		/* FALLTHROUGH -- it's a UDP Packet */
2163 	}
2164 
2165 	/*
2166 	 * 	UDP-Lite specific tests, ignored on UDP sockets
2167 	 */
2168 	if ((up->pcflag & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
2169 
2170 		/*
2171 		 * MIB statistics other than incrementing the error count are
2172 		 * disabled for the following two types of errors: these depend
2173 		 * on the application settings, not on the functioning of the
2174 		 * protocol stack as such.
2175 		 *
2176 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
2177 		 * way ... to ... at least let the receiving application block
2178 		 * delivery of packets with coverage values less than a value
2179 		 * provided by the application."
2180 		 */
2181 		if (up->pcrlen == 0) {          /* full coverage was set  */
2182 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2183 					    UDP_SKB_CB(skb)->cscov, skb->len);
2184 			goto drop;
2185 		}
2186 		/* The next case involves violating the min. coverage requested
2187 		 * by the receiver. This is subtle: if receiver wants x and x is
2188 		 * greater than the buffersize/MTU then receiver will complain
2189 		 * that it wants x while sender emits packets of smaller size y.
2190 		 * Therefore the above ...()->partial_cov statement is essential.
2191 		 */
2192 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
2193 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2194 					    UDP_SKB_CB(skb)->cscov, up->pcrlen);
2195 			goto drop;
2196 		}
2197 	}
2198 
2199 	prefetch(&sk->sk_rmem_alloc);
2200 	if (rcu_access_pointer(sk->sk_filter) &&
2201 	    udp_lib_checksum_complete(skb))
2202 			goto csum_error;
2203 
2204 	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) {
2205 		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2206 		goto drop;
2207 	}
2208 
2209 	udp_csum_pull_header(skb);
2210 
2211 	ipv4_pktinfo_prepare(sk, skb);
2212 	return __udp_queue_rcv_skb(sk, skb);
2213 
2214 csum_error:
2215 	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2216 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2217 drop:
2218 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2219 	atomic_inc(&sk->sk_drops);
2220 	kfree_skb_reason(skb, drop_reason);
2221 	return -1;
2222 }
2223 
2224 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2225 {
2226 	struct sk_buff *next, *segs;
2227 	int ret;
2228 
2229 	if (likely(!udp_unexpected_gso(sk, skb)))
2230 		return udp_queue_rcv_one_skb(sk, skb);
2231 
2232 	BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET);
2233 	__skb_push(skb, -skb_mac_offset(skb));
2234 	segs = udp_rcv_segment(sk, skb, true);
2235 	skb_list_walk_safe(segs, skb, next) {
2236 		__skb_pull(skb, skb_transport_offset(skb));
2237 
2238 		udp_post_segment_fix_csum(skb);
2239 		ret = udp_queue_rcv_one_skb(sk, skb);
2240 		if (ret > 0)
2241 			ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret);
2242 	}
2243 	return 0;
2244 }
2245 
2246 /* For TCP sockets, sk_rx_dst is protected by socket lock
2247  * For UDP, we use xchg() to guard against concurrent changes.
2248  */
2249 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2250 {
2251 	struct dst_entry *old;
2252 
2253 	if (dst_hold_safe(dst)) {
2254 		old = xchg((__force struct dst_entry **)&sk->sk_rx_dst, dst);
2255 		dst_release(old);
2256 		return old != dst;
2257 	}
2258 	return false;
2259 }
2260 EXPORT_SYMBOL(udp_sk_rx_dst_set);
2261 
2262 /*
2263  *	Multicasts and broadcasts go to each listener.
2264  *
2265  *	Note: called only from the BH handler context.
2266  */
2267 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2268 				    struct udphdr  *uh,
2269 				    __be32 saddr, __be32 daddr,
2270 				    struct udp_table *udptable,
2271 				    int proto)
2272 {
2273 	struct sock *sk, *first = NULL;
2274 	unsigned short hnum = ntohs(uh->dest);
2275 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2276 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2277 	unsigned int offset = offsetof(typeof(*sk), sk_node);
2278 	int dif = skb->dev->ifindex;
2279 	int sdif = inet_sdif(skb);
2280 	struct hlist_node *node;
2281 	struct sk_buff *nskb;
2282 
2283 	if (use_hash2) {
2284 		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2285 			    udptable->mask;
2286 		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2287 start_lookup:
2288 		hslot = &udptable->hash2[hash2];
2289 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2290 	}
2291 
2292 	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2293 		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2294 					 uh->source, saddr, dif, sdif, hnum))
2295 			continue;
2296 
2297 		if (!first) {
2298 			first = sk;
2299 			continue;
2300 		}
2301 		nskb = skb_clone(skb, GFP_ATOMIC);
2302 
2303 		if (unlikely(!nskb)) {
2304 			atomic_inc(&sk->sk_drops);
2305 			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2306 					IS_UDPLITE(sk));
2307 			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
2308 					IS_UDPLITE(sk));
2309 			continue;
2310 		}
2311 		if (udp_queue_rcv_skb(sk, nskb) > 0)
2312 			consume_skb(nskb);
2313 	}
2314 
2315 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2316 	if (use_hash2 && hash2 != hash2_any) {
2317 		hash2 = hash2_any;
2318 		goto start_lookup;
2319 	}
2320 
2321 	if (first) {
2322 		if (udp_queue_rcv_skb(first, skb) > 0)
2323 			consume_skb(skb);
2324 	} else {
2325 		kfree_skb(skb);
2326 		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2327 				proto == IPPROTO_UDPLITE);
2328 	}
2329 	return 0;
2330 }
2331 
2332 /* Initialize UDP checksum. If exited with zero value (success),
2333  * CHECKSUM_UNNECESSARY means, that no more checks are required.
