1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * The User Datagram Protocol (UDP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 12 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 13 * Hirokazu Takahashi, <taka@valinux.co.jp> 14 * 15 * Fixes: 16 * Alan Cox : verify_area() calls 17 * Alan Cox : stopped close while in use off icmp 18 * messages. Not a fix but a botch that 19 * for udp at least is 'valid'. 20 * Alan Cox : Fixed icmp handling properly 21 * Alan Cox : Correct error for oversized datagrams 22 * Alan Cox : Tidied select() semantics. 23 * Alan Cox : udp_err() fixed properly, also now 24 * select and read wake correctly on errors 25 * Alan Cox : udp_send verify_area moved to avoid mem leak 26 * Alan Cox : UDP can count its memory 27 * Alan Cox : send to an unknown connection causes 28 * an ECONNREFUSED off the icmp, but 29 * does NOT close. 30 * Alan Cox : Switched to new sk_buff handlers. No more backlog! 31 * Alan Cox : Using generic datagram code. Even smaller and the PEEK 32 * bug no longer crashes it. 33 * Fred Van Kempen : Net2e support for sk->broadcast. 34 * Alan Cox : Uses skb_free_datagram 35 * Alan Cox : Added get/set sockopt support. 36 * Alan Cox : Broadcasting without option set returns EACCES. 37 * Alan Cox : No wakeup calls. Instead we now use the callbacks. 38 * Alan Cox : Use ip_tos and ip_ttl 39 * Alan Cox : SNMP Mibs 40 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support. 41 * Matt Dillon : UDP length checks. 42 * Alan Cox : Smarter af_inet used properly. 43 * Alan Cox : Use new kernel side addressing. 44 * Alan Cox : Incorrect return on truncated datagram receive. 45 * Arnt Gulbrandsen : New udp_send and stuff 46 * Alan Cox : Cache last socket 47 * Alan Cox : Route cache 48 * Jon Peatfield : Minor efficiency fix to sendto(). 49 * Mike Shaver : RFC1122 checks. 50 * Alan Cox : Nonblocking error fix. 51 * Willy Konynenberg : Transparent proxying support. 52 * Mike McLagan : Routing by source 53 * David S. Miller : New socket lookup architecture. 54 * Last socket cache retained as it 55 * does have a high hit rate. 56 * Olaf Kirch : Don't linearise iovec on sendmsg. 57 * Andi Kleen : Some cleanups, cache destination entry 58 * for connect. 59 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 60 * Melvin Smith : Check msg_name not msg_namelen in sendto(), 61 * return ENOTCONN for unconnected sockets (POSIX) 62 * Janos Farkas : don't deliver multi/broadcasts to a different 63 * bound-to-device socket 64 * Hirokazu Takahashi : HW checksumming for outgoing UDP 65 * datagrams. 66 * Hirokazu Takahashi : sendfile() on UDP works now. 67 * Arnaldo C. Melo : convert /proc/net/udp to seq_file 68 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 69 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind 70 * a single port at the same time. 71 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support 72 * James Chapman : Add L2TP encapsulation type. 73 */ 74 75 #define pr_fmt(fmt) "UDP: " fmt 76 77 #include <linux/bpf-cgroup.h> 78 #include <linux/uaccess.h> 79 #include <asm/ioctls.h> 80 #include <linux/memblock.h> 81 #include <linux/highmem.h> 82 #include <linux/types.h> 83 #include <linux/fcntl.h> 84 #include <linux/module.h> 85 #include <linux/socket.h> 86 #include <linux/sockios.h> 87 #include <linux/igmp.h> 88 #include <linux/inetdevice.h> 89 #include <linux/in.h> 90 #include <linux/errno.h> 91 #include <linux/timer.h> 92 #include <linux/mm.h> 93 #include <linux/inet.h> 94 #include <linux/netdevice.h> 95 #include <linux/slab.h> 96 #include <net/tcp_states.h> 97 #include <linux/skbuff.h> 98 #include <linux/proc_fs.h> 99 #include <linux/seq_file.h> 100 #include <net/net_namespace.h> 101 #include <net/icmp.h> 102 #include <net/inet_hashtables.h> 103 #include <net/ip_tunnels.h> 104 #include <net/route.h> 105 #include <net/checksum.h> 106 #include <net/gso.h> 107 #include <net/xfrm.h> 108 #include <trace/events/udp.h> 109 #include <linux/static_key.h> 110 #include <linux/btf_ids.h> 111 #include <trace/events/skb.h> 112 #include <net/busy_poll.h> 113 #include "udp_impl.h" 114 #include <net/sock_reuseport.h> 115 #include <net/addrconf.h> 116 #include <net/udp_tunnel.h> 117 #include <net/gro.h> 118 #include <net/inet_dscp.h> 119 #if IS_ENABLED(CONFIG_IPV6) 120 #include <net/ipv6_stubs.h> 121 #endif 122 123 struct udp_table udp_table __read_mostly; 124 EXPORT_SYMBOL(udp_table); 125 126 long sysctl_udp_mem[3] __read_mostly; 127 EXPORT_SYMBOL(sysctl_udp_mem); 128 129 atomic_long_t udp_memory_allocated ____cacheline_aligned_in_smp; 130 EXPORT_SYMBOL(udp_memory_allocated); 131 DEFINE_PER_CPU(int, udp_memory_per_cpu_fw_alloc); 132 EXPORT_PER_CPU_SYMBOL_GPL(udp_memory_per_cpu_fw_alloc); 133 134 #define MAX_UDP_PORTS 65536 135 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN_PERNET) 136 137 static struct udp_table *udp_get_table_prot(struct sock *sk) 138 { 139 return sk->sk_prot->h.udp_table ? : sock_net(sk)->ipv4.udp_table; 140 } 141 142 static int udp_lib_lport_inuse(struct net *net, __u16 num, 143 const struct udp_hslot *hslot, 144 unsigned long *bitmap, 145 struct sock *sk, unsigned int log) 146 { 147 struct sock *sk2; 148 kuid_t uid = sock_i_uid(sk); 149 150 sk_for_each(sk2, &hslot->head) { 151 if (net_eq(sock_net(sk2), net) && 152 sk2 != sk && 153 (bitmap || udp_sk(sk2)->udp_port_hash == num) && 154 (!sk2->sk_reuse || !sk->sk_reuse) && 155 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 156 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 157 inet_rcv_saddr_equal(sk, sk2, true)) { 158 if (sk2->sk_reuseport && sk->sk_reuseport && 159 !rcu_access_pointer(sk->sk_reuseport_cb) && 160 uid_eq(uid, sock_i_uid(sk2))) { 161 if (!bitmap) 162 return 0; 163 } else { 164 if (!bitmap) 165 return 1; 166 __set_bit(udp_sk(sk2)->udp_port_hash >> log, 167 bitmap); 168 } 169 } 170 } 171 return 0; 172 } 173 174 /* 175 * Note: we still hold spinlock of primary hash chain, so no other writer 176 * can insert/delete a socket with local_port == num 177 */ 178 static int udp_lib_lport_inuse2(struct net *net, __u16 num, 179 struct udp_hslot *hslot2, 180 struct sock *sk) 181 { 182 struct sock *sk2; 183 kuid_t uid = sock_i_uid(sk); 184 int res = 0; 185 186 spin_lock(&hslot2->lock); 187 udp_portaddr_for_each_entry(sk2, &hslot2->head) { 188 if (net_eq(sock_net(sk2), net) && 189 sk2 != sk && 190 (udp_sk(sk2)->udp_port_hash == num) && 191 (!sk2->sk_reuse || !sk->sk_reuse) && 192 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 193 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 194 inet_rcv_saddr_equal(sk, sk2, true)) { 195 if (sk2->sk_reuseport && sk->sk_reuseport && 196 !rcu_access_pointer(sk->sk_reuseport_cb) && 197 uid_eq(uid, sock_i_uid(sk2))) { 198 res = 0; 199 } else { 200 res = 1; 201 } 202 break; 203 } 204 } 205 spin_unlock(&hslot2->lock); 206 return res; 207 } 208 209 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot) 210 { 211 struct net *net = sock_net(sk); 212 kuid_t uid = sock_i_uid(sk); 213 struct sock *sk2; 214 215 sk_for_each(sk2, &hslot->head) { 216 if (net_eq(sock_net(sk2), net) && 217 sk2 != sk && 218 sk2->sk_family == sk->sk_family && 219 ipv6_only_sock(sk2) == ipv6_only_sock(sk) && 220 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) && 221 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 222 sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) && 223 inet_rcv_saddr_equal(sk, sk2, false)) { 224 return reuseport_add_sock(sk, sk2, 225 inet_rcv_saddr_any(sk)); 226 } 227 } 228 229 return reuseport_alloc(sk, inet_rcv_saddr_any(sk)); 230 } 231 232 /** 233 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6 234 * 235 * @sk: socket struct in question 236 * @snum: port number to look up 237 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains, 238 * with NULL address 239 */ 240 int udp_lib_get_port(struct sock *sk, unsigned short snum, 241 unsigned int hash2_nulladdr) 242 { 243 struct udp_table *udptable = udp_get_table_prot(sk); 244 struct udp_hslot *hslot, *hslot2; 245 struct net *net = sock_net(sk); 246 int error = -EADDRINUSE; 247 248 if (!snum) { 249 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN); 250 unsigned short first, last; 251 int low, high, remaining; 252 unsigned int rand; 253 254 inet_sk_get_local_port_range(sk, &low, &high); 255 remaining = (high - low) + 1; 256 257 rand = get_random_u32(); 258 first = reciprocal_scale(rand, remaining) + low; 259 /* 260 * force rand to be an odd multiple of UDP_HTABLE_SIZE 261 */ 262 rand = (rand | 1) * (udptable->mask + 1); 263 last = first + udptable->mask + 1; 264 do { 265 hslot = udp_hashslot(udptable, net, first); 266 bitmap_zero(bitmap, PORTS_PER_CHAIN); 267 spin_lock_bh(&hslot->lock); 268 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk, 269 udptable->log); 270 271 snum = first; 272 /* 273 * Iterate on all possible values of snum for this hash. 274 * Using steps of an odd multiple of UDP_HTABLE_SIZE 275 * give us randomization and full range coverage. 276 */ 277 do { 278 if (low <= snum && snum <= high && 279 !test_bit(snum >> udptable->log, bitmap) && 280 !inet_is_local_reserved_port(net, snum)) 281 goto found; 282 snum += rand; 283 } while (snum != first); 284 spin_unlock_bh(&hslot->lock); 285 cond_resched(); 286 } while (++first != last); 287 goto fail; 288 } else { 289 hslot = udp_hashslot(udptable, net, snum); 290 spin_lock_bh(&hslot->lock); 291 if (hslot->count > 10) { 292 int exist; 293 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum; 294 295 slot2 &= udptable->mask; 296 hash2_nulladdr &= udptable->mask; 297 298 hslot2 = udp_hashslot2(udptable, slot2); 299 if (hslot->count < hslot2->count) 300 goto scan_primary_hash; 301 302 exist = udp_lib_lport_inuse2(net, snum, hslot2, sk); 303 if (!exist && (hash2_nulladdr != slot2)) { 304 hslot2 = udp_hashslot2(udptable, hash2_nulladdr); 305 exist = udp_lib_lport_inuse2(net, snum, hslot2, 306 sk); 307 } 308 if (exist) 309 goto fail_unlock; 310 else 311 goto found; 312 } 313 scan_primary_hash: 314 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0)) 315 goto fail_unlock; 316 } 317 found: 318 inet_sk(sk)->inet_num = snum; 319 udp_sk(sk)->udp_port_hash = snum; 320 udp_sk(sk)->udp_portaddr_hash ^= snum; 321 if (sk_unhashed(sk)) { 322 if (sk->sk_reuseport && 323 udp_reuseport_add_sock(sk, hslot)) { 324 inet_sk(sk)->inet_num = 0; 325 udp_sk(sk)->udp_port_hash = 0; 326 udp_sk(sk)->udp_portaddr_hash ^= snum; 327 goto fail_unlock; 328 } 329 330 sock_set_flag(sk, SOCK_RCU_FREE); 331 332 sk_add_node_rcu(sk, &hslot->head); 333 hslot->count++; 334 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 335 336 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 337 spin_lock(&hslot2->lock); 338 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 339 sk->sk_family == AF_INET6) 340 hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node, 341 &hslot2->head); 342 else 343 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 344 &hslot2->head); 345 hslot2->count++; 346 spin_unlock(&hslot2->lock); 347 } 348 349 error = 0; 350 fail_unlock: 351 spin_unlock_bh(&hslot->lock); 352 fail: 353 return error; 354 } 355 EXPORT_SYMBOL(udp_lib_get_port); 356 357 int udp_v4_get_port(struct sock *sk, unsigned short snum) 358 { 359 unsigned int hash2_nulladdr = 360 ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum); 361 unsigned int hash2_partial = 362 ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0); 363 364 /* precompute partial secondary hash */ 365 udp_sk(sk)->udp_portaddr_hash = hash2_partial; 366 return udp_lib_get_port(sk, snum, hash2_nulladdr); 367 } 368 369 static int compute_score(struct sock *sk, const struct net *net, 370 __be32 saddr, __be16 sport, 371 __be32 daddr, unsigned short hnum, 372 int dif, int sdif) 373 { 374 int score; 375 struct inet_sock *inet; 376 bool dev_match; 377 378 if (!net_eq(sock_net(sk), net) || 379 udp_sk(sk)->udp_port_hash != hnum || 380 ipv6_only_sock(sk)) 381 return -1; 382 383 if (sk->sk_rcv_saddr != daddr) 384 return -1; 385 386 score = (sk->sk_family == PF_INET) ? 