xref: /linux/net/ipv4/udp.c (revision 5e2cb28dd7e182dfa641550dfa225913509ad45d)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		The User Datagram Protocol (UDP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
12  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
13  *		Hirokazu Takahashi, <taka@valinux.co.jp>
14  *
15  * Fixes:
16  *		Alan Cox	:	verify_area() calls
17  *		Alan Cox	: 	stopped close while in use off icmp
18  *					messages. Not a fix but a botch that
19  *					for udp at least is 'valid'.
20  *		Alan Cox	:	Fixed icmp handling properly
21  *		Alan Cox	: 	Correct error for oversized datagrams
22  *		Alan Cox	:	Tidied select() semantics.
23  *		Alan Cox	:	udp_err() fixed properly, also now
24  *					select and read wake correctly on errors
25  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
26  *		Alan Cox	:	UDP can count its memory
27  *		Alan Cox	:	send to an unknown connection causes
28  *					an ECONNREFUSED off the icmp, but
29  *					does NOT close.
30  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
31  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
32  *					bug no longer crashes it.
33  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
34  *		Alan Cox	:	Uses skb_free_datagram
35  *		Alan Cox	:	Added get/set sockopt support.
36  *		Alan Cox	:	Broadcasting without option set returns EACCES.
37  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
38  *		Alan Cox	:	Use ip_tos and ip_ttl
39  *		Alan Cox	:	SNMP Mibs
40  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
41  *		Matt Dillon	:	UDP length checks.
42  *		Alan Cox	:	Smarter af_inet used properly.
43  *		Alan Cox	:	Use new kernel side addressing.
44  *		Alan Cox	:	Incorrect return on truncated datagram receive.
45  *	Arnt Gulbrandsen 	:	New udp_send and stuff
46  *		Alan Cox	:	Cache last socket
47  *		Alan Cox	:	Route cache
48  *		Jon Peatfield	:	Minor efficiency fix to sendto().
49  *		Mike Shaver	:	RFC1122 checks.
50  *		Alan Cox	:	Nonblocking error fix.
51  *	Willy Konynenberg	:	Transparent proxying support.
52  *		Mike McLagan	:	Routing by source
53  *		David S. Miller	:	New socket lookup architecture.
54  *					Last socket cache retained as it
55  *					does have a high hit rate.
56  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
57  *		Andi Kleen	:	Some cleanups, cache destination entry
58  *					for connect.
59  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
60  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
61  *					return ENOTCONN for unconnected sockets (POSIX)
62  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
63  *					bound-to-device socket
64  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
65  *					datagrams.
66  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
67  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
68  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
69  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
70  *					a single port at the same time.
71  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
72  *	James Chapman		:	Add L2TP encapsulation type.
73  */
74 
75 #define pr_fmt(fmt) "UDP: " fmt
76 
77 #include <linux/bpf-cgroup.h>
78 #include <linux/uaccess.h>
79 #include <asm/ioctls.h>
80 #include <linux/memblock.h>
81 #include <linux/highmem.h>
82 #include <linux/types.h>
83 #include <linux/fcntl.h>
84 #include <linux/module.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/igmp.h>
88 #include <linux/inetdevice.h>
89 #include <linux/in.h>
90 #include <linux/errno.h>
91 #include <linux/timer.h>
92 #include <linux/mm.h>
93 #include <linux/inet.h>
94 #include <linux/netdevice.h>
95 #include <linux/slab.h>
96 #include <net/tcp_states.h>
97 #include <linux/skbuff.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <net/net_namespace.h>
101 #include <net/icmp.h>
102 #include <net/inet_hashtables.h>
103 #include <net/ip_tunnels.h>
104 #include <net/route.h>
105 #include <net/checksum.h>
106 #include <net/gso.h>
107 #include <net/xfrm.h>
108 #include <trace/events/udp.h>
109 #include <linux/static_key.h>
110 #include <linux/btf_ids.h>
111 #include <trace/events/skb.h>
112 #include <net/busy_poll.h>
113 #include "udp_impl.h"
114 #include <net/sock_reuseport.h>
115 #include <net/addrconf.h>
116 #include <net/udp_tunnel.h>
117 #include <net/gro.h>
118 #if IS_ENABLED(CONFIG_IPV6)
119 #include <net/ipv6_stubs.h>
120 #endif
121 
122 struct udp_table udp_table __read_mostly;
123 EXPORT_SYMBOL(udp_table);
124 
125 long sysctl_udp_mem[3] __read_mostly;
126 EXPORT_SYMBOL(sysctl_udp_mem);
127 
128 atomic_long_t udp_memory_allocated ____cacheline_aligned_in_smp;
129 EXPORT_SYMBOL(udp_memory_allocated);
130 DEFINE_PER_CPU(int, udp_memory_per_cpu_fw_alloc);
131 EXPORT_PER_CPU_SYMBOL_GPL(udp_memory_per_cpu_fw_alloc);
132 
133 #define MAX_UDP_PORTS 65536
134 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN_PERNET)
135 
136 static struct udp_table *udp_get_table_prot(struct sock *sk)
137 {
138 	return sk->sk_prot->h.udp_table ? : sock_net(sk)->ipv4.udp_table;
139 }
140 
141 static int udp_lib_lport_inuse(struct net *net, __u16 num,
142 			       const struct udp_hslot *hslot,
143 			       unsigned long *bitmap,
144 			       struct sock *sk, unsigned int log)
145 {
146 	struct sock *sk2;
147 	kuid_t uid = sock_i_uid(sk);
148 
149 	sk_for_each(sk2, &hslot->head) {
150 		if (net_eq(sock_net(sk2), net) &&
151 		    sk2 != sk &&
152 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
153 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
154 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
155 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
156 		    inet_rcv_saddr_equal(sk, sk2, true)) {
157 			if (sk2->sk_reuseport && sk->sk_reuseport &&
158 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
159 			    uid_eq(uid, sock_i_uid(sk2))) {
160 				if (!bitmap)
161 					return 0;
162 			} else {
163 				if (!bitmap)
164 					return 1;
165 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
166 					  bitmap);
167 			}
168 		}
169 	}
170 	return 0;
171 }
172 
173 /*
174  * Note: we still hold spinlock of primary hash chain, so no other writer
175  * can insert/delete a socket with local_port == num
176  */
177 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
178 				struct udp_hslot *hslot2,
179 				struct sock *sk)
180 {
181 	struct sock *sk2;
182 	kuid_t uid = sock_i_uid(sk);
183 	int res = 0;
184 
185 	spin_lock(&hslot2->lock);
186 	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
187 		if (net_eq(sock_net(sk2), net) &&
188 		    sk2 != sk &&
189 		    (udp_sk(sk2)->udp_port_hash == num) &&
190 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
191 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
192 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
193 		    inet_rcv_saddr_equal(sk, sk2, true)) {
194 			if (sk2->sk_reuseport && sk->sk_reuseport &&
195 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
196 			    uid_eq(uid, sock_i_uid(sk2))) {
197 				res = 0;
198 			} else {
199 				res = 1;
200 			}
201 			break;
202 		}
203 	}
204 	spin_unlock(&hslot2->lock);
205 	return res;
206 }
207 
208 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
209 {
210 	struct net *net = sock_net(sk);
211 	kuid_t uid = sock_i_uid(sk);
212 	struct sock *sk2;
213 
214 	sk_for_each(sk2, &hslot->head) {
215 		if (net_eq(sock_net(sk2), net) &&
216 		    sk2 != sk &&
217 		    sk2->sk_family == sk->sk_family &&
218 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
219 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
220 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
221 		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
222 		    inet_rcv_saddr_equal(sk, sk2, false)) {
223 			return reuseport_add_sock(sk, sk2,
224 						  inet_rcv_saddr_any(sk));
225 		}
226 	}
227 
228 	return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
229 }
230 
231 /**
232  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
233  *
234  *  @sk:          socket struct in question
235  *  @snum:        port number to look up
236  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
237  *                   with NULL address
238  */
239 int udp_lib_get_port(struct sock *sk, unsigned short snum,
240 		     unsigned int hash2_nulladdr)
241 {
242 	struct udp_table *udptable = udp_get_table_prot(sk);
243 	struct udp_hslot *hslot, *hslot2;
244 	struct net *net = sock_net(sk);
245 	int error = -EADDRINUSE;
246 
247 	if (!snum) {
248 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
249 		unsigned short first, last;
250 		int low, high, remaining;
251 		unsigned int rand;
252 
253 		inet_sk_get_local_port_range(sk, &low, &high);
254 		remaining = (high - low) + 1;
255 
256 		rand = get_random_u32();
257 		first = reciprocal_scale(rand, remaining) + low;
258 		/*
259 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
260 		 */
261 		rand = (rand | 1) * (udptable->mask + 1);
262 		last = first + udptable->mask + 1;
263 		do {
264 			hslot = udp_hashslot(udptable, net, first);
265 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
266 			spin_lock_bh(&hslot->lock);
267 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
268 					    udptable->log);
269 
270 			snum = first;
271 			/*
272 			 * Iterate on all possible values of snum for this hash.
273 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
274 			 * give us randomization and full range coverage.
275 			 */
276 			do {
277 				if (low <= snum && snum <= high &&
278 				    !test_bit(snum >> udptable->log, bitmap) &&
279 				    !inet_is_local_reserved_port(net, snum))
280 					goto found;
281 				snum += rand;
282 			} while (snum != first);
283 			spin_unlock_bh(&hslot->lock);
284 			cond_resched();
285 		} while (++first != last);
286 		goto fail;
287 	} else {
288 		hslot = udp_hashslot(udptable, net, snum);
289 		spin_lock_bh(&hslot->lock);
290 		if (hslot->count > 10) {
291 			int exist;
292 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
293 
294 			slot2          &= udptable->mask;
295 			hash2_nulladdr &= udptable->mask;
296 
297 			hslot2 = udp_hashslot2(udptable, slot2);
298 			if (hslot->count < hslot2->count)
299 				goto scan_primary_hash;
300 
301 			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
302 			if (!exist && (hash2_nulladdr != slot2)) {
303 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
304 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
305 							     sk);
306 			}
307 			if (exist)
308 				goto fail_unlock;
309 			else
310 				goto found;
311 		}
312 scan_primary_hash:
313 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
314 			goto fail_unlock;
315 	}
316 found:
317 	inet_sk(sk)->inet_num = snum;
318 	udp_sk(sk)->udp_port_hash = snum;
319 	udp_sk(sk)->udp_portaddr_hash ^= snum;
320 	if (sk_unhashed(sk)) {
321 		if (sk->sk_reuseport &&
322 		    udp_reuseport_add_sock(sk, hslot)) {
323 			inet_sk(sk)->inet_num = 0;
324 			udp_sk(sk)->udp_port_hash = 0;
325 			udp_sk(sk)->udp_portaddr_hash ^= snum;
326 			goto fail_unlock;
327 		}
328 
329 		sk_add_node_rcu(sk, &hslot->head);
330 		hslot->count++;
331 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
332 
333 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
334 		spin_lock(&hslot2->lock);
335 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
336 		    sk->sk_family == AF_INET6)
337 			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
338 					   &hslot2->head);
339 		else
340 			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
341 					   &hslot2->head);
342 		hslot2->count++;
343 		spin_unlock(&hslot2->lock);
344 	}
345 	sock_set_flag(sk, SOCK_RCU_FREE);
346 	error = 0;
347 fail_unlock:
348 	spin_unlock_bh(&hslot->lock);
349 fail:
350 	return error;
351 }
352 EXPORT_SYMBOL(udp_lib_get_port);
353 
354 int udp_v4_get_port(struct sock *sk, unsigned short snum)
355 {
356 	unsigned int hash2_nulladdr =
357 		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
358 	unsigned int hash2_partial =
359 		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
360 
361 	/* precompute partial secondary hash */
362 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
363 	return udp_lib_get_port(sk, snum, hash2_nulladdr);
364 }
365 
366 static int compute_score(struct sock *sk, struct net *net,
367 			 __be32 saddr, __be16 sport,
368 			 __be32 daddr, unsigned short hnum,
369 			 int dif, int sdif)
370 {
371 	int score;
372 	struct inet_sock *inet;
373 	bool dev_match;
374 
375 	if (!net_eq(sock_net(sk), net) ||
376 	    udp_sk(sk)->udp_port_hash != hnum ||
377 	    ipv6_only_sock(sk))
378 		return -1;
379 
380 	if (sk->sk_rcv_saddr != daddr)
381 		return -1;
382 
383 	score = (sk->sk_family == PF_INET) ? 2 : 1;
384 
385 	inet = inet_sk(sk);
386 	if (inet->inet_daddr) {
387 		if (inet->inet_daddr != saddr)
388 			return -1;
389 		score += 4;
390 	}
391 
392 	if (inet->inet_dport) {
393 		if (inet->inet_dport != sport)
394 			return -1;
395 		score += 4;
396 	}
397 
398 	dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
399 					dif, sdif);
400 	if (!dev_match)
401 		return -1;
402 	if (sk->sk_bound_dev_if)
403 		score += 4;
404 
405 	if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
406 		score++;
407 	return score;
408 }
409 
410 INDIRECT_CALLABLE_SCOPE
411 u32 udp_ehashfn(const struct net *net, const __be32 laddr, const __u16 lport,
412 		const __be32 faddr, const __be16 fport)
413 {
414 	static u32 udp_ehash_secret __read_mostly;
415 
416 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
417 
418 	return __inet_ehashfn(laddr, lport, faddr, fport,
419 			      udp_ehash_secret + net_hash_mix(net));
420 }
421 
422 /* called with rcu_read_lock() */
423 static struct sock *udp4_lib_lookup2(struct net *net,
424 				     __be32 saddr, __be16 sport,
425 				     __be32 daddr, unsigned int hnum,
426 				     int dif, int sdif,
427 				     struct udp_hslot *hslot2,
428 				     struct sk_buff *skb)
429 {
430 	struct sock *sk, *result;
431 	int score, badness;
432 
433 	result = NULL;
434 	badness = 0;
435 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
436 		score = compute_score(sk, net, saddr, sport,
437 				      daddr, hnum, dif, sdif);
438 		if (score > badness) {
439 			badness = score;
440 
441 			if (sk->sk_state == TCP_ESTABLISHED) {
442 				result = sk;
443 				continue;
444 			}
445 
446 			result = inet_lookup_reuseport(net, sk, skb, sizeof(struct udphdr),
447 						       saddr, sport, daddr, hnum, udp_ehashfn);
448 			if (!result) {
449 				result = sk;
450 				continue;
451 			}
452 
453 			/* Fall back to scoring if group has connections */
454 			if (!reuseport_has_conns(sk))
455 				return result;
456 
457 			/* Reuseport logic returned an error, keep original score. */
458 			if (IS_ERR(result))
459 				continue;
460 
461 			badness = compute_score(result, net, saddr, sport,
462 						daddr, hnum, dif, sdif);
463 
464 		}
465 	}
466 	return result;
467 }
468 
469 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
470  * harder than this. -DaveM
471  */
472 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
473 		__be16 sport, __be32 daddr, __be16 dport, int dif,
474 		int sdif, struct udp_table *udptable, struct sk_buff *skb)
475 {
476 	unsigned short hnum = ntohs(dport);
477 	unsigned int hash2, slot2;
478 	struct udp_hslot *hslot2;
479 	struct sock *result, *sk;
480 
481 	hash2 = ipv4_portaddr_hash(net, daddr, hnum);
482 	slot2 = hash2 & udptable->mask;
483 	hslot2 = &udptable->hash2[slot2];
484 
485 	/* Lookup connected or non-wildcard socket */
486 	result = udp4_lib_lookup2(net, saddr, sport,
487 				  daddr, hnum, dif, sdif,
488 				  hslot2, skb);
489 	if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED)
490 		goto done;
491 
492 	/* Lookup redirect from BPF */
493 	if (static_branch_unlikely(&bpf_sk_lookup_enabled) &&
494 	    udptable == net->ipv4.udp_table) {
495 		sk = inet_lookup_run_sk_lookup(net, IPPROTO_UDP, skb, sizeof(struct udphdr),
496 					       saddr, sport, daddr, hnum, dif,
497 					       udp_ehashfn);
498 		if (sk) {
499 			result = sk;
500 			goto done;
501 		}
502 	}
503 
504 	/* Got non-wildcard socket or error on first lookup */
505 	if (result)
506 		goto done;
507 
508 	/* Lookup wildcard sockets */
509 	hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
510 	slot2 = hash2 & udptable->mask;
511 	hslot2 = &udptable->hash2[slot2];
512 
513 	result = udp4_lib_lookup2(net, saddr, sport,
514 				  htonl(INADDR_ANY), hnum, dif, sdif,
515 				  hslot2, skb);
516 done:
517 	if (IS_ERR(result))
518 		return NULL;
519 	return result;
520 }
521 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
522 
523 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
524 						 __be16 sport, __be16 dport,
525 						 struct udp_table *udptable)
526 {
527 	const struct iphdr *iph = ip_hdr(skb);
528 
529 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
530 				 iph->daddr, dport, inet_iif(skb),
531 				 inet_sdif(skb), udptable, skb);
532 }
533 
534 struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb,
535 				 __be16 sport, __be16 dport)
536 {
537 	const struct iphdr *iph = ip_hdr(skb);
538 	struct net *net = dev_net(skb->dev);
539 	int iif, sdif;
540 
541 	inet_get_iif_sdif(skb, &iif, &sdif);
542 
543 	return __udp4_lib_lookup(net, iph->saddr, sport,
544 				 iph->daddr, dport, iif,
545 				 sdif, net->ipv4.udp_table, NULL);
546 }
547 
548 /* Must be called under rcu_read_lock().