2334  * Otherwise, csum completion requires checksumming packet body,
2335  * including udp header and folding it to skb->csum.
2336  */
2337 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2338 				 int proto)
2339 {
2340 	int err;
2341 
2342 	UDP_SKB_CB(skb)->partial_cov = 0;
2343 	UDP_SKB_CB(skb)->cscov = skb->len;
2344 
2345 	if (proto == IPPROTO_UDPLITE) {
2346 		err = udplite_checksum_init(skb, uh);
2347 		if (err)
2348 			return err;
2349 
2350 		if (UDP_SKB_CB(skb)->partial_cov) {
2351 			skb->csum = inet_compute_pseudo(skb, proto);
2352 			return 0;
2353 		}
2354 	}
2355 
2356 	/* Note, we are only interested in != 0 or == 0, thus the
2357 	 * force to int.
2358 	 */
2359 	err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2360 							inet_compute_pseudo);
2361 	if (err)
2362 		return err;
2363 
2364 	if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2365 		/* If SW calculated the value, we know it's bad */
2366 		if (skb->csum_complete_sw)
2367 			return 1;
2368 
2369 		/* HW says the value is bad. Let's validate that.
2370 		 * skb->csum is no longer the full packet checksum,
2371 		 * so don't treat it as such.
2372 		 */
2373 		skb_checksum_complete_unset(skb);
2374 	}
2375 
2376 	return 0;
2377 }
2378 
2379 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2380  * return code conversion for ip layer consumption
2381  */
2382 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2383 			       struct udphdr *uh)
2384 {
2385 	int ret;
2386 
2387 	if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2388 		skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2389 
2390 	ret = udp_queue_rcv_skb(sk, skb);
2391 
2392 	/* a return value > 0 means to resubmit the input, but
2393 	 * it wants the return to be -protocol, or 0
2394 	 */
2395 	if (ret > 0)
2396 		return -ret;
2397 	return 0;
2398 }
2399 
2400 /*
2401  *	All we need to do is get the socket, and then do a checksum.
2402  */
2403 
2404 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2405 		   int proto)
2406 {
2407 	struct sock *sk;
2408 	struct udphdr *uh;
2409 	unsigned short ulen;
2410 	struct rtable *rt = skb_rtable(skb);
2411 	__be32 saddr, daddr;
2412 	struct net *net = dev_net(skb->dev);
2413 	bool refcounted;
2414 	int drop_reason;
2415 
2416 	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2417 
2418 	/*
2419 	 *  Validate the packet.
2420 	 */
2421 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2422 		goto drop;		/* No space for header. */
2423 
2424 	uh   = udp_hdr(skb);
2425 	ulen = ntohs(uh->len);
2426 	saddr = ip_hdr(skb)->saddr;
2427 	daddr = ip_hdr(skb)->daddr;
2428 
2429 	if (ulen > skb->len)
2430 		goto short_packet;
2431 
2432 	if (proto == IPPROTO_UDP) {
2433 		/* UDP validates ulen. */
2434 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2435 			goto short_packet;
2436 		uh = udp_hdr(skb);
2437 	}
2438 
2439 	if (udp4_csum_init(skb, uh, proto))
2440 		goto csum_error;
2441 
2442 	sk = skb_steal_sock(skb, &refcounted);
2443 	if (sk) {
2444 		struct dst_entry *dst = skb_dst(skb);
2445 		int ret;
2446 
2447 		if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst))
2448 			udp_sk_rx_dst_set(sk, dst);
2449 
2450 		ret = udp_unicast_rcv_skb(sk, skb, uh);
2451 		if (refcounted)
2452 			sock_put(sk);
2453 		return ret;
2454 	}
2455 
2456 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2457 		return __udp4_lib_mcast_deliver(net, skb, uh,
2458 						saddr, daddr, udptable, proto);
2459 
2460 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2461 	if (sk)
2462 		return udp_unicast_rcv_skb(sk, skb, uh);
2463 
2464 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2465 		goto drop;
2466 	nf_reset_ct(skb);
2467 
2468 	/* No socket. Drop packet silently, if checksum is wrong */
2469 	if (udp_lib_checksum_complete(skb))
2470 		goto csum_error;
2471 
2472 	drop_reason = SKB_DROP_REASON_NO_SOCKET;
2473 	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2474 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2475 
2476 	/*
2477 	 * Hmm.  We got an UDP packet to a port to which we
2478 	 * don't wanna listen.  Ignore it.
