xref: /linux/net/ipv4/udp.c (revision 4b132aacb0768ac1e652cf517097ea6f237214b9)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		The User Datagram Protocol (UDP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
12  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
13  *		Hirokazu Takahashi, <taka@valinux.co.jp>
14  *
15  * Fixes:
16  *		Alan Cox	:	verify_area() calls
17  *		Alan Cox	: 	stopped close while in use off icmp
18  *					messages. Not a fix but a botch that
19  *					for udp at least is 'valid'.
20  *		Alan Cox	:	Fixed icmp handling properly
21  *		Alan Cox	: 	Correct error for oversized datagrams
22  *		Alan Cox	:	Tidied select() semantics.
23  *		Alan Cox	:	udp_err() fixed properly, also now
24  *					select and read wake correctly on errors
25  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
26  *		Alan Cox	:	UDP can count its memory
27  *		Alan Cox	:	send to an unknown connection causes
28  *					an ECONNREFUSED off the icmp, but
29  *					does NOT close.
30  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
31  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
32  *					bug no longer crashes it.
33  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
34  *		Alan Cox	:	Uses skb_free_datagram
35  *		Alan Cox	:	Added get/set sockopt support.
36  *		Alan Cox	:	Broadcasting without option set returns EACCES.
37  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
38  *		Alan Cox	:	Use ip_tos and ip_ttl
39  *		Alan Cox	:	SNMP Mibs
40  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
41  *		Matt Dillon	:	UDP length checks.
42  *		Alan Cox	:	Smarter af_inet used properly.
43  *		Alan Cox	:	Use new kernel side addressing.
44  *		Alan Cox	:	Incorrect return on truncated datagram receive.
45  *	Arnt Gulbrandsen 	:	New udp_send and stuff
46  *		Alan Cox	:	Cache last socket
47  *		Alan Cox	:	Route cache
48  *		Jon Peatfield	:	Minor efficiency fix to sendto().
49  *		Mike Shaver	:	RFC1122 checks.
50  *		Alan Cox	:	Nonblocking error fix.
51  *	Willy Konynenberg	:	Transparent proxying support.
52  *		Mike McLagan	:	Routing by source
53  *		David S. Miller	:	New socket lookup architecture.
54  *					Last socket cache retained as it
55  *					does have a high hit rate.
56  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
57  *		Andi Kleen	:	Some cleanups, cache destination entry
58  *					for connect.
59  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
60  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
61  *					return ENOTCONN for unconnected sockets (POSIX)
62  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
63  *					bound-to-device socket
64  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
65  *					datagrams.
66  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
67  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
68  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
69  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
70  *					a single port at the same time.
71  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
72  *	James Chapman		:	Add L2TP encapsulation type.
73  */
74 
75 #define pr_fmt(fmt) "UDP: " fmt
76 
77 #include <linux/bpf-cgroup.h>
78 #include <linux/uaccess.h>
79 #include <asm/ioctls.h>
80 #include <linux/memblock.h>
81 #include <linux/highmem.h>
82 #include <linux/types.h>
83 #include <linux/fcntl.h>
84 #include <linux/module.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/igmp.h>
88 #include <linux/inetdevice.h>
89 #include <linux/in.h>
90 #include <linux/errno.h>
91 #include <linux/timer.h>
92 #include <linux/mm.h>
93 #include <linux/inet.h>
94 #include <linux/netdevice.h>
95 #include <linux/slab.h>
96 #include <net/tcp_states.h>
97 #include <linux/skbuff.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <net/net_namespace.h>
101 #include <net/icmp.h>
102 #include <net/inet_hashtables.h>
103 #include <net/ip_tunnels.h>
104 #include <net/route.h>
105 #include <net/checksum.h>
106 #include <net/gso.h>
107 #include <net/xfrm.h>
108 #include <trace/events/udp.h>
109 #include <linux/static_key.h>
110 #include <linux/btf_ids.h>
111 #include <trace/events/skb.h>
112 #include <net/busy_poll.h>
113 #include "udp_impl.h"
114 #include <net/sock_reuseport.h>
115 #include <net/addrconf.h>
116 #include <net/udp_tunnel.h>
117 #include <net/gro.h>
118 #if IS_ENABLED(CONFIG_IPV6)
119 #include <net/ipv6_stubs.h>
120 #endif
121 
122 struct udp_table udp_table __read_mostly;
123 EXPORT_SYMBOL(udp_table);
124 
125 long sysctl_udp_mem[3] __read_mostly;
126 EXPORT_SYMBOL(sysctl_udp_mem);
127 
128 atomic_long_t udp_memory_allocated ____cacheline_aligned_in_smp;
129 EXPORT_SYMBOL(udp_memory_allocated);
130 DEFINE_PER_CPU(int, udp_memory_per_cpu_fw_alloc);
131 EXPORT_PER_CPU_SYMBOL_GPL(udp_memory_per_cpu_fw_alloc);
132 
133 #define MAX_UDP_PORTS 65536
134 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN_PERNET)
135 
136 static struct udp_table *udp_get_table_prot(struct sock *sk)
137 {
138 	return sk->sk_prot->h.udp_table ? : sock_net(sk)->ipv4.udp_table;
139 }
140 
141 static int udp_lib_lport_inuse(struct net *net, __u16 num,
142 			       const struct udp_hslot *hslot,
143 			       unsigned long *bitmap,
144 			       struct sock *sk, unsigned int log)
145 {
146 	struct sock *sk2;
147 	kuid_t uid = sock_i_uid(sk);
148 
149 	sk_for_each(sk2, &hslot->head) {
150 		if (net_eq(sock_net(sk2), net) &&
151 		    sk2 != sk &&
152 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
153 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
154 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
155 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
156 		    inet_rcv_saddr_equal(sk, sk2, true)) {
157 			if (sk2->sk_reuseport && sk->sk_reuseport &&
158 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
159 			    uid_eq(uid, sock_i_uid(sk2))) {
160 				if (!bitmap)
161 					return 0;
162 			} else {
163 				if (!bitmap)
164 					return 1;
165 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
166 					  bitmap);
167 			}
168 		}
169 	}
170 	return 0;
171 }
172 
173 /*
174  * Note: we still hold spinlock of primary hash chain, so no other writer
175  * can insert/delete a socket with local_port == num
176  */
177 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
178 				struct udp_hslot *hslot2,
179 				struct sock *sk)
180 {
181 	struct sock *sk2;
182 	kuid_t uid = sock_i_uid(sk);
183 	int res = 0;
184 
185 	spin_lock(&hslot2->lock);
186 	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
187 		if (net_eq(sock_net(sk2), net) &&
188 		    sk2 != sk &&
189 		    (udp_sk(sk2)->udp_port_hash == num) &&
190 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
191 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
192 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
193 		    inet_rcv_saddr_equal(sk, sk2, true)) {
194 			if (sk2->sk_reuseport && sk->sk_reuseport &&
195 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
196 			    uid_eq(uid, sock_i_uid(sk2))) {
197 				res = 0;
198 			} else {
199 				res = 1;
200 			}
201 			break;
202 		}
203 	}
204 	spin_unlock(&hslot2->lock);
205 	return res;
206 }
207 
208 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
209 {
210 	struct net *net = sock_net(sk);
211 	kuid_t uid = sock_i_uid(sk);
212 	struct sock *sk2;
213 
214 	sk_for_each(sk2, &hslot->head) {
215 		if (net_eq(sock_net(sk2), net) &&
216 		    sk2 != sk &&
217 		    sk2->sk_family == sk->sk_family &&
218 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
219 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
220 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
221 		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
222 		    inet_rcv_saddr_equal(sk, sk2, false)) {
223 			return reuseport_add_sock(sk, sk2,
224 						  inet_rcv_saddr_any(sk));
225 		}
226 	}
227 
228 	return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
229 }
230 
231 /**
232  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
233  *
234  *  @sk:          socket struct in question
235  *  @snum:        port number to look up
236  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
237  *                   with NULL address
238  */
239 int udp_lib_get_port(struct sock *sk, unsigned short snum,
240 		     unsigned int hash2_nulladdr)
241 {
242 	struct udp_table *udptable = udp_get_table_prot(sk);
243 	struct udp_hslot *hslot, *hslot2;
244 	struct net *net = sock_net(sk);
245 	int error = -EADDRINUSE;
246 
247 	if (!snum) {
248 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
249 		unsigned short first, last;
250 		int low, high, remaining;
251 		unsigned int rand;
252 
253 		inet_sk_get_local_port_range(sk, &low, &high);
254 		remaining = (high - low) + 1;
255 
256 		rand = get_random_u32();
257 		first = reciprocal_scale(rand, remaining) + low;
258 		/*
259 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
260 		 */
261 		rand = (rand | 1) * (udptable->mask + 1);
262 		last = first + udptable->mask + 1;
263 		do {
264 			hslot = udp_hashslot(udptable, net, first);
265 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
266 			spin_lock_bh(&hslot->lock);
267 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
268 					    udptable->log);
269 
270 			snum = first;
271 			/*
272 			 * Iterate on all possible values of snum for this hash.
273 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
274 			 * give us randomization and full range coverage.
275 			 */
276 			do {
277 				if (low <= snum && snum <= high &&
278 				    !test_bit(snum >> udptable->log, bitmap) &&
279 				    !inet_is_local_reserved_port(net, snum))
280 					goto found;
281 				snum += rand;
282 			} while (snum != first);
283 			spin_unlock_bh(&hslot->lock);
284 			cond_resched();
285 		} while (++first != last);
286 		goto fail;
287 	} else {
288 		hslot = udp_hashslot(udptable, net, snum);
289 		spin_lock_bh(&hslot->lock);
290 		if (hslot->count > 10) {
291 			int exist;
292 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
293 
294 			slot2          &= udptable->mask;
295 			hash2_nulladdr &= udptable->mask;
296 
297 			hslot2 = udp_hashslot2(udptable, slot2);
298 			if (hslot->count < hslot2->count)
299 				goto scan_primary_hash;
300 
301 			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
302 			if (!exist && (hash2_nulladdr != slot2)) {
303 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
304 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
305 							     sk);
306 			}
307 			if (exist)
308 				goto fail_unlock;
309 			else
310 				goto found;
311 		}
312 scan_primary_hash:
313 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
314 			goto fail_unlock;
315 	}
316 found:
317 	inet_sk(sk)->inet_num = snum;
318 	udp_sk(sk)->udp_port_hash = snum;
319 	udp_sk(sk)->udp_portaddr_hash ^= snum;
320 	if (sk_unhashed(sk)) {
321 		if (sk->sk_reuseport &&
322 		    udp_reuseport_add_sock(sk, hslot)) {
323 			inet_sk(sk)->inet_num = 0;
324 			udp_sk(sk)->udp_port_hash = 0;
325 			udp_sk(sk)->udp_portaddr_hash ^= snum;
326 			goto fail_unlock;
327 		}
328 
329 		sock_set_flag(sk, SOCK_RCU_FREE);
330 
331 		sk_add_node_rcu(sk, &hslot->head);
332 		hslot->count++;
333 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
334 
335 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
336 		spin_lock(&hslot2->lock);
337 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
338 		    sk->sk_family == AF_INET6)
339 			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
340 					   &hslot2->head);
341 		else
342 			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
343 					   &hslot2->head);
344 		hslot2->count++;
345 		spin_unlock(&hslot2->lock);
346 	}
347 
348 	error = 0;
349 fail_unlock:
350 	spin_unlock_bh(&hslot->lock);
351 fail:
352 	return error;
353 }
354 EXPORT_SYMBOL(udp_lib_get_port);
355 
356 int udp_v4_get_port(struct sock *sk, unsigned short snum)
357 {
358 	unsigned int hash2_nulladdr =
359 		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
360 	unsigned int hash2_partial =
361 		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
362 
363 	/* precompute partial secondary hash */
364 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
365 	return udp_lib_get_port(sk, snum, hash2_nulladdr);
366 }
367 
368 static int compute_score(struct sock *sk, struct net *net,
369 			 __be32 saddr, __be16 sport,
370 			 __be32 daddr, unsigned short hnum,
371 			 int dif, int sdif)
372 {
373 	int score;
374 	struct inet_sock *inet;
375 	bool dev_match;
376 
377 	if (!net_eq(sock_net(sk), net) ||
378 	    udp_sk(sk)->udp_port_hash != hnum ||
379 	    ipv6_only_sock(sk))
380 		return -1;
381 
382 	if (sk->sk_rcv_saddr != daddr)
383 		return -1;
384 
385 	score = (sk->sk_family == PF_INET) ? 2 : 1;
386 
387 	inet = inet_sk(sk);
388 	if (inet->inet_daddr) {
389 		if (inet->inet_daddr != saddr)
390 			return -1;
391 		score += 4;
392 	}
393 
394 	if (inet->inet_dport) {
395 		if (inet->inet_dport != sport)
396 			return -1;
397 		score += 4;
398 	}
399 
400 	dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
401 					dif, sdif);
402 	if (!dev_match)
403 		return -1;
404 	if (sk->sk_bound_dev_if)
405 		score += 4;
406 
407 	if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
408 		score++;
409 	return score;
410 }
411 
412 INDIRECT_CALLABLE_SCOPE
413 u32 udp_ehashfn(const struct net *net, const __be32 laddr, const __u16 lport,
414 		const __be32 faddr, const __be16 fport)
415 {
416 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
417 
418 	return __inet_ehashfn(laddr, lport, faddr, fport,
419 			      udp_ehash_secret + net_hash_mix(net));
420 }
421 
422 /* called with rcu_read_lock() */
423 static struct sock *udp4_lib_lookup2(struct net *net,
424 				     __be32 saddr, __be16 sport,
425 				     __be32 daddr, unsigned int hnum,
426 				     int dif, int sdif,
427 				     struct udp_hslot *hslot2,
428 				     struct sk_buff *skb)
429 {
430 	struct sock *sk, *result;
431 	int score, badness;
432 	bool need_rescore;
433 
434 	result = NULL;
435 	badness = 0;
436 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
437 		need_rescore = false;
438 rescore:
439 		score = compute_score(need_rescore ? result : sk, net, saddr,
440 				      sport, daddr, hnum, dif, sdif);
441 		if (score > badness) {
442 			badness = score;
443 
444 			if (need_rescore)
445 				continue;
446 
447 			if (sk->sk_state == TCP_ESTABLISHED) {
448 				result = sk;
449 				continue;
450 			}
451 
452 			result = inet_lookup_reuseport(net, sk, skb, sizeof(struct udphdr),
453 						       saddr, sport, daddr, hnum, udp_ehashfn);
454 			if (!result) {
455 				result = sk;
456 				continue;
457 			}
458 
459 			/* Fall back to scoring if group has connections */
460 			if (!reuseport_has_conns(sk))
461 				return result;
462 
463 			/* Reuseport logic returned an error, keep original score. */
464 			if (IS_ERR(result))
465 				continue;
466 
467 			/* compute_score is too long of a function to be
468 			 * inlined, and calling it again here yields
469 			 * measureable overhead for some
470 			 * workloads. Work around it by jumping
471 			 * backwards to rescore 'result'.