549  * Does increment socket refcount.
550  */
551 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
552 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
553 			     __be32 daddr, __be16 dport, int dif)
554 {
555 	struct sock *sk;
556 
557 	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
558 			       dif, 0, net->ipv4.udp_table, NULL);
559 	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
560 		sk = NULL;
561 	return sk;
562 }
563 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
564 #endif
565 
566 static inline bool __udp_is_mcast_sock(struct net *net, const struct sock *sk,
567 				       __be16 loc_port, __be32 loc_addr,
568 				       __be16 rmt_port, __be32 rmt_addr,
569 				       int dif, int sdif, unsigned short hnum)
570 {
571 	const struct inet_sock *inet = inet_sk(sk);
572 
573 	if (!net_eq(sock_net(sk), net) ||
574 	    udp_sk(sk)->udp_port_hash != hnum ||
575 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
576 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
577 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
578 	    ipv6_only_sock(sk) ||
579 	    !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
580 		return false;
581 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
582 		return false;
583 	return true;
584 }
585 
586 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
587 void udp_encap_enable(void)
588 {
589 	static_branch_inc(&udp_encap_needed_key);
590 }
591 EXPORT_SYMBOL(udp_encap_enable);
592 
593 void udp_encap_disable(void)
594 {
595 	static_branch_dec(&udp_encap_needed_key);
596 }
597 EXPORT_SYMBOL(udp_encap_disable);
598 
599 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go
600  * through error handlers in encapsulations looking for a match.
601  */
602 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
603 {
604 	int i;
605 
606 	for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
607 		int (*handler)(struct sk_buff *skb, u32 info);
608 		const struct ip_tunnel_encap_ops *encap;
609 
610 		encap = rcu_dereference(iptun_encaps[i]);
611 		if (!encap)
612 			continue;
613 		handler = encap->err_handler;
614 		if (handler && !handler(skb, info))
615 			return 0;
616 	}
617 
618 	return -ENOENT;
619 }
620 
621 /* Try to match ICMP errors to UDP tunnels by looking up a socket without
622  * reversing source and destination port: this will match tunnels that force the
623  * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
624  * lwtunnels might actually break this assumption by being configured with
625  * different destination ports on endpoints, in this case we won't be able to
626  * trace ICMP messages back to them.
627  *
628  * If this doesn't match any socket, probe tunnels with arbitrary destination
629  * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
630  * we've sent packets to won't necessarily match the local destination port.
631  *
632  * Then ask the tunnel implementation to match the error against a valid
633  * association.
634  *
635  * Return an error if we can't find a match, the socket if we need further
636  * processing, zero otherwise.
637  */
638 static struct sock *__udp4_lib_err_encap(struct net *net,
639 					 const struct iphdr *iph,
640 					 struct udphdr *uh,
641 					 struct udp_table *udptable,
642 					 struct sock *sk,
643 					 struct sk_buff *skb, u32 info)
644 {
645 	int (*lookup)(struct sock *sk, struct sk_buff *skb);
646 	int network_offset, transport_offset;
647 	struct udp_sock *up;
648 
649 	network_offset = skb_network_offset(skb);
650 	transport_offset = skb_transport_offset(skb);
651 
652 	/* Network header needs to point to the outer IPv4 header inside ICMP */
653 	skb_reset_network_header(skb);
654 
655 	/* Transport header needs to point to the UDP header */
656 	skb_set_transport_header(skb, iph->ihl << 2);
657 
658 	if (sk) {
659 		up = udp_sk(sk);
660 
661 		lookup = READ_ONCE(up->encap_err_lookup);
662 		if (lookup && lookup(sk, skb))
663 			sk = NULL;
664 
665 		goto out;
666 	}
667 
668 	sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
669 			       iph->saddr, uh->dest, skb->dev->ifindex, 0,
670 			       udptable, NULL);
671 	if (sk) {
672 		up = udp_sk(sk);
673 
674 		lookup = READ_ONCE(up->encap_err_lookup);
675 		if (!lookup || lookup(sk, skb))
676 			sk = NULL;
677 	}
678 
679 out:
680 	if (!sk)
681 		sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
682 
683 	skb_set_transport_header(skb, transport_offset);
684 	skb_set_network_header(skb, network_offset);
685 
686 	return sk;
687 }
688 
689 /*
690  * This routine is called by the ICMP module when it gets some
691  * sort of error condition.  If err < 0 then the socket should
692  * be closed and the error returned to the user.  If err > 0
693  * it's just the icmp type << 8 | icmp code.
694  * Header points to the ip header of the error packet. We move
695  * on past this. Then (as it used to claim before adjustment)
696  * header points to the first 8 bytes of the udp header.  We need
697  * to find the appropriate port.
698  */
699 
700 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
701 {
702 	struct inet_sock *inet;
703 	const struct iphdr *iph = (const struct iphdr *)skb->data;
704 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
705 	const int type = icmp_hdr(skb)->type;
706 	const int code = icmp_hdr(skb)->code;
707 	bool tunnel = false;
708 	struct sock *sk;
709 	int harderr;
710 	int err;
711 	struct net *net = dev_net(skb->dev);
712 
713 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
714 			       iph->saddr, uh->source, skb->dev->ifindex,
715 			       inet_sdif(skb), udptable, NULL);
716 
717 	if (!sk || READ_ONCE(udp_sk(sk)->encap_type)) {
718 		/* No socket for error: try tunnels before discarding */
719 		if (static_branch_unlikely(&udp_encap_needed_key)) {
720 			sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb,
721 						  info);
722 			if (!sk)
723 				return 0;
724 		} else
725 			sk = ERR_PTR(-ENOENT);
726 
727 		if (IS_ERR(sk)) {
728 			__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
729 			return PTR_ERR(sk);
730 		}
731 
732 		tunnel = true;
733 	}
734 
735 	err = 0;
736 	harderr = 0;
737 	inet = inet_sk(sk);
738 
739 	switch (type) {
740 	default:
741 	case ICMP_TIME_EXCEEDED:
742 		err = EHOSTUNREACH;
743 		break;
744 	case ICMP_SOURCE_QUENCH:
745 		goto out;
746 	case ICMP_PARAMETERPROB:
747 		err = EPROTO;
748 		harderr = 1;
749 		break;
750 	case ICMP_DEST_UNREACH:
751 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
752 			ipv4_sk_update_pmtu(skb, sk, info);
753 			if (READ_ONCE(inet->pmtudisc) != IP_PMTUDISC_DONT) {
754 				err = EMSGSIZE;
755 				harderr = 1;
756 				break;
757 			}
758 			goto out;
759 		}
760 		err = EHOSTUNREACH;
761 		if (code <= NR_ICMP_UNREACH) {
762 			harderr = icmp_err_convert[code].fatal;
763 			err = icmp_err_convert[code].errno;
764 		}
765 		break;
766 	case ICMP_REDIRECT:
767 		ipv4_sk_redirect(skb, sk);
768 		goto out;
769 	}
770 
771 	/*
772 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
773 	 *	4.1.3.3.
774 	 */
775 	if (tunnel) {
776 		/* ...not for tunnels though: we don't have a sending socket */
777 		if (udp_sk(sk)->encap_err_rcv)
778 			udp_sk(sk)->encap_err_rcv(sk, skb, err, uh->dest, info,
779 						  (u8 *)(uh+1));
780 		goto out;
781 	}
782 	if (!inet_test_bit(RECVERR, sk)) {
783 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
784 			goto out;
785 	} else
786 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
787 
788 	sk->sk_err = err;
789 	sk_error_report(sk);
790 out:
791 	return 0;
792 }
793 
794 int udp_err(struct sk_buff *skb, u32 info)
795 {
796 	return __udp4_lib_err(skb, info, dev_net(skb->dev)->ipv4.udp_table);
797 }
798 
799 /*
800  * Throw away all pending data and cancel the corking. Socket is locked.
801  */
802 void udp_flush_pending_frames(struct sock *sk)
803 {
804 	struct udp_sock *up = udp_sk(sk);
805 
806 	if (up->pending) {
807 		up->len = 0;
808 		up->pending = 0;
809 		ip_flush_pending_frames(sk);
810 	}
811 }
812 EXPORT_SYMBOL(udp_flush_pending_frames);
813 
814 /**
815  * 	udp4_hwcsum  -  handle outgoing HW checksumming
816  * 	@skb: 	sk_buff containing the filled-in UDP header
817  * 	        (checksum field must be zeroed out)
818  *	@src:	source IP address
819  *	@dst:	destination IP address
820  */
821 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
822 {
823 	struct udphdr *uh = udp_hdr(skb);
824 	int offset = skb_transport_offset(skb);
825 	int len = skb->len - offset;
826 	int hlen = len;
827 	__wsum csum = 0;
828 
829 	if (!skb_has_frag_list(skb)) {
830 		/*
831 		 * Only one fragment on the socket.
832 		 */
833 		skb->csum_start = skb_transport_header(skb) - skb->head;
834 		skb->csum_offset = offsetof(struct udphdr, check);
835 		uh->check = ~csum_tcpudp_magic(src, dst, len,
836 					       IPPROTO_UDP, 0);
837 	} else {
838 		struct sk_buff *frags;
839 
840 		/*
841 		 * HW-checksum won't work as there are two or more
842 		 * fragments on the socket so that all csums of sk_buffs
843 		 * should be together
844 		 */
845 		skb_walk_frags(skb, frags) {
846 			csum = csum_add(csum, frags->csum);
847 			hlen -= frags->len;
848 		}
849 
850 		csum = skb_checksum(skb, offset, hlen, csum);
851 		skb->ip_summed = CHECKSUM_NONE;
852 
853 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
854 		if (uh->check == 0)
855 			uh->check = CSUM_MANGLED_0;
856 	}
857 }
858 EXPORT_SYMBOL_GPL(udp4_hwcsum);
859 
860 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
861  * for the simple case like when setting the checksum for a UDP tunnel.
862  */
863 void udp_set_csum(bool nocheck, struct sk_buff *skb,
864 		  __be32 saddr, __be32 daddr, int len)
865 {
866 	struct udphdr *uh = udp_hdr(skb);
867 
868 	if (nocheck) {
869 		uh->check = 0;
870 	} else if (skb_is_gso(skb)) {
871 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
872 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
873 		uh->check = 0;
874 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
875 		if (uh->check == 0)
876 			uh->check = CSUM_MANGLED_0;
877 	} else {
878 		skb->ip_summed = CHECKSUM_PARTIAL;
879 		skb->csum_start = skb_transport_header(skb) - skb->head;
880 		skb->csum_offset = offsetof(struct udphdr, check);
881 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
882 	}
883 }
884 EXPORT_SYMBOL(udp_set_csum);
885 
886 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
887 			struct inet_cork *cork)
888 {
889 	struct sock *sk = skb->sk;
890 	struct inet_sock *inet = inet_sk(sk);
891 	struct udphdr *uh;
892 	int err;
893 	int is_udplite = IS_UDPLITE(sk);
894 	int offset = skb_transport_offset(skb);
895 	int len = skb->len - offset;
896 	int datalen = len - sizeof(*uh);
897 	__wsum csum = 0;
898 
899 	/*
900 	 * Create a UDP header
901 	 */
902 	uh = udp_hdr(skb);
903 	uh->source = inet->inet_sport;
904 	uh->dest = fl4->fl4_dport;
905 	uh->len = htons(len);
906 	uh->check = 0;
907 
908 	if (cork->gso_size) {
909 		const int hlen = skb_network_header_len(skb) +
910 				 sizeof(struct udphdr);
911 
912 		if (hlen + cork->gso_size > cork->fragsize) {
913 			kfree_skb(skb);
914 			return -EINVAL;
915 		}
916 		if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) {
917 			kfree_skb(skb);
918 			return -EINVAL;
919 		}
920 		if (sk->sk_no_check_tx) {
921 			kfree_skb(skb);
922 			return -EINVAL;
923 		}
924 		if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
925 		    dst_xfrm(skb_dst(skb))) {
926 			kfree_skb(skb);
927 			return -EIO;
928 		}
929 
930 		if (datalen > cork->gso_size) {
931 			skb_shinfo(skb)->gso_size = cork->gso_size;
932 			skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
933 			skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
934 								 cork->gso_size);
935 		}
936 		goto csum_partial;
937 	}
938 
939 	if (is_udplite)  				 /*     UDP-Lite      */
940 		csum = udplite_csum(skb);
941 
942 	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
943 
944 		skb->ip_summed = CHECKSUM_NONE;
945 		goto send;
946 
947 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
948 csum_partial:
949 
950 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
951 		goto send;
952 
953 	} else
954 		csum = udp_csum(skb);
955 
956 	/* add protocol-dependent pseudo-header */
957 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
958 				      sk->sk_protocol, csum);
959 	if (uh->check == 0)
960 		uh->check = CSUM_MANGLED_0;
961 
962 send:
963 	err = ip_send_skb(sock_net(sk), skb);
964 	if (err) {
965 		if (err == -ENOBUFS &&
966 		    !inet_test_bit(RECVERR, sk)) {
967 			UDP_INC_STATS(sock_net(sk),
968 				      UDP_MIB_SNDBUFERRORS, is_udplite);
969 			err = 0;
970 		}
971 	} else
972 		UDP_INC_STATS(sock_net(sk),
973 			      UDP_MIB_OUTDATAGRAMS, is_udplite);
974 	return err;
975 }
976 
977 /*
978  * Push out all pending data as one UDP datagram. Socket is locked.