2479 	 */
2480 	kfree_skb_reason(skb, drop_reason);
2481 	return 0;
2482 
2483 short_packet:
2484 	drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
2485 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2486 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2487 			    &saddr, ntohs(uh->source),
2488 			    ulen, skb->len,
2489 			    &daddr, ntohs(uh->dest));
2490 	goto drop;
2491 
2492 csum_error:
2493 	/*
2494 	 * RFC1122: OK.  Discards the bad packet silently (as far as
2495 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2496 	 */
2497 	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2498 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2499 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2500 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2501 			    ulen);
2502 	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2503 drop:
2504 	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2505 	kfree_skb_reason(skb, drop_reason);
2506 	return 0;
2507 }
2508 
2509 /* We can only early demux multicast if there is a single matching socket.
2510  * If more than one socket found returns NULL
2511  */
2512 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2513 						  __be16 loc_port, __be32 loc_addr,
2514 						  __be16 rmt_port, __be32 rmt_addr,
2515 						  int dif, int sdif)
2516 {
2517 	struct sock *sk, *result;
2518 	unsigned short hnum = ntohs(loc_port);
2519 	unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
2520 	struct udp_hslot *hslot = &udp_table.hash[slot];
2521 
2522 	/* Do not bother scanning a too big list */
2523 	if (hslot->count > 10)
2524 		return NULL;
2525 
2526 	result = NULL;
2527 	sk_for_each_rcu(sk, &hslot->head) {
2528 		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2529 					rmt_port, rmt_addr, dif, sdif, hnum)) {
2530 			if (result)
2531 				return NULL;
2532 			result = sk;
2533 		}
2534 	}
2535 
2536 	return result;
2537 }
2538 
2539 /* For unicast we should only early demux connected sockets or we can
2540  * break forwarding setups.  The chains here can be long so only check
2541  * if the first socket is an exact match and if not move on.
2542  */
2543 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2544 					    __be16 loc_port, __be32 loc_addr,
2545 					    __be16 rmt_port, __be32 rmt_addr,
2546 					    int dif, int sdif)
2547 {
2548 	unsigned short hnum = ntohs(loc_port);
2549 	unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2550 	unsigned int slot2 = hash2 & udp_table.mask;
2551 	struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
2552 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2553 	const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
2554 	struct sock *sk;
2555 
2556 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2557 		if (inet_match(net, sk, acookie, ports, dif, sdif))
2558 			return sk;
2559 		/* Only check first socket in chain */
2560 		break;
2561 	}
2562 	return NULL;
2563 }
2564 
2565 int udp_v4_early_demux(struct sk_buff *skb)
2566 {
2567 	struct net *net = dev_net(skb->dev);
2568 	struct in_device *in_dev = NULL;
2569 	const struct iphdr *iph;
2570 	const struct udphdr *uh;
2571 	struct sock *sk = NULL;
2572 	struct dst_entry *dst;
2573 	int dif = skb->dev->ifindex;
2574 	int sdif = inet_sdif(skb);
2575 	int ours;
2576 
2577 	/* validate the packet */
2578 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2579 		return 0;
2580 
2581 	iph = ip_hdr(skb);
2582 	uh = udp_hdr(skb);
2583 
2584 	if (skb->pkt_type == PACKET_MULTICAST) {
2585 		in_dev = __in_dev_get_rcu(skb->dev);
2586 
2587 		if (!in_dev)
2588 			return 0;
2589 
2590 		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2591 				       iph->protocol);
2592 		if (!ours)
2593 			return 0;
2594 
2595 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2596 						   uh->source, iph->saddr,
2597 						   dif, sdif);
2598 	} else if (skb->pkt_type == PACKET_HOST) {
2599 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2600 					     uh->source, iph->saddr, dif, sdif);
2601 	}
2602 
2603 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2604 		return 0;
2605 
2606 	skb->sk = sk;
2607 	skb->destructor = sock_efree;
2608 	dst = rcu_dereference(sk->sk_rx_dst);
2609 
2610 	if (dst)
2611 		dst = dst_check(dst, 0);
2612 	if (dst) {
2613 		u32 itag = 0;
2614 
2615 		/* set noref for now.
