xref: /linux/net/ipv4/udp.c (revision 606d099cdd1080bbb50ea50dc52d98252f8f10a1)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The User Datagram Protocol (UDP).
7  *
8  * Version:	$Id: udp.c,v 1.102 2002/02/01 22:01:04 davem Exp $
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
13  *		Alan Cox, <Alan.Cox@linux.org>
14  *		Hirokazu Takahashi, <taka@valinux.co.jp>
15  *
16  * Fixes:
17  *		Alan Cox	:	verify_area() calls
18  *		Alan Cox	: 	stopped close while in use off icmp
19  *					messages. Not a fix but a botch that
20  *					for udp at least is 'valid'.
21  *		Alan Cox	:	Fixed icmp handling properly
22  *		Alan Cox	: 	Correct error for oversized datagrams
23  *		Alan Cox	:	Tidied select() semantics.
24  *		Alan Cox	:	udp_err() fixed properly, also now
25  *					select and read wake correctly on errors
26  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
27  *		Alan Cox	:	UDP can count its memory
28  *		Alan Cox	:	send to an unknown connection causes
29  *					an ECONNREFUSED off the icmp, but
30  *					does NOT close.
31  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
32  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
33  *					bug no longer crashes it.
34  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
35  *		Alan Cox	:	Uses skb_free_datagram
36  *		Alan Cox	:	Added get/set sockopt support.
37  *		Alan Cox	:	Broadcasting without option set returns EACCES.
38  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
39  *		Alan Cox	:	Use ip_tos and ip_ttl
40  *		Alan Cox	:	SNMP Mibs
41  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
42  *		Matt Dillon	:	UDP length checks.
43  *		Alan Cox	:	Smarter af_inet used properly.
44  *		Alan Cox	:	Use new kernel side addressing.
45  *		Alan Cox	:	Incorrect return on truncated datagram receive.
46  *	Arnt Gulbrandsen 	:	New udp_send and stuff
47  *		Alan Cox	:	Cache last socket
48  *		Alan Cox	:	Route cache
49  *		Jon Peatfield	:	Minor efficiency fix to sendto().
50  *		Mike Shaver	:	RFC1122 checks.
51  *		Alan Cox	:	Nonblocking error fix.
52  *	Willy Konynenberg	:	Transparent proxying support.
53  *		Mike McLagan	:	Routing by source
54  *		David S. Miller	:	New socket lookup architecture.
55  *					Last socket cache retained as it
56  *					does have a high hit rate.
57  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
58  *		Andi Kleen	:	Some cleanups, cache destination entry
59  *					for connect.
60  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
61  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
62  *					return ENOTCONN for unconnected sockets (POSIX)
63  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
64  *					bound-to-device socket
65  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
66  *					datagrams.
67  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
68  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
69  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
70  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
71  *					a single port at the same time.
72  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
73  *
74  *
75  *		This program is free software; you can redistribute it and/or
76  *		modify it under the terms of the GNU General Public License
77  *		as published by the Free Software Foundation; either version
78  *		2 of the License, or (at your option) any later version.
79  */
80 
81 #include <asm/system.h>
82 #include <asm/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/types.h>
85 #include <linux/fcntl.h>
86 #include <linux/module.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/igmp.h>
90 #include <linux/in.h>
91 #include <linux/errno.h>
92 #include <linux/timer.h>
93 #include <linux/mm.h>
94 #include <linux/inet.h>
95 #include <linux/netdevice.h>
96 #include <net/tcp_states.h>
97 #include <linux/skbuff.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <net/icmp.h>
101 #include <net/route.h>
102 #include <net/checksum.h>
103 #include <net/xfrm.h>
104 #include "udp_impl.h"
105 
106 /*
107  *	Snmp MIB for the UDP layer
108  */
109 
110 DEFINE_SNMP_STAT(struct udp_mib, udp_statistics) __read_mostly;
111 
112 struct hlist_head udp_hash[UDP_HTABLE_SIZE];
113 DEFINE_RWLOCK(udp_hash_lock);
114 
115 static int udp_port_rover;
116 
117 static inline int __udp_lib_lport_inuse(__u16 num, struct hlist_head udptable[])
118 {
119 	struct sock *sk;
120 	struct hlist_node *node;
121 
122 	sk_for_each(sk, node, &udptable[num & (UDP_HTABLE_SIZE - 1)])
123 		if (inet_sk(sk)->num == num)
124 			return 1;
125 	return 0;
126 }
127 
128 /**
129  *  __udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
130  *
131  *  @sk:          socket struct in question
132  *  @snum:        port number to look up
133  *  @udptable:    hash list table, must be of UDP_HTABLE_SIZE
134  *  @port_rover:  pointer to record of last unallocated port
135  *  @saddr_comp:  AF-dependent comparison of bound local IP addresses
136  */
137 int __udp_lib_get_port(struct sock *sk, unsigned short snum,
138 		       struct hlist_head udptable[], int *port_rover,
139 		       int (*saddr_comp)(const struct sock *sk1,
140 					 const struct sock *sk2 )    )
141 {
142 	struct hlist_node *node;
143 	struct hlist_head *head;
144 	struct sock *sk2;
145 	int    error = 1;
146 
147 	write_lock_bh(&udp_hash_lock);
148 	if (snum == 0) {
149 		int best_size_so_far, best, result, i;
150 
151 		if (*port_rover > sysctl_local_port_range[1] ||
152 		    *port_rover < sysctl_local_port_range[0])
153 			*port_rover = sysctl_local_port_range[0];
154 		best_size_so_far = 32767;
155 		best = result = *port_rover;
156 		for (i = 0; i < UDP_HTABLE_SIZE; i++, result++) {
157 			int size;
158 
159 			head = &udptable[result & (UDP_HTABLE_SIZE - 1)];
160 			if (hlist_empty(head)) {
161 				if (result > sysctl_local_port_range[1])
162 					result = sysctl_local_port_range[0] +
163 						((result - sysctl_local_port_range[0]) &
164 						 (UDP_HTABLE_SIZE - 1));
165 				goto gotit;
166 			}
167 			size = 0;
168 			sk_for_each(sk2, node, head)
169 				if (++size < best_size_so_far) {
170 					best_size_so_far = size;
171 					best = result;
172 				}
173 		}
174 		result = best;
175 		for(i = 0; i < (1 << 16) / UDP_HTABLE_SIZE; i++, result += UDP_HTABLE_SIZE) {
176 			if (result > sysctl_local_port_range[1])
177 				result = sysctl_local_port_range[0]
178 					+ ((result - sysctl_local_port_range[0]) &
179 					   (UDP_HTABLE_SIZE - 1));
180 			if (! __udp_lib_lport_inuse(result, udptable))
181 				break;
182 		}
183 		if (i >= (1 << 16) / UDP_HTABLE_SIZE)
184 			goto fail;
185 gotit:
186 		*port_rover = snum = result;
187 	} else {
188 		head = &udptable[snum & (UDP_HTABLE_SIZE - 1)];
189 
190 		sk_for_each(sk2, node, head)
191 			if (inet_sk(sk2)->num == snum                        &&