472 			 */
473 			need_rescore = true;
474 			goto rescore;
475 		}
476 	}
477 	return result;
478 }
479 
480 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
481  * harder than this. -DaveM
482  */
483 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
484 		__be16 sport, __be32 daddr, __be16 dport, int dif,
485 		int sdif, struct udp_table *udptable, struct sk_buff *skb)
486 {
487 	unsigned short hnum = ntohs(dport);
488 	unsigned int hash2, slot2;
489 	struct udp_hslot *hslot2;
490 	struct sock *result, *sk;
491 
492 	hash2 = ipv4_portaddr_hash(net, daddr, hnum);
493 	slot2 = hash2 & udptable->mask;
494 	hslot2 = &udptable->hash2[slot2];
495 
496 	/* Lookup connected or non-wildcard socket */
497 	result = udp4_lib_lookup2(net, saddr, sport,
498 				  daddr, hnum, dif, sdif,
499 				  hslot2, skb);
500 	if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED)
501 		goto done;
502 
503 	/* Lookup redirect from BPF */
504 	if (static_branch_unlikely(&bpf_sk_lookup_enabled) &&
505 	    udptable == net->ipv4.udp_table) {
506 		sk = inet_lookup_run_sk_lookup(net, IPPROTO_UDP, skb, sizeof(struct udphdr),
507 					       saddr, sport, daddr, hnum, dif,
508 					       udp_ehashfn);
509 		if (sk) {
510 			result = sk;
511 			goto done;
512 		}
513 	}
514 
515 	/* Got non-wildcard socket or error on first lookup */
516 	if (result)
517 		goto done;
518 
519 	/* Lookup wildcard sockets */
520 	hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
521 	slot2 = hash2 & udptable->mask;
522 	hslot2 = &udptable->hash2[slot2];
523 
524 	result = udp4_lib_lookup2(net, saddr, sport,
525 				  htonl(INADDR_ANY), hnum, dif, sdif,
526 				  hslot2, skb);
527 done:
528 	if (IS_ERR(result))
529 		return NULL;
530 	return result;
531 }
532 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
533 
534 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
535 						 __be16 sport, __be16 dport,
536 						 struct udp_table *udptable)
537 {
538 	const struct iphdr *iph = ip_hdr(skb);
539 
540 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
541 				 iph->daddr, dport, inet_iif(skb),
542 				 inet_sdif(skb), udptable, skb);
543 }
544 
545 struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb,
546 				 __be16 sport, __be16 dport)
547 {
548 	const u16 offset = NAPI_GRO_CB(skb)->network_offsets[skb->encapsulation];
549 	const struct iphdr *iph = (struct iphdr *)(skb->data + offset);
550 	struct net *net = dev_net(skb->dev);
551 	int iif, sdif;
552 
553 	inet_get_iif_sdif(skb, &iif, &sdif);
554 
555 	return __udp4_lib_lookup(net, iph->saddr, sport,
556 				 iph->daddr, dport, iif,
557 				 sdif, net->ipv4.udp_table, NULL);
558 }
559 
560 /* Must be called under rcu_read_lock().
561  * Does increment socket refcount.
562  */
563 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
564 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
565 			     __be32 daddr, __be16 dport, int dif)
566 {
567 	struct sock *sk;
568 
569 	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
570 			       dif, 0, net->ipv4.udp_table, NULL);
571 	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
572 		sk = NULL;
573 	return sk;
574 }
575 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
576 #endif
577 
578 static inline bool __udp_is_mcast_sock(struct net *net, const struct sock *sk,
579 				       __be16 loc_port, __be32 loc_addr,
580 				       __be16 rmt_port, __be32 rmt_addr,
581 				       int dif, int sdif, unsigned short hnum)
582 {
583 	const struct inet_sock *inet = inet_sk(sk);
584 
585 	if (!net_eq(sock_net(sk), net) ||
586 	    udp_sk(sk)->udp_port_hash != hnum ||
587 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
588 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
589 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
590 	    ipv6_only_sock(sk) ||
591 	    !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
592 		return false;
593 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
594 		return false;
595 	return true;
596 }
597 
598 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
599 EXPORT_SYMBOL(udp_encap_needed_key);
600 
601 #if IS_ENABLED(CONFIG_IPV6)
602 DEFINE_STATIC_KEY_FALSE(udpv6_encap_needed_key);
603 EXPORT_SYMBOL(udpv6_encap_needed_key);
604 #endif
605 
606 void udp_encap_enable(void)
607 {
608 	static_branch_inc(&udp_encap_needed_key);
609 }
610 EXPORT_SYMBOL(udp_encap_enable);
611 
612 void udp_encap_disable(void)
613 {
614 	static_branch_dec(&udp_encap_needed_key);
615 }
616 EXPORT_SYMBOL(udp_encap_disable);
617 
618 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go
619  * through error handlers in encapsulations looking for a match.
620  */
621 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
622 {
623 	int i;
624 
625 	for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
626 		int (*handler)(struct sk_buff *skb, u32 info);
627 		const struct ip_tunnel_encap_ops *encap;
628 
629 		encap = rcu_dereference(iptun_encaps[i]);
630 		if (!encap)
631 			continue;
632 		handler = encap->err_handler;
633 		if (handler && !handler(skb, info))
634 			return 0;
635 	}
636 
637 	return -ENOENT;
638 }
639 
640 /* Try to match ICMP errors to UDP tunnels by looking up a socket without
641  * reversing source and destination port: this will match tunnels that force the
642  * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
643  * lwtunnels might actually break this assumption by being configured with
644  * different destination ports on endpoints, in this case we won't be able to
645  * trace ICMP messages back to them.
646  *
647  * If this doesn't match any socket, probe tunnels with arbitrary destination
648  * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
649  * we've sent packets to won't necessarily match the local destination port.
650  *
651  * Then ask the tunnel implementation to match the error against a valid
652  * association.
653  *
654  * Return an error if we can't find a match, the socket if we need further
655  * processing, zero otherwise.
656  */
657 static struct sock *__udp4_lib_err_encap(struct net *net,
658 					 const struct iphdr *iph,
659 					 struct udphdr *uh,
660 					 struct udp_table *udptable,
661 					 struct sock *sk,
662 					 struct sk_buff *skb, u32 info)
663 {
664 	int (*lookup)(struct sock *sk, struct sk_buff *skb);
665 	int network_offset, transport_offset;
666 	struct udp_sock *up;
667 
668 	network_offset = skb_network_offset(skb);
669 	transport_offset = skb_transport_offset(skb);
670 
671 	/* Network header needs to point to the outer IPv4 header inside ICMP */
672 	skb_reset_network_header(skb);
673 
674 	/* Transport header needs to point to the UDP header */
675 	skb_set_transport_header(skb, iph->ihl << 2);
676 
677 	if (sk) {
678 		up = udp_sk(sk);
679 
680 		lookup = READ_ONCE(up->encap_err_lookup);
681 		if (lookup && lookup(sk, skb))
682 			sk = NULL;
683 
684 		goto out;
685 	}
686 
687 	sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
688 			       iph->saddr, uh->dest, skb->dev->ifindex, 0,
689 			       udptable, NULL);
690 	if (sk) {
691 		up = udp_sk(sk);
692 
693 		lookup = READ_ONCE(up->encap_err_lookup);
694 		if (!lookup || lookup(sk, skb))
695 			sk = NULL;
696 	}
697 
698 out:
699 	if (!sk)
700 		sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
701 
702 	skb_set_transport_header(skb, transport_offset);
703 	skb_set_network_header(skb, network_offset);
704 
705 	return sk;
706 }
707 
708 /*
709  * This routine is called by the ICMP module when it gets some
710  * sort of error condition.  If err < 0 then the socket should
711  * be closed and the error returned to the user.  If err > 0
712  * it's just the icmp type << 8 | icmp code.
713  * Header points to the ip header of the error packet. We move
714  * on past this. Then (as it used to claim before adjustment)
715  * header points to the first 8 bytes of the udp header.  We need
716  * to find the appropriate port.
717  */
718 
719 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
720 {
721 	struct inet_sock *inet;
722 	const struct iphdr *iph = (const struct iphdr *)skb->data;
723 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
724 	const int type = icmp_hdr(skb)->type;
725 	const int code = icmp_hdr(skb)->code;
726 	bool tunnel = false;
727 	struct sock *sk;
728 	int harderr;
729 	int err;
730 	struct net *net = dev_net(skb->dev);
731 
732 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
733 			       iph->saddr, uh->source, skb->dev->ifindex,
734 			       inet_sdif(skb), udptable, NULL);
735 
736 	if (!sk || READ_ONCE(udp_sk(sk)->encap_type)) {
737 		/* No socket for error: try tunnels before discarding */
738 		if (static_branch_unlikely(&udp_encap_needed_key)) {
739 			sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb,
740 						  info);
741 			if (!sk)
742 				return 0;
743 		} else
744 			sk = ERR_PTR(-ENOENT);
745 
746 		if (IS_ERR(sk)) {
747 			__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
748 			return PTR_ERR(sk);
749 		}
750 
751 		tunnel = true;
752 	}
753 
754 	err = 0;
755 	harderr = 0;
756 	inet = inet_sk(sk);
757 
758 	switch (type) {
759 	default:
760 	case ICMP_TIME_EXCEEDED:
761 		err = EHOSTUNREACH;
762 		break;
763 	case ICMP_SOURCE_QUENCH:
764 		goto out;
765 	case ICMP_PARAMETERPROB:
766 		err = EPROTO;
767 		harderr = 1;
768 		break;
769 	case ICMP_DEST_UNREACH:
770 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
771 			ipv4_sk_update_pmtu(skb, sk, info);
772 			if (READ_ONCE(inet->pmtudisc) != IP_PMTUDISC_DONT) {
773 				err = EMSGSIZE;
774 				harderr = 1;
775 				break;
776 			}
777 			goto out;
778 		}
779 		err = EHOSTUNREACH;
780 		if (code <= NR_ICMP_UNREACH) {
781 			harderr = icmp_err_convert[code].fatal;
782 			err = icmp_err_convert[code].errno;
783 		}
784 		break;
785 	case ICMP_REDIRECT:
786 		ipv4_sk_redirect(skb, sk);
787 		goto out;
788 	}
789 
790 	/*
791 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
792 	 *	4.1.3.3.
793 	 */
794 	if (tunnel) {
795 		/* ...not for tunnels though: we don't have a sending socket */
796 		if (udp_sk(sk)->encap_err_rcv)
797 			udp_sk(sk)->encap_err_rcv(sk, skb, err, uh->dest, info,
798 						  (u8 *)(uh+1));
799 		goto out;
800 	}
801 	if (!inet_test_bit(RECVERR, sk)) {
802 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
803 			goto out;
804 	} else
805 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
806 
807 	sk->sk_err = err;
808 	sk_error_report(sk);
809 out:
810 	return 0;
811 }
812 
813 int udp_err(struct sk_buff *skb, u32 info)
814 {
815 	return __udp4_lib_err(skb, info, dev_net(skb->dev)->ipv4.udp_table);
816 }
817 
818 /*
819  * Throw away all pending data and cancel the corking. Socket is locked.
820  */
821 void udp_flush_pending_frames(struct sock *sk)
822 {
823 	struct udp_sock *up = udp_sk(sk);
824 
825 	if (up->pending) {
826 		up->len = 0;
827 		WRITE_ONCE(up->pending, 0);
828 		ip_flush_pending_frames(sk);
829 	}
830 }
831 EXPORT_SYMBOL(udp_flush_pending_frames);
832 
833 /**
834  * 	udp4_hwcsum  -  handle outgoing HW checksumming
835  * 	@skb: 	sk_buff containing the filled-in UDP header
836  * 	        (checksum field must be zeroed out)
837  *	@src:	source IP address
838  *	@dst:	destination IP address
839  */
840 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
841 {
842 	struct udphdr *uh = udp_hdr(skb);
843 	int offset = skb_transport_offset(skb);
844 	int len = skb->len - offset;
845 	int hlen = len;
846 	__wsum csum = 0;
847 
848 	if (!skb_has_frag_list(skb)) {
849 		/*
850 		 * Only one fragment on the socket.
851 		 */
852 		skb->csum_start = skb_transport_header(skb) - skb->head;
853 		skb->csum_offset = offsetof(struct udphdr, check);
854 		uh->check = ~csum_tcpudp_magic(src, dst, len,
855 					       IPPROTO_UDP, 0);
856 	} else {
857 		struct sk_buff *frags;
858 
859 		/*
860 		 * HW-checksum won't work as there are two or more
861 		 * fragments on the socket so that all csums of sk_buffs
862 		 * should be together
863 		 */
864 		skb_walk_frags(skb, frags) {
865 			csum = csum_add(csum, frags->csum);
866 			hlen -= frags->len;
867 		}
868 
869 		csum = skb_checksum(skb, offset, hlen, csum);
870 		skb->ip_summed = CHECKSUM_NONE;
871 
872 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
873 		if (uh->check == 0)
874 			uh->check = CSUM_MANGLED_0;
875 	}
876 }
877 EXPORT_SYMBOL_GPL(udp4_hwcsum);
878 
879 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
880  * for the simple case like when setting the checksum for a UDP tunnel.