2 : 1; 387 388 inet = inet_sk(sk); 389 if (inet->inet_daddr) { 390 if (inet->inet_daddr != saddr) 391 return -1; 392 score += 4; 393 } 394 395 if (inet->inet_dport) { 396 if (inet->inet_dport != sport) 397 return -1; 398 score += 4; 399 } 400 401 dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, 402 dif, sdif); 403 if (!dev_match) 404 return -1; 405 if (sk->sk_bound_dev_if) 406 score += 4; 407 408 if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id()) 409 score++; 410 return score; 411 } 412 413 INDIRECT_CALLABLE_SCOPE 414 u32 udp_ehashfn(const struct net *net, const __be32 laddr, const __u16 lport, 415 const __be32 faddr, const __be16 fport) 416 { 417 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret)); 418 419 return __inet_ehashfn(laddr, lport, faddr, fport, 420 udp_ehash_secret + net_hash_mix(net)); 421 } 422 423 /* called with rcu_read_lock() */ 424 static struct sock *udp4_lib_lookup2(const struct net *net, 425 __be32 saddr, __be16 sport, 426 __be32 daddr, unsigned int hnum, 427 int dif, int sdif, 428 struct udp_hslot *hslot2, 429 struct sk_buff *skb) 430 { 431 struct sock *sk, *result; 432 int score, badness; 433 bool need_rescore; 434 435 result = NULL; 436 badness = 0; 437 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 438 need_rescore = false; 439 rescore: 440 score = compute_score(need_rescore ? result : sk, net, saddr, 441 sport, daddr, hnum, dif, sdif); 442 if (score > badness) { 443 badness = score; 444 445 if (need_rescore) 446 continue; 447 448 if (sk->sk_state == TCP_ESTABLISHED) { 449 result = sk; 450 continue; 451 } 452 453 result = inet_lookup_reuseport(net, sk, skb, sizeof(struct udphdr), 454 saddr, sport, daddr, hnum, udp_ehashfn); 455 if (!result) { 456 result = sk; 457 continue; 458 } 459 460 /* Fall back to scoring if group has connections */ 461 if (!reuseport_has_conns(sk)) 462 return result; 463 464 /* Reuseport logic returned an error, keep original score. */ 465 if (IS_ERR(result)) 466 continue; 467 468 /* compute_score is too long of a function to be 469 * inlined, and calling it again here yields 470 * measureable overhead for some 471 * workloads. Work around it by jumping 472 * backwards to rescore 'result'. 473 */ 474 need_rescore = true; 475 goto rescore; 476 } 477 } 478 return result; 479 } 480 481 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try 482 * harder than this. -DaveM 483 */ 484 struct sock *__udp4_lib_lookup(const struct net *net, __be32 saddr, 485 __be16 sport, __be32 daddr, __be16 dport, int dif, 486 int sdif, struct udp_table *udptable, struct sk_buff *skb) 487 { 488 unsigned short hnum = ntohs(dport); 489 unsigned int hash2, slot2; 490 struct udp_hslot *hslot2; 491 struct sock *result, *sk; 492 493 hash2 = ipv4_portaddr_hash(net, daddr, hnum); 494 slot2 = hash2 & udptable->mask; 495 hslot2 = &udptable->hash2[slot2]; 496 497 /* Lookup connected or non-wildcard socket */ 498 result = udp4_lib_lookup2(net, saddr, sport, 499 daddr, hnum, dif, sdif, 500 hslot2, skb); 501 if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED) 502 goto done; 503 504 /* Lookup redirect from BPF */ 505 if (static_branch_unlikely(&bpf_sk_lookup_enabled) && 506 udptable == net->ipv4.udp_table) { 507 sk = inet_lookup_run_sk_lookup(net, IPPROTO_UDP, skb, sizeof(struct udphdr), 508 saddr, sport, daddr, hnum, dif, 509 udp_ehashfn); 510 if (sk) { 511 result = sk; 512 goto done; 513 } 514 } 515 516 /* Got non-wildcard socket or error on first lookup */ 517 if (result) 518 goto done; 519 520 /* Lookup wildcard sockets */ 521 hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum); 522 slot2 = hash2 & udptable->mask; 523 hslot2 = &udptable->hash2[slot2]; 524 525 result = udp4_lib_lookup2(net, saddr, sport, 526 htonl(INADDR_ANY), hnum, dif, sdif, 527 hslot2, skb); 528 done: 529 if (IS_ERR(result)) 530 return NULL; 531 return result; 532 } 533 EXPORT_SYMBOL_GPL(__udp4_lib_lookup); 534 535 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb, 536 __be16 sport, __be16 dport, 537 struct udp_table *udptable) 538 { 539 const struct iphdr *iph = ip_hdr(skb); 540 541 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport, 542 iph->daddr, dport, inet_iif(skb), 543 inet_sdif(skb), udptable, skb); 544 } 545 546 struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb, 547 __be16 sport, __be16 dport) 548 { 549 const u16 offset = NAPI_GRO_CB(skb)->network_offsets[skb->encapsulation]; 550 const struct iphdr *iph = (struct iphdr *)(skb->data + offset); 551 struct net *net = dev_net(skb->dev); 552 int iif, sdif; 553 554 inet_get_iif_sdif(skb, &iif, &sdif); 555 556 return __udp4_lib_lookup(net, iph->saddr, sport, 557 iph->daddr, dport, iif, 558 sdif, net->ipv4.udp_table, NULL); 559 } 560 561 /* Must be called under rcu_read_lock(). 562 * Does increment socket refcount. 563 */ 564 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4) 565 struct sock *udp4_lib_lookup(const struct net *net, __be32 saddr, __be16 sport, 566 __be32 daddr, __be16 dport, int dif) 567 { 568 struct sock *sk; 569 570 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport, 571 dif, 0, net->ipv4.udp_table, NULL); 572 if (sk && !refcount_inc_not_zero(&sk->sk_refcnt)) 573 sk = NULL; 574 return sk; 575 } 576 EXPORT_SYMBOL_GPL(udp4_lib_lookup); 577 #endif 578 579 static inline bool __udp_is_mcast_sock(struct net *net, const struct sock *sk, 580 __be16 loc_port, __be32 loc_addr, 581 __be16 rmt_port, __be32 rmt_addr, 582 int dif, int sdif, unsigned short hnum) 583 { 584 const struct inet_sock *inet = inet_sk(sk); 585 586 if (!net_eq(sock_net(sk), net) || 587 udp_sk(sk)->udp_port_hash != hnum || 588 (inet->inet_daddr && inet->inet_daddr != rmt_addr) || 589 (inet->inet_dport != rmt_port && inet->inet_dport) || 590 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) || 591 ipv6_only_sock(sk) || 592 !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif)) 593 return false; 594 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif)) 595 return false; 596 return true; 597 } 598 599 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key); 600 EXPORT_SYMBOL(udp_encap_needed_key); 601 602 #if IS_ENABLED(CONFIG_IPV6) 603 DEFINE_STATIC_KEY_FALSE(udpv6_encap_needed_key); 604 EXPORT_SYMBOL(udpv6_encap_needed_key); 605 #endif 606 607 void udp_encap_enable(void) 608 { 609 static_branch_inc(&udp_encap_needed_key); 610 } 611 EXPORT_SYMBOL(udp_encap_enable); 612 613 void udp_encap_disable(void) 614 { 615 static_branch_dec(&udp_encap_needed_key); 616 } 617 EXPORT_SYMBOL(udp_encap_disable); 618 619 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go 620 * through error handlers in encapsulations looking for a match. 621 */ 622 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info) 623 { 624 int i; 625 626 for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) { 627 int (*handler)(struct sk_buff *skb, u32 info); 628 const struct ip_tunnel_encap_ops *encap; 629 630 encap = rcu_dereference(iptun_encaps[i]); 631 if (!encap) 632 continue; 633 handler = encap->err_handler; 634 if (handler && !handler(skb, info)) 635 return 0; 636 } 637 638 return -ENOENT; 639 } 640 641 /* Try to match ICMP errors to UDP tunnels by looking up a socket without 642 * reversing source and destination port: this will match tunnels that force the 643 * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that 644 * lwtunnels might actually break this assumption by being configured with 645 * different destination ports on endpoints, in this case we won't be able to 646 * trace ICMP messages back to them. 647 * 648 * If this doesn't match any socket, probe tunnels with arbitrary destination 649 * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port 650 * we've sent packets to won't necessarily match the local destination port. 651 * 652 * Then ask the tunnel implementation to match the error against a valid 653 * association. 654 * 655 * Return an error if we can't find a match, the socket if we need further 656 * processing, zero otherwise. 657 */ 658 static struct sock *__udp4_lib_err_encap(struct net *net, 659 const struct iphdr *iph, 660 struct udphdr *uh, 661 struct udp_table *udptable, 662 struct sock *sk, 663 struct sk_buff *skb, u32 info) 664 { 665 int (*lookup)(struct sock *sk, struct sk_buff *skb); 666 int network_offset, transport_offset; 667 struct udp_sock *up; 668 669 network_offset = skb_network_offset(skb); 670 transport_offset = skb_transport_offset(skb); 671 672 /* Network header needs to point to the outer IPv4 header inside ICMP */ 673 skb_reset_network_header(skb); 674 675 /* Transport header needs to point to the UDP header */ 676 skb_set_transport_header(skb, iph->ihl << 2); 677 678 if (sk) { 679 up = udp_sk(sk); 680 681 lookup = READ_ONCE(up->encap_err_lookup); 682 if (lookup && lookup(sk, skb)) 683 sk = NULL; 684 685 goto out; 686 } 687 688 sk = __udp4_lib_lookup(net, iph->daddr, uh->source, 689 iph->saddr, uh->dest, skb->dev->ifindex, 0, 690 udptable, NULL); 691 if (sk) { 692 up = udp_sk(sk); 693 694 lookup = READ_ONCE(up->encap_err_lookup); 695 if (!lookup || lookup(sk, skb)) 696 sk = NULL; 697 } 698 699 out: 700 if (!sk) 701 sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info)); 702 703 skb_set_transport_header(skb, transport_offset); 704 skb_set_network_header(skb, network_offset); 705 706 return sk; 707 } 708 709 /* 710 * This routine is called by the ICMP module when it gets some 711 * sort of error condition. If err < 0 then the socket should 712 * be closed and the error returned to the user. If err > 0 713 * it's just the icmp type << 8 | icmp code. 714 * Header points to the ip header of the error packet. We move 715 * on past this. Then (as it used to claim before adjustment) 716 * header points to the first 8 bytes of the udp header. We need 717 * to find the appropriate port. 718 */ 719 720 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable) 721 { 722 struct inet_sock *inet; 723 const struct iphdr *iph = (const struct iphdr *)skb->data; 724 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2)); 725 const int type = icmp_hdr(skb)->type; 726 const int code = icmp_hdr(skb)->code; 727 bool tunnel = false; 728 struct sock *sk; 729 int harderr; 730 int err; 731 struct net *net = dev_net(skb->dev); 732 733 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest, 734 iph->saddr, uh->source, skb->dev->ifindex, 735 inet_sdif(skb), udptable, NULL); 736 737 if (!sk || READ_ONCE(udp_sk(sk)->encap_type)) { 738 /* No socket for error: try tunnels before discarding */ 739 if (static_branch_unlikely(&udp_encap_needed_key)) { 740 sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb, 741 info); 742 if (!sk) 743 return 0; 744 } else 745 sk = ERR_PTR(-ENOENT); 746 747 if (IS_ERR(sk)) { 748 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); 749 return PTR_ERR(sk); 750 } 751 752 tunnel = true; 753 } 754 755 err = 0; 756 harderr = 0; 757 inet = inet_sk(sk); 758 759 switch (type) { 760 default: 761 case ICMP_TIME_EXCEEDED: 762 err = EHOSTUNREACH; 763 break; 764 case ICMP_SOURCE_QUENCH: 765 goto out; 766 case ICMP_PARAMETERPROB: 767 err = EPROTO; 768 harderr = 1; 769 break; 770 case ICMP_DEST_UNREACH: 771 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */ 772 ipv4_sk_update_pmtu(skb, sk, info); 773 if (READ_ONCE(inet->pmtudisc) != IP_PMTUDISC_DONT) { 774 err = EMSGSIZE; 775 harderr = 1; 776 break; 777 } 778 goto out; 779 } 780 err = EHOSTUNREACH; 781 if (code <= NR_ICMP_UNREACH) { 782 harderr = icmp_err_convert[code].fatal; 783 err = icmp_err_convert[code].errno; 784 } 785 break; 786 case ICMP_REDIRECT: 787 ipv4_sk_redirect(skb, sk); 788 goto out; 789 } 790 791 /* 792 * RFC1122: OK. Passes ICMP errors back to application, as per 793 * 4.1.3.3. 794 */ 795 if (tunnel) { 796 /* ...not for tunnels though: we don't have a sending socket */ 797 if (udp_sk(sk)->encap_err_rcv) 798 udp_sk(sk)->encap_err_rcv(sk, skb, err, uh->dest, info, 799 (u8 *)(uh+1)); 800 goto out; 801 } 802 if (!inet_test_bit(RECVERR, sk)) { 803 if (!harderr || sk->sk_state != TCP_ESTABLISHED) 804 goto out; 805 } else 806 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1)); 807 808 sk->sk_err = err; 809 sk_error_report(sk); 810 out: 811 return 0; 812 } 813 814 int udp_err(struct sk_buff *skb, u32 info) 815 { 816 return __udp4_lib_err(skb, info, dev_net(skb->dev)->ipv4.udp_table); 817 } 818 819 /* 820 * Throw away all pending data and cancel the corking. Socket is locked. 821 */ 822 void udp_flush_pending_frames(struct sock *sk) 823 { 824 struct udp_sock *up = udp_sk(sk); 825 826 if (up->pending) { 827 up->len = 0; 828 WRITE_ONCE(up->pending, 0); 829 ip_flush_pending_frames(sk); 830 } 831 } 832 EXPORT_SYMBOL(udp_flush_pending_frames); 833 834 /** 835 * udp4_hwcsum - handle outgoing HW checksumming 836 * @skb: sk_buff containing the filled-in UDP header 837 * (checksum field must be zeroed out) 838 * @src: source IP address 839 * @dst: destination IP address 840 */ 841 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst) 842 { 843 struct udphdr *uh = udp_hdr(skb); 844 int offset = skb_transport_offset(skb); 845 int len = skb->len - offset; 846 int hlen = len; 847 __wsum csum = 0; 848 849 if (!skb_has_frag_list(skb)) { 850 /* 851 * Only one fragment on the socket. 852 */ 853 skb->csum_start = skb_transport_header(skb) - skb->head; 854 skb->csum_offset = offsetof(struct udphdr, check); 855 uh->check = ~csum_tcpudp_magic(src, dst, len, 856 IPPROTO_UDP, 0); 857 } else { 858 struct sk_buff *frags; 859 860 /* 861 * HW-checksum won't work as there are two or more 862 * fragments on the socket so that all csums of sk_buffs 863 * should be together 864 */ 865 skb_walk_frags(skb, frags) { 866 csum = csum_add(csum, frags->csum); 867 hlen -= frags->len; 868 } 869 870 csum = skb_checksum(skb, offset, hlen, csum); 871 skb->ip_summed = CHECKSUM_NONE; 872 873 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum); 874 if (uh->check == 0) 875 uh->check = CSUM_MANGLED_0; 876 } 877 } 878 EXPORT_SYMBOL_GPL(udp4_hwcsum); 879 880 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended 881 * for the simple case like when setting the checksum for a UDP tunnel. 