192 			    sk2 != sk                                        &&
193 			    (!sk2->sk_reuse        || !sk->sk_reuse)         &&
194 			    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if
195 			     || sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
196 			    (*saddr_comp)(sk, sk2)                             )
197 				goto fail;
198 	}
199 	inet_sk(sk)->num = snum;
200 	if (sk_unhashed(sk)) {
201 		head = &udptable[snum & (UDP_HTABLE_SIZE - 1)];
202 		sk_add_node(sk, head);
203 		sock_prot_inc_use(sk->sk_prot);
204 	}
205 	error = 0;
206 fail:
207 	write_unlock_bh(&udp_hash_lock);
208 	return error;
209 }
210 
211 __inline__ int udp_get_port(struct sock *sk, unsigned short snum,
212 			int (*scmp)(const struct sock *, const struct sock *))
213 {
214 	return  __udp_lib_get_port(sk, snum, udp_hash, &udp_port_rover, scmp);
215 }
216 
217 inline int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
218 {
219 	struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
220 
221 	return 	( !ipv6_only_sock(sk2)  &&
222 		  (!inet1->rcv_saddr || !inet2->rcv_saddr ||
223 		   inet1->rcv_saddr == inet2->rcv_saddr      ));
224 }
225 
226 static inline int udp_v4_get_port(struct sock *sk, unsigned short snum)
227 {
228 	return udp_get_port(sk, snum, ipv4_rcv_saddr_equal);
229 }
230 
231 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
232  * harder than this. -DaveM
233  */
234 static struct sock *__udp4_lib_lookup(__be32 saddr, __be16 sport,
235 				      __be32 daddr, __be16 dport,
236 				      int dif, struct hlist_head udptable[])
237 {
238 	struct sock *sk, *result = NULL;
239 	struct hlist_node *node;
240 	unsigned short hnum = ntohs(dport);
241 	int badness = -1;
242 
243 	read_lock(&udp_hash_lock);
244 	sk_for_each(sk, node, &udptable[hnum & (UDP_HTABLE_SIZE - 1)]) {
245 		struct inet_sock *inet = inet_sk(sk);
246 
247 		if (inet->num == hnum && !ipv6_only_sock(sk)) {
248 			int score = (sk->sk_family == PF_INET ? 1 : 0);
249 			if (inet->rcv_saddr) {
250 				if (inet->rcv_saddr != daddr)
251 					continue;
252 				score+=2;
253 			}
254 			if (inet->daddr) {
255 				if (inet->daddr != saddr)
256 					continue;
257 				score+=2;
258 			}
259 			if (inet->dport) {
260 				if (inet->dport != sport)
261 					continue;
262 				score+=2;
263 			}
264 			if (sk->sk_bound_dev_if) {
265 				if (sk->sk_bound_dev_if != dif)
266 					continue;
267 				score+=2;
268 			}
269 			if(score == 9) {
270 				result = sk;
271 				break;
272 			} else if(score > badness) {
273 				result = sk;
274 				badness = score;
275 			}
276 		}
277 	}
278 	if (result)
279 		sock_hold(result);
280 	read_unlock(&udp_hash_lock);
281 	return result;
282 }
283 
284 static inline struct sock *udp_v4_mcast_next(struct sock *sk,
285 					     __be16 loc_port, __be32 loc_addr,
286 					     __be16 rmt_port, __be32 rmt_addr,
287 					     int dif)
288 {
289 	struct hlist_node *node;
290 	struct sock *s = sk;
291 	unsigned short hnum = ntohs(loc_port);
292 
293 	sk_for_each_from(s, node) {
294 		struct inet_sock *inet = inet_sk(s);
295 
296 		if (inet->num != hnum					||
297 		    (inet->daddr && inet->daddr != rmt_addr)		||
298 		    (inet->dport != rmt_port && inet->dport)		||
299 		    (inet->rcv_saddr && inet->rcv_saddr != loc_addr)	||
300 		    ipv6_only_sock(s)					||
301 		    (s->sk_bound_dev_if && s->sk_bound_dev_if != dif))
302 			continue;
303 		if (!ip_mc_sf_allow(s, loc_addr, rmt_addr, dif))
304 			continue;
305 		goto found;
306   	}
307 	s = NULL;
308 found:
309   	return s;
310 }
311 
312 /*
313  * This routine is called by the ICMP module when it gets some
314  * sort of error condition.  If err < 0 then the socket should
315  * be closed and the error returned to the user.  If err > 0
316  * it's just the icmp type << 8 | icmp code.
317  * Header points to the ip header of the error packet. We move
318  * on past this. Then (as it used to claim before adjustment)
319  * header points to the first 8 bytes of the udp header.  We need
320  * to find the appropriate port.
321  */
322 
323 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct hlist_head udptable[])
324 {
325 	struct inet_sock *inet;
326 	struct iphdr *iph = (struct iphdr*)skb->data;
327 	struct udphdr *uh = (struct udphdr*)(skb->data+(iph->ihl<<2));
328 	int type = skb->h.icmph->type;
329 	int code = skb->h.icmph->code;
330 	struct sock *sk;
331 	int harderr;
332 	int err;
333 
334 	sk = __udp4_lib_lookup(iph->daddr, uh->dest, iph->saddr, uh->source,
335 			       skb->dev->ifindex, udptable		    );
336 	if (sk == NULL) {
337 		ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
338     	  	return;	/* No socket for error */
339 	}
340 
341 	err = 0;
342 	harderr = 0;
343 	inet = inet_sk(sk);
344 
345 	switch (type) {
346 	default:
347 	case ICMP_TIME_EXCEEDED:
348 		err = EHOSTUNREACH;
349 		break;
350 	case ICMP_SOURCE_QUENCH:
351 		goto out;
352 	case ICMP_PARAMETERPROB:
353 		err = EPROTO;
354 		harderr = 1;
355 		break;
356 	case ICMP_DEST_UNREACH:
357 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
358 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
359 				err = EMSGSIZE;
360 				harderr = 1;
361 				break;
362 			}
363 			goto out;
364 		}
365 		err = EHOSTUNREACH;
366 		if (code <= NR_ICMP_UNREACH) {
367 			harderr = icmp_err_convert[code].fatal;
368 			err = icmp_err_convert[code].errno;
369 		}
370 		break;
371 	}
372 
373 	/*
374 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
375 	 *	4.1.3.3.
376 	 */
377 	if (!inet->recverr) {
378 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
379 			goto out;
380 	} else {
381 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8*)(uh+1));
382 	}
383 	sk->sk_err = err;
384 	sk->sk_error_report(sk);
385 out:
386 	sock_put(sk);
387 }
388 
389 __inline__ void udp_err(struct sk_buff *skb, u32 info)
390 {
391 	return __udp4_lib_err(skb, info, udp_hash);
392 }
393 
394 /*
395  * Throw away all pending data and cancel the corking. Socket is locked.
396  */
397 static void udp_flush_pending_frames(struct sock *sk)
398 {
399 	struct udp_sock *up = udp_sk(sk);
400 
401 	if (up->pending) {
402 		up->len = 0;
403 		up->pending = 0;
404 		ip_flush_pending_frames(sk);
405 	}
406 }
407 
408 /**
409  * 	udp4_hwcsum_outgoing  -  handle outgoing HW checksumming
410  * 	@sk: 	socket we are sending on
411  * 	@skb: 	sk_buff containing the filled-in UDP header
412  * 	        (checksum field must be zeroed out)
413  */
414 static void udp4_hwcsum_outgoing(struct sock *sk, struct sk_buff *skb,
415 				 __be32 src, __be32 dst, int len      )
416 {
417 	unsigned int offset;
418 	struct udphdr *uh = skb->h.uh;
419 	__wsum csum = 0;
420 
421 	if (skb_queue_len(&sk->sk_write_queue) == 1) {
422 		/*
423 		 * Only one fragment on the socket.