2616 		 * any place which wants to hold dst has to call
2617 		 * dst_hold_safe()
2618 		 */
2619 		skb_dst_set_noref(skb, dst);
2620 
2621 		/* for unconnected multicast sockets we need to validate
2622 		 * the source on each packet
2623 		 */
2624 		if (!inet_sk(sk)->inet_daddr && in_dev)
2625 			return ip_mc_validate_source(skb, iph->daddr,
2626 						     iph->saddr,
2627 						     iph->tos & IPTOS_RT_MASK,
2628 						     skb->dev, in_dev, &itag);
2629 	}
2630 	return 0;
2631 }
2632 
2633 int udp_rcv(struct sk_buff *skb)
2634 {
2635 	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2636 }
2637 
2638 void udp_destroy_sock(struct sock *sk)
2639 {
2640 	struct udp_sock *up = udp_sk(sk);
2641 	bool slow = lock_sock_fast(sk);
2642 
2643 	/* protects from races with udp_abort() */
2644 	sock_set_flag(sk, SOCK_DEAD);
2645 	udp_flush_pending_frames(sk);
2646 	unlock_sock_fast(sk, slow);
2647 	if (static_branch_unlikely(&udp_encap_needed_key)) {
2648 		if (up->encap_type) {
2649 			void (*encap_destroy)(struct sock *sk);
2650 			encap_destroy = READ_ONCE(up->encap_destroy);
2651 			if (encap_destroy)
2652 				encap_destroy(sk);
2653 		}
2654 		if (up->encap_enabled)
2655 			static_branch_dec(&udp_encap_needed_key);
2656 	}
2657 }
2658 
2659 /*
2660  *	Socket option code for UDP
2661  */
2662 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2663 		       sockptr_t optval, unsigned int optlen,
2664 		       int (*push_pending_frames)(struct sock *))
2665 {
2666 	struct udp_sock *up = udp_sk(sk);
2667 	int val, valbool;
2668 	int err = 0;
2669 	int is_udplite = IS_UDPLITE(sk);
2670 
2671 	if (optlen < sizeof(int))
2672 		return -EINVAL;
2673 
2674 	if (copy_from_sockptr(&val, optval, sizeof(val)))
2675 		return -EFAULT;
2676 
2677 	valbool = val ? 1 : 0;
2678 
2679 	switch (optname) {
2680 	case UDP_CORK:
2681 		if (val != 0) {
2682 			WRITE_ONCE(up->corkflag, 1);
2683 		} else {
2684 			WRITE_ONCE(up->corkflag, 0);
2685 			lock_sock(sk);
2686 			push_pending_frames(sk);
2687 			release_sock(sk);
2688 		}
2689 		break;
2690 
2691 	case UDP_ENCAP:
2692 		switch (val) {
2693 		case 0:
2694 #ifdef CONFIG_XFRM
2695 		case UDP_ENCAP_ESPINUDP:
2696 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2697 #if IS_ENABLED(CONFIG_IPV6)
2698 			if (sk->sk_family == AF_INET6)
2699 				up->encap_rcv = ipv6_stub->xfrm6_udp_encap_rcv;
2700 			else
2701 #endif
2702 				up->encap_rcv = xfrm4_udp_encap_rcv;
2703 #endif
2704 			fallthrough;
2705 		case UDP_ENCAP_L2TPINUDP:
2706 			up->encap_type = val;
2707 			lock_sock(sk);
2708 			udp_tunnel_encap_enable(sk->sk_socket);
2709 			release_sock(sk);
2710 			break;
2711 		default:
2712 			err = -ENOPROTOOPT;
2713 			break;
2714 		}
2715 		break;
2716 
2717 	case UDP_NO_CHECK6_TX:
2718 		up->no_check6_tx = valbool;
2719 		break;
2720 
2721 	case UDP_NO_CHECK6_RX:
2722 		up->no_check6_rx = valbool;
2723 		break;
2724 
2725 	case UDP_SEGMENT:
2726 		if (val < 0 || val > USHRT_MAX)
2727 			return -EINVAL;
2728 		WRITE_ONCE(up->gso_size, val);
2729 		break;
2730 
2731 	case UDP_GRO:
2732 		lock_sock(sk);
2733 
2734 		/* when enabling GRO, accept the related GSO packet type */
2735 		if (valbool)
2736 			udp_tunnel_encap_enable(sk->sk_socket);
2737 		up->gro_enabled = valbool;
2738 		up->accept_udp_l4 = valbool;
2739 		release_sock(sk);
2740 		break;
2741 
2742 	/*
2743 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2744 	 */
2745 	/* The sender sets actual checksum coverage length via this option.