882 */ 883 void udp_set_csum(bool nocheck, struct sk_buff *skb, 884 __be32 saddr, __be32 daddr, int len) 885 { 886 struct udphdr *uh = udp_hdr(skb); 887 888 if (nocheck) { 889 uh->check = 0; 890 } else if (skb_is_gso(skb)) { 891 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 892 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 893 uh->check = 0; 894 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb)); 895 if (uh->check == 0) 896 uh->check = CSUM_MANGLED_0; 897 } else { 898 skb->ip_summed = CHECKSUM_PARTIAL; 899 skb->csum_start = skb_transport_header(skb) - skb->head; 900 skb->csum_offset = offsetof(struct udphdr, check); 901 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 902 } 903 } 904 EXPORT_SYMBOL(udp_set_csum); 905 906 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4, 907 struct inet_cork *cork) 908 { 909 struct sock *sk = skb->sk; 910 struct inet_sock *inet = inet_sk(sk); 911 struct udphdr *uh; 912 int err; 913 int is_udplite = IS_UDPLITE(sk); 914 int offset = skb_transport_offset(skb); 915 int len = skb->len - offset; 916 int datalen = len - sizeof(*uh); 917 __wsum csum = 0; 918 919 /* 920 * Create a UDP header 921 */ 922 uh = udp_hdr(skb); 923 uh->source = inet->inet_sport; 924 uh->dest = fl4->fl4_dport; 925 uh->len = htons(len); 926 uh->check = 0; 927 928 if (cork->gso_size) { 929 const int hlen = skb_network_header_len(skb) + 930 sizeof(struct udphdr); 931 932 if (hlen + cork->gso_size > cork->fragsize) { 933 kfree_skb(skb); 934 return -EINVAL; 935 } 936 if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) { 937 kfree_skb(skb); 938 return -EINVAL; 939 } 940 if (sk->sk_no_check_tx) { 941 kfree_skb(skb); 942 return -EINVAL; 943 } 944 if (is_udplite || dst_xfrm(skb_dst(skb))) { 945 kfree_skb(skb); 946 return -EIO; 947 } 948 949 if (datalen > cork->gso_size) { 950 skb_shinfo(skb)->gso_size = cork->gso_size; 951 skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4; 952 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen, 953 cork->gso_size); 954 } 955 goto csum_partial; 956 } 957 958 if (is_udplite) /* UDP-Lite */ 959 csum = udplite_csum(skb); 960 961 else if (sk->sk_no_check_tx) { /* UDP csum off */ 962 963 skb->ip_summed = CHECKSUM_NONE; 964 goto send; 965 966 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */ 967 csum_partial: 968 969 udp4_hwcsum(skb, fl4->saddr, fl4->daddr); 970 goto send; 971 972 } else 973 csum = udp_csum(skb); 974 975 /* add protocol-dependent pseudo-header */ 976 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len, 977 sk->sk_protocol, csum); 978 if (uh->check == 0) 979 uh->check = CSUM_MANGLED_0; 980 981 send: 982 err = ip_send_skb(sock_net(sk), skb); 983 if (err) { 984 if (err == -ENOBUFS && 985 !inet_test_bit(RECVERR, sk)) { 986 UDP_INC_STATS(sock_net(sk), 987 UDP_MIB_SNDBUFERRORS, is_udplite); 988 err = 0; 989 } 990 } else 991 UDP_INC_STATS(sock_net(sk), 992 UDP_MIB_OUTDATAGRAMS, is_udplite); 993 return err; 994 } 995 996 /* 997 * Push out all pending data as one UDP datagram. Socket is locked. 998 */ 999 int udp_push_pending_frames(struct sock *sk) 1000 { 1001 struct udp_sock *up = udp_sk(sk); 1002 struct inet_sock *inet = inet_sk(sk); 1003 struct flowi4 *fl4 = &inet->cork.fl.u.ip4; 1004 struct sk_buff *skb; 1005 int err = 0; 1006 1007 skb = ip_finish_skb(sk, fl4); 1008 if (!skb) 1009 goto out; 1010 1011 err = udp_send_skb(skb, fl4, &inet->cork.base); 1012 1013 out: 1014 up->len = 0; 1015 WRITE_ONCE(up->pending, 0); 1016 return err; 1017 } 1018 EXPORT_SYMBOL(udp_push_pending_frames); 1019 1020 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size) 1021 { 1022 switch (cmsg->cmsg_type) { 1023 case UDP_SEGMENT: 1024 if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16))) 1025 return -EINVAL; 1026 *gso_size = *(__u16 *)CMSG_DATA(cmsg); 1027 return 0; 1028 default: 1029 return -EINVAL; 1030 } 1031 } 1032 1033 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size) 1034 { 1035 struct cmsghdr *cmsg; 1036 bool need_ip = false; 1037 int err; 1038 1039 for_each_cmsghdr(cmsg, msg) { 1040 if (!CMSG_OK(msg, cmsg)) 1041 return -EINVAL; 1042 1043 if (cmsg->cmsg_level != SOL_UDP) { 1044 need_ip = true; 1045 continue; 1046 } 1047 1048 err = __udp_cmsg_send(cmsg, gso_size); 1049 if (err) 1050 return err; 1051 } 1052 1053 return need_ip; 1054 } 1055 EXPORT_SYMBOL_GPL(udp_cmsg_send); 1056 1057 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1058 { 1059 struct inet_sock *inet = inet_sk(sk); 1060 struct udp_sock *up = udp_sk(sk); 1061 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name); 1062 struct flowi4 fl4_stack; 1063 struct flowi4 *fl4; 1064 int ulen = len; 1065 struct ipcm_cookie ipc; 1066 struct rtable *rt = NULL; 1067 int free = 0; 1068 int connected = 0; 1069 __be32 daddr, faddr, saddr; 1070 u8 tos, scope; 1071 __be16 dport; 1072 int err, is_udplite = IS_UDPLITE(sk); 1073 int corkreq = udp_test_bit(CORK, sk) || msg->msg_flags & MSG_MORE; 1074 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *); 1075 struct sk_buff *skb; 1076 struct ip_options_data opt_copy; 1077 int uc_index; 1078 1079 if (len > 0xFFFF) 1080 return -EMSGSIZE; 1081 1082 /* 1083 * Check the flags. 1084 */ 1085 1086 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */ 1087 return -EOPNOTSUPP; 1088 1089 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag; 1090 1091 fl4 = &inet->cork.fl.u.ip4; 1092 if (READ_ONCE(up->pending)) { 1093 /* 1094 * There are pending frames. 1095 * The socket lock must be held while it's corked. 1096 */ 1097 lock_sock(sk); 1098 if (likely(up->pending)) { 1099 if (unlikely(up->pending != AF_INET)) { 1100 release_sock(sk); 1101 return -EINVAL; 1102 } 1103 goto do_append_data; 1104 } 1105 release_sock(sk); 1106 } 1107 ulen += sizeof(struct udphdr); 1108 1109 /* 1110 * Get and verify the address. 1111 */ 1112 if (usin) { 1113 if (msg->msg_namelen < sizeof(*usin)) 1114 return -EINVAL; 1115 if (usin->sin_family != AF_INET) { 1116 if (usin->sin_family != AF_UNSPEC) 1117 return -EAFNOSUPPORT; 1118 } 1119 1120 daddr = usin->sin_addr.s_addr; 1121 dport = usin->sin_port; 1122 if (dport == 0) 1123 return -EINVAL; 1124 } else { 1125 if (sk->sk_state != TCP_ESTABLISHED) 1126 return -EDESTADDRREQ; 1127 daddr = inet->inet_daddr; 1128 dport = inet->inet_dport; 1129 /* Open fast path for connected socket. 1130 Route will not be used, if at least one option is set. 1131 */ 1132 connected = 1; 1133 } 1134 1135 ipcm_init_sk(&ipc, inet); 1136 ipc.gso_size = READ_ONCE(up->gso_size); 1137 1138 if (msg->msg_controllen) { 1139 err = udp_cmsg_send(sk, msg, &ipc.gso_size); 1140 if (err > 0) { 1141 err = ip_cmsg_send(sk, msg, &ipc, 1142 sk->sk_family == AF_INET6); 1143 connected = 0; 1144 } 1145 if (unlikely(err < 0)) { 1146 kfree(ipc.opt); 1147 return err; 1148 } 1149 if (ipc.opt) 1150 free = 1; 1151 } 1152 if (!ipc.opt) { 1153 struct ip_options_rcu *inet_opt; 1154 1155 rcu_read_lock(); 1156 inet_opt = rcu_dereference(inet->inet_opt); 1157 if (inet_opt) { 1158 memcpy(&opt_copy, inet_opt, 1159 sizeof(*inet_opt) + inet_opt->opt.optlen); 1160 ipc.opt = &opt_copy.opt; 1161 } 1162 rcu_read_unlock(); 1163 } 1164 1165 if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) { 1166 err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk, 1167 (struct sockaddr *)usin, 1168 &msg->msg_namelen, 1169 &ipc.addr); 1170 if (err) 1171 goto out_free; 1172 if (usin) { 1173 if (usin->sin_port == 0) { 1174 /* BPF program set invalid port. Reject it. */ 1175 err = -EINVAL; 1176 goto out_free; 1177 } 1178 daddr = usin->sin_addr.s_addr; 1179 dport = usin->sin_port; 1180 } 1181 } 1182 1183 saddr = ipc.addr; 1184 ipc.addr = faddr = daddr; 1185 1186 if (ipc.opt && ipc.opt->opt.srr) { 1187 if (!daddr) { 1188 err = -EINVAL; 1189 goto out_free; 1190 } 1191 faddr = ipc.opt->opt.faddr; 1192 connected = 0; 1193 } 1194 tos = get_rttos(&ipc, inet); 1195 scope = ip_sendmsg_scope(inet, &ipc, msg); 1196 if (scope == RT_SCOPE_LINK) 1197 connected = 0; 1198 1199 uc_index = READ_ONCE(inet->uc_index); 1200 if (ipv4_is_multicast(daddr)) { 1201 if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif)) 1202 ipc.oif = READ_ONCE(inet->mc_index); 1203 if (!saddr) 1204 saddr = READ_ONCE(inet->mc_addr); 1205 connected = 0; 1206 } else if (!ipc.oif) { 1207 ipc.oif = uc_index; 1208 } else if (ipv4_is_lbcast(daddr) && uc_index) { 1209 /* oif is set, packet is to local broadcast and 1210 * uc_index is set. oif is most likely set 1211 * by sk_bound_dev_if. If uc_index != oif check if the 1212 * oif is an L3 master and uc_index is an L3 slave. 1213 * If so, we want to allow the send using the uc_index. 1214 */ 1215 if (ipc.oif != uc_index && 1216 ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk), 1217 uc_index)) { 1218 ipc.oif = uc_index; 1219 } 1220 } 1221 1222 if (connected) 1223 rt = dst_rtable(sk_dst_check(sk, 0)); 1224 1225 if (!rt) { 1226 struct net *net = sock_net(sk); 1227 __u8 flow_flags = inet_sk_flowi_flags(sk); 1228 1229 fl4 = &fl4_stack; 1230 1231 flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos, scope, 1232 sk->sk_protocol, flow_flags, faddr, saddr, 1233 dport, inet->inet_sport, sk->sk_uid); 1234 1235 security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4)); 1236 rt = ip_route_output_flow(net, fl4, sk); 1237 if (IS_ERR(rt)) { 1238 err = PTR_ERR(rt); 1239 rt = NULL; 1240 if (err == -ENETUNREACH) 1241 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 1242 goto out; 1243 } 1244 1245 err = -EACCES; 1246 if ((rt->rt_flags & RTCF_BROADCAST) && 1247 !sock_flag(sk, SOCK_BROADCAST)) 1248 goto out; 1249 if (connected) 1250 sk_dst_set(sk, dst_clone(&rt->dst)); 1251 } 1252 1253 if (msg->msg_flags&MSG_CONFIRM) 1254 goto do_confirm; 1255 back_from_confirm: 1256 1257 saddr = fl4->saddr; 1258 if (!ipc.addr) 1259 daddr = ipc.addr = fl4->daddr; 1260 1261 /* Lockless fast path for the non-corking case. */ 1262 if (!corkreq) { 1263 struct inet_cork cork; 1264 1265 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen, 1266 sizeof(struct udphdr), &ipc, &rt, 1267 &cork, msg->msg_flags); 1268 err = PTR_ERR(skb); 1269 if (!IS_ERR_OR_NULL(skb)) 1270 err = udp_send_skb(skb, fl4, &cork); 1271 goto out; 1272 } 1273 1274 lock_sock(sk); 1275 if (unlikely(up->pending)) { 1276 /* The socket is already corked while preparing it. */ 1277 /* ... which is an evident application bug. --ANK */ 1278 release_sock(sk); 1279 1280 net_dbg_ratelimited("socket already corked\n"); 1281 err = -EINVAL; 1282 goto out; 1283 } 1284 /* 1285 * Now cork the socket to pend data. 1286 */ 1287 fl4 = &inet->cork.fl.u.ip4; 1288 fl4->daddr = daddr; 1289 fl4->saddr = saddr; 1290 fl4->fl4_dport = dport; 1291 fl4->fl4_sport = inet->inet_sport; 1292 WRITE_ONCE(up->pending, AF_INET); 1293 1294 do_append_data: 1295 up->len += ulen; 1296 err = ip_append_data(sk, fl4, getfrag, msg, ulen, 1297 sizeof(struct udphdr), &ipc, &rt, 1298 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags); 1299 if (err) 1300 udp_flush_pending_frames(sk); 1301 else if (!corkreq) 1302 err = udp_push_pending_frames(sk); 1303 else if (unlikely(skb_queue_empty(&sk->sk_write_queue))) 1304 WRITE_ONCE(up->pending, 0); 1305 release_sock(sk); 1306 1307 out: 1308 ip_rt_put(rt); 1309 out_free: 1310 if (free) 1311 kfree(ipc.opt); 1312 if (!err) 1313 return len; 1314 /* 1315 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting 1316 * ENOBUFS might not be good (it's not tunable per se), but otherwise 1317 * we don't have a good statistic (IpOutDiscards but it can be too many 1318 * things). We could add another new stat but at least for now that 1319 * seems like overkill. 1320 */ 1321 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1322 UDP_INC_STATS(sock_net(sk), 1323 UDP_MIB_SNDBUFERRORS, is_udplite); 1324 } 1325 return err; 1326 1327 do_confirm: 1328 if (msg->msg_flags & MSG_PROBE) 1329 dst_confirm_neigh(&rt->dst, &fl4->daddr); 1330 if (!(msg->msg_flags&MSG_PROBE) || len) 1331 goto back_from_confirm; 1332 err = 0; 1333 goto out; 1334 } 1335 EXPORT_SYMBOL(udp_sendmsg); 1336 1337 void udp_splice_eof(struct socket *sock) 1338 { 1339 struct sock *sk = sock->sk; 1340 struct udp_sock *up = udp_sk(sk); 1341 1342 if (!READ_ONCE(up->pending) || udp_test_bit(CORK, sk)) 1343 return; 1344 1345 lock_sock(sk); 1346 if (up->pending && !udp_test_bit(CORK, sk)) 1347 udp_push_pending_frames(sk); 1348 release_sock(sk); 1349 } 1350 EXPORT_SYMBOL_GPL(udp_splice_eof); 1351 1352 #define UDP_SKB_IS_STATELESS 0x80000000 1353 1354 /* all head states (dst, sk, nf conntrack) except skb extensions are 1355 * cleared by udp_rcv(). 1356 * 1357 * We need to preserve secpath, if present, to eventually process 1358 * IP_CMSG_PASSSEC at recvmsg() time. 1359 * 1360 * Other extensions can be cleared. 