424 		 */
425 		skb->csum_offset = offsetof(struct udphdr, check);
426 		uh->check = ~csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, 0);
427 	} else {
428 		/*
429 		 * HW-checksum won't work as there are two or more
430 		 * fragments on the socket so that all csums of sk_buffs
431 		 * should be together
432 		 */
433 		offset = skb->h.raw - skb->data;
434 		skb->csum = skb_checksum(skb, offset, skb->len - offset, 0);
435 
436 		skb->ip_summed = CHECKSUM_NONE;
437 
438 		skb_queue_walk(&sk->sk_write_queue, skb) {
439 			csum = csum_add(csum, skb->csum);
440 		}
441 
442 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
443 		if (uh->check == 0)
444 			uh->check = CSUM_MANGLED_0;
445 	}
446 }
447 
448 /*
449  * Push out all pending data as one UDP datagram. Socket is locked.
450  */
451 static int udp_push_pending_frames(struct sock *sk)
452 {
453 	struct udp_sock  *up = udp_sk(sk);
454 	struct inet_sock *inet = inet_sk(sk);
455 	struct flowi *fl = &inet->cork.fl;
456 	struct sk_buff *skb;
457 	struct udphdr *uh;
458 	int err = 0;
459 	__wsum csum = 0;
460 
461 	/* Grab the skbuff where UDP header space exists. */
462 	if ((skb = skb_peek(&sk->sk_write_queue)) == NULL)
463 		goto out;
464 
465 	/*
466 	 * Create a UDP header
467 	 */
468 	uh = skb->h.uh;
469 	uh->source = fl->fl_ip_sport;
470 	uh->dest = fl->fl_ip_dport;
471 	uh->len = htons(up->len);
472 	uh->check = 0;
473 
474 	if (up->pcflag)  				 /*     UDP-Lite      */
475 		csum  = udplite_csum_outgoing(sk, skb);
476 
477 	else if (sk->sk_no_check == UDP_CSUM_NOXMIT) {   /* UDP csum disabled */
478 
479 		skb->ip_summed = CHECKSUM_NONE;
480 		goto send;
481 
482 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
483 
484 		udp4_hwcsum_outgoing(sk, skb, fl->fl4_src,fl->fl4_dst, up->len);
485 		goto send;
486 
487 	} else						 /*   `normal' UDP    */
488 		csum = udp_csum_outgoing(sk, skb);
489 
490 	/* add protocol-dependent pseudo-header */
491 	uh->check = csum_tcpudp_magic(fl->fl4_src, fl->fl4_dst, up->len,
492 				      sk->sk_protocol, csum             );
493 	if (uh->check == 0)
494 		uh->check = CSUM_MANGLED_0;
495 
496 send:
497 	err = ip_push_pending_frames(sk);
498 out:
499 	up->len = 0;
500 	up->pending = 0;
501 	return err;
502 }
503 
504 int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
505 		size_t len)
506 {
507 	struct inet_sock *inet = inet_sk(sk);
508 	struct udp_sock *up = udp_sk(sk);
509 	int ulen = len;
510 	struct ipcm_cookie ipc;
511 	struct rtable *rt = NULL;
512 	int free = 0;
513 	int connected = 0;
514 	__be32 daddr, faddr, saddr;
515 	__be16 dport;
516 	u8  tos;
517 	int err, is_udplite = up->pcflag;
518 	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
519 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
520 
521 	if (len > 0xFFFF)
522 		return -EMSGSIZE;
523 
524 	/*
525 	 *	Check the flags.
526 	 */
527 
528 	if (msg->msg_flags&MSG_OOB)	/* Mirror BSD error message compatibility */
529 		return -EOPNOTSUPP;
530 
531 	ipc.opt = NULL;
532 
533 	if (up->pending) {
534 		/*
535 		 * There are pending frames.
536 	 	 * The socket lock must be held while it's corked.
537 		 */
538 		lock_sock(sk);
539 		if (likely(up->pending)) {
540 			if (unlikely(up->pending != AF_INET)) {
541 				release_sock(sk);
542 				return -EINVAL;
543 			}
544  			goto do_append_data;
545 		}
546 		release_sock(sk);
547 	}
548 	ulen += sizeof(struct udphdr);
549 
550 	/*
551 	 *	Get and verify the address.
552 	 */
553 	if (msg->msg_name) {
554 		struct sockaddr_in * usin = (struct sockaddr_in*)msg->msg_name;
555 		if (msg->msg_namelen < sizeof(*usin))
556 			return -EINVAL;
557 		if (usin->sin_family != AF_INET) {
558 			if (usin->sin_family != AF_UNSPEC)
559 				return -EAFNOSUPPORT;
560 		}
561 
562 		daddr = usin->sin_addr.s_addr;
563 		dport = usin->sin_port;
564 		if (dport == 0)
565 			return -EINVAL;
566 	} else {
567 		if (sk->sk_state != TCP_ESTABLISHED)
568 			return -EDESTADDRREQ;
569 		daddr = inet->daddr;
570 		dport = inet->dport;
571 		/* Open fast path for connected socket.
572 		   Route will not be used, if at least one option is set.
573 		 */
574 		connected = 1;
575   	}
576 	ipc.addr = inet->saddr;
577 
578 	ipc.oif = sk->sk_bound_dev_if;
579 	if (msg->msg_controllen) {
580 		err = ip_cmsg_send(msg, &ipc);
581 		if (err)
582 			return err;
583 		if (ipc.opt)
584 			free = 1;
585 		connected = 0;
586 	}
587 	if (!ipc.opt)
588 		ipc.opt = inet->opt;
589 
590 	saddr = ipc.addr;
591 	ipc.addr = faddr = daddr;
592 
593 	if (ipc.opt && ipc.opt->srr) {
594 		if (!daddr)
595 			return -EINVAL;
596 		faddr = ipc.opt->faddr;
597 		connected = 0;
598 	}
599 	tos = RT_TOS(inet->tos);
600 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
601 	    (msg->msg_flags & MSG_DONTROUTE) ||
602 	    (ipc.opt && ipc.opt->is_strictroute)) {
603 		tos |= RTO_ONLINK;
604 		connected = 0;
605 	}
606 
607 	if (MULTICAST(daddr)) {
608 		if (!ipc.oif)
609 			ipc.oif = inet->mc_index;
610 		if (!saddr)
611 			saddr = inet->mc_addr;
612 		connected = 0;
613 	}
614 
615 	if (connected)
616 		rt = (struct rtable*)sk_dst_check(sk, 0);
617 
618 	if (rt == NULL) {
619 		struct flowi fl = { .oif = ipc.oif,
620 				    .nl_u = { .ip4_u =
621 					      { .daddr = faddr,
622 						.saddr = saddr,
623 						.tos = tos } },
624 				    .proto = sk->sk_protocol,
625 				    .uli_u = { .ports =
626 					       { .sport = inet->sport,
627 						 .dport = dport } } };
628 		security_sk_classify_flow(sk, &fl);
629 		err = ip_route_output_flow(&rt, &fl, sk, !(msg->msg_flags&MSG_DONTWAIT));
630 		if (err)
631 			goto out;
632 
633 		err = -EACCES;
634 		if ((rt->rt_flags & RTCF_BROADCAST) &&
635 		    !sock_flag(sk, SOCK_BROADCAST))
636 			goto out;
637 		if (connected)
638 			sk_dst_set(sk, dst_clone(&rt->u.dst));
639 	}
640 
641 	if (msg->msg_flags&MSG_CONFIRM)
642 		goto do_confirm;
643 back_from_confirm:
644 
645 	saddr = rt->rt_src;
646 	if (!ipc.addr)
647 		daddr = ipc.addr = rt->rt_dst;
648 
649 	lock_sock(sk);
650 	if (unlikely(up->pending)) {
651 		/* The socket is already corked while preparing it. */
652 		/* ... which is an evident application bug. --ANK */
653 		release_sock(sk);
654 
655 		LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 2\n");
656 		err = -EINVAL;
657 		goto out;
658 	}
659 	/*
660 	 *	Now cork the socket to pend data.