881  */
882 void udp_set_csum(bool nocheck, struct sk_buff *skb,
883 		  __be32 saddr, __be32 daddr, int len)
884 {
885 	struct udphdr *uh = udp_hdr(skb);
886 
887 	if (nocheck) {
888 		uh->check = 0;
889 	} else if (skb_is_gso(skb)) {
890 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
891 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
892 		uh->check = 0;
893 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
894 		if (uh->check == 0)
895 			uh->check = CSUM_MANGLED_0;
896 	} else {
897 		skb->ip_summed = CHECKSUM_PARTIAL;
898 		skb->csum_start = skb_transport_header(skb) - skb->head;
899 		skb->csum_offset = offsetof(struct udphdr, check);
900 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
901 	}
902 }
903 EXPORT_SYMBOL(udp_set_csum);
904 
905 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
906 			struct inet_cork *cork)
907 {
908 	struct sock *sk = skb->sk;
909 	struct inet_sock *inet = inet_sk(sk);
910 	struct udphdr *uh;
911 	int err;
912 	int is_udplite = IS_UDPLITE(sk);
913 	int offset = skb_transport_offset(skb);
914 	int len = skb->len - offset;
915 	int datalen = len - sizeof(*uh);
916 	__wsum csum = 0;
917 
918 	/*
919 	 * Create a UDP header
920 	 */
921 	uh = udp_hdr(skb);
922 	uh->source = inet->inet_sport;
923 	uh->dest = fl4->fl4_dport;
924 	uh->len = htons(len);
925 	uh->check = 0;
926 
927 	if (cork->gso_size) {
928 		const int hlen = skb_network_header_len(skb) +
929 				 sizeof(struct udphdr);
930 
931 		if (hlen + cork->gso_size > cork->fragsize) {
932 			kfree_skb(skb);
933 			return -EINVAL;
934 		}
935 		if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) {
936 			kfree_skb(skb);
937 			return -EINVAL;
938 		}
939 		if (sk->sk_no_check_tx) {
940 			kfree_skb(skb);
941 			return -EINVAL;
942 		}
943 		if (is_udplite || dst_xfrm(skb_dst(skb))) {
944 			kfree_skb(skb);
945 			return -EIO;
946 		}
947 
948 		if (datalen > cork->gso_size) {
949 			skb_shinfo(skb)->gso_size = cork->gso_size;
950 			skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
951 			skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
952 								 cork->gso_size);
953 		}
954 		goto csum_partial;
955 	}
956 
957 	if (is_udplite)  				 /*     UDP-Lite      */
958 		csum = udplite_csum(skb);
959 
960 	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
961 
962 		skb->ip_summed = CHECKSUM_NONE;
963 		goto send;
964 
965 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
966 csum_partial:
967 
968 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
969 		goto send;
970 
971 	} else
972 		csum = udp_csum(skb);
973 
974 	/* add protocol-dependent pseudo-header */
975 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
976 				      sk->sk_protocol, csum);
977 	if (uh->check == 0)
978 		uh->check = CSUM_MANGLED_0;
979 
980 send:
981 	err = ip_send_skb(sock_net(sk), skb);
982 	if (err) {
983 		if (err == -ENOBUFS &&
984 		    !inet_test_bit(RECVERR, sk)) {
985 			UDP_INC_STATS(sock_net(sk),
986 				      UDP_MIB_SNDBUFERRORS, is_udplite);
987 			err = 0;
988 		}
989 	} else
990 		UDP_INC_STATS(sock_net(sk),
991 			      UDP_MIB_OUTDATAGRAMS, is_udplite);
992 	return err;
993 }
994 
995 /*
996  * Push out all pending data as one UDP datagram. Socket is locked.
997  */
998 int udp_push_pending_frames(struct sock *sk)
999 {
1000 	struct udp_sock  *up = udp_sk(sk);
1001 	struct inet_sock *inet = inet_sk(sk);
1002 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
1003 	struct sk_buff *skb;
1004 	int err = 0;
1005 
1006 	skb = ip_finish_skb(sk, fl4);
1007 	if (!skb)
1008 		goto out;
1009 
1010 	err = udp_send_skb(skb, fl4, &inet->cork.base);
1011 
1012 out:
1013 	up->len = 0;
1014 	WRITE_ONCE(up->pending, 0);
1015 	return err;
1016 }
1017 EXPORT_SYMBOL(udp_push_pending_frames);
1018 
1019 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
1020 {
1021 	switch (cmsg->cmsg_type) {
1022 	case UDP_SEGMENT:
1023 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
1024 			return -EINVAL;
1025 		*gso_size = *(__u16 *)CMSG_DATA(cmsg);
1026 		return 0;
1027 	default:
1028 		return -EINVAL;
1029 	}
1030 }
1031 
1032 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
1033 {
1034 	struct cmsghdr *cmsg;
1035 	bool need_ip = false;
1036 	int err;
1037 
1038 	for_each_cmsghdr(cmsg, msg) {
1039 		if (!CMSG_OK(msg, cmsg))
1040 			return -EINVAL;
1041 
1042 		if (cmsg->cmsg_level != SOL_UDP) {
1043 			need_ip = true;
1044 			continue;
1045 		}
1046 
1047 		err = __udp_cmsg_send(cmsg, gso_size);
1048 		if (err)
1049 			return err;
1050 	}
1051 
1052 	return need_ip;
1053 }
1054 EXPORT_SYMBOL_GPL(udp_cmsg_send);
1055 
1056 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1057 {
1058 	struct inet_sock *inet = inet_sk(sk);
1059 	struct udp_sock *up = udp_sk(sk);
1060 	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1061 	struct flowi4 fl4_stack;
1062 	struct flowi4 *fl4;
1063 	int ulen = len;
1064 	struct ipcm_cookie ipc;
1065 	struct rtable *rt = NULL;
1066 	int free = 0;
1067 	int connected = 0;
1068 	__be32 daddr, faddr, saddr;
1069 	u8 tos, scope;
1070 	__be16 dport;
1071 	int err, is_udplite = IS_UDPLITE(sk);
1072 	int corkreq = udp_test_bit(CORK, sk) || msg->msg_flags & MSG_MORE;
1073 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
1074 	struct sk_buff *skb;
1075 	struct ip_options_data opt_copy;
1076 	int uc_index;
1077 
1078 	if (len > 0xFFFF)
1079 		return -EMSGSIZE;
1080 
1081 	/*
1082 	 *	Check the flags.
1083 	 */
1084 
1085 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1086 		return -EOPNOTSUPP;
1087 
1088 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1089 
1090 	fl4 = &inet->cork.fl.u.ip4;
1091 	if (READ_ONCE(up->pending)) {
1092 		/*
1093 		 * There are pending frames.
1094 		 * The socket lock must be held while it's corked.
1095 		 */
1096 		lock_sock(sk);
1097 		if (likely(up->pending)) {
1098 			if (unlikely(up->pending != AF_INET)) {
1099 				release_sock(sk);
1100 				return -EINVAL;
1101 			}
1102 			goto do_append_data;
1103 		}
1104 		release_sock(sk);
1105 	}
1106 	ulen += sizeof(struct udphdr);
1107 
1108 	/*
1109 	 *	Get and verify the address.
1110 	 */
1111 	if (usin) {
1112 		if (msg->msg_namelen < sizeof(*usin))
1113 			return -EINVAL;
1114 		if (usin->sin_family != AF_INET) {
1115 			if (usin->sin_family != AF_UNSPEC)
1116 				return -EAFNOSUPPORT;
1117 		}
1118 
1119 		daddr = usin->sin_addr.s_addr;
1120 		dport = usin->sin_port;
1121 		if (dport == 0)
1122 			return -EINVAL;
1123 	} else {
1124 		if (sk->sk_state != TCP_ESTABLISHED)
1125 			return -EDESTADDRREQ;
1126 		daddr = inet->inet_daddr;
1127 		dport = inet->inet_dport;
1128 		/* Open fast path for connected socket.
1129 		   Route will not be used, if at least one option is set.
1130 		 */
1131 		connected = 1;
1132 	}
1133 
1134 	ipcm_init_sk(&ipc, inet);
1135 	ipc.gso_size = READ_ONCE(up->gso_size);
1136 
1137 	if (msg->msg_controllen) {
1138 		err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1139 		if (err > 0) {
1140 			err = ip_cmsg_send(sk, msg, &ipc,
1141 					   sk->sk_family == AF_INET6);
1142 			connected = 0;
1143 		}
1144 		if (unlikely(err < 0)) {
1145 			kfree(ipc.opt);
1146 			return err;
1147 		}
1148 		if (ipc.opt)
1149 			free = 1;
1150 	}
1151 	if (!ipc.opt) {
1152 		struct ip_options_rcu *inet_opt;
1153 
1154 		rcu_read_lock();
1155 		inet_opt = rcu_dereference(inet->inet_opt);
1156 		if (inet_opt) {
1157 			memcpy(&opt_copy, inet_opt,
1158 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
1159 			ipc.opt = &opt_copy.opt;
1160 		}
1161 		rcu_read_unlock();
1162 	}
1163 
1164 	if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) {
1165 		err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1166 					    (struct sockaddr *)usin,
1167 					    &msg->msg_namelen,
1168 					    &ipc.addr);
1169 		if (err)
1170 			goto out_free;
1171 		if (usin) {
1172 			if (usin->sin_port == 0) {
1173 				/* BPF program set invalid port. Reject it. */
1174 				err = -EINVAL;
1175 				goto out_free;
1176 			}
1177 			daddr = usin->sin_addr.s_addr;
1178 			dport = usin->sin_port;
1179 		}
1180 	}
1181 
1182 	saddr = ipc.addr;
1183 	ipc.addr = faddr = daddr;
1184 
1185 	if (ipc.opt && ipc.opt->opt.srr) {
1186 		if (!daddr) {
1187 			err = -EINVAL;
1188 			goto out_free;
1189 		}
1190 		faddr = ipc.opt->opt.faddr;
1191 		connected = 0;
1192 	}
1193 	tos = get_rttos(&ipc, inet);
1194 	scope = ip_sendmsg_scope(inet, &ipc, msg);
1195 	if (scope == RT_SCOPE_LINK)
1196 		connected = 0;
1197 
1198 	uc_index = READ_ONCE(inet->uc_index);
1199 	if (ipv4_is_multicast(daddr)) {
1200 		if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1201 			ipc.oif = READ_ONCE(inet->mc_index);
1202 		if (!saddr)
1203 			saddr = READ_ONCE(inet->mc_addr);
1204 		connected = 0;
1205 	} else if (!ipc.oif) {
1206 		ipc.oif = uc_index;
1207 	} else if (ipv4_is_lbcast(daddr) && uc_index) {
1208 		/* oif is set, packet is to local broadcast and
1209 		 * uc_index is set. oif is most likely set
1210 		 * by sk_bound_dev_if. If uc_index != oif check if the
1211 		 * oif is an L3 master and uc_index is an L3 slave.
1212 		 * If so, we want to allow the send using the uc_index.
1213 		 */
1214 		if (ipc.oif != uc_index &&
1215 		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1216 							      uc_index)) {
1217 			ipc.oif = uc_index;
1218 		}
1219 	}
1220 
1221 	if (connected)
1222 		rt = dst_rtable(sk_dst_check(sk, 0));
1223 
1224 	if (!rt) {
1225 		struct net *net = sock_net(sk);
1226 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1227 
1228 		fl4 = &fl4_stack;
1229 
1230 		flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos, scope,
1231 				   sk->sk_protocol, flow_flags, faddr, saddr,
1232 				   dport, inet->inet_sport, sk->sk_uid);
1233 
1234 		security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
1235 		rt = ip_route_output_flow(net, fl4, sk);
1236 		if (IS_ERR(rt)) {
1237 			err = PTR_ERR(rt);
1238 			rt = NULL;
1239 			if (err == -ENETUNREACH)
1240 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1241 			goto out;
1242 		}
1243 
1244 		err = -EACCES;
1245 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1246 		    !sock_flag(sk, SOCK_BROADCAST))
1247 			goto out;
1248 		if (connected)
1249 			sk_dst_set(sk, dst_clone(&rt->dst));
1250 	}
1251 
1252 	if (msg->msg_flags&MSG_CONFIRM)
1253 		goto do_confirm;
1254 back_from_confirm:
1255 
1256 	saddr = fl4->saddr;
1257 	if (!ipc.addr)
1258 		daddr = ipc.addr = fl4->daddr;
1259 
1260 	/* Lockless fast path for the non-corking case. */
1261 	if (!corkreq) {
1262 		struct inet_cork cork;
1263 
1264 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1265 				  sizeof(struct udphdr), &ipc, &rt,
1266 				  &cork, msg->msg_flags);
1267 		err = PTR_ERR(skb);
1268 		if (!IS_ERR_OR_NULL(skb))
1269 			err = udp_send_skb(skb, fl4, &cork);
1270 		goto out;
1271 	}
1272 
1273 	lock_sock(sk);
1274 	if (unlikely(up->pending)) {
1275 		/* The socket is already corked while preparing it. */
1276 		/* ... which is an evident application bug. --ANK */
1277 		release_sock(sk);
1278 
1279 		net_dbg_ratelimited("socket already corked\n");
1280 		err = -EINVAL;
1281 		goto out;
1282 	}
1283 	/*
1284 	 *	Now cork the socket to pend data.
1285 	 */
1286 	fl4 = &inet->cork.fl.u.ip4;
1287 	fl4->daddr = daddr;
1288 	fl4->saddr = saddr;
1289 	fl4->fl4_dport = dport;
1290 	fl4->fl4_sport = inet->inet_sport;
1291 	WRITE_ONCE(up->pending, AF_INET);
1292 
1293 do_append_data:
1294 	up->len += ulen;
1295 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1296 			     sizeof(struct udphdr), &ipc, &rt,
1297 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1298 	if (err)
1299 		udp_flush_pending_frames(sk);
1300 	else if (!corkreq)
1301 		err = udp_push_pending_frames(sk);
1302 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1303 		WRITE_ONCE(up->pending, 0);
1304 	release_sock(sk);
1305 
1306 out:
1307 	ip_rt_put(rt);
1308 out_free:
1309 	if (free)
1310 		kfree(ipc.opt);
1311 	if (!err)
1312 		return len;
1313 	/*
1314 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1315 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1316 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1317 	 * things).  We could add another new stat but at least for now that
1318 	 * seems like overkill.
1319 	 */
1320 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1321 		UDP_INC_STATS(sock_net(sk),
1322 			      UDP_MIB_SNDBUFERRORS, is_udplite);
1323 	}
1324 	return err;
1325 
1326 do_confirm:
1327 	if (msg->msg_flags & MSG_PROBE)
1328 		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1329 	if (!(msg->msg_flags&MSG_PROBE) || len)
1330 		goto back_from_confirm;
1331 	err = 0;
1332 	goto out;
1333 }
1334 EXPORT_SYMBOL(udp_sendmsg);
1335 
1336 void udp_splice_eof(struct socket *sock)
1337 {
1338 	struct sock *sk = sock->sk;
1339 	struct udp_sock *up = udp_sk(sk);
1340 
1341 	if (!READ_ONCE(up->pending) || udp_test_bit(CORK, sk))
1342 		return;
1343 
1344 	lock_sock(sk);
1345 	if (up->pending && !udp_test_bit(CORK, sk))
1346 		udp_push_pending_frames(sk);
1347 	release_sock(sk);
1348 }
1349 EXPORT_SYMBOL_GPL(udp_splice_eof);
1350 
1351 #define UDP_SKB_IS_STATELESS 0x80000000
1352 
1353 /* all head states (dst, sk, nf conntrack) except skb extensions are
1354  * cleared by udp_rcv().