1361 */ 1362 static bool udp_try_make_stateless(struct sk_buff *skb) 1363 { 1364 if (!skb_has_extensions(skb)) 1365 return true; 1366 1367 if (!secpath_exists(skb)) { 1368 skb_ext_reset(skb); 1369 return true; 1370 } 1371 1372 return false; 1373 } 1374 1375 static void udp_set_dev_scratch(struct sk_buff *skb) 1376 { 1377 struct udp_dev_scratch *scratch = udp_skb_scratch(skb); 1378 1379 BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long)); 1380 scratch->_tsize_state = skb->truesize; 1381 #if BITS_PER_LONG == 64 1382 scratch->len = skb->len; 1383 scratch->csum_unnecessary = !!skb_csum_unnecessary(skb); 1384 scratch->is_linear = !skb_is_nonlinear(skb); 1385 #endif 1386 if (udp_try_make_stateless(skb)) 1387 scratch->_tsize_state |= UDP_SKB_IS_STATELESS; 1388 } 1389 1390 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb) 1391 { 1392 /* We come here after udp_lib_checksum_complete() returned 0. 1393 * This means that __skb_checksum_complete() might have 1394 * set skb->csum_valid to 1. 1395 * On 64bit platforms, we can set csum_unnecessary 1396 * to true, but only if the skb is not shared. 1397 */ 1398 #if BITS_PER_LONG == 64 1399 if (!skb_shared(skb)) 1400 udp_skb_scratch(skb)->csum_unnecessary = true; 1401 #endif 1402 } 1403 1404 static int udp_skb_truesize(struct sk_buff *skb) 1405 { 1406 return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS; 1407 } 1408 1409 static bool udp_skb_has_head_state(struct sk_buff *skb) 1410 { 1411 return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS); 1412 } 1413 1414 /* fully reclaim rmem/fwd memory allocated for skb */ 1415 static void udp_rmem_release(struct sock *sk, int size, int partial, 1416 bool rx_queue_lock_held) 1417 { 1418 struct udp_sock *up = udp_sk(sk); 1419 struct sk_buff_head *sk_queue; 1420 int amt; 1421 1422 if (likely(partial)) { 1423 up->forward_deficit += size; 1424 size = up->forward_deficit; 1425 if (size < READ_ONCE(up->forward_threshold) && 1426 !skb_queue_empty(&up->reader_queue)) 1427 return; 1428 } else { 1429 size += up->forward_deficit; 1430 } 1431 up->forward_deficit = 0; 1432 1433 /* acquire the sk_receive_queue for fwd allocated memory scheduling, 1434 * if the called don't held it already 1435 */ 1436 sk_queue = &sk->sk_receive_queue; 1437 if (!rx_queue_lock_held) 1438 spin_lock(&sk_queue->lock); 1439 1440 1441 sk_forward_alloc_add(sk, size); 1442 amt = (sk->sk_forward_alloc - partial) & ~(PAGE_SIZE - 1); 1443 sk_forward_alloc_add(sk, -amt); 1444 1445 if (amt) 1446 __sk_mem_reduce_allocated(sk, amt >> PAGE_SHIFT); 1447 1448 atomic_sub(size, &sk->sk_rmem_alloc); 1449 1450 /* this can save us from acquiring the rx queue lock on next receive */ 1451 skb_queue_splice_tail_init(sk_queue, &up->reader_queue); 1452 1453 if (!rx_queue_lock_held) 1454 spin_unlock(&sk_queue->lock); 1455 } 1456 1457 /* Note: called with reader_queue.lock held. 1458 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch 1459 * This avoids a cache line miss while receive_queue lock is held. 1460 * Look at __udp_enqueue_schedule_skb() to find where this copy is done. 1461 */ 1462 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb) 1463 { 1464 prefetch(&skb->data); 1465 udp_rmem_release(sk, udp_skb_truesize(skb), 1, false); 1466 } 1467 EXPORT_SYMBOL(udp_skb_destructor); 1468 1469 /* as above, but the caller held the rx queue lock, too */ 1470 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb) 1471 { 1472 prefetch(&skb->data); 1473 udp_rmem_release(sk, udp_skb_truesize(skb), 1, true); 1474 } 1475 1476 /* Idea of busylocks is to let producers grab an extra spinlock 1477 * to relieve pressure on the receive_queue spinlock shared by consumer. 1478 * Under flood, this means that only one producer can be in line 1479 * trying to acquire the receive_queue spinlock. 1480 * These busylock can be allocated on a per cpu manner, instead of a 1481 * per socket one (that would consume a cache line per socket) 1482 */ 1483 static int udp_busylocks_log __read_mostly; 1484 static spinlock_t *udp_busylocks __read_mostly; 1485 1486 static spinlock_t *busylock_acquire(void *ptr) 1487 { 1488 spinlock_t *busy; 1489 1490 busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log); 1491 spin_lock(busy); 1492 return busy; 1493 } 1494 1495 static void busylock_release(spinlock_t *busy) 1496 { 1497 if (busy) 1498 spin_unlock(busy); 1499 } 1500 1501 static int udp_rmem_schedule(struct sock *sk, int size) 1502 { 1503 int delta; 1504 1505 delta = size - sk->sk_forward_alloc; 1506 if (delta > 0 && !__sk_mem_schedule(sk, delta, SK_MEM_RECV)) 1507 return -ENOBUFS; 1508 1509 return 0; 1510 } 1511 1512 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb) 1513 { 1514 struct sk_buff_head *list = &sk->sk_receive_queue; 1515 int rmem, err = -ENOMEM; 1516 spinlock_t *busy = NULL; 1517 bool becomes_readable; 1518 int size, rcvbuf; 1519 1520 /* Immediately drop when the receive queue is full. 1521 * Always allow at least one packet. 1522 */ 1523 rmem = atomic_read(&sk->sk_rmem_alloc); 1524 rcvbuf = READ_ONCE(sk->sk_rcvbuf); 1525 if (rmem > rcvbuf) 1526 goto drop; 1527 1528 /* Under mem pressure, it might be helpful to help udp_recvmsg() 1529 * having linear skbs : 1530 * - Reduce memory overhead and thus increase receive queue capacity 1531 * - Less cache line misses at copyout() time 1532 * - Less work at consume_skb() (less alien page frag freeing) 1533 */ 1534 if (rmem > (rcvbuf >> 1)) { 1535 skb_condense(skb); 1536 1537 busy = busylock_acquire(sk); 1538 } 1539 size = skb->truesize; 1540 udp_set_dev_scratch(skb); 1541 1542 atomic_add(size, &sk->sk_rmem_alloc); 1543 1544 spin_lock(&list->lock); 1545 err = udp_rmem_schedule(sk, size); 1546 if (err) { 1547 spin_unlock(&list->lock); 1548 goto uncharge_drop; 1549 } 1550 1551 sk_forward_alloc_add(sk, -size); 1552 1553 /* no need to setup a destructor, we will explicitly release the 1554 * forward allocated memory on dequeue 1555 */ 1556 sock_skb_set_dropcount(sk, skb); 1557 1558 becomes_readable = skb_queue_empty(list); 1559 __skb_queue_tail(list, skb); 1560 spin_unlock(&list->lock); 1561 1562 if (!sock_flag(sk, SOCK_DEAD)) { 1563 if (becomes_readable || 1564 sk->sk_data_ready != sock_def_readable || 1565 READ_ONCE(sk->sk_peek_off) >= 0) 1566 INDIRECT_CALL_1(sk->sk_data_ready, 1567 sock_def_readable, sk); 1568 else 1569 sk_wake_async_rcu(sk, SOCK_WAKE_WAITD, POLL_IN); 1570 } 1571 busylock_release(busy); 1572 return 0; 1573 1574 uncharge_drop: 1575 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 1576 1577 drop: 1578 atomic_inc(&sk->sk_drops); 1579 busylock_release(busy); 1580 return err; 1581 } 1582 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb); 1583 1584 void udp_destruct_common(struct sock *sk) 1585 { 1586 /* reclaim completely the forward allocated memory */ 1587 struct udp_sock *up = udp_sk(sk); 1588 unsigned int total = 0; 1589 struct sk_buff *skb; 1590 1591 skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue); 1592 while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) { 1593 total += skb->truesize; 1594 kfree_skb(skb); 1595 } 1596 udp_rmem_release(sk, total, 0, true); 1597 } 1598 EXPORT_SYMBOL_GPL(udp_destruct_common); 1599 1600 static void udp_destruct_sock(struct sock *sk) 1601 { 1602 udp_destruct_common(sk); 1603 inet_sock_destruct(sk); 1604 } 1605 1606 int udp_init_sock(struct sock *sk) 1607 { 1608 udp_lib_init_sock(sk); 1609 sk->sk_destruct = udp_destruct_sock; 1610 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); 1611 return 0; 1612 } 1613 1614 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len) 1615 { 1616 if (unlikely(READ_ONCE(udp_sk(sk)->peeking_with_offset))) 1617 sk_peek_offset_bwd(sk, len); 1618 1619 if (!skb_unref(skb)) 1620 return; 1621 1622 /* In the more common cases we cleared the head states previously, 1623 * see __udp_queue_rcv_skb(). 1624 */ 1625 if (unlikely(udp_skb_has_head_state(skb))) 1626 skb_release_head_state(skb); 1627 __consume_stateless_skb(skb); 1628 } 1629 EXPORT_SYMBOL_GPL(skb_consume_udp); 1630 1631 static struct sk_buff *__first_packet_length(struct sock *sk, 1632 struct sk_buff_head *rcvq, 1633 int *total) 1634 { 1635 struct sk_buff *skb; 1636 1637 while ((skb = skb_peek(rcvq)) != NULL) { 1638 if (udp_lib_checksum_complete(skb)) { 1639 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, 1640 IS_UDPLITE(sk)); 1641 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, 1642 IS_UDPLITE(sk)); 1643 atomic_inc(&sk->sk_drops); 1644 __skb_unlink(skb, rcvq); 1645 *total += skb->truesize; 1646 kfree_skb(skb); 1647 } else { 1648 udp_skb_csum_unnecessary_set(skb); 1649 break; 1650 } 1651 } 1652 return skb; 1653 } 1654 1655 /** 1656 * first_packet_length - return length of first packet in receive queue 1657 * @sk: socket 1658 * 1659 * Drops all bad checksum frames, until a valid one is found. 1660 * Returns the length of found skb, or -1 if none is found. 1661 */ 1662 static int first_packet_length(struct sock *sk) 1663 { 1664 struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue; 1665 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1666 struct sk_buff *skb; 1667 int total = 0; 1668 int res; 1669 1670 spin_lock_bh(&rcvq->lock); 1671 skb = __first_packet_length(sk, rcvq, &total); 1672 if (!skb && !skb_queue_empty_lockless(sk_queue)) { 1673 spin_lock(&sk_queue->lock); 1674 skb_queue_splice_tail_init(sk_queue, rcvq); 1675 spin_unlock(&sk_queue->lock); 1676 1677 skb = __first_packet_length(sk, rcvq, &total); 1678 } 1679 res = skb ? skb->len : -1; 1680 if (total) 1681 udp_rmem_release(sk, total, 1, false); 1682 spin_unlock_bh(&rcvq->lock); 1683 return res; 1684 } 1685 1686 /* 1687 * IOCTL requests applicable to the UDP protocol 1688 */ 1689 1690 int udp_ioctl(struct sock *sk, int cmd, int *karg) 1691 { 1692 switch (cmd) { 1693 case SIOCOUTQ: 1694 { 1695 *karg = sk_wmem_alloc_get(sk); 1696 return 0; 1697 } 1698 1699 case SIOCINQ: 1700 { 1701 *karg = max_t(int, 0, first_packet_length(sk)); 1702 return 0; 1703 } 1704 1705 default: 1706 return -ENOIOCTLCMD; 1707 } 1708 1709 return 0; 1710 } 1711 EXPORT_SYMBOL(udp_ioctl); 1712 1713 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags, 1714 int *off, int *err) 1715 { 1716 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1717 struct sk_buff_head *queue; 1718 struct sk_buff *last; 1719 long timeo; 1720 int error; 1721 1722 queue = &udp_sk(sk)->reader_queue; 1723 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1724 do { 1725 struct sk_buff *skb; 1726 1727 error = sock_error(sk); 1728 if (error) 1729 break; 1730 1731 error = -EAGAIN; 1732 do { 1733 spin_lock_bh(&queue->lock); 1734 skb = __skb_try_recv_from_queue(sk, queue, flags, off, 1735 err, &last); 1736 if (skb) { 1737 if (!(flags & MSG_PEEK)) 1738 udp_skb_destructor(sk, skb); 1739 spin_unlock_bh(&queue->lock); 1740 return skb; 1741 } 1742 1743 if (skb_queue_empty_lockless(sk_queue)) { 1744 spin_unlock_bh(&queue->lock); 1745 goto busy_check; 1746 } 1747 1748 /* refill the reader queue and walk it again 1749 * keep both queues locked to avoid re-acquiring 1750 * the sk_receive_queue lock if fwd memory scheduling 1751 * is needed. 1752 */ 1753 spin_lock(&sk_queue->lock); 1754 skb_queue_splice_tail_init(sk_queue, queue); 1755 1756 skb = __skb_try_recv_from_queue(sk, queue, flags, off, 1757 err, &last); 1758 if (skb && !(flags & MSG_PEEK)) 1759 udp_skb_dtor_locked(sk, skb); 1760 spin_unlock(&sk_queue->lock); 1761 spin_unlock_bh(&queue->lock); 1762 if (skb) 1763 return skb; 1764 1765 busy_check: 1766 if (!sk_can_busy_loop(sk)) 1767 break; 1768 1769 sk_busy_loop(sk, flags & MSG_DONTWAIT); 1770 } while (!skb_queue_empty_lockless(sk_queue)); 1771 1772 /* sk_queue is empty, reader_queue may contain peeked packets */ 1773 } while (timeo && 1774 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue, 1775 &error, &timeo, 1776 (struct sk_buff *)sk_queue)); 1777 1778 *err = error; 1779 return NULL; 1780 } 1781 EXPORT_SYMBOL(__skb_recv_udp); 1782 1783 int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor) 1784 { 1785 struct sk_buff *skb; 1786 int err; 1787 1788 try_again: 1789 skb = skb_recv_udp(sk, MSG_DONTWAIT, &err); 1790 if (!skb) 1791 return err; 1792 1793 if (udp_lib_checksum_complete(skb)) { 1794 int is_udplite = IS_UDPLITE(sk); 1795 struct net *net = sock_net(sk); 1796 1797 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, is_udplite); 1798 __UDP_INC_STATS(net, UDP_MIB_INERRORS, is_udplite); 1799 atomic_inc(&sk->sk_drops); 1800 kfree_skb(skb); 1801 goto try_again; 1802 } 1803 1804 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk)); 1805 return recv_actor(sk, skb); 1806 } 1807 EXPORT_SYMBOL(udp_read_skb); 1808 1809 /* 1810 * This should be easy, if there is something there we 1811 * return it, otherwise we block. 1812 */ 1813 1814 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, 1815 int *addr_len) 1816 { 1817 struct inet_sock *inet = inet_sk(sk); 1818 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name); 1819 struct sk_buff *skb; 1820 unsigned int ulen, copied; 1821 int off, err, peeking = flags & MSG_PEEK; 1822 int is_udplite = IS_UDPLITE(sk); 1823 bool checksum_valid = false; 1824 1825 if (flags & MSG_ERRQUEUE) 1826 return ip_recv_error(sk, msg, len, addr_len); 1827 1828 try_again: 1829 off = sk_peek_offset(sk, flags); 1830 skb = __skb_recv_udp(sk, flags, &off, &err); 1831 if (!skb) 1832 return err; 1833 1834 ulen = udp_skb_len(skb); 1835 copied = len; 1836 if (copied > ulen - off) 1837 copied = ulen - off; 1838 else if (copied < ulen) 1839 msg->msg_flags |= MSG_TRUNC; 1840 1841 /* 1842 * If checksum is needed at all, try to do it while copying the 1843 * data. If the data is truncated, or if we only want a partial 1844 * coverage checksum (UDP-Lite), do it before the copy. 1845 */ 1846 1847 if (copied < ulen || peeking || 1848 (is_udplite && UDP_SKB_CB(skb)->partial_cov)) { 1849 checksum_valid = udp_skb_csum_unnecessary(skb) || 1850 !