661 	 */
662 	inet->cork.fl.fl4_dst = daddr;
663 	inet->cork.fl.fl_ip_dport = dport;
664 	inet->cork.fl.fl4_src = saddr;
665 	inet->cork.fl.fl_ip_sport = inet->sport;
666 	up->pending = AF_INET;
667 
668 do_append_data:
669 	up->len += ulen;
670 	getfrag  =  is_udplite ?  udplite_getfrag : ip_generic_getfrag;
671 	err = ip_append_data(sk, getfrag, msg->msg_iov, ulen,
672 			sizeof(struct udphdr), &ipc, rt,
673 			corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
674 	if (err)
675 		udp_flush_pending_frames(sk);
676 	else if (!corkreq)
677 		err = udp_push_pending_frames(sk);
678 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
679 		up->pending = 0;
680 	release_sock(sk);
681 
682 out:
683 	ip_rt_put(rt);
684 	if (free)
685 		kfree(ipc.opt);
686 	if (!err) {
687 		UDP_INC_STATS_USER(UDP_MIB_OUTDATAGRAMS, is_udplite);
688 		return len;
689 	}
690 	/*
691 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
692 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
693 	 * we don't have a good statistic (IpOutDiscards but it can be too many
694 	 * things).  We could add another new stat but at least for now that
695 	 * seems like overkill.
696 	 */
697 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
698 		UDP_INC_STATS_USER(UDP_MIB_SNDBUFERRORS, is_udplite);
699 	}
700 	return err;
701 
702 do_confirm:
703 	dst_confirm(&rt->u.dst);
704 	if (!(msg->msg_flags&MSG_PROBE) || len)
705 		goto back_from_confirm;
706 	err = 0;
707 	goto out;
708 }
709 
710 int udp_sendpage(struct sock *sk, struct page *page, int offset,
711 		 size_t size, int flags)
712 {
713 	struct udp_sock *up = udp_sk(sk);
714 	int ret;
715 
716 	if (!up->pending) {
717 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
718 
719 		/* Call udp_sendmsg to specify destination address which
720 		 * sendpage interface can't pass.
721 		 * This will succeed only when the socket is connected.
722 		 */
723 		ret = udp_sendmsg(NULL, sk, &msg, 0);
724 		if (ret < 0)
725 			return ret;
726 	}
727 
728 	lock_sock(sk);
729 
730 	if (unlikely(!up->pending)) {
731 		release_sock(sk);
732 
733 		LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 3\n");
734 		return -EINVAL;
735 	}
736 
737 	ret = ip_append_page(sk, page, offset, size, flags);
738 	if (ret == -EOPNOTSUPP) {
739 		release_sock(sk);
740 		return sock_no_sendpage(sk->sk_socket, page, offset,
741 					size, flags);
742 	}
743 	if (ret < 0) {
744 		udp_flush_pending_frames(sk);
745 		goto out;
746 	}
747 
748 	up->len += size;
749 	if (!(up->corkflag || (flags&MSG_MORE)))
750 		ret = udp_push_pending_frames(sk);
751 	if (!ret)
752 		ret = size;
753 out:
754 	release_sock(sk);
755 	return ret;
756 }
757 
758 /*
759  *	IOCTL requests applicable to the UDP protocol
760  */
761 
762 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
763 {
764 	switch(cmd)
765 	{
766 		case SIOCOUTQ:
767 		{
768 			int amount = atomic_read(&sk->sk_wmem_alloc);
769 			return put_user(amount, (int __user *)arg);
770 		}
771 
772 		case SIOCINQ:
773 		{
774 			struct sk_buff *skb;
775 			unsigned long amount;
776 
777 			amount = 0;
778 			spin_lock_bh(&sk->sk_receive_queue.lock);
779 			skb = skb_peek(&sk->sk_receive_queue);
780 			if (skb != NULL) {
781 				/*
782 				 * We will only return the amount
783 				 * of this packet since that is all
784 				 * that will be read.
785 				 */
786 				amount = skb->len - sizeof(struct udphdr);
787 			}
788 			spin_unlock_bh(&sk->sk_receive_queue.lock);
789 			return put_user(amount, (int __user *)arg);
790 		}
791 
792 		default:
793 			return -ENOIOCTLCMD;
794 	}
795 	return(0);
796 }
797 
798 /*
799  * 	This should be easy, if there is something there we
800  * 	return it, otherwise we block.
801  */
802 
803 int udp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
804 	        size_t len, int noblock, int flags, int *addr_len)
805 {
806 	struct inet_sock *inet = inet_sk(sk);
807   	struct sockaddr_in *sin = (struct sockaddr_in *)msg->msg_name;
808   	struct sk_buff *skb;
809 	int copied, err, copy_only, is_udplite = IS_UDPLITE(sk);
810 
811 	/*
812 	 *	Check any passed addresses
813 	 */
814 	if (addr_len)
815 		*addr_len=sizeof(*sin);
816 
817 	if (flags & MSG_ERRQUEUE)
818 		return ip_recv_error(sk, msg, len);
819 
820 try_again:
821 	skb = skb_recv_datagram(sk, flags, noblock, &err);
822 	if (!skb)
823 		goto out;
824 
825   	copied = skb->len - sizeof(struct udphdr);
826 	if (copied > len) {
827 		copied = len;
828 		msg->msg_flags |= MSG_TRUNC;
829 	}
830 
831 	/*
832 	 * 	Decide whether to checksum and/or copy data.
833 	 *
834 	 * 	UDP:      checksum may have been computed in HW,
835 	 * 	          (re-)compute it if message is truncated.
836 	 * 	UDP-Lite: always needs to checksum, no HW support.
837 	 */
838 	copy_only = (skb->ip_summed==CHECKSUM_UNNECESSARY);
839 
840 	if (is_udplite  ||  (!copy_only  &&  msg->msg_flags&MSG_TRUNC)) {
841 		if (__udp_lib_checksum_complete(skb))
842 			goto csum_copy_err;
843 		copy_only = 1;
844 	}
845 
846 	if (copy_only)
847 		err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr),
848 					      msg->msg_iov, copied       );
849 	else {
850 		err = skb_copy_and_csum_datagram_iovec(skb, sizeof(struct udphdr), msg->msg_iov);
851 
852 		if (err == -EINVAL)
853 			goto csum_copy_err;
854 	}
855 
856 	if (err)
857 		goto out_free;
858 
859 	sock_recv_timestamp(msg, sk, skb);
860 
861 	/* Copy the address. */
862 	if (sin)
863 	{
864 		sin->sin_family = AF_INET;
865 		sin->sin_port = skb->h.uh->source;
866 		sin->sin_addr.s_addr = skb->nh.iph->saddr;
867 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
868   	}
869 	if (inet->cmsg_flags)
870 		ip_cmsg_recv(msg, skb);
871 
872 	err = copied;
873 	if (flags & MSG_TRUNC)
874 		err = skb->len - sizeof(struct udphdr);
875 
876 out_free:
877   	skb_free_datagram(sk, skb);
878 out:
879   	return err;
880 
881 csum_copy_err:
882 	UDP_INC_STATS_BH(UDP_MIB_INERRORS, is_udplite);
883 
884 	skb_kill_datagram(sk, skb, flags);
885 
886 	if (noblock)
887 		return -EAGAIN;
888 	goto try_again;
889 }
890 
891 
892 int udp_disconnect(struct sock *sk, int flags)
893 {
894 	struct inet_sock *inet = inet_sk(sk);
895 	/*
896 	 *	1003.1g - break association.