1355  *
1356  * We need to preserve secpath, if present, to eventually process
1357  * IP_CMSG_PASSSEC at recvmsg() time.
1358  *
1359  * Other extensions can be cleared.
1360  */
1361 static bool udp_try_make_stateless(struct sk_buff *skb)
1362 {
1363 	if (!skb_has_extensions(skb))
1364 		return true;
1365 
1366 	if (!secpath_exists(skb)) {
1367 		skb_ext_reset(skb);
1368 		return true;
1369 	}
1370 
1371 	return false;
1372 }
1373 
1374 static void udp_set_dev_scratch(struct sk_buff *skb)
1375 {
1376 	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1377 
1378 	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1379 	scratch->_tsize_state = skb->truesize;
1380 #if BITS_PER_LONG == 64
1381 	scratch->len = skb->len;
1382 	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1383 	scratch->is_linear = !skb_is_nonlinear(skb);
1384 #endif
1385 	if (udp_try_make_stateless(skb))
1386 		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1387 }
1388 
1389 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1390 {
1391 	/* We come here after udp_lib_checksum_complete() returned 0.
1392 	 * This means that __skb_checksum_complete() might have
1393 	 * set skb->csum_valid to 1.
1394 	 * On 64bit platforms, we can set csum_unnecessary
1395 	 * to true, but only if the skb is not shared.
1396 	 */
1397 #if BITS_PER_LONG == 64
1398 	if (!skb_shared(skb))
1399 		udp_skb_scratch(skb)->csum_unnecessary = true;
1400 #endif
1401 }
1402 
1403 static int udp_skb_truesize(struct sk_buff *skb)
1404 {
1405 	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1406 }
1407 
1408 static bool udp_skb_has_head_state(struct sk_buff *skb)
1409 {
1410 	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1411 }
1412 
1413 /* fully reclaim rmem/fwd memory allocated for skb */
1414 static void udp_rmem_release(struct sock *sk, int size, int partial,
1415 			     bool rx_queue_lock_held)
1416 {
1417 	struct udp_sock *up = udp_sk(sk);
1418 	struct sk_buff_head *sk_queue;
1419 	int amt;
1420 
1421 	if (likely(partial)) {
1422 		up->forward_deficit += size;
1423 		size = up->forward_deficit;
1424 		if (size < READ_ONCE(up->forward_threshold) &&
1425 		    !skb_queue_empty(&up->reader_queue))
1426 			return;
1427 	} else {
1428 		size += up->forward_deficit;
1429 	}
1430 	up->forward_deficit = 0;
1431 
1432 	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1433 	 * if the called don't held it already
1434 	 */
1435 	sk_queue = &sk->sk_receive_queue;
1436 	if (!rx_queue_lock_held)
1437 		spin_lock(&sk_queue->lock);
1438 
1439 
1440 	sk_forward_alloc_add(sk, size);
1441 	amt = (sk->sk_forward_alloc - partial) & ~(PAGE_SIZE - 1);
1442 	sk_forward_alloc_add(sk, -amt);
1443 
1444 	if (amt)
1445 		__sk_mem_reduce_allocated(sk, amt >> PAGE_SHIFT);
1446 
1447 	atomic_sub(size, &sk->sk_rmem_alloc);
1448 
1449 	/* this can save us from acquiring the rx queue lock on next receive */
1450 	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1451 
1452 	if (!rx_queue_lock_held)
1453 		spin_unlock(&sk_queue->lock);
1454 }
1455 
1456 /* Note: called with reader_queue.lock held.
1457  * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1458  * This avoids a cache line miss while receive_queue lock is held.
1459  * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1460  */
1461 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1462 {
1463 	prefetch(&skb->data);
1464 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1465 }
1466 EXPORT_SYMBOL(udp_skb_destructor);
1467 
1468 /* as above, but the caller held the rx queue lock, too */
1469 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1470 {
1471 	prefetch(&skb->data);
1472 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1473 }
1474 
1475 /* Idea of busylocks is to let producers grab an extra spinlock
1476  * to relieve pressure on the receive_queue spinlock shared by consumer.
1477  * Under flood, this means that only one producer can be in line
1478  * trying to acquire the receive_queue spinlock.
1479  * These busylock can be allocated on a per cpu manner, instead of a
1480  * per socket one (that would consume a cache line per socket)
1481  */
1482 static int udp_busylocks_log __read_mostly;
1483 static spinlock_t *udp_busylocks __read_mostly;
1484 
1485 static spinlock_t *busylock_acquire(void *ptr)
1486 {
1487 	spinlock_t *busy;
1488 
1489 	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1490 	spin_lock(busy);
1491 	return busy;
1492 }
1493 
1494 static void busylock_release(spinlock_t *busy)
1495 {
1496 	if (busy)
1497 		spin_unlock(busy);
1498 }
1499 
1500 static int udp_rmem_schedule(struct sock *sk, int size)
1501 {
1502 	int delta;
1503 
1504 	delta = size - sk->sk_forward_alloc;
1505 	if (delta > 0 && !__sk_mem_schedule(sk, delta, SK_MEM_RECV))
1506 		return -ENOBUFS;
1507 
1508 	return 0;
1509 }
1510 
1511 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1512 {
1513 	struct sk_buff_head *list = &sk->sk_receive_queue;
1514 	int rmem, err = -ENOMEM;
1515 	spinlock_t *busy = NULL;
1516 	bool becomes_readable;
1517 	int size, rcvbuf;
1518 
1519 	/* Immediately drop when the receive queue is full.
1520 	 * Always allow at least one packet.
1521 	 */
1522 	rmem = atomic_read(&sk->sk_rmem_alloc);
1523 	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1524 	if (rmem > rcvbuf)
1525 		goto drop;
1526 
1527 	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1528 	 * having linear skbs :
1529 	 * - Reduce memory overhead and thus increase receive queue capacity
1530 	 * - Less cache line misses at copyout() time
1531 	 * - Less work at consume_skb() (less alien page frag freeing)
1532 	 */
1533 	if (rmem > (rcvbuf >> 1)) {
1534 		skb_condense(skb);
1535 
1536 		busy = busylock_acquire(sk);
1537 	}
1538 	size = skb->truesize;
1539 	udp_set_dev_scratch(skb);
1540 
1541 	atomic_add(size, &sk->sk_rmem_alloc);
1542 
1543 	spin_lock(&list->lock);
1544 	err = udp_rmem_schedule(sk, size);
1545 	if (err) {
1546 		spin_unlock(&list->lock);
1547 		goto uncharge_drop;
1548 	}
1549 
1550 	sk_forward_alloc_add(sk, -size);
1551 
1552 	/* no need to setup a destructor, we will explicitly release the
1553 	 * forward allocated memory on dequeue
1554 	 */
1555 	sock_skb_set_dropcount(sk, skb);
1556 
1557 	becomes_readable = skb_queue_empty(list);
1558 	__skb_queue_tail(list, skb);
1559 	spin_unlock(&list->lock);
1560 
1561 	if (!sock_flag(sk, SOCK_DEAD)) {
1562 		if (becomes_readable ||
1563 		    sk->sk_data_ready != sock_def_readable ||
1564 		    READ_ONCE(sk->sk_peek_off) >= 0)
1565 			INDIRECT_CALL_1(sk->sk_data_ready,
1566 					sock_def_readable, sk);
1567 		else
1568 			sk_wake_async_rcu(sk, SOCK_WAKE_WAITD, POLL_IN);
1569 	}
1570 	busylock_release(busy);
1571 	return 0;
1572 
1573 uncharge_drop:
1574 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1575 
1576 drop:
1577 	atomic_inc(&sk->sk_drops);
1578 	busylock_release(busy);
1579 	return err;
1580 }
1581 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1582 
1583 void udp_destruct_common(struct sock *sk)
1584 {
1585 	/* reclaim completely the forward allocated memory */
1586 	struct udp_sock *up = udp_sk(sk);
1587 	unsigned int total = 0;
1588 	struct sk_buff *skb;
1589 
1590 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1591 	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1592 		total += skb->truesize;
1593 		kfree_skb(skb);
1594 	}
1595 	udp_rmem_release(sk, total, 0, true);
1596 }
1597 EXPORT_SYMBOL_GPL(udp_destruct_common);
1598 
1599 static void udp_destruct_sock(struct sock *sk)
1600 {
1601 	udp_destruct_common(sk);
1602 	inet_sock_destruct(sk);
1603 }
1604 
1605 int udp_init_sock(struct sock *sk)
1606 {
1607 	udp_lib_init_sock(sk);
1608 	sk->sk_destruct = udp_destruct_sock;
1609 	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1610 	return 0;
1611 }
1612 
1613 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1614 {
1615 	if (unlikely(READ_ONCE(udp_sk(sk)->peeking_with_offset)))
1616 		sk_peek_offset_bwd(sk, len);
1617 
1618 	if (!skb_unref(skb))
1619 		return;
1620 
1621 	/* In the more common cases we cleared the head states previously,
1622 	 * see __udp_queue_rcv_skb().
1623 	 */
1624 	if (unlikely(udp_skb_has_head_state(skb)))
1625 		skb_release_head_state(skb);
1626 	__consume_stateless_skb(skb);
1627 }
1628 EXPORT_SYMBOL_GPL(skb_consume_udp);
1629 
1630 static struct sk_buff *__first_packet_length(struct sock *sk,
1631 					     struct sk_buff_head *rcvq,
1632 					     int *total)
1633 {
1634 	struct sk_buff *skb;
1635 
1636 	while ((skb = skb_peek(rcvq)) != NULL) {
1637 		if (udp_lib_checksum_complete(skb)) {
1638 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1639 					IS_UDPLITE(sk));
1640 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1641 					IS_UDPLITE(sk));
1642 			atomic_inc(&sk->sk_drops);
1643 			__skb_unlink(skb, rcvq);
1644 			*total += skb->truesize;
1645 			kfree_skb(skb);
1646 		} else {
1647 			udp_skb_csum_unnecessary_set(skb);
1648 			break;
1649 		}
1650 	}
1651 	return skb;
1652 }
1653 
1654 /**
1655  *	first_packet_length	- return length of first packet in receive queue
1656  *	@sk: socket
1657  *
1658  *	Drops all bad checksum frames, until a valid one is found.
1659  *	Returns the length of found skb, or -1 if none is found.
1660  */
1661 static int first_packet_length(struct sock *sk)
1662 {
1663 	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1664 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1665 	struct sk_buff *skb;
1666 	int total = 0;
1667 	int res;
1668 
1669 	spin_lock_bh(&rcvq->lock);
1670 	skb = __first_packet_length(sk, rcvq, &total);
1671 	if (!skb && !skb_queue_empty_lockless(sk_queue)) {
1672 		spin_lock(&sk_queue->lock);
1673 		skb_queue_splice_tail_init(sk_queue, rcvq);
1674 		spin_unlock(&sk_queue->lock);
1675 
1676 		skb = __first_packet_length(sk, rcvq, &total);
1677 	}
1678 	res = skb ? skb->len : -1;
1679 	if (total)
1680 		udp_rmem_release(sk, total, 1, false);
1681 	spin_unlock_bh(&rcvq->lock);
1682 	return res;
1683 }
1684 
1685 /*
1686  *	IOCTL requests applicable to the UDP protocol
1687  */
1688 
1689 int udp_ioctl(struct sock *sk, int cmd, int *karg)
1690 {
1691 	switch (cmd) {
1692 	case SIOCOUTQ:
1693 	{
1694 		*karg = sk_wmem_alloc_get(sk);
1695 		return 0;
1696 	}
1697 
1698 	case SIOCINQ:
1699 	{
1700 		*karg = max_t(int, 0, first_packet_length(sk));
1701 		return 0;
1702 	}
1703 
1704 	default:
1705 		return -ENOIOCTLCMD;
1706 	}
1707 
1708 	return 0;
1709 }
1710 EXPORT_SYMBOL(udp_ioctl);
1711 
1712 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1713 			       int *off, int *err)
1714 {
1715 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1716 	struct sk_buff_head *queue;
1717 	struct sk_buff *last;
1718 	long timeo;
1719 	int error;
1720 
1721 	queue = &udp_sk(sk)->reader_queue;
1722 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1723 	do {
1724 		struct sk_buff *skb;
1725 
1726 		error = sock_error(sk);
1727 		if (error)
1728 			break;
1729 
1730 		error = -EAGAIN;
1731 		do {
1732 			spin_lock_bh(&queue->lock);
1733 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1734 							err, &last);
1735 			if (skb) {
1736 				if (!(flags & MSG_PEEK))
1737 					udp_skb_destructor(sk, skb);
1738 				spin_unlock_bh(&queue->lock);
1739 				return skb;
1740 			}
1741 
1742 			if (skb_queue_empty_lockless(sk_queue)) {
1743 				spin_unlock_bh(&queue->lock);
1744 				goto busy_check;
1745 			}
1746 
1747 			/* refill the reader queue and walk it again
1748 			 * keep both queues locked to avoid re-acquiring
1749 			 * the sk_receive_queue lock if fwd memory scheduling
1750 			 * is needed.
1751 			 */
1752 			spin_lock(&sk_queue->lock);
1753 			skb_queue_splice_tail_init(sk_queue, queue);
1754 
1755 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1756 							err, &last);
1757 			if (skb && !(flags & MSG_PEEK))
1758 				udp_skb_dtor_locked(sk, skb);
1759 			spin_unlock(&sk_queue->lock);
1760 			spin_unlock_bh(&queue->lock);
1761 			if (skb)
1762 				return skb;
1763 
1764 busy_check:
1765 			if (!sk_can_busy_loop(sk))
1766 				break;
1767 
1768 			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1769 		} while (!skb_queue_empty_lockless(sk_queue));
1770 
1771 		/* sk_queue is empty, reader_queue may contain peeked packets */
1772 	} while (timeo &&
1773 		 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
1774 					      &error, &timeo,
1775 					      (struct sk_buff *)sk_queue));
1776 
1777 	*err = error;
1778 	return NULL;
1779 }
1780 EXPORT_SYMBOL(__skb_recv_udp);
1781 
1782 int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1783 {
1784 	struct sk_buff *skb;
1785 	int err;
1786 
1787 try_again:
1788 	skb = skb_recv_udp(sk, MSG_DONTWAIT, &err);
1789 	if (!skb)
1790 		return err;
1791 
1792 	if (udp_lib_checksum_complete(skb)) {
1793 		int is_udplite = IS_UDPLITE(sk);
1794 		struct net *net = sock_net(sk);
1795 
1796 		__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, is_udplite);
1797 		__UDP_INC_STATS(net, UDP_MIB_INERRORS, is_udplite);
1798 		atomic_inc(&sk->sk_drops);
1799 		kfree_skb(skb);
1800 		goto try_again;
1801 	}
1802 
1803 	WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1804 	return recv_actor(sk, skb);
1805 }
1806 EXPORT_SYMBOL(udp_read_skb);
1807 
1808 /*
1809  * 	This should be easy, if there is something there we
1810  * 	return it, otherwise we block.