2746 	 * The case coverage > packet length is handled by send module. */
2747 	case UDPLITE_SEND_CSCOV:
2748 		if (!is_udplite)         /* Disable the option on UDP sockets */
2749 			return -ENOPROTOOPT;
2750 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2751 			val = 8;
2752 		else if (val > USHRT_MAX)
2753 			val = USHRT_MAX;
2754 		up->pcslen = val;
2755 		up->pcflag |= UDPLITE_SEND_CC;
2756 		break;
2757 
2758 	/* The receiver specifies a minimum checksum coverage value. To make
2759 	 * sense, this should be set to at least 8 (as done below). If zero is
2760 	 * used, this again means full checksum coverage.                     */
2761 	case UDPLITE_RECV_CSCOV:
2762 		if (!is_udplite)         /* Disable the option on UDP sockets */
2763 			return -ENOPROTOOPT;
2764 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2765 			val = 8;
2766 		else if (val > USHRT_MAX)
2767 			val = USHRT_MAX;
2768 		up->pcrlen = val;
2769 		up->pcflag |= UDPLITE_RECV_CC;
2770 		break;
2771 
2772 	default:
2773 		err = -ENOPROTOOPT;
2774 		break;
2775 	}
2776 
2777 	return err;
2778 }
2779 EXPORT_SYMBOL(udp_lib_setsockopt);
2780 
2781 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
2782 		   unsigned int optlen)
2783 {
2784 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2785 		return udp_lib_setsockopt(sk, level, optname,
2786 					  optval, optlen,
2787 					  udp_push_pending_frames);
2788 	return ip_setsockopt(sk, level, optname, optval, optlen);
2789 }
2790 
2791 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2792 		       char __user *optval, int __user *optlen)
2793 {
2794 	struct udp_sock *up = udp_sk(sk);
2795 	int val, len;
2796 
2797 	if (get_user(len, optlen))
2798 		return -EFAULT;
2799 
2800 	len = min_t(unsigned int, len, sizeof(int));
2801 
2802 	if (len < 0)
2803 		return -EINVAL;
2804 
2805 	switch (optname) {
2806 	case UDP_CORK:
2807 		val = READ_ONCE(up->corkflag);
2808 		break;
2809 
2810 	case UDP_ENCAP:
2811 		val = up->encap_type;
2812 		break;
2813 
2814 	case UDP_NO_CHECK6_TX:
2815 		val = up->no_check6_tx;
2816 		break;
2817 
2818 	case UDP_NO_CHECK6_RX:
2819 		val = up->no_check6_rx;
2820 		break;
2821 
2822 	case UDP_SEGMENT:
2823 		val = READ_ONCE(up->gso_size);
2824 		break;
2825 
2826 	case UDP_GRO:
2827 		val = up->gro_enabled;
2828 		break;
2829 
2830 	/* The following two cannot be changed on UDP sockets, the return is
2831 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2832 	case UDPLITE_SEND_CSCOV:
2833 		val = up->pcslen;
2834 		break;
2835 
2836 	case UDPLITE_RECV_CSCOV:
2837 		val = up->pcrlen;
2838 		break;
2839 
2840 	default:
2841 		return -ENOPROTOOPT;
2842 	}
2843 
2844 	if (put_user(len, optlen))
2845 		return -EFAULT;
2846 	if (copy_to_user(optval, &val, len))
2847 		return -EFAULT;
2848 	return 0;
2849 }
2850 EXPORT_SYMBOL(udp_lib_getsockopt);
2851 
2852 int udp_getsockopt(struct sock *sk, int level, int optname,
2853 		   char __user *optval, int __user *optlen)
2854 {
2855 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2856 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2857 	return ip_getsockopt(sk, level, optname, optval, optlen);
2858 }
2859 
2860 /**
2861  * 	udp_poll - wait for a UDP event.
2862  *	@file: - file struct
2863  *	@sock: - socket
2864  *	@wait: - poll table
2865  *
2866  *	This is same as datagram poll, except for the special case of
2867  *	blocking sockets. If application is using a blocking fd
2868  *	and a packet with checksum error is in the queue;
2869  *	then it could get return from select indicating data available
2870  *	but then block when reading it. Add special case code
2871  *	to work around these arguably broken applications.
2872  */
2873 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2874 {
2875 	__poll_t mask = datagram_poll(file, sock, wait);
2876 	struct sock *sk = sock->sk;
2877 
2878 	if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
2879 		mask |= EPOLLIN | EPOLLRDNORM;
2880 
2881 	/* Check for false positives due to checksum errors */
2882 	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2883 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2884 		mask &= ~(EPOLLIN | EPOLLRDNORM);
2885 
2886 	/* psock ingress_msg queue should not contain any bad checksum frames */
2887 	if (sk_is_readable(sk))
2888 		mask |= EPOLLIN | EPOLLRDNORM;
2889 	return mask;
2890 
2891 }
2892 EXPORT_SYMBOL(udp_poll);
2893 