897 	 */
898 
899 	sk->sk_state = TCP_CLOSE;
900 	inet->daddr = 0;
901 	inet->dport = 0;
902 	sk->sk_bound_dev_if = 0;
903 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
904 		inet_reset_saddr(sk);
905 
906 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
907 		sk->sk_prot->unhash(sk);
908 		inet->sport = 0;
909 	}
910 	sk_dst_reset(sk);
911 	return 0;
912 }
913 
914 /* return:
915  * 	1  if the the UDP system should process it
916  *	0  if we should drop this packet
917  * 	-1 if it should get processed by xfrm4_rcv_encap
918  */
919 static int udp_encap_rcv(struct sock * sk, struct sk_buff *skb)
920 {
921 #ifndef CONFIG_XFRM
922 	return 1;
923 #else
924 	struct udp_sock *up = udp_sk(sk);
925   	struct udphdr *uh;
926 	struct iphdr *iph;
927 	int iphlen, len;
928 
929 	__u8 *udpdata;
930 	__be32 *udpdata32;
931 	__u16 encap_type = up->encap_type;
932 
933 	/* if we're overly short, let UDP handle it */
934 	len = skb->len - sizeof(struct udphdr);
935 	if (len <= 0)
936 		return 1;
937 
938 	/* if this is not encapsulated socket, then just return now */
939 	if (!encap_type)
940 		return 1;
941 
942 	/* If this is a paged skb, make sure we pull up
943 	 * whatever data we need to look at. */
944 	if (!pskb_may_pull(skb, sizeof(struct udphdr) + min(len, 8)))
945 		return 1;
946 
947 	/* Now we can get the pointers */
948 	uh = skb->h.uh;
949 	udpdata = (__u8 *)uh + sizeof(struct udphdr);
950 	udpdata32 = (__be32 *)udpdata;
951 
952 	switch (encap_type) {
953 	default:
954 	case UDP_ENCAP_ESPINUDP:
955 		/* Check if this is a keepalive packet.  If so, eat it. */
956 		if (len == 1 && udpdata[0] == 0xff) {
957 			return 0;
958 		} else if (len > sizeof(struct ip_esp_hdr) && udpdata32[0] != 0 ) {
959 			/* ESP Packet without Non-ESP header */
960 			len = sizeof(struct udphdr);
961 		} else
962 			/* Must be an IKE packet.. pass it through */
963 			return 1;
964 		break;
965 	case UDP_ENCAP_ESPINUDP_NON_IKE:
966 		/* Check if this is a keepalive packet.  If so, eat it. */
967 		if (len == 1 && udpdata[0] == 0xff) {
968 			return 0;
969 		} else if (len > 2 * sizeof(u32) + sizeof(struct ip_esp_hdr) &&
970 			   udpdata32[0] == 0 && udpdata32[1] == 0) {
971 
972 			/* ESP Packet with Non-IKE marker */
973 			len = sizeof(struct udphdr) + 2 * sizeof(u32);
974 		} else
975 			/* Must be an IKE packet.. pass it through */
976 			return 1;
977 		break;
978 	}
979 
980 	/* At this point we are sure that this is an ESPinUDP packet,
981 	 * so we need to remove 'len' bytes from the packet (the UDP
982 	 * header and optional ESP marker bytes) and then modify the
983 	 * protocol to ESP, and then call into the transform receiver.
984 	 */
985 	if (skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
986 		return 0;
987 
988 	/* Now we can update and verify the packet length... */
989 	iph = skb->nh.iph;
990 	iphlen = iph->ihl << 2;
991 	iph->tot_len = htons(ntohs(iph->tot_len) - len);
992 	if (skb->len < iphlen + len) {
993 		/* packet is too small!?! */
994 		return 0;
995 	}
996 
997 	/* pull the data buffer up to the ESP header and set the
998 	 * transport header to point to ESP.  Keep UDP on the stack
999 	 * for later.
1000 	 */
1001 	skb->h.raw = skb_pull(skb, len);
1002 
1003 	/* modify the protocol (it's ESP!) */
1004 	iph->protocol = IPPROTO_ESP;
1005 
1006 	/* and let the caller know to send this into the ESP processor... */
1007 	return -1;
1008 #endif
1009 }
1010 
1011 /* returns:
1012  *  -1: error
1013  *   0: success
1014  *  >0: "udp encap" protocol resubmission
1015  *
1016  * Note that in the success and error cases, the skb is assumed to
1017  * have either been requeued or freed.
1018  */
1019 int udp_queue_rcv_skb(struct sock * sk, struct sk_buff *skb)
1020 {
1021 	struct udp_sock *up = udp_sk(sk);
1022 	int rc;
1023 
1024 	/*
1025 	 *	Charge it to the socket, dropping if the queue is full.
1026 	 */
1027 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1028 		goto drop;
1029 	nf_reset(skb);
1030 
1031 	if (up->encap_type) {
1032 		/*
1033 		 * This is an encapsulation socket, so let's see if this is
1034 		 * an encapsulated packet.
1035 		 * If it's a keepalive packet, then just eat it.
1036 		 * If it's an encapsulateed packet, then pass it to the
1037 		 * IPsec xfrm input and return the response
1038 		 * appropriately.  Otherwise, just fall through and
1039 		 * pass this up the UDP socket.
1040 		 */
1041 		int ret;
1042 
1043 		ret = udp_encap_rcv(sk, skb);
1044 		if (ret == 0) {
1045 			/* Eat the packet .. */
1046 			kfree_skb(skb);
1047 			return 0;
1048 		}
1049 		if (ret < 0) {
1050 			/* process the ESP packet */
1051 			ret = xfrm4_rcv_encap(skb, up->encap_type);
1052 			UDP_INC_STATS_BH(UDP_MIB_INDATAGRAMS, up->pcflag);
1053 			return -ret;
1054 		}
1055 		/* FALLTHROUGH -- it's a UDP Packet */
1056 	}
1057 
1058 	/*
1059 	 * 	UDP-Lite specific tests, ignored on UDP sockets
1060 	 */
1061 	if ((up->pcflag & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
1062 
1063 		/*
1064 		 * MIB statistics other than incrementing the error count are
1065 		 * disabled for the following two types of errors: these depend
1066 		 * on the application settings, not on the functioning of the
1067 		 * protocol stack as such.
1068 		 *
1069 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
1070 		 * way ... to ... at least let the receiving application block
1071 		 * delivery of packets with coverage values less than a value
1072 		 * provided by the application."
1073 		 */
1074 		if (up->pcrlen == 0) {          /* full coverage was set  */
1075 			LIMIT_NETDEBUG(KERN_WARNING "UDPLITE: partial coverage "
1076 				"%d while full coverage %d requested\n",
1077 				UDP_SKB_CB(skb)->cscov, skb->len);
1078 			goto drop;
1079 		}
1080 		/* The next case involves violating the min. coverage requested
1081 		 * by the receiver. This is subtle: if receiver wants x and x is
1082 		 * greater than the buffersize/MTU then receiver will complain
1083 		 * that it wants x while sender emits packets of smaller size y.
1084 		 * Therefore the above ...()->partial_cov statement is essential.
1085 		 */
1086 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
1087 			LIMIT_NETDEBUG(KERN_WARNING
1088 				"UDPLITE: coverage %d too small, need min %d\n",
1089 				UDP_SKB_CB(skb)->cscov, up->pcrlen);
1090 			goto drop;
1091 		}
1092 	}
1093 
1094 	if (sk->sk_filter && skb->ip_summed != CHECKSUM_UNNECESSARY) {
1095 		if (__udp_lib_checksum_complete(skb))
1096 			goto drop;
1097 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1098 	}
1099 
1100 	if ((rc = sock_queue_rcv_skb(sk,skb)) < 0) {
1101 		/* Note that an ENOMEM error is charged twice */
1102 		if (rc == -ENOMEM)
1103 			UDP_INC_STATS_BH(UDP_MIB_RCVBUFERRORS, up->pcflag);
1104 		goto drop;
1105 	}
1106 
1107 	UDP_INC_STATS_BH(UDP_MIB_INDATAGRAMS, up->pcflag);
1108 	return 0;
1109 
1110 drop:
1111 	UDP_INC_STATS_BH(UDP_MIB_INERRORS, up->pcflag);
1112 	kfree_skb(skb);
1113 	return -1;
1114 }
1115 
1116 /*
1117  *	Multicasts and broadcasts go to each listener.