1811  */
1812 
1813 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
1814 		int *addr_len)
1815 {
1816 	struct inet_sock *inet = inet_sk(sk);
1817 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1818 	struct sk_buff *skb;
1819 	unsigned int ulen, copied;
1820 	int off, err, peeking = flags & MSG_PEEK;
1821 	int is_udplite = IS_UDPLITE(sk);
1822 	bool checksum_valid = false;
1823 
1824 	if (flags & MSG_ERRQUEUE)
1825 		return ip_recv_error(sk, msg, len, addr_len);
1826 
1827 try_again:
1828 	off = sk_peek_offset(sk, flags);
1829 	skb = __skb_recv_udp(sk, flags, &off, &err);
1830 	if (!skb)
1831 		return err;
1832 
1833 	ulen = udp_skb_len(skb);
1834 	copied = len;
1835 	if (copied > ulen - off)
1836 		copied = ulen - off;
1837 	else if (copied < ulen)
1838 		msg->msg_flags |= MSG_TRUNC;
1839 
1840 	/*
1841 	 * If checksum is needed at all, try to do it while copying the
1842 	 * data.  If the data is truncated, or if we only want a partial
1843 	 * coverage checksum (UDP-Lite), do it before the copy.
1844 	 */
1845 
1846 	if (copied < ulen || peeking ||
1847 	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1848 		checksum_valid = udp_skb_csum_unnecessary(skb) ||
1849 				!__udp_lib_checksum_complete(skb);
1850 		if (!checksum_valid)
1851 			goto csum_copy_err;
1852 	}
1853 
1854 	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1855 		if (udp_skb_is_linear(skb))
1856 			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1857 		else
1858 			err = skb_copy_datagram_msg(skb, off, msg, copied);
1859 	} else {
1860 		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1861 
1862 		if (err == -EINVAL)
1863 			goto csum_copy_err;
1864 	}
1865 
1866 	if (unlikely(err)) {
1867 		if (!peeking) {
1868 			atomic_inc(&sk->sk_drops);
1869 			UDP_INC_STATS(sock_net(sk),
1870 				      UDP_MIB_INERRORS, is_udplite);
1871 		}
1872 		kfree_skb(skb);
1873 		return err;
1874 	}
1875 
1876 	if (!peeking)
1877 		UDP_INC_STATS(sock_net(sk),
1878 			      UDP_MIB_INDATAGRAMS, is_udplite);
1879 
1880 	sock_recv_cmsgs(msg, sk, skb);
1881 
1882 	/* Copy the address. */
1883 	if (sin) {
1884 		sin->sin_family = AF_INET;
1885 		sin->sin_port = udp_hdr(skb)->source;
1886 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1887 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1888 		*addr_len = sizeof(*sin);
1889 
1890 		BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
1891 						      (struct sockaddr *)sin,
1892 						      addr_len);
1893 	}
1894 
1895 	if (udp_test_bit(GRO_ENABLED, sk))
1896 		udp_cmsg_recv(msg, sk, skb);
1897 
1898 	if (inet_cmsg_flags(inet))
1899 		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1900 
1901 	err = copied;
1902 	if (flags & MSG_TRUNC)
1903 		err = ulen;
1904 
1905 	skb_consume_udp(sk, skb, peeking ? -err : err);
1906 	return err;
1907 
1908 csum_copy_err:
1909 	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1910 				 udp_skb_destructor)) {
1911 		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1912 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1913 	}
1914 	kfree_skb(skb);
1915 
1916 	/* starting over for a new packet, but check if we need to yield */
1917 	cond_resched();
1918 	msg->msg_flags &= ~MSG_TRUNC;
1919 	goto try_again;
1920 }
1921 
1922 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1923 {
1924 	/* This check is replicated from __ip4_datagram_connect() and
1925 	 * intended to prevent BPF program called below from accessing bytes
1926 	 * that are out of the bound specified by user in addr_len.
1927 	 */
1928 	if (addr_len < sizeof(struct sockaddr_in))
1929 		return -EINVAL;
1930 
1931 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr, &addr_len);
1932 }
1933 EXPORT_SYMBOL(udp_pre_connect);
1934 
1935 int __udp_disconnect(struct sock *sk, int flags)
1936 {
1937 	struct inet_sock *inet = inet_sk(sk);
1938 	/*
1939 	 *	1003.1g - break association.
1940 	 */
1941 
1942 	sk->sk_state = TCP_CLOSE;
1943 	inet->inet_daddr = 0;
1944 	inet->inet_dport = 0;
1945 	sock_rps_reset_rxhash(sk);
1946 	sk->sk_bound_dev_if = 0;
1947 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) {
1948 		inet_reset_saddr(sk);
1949 		if (sk->sk_prot->rehash &&
1950 		    (sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1951 			sk->sk_prot->rehash(sk);
1952 	}
1953 
1954 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1955 		sk->sk_prot->unhash(sk);
1956 		inet->inet_sport = 0;
1957 	}
1958 	sk_dst_reset(sk);
1959 	return 0;
1960 }
1961 EXPORT_SYMBOL(__udp_disconnect);
1962 
1963 int udp_disconnect(struct sock *sk, int flags)
1964 {
1965 	lock_sock(sk);
1966 	__udp_disconnect(sk, flags);
1967 	release_sock(sk);
1968 	return 0;
1969 }
1970 EXPORT_SYMBOL(udp_disconnect);
1971 
1972 void udp_lib_unhash(struct sock *sk)
1973 {
1974 	if (sk_hashed(sk)) {
1975 		struct udp_table *udptable = udp_get_table_prot(sk);
1976 		struct udp_hslot *hslot, *hslot2;
1977 
1978 		hslot  = udp_hashslot(udptable, sock_net(sk),
1979 				      udp_sk(sk)->udp_port_hash);
1980 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1981 
1982 		spin_lock_bh(&hslot->lock);
1983 		if (rcu_access_pointer(sk->sk_reuseport_cb))
1984 			reuseport_detach_sock(sk);
1985 		if (sk_del_node_init_rcu(sk)) {
1986 			hslot->count--;
1987 			inet_sk(sk)->inet_num = 0;
1988 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1989 
1990 			spin_lock(&hslot2->lock);
1991 			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1992 			hslot2->count--;
1993 			spin_unlock(&hslot2->lock);
1994 		}
1995 		spin_unlock_bh(&hslot->lock);
1996 	}
1997 }
1998 EXPORT_SYMBOL(udp_lib_unhash);
1999 
2000 /*
2001  * inet_rcv_saddr was changed, we must rehash secondary hash
2002  */
2003 void udp_lib_rehash(struct sock *sk, u16 newhash)
2004 {
2005 	if (sk_hashed(sk)) {
2006 		struct udp_table *udptable = udp_get_table_prot(sk);
2007 		struct udp_hslot *hslot, *hslot2, *nhslot2;
2008 
2009 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2010 		nhslot2 = udp_hashslot2(udptable, newhash);
2011 		udp_sk(sk)->udp_portaddr_hash = newhash;
2012 
2013 		if (hslot2 != nhslot2 ||
2014 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
2015 			hslot = udp_hashslot(udptable, sock_net(sk),
2016 					     udp_sk(sk)->udp_port_hash);
2017 			/* we must lock primary chain too */
2018 			spin_lock_bh(&hslot->lock);
2019 			if (rcu_access_pointer(sk->sk_reuseport_cb))
2020 				reuseport_detach_sock(sk);
2021 
2022 			if (hslot2 != nhslot2) {
2023 				spin_lock(&hslot2->lock);
2024 				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2025 				hslot2->count--;
2026 				spin_unlock(&hslot2->lock);
2027 
2028 				spin_lock(&nhslot2->lock);
2029 				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
2030 							 &nhslot2->head);
2031 				nhslot2->count++;
2032 				spin_unlock(&nhslot2->lock);
2033 			}
2034 
2035 			spin_unlock_bh(&hslot->lock);
2036 		}
2037 	}
2038 }
2039 EXPORT_SYMBOL(udp_lib_rehash);
2040 
2041 void udp_v4_rehash(struct sock *sk)
2042 {
2043 	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
2044 					  inet_sk(sk)->inet_rcv_saddr,
2045 					  inet_sk(sk)->inet_num);
2046 	udp_lib_rehash(sk, new_hash);
2047 }
2048 
2049 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2050 {
2051 	int rc;
2052 
2053 	if (inet_sk(sk)->inet_daddr) {
2054 		sock_rps_save_rxhash(sk, skb);
2055 		sk_mark_napi_id(sk, skb);
2056 		sk_incoming_cpu_update(sk);
2057 	} else {
2058 		sk_mark_napi_id_once(sk, skb);
2059 	}
2060 
2061 	rc = __udp_enqueue_schedule_skb(sk, skb);
2062 	if (rc < 0) {
2063 		int is_udplite = IS_UDPLITE(sk);
2064 		int drop_reason;
2065 
2066 		/* Note that an ENOMEM error is charged twice */
2067 		if (rc == -ENOMEM) {
2068 			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
2069 					is_udplite);
2070 			drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
2071 		} else {
2072 			UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS,
2073 				      is_udplite);
2074 			drop_reason = SKB_DROP_REASON_PROTO_MEM;
2075 		}
2076 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2077 		trace_udp_fail_queue_rcv_skb(rc, sk, skb);
2078 		sk_skb_reason_drop(sk, skb, drop_reason);
2079 		return -1;
2080 	}
2081 
2082 	return 0;
2083 }
2084 
2085 /* returns:
2086  *  -1: error
2087  *   0: success
2088  *  >0: "udp encap" protocol resubmission
2089  *
2090  * Note that in the success and error cases, the skb is assumed to
2091  * have either been requeued or freed.
2092  */
2093 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
2094 {
2095 	int drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2096 	struct udp_sock *up = udp_sk(sk);
2097 	int is_udplite = IS_UDPLITE(sk);
2098 
2099 	/*
2100 	 *	Charge it to the socket, dropping if the queue is full.
2101 	 */
2102 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
2103 		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2104 		goto drop;
2105 	}
2106 	nf_reset_ct(skb);
2107 
2108 	if (static_branch_unlikely(&udp_encap_needed_key) &&
2109 	    READ_ONCE(up->encap_type)) {
2110 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2111 
2112 		/*
2113 		 * This is an encapsulation socket so pass the skb to
2114 		 * the socket's udp_encap_rcv() hook. Otherwise, just
2115 		 * fall through and pass this up the UDP socket.
2116 		 * up->encap_rcv() returns the following value:
2117 		 * =0 if skb was successfully passed to the encap
2118 		 *    handler or was discarded by it.
2119 		 * >0 if skb should be passed on to UDP.
2120 		 * <0 if skb should be resubmitted as proto -N
2121 		 */
2122 
2123 		/* if we're overly short, let UDP handle it */
2124 		encap_rcv = READ_ONCE(up->encap_rcv);
2125 		if (encap_rcv) {
2126 			int ret;
2127 
2128 			/* Verify checksum before giving to encap */
2129 			if (udp_lib_checksum_complete(skb))
2130 				goto csum_error;
2131 
2132 			ret = encap_rcv(sk, skb);
2133 			if (ret <= 0) {
2134 				__UDP_INC_STATS(sock_net(sk),
2135 						UDP_MIB_INDATAGRAMS,
2136 						is_udplite);
2137 				return -ret;
2138 			}
2139 		}
2140 
2141 		/* FALLTHROUGH -- it's a UDP Packet */
2142 	}
2143 
2144 	/*
2145 	 * 	UDP-Lite specific tests, ignored on UDP sockets
2146 	 */
2147 	if (udp_test_bit(UDPLITE_RECV_CC, sk) && UDP_SKB_CB(skb)->partial_cov) {
2148 		u16 pcrlen = READ_ONCE(up->pcrlen);
2149 
2150 		/*
2151 		 * MIB statistics other than incrementing the error count are
2152 		 * disabled for the following two types of errors: these depend
2153 		 * on the application settings, not on the functioning of the
2154 		 * protocol stack as such.
2155 		 *
2156 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
2157 		 * way ... to ... at least let the receiving application block
2158 		 * delivery of packets with coverage values less than a value
2159 		 * provided by the application."
2160 		 */
2161 		if (pcrlen == 0) {          /* full coverage was set  */
2162 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2163 					    UDP_SKB_CB(skb)->cscov, skb->len);
2164 			goto drop;
2165 		}
2166 		/* The next case involves violating the min. coverage requested
2167 		 * by the receiver. This is subtle: if receiver wants x and x is
2168 		 * greater than the buffersize/MTU then receiver will complain
2169 		 * that it wants x while sender emits packets of smaller size y.
2170 		 * Therefore the above ...()->partial_cov statement is essential.
2171 		 */
2172 		if (UDP_SKB_CB(skb)->cscov < pcrlen) {
2173 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2174 					    UDP_SKB_CB(skb)->cscov, pcrlen);
2175 			goto drop;
2176 		}
2177 	}
2178 
2179 	prefetch(&sk->sk_rmem_alloc);
2180 	if (rcu_access_pointer(sk->sk_filter) &&
2181 	    udp_lib_checksum_complete(skb))
2182 			goto csum_error;
2183 
2184 	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) {
2185 		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2186 		goto drop;
2187 	}
2188 
2189 	udp_csum_pull_header(skb);
2190 
2191 	ipv4_pktinfo_prepare(sk, skb, true);
2192 	return __udp_queue_rcv_skb(sk, skb);
2193 
2194 csum_error:
2195 	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2196 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2197 drop:
2198 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2199 	atomic_inc(&sk->sk_drops);
2200 	sk_skb_reason_drop(sk, skb, drop_reason);
2201 	return -1;
2202 }
2203 
2204 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2205 {
2206 	struct sk_buff *next, *segs;
2207 	int ret;
2208 
2209 	if (likely(!udp_unexpected_gso(sk, skb)))
2210 		return udp_queue_rcv_one_skb(sk, skb);
2211 
2212 	BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET);
2213 	__skb_push(skb, -skb_mac_offset(skb));
2214 	segs = udp_rcv_segment(sk, skb, true);
2215 	skb_list_walk_safe(segs, skb, next) {
2216 		__skb_pull(skb, skb_transport_offset(skb));
2217 
2218 		udp_post_segment_fix_csum(skb);
2219 		ret = udp_queue_rcv_one_skb(sk, skb);
2220 		if (ret > 0)
2221 			ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret);
2222 	}
2223 	return 0;
2224 }
2225 
2226 /* For TCP sockets, sk_rx_dst is protected by socket lock
2227  * For UDP, we use xchg() to guard against concurrent changes.