979  */
980 int udp_push_pending_frames(struct sock *sk)
981 {
982 	struct udp_sock  *up = udp_sk(sk);
983 	struct inet_sock *inet = inet_sk(sk);
984 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
985 	struct sk_buff *skb;
986 	int err = 0;
987 
988 	skb = ip_finish_skb(sk, fl4);
989 	if (!skb)
990 		goto out;
991 
992 	err = udp_send_skb(skb, fl4, &inet->cork.base);
993 
994 out:
995 	up->len = 0;
996 	up->pending = 0;
997 	return err;
998 }
999 EXPORT_SYMBOL(udp_push_pending_frames);
1000 
1001 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
1002 {
1003 	switch (cmsg->cmsg_type) {
1004 	case UDP_SEGMENT:
1005 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
1006 			return -EINVAL;
1007 		*gso_size = *(__u16 *)CMSG_DATA(cmsg);
1008 		return 0;
1009 	default:
1010 		return -EINVAL;
1011 	}
1012 }
1013 
1014 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
1015 {
1016 	struct cmsghdr *cmsg;
1017 	bool need_ip = false;
1018 	int err;
1019 
1020 	for_each_cmsghdr(cmsg, msg) {
1021 		if (!CMSG_OK(msg, cmsg))
1022 			return -EINVAL;
1023 
1024 		if (cmsg->cmsg_level != SOL_UDP) {
1025 			need_ip = true;
1026 			continue;
1027 		}
1028 
1029 		err = __udp_cmsg_send(cmsg, gso_size);
1030 		if (err)
1031 			return err;
1032 	}
1033 
1034 	return need_ip;
1035 }
1036 EXPORT_SYMBOL_GPL(udp_cmsg_send);
1037 
1038 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1039 {
1040 	struct inet_sock *inet = inet_sk(sk);
1041 	struct udp_sock *up = udp_sk(sk);
1042 	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1043 	struct flowi4 fl4_stack;
1044 	struct flowi4 *fl4;
1045 	int ulen = len;
1046 	struct ipcm_cookie ipc;
1047 	struct rtable *rt = NULL;
1048 	int free = 0;
1049 	int connected = 0;
1050 	__be32 daddr, faddr, saddr;
1051 	u8 tos, scope;
1052 	__be16 dport;
1053 	int err, is_udplite = IS_UDPLITE(sk);
1054 	int corkreq = udp_test_bit(CORK, sk) || msg->msg_flags & MSG_MORE;
1055 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
1056 	struct sk_buff *skb;
1057 	struct ip_options_data opt_copy;
1058 	int uc_index;
1059 
1060 	if (len > 0xFFFF)
1061 		return -EMSGSIZE;
1062 
1063 	/*
1064 	 *	Check the flags.
1065 	 */
1066 
1067 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1068 		return -EOPNOTSUPP;
1069 
1070 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1071 
1072 	fl4 = &inet->cork.fl.u.ip4;
1073 	if (up->pending) {
1074 		/*
1075 		 * There are pending frames.
1076 		 * The socket lock must be held while it's corked.
1077 		 */
1078 		lock_sock(sk);
1079 		if (likely(up->pending)) {
1080 			if (unlikely(up->pending != AF_INET)) {
1081 				release_sock(sk);
1082 				return -EINVAL;
1083 			}
1084 			goto do_append_data;
1085 		}
1086 		release_sock(sk);
1087 	}
1088 	ulen += sizeof(struct udphdr);
1089 
1090 	/*
1091 	 *	Get and verify the address.
1092 	 */
1093 	if (usin) {
1094 		if (msg->msg_namelen < sizeof(*usin))
1095 			return -EINVAL;
1096 		if (usin->sin_family != AF_INET) {
1097 			if (usin->sin_family != AF_UNSPEC)
1098 				return -EAFNOSUPPORT;
1099 		}
1100 
1101 		daddr = usin->sin_addr.s_addr;
1102 		dport = usin->sin_port;
1103 		if (dport == 0)
1104 			return -EINVAL;
1105 	} else {
1106 		if (sk->sk_state != TCP_ESTABLISHED)
1107 			return -EDESTADDRREQ;
1108 		daddr = inet->inet_daddr;
1109 		dport = inet->inet_dport;
1110 		/* Open fast path for connected socket.
1111 		   Route will not be used, if at least one option is set.
1112 		 */
1113 		connected = 1;
1114 	}
1115 
1116 	ipcm_init_sk(&ipc, inet);
1117 	ipc.gso_size = READ_ONCE(up->gso_size);
1118 
1119 	if (msg->msg_controllen) {
1120 		err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1121 		if (err > 0)
1122 			err = ip_cmsg_send(sk, msg, &ipc,
1123 					   sk->sk_family == AF_INET6);
1124 		if (unlikely(err < 0)) {
1125 			kfree(ipc.opt);
1126 			return err;
1127 		}
1128 		if (ipc.opt)
1129 			free = 1;
1130 		connected = 0;
1131 	}
1132 	if (!ipc.opt) {
1133 		struct ip_options_rcu *inet_opt;
1134 
1135 		rcu_read_lock();
1136 		inet_opt = rcu_dereference(inet->inet_opt);
1137 		if (inet_opt) {
1138 			memcpy(&opt_copy, inet_opt,
1139 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
1140 			ipc.opt = &opt_copy.opt;
1141 		}
1142 		rcu_read_unlock();
1143 	}
1144 
1145 	if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) {
1146 		err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1147 					    (struct sockaddr *)usin,
1148 					    &msg->msg_namelen,
1149 					    &ipc.addr);
1150 		if (err)
1151 			goto out_free;
1152 		if (usin) {
1153 			if (usin->sin_port == 0) {
1154 				/* BPF program set invalid port. Reject it. */
1155 				err = -EINVAL;
1156 				goto out_free;
1157 			}
1158 			daddr = usin->sin_addr.s_addr;
1159 			dport = usin->sin_port;
1160 		}
1161 	}
1162 
1163 	saddr = ipc.addr;
1164 	ipc.addr = faddr = daddr;
1165 
1166 	if (ipc.opt && ipc.opt->opt.srr) {
1167 		if (!daddr) {
1168 			err = -EINVAL;
1169 			goto out_free;
1170 		}
1171 		faddr = ipc.opt->opt.faddr;
1172 		connected = 0;
1173 	}
1174 	tos = get_rttos(&ipc, inet);
1175 	scope = ip_sendmsg_scope(inet, &ipc, msg);
1176 	if (scope == RT_SCOPE_LINK)
1177 		connected = 0;
1178 
1179 	uc_index = READ_ONCE(inet->uc_index);
1180 	if (ipv4_is_multicast(daddr)) {
1181 		if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1182 			ipc.oif = READ_ONCE(inet->mc_index);
1183 		if (!saddr)
1184 			saddr = READ_ONCE(inet->mc_addr);
1185 		connected = 0;
1186 	} else if (!ipc.oif) {
1187 		ipc.oif = uc_index;
1188 	} else if (ipv4_is_lbcast(daddr) && uc_index) {
1189 		/* oif is set, packet is to local broadcast and
1190 		 * uc_index is set. oif is most likely set
1191 		 * by sk_bound_dev_if. If uc_index != oif check if the
1192 		 * oif is an L3 master and uc_index is an L3 slave.
1193 		 * If so, we want to allow the send using the uc_index.
1194 		 */
1195 		if (ipc.oif != uc_index &&
1196 		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1197 							      uc_index)) {
1198 			ipc.oif = uc_index;
1199 		}
1200 	}
1201 
1202 	if (connected)
1203 		rt = (struct rtable *)sk_dst_check(sk, 0);
1204 
1205 	if (!rt) {
1206 		struct net *net = sock_net(sk);
1207 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1208 
1209 		fl4 = &fl4_stack;
1210 
1211 		flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos, scope,
1212 				   sk->sk_protocol, flow_flags, faddr, saddr,
1213 				   dport, inet->inet_sport, sk->sk_uid);
1214 
1215 		security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
1216 		rt = ip_route_output_flow(net, fl4, sk);
1217 		if (IS_ERR(rt)) {
1218 			err = PTR_ERR(rt);
1219 			rt = NULL;
1220 			if (err == -ENETUNREACH)
1221 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1222 			goto out;
1223 		}
1224 
1225 		err = -EACCES;
1226 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1227 		    !sock_flag(sk, SOCK_BROADCAST))
1228 			goto out;
1229 		if (connected)
1230 			sk_dst_set(sk, dst_clone(&rt->dst));
1231 	}
1232 
1233 	if (msg->msg_flags&MSG_CONFIRM)
1234 		goto do_confirm;
1235 back_from_confirm:
1236 
1237 	saddr = fl4->saddr;
1238 	if (!ipc.addr)
1239 		daddr = ipc.addr = fl4->daddr;
1240 
1241 	/* Lockless fast path for the non-corking case. */
1242 	if (!corkreq) {
1243 		struct inet_cork cork;
1244 
1245 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1246 				  sizeof(struct udphdr), &ipc, &rt,
1247 				  &cork, msg->msg_flags);
1248 		err = PTR_ERR(skb);
1249 		if (!IS_ERR_OR_NULL(skb))
1250 			err = udp_send_skb(skb, fl4, &cork);
1251 		goto out;
1252 	}
1253 
1254 	lock_sock(sk);
1255 	if (unlikely(up->pending)) {
1256 		/* The socket is already corked while preparing it. */
1257 		/* ... which is an evident application bug. --ANK */
1258 		release_sock(sk);
1259 
1260 		net_dbg_ratelimited("socket already corked\n");
1261 		err = -EINVAL;
1262 		goto out;
1263 	}
1264 	/*
1265 	 *	Now cork the socket to pend data.
1266 	 */
1267 	fl4 = &inet->cork.fl.u.ip4;
1268 	fl4->daddr = daddr;
1269 	fl4->saddr = saddr;
1270 	fl4->fl4_dport = dport;
1271 	fl4->fl4_sport = inet->inet_sport;
1272 	up->pending = AF_INET;
1273 
1274 do_append_data:
1275 	up->len += ulen;
1276 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1277 			     sizeof(struct udphdr), &ipc, &rt,
1278 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1279 	if (err)
1280 		udp_flush_pending_frames(sk);
1281 	else if (!corkreq)
1282 		err = udp_push_pending_frames(sk);
1283 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1284 		up->pending = 0;
1285 	release_sock(sk);
1286 
1287 out:
1288 	ip_rt_put(rt);
1289 out_free:
1290 	if (free)
1291 		kfree(ipc.opt);
1292 	if (!err)
1293 		return len;
1294 	/*
1295 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1296 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1297 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1298 	 * things).  We could add another new stat but at least for now that
1299 	 * seems like overkill.
1300 	 */
1301 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1302 		UDP_INC_STATS(sock_net(sk),
1303 			      UDP_MIB_SNDBUFERRORS, is_udplite);
1304 	}
1305 	return err;
1306 
1307 do_confirm:
1308 	if (msg->msg_flags & MSG_PROBE)
1309 		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1310 	if (!(msg->msg_flags&MSG_PROBE) || len)
1311 		goto back_from_confirm;
1312 	err = 0;
1313 	goto out;
1314 }
1315 EXPORT_SYMBOL(udp_sendmsg);
1316 
1317 void udp_splice_eof(struct socket *sock)
1318 {
1319 	struct sock *sk = sock->sk;
1320 	struct udp_sock *up = udp_sk(sk);
1321 
1322 	if (!up->pending || udp_test_bit(CORK, sk))
1323 		return;
1324 
1325 	lock_sock(sk);
1326 	if (up->pending && !udp_test_bit(CORK, sk))
1327 		udp_push_pending_frames(sk);
1328 	release_sock(sk);
1329 }
1330 EXPORT_SYMBOL_GPL(udp_splice_eof);
1331 
1332 #define UDP_SKB_IS_STATELESS 0x80000000
1333 
1334 /* all head states (dst, sk, nf conntrack) except skb extensions are
1335  * cleared by udp_rcv().
1336  *
1337  * We need to preserve secpath, if present, to eventually process
1338  * IP_CMSG_PASSSEC at recvmsg() time.
1339  *
1340  * Other extensions can be cleared.
1341  */
1342 static bool udp_try_make_stateless(struct sk_buff *skb)
1343 {
1344 	if (!skb_has_extensions(skb))
1345 		return true;
1346 
1347 	if (!secpath_exists(skb)) {
1348 		skb_ext_reset(skb);
1349 		return true;
1350 	}
1351 
1352 	return false;
1353 }
1354 
1355 static void udp_set_dev_scratch(struct sk_buff *skb)
1356 {
1357 	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1358 
1359 	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1360 	scratch->_tsize_state = skb->truesize;
1361 #if BITS_PER_LONG == 64
1362 	scratch->len = skb->len;
1363 	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1364 	scratch->is_linear = !skb_is_nonlinear(skb);
1365 #endif
1366 	if (udp_try_make_stateless(skb))
1367 		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1368 }
1369 
1370 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1371 {
1372 	/* We come here after udp_lib_checksum_complete() returned 0.
1373 	 * This means that __skb_checksum_complete() might have
1374 	 * set skb->csum_valid to 1.
1375 	 * On 64bit platforms, we can set csum_unnecessary
1376 	 * to true, but only if the skb is not shared.
1377 	 */
1378 #if BITS_PER_LONG == 64
1379 	if (!skb_shared(skb))
1380 		udp_skb_scratch(skb)->csum_unnecessary = true;
1381 #endif
1382 }
1383 
1384 static int udp_skb_truesize(struct sk_buff *skb)
1385 {
1386 	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1387 }
1388 
1389 static bool udp_skb_has_head_state(struct sk_buff *skb)
1390 {
1391 	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1392 }
1393 
1394 /* fully reclaim rmem/fwd memory allocated for skb */
1395 static void udp_rmem_release(struct sock *sk, int size, int partial,
1396 			     bool rx_queue_lock_held)
1397 {
1398 	struct udp_sock *up = udp_sk(sk);
1399 	struct sk_buff_head *sk_queue;
1400 	int amt;
1401 
1402 	if (likely(partial)) {
1403 		up->forward_deficit += size;
1404 		size = up->forward_deficit;
1405 		if (size < READ_ONCE(up->forward_threshold) &&
1406 		    !skb_queue_empty(&up->reader_queue))
1407 			return;
1408 	} else {
1409 		size += up->forward_deficit;
1410 	}
1411 	up->forward_deficit = 0;
1412 
1413 	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1414 	 * if the called don't held it already
1415 	 */
1416 	sk_queue = &sk->sk_receive_queue;
1417 	if (!rx_queue_lock_held)
1418 		spin_lock(&sk_queue->lock);
1419 
1420 
1421 	sk_forward_alloc_add(sk, size);
1422 	amt = (sk->sk_forward_alloc - partial) & ~(PAGE_SIZE - 1);
1423 	sk_forward_alloc_add(sk, -amt);
1424 
1425 	if (amt)
1426 		__sk_mem_reduce_allocated(sk, amt >> PAGE_SHIFT);
1427 
1428 	atomic_sub(size, &sk->sk_rmem_alloc);
1429 
1430 	/* this can save us from acquiring the rx queue lock on next receive */
1431 	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1432 
1433 	if (!rx_queue_lock_held)
1434 		spin_unlock(&sk_queue->lock);
1435 }
1436 
1437 /* Note: called with reader_queue.lock held.