1118  *
1119  *	Note: called only from the BH handler context,
1120  *	so we don't need to lock the hashes.
1121  */
1122 static int __udp4_lib_mcast_deliver(struct sk_buff *skb,
1123 				    struct udphdr  *uh,
1124 				    __be32 saddr, __be32 daddr,
1125 				    struct hlist_head udptable[])
1126 {
1127 	struct sock *sk;
1128 	int dif;
1129 
1130 	read_lock(&udp_hash_lock);
1131 	sk = sk_head(&udptable[ntohs(uh->dest) & (UDP_HTABLE_SIZE - 1)]);
1132 	dif = skb->dev->ifindex;
1133 	sk = udp_v4_mcast_next(sk, uh->dest, daddr, uh->source, saddr, dif);
1134 	if (sk) {
1135 		struct sock *sknext = NULL;
1136 
1137 		do {
1138 			struct sk_buff *skb1 = skb;
1139 
1140 			sknext = udp_v4_mcast_next(sk_next(sk), uh->dest, daddr,
1141 						   uh->source, saddr, dif);
1142 			if(sknext)
1143 				skb1 = skb_clone(skb, GFP_ATOMIC);
1144 
1145 			if(skb1) {
1146 				int ret = udp_queue_rcv_skb(sk, skb1);
1147 				if (ret > 0)
1148 					/* we should probably re-process instead
1149 					 * of dropping packets here. */
1150 					kfree_skb(skb1);
1151 			}
1152 			sk = sknext;
1153 		} while(sknext);
1154 	} else
1155 		kfree_skb(skb);
1156 	read_unlock(&udp_hash_lock);
1157 	return 0;
1158 }
1159 
1160 /* Initialize UDP checksum. If exited with zero value (success),
1161  * CHECKSUM_UNNECESSARY means, that no more checks are required.
1162  * Otherwise, csum completion requires chacksumming packet body,
1163  * including udp header and folding it to skb->csum.
1164  */
1165 static inline void udp4_csum_init(struct sk_buff *skb, struct udphdr *uh)
1166 {
1167 	if (uh->check == 0) {
1168 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1169 	} else if (skb->ip_summed == CHECKSUM_COMPLETE) {
1170 	       if (!csum_tcpudp_magic(skb->nh.iph->saddr, skb->nh.iph->daddr,
1171 				      skb->len, IPPROTO_UDP, skb->csum       ))
1172 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1173 	}
1174 	if (skb->ip_summed != CHECKSUM_UNNECESSARY)
1175 		skb->csum = csum_tcpudp_nofold(skb->nh.iph->saddr,
1176 					       skb->nh.iph->daddr,
1177 					       skb->len, IPPROTO_UDP, 0);
1178 	/* Probably, we should checksum udp header (it should be in cache
1179 	 * in any case) and data in tiny packets (< rx copybreak).
1180 	 */
1181 
1182 	/* UDP = UDP-Lite with a non-partial checksum coverage */
1183 	UDP_SKB_CB(skb)->partial_cov = 0;
1184 }
1185 
1186 /*
1187  *	All we need to do is get the socket, and then do a checksum.
1188  */
1189 
1190 int __udp4_lib_rcv(struct sk_buff *skb, struct hlist_head udptable[],
1191 		   int is_udplite)
1192 {
1193   	struct sock *sk;
1194   	struct udphdr *uh = skb->h.uh;
1195 	unsigned short ulen;
1196 	struct rtable *rt = (struct rtable*)skb->dst;
1197 	__be32 saddr = skb->nh.iph->saddr;
1198 	__be32 daddr = skb->nh.iph->daddr;
1199 
1200 	/*
1201 	 *  Validate the packet.
1202 	 */
1203 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1204 		goto drop;		/* No space for header. */
1205 
1206 	ulen = ntohs(uh->len);
1207 	if (ulen > skb->len)
1208 		goto short_packet;
1209 
1210 	if(! is_udplite ) {		/* UDP validates ulen. */
1211 
1212 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1213 			goto short_packet;
1214 
1215 		udp4_csum_init(skb, uh);
1216 
1217 	} else 	{			/* UDP-Lite validates cscov. */
1218 		if (udplite4_csum_init(skb, uh))
1219 			goto csum_error;
1220 	}
1221 
1222 	if(rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1223 		return __udp4_lib_mcast_deliver(skb, uh, saddr, daddr, udptable);
1224 
1225 	sk = __udp4_lib_lookup(saddr, uh->source, daddr, uh->dest,
1226 			       skb->dev->ifindex, udptable        );
1227 
1228 	if (sk != NULL) {
1229 		int ret = udp_queue_rcv_skb(sk, skb);
1230 		sock_put(sk);
1231 
1232 		/* a return value > 0 means to resubmit the input, but
1233 		 * it wants the return to be -protocol, or 0
1234 		 */
1235 		if (ret > 0)
1236 			return -ret;
1237 		return 0;
1238 	}
1239 
1240 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1241 		goto drop;
1242 	nf_reset(skb);
1243 
1244 	/* No socket. Drop packet silently, if checksum is wrong */
1245 	if (udp_lib_checksum_complete(skb))
1246 		goto csum_error;
1247 
1248 	UDP_INC_STATS_BH(UDP_MIB_NOPORTS, is_udplite);
1249 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1250 
1251 	/*
1252 	 * Hmm.  We got an UDP packet to a port to which we
1253 	 * don't wanna listen.  Ignore it.
1254 	 */
1255 	kfree_skb(skb);
1256 	return(0);
1257 
1258 short_packet:
1259 	LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: short packet: From %u.%u.%u.%u:%u %d/%d to %u.%u.%u.%u:%u\n",
1260 		       is_udplite? "-Lite" : "",
1261 		       NIPQUAD(saddr),
1262 		       ntohs(uh->source),
1263 		       ulen,
1264 		       skb->len,
1265 		       NIPQUAD(daddr),
1266 		       ntohs(uh->dest));
1267 	goto drop;
1268 
1269 csum_error:
1270 	/*
1271 	 * RFC1122: OK.  Discards the bad packet silently (as far as
1272 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1273 	 */
1274 	LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: bad checksum. From %d.%d.%d.%d:%d to %d.%d.%d.%d:%d ulen %d\n",
1275 		       is_udplite? "-Lite" : "",
1276 		       NIPQUAD(saddr),
1277 		       ntohs(uh->source),
1278 		       NIPQUAD(daddr),
1279 		       ntohs(uh->dest),
1280 		       ulen);
1281 drop:
1282 	UDP_INC_STATS_BH(UDP_MIB_INERRORS, is_udplite);
1283 	kfree_skb(skb);
1284 	return(0);
1285 }
1286 
1287 __inline__ int udp_rcv(struct sk_buff *skb)
1288 {
1289 	return __udp4_lib_rcv(skb, udp_hash, 0);
1290 }
1291 
1292 int udp_destroy_sock(struct sock *sk)
1293 {
1294 	lock_sock(sk);
1295 	udp_flush_pending_frames(sk);
1296 	release_sock(sk);
1297 	return 0;
1298 }
1299 
1300 /*
1301  *	Socket option code for UDP
1302  */
1303 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
1304 		       char __user *optval, int optlen,
1305 		       int (*push_pending_frames)(struct sock *))
1306 {
1307 	struct udp_sock *up = udp_sk(sk);
1308 	int val;
1309 	int err = 0;
1310 
1311 	if(optlen<sizeof(int))
1312 		return -EINVAL;
1313 
1314 	if (get_user(val, (int __user *)optval))
1315 		return -EFAULT;
1316 
1317 	switch(optname) {
1318 	case UDP_CORK:
1319 		if (val != 0) {
1320 			up->corkflag = 1;
1321 		} else {
1322 			up->corkflag = 0;
1323 			lock_sock(sk);
1324 			(*push_pending_frames)(sk);
1325 			release_sock(sk);
1326 		}
1327 		break;
1328 
1329 	case UDP_ENCAP:
1330 		switch (val) {
1331 		case 0:
1332 		case UDP_ENCAP_ESPINUDP:
1333 		case UDP_ENCAP_ESPINUDP_NON_IKE:
1334 			up->encap_type = val;
1335 			break;
1336 		default:
1337 			err = -ENOPROTOOPT;
1338 			break;
1339 		}
1340 		break;
1341 
1342 	/*
1343 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
1344 	 */
1345 	/* The sender sets actual checksum coverage length via this option.