2228  */
2229 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2230 {
2231 	struct dst_entry *old;
2232 
2233 	if (dst_hold_safe(dst)) {
2234 		old = unrcu_pointer(xchg(&sk->sk_rx_dst, RCU_INITIALIZER(dst)));
2235 		dst_release(old);
2236 		return old != dst;
2237 	}
2238 	return false;
2239 }
2240 EXPORT_SYMBOL(udp_sk_rx_dst_set);
2241 
2242 /*
2243  *	Multicasts and broadcasts go to each listener.
2244  *
2245  *	Note: called only from the BH handler context.
2246  */
2247 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2248 				    struct udphdr  *uh,
2249 				    __be32 saddr, __be32 daddr,
2250 				    struct udp_table *udptable,
2251 				    int proto)
2252 {
2253 	struct sock *sk, *first = NULL;
2254 	unsigned short hnum = ntohs(uh->dest);
2255 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2256 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2257 	unsigned int offset = offsetof(typeof(*sk), sk_node);
2258 	int dif = skb->dev->ifindex;
2259 	int sdif = inet_sdif(skb);
2260 	struct hlist_node *node;
2261 	struct sk_buff *nskb;
2262 
2263 	if (use_hash2) {
2264 		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2265 			    udptable->mask;
2266 		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2267 start_lookup:
2268 		hslot = &udptable->hash2[hash2];
2269 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2270 	}
2271 
2272 	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2273 		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2274 					 uh->source, saddr, dif, sdif, hnum))
2275 			continue;
2276 
2277 		if (!first) {
2278 			first = sk;
2279 			continue;
2280 		}
2281 		nskb = skb_clone(skb, GFP_ATOMIC);
2282 
2283 		if (unlikely(!nskb)) {
2284 			atomic_inc(&sk->sk_drops);
2285 			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2286 					IS_UDPLITE(sk));
2287 			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
2288 					IS_UDPLITE(sk));
2289 			continue;
2290 		}
2291 		if (udp_queue_rcv_skb(sk, nskb) > 0)
2292 			consume_skb(nskb);
2293 	}
2294 
2295 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2296 	if (use_hash2 && hash2 != hash2_any) {
2297 		hash2 = hash2_any;
2298 		goto start_lookup;
2299 	}
2300 
2301 	if (first) {
2302 		if (udp_queue_rcv_skb(first, skb) > 0)
2303 			consume_skb(skb);
2304 	} else {
2305 		kfree_skb(skb);
2306 		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2307 				proto == IPPROTO_UDPLITE);
2308 	}
2309 	return 0;
2310 }
2311 
2312 /* Initialize UDP checksum. If exited with zero value (success),
2313  * CHECKSUM_UNNECESSARY means, that no more checks are required.
2314  * Otherwise, csum completion requires checksumming packet body,
2315  * including udp header and folding it to skb->csum.
2316  */
2317 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2318 				 int proto)
2319 {
2320 	int err;
2321 
2322 	UDP_SKB_CB(skb)->partial_cov = 0;
2323 	UDP_SKB_CB(skb)->cscov = skb->len;
2324 
2325 	if (proto == IPPROTO_UDPLITE) {
2326 		err = udplite_checksum_init(skb, uh);
2327 		if (err)
2328 			return err;
2329 
2330 		if (UDP_SKB_CB(skb)->partial_cov) {
2331 			skb->csum = inet_compute_pseudo(skb, proto);
2332 			return 0;
2333 		}
2334 	}
2335 
2336 	/* Note, we are only interested in != 0 or == 0, thus the
2337 	 * force to int.
2338 	 */
2339 	err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2340 							inet_compute_pseudo);
2341 	if (err)
2342 		return err;
2343 
2344 	if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2345 		/* If SW calculated the value, we know it's bad */
2346 		if (skb->csum_complete_sw)
2347 			return 1;
2348 
2349 		/* HW says the value is bad. Let's validate that.
2350 		 * skb->csum is no longer the full packet checksum,
2351 		 * so don't treat it as such.
2352 		 */
2353 		skb_checksum_complete_unset(skb);
2354 	}
2355 
2356 	return 0;
2357 }
2358 
2359 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2360  * return code conversion for ip layer consumption
2361  */
2362 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2363 			       struct udphdr *uh)
2364 {
2365 	int ret;
2366 
2367 	if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2368 		skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2369 
2370 	ret = udp_queue_rcv_skb(sk, skb);
2371 
2372 	/* a return value > 0 means to resubmit the input, but
2373 	 * it wants the return to be -protocol, or 0
2374 	 */
2375 	if (ret > 0)
2376 		return -ret;
2377 	return 0;
2378 }
2379 
2380 /*
2381  *	All we need to do is get the socket, and then do a checksum.
2382  */
2383 
2384 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2385 		   int proto)
2386 {
2387 	struct sock *sk = NULL;
2388 	struct udphdr *uh;
2389 	unsigned short ulen;
2390 	struct rtable *rt = skb_rtable(skb);
2391 	__be32 saddr, daddr;
2392 	struct net *net = dev_net(skb->dev);
2393 	bool refcounted;
2394 	int drop_reason;
2395 
2396 	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2397 
2398 	/*
2399 	 *  Validate the packet.
2400 	 */
2401 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2402 		goto drop;		/* No space for header. */
2403 
2404 	uh   = udp_hdr(skb);
2405 	ulen = ntohs(uh->len);
2406 	saddr = ip_hdr(skb)->saddr;
2407 	daddr = ip_hdr(skb)->daddr;
2408 
2409 	if (ulen > skb->len)
2410 		goto short_packet;
2411 
2412 	if (proto == IPPROTO_UDP) {
2413 		/* UDP validates ulen. */
2414 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2415 			goto short_packet;
2416 		uh = udp_hdr(skb);
2417 	}
2418 
2419 	if (udp4_csum_init(skb, uh, proto))
2420 		goto csum_error;
2421 
2422 	sk = inet_steal_sock(net, skb, sizeof(struct udphdr), saddr, uh->source, daddr, uh->dest,
2423 			     &refcounted, udp_ehashfn);
2424 	if (IS_ERR(sk))
2425 		goto no_sk;
2426 
2427 	if (sk) {
2428 		struct dst_entry *dst = skb_dst(skb);
2429 		int ret;
2430 
2431 		if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst))
2432 			udp_sk_rx_dst_set(sk, dst);
2433 
2434 		ret = udp_unicast_rcv_skb(sk, skb, uh);
2435 		if (refcounted)
2436 			sock_put(sk);
2437 		return ret;
2438 	}
2439 
2440 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2441 		return __udp4_lib_mcast_deliver(net, skb, uh,
2442 						saddr, daddr, udptable, proto);
2443 
2444 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2445 	if (sk)
2446 		return udp_unicast_rcv_skb(sk, skb, uh);
2447 no_sk:
2448 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2449 		goto drop;
2450 	nf_reset_ct(skb);
2451 
2452 	/* No socket. Drop packet silently, if checksum is wrong */
2453 	if (udp_lib_checksum_complete(skb))
2454 		goto csum_error;
2455 
2456 	drop_reason = SKB_DROP_REASON_NO_SOCKET;
2457 	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2458 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2459 
2460 	/*
2461 	 * Hmm.  We got an UDP packet to a port to which we
2462 	 * don't wanna listen.  Ignore it.
2463 	 */
2464 	sk_skb_reason_drop(sk, skb, drop_reason);
2465 	return 0;
2466 
2467 short_packet:
2468 	drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
2469 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2470 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2471 			    &saddr, ntohs(uh->source),
2472 			    ulen, skb->len,
2473 			    &daddr, ntohs(uh->dest));
2474 	goto drop;
2475 
2476 csum_error:
2477 	/*
2478 	 * RFC1122: OK.  Discards the bad packet silently (as far as
2479 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2480 	 */
2481 	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2482 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2483 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2484 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2485 			    ulen);
2486 	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2487 drop:
2488 	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2489 	sk_skb_reason_drop(sk, skb, drop_reason);
2490 	return 0;
2491 }
2492 
2493 /* We can only early demux multicast if there is a single matching socket.
2494  * If more than one socket found returns NULL
2495  */
2496 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2497 						  __be16 loc_port, __be32 loc_addr,
2498 						  __be16 rmt_port, __be32 rmt_addr,
2499 						  int dif, int sdif)
2500 {
2501 	struct udp_table *udptable = net->ipv4.udp_table;
2502 	unsigned short hnum = ntohs(loc_port);
2503 	struct sock *sk, *result;
2504 	struct udp_hslot *hslot;
2505 	unsigned int slot;
2506 
2507 	slot = udp_hashfn(net, hnum, udptable->mask);
2508 	hslot = &udptable->hash[slot];
2509 
2510 	/* Do not bother scanning a too big list */
2511 	if (hslot->count > 10)
2512 		return NULL;
2513 
2514 	result = NULL;
2515 	sk_for_each_rcu(sk, &hslot->head) {
2516 		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2517 					rmt_port, rmt_addr, dif, sdif, hnum)) {
2518 			if (result)
2519 				return NULL;
2520 			result = sk;
2521 		}
2522 	}
2523 
2524 	return result;
2525 }
2526 
2527 /* For unicast we should only early demux connected sockets or we can
2528  * break forwarding setups.  The chains here can be long so only check
2529  * if the first socket is an exact match and if not move on.
2530  */
2531 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2532 					    __be16 loc_port, __be32 loc_addr,
2533 					    __be16 rmt_port, __be32 rmt_addr,
2534 					    int dif, int sdif)
2535 {
2536 	struct udp_table *udptable = net->ipv4.udp_table;
2537 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2538 	unsigned short hnum = ntohs(loc_port);
2539 	unsigned int hash2, slot2;
2540 	struct udp_hslot *hslot2;
2541 	__portpair ports;
2542 	struct sock *sk;
2543 
2544 	hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2545 	slot2 = hash2 & udptable->mask;
2546 	hslot2 = &udptable->hash2[slot2];
2547 	ports = INET_COMBINED_PORTS(rmt_port, hnum);
2548 
2549 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2550 		if (inet_match(net, sk, acookie, ports, dif, sdif))
2551 			return sk;
2552 		/* Only check first socket in chain */
2553 		break;
2554 	}
2555 	return NULL;
2556 }
2557 
2558 int udp_v4_early_demux(struct sk_buff *skb)
2559 {
2560 	struct net *net = dev_net(skb->dev);
2561 	struct in_device *in_dev = NULL;
2562 	const struct iphdr *iph;
2563 	const struct udphdr *uh;
2564 	struct sock *sk = NULL;
2565 	struct dst_entry *dst;
2566 	int dif = skb->dev->ifindex;
2567 	int sdif = inet_sdif(skb);
2568 	int ours;
2569 
2570 	/* validate the packet */
2571 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2572 		return 0;
2573 
2574 	iph = ip_hdr(skb);
2575 	uh = udp_hdr(skb);
2576 
2577 	if (skb->pkt_type == PACKET_MULTICAST) {
2578 		in_dev = __in_dev_get_rcu(skb->dev);
2579 
2580 		if (!in_dev)
2581 			return 0;
2582 
2583 		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2584 				       iph->protocol);
2585 		if (!ours)
2586 			return 0;
2587 
2588 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2589 						   uh->source, iph->saddr,
2590 						   dif, sdif);
2591 	} else if (skb->pkt_type == PACKET_HOST) {
2592 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2593 					     uh->source, iph->saddr, dif, sdif);
2594 	}
2595 
2596 	if (!sk)
2597 		return 0;
2598 
2599 	skb->sk = sk;
2600 	DEBUG_NET_WARN_ON_ONCE(sk_is_refcounted(sk));
2601 	skb->destructor = sock_pfree;
2602 	dst = rcu_dereference(sk->sk_rx_dst);
2603 
2604 	if (dst)
2605 		dst = dst_check(dst, 0);
2606 	if (dst) {
2607 		u32 itag = 0;
2608 
2609 		/* set noref for now.