1438  * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1439  * This avoids a cache line miss while receive_queue lock is held.
1440  * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1441  */
1442 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1443 {
1444 	prefetch(&skb->data);
1445 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1446 }
1447 EXPORT_SYMBOL(udp_skb_destructor);
1448 
1449 /* as above, but the caller held the rx queue lock, too */
1450 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1451 {
1452 	prefetch(&skb->data);
1453 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1454 }
1455 
1456 /* Idea of busylocks is to let producers grab an extra spinlock
1457  * to relieve pressure on the receive_queue spinlock shared by consumer.
1458  * Under flood, this means that only one producer can be in line
1459  * trying to acquire the receive_queue spinlock.
1460  * These busylock can be allocated on a per cpu manner, instead of a
1461  * per socket one (that would consume a cache line per socket)
1462  */
1463 static int udp_busylocks_log __read_mostly;
1464 static spinlock_t *udp_busylocks __read_mostly;
1465 
1466 static spinlock_t *busylock_acquire(void *ptr)
1467 {
1468 	spinlock_t *busy;
1469 
1470 	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1471 	spin_lock(busy);
1472 	return busy;
1473 }
1474 
1475 static void busylock_release(spinlock_t *busy)
1476 {
1477 	if (busy)
1478 		spin_unlock(busy);
1479 }
1480 
1481 static int udp_rmem_schedule(struct sock *sk, int size)
1482 {
1483 	int delta;
1484 
1485 	delta = size - sk->sk_forward_alloc;
1486 	if (delta > 0 && !__sk_mem_schedule(sk, delta, SK_MEM_RECV))
1487 		return -ENOBUFS;
1488 
1489 	return 0;
1490 }
1491 
1492 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1493 {
1494 	struct sk_buff_head *list = &sk->sk_receive_queue;
1495 	int rmem, err = -ENOMEM;
1496 	spinlock_t *busy = NULL;
1497 	int size;
1498 
1499 	/* try to avoid the costly atomic add/sub pair when the receive
1500 	 * queue is full; always allow at least a packet
1501 	 */
1502 	rmem = atomic_read(&sk->sk_rmem_alloc);
1503 	if (rmem > sk->sk_rcvbuf)
1504 		goto drop;
1505 
1506 	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1507 	 * having linear skbs :
1508 	 * - Reduce memory overhead and thus increase receive queue capacity
1509 	 * - Less cache line misses at copyout() time
1510 	 * - Less work at consume_skb() (less alien page frag freeing)
1511 	 */
1512 	if (rmem > (sk->sk_rcvbuf >> 1)) {
1513 		skb_condense(skb);
1514 
1515 		busy = busylock_acquire(sk);
1516 	}
1517 	size = skb->truesize;
1518 	udp_set_dev_scratch(skb);
1519 
1520 	/* we drop only if the receive buf is full and the receive
1521 	 * queue contains some other skb
1522 	 */
1523 	rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1524 	if (rmem > (size + (unsigned int)sk->sk_rcvbuf))
1525 		goto uncharge_drop;
1526 
1527 	spin_lock(&list->lock);
1528 	err = udp_rmem_schedule(sk, size);
1529 	if (err) {
1530 		spin_unlock(&list->lock);
1531 		goto uncharge_drop;
1532 	}
1533 
1534 	sk_forward_alloc_add(sk, -size);
1535 
1536 	/* no need to setup a destructor, we will explicitly release the
1537 	 * forward allocated memory on dequeue
1538 	 */
1539 	sock_skb_set_dropcount(sk, skb);
1540 
1541 	__skb_queue_tail(list, skb);
1542 	spin_unlock(&list->lock);
1543 
1544 	if (!sock_flag(sk, SOCK_DEAD))
1545 		INDIRECT_CALL_1(sk->sk_data_ready, sock_def_readable, sk);
1546 
1547 	busylock_release(busy);
1548 	return 0;
1549 
1550 uncharge_drop:
1551 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1552 
1553 drop:
1554 	atomic_inc(&sk->sk_drops);
1555 	busylock_release(busy);
1556 	return err;
1557 }
1558 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1559 
1560 void udp_destruct_common(struct sock *sk)
1561 {
1562 	/* reclaim completely the forward allocated memory */
1563 	struct udp_sock *up = udp_sk(sk);
1564 	unsigned int total = 0;
1565 	struct sk_buff *skb;
1566 
1567 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1568 	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1569 		total += skb->truesize;
1570 		kfree_skb(skb);
1571 	}
1572 	udp_rmem_release(sk, total, 0, true);
1573 }
1574 EXPORT_SYMBOL_GPL(udp_destruct_common);
1575 
1576 static void udp_destruct_sock(struct sock *sk)
1577 {
1578 	udp_destruct_common(sk);
1579 	inet_sock_destruct(sk);
1580 }
1581 
1582 int udp_init_sock(struct sock *sk)
1583 {
1584 	udp_lib_init_sock(sk);
1585 	sk->sk_destruct = udp_destruct_sock;
1586 	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1587 	return 0;
1588 }
1589 
1590 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1591 {
1592 	if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1593 		bool slow = lock_sock_fast(sk);
1594 
1595 		sk_peek_offset_bwd(sk, len);
1596 		unlock_sock_fast(sk, slow);
1597 	}
1598 
1599 	if (!skb_unref(skb))
1600 		return;
1601 
1602 	/* In the more common cases we cleared the head states previously,
1603 	 * see __udp_queue_rcv_skb().
1604 	 */
1605 	if (unlikely(udp_skb_has_head_state(skb)))
1606 		skb_release_head_state(skb);
1607 	__consume_stateless_skb(skb);
1608 }
1609 EXPORT_SYMBOL_GPL(skb_consume_udp);
1610 
1611 static struct sk_buff *__first_packet_length(struct sock *sk,
1612 					     struct sk_buff_head *rcvq,
1613 					     int *total)
1614 {
1615 	struct sk_buff *skb;
1616 
1617 	while ((skb = skb_peek(rcvq)) != NULL) {
1618 		if (udp_lib_checksum_complete(skb)) {
1619 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1620 					IS_UDPLITE(sk));
1621 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1622 					IS_UDPLITE(sk));
1623 			atomic_inc(&sk->sk_drops);
1624 			__skb_unlink(skb, rcvq);
1625 			*total += skb->truesize;
1626 			kfree_skb(skb);
1627 		} else {
1628 			udp_skb_csum_unnecessary_set(skb);
1629 			break;
1630 		}
1631 	}
1632 	return skb;
1633 }
1634 
1635 /**
1636  *	first_packet_length	- return length of first packet in receive queue
1637  *	@sk: socket
1638  *
1639  *	Drops all bad checksum frames, until a valid one is found.
1640  *	Returns the length of found skb, or -1 if none is found.
1641  */
1642 static int first_packet_length(struct sock *sk)
1643 {
1644 	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1645 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1646 	struct sk_buff *skb;
1647 	int total = 0;
1648 	int res;
1649 
1650 	spin_lock_bh(&rcvq->lock);
1651 	skb = __first_packet_length(sk, rcvq, &total);
1652 	if (!skb && !skb_queue_empty_lockless(sk_queue)) {
1653 		spin_lock(&sk_queue->lock);
1654 		skb_queue_splice_tail_init(sk_queue, rcvq);
1655 		spin_unlock(&sk_queue->lock);
1656 
1657 		skb = __first_packet_length(sk, rcvq, &total);
1658 	}
1659 	res = skb ? skb->len : -1;
1660 	if (total)
1661 		udp_rmem_release(sk, total, 1, false);
1662 	spin_unlock_bh(&rcvq->lock);
1663 	return res;
1664 }
1665 
1666 /*
1667  *	IOCTL requests applicable to the UDP protocol
1668  */
1669 
1670 int udp_ioctl(struct sock *sk, int cmd, int *karg)
1671 {
1672 	switch (cmd) {
1673 	case SIOCOUTQ:
1674 	{
1675 		*karg = sk_wmem_alloc_get(sk);
1676 		return 0;
1677 	}
1678 
1679 	case SIOCINQ:
1680 	{
1681 		*karg = max_t(int, 0, first_packet_length(sk));
1682 		return 0;
1683 	}
1684 
1685 	default:
1686 		return -ENOIOCTLCMD;
1687 	}
1688 
1689 	return 0;
1690 }
1691 EXPORT_SYMBOL(udp_ioctl);
1692 
1693 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1694 			       int *off, int *err)
1695 {
1696 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1697 	struct sk_buff_head *queue;
1698 	struct sk_buff *last;
1699 	long timeo;
1700 	int error;
1701 
1702 	queue = &udp_sk(sk)->reader_queue;
1703 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1704 	do {
1705 		struct sk_buff *skb;
1706 
1707 		error = sock_error(sk);
1708 		if (error)
1709 			break;
1710 
1711 		error = -EAGAIN;
1712 		do {
1713 			spin_lock_bh(&queue->lock);
1714 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1715 							err, &last);
1716 			if (skb) {
1717 				if (!(flags & MSG_PEEK))
1718 					udp_skb_destructor(sk, skb);
1719 				spin_unlock_bh(&queue->lock);
1720 				return skb;
1721 			}
1722 
1723 			if (skb_queue_empty_lockless(sk_queue)) {
1724 				spin_unlock_bh(&queue->lock);
1725 				goto busy_check;
1726 			}
1727 
1728 			/* refill the reader queue and walk it again
1729 			 * keep both queues locked to avoid re-acquiring
1730 			 * the sk_receive_queue lock if fwd memory scheduling
1731 			 * is needed.
1732 			 */
1733 			spin_lock(&sk_queue->lock);
1734 			skb_queue_splice_tail_init(sk_queue, queue);
1735 
1736 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1737 							err, &last);
1738 			if (skb && !(flags & MSG_PEEK))
1739 				udp_skb_dtor_locked(sk, skb);
1740 			spin_unlock(&sk_queue->lock);
1741 			spin_unlock_bh(&queue->lock);
1742 			if (skb)
1743 				return skb;
1744 
1745 busy_check:
1746 			if (!sk_can_busy_loop(sk))
1747 				break;
1748 
1749 			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1750 		} while (!skb_queue_empty_lockless(sk_queue));
1751 
1752 		/* sk_queue is empty, reader_queue may contain peeked packets */
1753 	} while (timeo &&
1754 		 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
1755 					      &error, &timeo,
1756 					      (struct sk_buff *)sk_queue));
1757 
1758 	*err = error;
1759 	return NULL;
1760 }
1761 EXPORT_SYMBOL(__skb_recv_udp);
1762 
1763 int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1764 {
1765 	struct sk_buff *skb;
1766 	int err;
1767 
1768 try_again:
1769 	skb = skb_recv_udp(sk, MSG_DONTWAIT, &err);
1770 	if (!skb)
1771 		return err;
1772 
1773 	if (udp_lib_checksum_complete(skb)) {
1774 		int is_udplite = IS_UDPLITE(sk);
1775 		struct net *net = sock_net(sk);
1776 
1777 		__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, is_udplite);
1778 		__UDP_INC_STATS(net, UDP_MIB_INERRORS, is_udplite);
1779 		atomic_inc(&sk->sk_drops);
1780 		kfree_skb(skb);
1781 		goto try_again;
1782 	}
1783 
1784 	WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1785 	return recv_actor(sk, skb);
1786 }
1787 EXPORT_SYMBOL(udp_read_skb);
1788 
1789 /*
1790  * 	This should be easy, if there is something there we
1791  * 	return it, otherwise we block.
1792  */
1793 
1794 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
1795 		int *addr_len)
1796 {
1797 	struct inet_sock *inet = inet_sk(sk);
1798 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1799 	struct sk_buff *skb;
1800 	unsigned int ulen, copied;
1801 	int off, err, peeking = flags & MSG_PEEK;
1802 	int is_udplite = IS_UDPLITE(sk);
1803 	bool checksum_valid = false;
1804 
1805 	if (flags & MSG_ERRQUEUE)
1806 		return ip_recv_error(sk, msg, len, addr_len);
1807 
1808 try_again:
1809 	off = sk_peek_offset(sk, flags);
1810 	skb = __skb_recv_udp(sk, flags, &off, &err);
1811 	if (!skb)
1812 		return err;
1813 
1814 	ulen = udp_skb_len(skb);
1815 	copied = len;
1816 	if (copied > ulen - off)
1817 		copied = ulen - off;
1818 	else if (copied < ulen)
1819 		msg->msg_flags |= MSG_TRUNC;
1820 
1821 	/*
1822 	 * If checksum is needed at all, try to do it while copying the
1823 	 * data.  If the data is truncated, or if we only want a partial
1824 	 * coverage checksum (UDP-Lite), do it before the copy.
1825 	 */
1826 
1827 	if (copied < ulen || peeking ||
1828 	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1829 		checksum_valid = udp_skb_csum_unnecessary(skb) ||
1830 				!__udp_lib_checksum_complete(skb);
1831 		if (!checksum_valid)
1832 			goto csum_copy_err;
1833 	}
1834 
1835 	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1836 		if (udp_skb_is_linear(skb))
1837 			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1838 		else
1839 			err = skb_copy_datagram_msg(skb, off, msg, copied);
1840 	} else {
1841 		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1842 
1843 		if (err == -EINVAL)
1844 			goto csum_copy_err;
1845 	}
1846 
1847 	if (unlikely(err)) {
1848 		if (!peeking) {
1849 			atomic_inc(&sk->sk_drops);
1850 			UDP_INC_STATS(sock_net(sk),
1851 				      UDP_MIB_INERRORS, is_udplite);
1852 		}
1853 		kfree_skb(skb);
1854 		return err;
1855 	}
1856 
1857 	if (!peeking)
1858 		UDP_INC_STATS(sock_net(sk),
1859 			      UDP_MIB_INDATAGRAMS, is_udplite);
1860 
1861 	sock_recv_cmsgs(msg, sk, skb);
1862 
1863 	/* Copy the address. */
1864 	if (sin) {
1865 		sin->sin_family = AF_INET;
1866 		sin->sin_port = udp_hdr(skb)->source;
1867 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1868 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1869 		*addr_len = sizeof(*sin);
1870 
1871 		BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
1872 						      (struct sockaddr *)sin,
1873 						      addr_len);
1874 	}
1875 
1876 	if (udp_test_bit(GRO_ENABLED, sk))
1877 		udp_cmsg_recv(msg, sk, skb);
1878 
1879 	if (inet_cmsg_flags(inet))
1880 		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1881 
1882 	err = copied;
1883 	if (flags & MSG_TRUNC)
1884 		err = ulen;
1885 
1886 	skb_consume_udp(sk, skb, peeking ? -err : err);
1887 	return err;
1888 
1889 csum_copy_err:
1890 	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1891 				 udp_skb_destructor)) {
1892 		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1893 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1894 	}
1895 	kfree_skb(skb);
1896 
1897 	/* starting over for a new packet, but check if we need to yield */
1898 	cond_resched();
1899 	msg->msg_flags &= ~MSG_TRUNC;
1900 	goto try_again;
1901 }
1902 
1903 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1904 {
1905 	/* This check is replicated from __ip4_datagram_connect() and
1906 	 * intended to prevent BPF program called below from accessing bytes
1907 	 * that are out of the bound specified by user in addr_len.