__udp_lib_checksum_complete(skb); 1851 if (!checksum_valid) 1852 goto csum_copy_err; 1853 } 1854 1855 if (checksum_valid || udp_skb_csum_unnecessary(skb)) { 1856 if (udp_skb_is_linear(skb)) 1857 err = copy_linear_skb(skb, copied, off, &msg->msg_iter); 1858 else 1859 err = skb_copy_datagram_msg(skb, off, msg, copied); 1860 } else { 1861 err = skb_copy_and_csum_datagram_msg(skb, off, msg); 1862 1863 if (err == -EINVAL) 1864 goto csum_copy_err; 1865 } 1866 1867 if (unlikely(err)) { 1868 if (!peeking) { 1869 atomic_inc(&sk->sk_drops); 1870 UDP_INC_STATS(sock_net(sk), 1871 UDP_MIB_INERRORS, is_udplite); 1872 } 1873 kfree_skb(skb); 1874 return err; 1875 } 1876 1877 if (!peeking) 1878 UDP_INC_STATS(sock_net(sk), 1879 UDP_MIB_INDATAGRAMS, is_udplite); 1880 1881 sock_recv_cmsgs(msg, sk, skb); 1882 1883 /* Copy the address. */ 1884 if (sin) { 1885 sin->sin_family = AF_INET; 1886 sin->sin_port = udp_hdr(skb)->source; 1887 sin->sin_addr.s_addr = ip_hdr(skb)->saddr; 1888 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 1889 *addr_len = sizeof(*sin); 1890 1891 BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk, 1892 (struct sockaddr *)sin, 1893 addr_len); 1894 } 1895 1896 if (udp_test_bit(GRO_ENABLED, sk)) 1897 udp_cmsg_recv(msg, sk, skb); 1898 1899 if (inet_cmsg_flags(inet)) 1900 ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off); 1901 1902 err = copied; 1903 if (flags & MSG_TRUNC) 1904 err = ulen; 1905 1906 skb_consume_udp(sk, skb, peeking ? -err : err); 1907 return err; 1908 1909 csum_copy_err: 1910 if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags, 1911 udp_skb_destructor)) { 1912 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 1913 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1914 } 1915 kfree_skb(skb); 1916 1917 /* starting over for a new packet, but check if we need to yield */ 1918 cond_resched(); 1919 msg->msg_flags &= ~MSG_TRUNC; 1920 goto try_again; 1921 } 1922 1923 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 1924 { 1925 /* This check is replicated from __ip4_datagram_connect() and 1926 * intended to prevent BPF program called below from accessing bytes 1927 * that are out of the bound specified by user in addr_len. 1928 */ 1929 if (addr_len < sizeof(struct sockaddr_in)) 1930 return -EINVAL; 1931 1932 return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr, &addr_len); 1933 } 1934 EXPORT_SYMBOL(udp_pre_connect); 1935 1936 int __udp_disconnect(struct sock *sk, int flags) 1937 { 1938 struct inet_sock *inet = inet_sk(sk); 1939 /* 1940 * 1003.1g - break association. 1941 */ 1942 1943 sk->sk_state = TCP_CLOSE; 1944 inet->inet_daddr = 0; 1945 inet->inet_dport = 0; 1946 sock_rps_reset_rxhash(sk); 1947 sk->sk_bound_dev_if = 0; 1948 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) { 1949 inet_reset_saddr(sk); 1950 if (sk->sk_prot->rehash && 1951 (sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 1952 sk->sk_prot->rehash(sk); 1953 } 1954 1955 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) { 1956 sk->sk_prot->unhash(sk); 1957 inet->inet_sport = 0; 1958 } 1959 sk_dst_reset(sk); 1960 return 0; 1961 } 1962 EXPORT_SYMBOL(__udp_disconnect); 1963 1964 int udp_disconnect(struct sock *sk, int flags) 1965 { 1966 lock_sock(sk); 1967 __udp_disconnect(sk, flags); 1968 release_sock(sk); 1969 return 0; 1970 } 1971 EXPORT_SYMBOL(udp_disconnect); 1972 1973 void udp_lib_unhash(struct sock *sk) 1974 { 1975 if (sk_hashed(sk)) { 1976 struct udp_table *udptable = udp_get_table_prot(sk); 1977 struct udp_hslot *hslot, *hslot2; 1978 1979 hslot = udp_hashslot(udptable, sock_net(sk), 1980 udp_sk(sk)->udp_port_hash); 1981 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1982 1983 spin_lock_bh(&hslot->lock); 1984 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1985 reuseport_detach_sock(sk); 1986 if (sk_del_node_init_rcu(sk)) { 1987 hslot->count--; 1988 inet_sk(sk)->inet_num = 0; 1989 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 1990 1991 spin_lock(&hslot2->lock); 1992 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 1993 hslot2->count--; 1994 spin_unlock(&hslot2->lock); 1995 } 1996 spin_unlock_bh(&hslot->lock); 1997 } 1998 } 1999 EXPORT_SYMBOL(udp_lib_unhash); 2000 2001 /* 2002 * inet_rcv_saddr was changed, we must rehash secondary hash 2003 */ 2004 void udp_lib_rehash(struct sock *sk, u16 newhash) 2005 { 2006 if (sk_hashed(sk)) { 2007 struct udp_table *udptable = udp_get_table_prot(sk); 2008 struct udp_hslot *hslot, *hslot2, *nhslot2; 2009 2010 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 2011 nhslot2 = udp_hashslot2(udptable, newhash); 2012 udp_sk(sk)->udp_portaddr_hash = newhash; 2013 2014 if (hslot2 != nhslot2 || 2015 rcu_access_pointer(sk->sk_reuseport_cb)) { 2016 hslot = udp_hashslot(udptable, sock_net(sk), 2017 udp_sk(sk)->udp_port_hash); 2018 /* we must lock primary chain too */ 2019 spin_lock_bh(&hslot->lock); 2020 if (rcu_access_pointer(sk->sk_reuseport_cb)) 2021 reuseport_detach_sock(sk); 2022 2023 if (hslot2 != nhslot2) { 2024 spin_lock(&hslot2->lock); 2025 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 2026 hslot2->count--; 2027 spin_unlock(&hslot2->lock); 2028 2029 spin_lock(&nhslot2->lock); 2030 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 2031 &nhslot2->head); 2032 nhslot2->count++; 2033 spin_unlock(&nhslot2->lock); 2034 } 2035 2036 spin_unlock_bh(&hslot->lock); 2037 } 2038 } 2039 } 2040 EXPORT_SYMBOL(udp_lib_rehash); 2041 2042 void udp_v4_rehash(struct sock *sk) 2043 { 2044 u16 new_hash = ipv4_portaddr_hash(sock_net(sk), 2045 inet_sk(sk)->inet_rcv_saddr, 2046 inet_sk(sk)->inet_num); 2047 udp_lib_rehash(sk, new_hash); 2048 } 2049 2050 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 2051 { 2052 int rc; 2053 2054 if (inet_sk(sk)->inet_daddr) { 2055 sock_rps_save_rxhash(sk, skb); 2056 sk_mark_napi_id(sk, skb); 2057 sk_incoming_cpu_update(sk); 2058 } else { 2059 sk_mark_napi_id_once(sk, skb); 2060 } 2061 2062 rc = __udp_enqueue_schedule_skb(sk, skb); 2063 if (rc < 0) { 2064 int is_udplite = IS_UDPLITE(sk); 2065 int drop_reason; 2066 2067 /* Note that an ENOMEM error is charged twice */ 2068 if (rc == -ENOMEM) { 2069 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS, 2070 is_udplite); 2071 drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF; 2072 } else { 2073 UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS, 2074 is_udplite); 2075 drop_reason = SKB_DROP_REASON_PROTO_MEM; 2076 } 2077 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 2078 trace_udp_fail_queue_rcv_skb(rc, sk, skb); 2079 sk_skb_reason_drop(sk, skb, drop_reason); 2080 return -1; 2081 } 2082 2083 return 0; 2084 } 2085 2086 /* returns: 2087 * -1: error 2088 * 0: success 2089 * >0: "udp encap" protocol resubmission 2090 * 2091 * Note that in the success and error cases, the skb is assumed to 2092 * have either been requeued or freed. 2093 */ 2094 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb) 2095 { 2096 int drop_reason = SKB_DROP_REASON_NOT_SPECIFIED; 2097 struct udp_sock *up = udp_sk(sk); 2098 int is_udplite = IS_UDPLITE(sk); 2099 2100 /* 2101 * Charge it to the socket, dropping if the queue is full. 2102 */ 2103 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) { 2104 drop_reason = SKB_DROP_REASON_XFRM_POLICY; 2105 goto drop; 2106 } 2107 nf_reset_ct(skb); 2108 2109 if (static_branch_unlikely(&udp_encap_needed_key) && 2110 READ_ONCE(up->encap_type)) { 2111 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb); 2112 2113 /* 2114 * This is an encapsulation socket so pass the skb to 2115 * the socket's udp_encap_rcv() hook. Otherwise, just 2116 * fall through and pass this up the UDP socket. 2117 * up->encap_rcv() returns the following value: 2118 * =0 if skb was successfully passed to the encap 2119 * handler or was discarded by it. 2120 * >0 if skb should be passed on to UDP. 2121 * <0 if skb should be resubmitted as proto -N 2122 */ 2123 2124 /* if we're overly short, let UDP handle it */ 2125 encap_rcv = READ_ONCE(up->encap_rcv); 2126 if (encap_rcv) { 2127 int ret; 2128 2129 /* Verify checksum before giving to encap */ 2130 if (udp_lib_checksum_complete(skb)) 2131 goto csum_error; 2132 2133 ret = encap_rcv(sk, skb); 2134 if (ret <= 0) { 2135 __UDP_INC_STATS(sock_net(sk), 2136 UDP_MIB_INDATAGRAMS, 2137 is_udplite); 2138 return -ret; 2139 } 2140 } 2141 2142 /* FALLTHROUGH -- it's a UDP Packet */ 2143 } 2144 2145 /* 2146 * UDP-Lite specific tests, ignored on UDP sockets 2147 */ 2148 if (udp_test_bit(UDPLITE_RECV_CC, sk) && UDP_SKB_CB(skb)->partial_cov) { 2149 u16 pcrlen = READ_ONCE(up->pcrlen); 2150 2151 /* 2152 * MIB statistics other than incrementing the error count are 2153 * disabled for the following two types of errors: these depend 2154 * on the application settings, not on the functioning of the 2155 * protocol stack as such. 2156 * 2157 * RFC 3828 here recommends (sec 3.3): "There should also be a 2158 * way ... to ... at least let the receiving application block 2159 * delivery of packets with coverage values less than a value 2160 * provided by the application." 2161 */ 2162 if (pcrlen == 0) { /* full coverage was set */ 2163 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n", 2164 UDP_SKB_CB(skb)->cscov, skb->len); 2165 goto drop; 2166 } 2167 /* The next case involves violating the min. coverage requested 2168 * by the receiver. This is subtle: if receiver wants x and x is 2169 * greater than the buffersize/MTU then receiver will complain 2170 * that it wants x while sender emits packets of smaller size y. 2171 * Therefore the above ...()->partial_cov statement is essential. 2172 */ 2173 if (UDP_SKB_CB(skb)->cscov < pcrlen) { 2174 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n", 2175 UDP_SKB_CB(skb)->cscov, pcrlen); 2176 goto drop; 2177 } 2178 } 2179 2180 prefetch(&sk->sk_rmem_alloc); 2181 if (rcu_access_pointer(sk->sk_filter) && 2182 udp_lib_checksum_complete(skb)) 2183 goto csum_error; 2184 2185 if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) { 2186 drop_reason = SKB_DROP_REASON_SOCKET_FILTER; 2187 goto drop; 2188 } 2189 2190 udp_csum_pull_header(skb); 2191 2192 ipv4_pktinfo_prepare(sk, skb, true); 2193 return __udp_queue_rcv_skb(sk, skb); 2194 2195 csum_error: 2196 drop_reason = SKB_DROP_REASON_UDP_CSUM; 2197 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 2198 drop: 2199 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 2200 atomic_inc(&sk->sk_drops); 2201 sk_skb_reason_drop(sk, skb, drop_reason); 2202 return -1; 2203 } 2204 2205 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 2206 { 2207 struct sk_buff *next, *segs; 2208 int ret; 2209 2210 if (likely(!udp_unexpected_gso(sk, skb))) 2211 return udp_queue_rcv_one_skb(sk, skb); 2212 2213 BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET); 2214 __skb_push(skb, -skb_mac_offset(skb)); 2215 segs = udp_rcv_segment(sk, skb, true); 2216 skb_list_walk_safe(segs, skb, next) { 2217 __skb_pull(skb, skb_transport_offset(skb)); 2218 2219 udp_post_segment_fix_csum(skb); 2220 ret = udp_queue_rcv_one_skb(sk, skb); 2221 if (ret > 0) 2222 ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret); 2223 } 2224 return 0; 2225 } 2226 2227 /* For TCP sockets, sk_rx_dst is protected by socket lock 2228 * For UDP, we use xchg() to guard against concurrent changes. 2229 */ 2230 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst) 2231 { 2232 struct dst_entry *old; 2233 2234 if (dst_hold_safe(dst)) { 2235 old = unrcu_pointer(xchg(&sk->sk_rx_dst, RCU_INITIALIZER(dst))); 2236 dst_release(old); 2237 return old != dst; 2238 } 2239 return false; 2240 } 2241 EXPORT_SYMBOL(udp_sk_rx_dst_set); 2242 2243 /* 2244 * Multicasts and broadcasts go to each listener. 2245 * 2246 * Note: called only from the BH handler context. 