2610 		 * any place which wants to hold dst has to call
2611 		 * dst_hold_safe()
2612 		 */
2613 		skb_dst_set_noref(skb, dst);
2614 
2615 		/* for unconnected multicast sockets we need to validate
2616 		 * the source on each packet
2617 		 */
2618 		if (!inet_sk(sk)->inet_daddr && in_dev)
2619 			return ip_mc_validate_source(skb, iph->daddr,
2620 						     iph->saddr,
2621 						     iph->tos & IPTOS_RT_MASK,
2622 						     skb->dev, in_dev, &itag);
2623 	}
2624 	return 0;
2625 }
2626 
2627 int udp_rcv(struct sk_buff *skb)
2628 {
2629 	return __udp4_lib_rcv(skb, dev_net(skb->dev)->ipv4.udp_table, IPPROTO_UDP);
2630 }
2631 
2632 void udp_destroy_sock(struct sock *sk)
2633 {
2634 	struct udp_sock *up = udp_sk(sk);
2635 	bool slow = lock_sock_fast(sk);
2636 
2637 	/* protects from races with udp_abort() */
2638 	sock_set_flag(sk, SOCK_DEAD);
2639 	udp_flush_pending_frames(sk);
2640 	unlock_sock_fast(sk, slow);
2641 	if (static_branch_unlikely(&udp_encap_needed_key)) {
2642 		if (up->encap_type) {
2643 			void (*encap_destroy)(struct sock *sk);
2644 			encap_destroy = READ_ONCE(up->encap_destroy);
2645 			if (encap_destroy)
2646 				encap_destroy(sk);
2647 		}
2648 		if (udp_test_bit(ENCAP_ENABLED, sk))
2649 			static_branch_dec(&udp_encap_needed_key);
2650 	}
2651 }
2652 
2653 static void set_xfrm_gro_udp_encap_rcv(__u16 encap_type, unsigned short family,
2654 				       struct sock *sk)
2655 {
2656 #ifdef CONFIG_XFRM
2657 	if (udp_test_bit(GRO_ENABLED, sk) && encap_type == UDP_ENCAP_ESPINUDP) {
2658 		if (family == AF_INET)
2659 			WRITE_ONCE(udp_sk(sk)->gro_receive, xfrm4_gro_udp_encap_rcv);
2660 		else if (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6)
2661 			WRITE_ONCE(udp_sk(sk)->gro_receive, ipv6_stub->xfrm6_gro_udp_encap_rcv);
2662 	}
2663 #endif
2664 }
2665 
2666 /*
2667  *	Socket option code for UDP
2668  */
2669 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2670 		       sockptr_t optval, unsigned int optlen,
2671 		       int (*push_pending_frames)(struct sock *))
2672 {
2673 	struct udp_sock *up = udp_sk(sk);
2674 	int val, valbool;
2675 	int err = 0;
2676 	int is_udplite = IS_UDPLITE(sk);
2677 
2678 	if (level == SOL_SOCKET) {
2679 		err = sk_setsockopt(sk, level, optname, optval, optlen);
2680 
2681 		if (optname == SO_RCVBUF || optname == SO_RCVBUFFORCE) {
2682 			sockopt_lock_sock(sk);
2683 			/* paired with READ_ONCE in udp_rmem_release() */
2684 			WRITE_ONCE(up->forward_threshold, sk->sk_rcvbuf >> 2);
2685 			sockopt_release_sock(sk);
2686 		}
2687 		return err;
2688 	}
2689 
2690 	if (optlen < sizeof(int))
2691 		return -EINVAL;
2692 
2693 	if (copy_from_sockptr(&val, optval, sizeof(val)))
2694 		return -EFAULT;
2695 
2696 	valbool = val ? 1 : 0;
2697 
2698 	switch (optname) {
2699 	case UDP_CORK:
2700 		if (val != 0) {
2701 			udp_set_bit(CORK, sk);
2702 		} else {
2703 			udp_clear_bit(CORK, sk);
2704 			lock_sock(sk);
2705 			push_pending_frames(sk);
2706 			release_sock(sk);
2707 		}
2708 		break;
2709 
2710 	case UDP_ENCAP:
2711 		switch (val) {
2712 		case 0:
2713 #ifdef CONFIG_XFRM
2714 		case UDP_ENCAP_ESPINUDP:
2715 			set_xfrm_gro_udp_encap_rcv(val, sk->sk_family, sk);
2716 #if IS_ENABLED(CONFIG_IPV6)
2717 			if (sk->sk_family == AF_INET6)
2718 				WRITE_ONCE(up->encap_rcv,
2719 					   ipv6_stub->xfrm6_udp_encap_rcv);
2720 			else
2721 #endif
2722 				WRITE_ONCE(up->encap_rcv,
2723 					   xfrm4_udp_encap_rcv);
2724 #endif
2725 			fallthrough;
2726 		case UDP_ENCAP_L2TPINUDP:
2727 			WRITE_ONCE(up->encap_type, val);
2728 			udp_tunnel_encap_enable(sk);
2729 			break;
2730 		default:
2731 			err = -ENOPROTOOPT;
2732 			break;
2733 		}
2734 		break;
2735 
2736 	case UDP_NO_CHECK6_TX:
2737 		udp_set_no_check6_tx(sk, valbool);
2738 		break;
2739 
2740 	case UDP_NO_CHECK6_RX:
2741 		udp_set_no_check6_rx(sk, valbool);
2742 		break;
2743 
2744 	case UDP_SEGMENT:
2745 		if (val < 0 || val > USHRT_MAX)
2746 			return -EINVAL;
2747 		WRITE_ONCE(up->gso_size, val);
2748 		break;
2749 
2750 	case UDP_GRO:
2751 
2752 		/* when enabling GRO, accept the related GSO packet type */
2753 		if (valbool)
2754 			udp_tunnel_encap_enable(sk);
2755 		udp_assign_bit(GRO_ENABLED, sk, valbool);
2756 		udp_assign_bit(ACCEPT_L4, sk, valbool);
2757 		set_xfrm_gro_udp_encap_rcv(up->encap_type, sk->sk_family, sk);
2758 		break;
2759 
2760 	/*
2761 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2762 	 */
2763 	/* The sender sets actual checksum coverage length via this option.
2764 	 * The case coverage > packet length is handled by send module. */
2765 	case UDPLITE_SEND_CSCOV:
2766 		if (!is_udplite)         /* Disable the option on UDP sockets */
2767 			return -ENOPROTOOPT;
2768 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2769 			val = 8;
2770 		else if (val > USHRT_MAX)
2771 			val = USHRT_MAX;
2772 		WRITE_ONCE(up->pcslen, val);
2773 		udp_set_bit(UDPLITE_SEND_CC, sk);
2774 		break;
2775 
2776 	/* The receiver specifies a minimum checksum coverage value. To make
2777 	 * sense, this should be set to at least 8 (as done below). If zero is
2778 	 * used, this again means full checksum coverage.                     */
2779 	case UDPLITE_RECV_CSCOV:
2780 		if (!is_udplite)         /* Disable the option on UDP sockets */
2781 			return -ENOPROTOOPT;
2782 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2783 			val = 8;
2784 		else if (val > USHRT_MAX)
2785 			val = USHRT_MAX;
2786 		WRITE_ONCE(up->pcrlen, val);
2787 		udp_set_bit(UDPLITE_RECV_CC, sk);
2788 		break;
2789 
2790 	default:
2791 		err = -ENOPROTOOPT;
2792 		break;
2793 	}
2794 
2795 	return err;
2796 }
2797 EXPORT_SYMBOL(udp_lib_setsockopt);
2798 
2799 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
2800 		   unsigned int optlen)
2801 {
2802 	if (level == SOL_UDP  ||  level == SOL_UDPLITE || level == SOL_SOCKET)
2803 		return udp_lib_setsockopt(sk, level, optname,
2804 					  optval, optlen,
2805 					  udp_push_pending_frames);
2806 	return ip_setsockopt(sk, level, optname, optval, optlen);
2807 }
2808 
2809 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2810 		       char __user *optval, int __user *optlen)
2811 {
2812 	struct udp_sock *up = udp_sk(sk);
2813 	int val, len;
2814 
2815 	if (get_user(len, optlen))
2816 		return -EFAULT;
2817 
2818 	if (len < 0)
2819 		return -EINVAL;
2820 
2821 	len = min_t(unsigned int, len, sizeof(int));
2822 
2823 	switch (optname) {
2824 	case UDP_CORK:
2825 		val = udp_test_bit(CORK, sk);
2826 		break;
2827 
2828 	case UDP_ENCAP:
2829 		val = READ_ONCE(up->encap_type);
2830 		break;
2831 
2832 	case UDP_NO_CHECK6_TX:
2833 		val = udp_get_no_check6_tx(sk);
2834 		break;
2835 
2836 	case UDP_NO_CHECK6_RX:
2837 		val = udp_get_no_check6_rx(sk);
2838 		break;
2839 
2840 	case UDP_SEGMENT:
2841 		val = READ_ONCE(up->gso_size);
2842 		break;
2843 
2844 	case UDP_GRO:
2845 		val = udp_test_bit(GRO_ENABLED, sk);
2846 		break;
2847 
2848 	/* The following two cannot be changed on UDP sockets, the return is
2849 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2850 	case UDPLITE_SEND_CSCOV:
2851 		val = READ_ONCE(up->pcslen);
2852 		break;
2853 
2854 	case UDPLITE_RECV_CSCOV:
2855 		val = READ_ONCE(up->pcrlen);
2856 		break;
2857 
2858 	default:
2859 		return -ENOPROTOOPT;
2860 	}
2861 
2862 	if (put_user(len, optlen))
2863 		return -EFAULT;
2864 	if (copy_to_user(optval, &val, len))
2865 		return -EFAULT;
2866 	return 0;
2867 }
2868 EXPORT_SYMBOL(udp_lib_getsockopt);
2869 
2870 int udp_getsockopt(struct sock *sk, int level, int optname,
2871 		   char __user *optval, int __user *optlen)
2872 {
2873 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2874 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2875 	return ip_getsockopt(sk, level, optname, optval, optlen);
2876 }
2877 
2878 /**
2879  * 	udp_poll - wait for a UDP event.
2880  *	@file: - file struct
2881  *	@sock: - socket
2882  *	@wait: - poll table
2883  *
2884  *	This is same as datagram poll, except for the special case of
2885  *	blocking sockets. If application is using a blocking fd
2886  *	and a packet with checksum error is in the queue;
2887  *	then it could get return from select indicating data available
2888  *	but then block when reading it. Add special case code
2889  *	to work around these arguably broken applications.
2890  */
2891 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2892 {
2893 	__poll_t mask = datagram_poll(file, sock, wait);
2894 	struct sock *sk = sock->sk;
2895 
2896 	if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
2897 		mask |= EPOLLIN | EPOLLRDNORM;
2898 
2899 	/* Check for false positives due to checksum errors */
2900 	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2901 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2902 		mask &= ~(EPOLLIN | EPOLLRDNORM);
2903 
2904 	/* psock ingress_msg queue should not contain any bad checksum frames */
2905 	if (sk_is_readable(sk))
2906 		mask |= EPOLLIN | EPOLLRDNORM;
2907 	return mask;
2908 
2909 }
2910 EXPORT_SYMBOL(udp_poll);
2911 
2912 int udp_abort(struct sock *sk, int err)
2913 {
2914 	if (!has_current_bpf_ctx())
2915 		lock_sock(sk);
2916 
2917 	/* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing
2918 	 * with close()
2919 	 */
2920 	if (sock_flag(sk, SOCK_DEAD))
2921 		goto out;
2922 
2923 	sk->sk_err = err;
2924 	sk_error_report(sk);
2925 	__udp_disconnect(sk, 0);
2926 
2927 out:
2928 	if (!has_current_bpf_ctx())
2929 		release_sock(sk);
2930 
2931 	return 0;
2932 }
2933 EXPORT_SYMBOL_GPL(udp_abort);
2934 
2935 struct proto udp_prot = {
2936 	.name			= "UDP",
2937 	.owner			= THIS_MODULE,
2938 	.close			= udp_lib_close,
2939 	.pre_connect		= udp_pre_connect,
2940 	.connect		= ip4_datagram_connect,
2941 	.disconnect		= udp_disconnect,
2942 	.ioctl			= udp_ioctl,
2943 	.init			= udp_init_sock,
2944 	.destroy		= udp_destroy_sock,
2945 	.setsockopt		= udp_setsockopt,
2946 	.getsockopt		= udp_getsockopt,
2947 	.sendmsg		= udp_sendmsg,
2948 	.recvmsg		= udp_recvmsg,
2949 	.splice_eof		= udp_splice_eof,
2950 	.release_cb		= ip4_datagram_release_cb,
2951 	.hash			= udp_lib_hash,
2952 	.unhash			= udp_lib_unhash,
2953 	.rehash			= udp_v4_rehash,
2954 	.get_port		= udp_v4_get_port,
2955 	.put_port		= udp_lib_unhash,
2956 #ifdef CONFIG_BPF_SYSCALL
2957 	.psock_update_sk_prot	= udp_bpf_update_proto,
2958 #endif
2959 	.memory_allocated	= &udp_memory_allocated,
2960 	.per_cpu_fw_alloc	= &udp_memory_per_cpu_fw_alloc,
2961 
2962 	.sysctl_mem		= sysctl_udp_mem,
2963 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2964 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2965 	.obj_size		= sizeof(struct udp_sock),
2966 	.h.udp_table		= NULL,
2967 	.diag_destroy		= udp_abort,
2968 };
2969 EXPORT_SYMBOL(udp_prot);
2970 
2971 /* ------------------------------------------------------------------------ */
2972 #ifdef CONFIG_PROC_FS
2973 
2974 static unsigned short seq_file_family(const struct seq_file *seq);
2975 static bool seq_sk_match(struct seq_file *seq, const struct sock *sk)
2976 {
2977 	unsigned short family = seq_file_family(seq);
2978 
2979 	/* AF_UNSPEC is used as a match all */
2980 	return ((family == AF_UNSPEC || family == sk->sk_family) &&
2981 		net_eq(sock_net(sk), seq_file_net(seq)));
2982 }
2983 
2984 #ifdef CONFIG_BPF_SYSCALL
2985 static const struct seq_operations bpf_iter_udp_seq_ops;
2986 #endif
2987 static struct udp_table *udp_get_table_seq(struct seq_file *seq,
2988 					   struct net *net)
2989 {
2990 	const struct udp_seq_afinfo *afinfo;
2991 
2992 #ifdef CONFIG_BPF_SYSCALL
2993 	if (seq->op == &bpf_iter_udp_seq_ops)
2994 		return net->ipv4.udp_table;
2995 #endif
2996 
2997 	afinfo = pde_data(file_inode(seq->file));
2998 	return afinfo->udp_table ? : net->ipv4.udp_table;
2999 }
3000 
3001 static struct sock *udp_get_first(struct seq_file *seq, int start)
3002 {
3003 	struct udp_iter_state *state = seq->private;
3004 	struct net *net = seq_file_net(seq);
3005 	struct udp_table *udptable;
3006 	struct sock *sk;
3007 
3008 	udptable = udp_get_table_seq(seq, net);
3009 
3010 	for (state->bucket = start; state->bucket <= udptable->mask;
3011 	     ++state->bucket) {
3012 		struct udp_hslot *hslot = &udptable->hash[state->bucket];
3013 
3014 		if (hlist_empty(&hslot->head))
3015 			continue;
3016 
3017 		spin_lock_bh(&hslot->lock);
3018 		sk_for_each(sk, &hslot->head) {
3019 			if (seq_sk_match(seq, sk))
3020 				goto found;
3021 		}
3022 		spin_unlock_bh(&hslot->lock);
3023 	}
3024 	sk = NULL;
3025 found:
3026 	return sk;
3027 }
3028 
3029 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
3030 {
3031 	struct udp_iter_state *state = seq->private;
3032 	struct net *net = seq_file_net(seq);
3033 	struct udp_table *udptable;
3034 
3035 	do {
3036 		sk = sk_next(sk);
3037 	} while (sk && !seq_sk_match(seq, sk));
3038 
3039 	if (!sk) {
3040 		udptable = udp_get_table_seq(seq, net);
3041 
3042 		if (state->bucket <= udptable->mask)
3043 			spin_unlock_bh(&udptable->hash[state->bucket].lock);
3044 
3045 		return udp_get_first(seq, state->bucket + 1);
3046 	}
3047 	return sk;
3048 }
3049 
3050 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
3051 {
3052 	struct sock *sk = udp_get_first(seq, 0);
3053 
3054 	if (sk)
3055 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
3056 			--pos;
3057 	return pos ? NULL : sk;
3058 }
3059 
3060 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
3061 {
3062 	struct udp_iter_state *state = seq->private;
3063 	state->bucket = MAX_UDP_PORTS;
3064 
3065 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
3066 }
3067 EXPORT_SYMBOL(udp_seq_start);
3068 
3069 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3070 {
3071 	struct sock *sk;
3072 
3073 	if (v == SEQ_START_TOKEN)
3074 		sk = udp_get_idx(seq, 0);
3075 	else
3076 		sk = udp_get_next(seq, v);
3077 
3078 	++*pos;
3079 	return sk;
3080 }
3081 EXPORT_SYMBOL(udp_seq_next);
3082 
3083 void udp_seq_stop(struct seq_file *seq, void *v)
3084 {
3085 	struct udp_iter_state *state = seq->private;
3086 	struct udp_table *udptable;
3087 
3088 	udptable = udp_get_table_seq(seq, seq_file_net(seq));
3089 
3090 	if (state->bucket <= udptable->mask)
3091 		spin_unlock_bh(&udptable->hash[state->bucket].lock);
3092 }
3093 EXPORT_SYMBOL(udp_seq_stop);
3094 
3095 /* ------------------------------------------------------------------------ */
3096 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
3097 		int bucket)
3098 {
3099 	struct inet_sock *inet = inet_sk(sp);
3100 	__be32 dest = inet->inet_daddr;
3101 	__be32 src  = inet->inet_rcv_saddr;
3102 	__u16 destp	  = ntohs(inet->inet_dport);
3103 	__u16 srcp	  = ntohs(inet->inet_sport);
3104 
3105 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
3106 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
3107 		bucket, src, srcp, dest, destp, sp->sk_state,
3108 		sk_wmem_alloc_get(sp),
3109 		udp_rqueue_get(sp),
3110 		0, 0L, 0,
3111 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
3112 		0, sock_i_ino(sp),
3113 		refcount_read(&sp->sk_refcnt), sp,
3114 		atomic_read(&sp->sk_drops));
3115 }
3116 
3117 int udp4_seq_show(struct seq_file *seq, void *v)
3118 {
3119 	seq_setwidth(seq, 127);
3120 	if (v == SEQ_START_TOKEN)
3121 		seq_puts(seq, "   sl  local_address rem_address   st tx_queue "
3122 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
3123 			   "inode ref pointer drops");
3124 	else {
3125 		struct udp_iter_state *state = seq->private;
3126 
3127 		udp4_format_sock(v, seq, state->bucket);
3128 	}
3129 	seq_pad(seq, '\n');
3130 	return 0;
3131 }
3132 
3133 #ifdef CONFIG_BPF_SYSCALL
3134 struct bpf_iter__udp {
3135 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
3136 	__bpf_md_ptr(struct udp_sock *, udp_sk);
3137 	uid_t uid __aligned(8);
3138 	int bucket __aligned(8);
3139 };
3140 
3141 struct bpf_udp_iter_state {
3142 	struct udp_iter_state state;
3143 	unsigned int cur_sk;
3144 	unsigned int end_sk;
3145 	unsigned int max_sk;
3146 	int offset;
3147 	struct sock **batch;
3148 	bool st_bucket_done;
3149 };
3150 
3151 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3152 				      unsigned int new_batch_sz);
3153 static struct sock *bpf_iter_udp_batch(struct seq_file *seq)
3154 {
3155 	struct bpf_udp_iter_state *iter = seq->private;
3156 	struct udp_iter_state *state = &iter->state;
3157 	struct net *net = seq_file_net(seq);
3158 	int resume_bucket, resume_offset;
3159 	struct udp_table *udptable;
3160 	unsigned int batch_sks = 0;
3161 	bool resized = false;
3162 	struct sock *sk;
3163 
3164 	resume_bucket = state->bucket;
3165 	resume_offset = iter->offset;
3166 
3167 	/* The current batch is done, so advance the bucket. */
3168 	if (iter->st_bucket_done)
3169 		state->bucket++;
3170 
3171 	udptable = udp_get_table_seq(seq, net);
3172 
3173 again:
3174 	/* New batch for the next bucket.