1908 	 */
1909 	if (addr_len < sizeof(struct sockaddr_in))
1910 		return -EINVAL;
1911 
1912 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr, &addr_len);
1913 }
1914 EXPORT_SYMBOL(udp_pre_connect);
1915 
1916 int __udp_disconnect(struct sock *sk, int flags)
1917 {
1918 	struct inet_sock *inet = inet_sk(sk);
1919 	/*
1920 	 *	1003.1g - break association.
1921 	 */
1922 
1923 	sk->sk_state = TCP_CLOSE;
1924 	inet->inet_daddr = 0;
1925 	inet->inet_dport = 0;
1926 	sock_rps_reset_rxhash(sk);
1927 	sk->sk_bound_dev_if = 0;
1928 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) {
1929 		inet_reset_saddr(sk);
1930 		if (sk->sk_prot->rehash &&
1931 		    (sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1932 			sk->sk_prot->rehash(sk);
1933 	}
1934 
1935 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1936 		sk->sk_prot->unhash(sk);
1937 		inet->inet_sport = 0;
1938 	}
1939 	sk_dst_reset(sk);
1940 	return 0;
1941 }
1942 EXPORT_SYMBOL(__udp_disconnect);
1943 
1944 int udp_disconnect(struct sock *sk, int flags)
1945 {
1946 	lock_sock(sk);
1947 	__udp_disconnect(sk, flags);
1948 	release_sock(sk);
1949 	return 0;
1950 }
1951 EXPORT_SYMBOL(udp_disconnect);
1952 
1953 void udp_lib_unhash(struct sock *sk)
1954 {
1955 	if (sk_hashed(sk)) {
1956 		struct udp_table *udptable = udp_get_table_prot(sk);
1957 		struct udp_hslot *hslot, *hslot2;
1958 
1959 		hslot  = udp_hashslot(udptable, sock_net(sk),
1960 				      udp_sk(sk)->udp_port_hash);
1961 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1962 
1963 		spin_lock_bh(&hslot->lock);
1964 		if (rcu_access_pointer(sk->sk_reuseport_cb))
1965 			reuseport_detach_sock(sk);
1966 		if (sk_del_node_init_rcu(sk)) {
1967 			hslot->count--;
1968 			inet_sk(sk)->inet_num = 0;
1969 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1970 
1971 			spin_lock(&hslot2->lock);
1972 			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1973 			hslot2->count--;
1974 			spin_unlock(&hslot2->lock);
1975 		}
1976 		spin_unlock_bh(&hslot->lock);
1977 	}
1978 }
1979 EXPORT_SYMBOL(udp_lib_unhash);
1980 
1981 /*
1982  * inet_rcv_saddr was changed, we must rehash secondary hash
1983  */
1984 void udp_lib_rehash(struct sock *sk, u16 newhash)
1985 {
1986 	if (sk_hashed(sk)) {
1987 		struct udp_table *udptable = udp_get_table_prot(sk);
1988 		struct udp_hslot *hslot, *hslot2, *nhslot2;
1989 
1990 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1991 		nhslot2 = udp_hashslot2(udptable, newhash);
1992 		udp_sk(sk)->udp_portaddr_hash = newhash;
1993 
1994 		if (hslot2 != nhslot2 ||
1995 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
1996 			hslot = udp_hashslot(udptable, sock_net(sk),
1997 					     udp_sk(sk)->udp_port_hash);
1998 			/* we must lock primary chain too */
1999 			spin_lock_bh(&hslot->lock);
2000 			if (rcu_access_pointer(sk->sk_reuseport_cb))
2001 				reuseport_detach_sock(sk);
2002 
2003 			if (hslot2 != nhslot2) {
2004 				spin_lock(&hslot2->lock);
2005 				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2006 				hslot2->count--;
2007 				spin_unlock(&hslot2->lock);
2008 
2009 				spin_lock(&nhslot2->lock);
2010 				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
2011 							 &nhslot2->head);
2012 				nhslot2->count++;
2013 				spin_unlock(&nhslot2->lock);
2014 			}
2015 
2016 			spin_unlock_bh(&hslot->lock);
2017 		}
2018 	}
2019 }
2020 EXPORT_SYMBOL(udp_lib_rehash);
2021 
2022 void udp_v4_rehash(struct sock *sk)
2023 {
2024 	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
2025 					  inet_sk(sk)->inet_rcv_saddr,
2026 					  inet_sk(sk)->inet_num);
2027 	udp_lib_rehash(sk, new_hash);
2028 }
2029 
2030 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2031 {
2032 	int rc;
2033 
2034 	if (inet_sk(sk)->inet_daddr) {
2035 		sock_rps_save_rxhash(sk, skb);
2036 		sk_mark_napi_id(sk, skb);
2037 		sk_incoming_cpu_update(sk);
2038 	} else {
2039 		sk_mark_napi_id_once(sk, skb);
2040 	}
2041 
2042 	rc = __udp_enqueue_schedule_skb(sk, skb);
2043 	if (rc < 0) {
2044 		int is_udplite = IS_UDPLITE(sk);
2045 		int drop_reason;
2046 
2047 		/* Note that an ENOMEM error is charged twice */
2048 		if (rc == -ENOMEM) {
2049 			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
2050 					is_udplite);
2051 			drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
2052 		} else {
2053 			UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS,
2054 				      is_udplite);
2055 			drop_reason = SKB_DROP_REASON_PROTO_MEM;
2056 		}
2057 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2058 		kfree_skb_reason(skb, drop_reason);
2059 		trace_udp_fail_queue_rcv_skb(rc, sk);
2060 		return -1;
2061 	}
2062 
2063 	return 0;
2064 }
2065 
2066 /* returns:
2067  *  -1: error
2068  *   0: success
2069  *  >0: "udp encap" protocol resubmission
2070  *
2071  * Note that in the success and error cases, the skb is assumed to
2072  * have either been requeued or freed.
2073  */
2074 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
2075 {
2076 	int drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2077 	struct udp_sock *up = udp_sk(sk);
2078 	int is_udplite = IS_UDPLITE(sk);
2079 
2080 	/*
2081 	 *	Charge it to the socket, dropping if the queue is full.
2082 	 */
2083 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
2084 		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2085 		goto drop;
2086 	}
2087 	nf_reset_ct(skb);
2088 
2089 	if (static_branch_unlikely(&udp_encap_needed_key) &&
2090 	    READ_ONCE(up->encap_type)) {
2091 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2092 
2093 		/*
2094 		 * This is an encapsulation socket so pass the skb to
2095 		 * the socket's udp_encap_rcv() hook. Otherwise, just
2096 		 * fall through and pass this up the UDP socket.
2097 		 * up->encap_rcv() returns the following value:
2098 		 * =0 if skb was successfully passed to the encap
2099 		 *    handler or was discarded by it.
2100 		 * >0 if skb should be passed on to UDP.
2101 		 * <0 if skb should be resubmitted as proto -N
2102 		 */
2103 
2104 		/* if we're overly short, let UDP handle it */
2105 		encap_rcv = READ_ONCE(up->encap_rcv);
2106 		if (encap_rcv) {
2107 			int ret;
2108 
2109 			/* Verify checksum before giving to encap */
2110 			if (udp_lib_checksum_complete(skb))
2111 				goto csum_error;
2112 
2113 			ret = encap_rcv(sk, skb);
2114 			if (ret <= 0) {
2115 				__UDP_INC_STATS(sock_net(sk),
2116 						UDP_MIB_INDATAGRAMS,
2117 						is_udplite);
2118 				return -ret;
2119 			}
2120 		}
2121 
2122 		/* FALLTHROUGH -- it's a UDP Packet */
2123 	}
2124 
2125 	/*
2126 	 * 	UDP-Lite specific tests, ignored on UDP sockets
2127 	 */
2128 	if (udp_test_bit(UDPLITE_RECV_CC, sk) && UDP_SKB_CB(skb)->partial_cov) {
2129 		u16 pcrlen = READ_ONCE(up->pcrlen);
2130 
2131 		/*
2132 		 * MIB statistics other than incrementing the error count are
2133 		 * disabled for the following two types of errors: these depend
2134 		 * on the application settings, not on the functioning of the
2135 		 * protocol stack as such.
2136 		 *
2137 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
2138 		 * way ... to ... at least let the receiving application block
2139 		 * delivery of packets with coverage values less than a value
2140 		 * provided by the application."
2141 		 */
2142 		if (pcrlen == 0) {          /* full coverage was set  */
2143 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2144 					    UDP_SKB_CB(skb)->cscov, skb->len);
2145 			goto drop;
2146 		}
2147 		/* The next case involves violating the min. coverage requested
2148 		 * by the receiver. This is subtle: if receiver wants x and x is
2149 		 * greater than the buffersize/MTU then receiver will complain
2150 		 * that it wants x while sender emits packets of smaller size y.
2151 		 * Therefore the above ...()->partial_cov statement is essential.
2152 		 */
2153 		if (UDP_SKB_CB(skb)->cscov < pcrlen) {
2154 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2155 					    UDP_SKB_CB(skb)->cscov, pcrlen);
2156 			goto drop;
2157 		}
2158 	}
2159 
2160 	prefetch(&sk->sk_rmem_alloc);
2161 	if (rcu_access_pointer(sk->sk_filter) &&
2162 	    udp_lib_checksum_complete(skb))
2163 			goto csum_error;
2164 
2165 	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) {
2166 		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2167 		goto drop;
2168 	}
2169 
2170 	udp_csum_pull_header(skb);
2171 
2172 	ipv4_pktinfo_prepare(sk, skb);
2173 	return __udp_queue_rcv_skb(sk, skb);
2174 
2175 csum_error:
2176 	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2177 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2178 drop:
2179 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2180 	atomic_inc(&sk->sk_drops);
2181 	kfree_skb_reason(skb, drop_reason);
2182 	return -1;
2183 }
2184 
2185 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2186 {
2187 	struct sk_buff *next, *segs;
2188 	int ret;
2189 
2190 	if (likely(!udp_unexpected_gso(sk, skb)))
2191 		return udp_queue_rcv_one_skb(sk, skb);
2192 
2193 	BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET);
2194 	__skb_push(skb, -skb_mac_offset(skb));
2195 	segs = udp_rcv_segment(sk, skb, true);
2196 	skb_list_walk_safe(segs, skb, next) {
2197 		__skb_pull(skb, skb_transport_offset(skb));
2198 
2199 		udp_post_segment_fix_csum(skb);
2200 		ret = udp_queue_rcv_one_skb(sk, skb);
2201 		if (ret > 0)
2202 			ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret);
2203 	}
2204 	return 0;
2205 }
2206 
2207 /* For TCP sockets, sk_rx_dst is protected by socket lock
2208  * For UDP, we use xchg() to guard against concurrent changes.
2209  */
2210 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2211 {
2212 	struct dst_entry *old;
2213 
2214 	if (dst_hold_safe(dst)) {
2215 		old = xchg((__force struct dst_entry **)&sk->sk_rx_dst, dst);
2216 		dst_release(old);
2217 		return old != dst;
2218 	}
2219 	return false;
2220 }
2221 EXPORT_SYMBOL(udp_sk_rx_dst_set);
2222 
2223 /*
2224  *	Multicasts and broadcasts go to each listener.
2225  *
2226  *	Note: called only from the BH handler context.
2227  */
2228 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2229 				    struct udphdr  *uh,
2230 				    __be32 saddr, __be32 daddr,
2231 				    struct udp_table *udptable,
2232 				    int proto)
2233 {
2234 	struct sock *sk, *first = NULL;
2235 	unsigned short hnum = ntohs(uh->dest);
2236 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2237 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2238 	unsigned int offset = offsetof(typeof(*sk), sk_node);
2239 	int dif = skb->dev->ifindex;
2240 	int sdif = inet_sdif(skb);
2241 	struct hlist_node *node;
2242 	struct sk_buff *nskb;
2243 
2244 	if (use_hash2) {
2245 		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2246 			    udptable->mask;
2247 		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2248 start_lookup:
2249 		hslot = &udptable->hash2[hash2];
2250 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2251 	}
2252 
2253 	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2254 		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2255 					 uh->source, saddr, dif, sdif, hnum))
2256 			continue;
2257 
2258 		if (!first) {
2259 			first = sk;
2260 			continue;
2261 		}
2262 		nskb = skb_clone(skb, GFP_ATOMIC);
2263 
2264 		if (unlikely(!nskb)) {
2265 			atomic_inc(&sk->sk_drops);
2266 			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2267 					IS_UDPLITE(sk));
2268 			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
2269 					IS_UDPLITE(sk));
2270 			continue;
2271 		}
2272 		if (udp_queue_rcv_skb(sk, nskb) > 0)
2273 			consume_skb(nskb);
2274 	}
2275 
2276 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2277 	if (use_hash2 && hash2 != hash2_any) {
2278 		hash2 = hash2_any;
2279 		goto start_lookup;
2280 	}
2281 
2282 	if (first) {
2283 		if (udp_queue_rcv_skb(first, skb) > 0)
2284 			consume_skb(skb);
2285 	} else {
2286 		kfree_skb(skb);
2287 		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2288 				proto == IPPROTO_UDPLITE);
2289 	}
2290 	return 0;
2291 }
2292 
2293 /* Initialize UDP checksum. If exited with zero value (success),
2294  * CHECKSUM_UNNECESSARY means, that no more checks are required.
2295  * Otherwise, csum completion requires checksumming packet body,
2296  * including udp header and folding it to skb->csum.
2297  */
2298 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2299 				 int proto)
2300 {
2301 	int err;
2302 
2303 	UDP_SKB_CB(skb)->partial_cov = 0;
2304 	UDP_SKB_CB(skb)->cscov = skb->len;
2305 
2306 	if (proto == IPPROTO_UDPLITE) {
2307 		err = udplite_checksum_init(skb, uh);
2308 		if (err)
2309 			return err;
2310 
2311 		if (UDP_SKB_CB(skb)->partial_cov) {
2312 			skb->csum = inet_compute_pseudo(skb, proto);
2313 			return 0;
2314 		}
2315 	}
2316 
2317 	/* Note, we are only interested in != 0 or == 0, thus the
2318 	 * force to int.
2319 	 */
2320 	err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2321 							inet_compute_pseudo);
2322 	if (err)
2323 		return err;
2324 
2325 	if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2326 		/* If SW calculated the value, we know it's bad */
2327 		if (skb->csum_complete_sw)
2328 			return 1;
2329 
2330 		/* HW says the value is bad. Let's validate that.
2331 		 * skb->csum is no longer the full packet checksum,
2332 		 * so don't treat it as such.
2333 		 */
2334 		skb_checksum_complete_unset(skb);
2335 	}
2336 
2337 	return 0;
2338 }
2339 
2340 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2341  * return code conversion for ip layer consumption
2342  */
2343 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2344 			       struct udphdr *uh)
2345 {
2346 	int ret;
2347 
2348 	if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2349 		skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2350 
2351 	ret = udp_queue_rcv_skb(sk, skb);
2352 
2353 	/* a return value > 0 means to resubmit the input, but
2354 	 * it wants the return to be -protocol, or 0
2355 	 */
2356 	if (ret > 0)
2357 		return -ret;
2358 	return 0;
2359 }
2360 
2361 /*
2362  *	All we need to do is get the socket, and then do a checksum.