1346 	 * The case coverage > packet length is handled by send module. */
1347 	case UDPLITE_SEND_CSCOV:
1348 		if (!up->pcflag)         /* Disable the option on UDP sockets */
1349 			return -ENOPROTOOPT;
1350 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
1351 			val = 8;
1352 		up->pcslen = val;
1353 		up->pcflag |= UDPLITE_SEND_CC;
1354 		break;
1355 
1356         /* The receiver specifies a minimum checksum coverage value. To make
1357          * sense, this should be set to at least 8 (as done below). If zero is
1358 	 * used, this again means full checksum coverage.                     */
1359 	case UDPLITE_RECV_CSCOV:
1360 		if (!up->pcflag)         /* Disable the option on UDP sockets */
1361 			return -ENOPROTOOPT;
1362 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
1363 			val = 8;
1364 		up->pcrlen = val;
1365 		up->pcflag |= UDPLITE_RECV_CC;
1366 		break;
1367 
1368 	default:
1369 		err = -ENOPROTOOPT;
1370 		break;
1371 	};
1372 
1373 	return err;
1374 }
1375 
1376 int udp_setsockopt(struct sock *sk, int level, int optname,
1377 		   char __user *optval, int optlen)
1378 {
1379 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1380 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1381 					  udp_push_pending_frames);
1382 	return ip_setsockopt(sk, level, optname, optval, optlen);
1383 }
1384 
1385 #ifdef CONFIG_COMPAT
1386 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
1387 			  char __user *optval, int optlen)
1388 {
1389 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1390 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1391 					  udp_push_pending_frames);
1392 	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
1393 }
1394 #endif
1395 
1396 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
1397 		       char __user *optval, int __user *optlen)
1398 {
1399 	struct udp_sock *up = udp_sk(sk);
1400 	int val, len;
1401 
1402 	if(get_user(len,optlen))
1403 		return -EFAULT;
1404 
1405 	len = min_t(unsigned int, len, sizeof(int));
1406 
1407 	if(len < 0)
1408 		return -EINVAL;
1409 
1410 	switch(optname) {
1411 	case UDP_CORK:
1412 		val = up->corkflag;
1413 		break;
1414 
1415 	case UDP_ENCAP:
1416 		val = up->encap_type;
1417 		break;
1418 
1419 	/* The following two cannot be changed on UDP sockets, the return is
1420 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
1421 	case UDPLITE_SEND_CSCOV:
1422 		val = up->pcslen;
1423 		break;
1424 
1425 	case UDPLITE_RECV_CSCOV:
1426 		val = up->pcrlen;
1427 		break;
1428 
1429 	default:
1430 		return -ENOPROTOOPT;
1431 	};
1432 
1433   	if(put_user(len, optlen))
1434   		return -EFAULT;
1435 	if(copy_to_user(optval, &val,len))
1436 		return -EFAULT;
1437   	return 0;
1438 }
1439 
1440 int udp_getsockopt(struct sock *sk, int level, int optname,
1441 		   char __user *optval, int __user *optlen)
1442 {
1443 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1444 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1445 	return ip_getsockopt(sk, level, optname, optval, optlen);
1446 }
1447 
1448 #ifdef CONFIG_COMPAT
1449 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
1450 				 char __user *optval, int __user *optlen)
1451 {
1452 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1453 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1454 	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
1455 }
1456 #endif
1457 /**
1458  * 	udp_poll - wait for a UDP event.
1459  *	@file - file struct
1460  *	@sock - socket
1461  *	@wait - poll table
1462  *
1463  *	This is same as datagram poll, except for the special case of
1464  *	blocking sockets. If application is using a blocking fd
1465  *	and a packet with checksum error is in the queue;
1466  *	then it could get return from select indicating data available
1467  *	but then block when reading it. Add special case code
1468  *	to work around these arguably broken applications.
1469  */
1470 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
1471 {
1472 	unsigned int mask = datagram_poll(file, sock, wait);
1473 	struct sock *sk = sock->sk;
1474 	int 	is_lite = IS_UDPLITE(sk);
1475 
1476 	/* Check for false positives due to checksum errors */
1477 	if ( (mask & POLLRDNORM) &&
1478 	     !(file->f_flags & O_NONBLOCK) &&
1479 	     !(sk->sk_shutdown & RCV_SHUTDOWN)){
1480 		struct sk_buff_head *rcvq = &sk->sk_receive_queue;
1481 		struct sk_buff *skb;
1482 
1483 		spin_lock_bh(&rcvq->lock);
1484 		while ((skb = skb_peek(rcvq)) != NULL) {
1485 			if (udp_lib_checksum_complete(skb)) {
1486 				UDP_INC_STATS_BH(UDP_MIB_INERRORS, is_lite);
1487 				__skb_unlink(skb, rcvq);
1488 				kfree_skb(skb);
1489 			} else {
1490 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1491 				break;
1492 			}
1493 		}
1494 		spin_unlock_bh(&rcvq->lock);
1495 
1496 		/* nothing to see, move along */
1497 		if (skb == NULL)
1498 			mask &= ~(POLLIN | POLLRDNORM);
1499 	}
1500 
1501 	return mask;
1502 
1503 }
1504 
1505 struct proto udp_prot = {
1506  	.name		   = "UDP",
1507 	.owner		   = THIS_MODULE,
1508 	.close		   = udp_lib_close,
1509 	.connect	   = ip4_datagram_connect,
1510 	.disconnect	   = udp_disconnect,
1511 	.ioctl		   = udp_ioctl,
1512 	.destroy	   = udp_destroy_sock,
1513 	.setsockopt	   = udp_setsockopt,
1514 	.getsockopt	   = udp_getsockopt,
1515 	.sendmsg	   = udp_sendmsg,
1516 	.recvmsg	   = udp_recvmsg,
1517 	.sendpage	   = udp_sendpage,
1518 	.backlog_rcv	   = udp_queue_rcv_skb,
1519 	.hash		   = udp_lib_hash,
1520 	.unhash		   = udp_lib_unhash,
1521 	.get_port	   = udp_v4_get_port,
1522 	.obj_size	   = sizeof(struct udp_sock),
1523 #ifdef CONFIG_COMPAT
1524 	.compat_setsockopt = compat_udp_setsockopt,
1525 	.compat_getsockopt = compat_udp_getsockopt,
1526 #endif