2894 int udp_abort(struct sock *sk, int err)
2895 {
2896 	lock_sock(sk);
2897 
2898 	/* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing
2899 	 * with close()
2900 	 */
2901 	if (sock_flag(sk, SOCK_DEAD))
2902 		goto out;
2903 
2904 	sk->sk_err = err;
2905 	sk_error_report(sk);
2906 	__udp_disconnect(sk, 0);
2907 
2908 out:
2909 	release_sock(sk);
2910 
2911 	return 0;
2912 }
2913 EXPORT_SYMBOL_GPL(udp_abort);
2914 
2915 struct proto udp_prot = {
2916 	.name			= "UDP",
2917 	.owner			= THIS_MODULE,
2918 	.close			= udp_lib_close,
2919 	.pre_connect		= udp_pre_connect,
2920 	.connect		= ip4_datagram_connect,
2921 	.disconnect		= udp_disconnect,
2922 	.ioctl			= udp_ioctl,
2923 	.init			= udp_init_sock,
2924 	.destroy		= udp_destroy_sock,
2925 	.setsockopt		= udp_setsockopt,
2926 	.getsockopt		= udp_getsockopt,
2927 	.sendmsg		= udp_sendmsg,
2928 	.recvmsg		= udp_recvmsg,
2929 	.sendpage		= udp_sendpage,
2930 	.release_cb		= ip4_datagram_release_cb,
2931 	.hash			= udp_lib_hash,
2932 	.unhash			= udp_lib_unhash,
2933 	.rehash			= udp_v4_rehash,
2934 	.get_port		= udp_v4_get_port,
2935 	.put_port		= udp_lib_unhash,
2936 #ifdef CONFIG_BPF_SYSCALL
2937 	.psock_update_sk_prot	= udp_bpf_update_proto,
2938 #endif
2939 	.memory_allocated	= &udp_memory_allocated,
2940 	.per_cpu_fw_alloc	= &udp_memory_per_cpu_fw_alloc,
2941 
2942 	.sysctl_mem		= sysctl_udp_mem,
2943 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2944 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2945 	.obj_size		= sizeof(struct udp_sock),
2946 	.h.udp_table		= &udp_table,
2947 	.diag_destroy		= udp_abort,
2948 };
2949 EXPORT_SYMBOL(udp_prot);
2950 
2951 /* ------------------------------------------------------------------------ */
2952 #ifdef CONFIG_PROC_FS
2953 
2954 static struct sock *udp_get_first(struct seq_file *seq, int start)
2955 {
2956 	struct sock *sk;
2957 	struct udp_seq_afinfo *afinfo;
2958 	struct udp_iter_state *state = seq->private;
2959 	struct net *net = seq_file_net(seq);
2960 
2961 	if (state->bpf_seq_afinfo)
2962 		afinfo = state->bpf_seq_afinfo;
2963 	else
2964 		afinfo = pde_data(file_inode(seq->file));
2965 
2966 	for (state->bucket = start; state->bucket <= afinfo->udp_table->mask;
2967 	     ++state->bucket) {
2968 		struct udp_hslot *hslot = &afinfo->udp_table->hash[state->bucket];
2969 
2970 		if (hlist_empty(&hslot->head))
2971 			continue;
2972 
2973 		spin_lock_bh(&hslot->lock);
2974 		sk_for_each(sk, &hslot->head) {
2975 			if (!net_eq(sock_net(sk), net))
2976 				continue;
2977 			if (afinfo->family == AF_UNSPEC ||
2978 			    sk->sk_family == afinfo->family)
2979 				goto found;
2980 		}
2981 		spin_unlock_bh(&hslot->lock);
2982 	}
2983 	sk = NULL;
2984 found:
2985 	return sk;
2986 }
2987 
2988 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2989 {
2990 	struct udp_seq_afinfo *afinfo;
2991 	struct udp_iter_state *state = seq->private;
2992 	struct net *net = seq_file_net(seq);
2993 
2994 	if (state->bpf_seq_afinfo)
2995 		afinfo = state->bpf_seq_afinfo;
2996 	else
2997 		afinfo = pde_data(file_inode(seq->file));
2998 
2999 	do {
3000 		sk = sk_next(sk);
3001 	} while (sk && (!net_eq(sock_net(sk), net) ||
3002 			(afinfo->family != AF_UNSPEC &&
3003 			 sk->sk_family != afinfo->family)));
3004 
3005 	if (!sk) {
3006 		if (state->bucket <= afinfo->udp_table->mask)
3007 			spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
3008 		return udp_get_first(seq, state->bucket + 1);
3009 	}
3010 	return sk;
3011 }
3012 
3013 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
3014 {
3015 	struct sock *sk = udp_get_first(seq, 0);
3016 
3017 	if (sk)
3018 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
3019 			--pos;
3020 	return pos ? NULL : sk;
3021 }
3022 
3023 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
3024 {
3025 	struct udp_iter_state *state = seq->private;
3026 	state->bucket = MAX_UDP_PORTS;
3027 
3028 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
3029 }
3030 EXPORT_SYMBOL(udp_seq_start);
3031 
3032 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3033 {
3034 	struct sock *sk;
3035 
3036 	if (v == SEQ_START_TOKEN)
3037 		sk = udp_get_idx(seq, 0);
3038 	else
3039 		sk = udp_get_next(seq, v);
3040 
3041 	++*pos;
3042 	return sk;
3043 }
3044 EXPORT_SYMBOL(udp_seq_next);
3045 
3046 void udp_seq_stop(struct seq_file *seq, void *v)
3047 {
3048 	struct udp_seq_afinfo *afinfo;
3049 	struct udp_iter_state *state = seq->private;
3050 