2247 */ 2248 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb, 2249 struct udphdr *uh, 2250 __be32 saddr, __be32 daddr, 2251 struct udp_table *udptable, 2252 int proto) 2253 { 2254 struct sock *sk, *first = NULL; 2255 unsigned short hnum = ntohs(uh->dest); 2256 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum); 2257 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10); 2258 unsigned int offset = offsetof(typeof(*sk), sk_node); 2259 int dif = skb->dev->ifindex; 2260 int sdif = inet_sdif(skb); 2261 struct hlist_node *node; 2262 struct sk_buff *nskb; 2263 2264 if (use_hash2) { 2265 hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) & 2266 udptable->mask; 2267 hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask; 2268 start_lookup: 2269 hslot = &udptable->hash2[hash2]; 2270 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node); 2271 } 2272 2273 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) { 2274 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr, 2275 uh->source, saddr, dif, sdif, hnum)) 2276 continue; 2277 2278 if (!first) { 2279 first = sk; 2280 continue; 2281 } 2282 nskb = skb_clone(skb, GFP_ATOMIC); 2283 2284 if (unlikely(!nskb)) { 2285 atomic_inc(&sk->sk_drops); 2286 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS, 2287 IS_UDPLITE(sk)); 2288 __UDP_INC_STATS(net, UDP_MIB_INERRORS, 2289 IS_UDPLITE(sk)); 2290 continue; 2291 } 2292 if (udp_queue_rcv_skb(sk, nskb) > 0) 2293 consume_skb(nskb); 2294 } 2295 2296 /* Also lookup *:port if we are using hash2 and haven't done so yet. */ 2297 if (use_hash2 && hash2 != hash2_any) { 2298 hash2 = hash2_any; 2299 goto start_lookup; 2300 } 2301 2302 if (first) { 2303 if (udp_queue_rcv_skb(first, skb) > 0) 2304 consume_skb(skb); 2305 } else { 2306 kfree_skb(skb); 2307 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI, 2308 proto == IPPROTO_UDPLITE); 2309 } 2310 return 0; 2311 } 2312 2313 /* Initialize UDP checksum. If exited with zero value (success), 2314 * CHECKSUM_UNNECESSARY means, that no more checks are required. 2315 * Otherwise, csum completion requires checksumming packet body, 2316 * including udp header and folding it to skb->csum. 2317 */ 2318 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh, 2319 int proto) 2320 { 2321 int err; 2322 2323 UDP_SKB_CB(skb)->partial_cov = 0; 2324 UDP_SKB_CB(skb)->cscov = skb->len; 2325 2326 if (proto == IPPROTO_UDPLITE) { 2327 err = udplite_checksum_init(skb, uh); 2328 if (err) 2329 return err; 2330 2331 if (UDP_SKB_CB(skb)->partial_cov) { 2332 skb->csum = inet_compute_pseudo(skb, proto); 2333 return 0; 2334 } 2335 } 2336 2337 /* Note, we are only interested in != 0 or == 0, thus the 2338 * force to int. 2339 */ 2340 err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check, 2341 inet_compute_pseudo); 2342 if (err) 2343 return err; 2344 2345 if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) { 2346 /* If SW calculated the value, we know it's bad */ 2347 if (skb->csum_complete_sw) 2348 return 1; 2349 2350 /* HW says the value is bad. Let's validate that. 2351 * skb->csum is no longer the full packet checksum, 2352 * so don't treat it as such. 2353 */ 2354 skb_checksum_complete_unset(skb); 2355 } 2356 2357 return 0; 2358 } 2359 2360 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and 2361 * return code conversion for ip layer consumption 2362 */ 2363 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb, 2364 struct udphdr *uh) 2365 { 2366 int ret; 2367 2368 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk)) 2369 skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo); 2370 2371 ret = udp_queue_rcv_skb(sk, skb); 2372 2373 /* a return value > 0 means to resubmit the input, but 2374 * it wants the return to be -protocol, or 0 2375 */ 2376 if (ret > 0) 2377 return -ret; 2378 return 0; 2379 } 2380 2381 /* 2382 * All we need to do is get the socket, and then do a checksum. 2383 */ 2384 2385 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable, 2386 int proto) 2387 { 2388 struct sock *sk = NULL; 2389 struct udphdr *uh; 2390 unsigned short ulen; 2391 struct rtable *rt = skb_rtable(skb); 2392 __be32 saddr, daddr; 2393 struct net *net = dev_net(skb->dev); 2394 bool refcounted; 2395 int drop_reason; 2396 2397 drop_reason = SKB_DROP_REASON_NOT_SPECIFIED; 2398 2399 /* 2400 * Validate the packet. 2401 */ 2402 if (!pskb_may_pull(skb, sizeof(struct udphdr))) 2403 goto drop; /* No space for header. */ 2404 2405 uh = udp_hdr(skb); 2406 ulen = ntohs(uh->len); 2407 saddr = ip_hdr(skb)->saddr; 2408 daddr = ip_hdr(skb)->daddr; 2409 2410 if (ulen > skb->len) 2411 goto short_packet; 2412 2413 if (proto == IPPROTO_UDP) { 2414 /* UDP validates ulen. */ 2415 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen)) 2416 goto short_packet; 2417 uh = udp_hdr(skb); 2418 } 2419 2420 if (udp4_csum_init(skb, uh, proto)) 2421 goto csum_error; 2422 2423 sk = inet_steal_sock(net, skb, sizeof(struct udphdr), saddr, uh->source, daddr, uh->dest, 2424 &refcounted, udp_ehashfn); 2425 if (IS_ERR(sk)) 2426 goto no_sk; 2427 2428 if (sk) { 2429 struct dst_entry *dst = skb_dst(skb); 2430 int ret; 2431 2432 if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst)) 2433 udp_sk_rx_dst_set(sk, dst); 2434 2435 ret = udp_unicast_rcv_skb(sk, skb, uh); 2436 if (refcounted) 2437 sock_put(sk); 2438 return ret; 2439 } 2440 2441 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST)) 2442 return __udp4_lib_mcast_deliver(net, skb, uh, 2443 saddr, daddr, udptable, proto); 2444 2445 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable); 2446 if (sk) 2447 return udp_unicast_rcv_skb(sk, skb, uh); 2448 no_sk: 2449 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 2450 goto drop; 2451 nf_reset_ct(skb); 2452 2453 /* No socket. Drop packet silently, if checksum is wrong */ 2454 if (udp_lib_checksum_complete(skb)) 2455 goto csum_error; 2456 2457 drop_reason = SKB_DROP_REASON_NO_SOCKET; 2458 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE); 2459 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0); 2460 2461 /* 2462 * Hmm. We got an UDP packet to a port to which we 2463 * don't wanna listen. Ignore it. 2464 */ 2465 sk_skb_reason_drop(sk, skb, drop_reason); 2466 return 0; 2467 2468 short_packet: 2469 drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL; 2470 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n", 2471 proto == IPPROTO_UDPLITE ? "Lite" : "", 2472 &saddr, ntohs(uh->source), 2473 ulen, skb->len, 2474 &daddr, ntohs(uh->dest)); 2475 goto drop; 2476 2477 csum_error: 2478 /* 2479 * RFC1122: OK. Discards the bad packet silently (as far as 2480 * the network is concerned, anyway) as per 4.1.3.4 (MUST). 2481 */ 2482 drop_reason = SKB_DROP_REASON_UDP_CSUM; 2483 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n", 2484 proto == IPPROTO_UDPLITE ? "Lite" : "", 2485 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest), 2486 ulen); 2487 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE); 2488 drop: 2489 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE); 2490 sk_skb_reason_drop(sk, skb, drop_reason); 2491 return 0; 2492 } 2493 2494 /* We can only early demux multicast if there is a single matching socket. 2495 * If more than one socket found returns NULL 2496 */ 2497 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net, 2498 __be16 loc_port, __be32 loc_addr, 2499 __be16 rmt_port, __be32 rmt_addr, 2500 int dif, int sdif) 2501 { 2502 struct udp_table *udptable = net->ipv4.udp_table; 2503 unsigned short hnum = ntohs(loc_port); 2504 struct sock *sk, *result; 2505 struct udp_hslot *hslot; 2506 unsigned int slot; 2507 2508 slot = udp_hashfn(net, hnum, udptable->mask); 2509 hslot = &udptable->hash[slot]; 2510 2511 /* Do not bother scanning a too big list */ 2512 if (hslot->count > 10) 2513 return NULL; 2514 2515 result = NULL; 2516 sk_for_each_rcu(sk, &hslot->head) { 2517 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr, 2518 rmt_port, rmt_addr, dif, sdif, hnum)) { 2519 if (result) 2520 return NULL; 2521 result = sk; 2522 } 2523 } 2524 2525 return result; 2526 } 2527 2528 /* For unicast we should only early demux connected sockets or we can 2529 * break forwarding setups. The chains here can be long so only check 2530 * if the first socket is an exact match and if not move on. 2531 */ 2532 static struct sock *__udp4_lib_demux_lookup(struct net *net, 2533 __be16 loc_port, __be32 loc_addr, 2534 __be16 rmt_port, __be32 rmt_addr, 2535 int dif, int sdif) 2536 { 2537 struct udp_table *udptable = net->ipv4.udp_table; 2538 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr); 2539 unsigned short hnum = ntohs(loc_port); 2540 unsigned int hash2, slot2; 2541 struct udp_hslot *hslot2; 2542 __portpair ports; 2543 struct sock *sk; 2544 2545 hash2 = ipv4_portaddr_hash(net, loc_addr, hnum); 2546 slot2 = hash2 & udptable->mask; 2547 hslot2 = &udptable->hash2[slot2]; 2548 ports = INET_COMBINED_PORTS(rmt_port, hnum); 2549 2550 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 2551 if (inet_match(net, sk, acookie, ports, dif, sdif)) 2552 return sk; 2553 /* Only check first socket in chain */ 2554 break; 2555 } 2556 return NULL; 2557 } 2558 2559 int udp_v4_early_demux(struct sk_buff *skb) 2560 { 2561 struct net *net = dev_net(skb->dev); 2562 struct in_device *in_dev = NULL; 2563 const struct iphdr *iph; 2564 const struct udphdr *uh; 2565 struct sock *sk = NULL; 2566 struct dst_entry *dst; 2567 int dif = skb->dev->ifindex; 2568 int sdif = inet_sdif(skb); 2569 int ours; 2570 2571 /* validate the packet */ 2572 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr))) 2573 return 0; 2574 2575 iph = ip_hdr(skb); 2576 uh = udp_hdr(skb); 2577 2578 if (skb->pkt_type == PACKET_MULTICAST) { 2579 in_dev = __in_dev_get_rcu(skb->dev); 2580 2581 if (!in_dev) 2582 return 0; 2583 2584 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr, 2585 iph->protocol); 2586 if (!ours) 2587 return 0; 2588 2589 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr, 2590 uh->source, iph->saddr, 2591 dif, sdif); 2592 } else if (skb->pkt_type == PACKET_HOST) { 2593 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr, 2594 uh->source, iph->saddr, dif, sdif); 2595 } 2596 2597 if (!sk) 2598 return 0; 2599 2600 skb->sk = sk; 2601 DEBUG_NET_WARN_ON_ONCE(sk_is_refcounted(sk)); 2602 skb->destructor = sock_pfree; 2603 dst = rcu_dereference(sk->sk_rx_dst); 2604 2605 if (dst) 2606 dst = dst_check(dst, 0); 2607 if (dst) { 2608 u32 itag = 0; 2609 2610 /* set noref for now. 2611 * any place which wants to hold dst has to call 2612 * dst_hold_safe() 2613 */ 2614 skb_dst_set_noref(skb, dst); 2615 2616 /* for unconnected multicast sockets we need to validate 2617 * the source on each packet 2618 */ 2619 if (!inet_sk(sk)->inet_daddr && in_dev) 2620 return ip_mc_validate_source(skb, iph->daddr, 2621 iph->saddr, 2622 iph->tos & INET_DSCP_MASK, 2623 skb->dev, in_dev, &itag); 2624 } 2625 return 0; 2626 } 2627 2628 int udp_rcv(struct sk_buff *skb) 2629 { 2630 return __udp4_lib_rcv(skb, dev_net(skb->dev)->ipv4.udp_table, IPPROTO_UDP); 2631 } 2632 2633 void udp_destroy_sock(struct sock *sk) 2634 { 2635 struct udp_sock *up = udp_sk(sk); 2636 bool slow = lock_sock_fast(sk); 2637 2638 /* protects from races with udp_abort() */ 2639 sock_set_flag(sk, SOCK_DEAD); 2640 udp_flush_pending_frames(sk); 2641 unlock_sock_fast(sk, slow); 2642 if (static_branch_unlikely(&udp_encap_needed_key)) { 2643 if (up->encap_type) { 2644 void (*encap_destroy)(struct sock *sk); 2645 encap_destroy = READ_ONCE(up->encap_destroy); 2646 if (encap_destroy) 2647 encap_destroy(sk); 2648 } 2649 if (udp_test_bit(ENCAP_ENABLED, sk)) 2650 static_branch_dec(&udp_encap_needed_key); 2651 } 2652 } 2653 2654 static void set_xfrm_gro_udp_encap_rcv(__u16 encap_type, unsigned short family, 2655 struct sock *sk) 2656 { 2657 #ifdef CONFIG_XFRM 2658 if (udp_test_bit(GRO_ENABLED, sk) && encap_type == UDP_ENCAP_ESPINUDP) { 2659 if (family == AF_INET) 2660 WRITE_ONCE(udp_sk(sk)->gro_receive, xfrm4_gro_udp_encap_rcv); 2661 else if (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6) 2662 WRITE_ONCE(udp_sk(sk)->gro_receive, ipv6_stub->xfrm6_gro_udp_encap_rcv); 2663 } 2664 #endif 2665 } 2666 2667 /* 2668 * Socket option code for UDP 2669 */ 2670 int udp_lib_setsockopt(struct sock *sk, int level, int optname, 2671 sockptr_t optval, unsigned int optlen, 2672 int (*push_pending_frames)(struct sock *)) 2673 { 2674 struct udp_sock *up = udp_sk(sk); 2675 int val, valbool; 2676 int err = 0; 2677 int is_udplite = IS_UDPLITE(sk); 2678 2679 if (level == SOL_SOCKET) { 2680 err = sk_setsockopt(sk, level, optname, optval, optlen); 2681 2682 if (optname == SO_RCVBUF || optname == SO_RCVBUFFORCE) { 2683 sockopt_lock_sock(sk); 2684 /* paired with READ_ONCE in udp_rmem_release() */ 2685 WRITE_ONCE(up->forward_threshold, sk->sk_rcvbuf >> 2); 2686 sockopt_release_sock(sk); 2687 } 2688 return err; 2689 } 2690 2691 if (optlen < sizeof(int)) 2692 return -EINVAL; 2693 2694 if (copy_from_sockptr(&val, optval, sizeof(val))) 2695 return -EFAULT; 2696 2697 valbool = val ? 1 : 0; 2698 2699 switch (optname) { 2700 case UDP_CORK: 2701 if (val != 0) { 2702 udp_set_bit(CORK, sk); 2703 } else { 2704 udp_clear_bit(CORK, sk); 2705 lock_sock(sk); 2706 push_pending_frames(sk); 2707 release_sock(sk); 2708 } 2709 break; 2710 2711 case UDP_ENCAP: 2712 switch (val) { 2713 case 0: 2714 #ifdef CONFIG_XFRM 2715 case UDP_ENCAP_ESPINUDP: 2716 set_xfrm_gro_udp_encap_rcv(val, sk->sk_family, sk); 2717 #if IS_ENABLED(CONFIG_IPV6) 2718 if (sk->sk_family == AF_INET6) 2719 WRITE_ONCE(up->encap_rcv, 2720 ipv6_stub->xfrm6_udp_encap_rcv); 2721 else 2722 #endif 2723 WRITE_ONCE(up->encap_rcv, 2724 xfrm4_udp_encap_rcv); 2725 #endif 2726 fallthrough; 2727 case UDP_ENCAP_L2TPINUDP: 2728 WRITE_ONCE(up->encap_type, val); 2729 udp_tunnel_encap_enable(sk); 2730 break; 2731 default: 2732 err = -ENOPROTOOPT; 2733 break; 2734 } 2735 break; 2736 2737 case UDP_NO_CHECK6_TX: 2738 udp_set_no_check6_tx(sk, valbool); 2739 break; 2740 2741 case UDP_NO_CHECK6_RX: 2742 udp_set_no_check6_rx(sk, valbool); 2743 break; 2744 2745 case UDP_SEGMENT: 2746 if (val < 0 || val > USHRT_MAX) 2747 return -EINVAL; 2748 WRITE_ONCE(up->gso_size, val); 2749 break; 2750 2751 case UDP_GRO: 2752 2753 /* when enabling GRO, accept the related GSO packet type */ 2754 if (valbool) 2755 udp_tunnel_encap_enable(sk); 2756 udp_assign_bit(GRO_ENABLED, sk, valbool); 2757 udp_assign_bit(ACCEPT_L4, sk, valbool); 2758 set_xfrm_gro_udp_encap_rcv(up->encap_type, sk->sk_family, sk); 2759 break; 2760 2761 /* 2762 * UDP-Lite's partial checksum coverage (RFC 3828). 