1527 };
1528 
1529 /* ------------------------------------------------------------------------ */
1530 #ifdef CONFIG_PROC_FS
1531 
1532 static struct sock *udp_get_first(struct seq_file *seq)
1533 {
1534 	struct sock *sk;
1535 	struct udp_iter_state *state = seq->private;
1536 
1537 	for (state->bucket = 0; state->bucket < UDP_HTABLE_SIZE; ++state->bucket) {
1538 		struct hlist_node *node;
1539 		sk_for_each(sk, node, state->hashtable + state->bucket) {
1540 			if (sk->sk_family == state->family)
1541 				goto found;
1542 		}
1543 	}
1544 	sk = NULL;
1545 found:
1546 	return sk;
1547 }
1548 
1549 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
1550 {
1551 	struct udp_iter_state *state = seq->private;
1552 
1553 	do {
1554 		sk = sk_next(sk);
1555 try_again:
1556 		;
1557 	} while (sk && sk->sk_family != state->family);
1558 
1559 	if (!sk && ++state->bucket < UDP_HTABLE_SIZE) {
1560 		sk = sk_head(state->hashtable + state->bucket);
1561 		goto try_again;
1562 	}
1563 	return sk;
1564 }
1565 
1566 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
1567 {
1568 	struct sock *sk = udp_get_first(seq);
1569 
1570 	if (sk)
1571 		while(pos && (sk = udp_get_next(seq, sk)) != NULL)
1572 			--pos;
1573 	return pos ? NULL : sk;
1574 }
1575 
1576 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
1577 {
1578 	read_lock(&udp_hash_lock);
1579 	return *pos ? udp_get_idx(seq, *pos-1) : (void *)1;
1580 }
1581 
1582 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1583 {
1584 	struct sock *sk;
1585 
1586 	if (v == (void *)1)
1587 		sk = udp_get_idx(seq, 0);
1588 	else
1589 		sk = udp_get_next(seq, v);
1590 
1591 	++*pos;
1592 	return sk;
1593 }
1594 
1595 static void udp_seq_stop(struct seq_file *seq, void *v)
1596 {
1597 	read_unlock(&udp_hash_lock);
1598 }
1599 
1600 static int udp_seq_open(struct inode *inode, struct file *file)
1601 {
1602 	struct udp_seq_afinfo *afinfo = PDE(inode)->data;
1603 	struct seq_file *seq;
1604 	int rc = -ENOMEM;
1605 	struct udp_iter_state *s = kzalloc(sizeof(*s), GFP_KERNEL);
1606 
1607 	if (!s)
1608 		goto out;
1609 	s->family		= afinfo->family;
1610 	s->hashtable		= afinfo->hashtable;
1611 	s->seq_ops.start	= udp_seq_start;
1612 	s->seq_ops.next		= udp_seq_next;
1613 	s->seq_ops.show		= afinfo->seq_show;
1614 	s->seq_ops.stop		= udp_seq_stop;
1615 
1616 	rc = seq_open(file, &s->seq_ops);
1617 	if (rc)
1618 		goto out_kfree;
1619 
1620 	seq	     = file->private_data;
1621 	seq->private = s;
1622 out:
1623 	return rc;
1624 out_kfree:
1625 	kfree(s);
1626 	goto out;
1627 }
1628 
1629 /* ------------------------------------------------------------------------ */
1630 int udp_proc_register(struct udp_seq_afinfo *afinfo)
1631 {
1632 	struct proc_dir_entry *p;
1633 	int rc = 0;
1634 
1635 	if (!afinfo)
1636 		return -EINVAL;
1637 	afinfo->seq_fops->owner		= afinfo->owner;
1638 	afinfo->seq_fops->open		= udp_seq_open;
1639 	afinfo->seq_fops->read		= seq_read;
1640 	afinfo->seq_fops->llseek	= seq_lseek;
1641 	afinfo->seq_fops->release	= seq_release_private;
1642 
1643 	p = proc_net_fops_create(afinfo->name, S_IRUGO, afinfo->seq_fops);
1644 	if (p)
1645 		p->data = afinfo;
1646 	else
1647 		rc = -ENOMEM;
1648 	return rc;
1649 }
1650 
1651 void udp_proc_unregister(struct udp_seq_afinfo *afinfo)
1652 {
1653 	if (!afinfo)
1654 		return;
1655 	proc_net_remove(afinfo->name);
1656 	memset(afinfo->seq_fops, 0, sizeof(*afinfo->seq_fops));
1657 }
1658 
1659 /* ------------------------------------------------------------------------ */
1660 static void udp4_format_sock(struct sock *sp, char *tmpbuf, int bucket)
1661 {
1662 	struct inet_sock *inet = inet_sk(sp);
1663 	__be32 dest = inet->daddr;
1664 	__be32 src  = inet->rcv_saddr;
1665 	__u16 destp	  = ntohs(inet->dport);
1666 	__u16 srcp	  = ntohs(inet->sport);
1667 
1668 	sprintf(tmpbuf, "%4d: %08X:%04X %08X:%04X"
1669 		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %lu %d %p",
1670 		bucket, src, srcp, dest, destp, sp->sk_state,
1671 		atomic_read(&sp->sk_wmem_alloc),
1672 		atomic_read(&sp->sk_rmem_alloc),
1673 		0, 0L, 0, sock_i_uid(sp), 0, sock_i_ino(sp),
1674 		atomic_read(&sp->sk_refcnt), sp);
1675 }
1676 
1677 int udp4_seq_show(struct seq_file *seq, void *v)
1678 {
1679 	if (v == SEQ_START_TOKEN)
1680 		seq_printf(seq, "%-127s\n",
1681 			   "  sl  local_address rem_address   st tx_queue "
1682 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
1683 			   "inode");
1684 	else {
1685 		char tmpbuf[129];
1686 		struct udp_iter_state *state = seq->private;
1687 
1688 		udp4_format_sock(v, tmpbuf, state->bucket);
1689 		seq_printf(seq, "%-127s\n", tmpbuf);
1690 	}
1691 	return 0;
1692 }
1693 
1694 /* ------------------------------------------------------------------------ */
1695 static struct file_operations udp4_seq_fops;
1696 static struct udp_seq_afinfo udp4_seq_afinfo = {
1697 	.owner		= THIS_MODULE,
1698 	.name		= "udp",
1699 	.family		= AF_INET,
1700 	.hashtable	= udp_hash,
1701 	.seq_show	= udp4_seq_show,
1702 	.seq_fops	= &udp4_seq_fops,
1703 };
1704 
1705 int __init udp4_proc_init(void)
1706 {
1707 	return udp_proc_register(&udp4_seq_afinfo);
1708 }
1709 
1710 void udp4_proc_exit(void)
1711 {
1712 	udp_proc_unregister(&udp4_seq_afinfo);
1713 }
1714 #endif /* CONFIG_PROC_FS */
1715 
1716 EXPORT_SYMBOL(udp_disconnect);
1717 EXPORT_SYMBOL(udp_hash);
1718 EXPORT_SYMBOL(udp_hash_lock);
1719 EXPORT_SYMBOL(udp_ioctl);
1720 EXPORT_SYMBOL(udp_get_port);
1721 EXPORT_SYMBOL(udp_prot);
1722 EXPORT_SYMBOL(udp_sendmsg);
1723 EXPORT_SYMBOL(udp_lib_getsockopt);
1724 EXPORT_SYMBOL(udp_lib_setsockopt);
1725 EXPORT_SYMBOL(udp_poll);
1726 
1727 #ifdef CONFIG_PROC_FS
1728 EXPORT_SYMBOL(udp_proc_register);
1729 EXPORT_SYMBOL(udp_proc_unregister);
1730 #endif
1731