3051 	if (state->bpf_seq_afinfo)
3052 		afinfo = state->bpf_seq_afinfo;
3053 	else
3054 		afinfo = pde_data(file_inode(seq->file));
3055 
3056 	if (state->bucket <= afinfo->udp_table->mask)
3057 		spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
3058 }
3059 EXPORT_SYMBOL(udp_seq_stop);
3060 
3061 /* ------------------------------------------------------------------------ */
3062 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
3063 		int bucket)
3064 {
3065 	struct inet_sock *inet = inet_sk(sp);
3066 	__be32 dest = inet->inet_daddr;
3067 	__be32 src  = inet->inet_rcv_saddr;
3068 	__u16 destp	  = ntohs(inet->inet_dport);
3069 	__u16 srcp	  = ntohs(inet->inet_sport);
3070 
3071 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
3072 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
3073 		bucket, src, srcp, dest, destp, sp->sk_state,
3074 		sk_wmem_alloc_get(sp),
3075 		udp_rqueue_get(sp),
3076 		0, 0L, 0,
3077 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
3078 		0, sock_i_ino(sp),
3079 		refcount_read(&sp->sk_refcnt), sp,
3080 		atomic_read(&sp->sk_drops));
3081 }
3082 
3083 int udp4_seq_show(struct seq_file *seq, void *v)
3084 {
3085 	seq_setwidth(seq, 127);
3086 	if (v == SEQ_START_TOKEN)
3087 		seq_puts(seq, "   sl  local_address rem_address   st tx_queue "
3088 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
3089 			   "inode ref pointer drops");
3090 	else {
3091 		struct udp_iter_state *state = seq->private;
3092 
3093 		udp4_format_sock(v, seq, state->bucket);
3094 	}
3095 	seq_pad(seq, '\n');
3096 	return 0;
3097 }
3098 
3099 #ifdef CONFIG_BPF_SYSCALL
3100 struct bpf_iter__udp {
3101 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
3102 	__bpf_md_ptr(struct udp_sock *, udp_sk);
3103 	uid_t uid __aligned(8);
3104 	int bucket __aligned(8);
3105 };
3106 
3107 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3108 			     struct udp_sock *udp_sk, uid_t uid, int bucket)
3109 {
3110 	struct bpf_iter__udp ctx;
3111 
3112 	meta->seq_num--;  /* skip SEQ_START_TOKEN */
3113 	ctx.meta = meta;
3114 	ctx.udp_sk = udp_sk;
3115 	ctx.uid = uid;
3116 	ctx.bucket = bucket;
3117 	return bpf_iter_run_prog(prog, &ctx);
3118 }
3119 
3120 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v)
3121 {
3122 	struct udp_iter_state *state = seq->private;
3123 	struct bpf_iter_meta meta;
3124 	struct bpf_prog *prog;
3125 	struct sock *sk = v;
3126 	uid_t uid;
3127 
3128 	if (v == SEQ_START_TOKEN)
3129 		return 0;
3130 
3131 	uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3132 	meta.seq = seq;
3133 	prog = bpf_iter_get_info(&meta, false);
3134 	return udp_prog_seq_show(prog, &meta, v, uid, state->bucket);
3135 }
3136 
3137 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v)
3138 {
3139 	struct bpf_iter_meta meta;
3140 	struct bpf_prog *prog;
3141 
3142 	if (!v) {
3143 		meta.seq = seq;
3144 		prog = bpf_iter_get_info(&meta, true);
3145 		if (prog)
3146 			(void)udp_prog_seq_show(prog, &meta, v, 0, 0);
3147 	}
3148 
3149 	udp_seq_stop(seq, v);
3150 }
3151 
3152 static const struct seq_operations bpf_iter_udp_seq_ops = {
3153 	.start		= udp_seq_start,
3154 	.next		= udp_seq_next,
3155 	.stop		= bpf_iter_udp_seq_stop,
3156 	.show		= bpf_iter_udp_seq_show,
3157 };
3158 #endif
3159 
3160 const struct seq_operations udp_seq_ops = {
3161 	.start		= udp_seq_start,
3162 	.next		= udp_seq_next,
3163 	.stop		= udp_seq_stop,
3164 	.show		= udp4_seq_show,
3165 };
3166 EXPORT_SYMBOL(udp_seq_ops);
3167 
3168 static struct udp_seq_afinfo udp4_seq_afinfo = {
3169 	.family		= AF_INET,
3170 	.udp_table	= &udp_table,
3171 };
3172 
3173 static int __net_init udp4_proc_init_net(struct net *net)
3174 {
3175 	if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
3176 			sizeof(struct udp_iter_state), &udp4_seq_afinfo))
3177 		return -ENOMEM;
3178 	return 0;
3179 }
3180 
3181 static void __net_exit udp4_proc_exit_net(struct net *net)
3182 {
3183 	remove_proc_entry("udp", net->proc_net);
3184 }
3185 
3186 static struct pernet_operations udp4_net_ops = {
3187 	.init = udp4_proc_init_net,
3188 	.exit = udp4_proc_exit_net,
3189 };
3190 
3191 int __init udp4_proc_init(void)
3192 {
3193 	return register_pernet_subsys(&udp4_net_ops);
3194 }
3195 
3196 void udp4_proc_exit(void)
3197 {
3198 	unregister_pernet_subsys(&udp4_net_ops);
3199 }
3200 #endif /* CONFIG_PROC_FS */
3201 
3202 static __initdata unsigned long uhash_entries;
3203 static int __init set_uhash_entries(char *str)