2363  */
2364 
2365 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2366 		   int proto)
2367 {
2368 	struct sock *sk;
2369 	struct udphdr *uh;
2370 	unsigned short ulen;
2371 	struct rtable *rt = skb_rtable(skb);
2372 	__be32 saddr, daddr;
2373 	struct net *net = dev_net(skb->dev);
2374 	bool refcounted;
2375 	int drop_reason;
2376 
2377 	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2378 
2379 	/*
2380 	 *  Validate the packet.
2381 	 */
2382 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2383 		goto drop;		/* No space for header. */
2384 
2385 	uh   = udp_hdr(skb);
2386 	ulen = ntohs(uh->len);
2387 	saddr = ip_hdr(skb)->saddr;
2388 	daddr = ip_hdr(skb)->daddr;
2389 
2390 	if (ulen > skb->len)
2391 		goto short_packet;
2392 
2393 	if (proto == IPPROTO_UDP) {
2394 		/* UDP validates ulen. */
2395 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2396 			goto short_packet;
2397 		uh = udp_hdr(skb);
2398 	}
2399 
2400 	if (udp4_csum_init(skb, uh, proto))
2401 		goto csum_error;
2402 
2403 	sk = inet_steal_sock(net, skb, sizeof(struct udphdr), saddr, uh->source, daddr, uh->dest,
2404 			     &refcounted, udp_ehashfn);
2405 	if (IS_ERR(sk))
2406 		goto no_sk;
2407 
2408 	if (sk) {
2409 		struct dst_entry *dst = skb_dst(skb);
2410 		int ret;
2411 
2412 		if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst))
2413 			udp_sk_rx_dst_set(sk, dst);
2414 
2415 		ret = udp_unicast_rcv_skb(sk, skb, uh);
2416 		if (refcounted)
2417 			sock_put(sk);
2418 		return ret;
2419 	}
2420 
2421 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2422 		return __udp4_lib_mcast_deliver(net, skb, uh,
2423 						saddr, daddr, udptable, proto);
2424 
2425 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2426 	if (sk)
2427 		return udp_unicast_rcv_skb(sk, skb, uh);
2428 no_sk:
2429 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2430 		goto drop;
2431 	nf_reset_ct(skb);
2432 
2433 	/* No socket. Drop packet silently, if checksum is wrong */
2434 	if (udp_lib_checksum_complete(skb))
2435 		goto csum_error;
2436 
2437 	drop_reason = SKB_DROP_REASON_NO_SOCKET;
2438 	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2439 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2440 
2441 	/*
2442 	 * Hmm.  We got an UDP packet to a port to which we
2443 	 * don't wanna listen.  Ignore it.
2444 	 */
2445 	kfree_skb_reason(skb, drop_reason);
2446 	return 0;
2447 
2448 short_packet:
2449 	drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
2450 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2451 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2452 			    &saddr, ntohs(uh->source),
2453 			    ulen, skb->len,
2454 			    &daddr, ntohs(uh->dest));
2455 	goto drop;
2456 
2457 csum_error:
2458 	/*
2459 	 * RFC1122: OK.  Discards the bad packet silently (as far as
2460 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2461 	 */
2462 	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2463 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2464 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2465 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2466 			    ulen);
2467 	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2468 drop:
2469 	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2470 	kfree_skb_reason(skb, drop_reason);
2471 	return 0;
2472 }
2473 
2474 /* We can only early demux multicast if there is a single matching socket.
2475  * If more than one socket found returns NULL
2476  */
2477 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2478 						  __be16 loc_port, __be32 loc_addr,
2479 						  __be16 rmt_port, __be32 rmt_addr,
2480 						  int dif, int sdif)
2481 {
2482 	struct udp_table *udptable = net->ipv4.udp_table;
2483 	unsigned short hnum = ntohs(loc_port);
2484 	struct sock *sk, *result;
2485 	struct udp_hslot *hslot;
2486 	unsigned int slot;
2487 
2488 	slot = udp_hashfn(net, hnum, udptable->mask);
2489 	hslot = &udptable->hash[slot];
2490 
2491 	/* Do not bother scanning a too big list */
2492 	if (hslot->count > 10)
2493 		return NULL;
2494 
2495 	result = NULL;
2496 	sk_for_each_rcu(sk, &hslot->head) {
2497 		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2498 					rmt_port, rmt_addr, dif, sdif, hnum)) {
2499 			if (result)
2500 				return NULL;
2501 			result = sk;
2502 		}
2503 	}
2504 
2505 	return result;
2506 }
2507 
2508 /* For unicast we should only early demux connected sockets or we can
2509  * break forwarding setups.  The chains here can be long so only check
2510  * if the first socket is an exact match and if not move on.
2511  */
2512 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2513 					    __be16 loc_port, __be32 loc_addr,
2514 					    __be16 rmt_port, __be32 rmt_addr,
2515 					    int dif, int sdif)
2516 {
2517 	struct udp_table *udptable = net->ipv4.udp_table;
2518 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2519 	unsigned short hnum = ntohs(loc_port);
2520 	unsigned int hash2, slot2;
2521 	struct udp_hslot *hslot2;
2522 	__portpair ports;
2523 	struct sock *sk;
2524 
2525 	hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2526 	slot2 = hash2 & udptable->mask;
2527 	hslot2 = &udptable->hash2[slot2];
2528 	ports = INET_COMBINED_PORTS(rmt_port, hnum);
2529 
2530 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2531 		if (inet_match(net, sk, acookie, ports, dif, sdif))
2532 			return sk;
2533 		/* Only check first socket in chain */
2534 		break;
2535 	}
2536 	return NULL;
2537 }
2538 
2539 int udp_v4_early_demux(struct sk_buff *skb)
2540 {
2541 	struct net *net = dev_net(skb->dev);
2542 	struct in_device *in_dev = NULL;
2543 	const struct iphdr *iph;
2544 	const struct udphdr *uh;
2545 	struct sock *sk = NULL;
2546 	struct dst_entry *dst;
2547 	int dif = skb->dev->ifindex;
2548 	int sdif = inet_sdif(skb);
2549 	int ours;
2550 
2551 	/* validate the packet */
2552 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2553 		return 0;
2554 
2555 	iph = ip_hdr(skb);
2556 	uh = udp_hdr(skb);
2557 
2558 	if (skb->pkt_type == PACKET_MULTICAST) {
2559 		in_dev = __in_dev_get_rcu(skb->dev);
2560 
2561 		if (!in_dev)
2562 			return 0;
2563 
2564 		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2565 				       iph->protocol);
2566 		if (!ours)
2567 			return 0;
2568 
2569 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2570 						   uh->source, iph->saddr,
2571 						   dif, sdif);
2572 	} else if (skb->pkt_type == PACKET_HOST) {
2573 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2574 					     uh->source, iph->saddr, dif, sdif);
2575 	}
2576 
2577 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2578 		return 0;
2579 
2580 	skb->sk = sk;
2581 	skb->destructor = sock_efree;
2582 	dst = rcu_dereference(sk->sk_rx_dst);
2583 
2584 	if (dst)
2585 		dst = dst_check(dst, 0);
2586 	if (dst) {
2587 		u32 itag = 0;
2588 
2589 		/* set noref for now.
2590 		 * any place which wants to hold dst has to call
2591 		 * dst_hold_safe()
2592 		 */
2593 		skb_dst_set_noref(skb, dst);
2594 
2595 		/* for unconnected multicast sockets we need to validate
2596 		 * the source on each packet
2597 		 */
2598 		if (!inet_sk(sk)->inet_daddr && in_dev)
2599 			return ip_mc_validate_source(skb, iph->daddr,
2600 						     iph->saddr,
2601 						     iph->tos & IPTOS_RT_MASK,
2602 						     skb->dev, in_dev, &itag);
2603 	}
2604 	return 0;
2605 }
2606 
2607 int udp_rcv(struct sk_buff *skb)
2608 {
2609 	return __udp4_lib_rcv(skb, dev_net(skb->dev)->ipv4.udp_table, IPPROTO_UDP);
2610 }
2611 
2612 void udp_destroy_sock(struct sock *sk)
2613 {
2614 	struct udp_sock *up = udp_sk(sk);
2615 	bool slow = lock_sock_fast(sk);
2616 
2617 	/* protects from races with udp_abort() */
2618 	sock_set_flag(sk, SOCK_DEAD);
2619 	udp_flush_pending_frames(sk);
2620 	unlock_sock_fast(sk, slow);
2621 	if (static_branch_unlikely(&udp_encap_needed_key)) {
2622 		if (up->encap_type) {
2623 			void (*encap_destroy)(struct sock *sk);
2624 			encap_destroy = READ_ONCE(up->encap_destroy);
2625 			if (encap_destroy)
2626 				encap_destroy(sk);
2627 		}
2628 		if (udp_test_bit(ENCAP_ENABLED, sk))
2629 			static_branch_dec(&udp_encap_needed_key);
2630 	}
2631 }
2632 
2633 static void set_xfrm_gro_udp_encap_rcv(__u16 encap_type, unsigned short family,
2634 				       struct sock *sk)
2635 {
2636 #ifdef CONFIG_XFRM
2637 	if (udp_test_bit(GRO_ENABLED, sk) && encap_type == UDP_ENCAP_ESPINUDP) {
2638 		if (family == AF_INET)
2639 			WRITE_ONCE(udp_sk(sk)->gro_receive, xfrm4_gro_udp_encap_rcv);
2640 		else if (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6)
2641 			WRITE_ONCE(udp_sk(sk)->gro_receive, ipv6_stub->xfrm6_gro_udp_encap_rcv);
2642 	}
2643 #endif
2644 }
2645 
2646 /*
2647  *	Socket option code for UDP
2648  */
2649 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2650 		       sockptr_t optval, unsigned int optlen,
2651 		       int (*push_pending_frames)(struct sock *))
2652 {
2653 	struct udp_sock *up = udp_sk(sk);
2654 	int val, valbool;
2655 	int err = 0;
2656 	int is_udplite = IS_UDPLITE(sk);
2657 
2658 	if (level == SOL_SOCKET) {
2659 		err = sk_setsockopt(sk, level, optname, optval, optlen);
2660 
2661 		if (optname == SO_RCVBUF || optname == SO_RCVBUFFORCE) {
2662 			sockopt_lock_sock(sk);
2663 			/* paired with READ_ONCE in udp_rmem_release() */
2664 			WRITE_ONCE(up->forward_threshold, sk->sk_rcvbuf >> 2);
2665 			sockopt_release_sock(sk);
2666 		}
2667 		return err;
2668 	}
2669 
2670 	if (optlen < sizeof(int))
2671 		return -EINVAL;
2672 
2673 	if (copy_from_sockptr(&val, optval, sizeof(val)))
2674 		return -EFAULT;
2675 
2676 	valbool = val ? 1 : 0;
2677 
2678 	switch (optname) {
2679 	case UDP_CORK:
2680 		if (val != 0) {
2681 			udp_set_bit(CORK, sk);
2682 		} else {
2683 			udp_clear_bit(CORK, sk);
2684 			lock_sock(sk);
2685 			push_pending_frames(sk);
2686 			release_sock(sk);
2687 		}
2688 		break;
2689 
2690 	case UDP_ENCAP:
2691 		switch (val) {
2692 		case 0:
2693 #ifdef CONFIG_XFRM
2694 		case UDP_ENCAP_ESPINUDP:
2695 			set_xfrm_gro_udp_encap_rcv(val, sk->sk_family, sk);
2696 			fallthrough;
2697 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2698 #if IS_ENABLED(CONFIG_IPV6)
2699 			if (sk->sk_family == AF_INET6)
2700 				WRITE_ONCE(up->encap_rcv,
2701 					   ipv6_stub->xfrm6_udp_encap_rcv);
2702 			else
2703 #endif
2704 				WRITE_ONCE(up->encap_rcv,
2705 					   xfrm4_udp_encap_rcv);
2706 #endif
2707 			fallthrough;
2708 		case UDP_ENCAP_L2TPINUDP:
2709 			WRITE_ONCE(up->encap_type, val);
2710 			udp_tunnel_encap_enable(sk);
2711 			break;
2712 		default:
2713 			err = -ENOPROTOOPT;
2714 			break;
2715 		}
2716 		break;
2717 
2718 	case UDP_NO_CHECK6_TX:
2719 		udp_set_no_check6_tx(sk, valbool);
2720 		break;
2721 
2722 	case UDP_NO_CHECK6_RX:
2723 		udp_set_no_check6_rx(sk, valbool);
2724 		break;
2725 
2726 	case UDP_SEGMENT:
2727 		if (val < 0 || val > USHRT_MAX)
2728 			return -EINVAL;
2729 		WRITE_ONCE(up->gso_size, val);
2730 		break;
2731 
2732 	case UDP_GRO:
2733 
2734 		/* when enabling GRO, accept the related GSO packet type */
2735 		if (valbool)
2736 			udp_tunnel_encap_enable(sk);
2737 		udp_assign_bit(GRO_ENABLED, sk, valbool);
2738 		udp_assign_bit(ACCEPT_L4, sk, valbool);
2739 		set_xfrm_gro_udp_encap_rcv(up->encap_type, sk->sk_family, sk);
2740 		break;
2741 
2742 	/*
2743 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2744 	 */
2745 	/* The sender sets actual checksum coverage length via this option.