2763 */ 2764 /* The sender sets actual checksum coverage length via this option. 2765 * The case coverage > packet length is handled by send module. */ 2766 case UDPLITE_SEND_CSCOV: 2767 if (!is_udplite) /* Disable the option on UDP sockets */ 2768 return -ENOPROTOOPT; 2769 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */ 2770 val = 8; 2771 else if (val > USHRT_MAX) 2772 val = USHRT_MAX; 2773 WRITE_ONCE(up->pcslen, val); 2774 udp_set_bit(UDPLITE_SEND_CC, sk); 2775 break; 2776 2777 /* The receiver specifies a minimum checksum coverage value. To make 2778 * sense, this should be set to at least 8 (as done below). If zero is 2779 * used, this again means full checksum coverage. */ 2780 case UDPLITE_RECV_CSCOV: 2781 if (!is_udplite) /* Disable the option on UDP sockets */ 2782 return -ENOPROTOOPT; 2783 if (val != 0 && val < 8) /* Avoid silly minimal values. */ 2784 val = 8; 2785 else if (val > USHRT_MAX) 2786 val = USHRT_MAX; 2787 WRITE_ONCE(up->pcrlen, val); 2788 udp_set_bit(UDPLITE_RECV_CC, sk); 2789 break; 2790 2791 default: 2792 err = -ENOPROTOOPT; 2793 break; 2794 } 2795 2796 return err; 2797 } 2798 EXPORT_SYMBOL(udp_lib_setsockopt); 2799 2800 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 2801 unsigned int optlen) 2802 { 2803 if (level == SOL_UDP || level == SOL_UDPLITE || level == SOL_SOCKET) 2804 return udp_lib_setsockopt(sk, level, optname, 2805 optval, optlen, 2806 udp_push_pending_frames); 2807 return ip_setsockopt(sk, level, optname, optval, optlen); 2808 } 2809 2810 int udp_lib_getsockopt(struct sock *sk, int level, int optname, 2811 char __user *optval, int __user *optlen) 2812 { 2813 struct udp_sock *up = udp_sk(sk); 2814 int val, len; 2815 2816 if (get_user(len, optlen)) 2817 return -EFAULT; 2818 2819 if (len < 0) 2820 return -EINVAL; 2821 2822 len = min_t(unsigned int, len, sizeof(int)); 2823 2824 switch (optname) { 2825 case UDP_CORK: 2826 val = udp_test_bit(CORK, sk); 2827 break; 2828 2829 case UDP_ENCAP: 2830 val = READ_ONCE(up->encap_type); 2831 break; 2832 2833 case UDP_NO_CHECK6_TX: 2834 val = udp_get_no_check6_tx(sk); 2835 break; 2836 2837 case UDP_NO_CHECK6_RX: 2838 val = udp_get_no_check6_rx(sk); 2839 break; 2840 2841 case UDP_SEGMENT: 2842 val = READ_ONCE(up->gso_size); 2843 break; 2844 2845 case UDP_GRO: 2846 val = udp_test_bit(GRO_ENABLED, sk); 2847 break; 2848 2849 /* The following two cannot be changed on UDP sockets, the return is 2850 * always 0 (which corresponds to the full checksum coverage of UDP). */ 2851 case UDPLITE_SEND_CSCOV: 2852 val = READ_ONCE(up->pcslen); 2853 break; 2854 2855 case UDPLITE_RECV_CSCOV: 2856 val = READ_ONCE(up->pcrlen); 2857 break; 2858 2859 default: 2860 return -ENOPROTOOPT; 2861 } 2862 2863 if (put_user(len, optlen)) 2864 return -EFAULT; 2865 if (copy_to_user(optval, &val, len)) 2866 return -EFAULT; 2867 return 0; 2868 } 2869 EXPORT_SYMBOL(udp_lib_getsockopt); 2870 2871 int udp_getsockopt(struct sock *sk, int level, int optname, 2872 char __user *optval, int __user *optlen) 2873 { 2874 if (level == SOL_UDP || level == SOL_UDPLITE) 2875 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 2876 return ip_getsockopt(sk, level, optname, optval, optlen); 2877 } 2878 2879 /** 2880 * udp_poll - wait for a UDP event. 2881 * @file: - file struct 2882 * @sock: - socket 2883 * @wait: - poll table 2884 * 2885 * This is same as datagram poll, except for the special case of 2886 * blocking sockets. If application is using a blocking fd 2887 * and a packet with checksum error is in the queue; 2888 * then it could get return from select indicating data available 2889 * but then block when reading it. Add special case code 2890 * to work around these arguably broken applications. 2891 */ 2892 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait) 2893 { 2894 __poll_t mask = datagram_poll(file, sock, wait); 2895 struct sock *sk = sock->sk; 2896 2897 if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue)) 2898 mask |= EPOLLIN | EPOLLRDNORM; 2899 2900 /* Check for false positives due to checksum errors */ 2901 if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) && 2902 !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1) 2903 mask &= ~(EPOLLIN | EPOLLRDNORM); 2904 2905 /* psock ingress_msg queue should not contain any bad checksum frames */ 2906 if (sk_is_readable(sk)) 2907 mask |= EPOLLIN | EPOLLRDNORM; 2908 return mask; 2909 2910 } 2911 EXPORT_SYMBOL(udp_poll); 2912 2913 int udp_abort(struct sock *sk, int err) 2914 { 2915 if (!has_current_bpf_ctx()) 2916 lock_sock(sk); 2917 2918 /* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing 2919 * with close() 2920 */ 2921 if (sock_flag(sk, SOCK_DEAD)) 2922 goto out; 2923 2924 sk->sk_err = err; 2925 sk_error_report(sk); 2926 __udp_disconnect(sk, 0); 2927 2928 out: 2929 if (!has_current_bpf_ctx()) 2930 release_sock(sk); 2931 2932 return 0; 2933 } 2934 EXPORT_SYMBOL_GPL(udp_abort); 2935 2936 struct proto udp_prot = { 2937 .name = "UDP", 2938 .owner = THIS_MODULE, 2939 .close = udp_lib_close, 2940 .pre_connect = udp_pre_connect, 2941 .connect = ip4_datagram_connect, 2942 .disconnect = udp_disconnect, 2943 .ioctl = udp_ioctl, 2944 .init = udp_init_sock, 2945 .destroy = udp_destroy_sock, 2946 .setsockopt = udp_setsockopt, 2947 .getsockopt = udp_getsockopt, 2948 .sendmsg = udp_sendmsg, 2949 .recvmsg = udp_recvmsg, 2950 .splice_eof = udp_splice_eof, 2951 .release_cb = ip4_datagram_release_cb, 2952 .hash = udp_lib_hash, 2953 .unhash = udp_lib_unhash, 2954 .rehash = udp_v4_rehash, 2955 .get_port = udp_v4_get_port, 2956 .put_port = udp_lib_unhash, 2957 #ifdef CONFIG_BPF_SYSCALL 2958 .psock_update_sk_prot = udp_bpf_update_proto, 2959 #endif 2960 .memory_allocated = &udp_memory_allocated, 2961 .per_cpu_fw_alloc = &udp_memory_per_cpu_fw_alloc, 2962 2963 .sysctl_mem = sysctl_udp_mem, 2964 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_udp_wmem_min), 2965 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_udp_rmem_min), 2966 .obj_size = sizeof(struct udp_sock), 2967 .h.udp_table = NULL, 2968 .diag_destroy = udp_abort, 2969 }; 2970 EXPORT_SYMBOL(udp_prot); 2971 2972 /* ------------------------------------------------------------------------ */ 2973 #ifdef CONFIG_PROC_FS 2974 2975 static unsigned short seq_file_family(const struct seq_file *seq); 2976 static bool seq_sk_match(struct seq_file *seq, const struct sock *sk) 2977 { 2978 unsigned short family = seq_file_family(seq); 2979 2980 /* AF_UNSPEC is used as a match all */ 2981 return ((family == AF_UNSPEC || family == sk->sk_family) && 2982 net_eq(sock_net(sk), seq_file_net(seq))); 2983 } 2984 2985 #ifdef CONFIG_BPF_SYSCALL 2986 static const struct seq_operations bpf_iter_udp_seq_ops; 2987 #endif 2988 static struct udp_table *udp_get_table_seq(struct seq_file *seq, 2989 struct net *net) 2990 { 2991 const struct udp_seq_afinfo *afinfo; 2992 2993 #ifdef CONFIG_BPF_SYSCALL 2994 if (seq->op == &bpf_iter_udp_seq_ops) 2995 return net->ipv4.udp_table; 2996 #endif 2997 2998 afinfo = pde_data(file_inode(seq->file)); 2999 return afinfo->udp_table ? : net->ipv4.udp_table; 3000 } 3001 3002 static struct sock *udp_get_first(struct seq_file *seq, int start) 3003 { 3004 struct udp_iter_state *state = seq->private; 3005 struct net *net = seq_file_net(seq); 3006 struct udp_table *udptable; 3007 struct sock *sk; 3008 3009 udptable = udp_get_table_seq(seq, net); 3010 3011 for (state->bucket = start; state->bucket <= udptable->mask; 3012 ++state->bucket) { 3013 struct udp_hslot *hslot = &udptable->hash[state->bucket]; 3014 3015 if (hlist_empty(&hslot->head)) 3016 continue; 3017 3018 spin_lock_bh(&hslot->lock); 3019 sk_for_each(sk, &hslot->head) { 3020 if (seq_sk_match(seq, sk)) 3021 goto found; 3022 } 3023 spin_unlock_bh(&hslot->lock); 3024 } 3025 sk = NULL; 3026 found: 3027 return sk; 3028 } 3029 3030 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk) 3031 { 3032 struct udp_iter_state *state = seq->private; 3033 struct net *net = seq_file_net(seq); 3034 struct udp_table *udptable; 3035 3036 do { 3037 sk = sk_next(sk); 3038 } while (sk && !seq_sk_match(seq, sk)); 3039 3040 if (!sk) { 3041 udptable = udp_get_table_seq(seq, net); 3042 3043 if (state->bucket <= udptable->mask) 3044 spin_unlock_bh(&udptable->hash[state->bucket].lock); 3045 3046 return udp_get_first(seq, state->bucket + 1); 3047 } 3048 return sk; 3049 } 3050 3051 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos) 3052 { 3053 struct sock *sk = udp_get_first(seq, 0); 3054 3055 if (sk) 3056 while (pos && (sk = udp_get_next(seq, sk)) != NULL) 3057 --pos; 3058 return pos ? NULL : sk; 3059 } 3060 3061 void *udp_seq_start(struct seq_file *seq, loff_t *pos) 3062 { 3063 struct udp_iter_state *state = seq->private; 3064 state->bucket = MAX_UDP_PORTS; 3065 3066 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN; 3067 } 3068 EXPORT_SYMBOL(udp_seq_start); 3069 3070 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3071 { 3072 struct sock *sk; 3073 3074 if (v == SEQ_START_TOKEN) 3075 sk = udp_get_idx(seq, 0); 3076 else 3077 sk = udp_get_next(seq, v); 3078 3079 ++*pos; 3080 return sk; 3081 } 3082 EXPORT_SYMBOL(udp_seq_next); 3083 3084 void udp_seq_stop(struct seq_file *seq, void *v) 3085 { 3086 struct udp_iter_state *state = seq->private; 3087 struct udp_table *udptable; 3088 3089 udptable = udp_get_table_seq(seq, seq_file_net(seq)); 3090 3091 if (state->bucket <= udptable->mask) 3092 spin_unlock_bh(&udptable->hash[state->bucket].lock); 3093 } 3094 EXPORT_SYMBOL(udp_seq_stop); 3095 3096 /* ------------------------------------------------------------------------ */ 3097 static void udp4_format_sock(struct sock *sp, struct seq_file *f, 3098 int bucket) 3099 { 3100 struct inet_sock *inet = inet_sk(sp); 3101 __be32 dest = inet->inet_daddr; 3102 __be32 src = inet->inet_rcv_saddr; 3103 __u16 destp = ntohs(inet->inet_dport); 3104 __u16 srcp = ntohs(inet->inet_sport); 3105 3106 seq_printf(f, "%5d: %08X:%04X %08X:%04X" 3107 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u", 3108 bucket, src, srcp, dest, destp, sp->sk_state, 3109 sk_wmem_alloc_get(sp), 3110 udp_rqueue_get(sp), 3111 0, 0L, 0, 3112 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)), 3113 0, sock_i_ino(sp), 3114 refcount_read(&sp->sk_refcnt), sp, 3115 atomic_read(&sp->sk_drops)); 3116 } 3117 3118 int udp4_seq_show(struct seq_file *seq, void *v) 3119 { 3120 seq_setwidth(seq, 127); 3121 if (v == SEQ_START_TOKEN) 3122 seq_puts(seq, " sl local_address rem_address st tx_queue " 3123 "rx_queue tr tm->when retrnsmt uid timeout " 3124 "inode ref pointer drops"); 3125 else { 3126 struct udp_iter_state *state = seq->private; 3127 3128 udp4_format_sock(v, seq, state->bucket); 3129 } 3130 seq_pad(seq, '\n'); 3131 return 0; 3132 } 3133 3134 #ifdef CONFIG_BPF_SYSCALL 3135 struct bpf_iter__udp { 3136 __bpf_md_ptr(struct bpf_iter_meta *, meta); 3137 __bpf_md_ptr(struct udp_sock *, udp_sk); 3138 uid_t uid __aligned(8); 3139 int bucket __aligned(8); 3140 }; 3141 3142 struct bpf_udp_iter_state { 3143 struct udp_iter_state state; 3144 unsigned int cur_sk; 3145 unsigned int end_sk; 3146 unsigned int max_sk; 3147 int offset; 3148 struct sock **batch; 3149 bool st_bucket_done; 3150 }; 3151 3152 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter, 3153 unsigned int new_batch_sz); 3154 static struct sock *bpf_iter_udp_batch(struct seq_file *seq) 3155 { 3156 struct bpf_udp_iter_state *iter = seq->private; 3157 struct udp_iter_state *state = &iter->state; 3158 struct net *net = seq_file_net(seq); 3159 int resume_bucket, resume_offset; 3160 struct udp_table *udptable; 3161 unsigned int batch_sks = 0; 3162 bool resized = false; 3163 struct sock *sk; 3164 3165 resume_bucket = state->bucket; 3166 resume_offset = iter->offset; 3167 3168 /* The current batch is done, so advance the bucket. */ 3169 if (iter->st_bucket_done) 3170 state->bucket++; 3171 3172 udptable = udp_get_table_seq(seq, net); 3173 3174 again: 3175 /* New batch for the next bucket. 3176 * Iterate over the hash table to find a bucket with sockets matching 3177 * the iterator attributes, and return the first matching socket from 3178 * the bucket. The remaining matched sockets from the bucket are batched 3179 * before releasing the bucket lock. This allows BPF programs that are 3180 * called in seq_show to acquire the bucket lock if needed. 