3204 {
3205 	ssize_t ret;
3206 
3207 	if (!str)
3208 		return 0;
3209 
3210 	ret = kstrtoul(str, 0, &uhash_entries);
3211 	if (ret)
3212 		return 0;
3213 
3214 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
3215 		uhash_entries = UDP_HTABLE_SIZE_MIN;
3216 	return 1;
3217 }
3218 __setup("uhash_entries=", set_uhash_entries);
3219 
3220 void __init udp_table_init(struct udp_table *table, const char *name)
3221 {
3222 	unsigned int i;
3223 
3224 	table->hash = alloc_large_system_hash(name,
3225 					      2 * sizeof(struct udp_hslot),
3226 					      uhash_entries,
3227 					      21, /* one slot per 2 MB */
3228 					      0,
3229 					      &table->log,
3230 					      &table->mask,
3231 					      UDP_HTABLE_SIZE_MIN,
3232 					      64 * 1024);
3233 
3234 	table->hash2 = table->hash + (table->mask + 1);
3235 	for (i = 0; i <= table->mask; i++) {
3236 		INIT_HLIST_HEAD(&table->hash[i].head);
3237 		table->hash[i].count = 0;
3238 		spin_lock_init(&table->hash[i].lock);
3239 	}
3240 	for (i = 0; i <= table->mask; i++) {
3241 		INIT_HLIST_HEAD(&table->hash2[i].head);
3242 		table->hash2[i].count = 0;
3243 		spin_lock_init(&table->hash2[i].lock);
3244 	}
3245 }
3246 
3247 u32 udp_flow_hashrnd(void)
3248 {
3249 	static u32 hashrnd __read_mostly;
3250 
3251 	net_get_random_once(&hashrnd, sizeof(hashrnd));
3252 
3253 	return hashrnd;
3254 }
3255 EXPORT_SYMBOL(udp_flow_hashrnd);
3256 
3257 static int __net_init udp_sysctl_init(struct net *net)
3258 {
3259 	net->ipv4.sysctl_udp_rmem_min = PAGE_SIZE;
3260 	net->ipv4.sysctl_udp_wmem_min = PAGE_SIZE;
3261 
3262 #ifdef CONFIG_NET_L3_MASTER_DEV
3263 	net->ipv4.sysctl_udp_l3mdev_accept = 0;
3264 #endif
3265 
3266 	return 0;
3267 }
3268 
3269 static struct pernet_operations __net_initdata udp_sysctl_ops = {
3270 	.init	= udp_sysctl_init,
3271 };
3272 
3273 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3274 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta,
3275 		     struct udp_sock *udp_sk, uid_t uid, int bucket)
3276 
3277 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux)
3278 {
3279 	struct udp_iter_state *st = priv_data;
3280 	struct udp_seq_afinfo *afinfo;
3281 	int ret;
3282 
3283 	afinfo = kmalloc(sizeof(*afinfo), GFP_USER | __GFP_NOWARN);
3284 	if (!afinfo)
3285 		return -ENOMEM;
3286 
3287 	afinfo->family = AF_UNSPEC;
3288 	afinfo->udp_table = &udp_table;
3289 	st->bpf_seq_afinfo = afinfo;
3290 	ret = bpf_iter_init_seq_net(priv_data, aux);
3291 	if (ret)
3292 		kfree(afinfo);
3293 	return ret;
3294 }
3295 
3296 static void bpf_iter_fini_udp(void *priv_data)
3297 {
3298 	struct udp_iter_state *st = priv_data;
3299 
3300 	kfree(st->bpf_seq_afinfo);
3301 	bpf_iter_fini_seq_net(priv_data);
3302 }
3303 
3304 static const struct bpf_iter_seq_info udp_seq_info = {
3305 	.seq_ops		= &bpf_iter_udp_seq_ops,
3306 	.init_seq_private	= bpf_iter_init_udp,
3307 	.fini_seq_private	= bpf_iter_fini_udp,
3308 	.seq_priv_size		= sizeof(struct udp_iter_state),
3309 };
3310 
3311 static struct bpf_iter_reg udp_reg_info = {
3312 	.target			= "udp",
3313 	.ctx_arg_info_size	= 1,
3314 	.ctx_arg_info		= {
3315 		{ offsetof(struct bpf_iter__udp, udp_sk),
3316 		  PTR_TO_BTF_ID_OR_NULL },
3317 	},
3318 	.seq_info		= &udp_seq_info,
3319 };
3320 
3321 static void __init bpf_iter_register(void)
3322 {
3323 	udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP];
3324 	if (bpf_iter_reg_target(&udp_reg_info))
3325 		pr_warn("Warning: could not register bpf iterator udp\n");
3326 }
3327 #endif
3328 
3329 void __init udp_init(void)
3330 {
3331 	unsigned long limit;
3332 	unsigned int i;
3333 
3334 	udp_table_init(&udp_table, "UDP");
3335 	limit = nr_free_buffer_pages() / 8;
3336 	limit = max(limit, 128UL);
3337 	sysctl_udp_mem[0] = limit / 4 * 3;
3338 	sysctl_udp_mem[1] = limit;
3339 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3340 
3341 	/* 16 spinlocks per cpu */
3342 	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3343 	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3344 				GFP_KERNEL);
3345 	if (!udp_busylocks)
3346 		panic("UDP: failed to alloc udp_busylocks\n");
3347 	for (i = 0; i < (1U << udp_busylocks_log); i++)
3348 		spin_lock_init(udp_busylocks + i);
3349 
3350 	if (register_pernet_subsys(&udp_sysctl_ops))
3351 		panic("UDP: failed to init sysctl parameters.\n");
3352 
3353 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3354 	bpf_iter_register();
3355 #endif
3356 }
3357