2746 	 * The case coverage > packet length is handled by send module. */
2747 	case UDPLITE_SEND_CSCOV:
2748 		if (!is_udplite)         /* Disable the option on UDP sockets */
2749 			return -ENOPROTOOPT;
2750 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2751 			val = 8;
2752 		else if (val > USHRT_MAX)
2753 			val = USHRT_MAX;
2754 		WRITE_ONCE(up->pcslen, val);
2755 		udp_set_bit(UDPLITE_SEND_CC, sk);
2756 		break;
2757 
2758 	/* The receiver specifies a minimum checksum coverage value. To make
2759 	 * sense, this should be set to at least 8 (as done below). If zero is
2760 	 * used, this again means full checksum coverage.                     */
2761 	case UDPLITE_RECV_CSCOV:
2762 		if (!is_udplite)         /* Disable the option on UDP sockets */
2763 			return -ENOPROTOOPT;
2764 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2765 			val = 8;
2766 		else if (val > USHRT_MAX)
2767 			val = USHRT_MAX;
2768 		WRITE_ONCE(up->pcrlen, val);
2769 		udp_set_bit(UDPLITE_RECV_CC, sk);
2770 		break;
2771 
2772 	default:
2773 		err = -ENOPROTOOPT;
2774 		break;
2775 	}
2776 
2777 	return err;
2778 }
2779 EXPORT_SYMBOL(udp_lib_setsockopt);
2780 
2781 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
2782 		   unsigned int optlen)
2783 {
2784 	if (level == SOL_UDP  ||  level == SOL_UDPLITE || level == SOL_SOCKET)
2785 		return udp_lib_setsockopt(sk, level, optname,
2786 					  optval, optlen,
2787 					  udp_push_pending_frames);
2788 	return ip_setsockopt(sk, level, optname, optval, optlen);
2789 }
2790 
2791 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2792 		       char __user *optval, int __user *optlen)
2793 {
2794 	struct udp_sock *up = udp_sk(sk);
2795 	int val, len;
2796 
2797 	if (get_user(len, optlen))
2798 		return -EFAULT;
2799 
2800 	len = min_t(unsigned int, len, sizeof(int));
2801 
2802 	if (len < 0)
2803 		return -EINVAL;
2804 
2805 	switch (optname) {
2806 	case UDP_CORK:
2807 		val = udp_test_bit(CORK, sk);
2808 		break;
2809 
2810 	case UDP_ENCAP:
2811 		val = READ_ONCE(up->encap_type);
2812 		break;
2813 
2814 	case UDP_NO_CHECK6_TX:
2815 		val = udp_get_no_check6_tx(sk);
2816 		break;
2817 
2818 	case UDP_NO_CHECK6_RX:
2819 		val = udp_get_no_check6_rx(sk);
2820 		break;
2821 
2822 	case UDP_SEGMENT:
2823 		val = READ_ONCE(up->gso_size);
2824 		break;
2825 
2826 	case UDP_GRO:
2827 		val = udp_test_bit(GRO_ENABLED, sk);
2828 		break;
2829 
2830 	/* The following two cannot be changed on UDP sockets, the return is
2831 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2832 	case UDPLITE_SEND_CSCOV:
2833 		val = READ_ONCE(up->pcslen);
2834 		break;
2835 
2836 	case UDPLITE_RECV_CSCOV:
2837 		val = READ_ONCE(up->pcrlen);
2838 		break;
2839 
2840 	default:
2841 		return -ENOPROTOOPT;
2842 	}
2843 
2844 	if (put_user(len, optlen))
2845 		return -EFAULT;
2846 	if (copy_to_user(optval, &val, len))
2847 		return -EFAULT;
2848 	return 0;
2849 }
2850 EXPORT_SYMBOL(udp_lib_getsockopt);
2851 
2852 int udp_getsockopt(struct sock *sk, int level, int optname,
2853 		   char __user *optval, int __user *optlen)
2854 {
2855 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2856 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2857 	return ip_getsockopt(sk, level, optname, optval, optlen);
2858 }
2859 
2860 /**
2861  * 	udp_poll - wait for a UDP event.
2862  *	@file: - file struct
2863  *	@sock: - socket
2864  *	@wait: - poll table
2865  *
2866  *	This is same as datagram poll, except for the special case of
2867  *	blocking sockets. If application is using a blocking fd
2868  *	and a packet with checksum error is in the queue;
2869  *	then it could get return from select indicating data available
2870  *	but then block when reading it. Add special case code
2871  *	to work around these arguably broken applications.
2872  */
2873 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2874 {
2875 	__poll_t mask = datagram_poll(file, sock, wait);
2876 	struct sock *sk = sock->sk;
2877 
2878 	if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
2879 		mask |= EPOLLIN | EPOLLRDNORM;
2880 
2881 	/* Check for false positives due to checksum errors */
2882 	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2883 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2884 		mask &= ~(EPOLLIN | EPOLLRDNORM);
2885 
2886 	/* psock ingress_msg queue should not contain any bad checksum frames */
2887 	if (sk_is_readable(sk))
2888 		mask |= EPOLLIN | EPOLLRDNORM;
2889 	return mask;
2890 
2891 }
2892 EXPORT_SYMBOL(udp_poll);
2893 
2894 int udp_abort(struct sock *sk, int err)
2895 {
2896 	if (!has_current_bpf_ctx())
2897 		lock_sock(sk);
2898 
2899 	/* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing
2900 	 * with close()
2901 	 */
2902 	if (sock_flag(sk, SOCK_DEAD))
2903 		goto out;
2904 
2905 	sk->sk_err = err;
2906 	sk_error_report(sk);
2907 	__udp_disconnect(sk, 0);
2908 
2909 out:
2910 	if (!has_current_bpf_ctx())
2911 		release_sock(sk);
2912 
2913 	return 0;
2914 }
2915 EXPORT_SYMBOL_GPL(udp_abort);
2916 
2917 struct proto udp_prot = {
2918 	.name			= "UDP",
2919 	.owner			= THIS_MODULE,
2920 	.close			= udp_lib_close,
2921 	.pre_connect		= udp_pre_connect,
2922 	.connect		= ip4_datagram_connect,
2923 	.disconnect		= udp_disconnect,
2924 	.ioctl			= udp_ioctl,
2925 	.init			= udp_init_sock,
2926 	.destroy		= udp_destroy_sock,
2927 	.setsockopt		= udp_setsockopt,
2928 	.getsockopt		= udp_getsockopt,
2929 	.sendmsg		= udp_sendmsg,
2930 	.recvmsg		= udp_recvmsg,
2931 	.splice_eof		= udp_splice_eof,
2932 	.release_cb		= ip4_datagram_release_cb,
2933 	.hash			= udp_lib_hash,
2934 	.unhash			= udp_lib_unhash,
2935 	.rehash			= udp_v4_rehash,
2936 	.get_port		= udp_v4_get_port,
2937 	.put_port		= udp_lib_unhash,
2938 #ifdef CONFIG_BPF_SYSCALL
2939 	.psock_update_sk_prot	= udp_bpf_update_proto,
2940 #endif
2941 	.memory_allocated	= &udp_memory_allocated,
2942 	.per_cpu_fw_alloc	= &udp_memory_per_cpu_fw_alloc,
2943 
2944 	.sysctl_mem		= sysctl_udp_mem,
2945 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2946 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2947 	.obj_size		= sizeof(struct udp_sock),
2948 	.h.udp_table		= NULL,
2949 	.diag_destroy		= udp_abort,
2950 };
2951 EXPORT_SYMBOL(udp_prot);
2952 
2953 /* ------------------------------------------------------------------------ */
2954 #ifdef CONFIG_PROC_FS
2955 
2956 static unsigned short seq_file_family(const struct seq_file *seq);
2957 static bool seq_sk_match(struct seq_file *seq, const struct sock *sk)
2958 {
2959 	unsigned short family = seq_file_family(seq);
2960 
2961 	/* AF_UNSPEC is used as a match all */
2962 	return ((family == AF_UNSPEC || family == sk->sk_family) &&
2963 		net_eq(sock_net(sk), seq_file_net(seq)));
2964 }
2965 
2966 #ifdef CONFIG_BPF_SYSCALL
2967 static const struct seq_operations bpf_iter_udp_seq_ops;
2968 #endif
2969 static struct udp_table *udp_get_table_seq(struct seq_file *seq,
2970 					   struct net *net)
2971 {
2972 	const struct udp_seq_afinfo *afinfo;
2973 
2974 #ifdef CONFIG_BPF_SYSCALL
2975 	if (seq->op == &bpf_iter_udp_seq_ops)
2976 		return net->ipv4.udp_table;
2977 #endif
2978 
2979 	afinfo = pde_data(file_inode(seq->file));
2980 	return afinfo->udp_table ? : net->ipv4.udp_table;
2981 }
2982 
2983 static struct sock *udp_get_first(struct seq_file *seq, int start)
2984 {
2985 	struct udp_iter_state *state = seq->private;
2986 	struct net *net = seq_file_net(seq);
2987 	struct udp_table *udptable;
2988 	struct sock *sk;
2989 
2990 	udptable = udp_get_table_seq(seq, net);
2991 
2992 	for (state->bucket = start; state->bucket <= udptable->mask;
2993 	     ++state->bucket) {
2994 		struct udp_hslot *hslot = &udptable->hash[state->bucket];
2995 
2996 		if (hlist_empty(&hslot->head))
2997 			continue;
2998 
2999 		spin_lock_bh(&hslot->lock);
3000 		sk_for_each(sk, &hslot->head) {
3001 			if (seq_sk_match(seq, sk))
3002 				goto found;
3003 		}
3004 		spin_unlock_bh(&hslot->lock);
3005 	}
3006 	sk = NULL;
3007 found:
3008 	return sk;
3009 }
3010 
3011 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
3012 {
3013 	struct udp_iter_state *state = seq->private;
3014 	struct net *net = seq_file_net(seq);
3015 	struct udp_table *udptable;
3016 
3017 	do {
3018 		sk = sk_next(sk);
3019 	} while (sk && !seq_sk_match(seq, sk));
3020 
3021 	if (!sk) {
3022 		udptable = udp_get_table_seq(seq, net);
3023 
3024 		if (state->bucket <= udptable->mask)
3025 			spin_unlock_bh(&udptable->hash[state->bucket].lock);
3026 
3027 		return udp_get_first(seq, state->bucket + 1);
3028 	}
3029 	return sk;
3030 }
3031 
3032 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
3033 {
3034 	struct sock *sk = udp_get_first(seq, 0);
3035 
3036 	if (sk)
3037 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
3038 			--pos;
3039 	return pos ? NULL : sk;
3040 }
3041 
3042 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
3043 {
3044 	struct udp_iter_state *state = seq->private;
3045 	state->bucket = MAX_UDP_PORTS;
3046 
3047 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
3048 }
3049 EXPORT_SYMBOL(udp_seq_start);
3050 
3051 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3052 {
3053 	struct sock *sk;
3054 
3055 	if (v == SEQ_START_TOKEN)
3056 		sk = udp_get_idx(seq, 0);
3057 	else
3058 		sk = udp_get_next(seq, v);
3059 
3060 	++*pos;
3061 	return sk;
3062 }
3063 EXPORT_SYMBOL(udp_seq_next);
3064 
3065 void udp_seq_stop(struct seq_file *seq, void *v)
3066 {
3067 	struct udp_iter_state *state = seq->private;
3068 	struct udp_table *udptable;
3069 
3070 	udptable = udp_get_table_seq(seq, seq_file_net(seq));
3071 
3072 	if (state->bucket <= udptable->mask)
3073 		spin_unlock_bh(&udptable->hash[state->bucket].lock);
3074 }
3075 EXPORT_SYMBOL(udp_seq_stop);
3076 
3077 /* ------------------------------------------------------------------------ */
3078 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
3079 		int bucket)
3080 {
3081 	struct inet_sock *inet = inet_sk(sp);
3082 	__be32 dest = inet->inet_daddr;
3083 	__be32 src  = inet->inet_rcv_saddr;
3084 	__u16 destp	  = ntohs(inet->inet_dport);
3085 	__u16 srcp	  = ntohs(inet->inet_sport);
3086 
3087 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
3088 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
3089 		bucket, src, srcp, dest, destp, sp->sk_state,
3090 		sk_wmem_alloc_get(sp),
3091 		udp_rqueue_get(sp),
3092 		0, 0L, 0,
3093 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
3094 		0, sock_i_ino(sp),
3095 		refcount_read(&sp->sk_refcnt), sp,
3096 		atomic_read(&sp->sk_drops));
3097 }
3098 
3099 int udp4_seq_show(struct seq_file *seq, void *v)
3100 {
3101 	seq_setwidth(seq, 127);
3102 	if (v == SEQ_START_TOKEN)
3103 		seq_puts(seq, "   sl  local_address rem_address   st tx_queue "
3104 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
3105 			   "inode ref pointer drops");
3106 	else {
3107 		struct udp_iter_state *state = seq->private;
3108 
3109 		udp4_format_sock(v, seq, state->bucket);
3110 	}
3111 	seq_pad(seq, '\n');
3112 	return 0;
3113 }
3114 
3115 #ifdef CONFIG_BPF_SYSCALL
3116 struct bpf_iter__udp {
3117 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
3118 	__bpf_md_ptr(struct udp_sock *, udp_sk);
3119 	uid_t uid __aligned(8);
3120 	int bucket __aligned(8);
3121 };
3122 
3123 struct bpf_udp_iter_state {
3124 	struct udp_iter_state state;
3125 	unsigned int cur_sk;
3126 	unsigned int end_sk;
3127 	unsigned int max_sk;
3128 	int offset;
3129 	struct sock **batch;
3130 	bool st_bucket_done;
3131 };
3132 
3133 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3134 				      unsigned int new_batch_sz);
3135 static struct sock *bpf_iter_udp_batch(struct seq_file *seq)
3136 {
3137 	struct bpf_udp_iter_state *iter = seq->private;
3138 	struct udp_iter_state *state = &iter->state;
3139 	struct net *net = seq_file_net(seq);
3140 	struct udp_table *udptable;
3141 	unsigned int batch_sks = 0;
3142 	bool resized = false;
3143 	struct sock *sk;
3144 
3145 	/* The current batch is done, so advance the bucket. */
3146 	if (iter->st_bucket_done) {
3147 		state->bucket++;
3148 		iter->offset = 0;
3149 	}
3150 
3151 	udptable = udp_get_table_seq(seq, net);
3152 
3153 again:
3154 	/* New batch for the next bucket.
3155 	 * Iterate over the hash table to find a bucket with sockets matching
3156 	 * the iterator attributes, and return the first matching socket from
3157 	 * the bucket. The remaining matched sockets from the bucket are batched
3158 	 * before releasing the bucket lock. This allows BPF programs that are
3159 	 * called in seq_show to acquire the bucket lock if needed.
3160 	 */
3161 	iter->cur_sk = 0;
3162 	iter->end_sk = 0;
3163 	iter->st_bucket_done = false;
3164 	batch_sks = 0;
3165 
3166 	for (; state->bucket <= udptable->mask; state->bucket++) {
3167 		struct udp_hslot *hslot2 = &udptable->hash2[state->bucket];
3168 
3169 		if (hlist_empty(&hslot2->head)) {
3170 			iter->offset = 0;
3171 			continue;
3172 		}
3173 
3174 		spin_lock_bh(&hslot2->lock);
3175 		udp_portaddr_for_each_entry(sk, &hslot2->head) {
3176 			if (seq_sk_match(seq, sk)) {
3177 				/* Resume from the last iterated socket at the
3178 				 * offset in the bucket before iterator was stopped.
3179 				 */
3180 				if (iter->offset) {
3181 					--iter->offset;
3182 					continue;
3183 				}
3184 				if (iter->end_sk < iter->max_sk) {
3185 					sock_hold(sk);
3186 					iter->batch[iter->end_sk++] = sk;
3187 				}
3188 				batch_sks++;
3189 			}
3190 		}
3191 		spin_unlock_bh(&hslot2->lock);
3192 
3193 		if (iter->end_sk)
3194 			break;
3195 
3196 		/* Reset the current bucket's offset before moving to the next bucket. */
3197 		iter->offset = 0;
3198 	}
3199 
3200 	/* All done: no batch made. */
3201 	if (!iter->end_sk)
3202 		return NULL;
3203 
3204 	if (iter->end_sk == batch_sks) {
3205 		/* Batching is done for the current bucket; return the first
3206 		 * socket to be iterated from the batch.
3207 		 */
3208 		iter->st_bucket_done = true;
3209 		goto done;
3210 	}
3211 	if (!resized && !bpf_iter_udp_realloc_batch(iter, batch_sks * 3 / 2)) {
3212 		resized = true;
3213 		/* After allocating a larger batch, retry one more time to grab
3214 		 * the whole bucket.
3215 		 */
3216 		state->bucket--;
3217 		goto again;
3218 	}
3219 done:
3220 	return iter->batch[0];
3221 }
3222 
3223 static void *bpf_iter_udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3224 {
3225 	struct bpf_udp_iter_state *iter = seq->private;
3226 	struct sock *sk;
3227 
3228 	/* Whenever seq_next() is called, the iter->cur_sk is
3229 	 * done with seq_show(), so unref the iter->cur_sk.