3181 */ 3182 iter->cur_sk = 0; 3183 iter->end_sk = 0; 3184 iter->st_bucket_done = false; 3185 batch_sks = 0; 3186 3187 for (; state->bucket <= udptable->mask; state->bucket++) { 3188 struct udp_hslot *hslot2 = &udptable->hash2[state->bucket]; 3189 3190 if (hlist_empty(&hslot2->head)) 3191 continue; 3192 3193 iter->offset = 0; 3194 spin_lock_bh(&hslot2->lock); 3195 udp_portaddr_for_each_entry(sk, &hslot2->head) { 3196 if (seq_sk_match(seq, sk)) { 3197 /* Resume from the last iterated socket at the 3198 * offset in the bucket before iterator was stopped. 3199 */ 3200 if (state->bucket == resume_bucket && 3201 iter->offset < resume_offset) { 3202 ++iter->offset; 3203 continue; 3204 } 3205 if (iter->end_sk < iter->max_sk) { 3206 sock_hold(sk); 3207 iter->batch[iter->end_sk++] = sk; 3208 } 3209 batch_sks++; 3210 } 3211 } 3212 spin_unlock_bh(&hslot2->lock); 3213 3214 if (iter->end_sk) 3215 break; 3216 } 3217 3218 /* All done: no batch made. */ 3219 if (!iter->end_sk) 3220 return NULL; 3221 3222 if (iter->end_sk == batch_sks) { 3223 /* Batching is done for the current bucket; return the first 3224 * socket to be iterated from the batch. 3225 */ 3226 iter->st_bucket_done = true; 3227 goto done; 3228 } 3229 if (!resized && !bpf_iter_udp_realloc_batch(iter, batch_sks * 3 / 2)) { 3230 resized = true; 3231 /* After allocating a larger batch, retry one more time to grab 3232 * the whole bucket. 3233 */ 3234 goto again; 3235 } 3236 done: 3237 return iter->batch[0]; 3238 } 3239 3240 static void *bpf_iter_udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3241 { 3242 struct bpf_udp_iter_state *iter = seq->private; 3243 struct sock *sk; 3244 3245 /* Whenever seq_next() is called, the iter->cur_sk is 3246 * done with seq_show(), so unref the iter->cur_sk. 3247 */ 3248 if (iter->cur_sk < iter->end_sk) { 3249 sock_put(iter->batch[iter->cur_sk++]); 3250 ++iter->offset; 3251 } 3252 3253 /* After updating iter->cur_sk, check if there are more sockets 3254 * available in the current bucket batch. 3255 */ 3256 if (iter->cur_sk < iter->end_sk) 3257 sk = iter->batch[iter->cur_sk]; 3258 else 3259 /* Prepare a new batch. */ 3260 sk = bpf_iter_udp_batch(seq); 3261 3262 ++*pos; 3263 return sk; 3264 } 3265 3266 static void *bpf_iter_udp_seq_start(struct seq_file *seq, loff_t *pos) 3267 { 3268 /* bpf iter does not support lseek, so it always 3269 * continue from where it was stop()-ped. 3270 */ 3271 if (*pos) 3272 return bpf_iter_udp_batch(seq); 3273 3274 return SEQ_START_TOKEN; 3275 } 3276 3277 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta, 3278 struct udp_sock *udp_sk, uid_t uid, int bucket) 3279 { 3280 struct bpf_iter__udp ctx; 3281 3282 meta->seq_num--; /* skip SEQ_START_TOKEN */ 3283 ctx.meta = meta; 3284 ctx.udp_sk = udp_sk; 3285 ctx.uid = uid; 3286 ctx.bucket = bucket; 3287 return bpf_iter_run_prog(prog, &ctx); 3288 } 3289 3290 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v) 3291 { 3292 struct udp_iter_state *state = seq->private; 3293 struct bpf_iter_meta meta; 3294 struct bpf_prog *prog; 3295 struct sock *sk = v; 3296 uid_t uid; 3297 int ret; 3298 3299 if (v == SEQ_START_TOKEN) 3300 return 0; 3301 3302 lock_sock(sk); 3303 3304 if (unlikely(sk_unhashed(sk))) { 3305 ret = SEQ_SKIP; 3306 goto unlock; 3307 } 3308 3309 uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk)); 3310 meta.seq = seq; 3311 prog = bpf_iter_get_info(&meta, false); 3312 ret = udp_prog_seq_show(prog, &meta, v, uid, state->bucket); 3313 3314 unlock: 3315 release_sock(sk); 3316 return ret; 3317 } 3318 3319 static void bpf_iter_udp_put_batch(struct bpf_udp_iter_state *iter) 3320 { 3321 while (iter->cur_sk < iter->end_sk) 3322 sock_put(iter->batch[iter->cur_sk++]); 3323 } 3324 3325 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v) 3326 { 3327 struct bpf_udp_iter_state *iter = seq->private; 3328 struct bpf_iter_meta meta; 3329 struct bpf_prog *prog; 3330 3331 if (!v) { 3332 meta.seq = seq; 3333 prog = bpf_iter_get_info(&meta, true); 3334 if (prog) 3335 (void)udp_prog_seq_show(prog, &meta, v, 0, 0); 3336 } 3337 3338 if (iter->cur_sk < iter->end_sk) { 3339 bpf_iter_udp_put_batch(iter); 3340 iter->st_bucket_done = false; 3341 } 3342 } 3343 3344 static const struct seq_operations bpf_iter_udp_seq_ops = { 3345 .start = bpf_iter_udp_seq_start, 3346 .next = bpf_iter_udp_seq_next, 3347 .stop = bpf_iter_udp_seq_stop, 3348 .show = bpf_iter_udp_seq_show, 3349 }; 3350 #endif 3351 3352 static unsigned short seq_file_family(const struct seq_file *seq) 3353 { 3354 const struct udp_seq_afinfo *afinfo; 3355 3356 #ifdef CONFIG_BPF_SYSCALL 3357 /* BPF iterator: bpf programs to filter sockets. */ 3358 if (seq->op == &bpf_iter_udp_seq_ops) 3359 return AF_UNSPEC; 3360 #endif 3361 3362 /* Proc fs iterator */ 3363 afinfo = pde_data(file_inode(seq->file)); 3364 return afinfo->family; 3365 } 3366 3367 const struct seq_operations udp_seq_ops = { 3368 .start = udp_seq_start, 3369 .next = udp_seq_next, 3370 .stop = udp_seq_stop, 3371 .show = udp4_seq_show, 3372 }; 3373 EXPORT_SYMBOL(udp_seq_ops); 3374 3375 static struct udp_seq_afinfo udp4_seq_afinfo = { 3376 .family = AF_INET, 3377 .udp_table = NULL, 3378 }; 3379 3380 static int __net_init udp4_proc_init_net(struct net *net) 3381 { 3382 if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops, 3383 sizeof(struct udp_iter_state), &udp4_seq_afinfo)) 3384 return -ENOMEM; 3385 return 0; 3386 } 3387 3388 static void __net_exit udp4_proc_exit_net(struct net *net) 3389 { 3390 remove_proc_entry("udp", net->proc_net); 3391 } 3392 3393 static struct pernet_operations udp4_net_ops = { 3394 .init = udp4_proc_init_net, 3395 .exit = udp4_proc_exit_net, 3396 }; 3397 3398 int __init udp4_proc_init(void) 3399 { 3400 return register_pernet_subsys(&udp4_net_ops); 3401 } 3402 3403 void udp4_proc_exit(void) 3404 { 3405 unregister_pernet_subsys(&udp4_net_ops); 3406 } 3407 #endif /* CONFIG_PROC_FS */ 3408 3409 static __initdata unsigned long uhash_entries; 3410 static int __init set_uhash_entries(char *str) 3411 { 3412 ssize_t ret; 3413 3414 if (!str) 3415 return 0; 3416 3417 ret = kstrtoul(str, 0, &uhash_entries); 3418 if (ret) 3419 return 0; 3420 3421 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN) 3422 uhash_entries = UDP_HTABLE_SIZE_MIN; 3423 return 1; 3424 } 3425 __setup("uhash_entries=", set_uhash_entries); 3426 3427 void __init udp_table_init(struct udp_table *table, const char *name) 3428 { 3429 unsigned int i; 3430 3431 table->hash = alloc_large_system_hash(name, 3432 2 * sizeof(struct udp_hslot), 3433 uhash_entries, 3434 21, /* one slot per 2 MB */ 3435 0, 3436 &table->log, 3437 &table->mask, 3438 UDP_HTABLE_SIZE_MIN, 3439 UDP_HTABLE_SIZE_MAX); 3440 3441 table->hash2 = table->hash + (table->mask + 1); 3442 for (i = 0; i <= table->mask; i++) { 3443 INIT_HLIST_HEAD(&table->hash[i].head); 3444 table->hash[i].count = 0; 3445 spin_lock_init(&table->hash[i].lock); 3446 } 3447 for (i = 0; i <= table->mask; i++) { 3448 INIT_HLIST_HEAD(&table->hash2[i].head); 3449 table->hash2[i].count = 0; 3450 spin_lock_init(&table->hash2[i].lock); 3451 } 3452 } 3453 3454 u32 udp_flow_hashrnd(void) 3455 { 3456 static u32 hashrnd __read_mostly; 3457 3458 net_get_random_once(&hashrnd, sizeof(hashrnd)); 3459 3460 return hashrnd; 3461 } 3462 EXPORT_SYMBOL(udp_flow_hashrnd); 3463 3464 static void __net_init udp_sysctl_init(struct net *net) 3465 { 3466 net->ipv4.sysctl_udp_rmem_min = PAGE_SIZE; 3467 net->ipv4.sysctl_udp_wmem_min = PAGE_SIZE; 3468 3469 #ifdef CONFIG_NET_L3_MASTER_DEV 3470 net->ipv4.sysctl_udp_l3mdev_accept = 0; 3471 #endif 3472 } 3473 3474 static struct udp_table __net_init *udp_pernet_table_alloc(unsigned int hash_entries) 3475 { 3476 struct udp_table *udptable; 3477 int i; 3478 3479 udptable = kmalloc(sizeof(*udptable), GFP_KERNEL); 3480 if (!udptable) 3481 goto out; 3482 3483 udptable->hash = vmalloc_huge(hash_entries * 2 * sizeof(struct udp_hslot), 3484 GFP_KERNEL_ACCOUNT); 3485 if (!udptable->hash) 3486 goto free_table; 3487 3488 udptable->hash2 = udptable->hash + hash_entries; 3489 udptable->mask = hash_entries - 1; 3490 udptable->log = ilog2(hash_entries); 3491 3492 for (i = 0; i < hash_entries; i++) { 3493 INIT_HLIST_HEAD(&udptable->hash[i].head); 3494 udptable->hash[i].count = 0; 3495 spin_lock_init(&udptable->hash[i].lock); 3496 3497 INIT_HLIST_HEAD(&udptable->hash2[i].head); 3498 udptable->hash2[i].count = 0; 3499 spin_lock_init(&udptable->hash2[i].lock); 3500 } 3501 3502 return udptable; 3503 3504 free_table: 3505 kfree(udptable); 3506 out: 3507 return NULL; 3508 } 3509 3510 static void __net_exit udp_pernet_table_free(struct net *net) 3511 { 3512 struct udp_table *udptable = net->ipv4.udp_table; 3513 3514 if (udptable == &udp_table) 3515 return; 3516 3517 kvfree(udptable->hash); 3518 kfree(udptable); 3519 } 3520 3521 static void __net_init udp_set_table(struct net *net) 3522 { 3523 struct udp_table *udptable; 3524 unsigned int hash_entries; 3525 struct net *old_net; 3526 3527 if (net_eq(net, &init_net)) 3528 goto fallback; 3529 3530 old_net = current->nsproxy->net_ns; 3531 hash_entries = READ_ONCE(old_net->ipv4.sysctl_udp_child_hash_entries); 3532 if (!hash_entries) 3533 goto fallback; 3534 3535 /* Set min to keep the bitmap on stack in udp_lib_get_port() */ 3536 if (hash_entries < UDP_HTABLE_SIZE_MIN_PERNET) 3537 hash_entries = UDP_HTABLE_SIZE_MIN_PERNET; 3538 else 3539 hash_entries = roundup_pow_of_two(hash_entries); 3540 3541 udptable = udp_pernet_table_alloc(hash_entries); 3542 if (udptable) { 3543 net->ipv4.udp_table = udptable; 3544 } else { 3545 pr_warn("Failed to allocate UDP hash table (entries: %u) " 3546 "for a netns, fallback to the global one\n", 3547 hash_entries); 3548 fallback: 3549 net->ipv4.udp_table = &udp_table; 3550 } 3551 } 3552 3553 static int __net_init udp_pernet_init(struct net *net) 3554 { 3555 udp_sysctl_init(net); 3556 udp_set_table(net); 3557 3558 return 0; 3559 } 3560 3561 static void __net_exit udp_pernet_exit(struct net *net) 3562 { 3563 udp_pernet_table_free(net); 3564 } 3565 3566 static struct pernet_operations __net_initdata udp_sysctl_ops = { 3567 .init = udp_pernet_init, 3568 .exit = udp_pernet_exit, 3569 }; 3570 3571 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3572 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta, 3573 struct udp_sock *udp_sk, uid_t uid, int bucket) 3574 3575 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter, 3576 unsigned int new_batch_sz) 3577 { 3578 struct sock **new_batch; 3579 3580 new_batch = kvmalloc_array(new_batch_sz, sizeof(*new_batch), 3581 GFP_USER | __GFP_NOWARN); 3582 if (!new_batch) 3583 return -ENOMEM; 3584 3585 bpf_iter_udp_put_batch(iter); 3586 kvfree(iter->batch); 3587 iter->batch = new_batch; 3588 iter->max_sk = new_batch_sz; 3589 3590 return 0; 3591 } 3592 3593 #define INIT_BATCH_SZ 16 3594 3595 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux) 3596 { 3597 struct bpf_udp_iter_state *iter = priv_data; 3598 int ret; 3599 3600 ret = bpf_iter_init_seq_net(priv_data, aux); 3601 if (ret) 3602 return ret; 3603 3604 ret = bpf_iter_udp_realloc_batch(iter, INIT_BATCH_SZ); 3605 if (ret) 3606 bpf_iter_fini_seq_net(priv_data); 3607 3608 return ret; 3609 } 3610 3611 static void bpf_iter_fini_udp(void *priv_data) 3612 { 3613 struct bpf_udp_iter_state *iter = priv_data; 3614 3615 bpf_iter_fini_seq_net(priv_data); 3616 kvfree(iter->batch); 3617 } 3618 3619 static const struct bpf_iter_seq_info udp_seq_info = { 3620 .seq_ops = &bpf_iter_udp_seq_ops, 3621 .init_seq_private = bpf_iter_init_udp, 3622 .fini_seq_private = bpf_iter_fini_udp, 3623 .seq_priv_size = sizeof(struct bpf_udp_iter_state), 3624 }; 3625 3626 static struct bpf_iter_reg udp_reg_info = { 3627 .target = "udp", 3628 .ctx_arg_info_size = 1, 3629 .ctx_arg_info = { 3630 { offsetof(struct bpf_iter__udp, udp_sk), 3631 PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED }, 3632 }, 3633 .seq_info = &udp_seq_info, 3634 }; 3635 3636 static void __init bpf_iter_register(void) 3637 { 3638 udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP]; 3639 if (bpf_iter_reg_target(&udp_reg_info)) 3640 pr_warn("Warning: could not register bpf iterator udp\n"); 3641 } 3642 #endif 3643 3644 void __init udp_init(void) 3645 { 3646 unsigned long limit; 3647 unsigned int i; 3648 3649 udp_table_init(&udp_table, "UDP"); 3650 limit = nr_free_buffer_pages() / 8; 3651 limit = max(limit, 128UL); 3652 sysctl_udp_mem[0] = limit / 4 * 3; 3653 sysctl_udp_mem[1] = limit; 3654 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2; 3655 3656 /* 16 spinlocks per cpu */ 3657 udp_busylocks_log = ilog2(nr_cpu_ids) + 4; 3658 udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log, 3659 GFP_KERNEL); 3660 if (!udp_busylocks) 3661 panic("UDP: failed to alloc udp_busylocks\n"); 3662 for (i = 0; i < (1U << udp_busylocks_log); i++) 3663 spin_lock_init(udp_busylocks + i); 3664 3665 if (register_pernet_subsys(&udp_sysctl_ops)) 3666 panic("UDP: failed to init sysctl parameters.\n"); 3667 3668 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3669 bpf_iter_register(); 3670 #endif 3671 } 3672