3230 	 */
3231 	if (iter->cur_sk < iter->end_sk) {
3232 		sock_put(iter->batch[iter->cur_sk++]);
3233 		++iter->offset;
3234 	}
3235 
3236 	/* After updating iter->cur_sk, check if there are more sockets
3237 	 * available in the current bucket batch.
3238 	 */
3239 	if (iter->cur_sk < iter->end_sk)
3240 		sk = iter->batch[iter->cur_sk];
3241 	else
3242 		/* Prepare a new batch. */
3243 		sk = bpf_iter_udp_batch(seq);
3244 
3245 	++*pos;
3246 	return sk;
3247 }
3248 
3249 static void *bpf_iter_udp_seq_start(struct seq_file *seq, loff_t *pos)
3250 {
3251 	/* bpf iter does not support lseek, so it always
3252 	 * continue from where it was stop()-ped.
3253 	 */
3254 	if (*pos)
3255 		return bpf_iter_udp_batch(seq);
3256 
3257 	return SEQ_START_TOKEN;
3258 }
3259 
3260 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3261 			     struct udp_sock *udp_sk, uid_t uid, int bucket)
3262 {
3263 	struct bpf_iter__udp ctx;
3264 
3265 	meta->seq_num--;  /* skip SEQ_START_TOKEN */
3266 	ctx.meta = meta;
3267 	ctx.udp_sk = udp_sk;
3268 	ctx.uid = uid;
3269 	ctx.bucket = bucket;
3270 	return bpf_iter_run_prog(prog, &ctx);
3271 }
3272 
3273 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v)
3274 {
3275 	struct udp_iter_state *state = seq->private;
3276 	struct bpf_iter_meta meta;
3277 	struct bpf_prog *prog;
3278 	struct sock *sk = v;
3279 	uid_t uid;
3280 	int ret;
3281 
3282 	if (v == SEQ_START_TOKEN)
3283 		return 0;
3284 
3285 	lock_sock(sk);
3286 
3287 	if (unlikely(sk_unhashed(sk))) {
3288 		ret = SEQ_SKIP;
3289 		goto unlock;
3290 	}
3291 
3292 	uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3293 	meta.seq = seq;
3294 	prog = bpf_iter_get_info(&meta, false);
3295 	ret = udp_prog_seq_show(prog, &meta, v, uid, state->bucket);
3296 
3297 unlock:
3298 	release_sock(sk);
3299 	return ret;
3300 }
3301 
3302 static void bpf_iter_udp_put_batch(struct bpf_udp_iter_state *iter)
3303 {
3304 	while (iter->cur_sk < iter->end_sk)
3305 		sock_put(iter->batch[iter->cur_sk++]);
3306 }
3307 
3308 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v)
3309 {
3310 	struct bpf_udp_iter_state *iter = seq->private;
3311 	struct bpf_iter_meta meta;
3312 	struct bpf_prog *prog;
3313 
3314 	if (!v) {
3315 		meta.seq = seq;
3316 		prog = bpf_iter_get_info(&meta, true);
3317 		if (prog)
3318 			(void)udp_prog_seq_show(prog, &meta, v, 0, 0);
3319 	}
3320 
3321 	if (iter->cur_sk < iter->end_sk) {
3322 		bpf_iter_udp_put_batch(iter);
3323 		iter->st_bucket_done = false;
3324 	}
3325 }
3326 
3327 static const struct seq_operations bpf_iter_udp_seq_ops = {
3328 	.start		= bpf_iter_udp_seq_start,
3329 	.next		= bpf_iter_udp_seq_next,
3330 	.stop		= bpf_iter_udp_seq_stop,
3331 	.show		= bpf_iter_udp_seq_show,
3332 };
3333 #endif
3334 
3335 static unsigned short seq_file_family(const struct seq_file *seq)
3336 {
3337 	const struct udp_seq_afinfo *afinfo;
3338 
3339 #ifdef CONFIG_BPF_SYSCALL
3340 	/* BPF iterator: bpf programs to filter sockets. */
3341 	if (seq->op == &bpf_iter_udp_seq_ops)
3342 		return AF_UNSPEC;
3343 #endif
3344 
3345 	/* Proc fs iterator */
3346 	afinfo = pde_data(file_inode(seq->file));
3347 	return afinfo->family;
3348 }
3349 
3350 const struct seq_operations udp_seq_ops = {
3351 	.start		= udp_seq_start,
3352 	.next		= udp_seq_next,
3353 	.stop		= udp_seq_stop,
3354 	.show		= udp4_seq_show,
3355 };
3356 EXPORT_SYMBOL(udp_seq_ops);
3357 
3358 static struct udp_seq_afinfo udp4_seq_afinfo = {
3359 	.family		= AF_INET,
3360 	.udp_table	= NULL,
3361 };
3362 
3363 static int __net_init udp4_proc_init_net(struct net *net)
3364 {
3365 	if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
3366 			sizeof(struct udp_iter_state), &udp4_seq_afinfo))
3367 		return -ENOMEM;
3368 	return 0;
3369 }
3370 
3371 static void __net_exit udp4_proc_exit_net(struct net *net)
3372 {
3373 	remove_proc_entry("udp", net->proc_net);
3374 }
3375 
3376 static struct pernet_operations udp4_net_ops = {
3377 	.init = udp4_proc_init_net,
3378 	.exit = udp4_proc_exit_net,
3379 };
3380 
3381 int __init udp4_proc_init(void)
3382 {
3383 	return register_pernet_subsys(&udp4_net_ops);
3384 }
3385 
3386 void udp4_proc_exit(void)
3387 {
3388 	unregister_pernet_subsys(&udp4_net_ops);
3389 }
3390 #endif /* CONFIG_PROC_FS */
3391 
3392 static __initdata unsigned long uhash_entries;
3393 static int __init set_uhash_entries(char *str)
3394 {
3395 	ssize_t ret;
3396 
3397 	if (!str)
3398 		return 0;
3399 
3400 	ret = kstrtoul(str, 0, &uhash_entries);
3401 	if (ret)
3402 		return 0;
3403 
3404 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
3405 		uhash_entries = UDP_HTABLE_SIZE_MIN;
3406 	return 1;
3407 }
3408 __setup("uhash_entries=", set_uhash_entries);
3409 
3410 void __init udp_table_init(struct udp_table *table, const char *name)
3411 {
3412 	unsigned int i;
3413 
3414 	table->hash = alloc_large_system_hash(name,
3415 					      2 * sizeof(struct udp_hslot),
3416 					      uhash_entries,
3417 					      21, /* one slot per 2 MB */
3418 					      0,
3419 					      &table->log,
3420 					      &table->mask,
3421 					      UDP_HTABLE_SIZE_MIN,
3422 					      UDP_HTABLE_SIZE_MAX);
3423 
3424 	table->hash2 = table->hash + (table->mask + 1);
3425 	for (i = 0; i <= table->mask; i++) {
3426 		INIT_HLIST_HEAD(&table->hash[i].head);
3427 		table->hash[i].count = 0;
3428 		spin_lock_init(&table->hash[i].lock);
3429 	}
3430 	for (i = 0; i <= table->mask; i++) {
3431 		INIT_HLIST_HEAD(&table->hash2[i].head);
3432 		table->hash2[i].count = 0;
3433 		spin_lock_init(&table->hash2[i].lock);
3434 	}
3435 }
3436 
3437 u32 udp_flow_hashrnd(void)
3438 {
3439 	static u32 hashrnd __read_mostly;
3440 
3441 	net_get_random_once(&hashrnd, sizeof(hashrnd));
3442 
3443 	return hashrnd;
3444 }
3445 EXPORT_SYMBOL(udp_flow_hashrnd);
3446 
3447 static void __net_init udp_sysctl_init(struct net *net)
3448 {
3449 	net->ipv4.sysctl_udp_rmem_min = PAGE_SIZE;
3450 	net->ipv4.sysctl_udp_wmem_min = PAGE_SIZE;
3451 
3452 #ifdef CONFIG_NET_L3_MASTER_DEV
3453 	net->ipv4.sysctl_udp_l3mdev_accept = 0;
3454 #endif
3455 }
3456 
3457 static struct udp_table __net_init *udp_pernet_table_alloc(unsigned int hash_entries)
3458 {
3459 	struct udp_table *udptable;
3460 	int i;
3461 
3462 	udptable = kmalloc(sizeof(*udptable), GFP_KERNEL);
3463 	if (!udptable)
3464 		goto out;
3465 
3466 	udptable->hash = vmalloc_huge(hash_entries * 2 * sizeof(struct udp_hslot),
3467 				      GFP_KERNEL_ACCOUNT);
3468 	if (!udptable->hash)
3469 		goto free_table;
3470 
3471 	udptable->hash2 = udptable->hash + hash_entries;
3472 	udptable->mask = hash_entries - 1;
3473 	udptable->log = ilog2(hash_entries);
3474 
3475 	for (i = 0; i < hash_entries; i++) {
3476 		INIT_HLIST_HEAD(&udptable->hash[i].head);
3477 		udptable->hash[i].count = 0;
3478 		spin_lock_init(&udptable->hash[i].lock);
3479 
3480 		INIT_HLIST_HEAD(&udptable->hash2[i].head);
3481 		udptable->hash2[i].count = 0;
3482 		spin_lock_init(&udptable->hash2[i].lock);
3483 	}
3484 
3485 	return udptable;
3486 
3487 free_table:
3488 	kfree(udptable);
3489 out:
3490 	return NULL;
3491 }
3492 
3493 static void __net_exit udp_pernet_table_free(struct net *net)
3494 {
3495 	struct udp_table *udptable = net->ipv4.udp_table;
3496 
3497 	if (udptable == &udp_table)
3498 		return;
3499 
3500 	kvfree(udptable->hash);
3501 	kfree(udptable);
3502 }
3503 
3504 static void __net_init udp_set_table(struct net *net)
3505 {
3506 	struct udp_table *udptable;
3507 	unsigned int hash_entries;
3508 	struct net *old_net;
3509 
3510 	if (net_eq(net, &init_net))
3511 		goto fallback;
3512 
3513 	old_net = current->nsproxy->net_ns;
3514 	hash_entries = READ_ONCE(old_net->ipv4.sysctl_udp_child_hash_entries);
3515 	if (!hash_entries)
3516 		goto fallback;
3517 
3518 	/* Set min to keep the bitmap on stack in udp_lib_get_port() */
3519 	if (hash_entries < UDP_HTABLE_SIZE_MIN_PERNET)
3520 		hash_entries = UDP_HTABLE_SIZE_MIN_PERNET;
3521 	else
3522 		hash_entries = roundup_pow_of_two(hash_entries);
3523 
3524 	udptable = udp_pernet_table_alloc(hash_entries);
3525 	if (udptable) {
3526 		net->ipv4.udp_table = udptable;
3527 	} else {
3528 		pr_warn("Failed to allocate UDP hash table (entries: %u) "
3529 			"for a netns, fallback to the global one\n",
3530 			hash_entries);
3531 fallback:
3532 		net->ipv4.udp_table = &udp_table;
3533 	}
3534 }
3535 
3536 static int __net_init udp_pernet_init(struct net *net)
3537 {
3538 	udp_sysctl_init(net);
3539 	udp_set_table(net);
3540 
3541 	return 0;
3542 }
3543 
3544 static void __net_exit udp_pernet_exit(struct net *net)
3545 {
3546 	udp_pernet_table_free(net);
3547 }
3548 
3549 static struct pernet_operations __net_initdata udp_sysctl_ops = {
3550 	.init	= udp_pernet_init,
3551 	.exit	= udp_pernet_exit,
3552 };
3553 
3554 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3555 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta,
3556 		     struct udp_sock *udp_sk, uid_t uid, int bucket)
3557 
3558 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3559 				      unsigned int new_batch_sz)
3560 {
3561 	struct sock **new_batch;
3562 
3563 	new_batch = kvmalloc_array(new_batch_sz, sizeof(*new_batch),
3564 				   GFP_USER | __GFP_NOWARN);
3565 	if (!new_batch)
3566 		return -ENOMEM;
3567 
3568 	bpf_iter_udp_put_batch(iter);
3569 	kvfree(iter->batch);
3570 	iter->batch = new_batch;
3571 	iter->max_sk = new_batch_sz;
3572 
3573 	return 0;
3574 }
3575 
3576 #define INIT_BATCH_SZ 16
3577 
3578 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux)
3579 {
3580 	struct bpf_udp_iter_state *iter = priv_data;
3581 	int ret;
3582 
3583 	ret = bpf_iter_init_seq_net(priv_data, aux);
3584 	if (ret)
3585 		return ret;
3586 
3587 	ret = bpf_iter_udp_realloc_batch(iter, INIT_BATCH_SZ);
3588 	if (ret)
3589 		bpf_iter_fini_seq_net(priv_data);
3590 
3591 	return ret;
3592 }
3593 
3594 static void bpf_iter_fini_udp(void *priv_data)
3595 {
3596 	struct bpf_udp_iter_state *iter = priv_data;
3597 
3598 	bpf_iter_fini_seq_net(priv_data);
3599 	kvfree(iter->batch);
3600 }
3601 
3602 static const struct bpf_iter_seq_info udp_seq_info = {
3603 	.seq_ops		= &bpf_iter_udp_seq_ops,
3604 	.init_seq_private	= bpf_iter_init_udp,
3605 	.fini_seq_private	= bpf_iter_fini_udp,
3606 	.seq_priv_size		= sizeof(struct bpf_udp_iter_state),
3607 };
3608 
3609 static struct bpf_iter_reg udp_reg_info = {
3610 	.target			= "udp",
3611 	.ctx_arg_info_size	= 1,
3612 	.ctx_arg_info		= {
3613 		{ offsetof(struct bpf_iter__udp, udp_sk),
3614 		  PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED },
3615 	},
3616 	.seq_info		= &udp_seq_info,
3617 };
3618 
3619 static void __init bpf_iter_register(void)
3620 {
3621 	udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP];
3622 	if (bpf_iter_reg_target(&udp_reg_info))
3623 		pr_warn("Warning: could not register bpf iterator udp\n");
3624 }
3625 #endif
3626 
3627 void __init udp_init(void)
3628 {
3629 	unsigned long limit;
3630 	unsigned int i;
3631 
3632 	udp_table_init(&udp_table, "UDP");
3633 	limit = nr_free_buffer_pages() / 8;
3634 	limit = max(limit, 128UL);
3635 	sysctl_udp_mem[0] = limit / 4 * 3;
3636 	sysctl_udp_mem[1] = limit;
3637 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3638 
3639 	/* 16 spinlocks per cpu */
3640 	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3641 	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3642 				GFP_KERNEL);
3643 	if (!udp_busylocks)
3644 		panic("UDP: failed to alloc udp_busylocks\n");
3645 	for (i = 0; i < (1U << udp_busylocks_log); i++)
3646 		spin_lock_init(udp_busylocks + i);
3647 
3648 	if (register_pernet_subsys(&udp_sysctl_ops))
3649 		panic("UDP: failed to init sysctl parameters.\n");
3650 
3651 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3652 	bpf_iter_register();
3653 #endif
3654 }
3655