3175 	 * Iterate over the hash table to find a bucket with sockets matching
3176 	 * the iterator attributes, and return the first matching socket from
3177 	 * the bucket. The remaining matched sockets from the bucket are batched
3178 	 * before releasing the bucket lock. This allows BPF programs that are
3179 	 * called in seq_show to acquire the bucket lock if needed.
3180 	 */
3181 	iter->cur_sk = 0;
3182 	iter->end_sk = 0;
3183 	iter->st_bucket_done = false;
3184 	batch_sks = 0;
3185 
3186 	for (; state->bucket <= udptable->mask; state->bucket++) {
3187 		struct udp_hslot *hslot2 = &udptable->hash2[state->bucket];
3188 
3189 		if (hlist_empty(&hslot2->head))
3190 			continue;
3191 
3192 		iter->offset = 0;
3193 		spin_lock_bh(&hslot2->lock);
3194 		udp_portaddr_for_each_entry(sk, &hslot2->head) {
3195 			if (seq_sk_match(seq, sk)) {
3196 				/* Resume from the last iterated socket at the
3197 				 * offset in the bucket before iterator was stopped.
3198 				 */
3199 				if (state->bucket == resume_bucket &&
3200 				    iter->offset < resume_offset) {
3201 					++iter->offset;
3202 					continue;
3203 				}
3204 				if (iter->end_sk < iter->max_sk) {
3205 					sock_hold(sk);
3206 					iter->batch[iter->end_sk++] = sk;
3207 				}
3208 				batch_sks++;
3209 			}
3210 		}
3211 		spin_unlock_bh(&hslot2->lock);
3212 
3213 		if (iter->end_sk)
3214 			break;
3215 	}
3216 
3217 	/* All done: no batch made. */
3218 	if (!iter->end_sk)
3219 		return NULL;
3220 
3221 	if (iter->end_sk == batch_sks) {
3222 		/* Batching is done for the current bucket; return the first
3223 		 * socket to be iterated from the batch.
3224 		 */
3225 		iter->st_bucket_done = true;
3226 		goto done;
3227 	}
3228 	if (!resized && !bpf_iter_udp_realloc_batch(iter, batch_sks * 3 / 2)) {
3229 		resized = true;
3230 		/* After allocating a larger batch, retry one more time to grab
3231 		 * the whole bucket.
3232 		 */
3233 		goto again;
3234 	}
3235 done:
3236 	return iter->batch[0];
3237 }
3238 
3239 static void *bpf_iter_udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3240 {
3241 	struct bpf_udp_iter_state *iter = seq->private;
3242 	struct sock *sk;
3243 
3244 	/* Whenever seq_next() is called, the iter->cur_sk is
3245 	 * done with seq_show(), so unref the iter->cur_sk.
3246 	 */
3247 	if (iter->cur_sk < iter->end_sk) {
3248 		sock_put(iter->batch[iter->cur_sk++]);
3249 		++iter->offset;
3250 	}
3251 
3252 	/* After updating iter->cur_sk, check if there are more sockets
3253 	 * available in the current bucket batch.
3254 	 */
3255 	if (iter->cur_sk < iter->end_sk)
3256 		sk = iter->batch[iter->cur_sk];
3257 	else
3258 		/* Prepare a new batch. */
3259 		sk = bpf_iter_udp_batch(seq);
3260 
3261 	++*pos;
3262 	return sk;
3263 }
3264 
3265 static void *bpf_iter_udp_seq_start(struct seq_file *seq, loff_t *pos)
3266 {
3267 	/* bpf iter does not support lseek, so it always
3268 	 * continue from where it was stop()-ped.
3269 	 */
3270 	if (*pos)
3271 		return bpf_iter_udp_batch(seq);
3272 
3273 	return SEQ_START_TOKEN;
3274 }
3275 
3276 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3277 			     struct udp_sock *udp_sk, uid_t uid, int bucket)
3278 {
3279 	struct bpf_iter__udp ctx;
3280 
3281 	meta->seq_num--;  /* skip SEQ_START_TOKEN */
3282 	ctx.meta = meta;
3283 	ctx.udp_sk = udp_sk;
3284 	ctx.uid = uid;
3285 	ctx.bucket = bucket;
3286 	return bpf_iter_run_prog(prog, &ctx);
3287 }
3288 
3289 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v)
3290 {
3291 	struct udp_iter_state *state = seq->private;
3292 	struct bpf_iter_meta meta;
3293 	struct bpf_prog *prog;
3294 	struct sock *sk = v;
3295 	uid_t uid;
3296 	int ret;
3297 
3298 	if (v == SEQ_START_TOKEN)
3299 		return 0;
3300 
3301 	lock_sock(sk);
3302 
3303 	if (unlikely(sk_unhashed(sk))) {
3304 		ret = SEQ_SKIP;
3305 		goto unlock;
3306 	}
3307 
3308 	uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3309 	meta.seq = seq;
3310 	prog = bpf_iter_get_info(&meta, false);
3311 	ret = udp_prog_seq_show(prog, &meta, v, uid, state->bucket);
3312 
3313 unlock:
3314 	release_sock(sk);
3315 	return ret;
3316 }
3317 
3318 static void bpf_iter_udp_put_batch(struct bpf_udp_iter_state *iter)
3319 {
3320 	while (iter->cur_sk < iter->end_sk)
3321 		sock_put(iter->batch[iter->cur_sk++]);
3322 }
3323 
3324 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v)
3325 {
3326 	struct bpf_udp_iter_state *iter = seq->private;
3327 	struct bpf_iter_meta meta;
3328 	struct bpf_prog *prog;
3329 
3330 	if (!v) {
3331 		meta.seq = seq;
3332 		prog = bpf_iter_get_info(&meta, true);
3333 		if (prog)
3334 			(void)udp_prog_seq_show(prog, &meta, v, 0, 0);
3335 	}
3336 
3337 	if (iter->cur_sk < iter->end_sk) {
3338 		bpf_iter_udp_put_batch(iter);
3339 		iter->st_bucket_done = false;
3340 	}
3341 }
3342 
3343 static const struct seq_operations bpf_iter_udp_seq_ops = {
3344 	.start		= bpf_iter_udp_seq_start,
3345 	.next		= bpf_iter_udp_seq_next,
3346 	.stop		= bpf_iter_udp_seq_stop,
3347 	.show		= bpf_iter_udp_seq_show,
3348 };
3349 #endif
3350 
3351 static unsigned short seq_file_family(const struct seq_file *seq)
3352 {
3353 	const struct udp_seq_afinfo *afinfo;
3354 
3355 #ifdef CONFIG_BPF_SYSCALL
3356 	/* BPF iterator: bpf programs to filter sockets. */
3357 	if (seq->op == &bpf_iter_udp_seq_ops)
3358 		return AF_UNSPEC;
3359 #endif
3360 
3361 	/* Proc fs iterator */
3362 	afinfo = pde_data(file_inode(seq->file));
3363 	return afinfo->family;
3364 }
3365 
3366 const struct seq_operations udp_seq_ops = {
3367 	.start		= udp_seq_start,
3368 	.next		= udp_seq_next,
3369 	.stop		= udp_seq_stop,
3370 	.show		= udp4_seq_show,
3371 };
3372 EXPORT_SYMBOL(udp_seq_ops);
3373 
3374 static struct udp_seq_afinfo udp4_seq_afinfo = {
3375 	.family		= AF_INET,
3376 	.udp_table	= NULL,
3377 };
3378 
3379 static int __net_init udp4_proc_init_net(struct net *net)
3380 {
3381 	if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
3382 			sizeof(struct udp_iter_state), &udp4_seq_afinfo))
3383 		return -ENOMEM;
3384 	return 0;
3385 }
3386 
3387 static void __net_exit udp4_proc_exit_net(struct net *net)
3388 {
3389 	remove_proc_entry("udp", net->proc_net);
3390 }
3391 
3392 static struct pernet_operations udp4_net_ops = {
3393 	.init = udp4_proc_init_net,
3394 	.exit = udp4_proc_exit_net,
3395 };
3396 
3397 int __init udp4_proc_init(void)
3398 {
3399 	return register_pernet_subsys(&udp4_net_ops);
3400 }
3401 
3402 void udp4_proc_exit(void)
3403 {
3404 	unregister_pernet_subsys(&udp4_net_ops);
3405 }
3406 #endif /* CONFIG_PROC_FS */
3407 
3408 static __initdata unsigned long uhash_entries;
3409 static int __init set_uhash_entries(char *str)
3410 {
3411 	ssize_t ret;
3412 
3413 	if (!str)
3414 		return 0;
3415 
3416 	ret = kstrtoul(str, 0, &uhash_entries);
3417 	if (ret)
3418 		return 0;
3419 
3420 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
3421 		uhash_entries = UDP_HTABLE_SIZE_MIN;
3422 	return 1;
3423 }
3424 __setup("uhash_entries=", set_uhash_entries);
3425 
3426 void __init udp_table_init(struct udp_table *table, const char *name)
3427 {
3428 	unsigned int i;
3429 
3430 	table->hash = alloc_large_system_hash(name,
3431 					      2 * sizeof(struct udp_hslot),
3432 					      uhash_entries,
3433 					      21, /* one slot per 2 MB */
3434 					      0,
3435 					      &table->log,
3436 					      &table->mask,
3437 					      UDP_HTABLE_SIZE_MIN,
3438 					      UDP_HTABLE_SIZE_MAX);
3439 
3440 	table->hash2 = table->hash + (table->mask + 1);
3441 	for (i = 0; i <= table->mask; i++) {
3442 		INIT_HLIST_HEAD(&table->hash[i].head);
3443 		table->hash[i].count = 0;
3444 		spin_lock_init(&table->hash[i].lock);
3445 	}
3446 	for (i = 0; i <= table->mask; i++) {
3447 		INIT_HLIST_HEAD(&table->hash2[i].head);
3448 		table->hash2[i].count = 0;
3449 		spin_lock_init(&table->hash2[i].lock);
3450 	}
3451 }
3452 
3453 u32 udp_flow_hashrnd(void)
3454 {
3455 	static u32 hashrnd __read_mostly;
3456 
3457 	net_get_random_once(&hashrnd, sizeof(hashrnd));
3458 
3459 	return hashrnd;
3460 }
3461 EXPORT_SYMBOL(udp_flow_hashrnd);
3462 
3463 static void __net_init udp_sysctl_init(struct net *net)
3464 {
3465 	net->ipv4.sysctl_udp_rmem_min = PAGE_SIZE;
3466 	net->ipv4.sysctl_udp_wmem_min = PAGE_SIZE;
3467 
3468 #ifdef CONFIG_NET_L3_MASTER_DEV
3469 	net->ipv4.sysctl_udp_l3mdev_accept = 0;
3470 #endif
3471 }
3472 
3473 static struct udp_table __net_init *udp_pernet_table_alloc(unsigned int hash_entries)
3474 {
3475 	struct udp_table *udptable;
3476 	int i;
3477 
3478 	udptable = kmalloc(sizeof(*udptable), GFP_KERNEL);
3479 	if (!udptable)
3480 		goto out;
3481 
3482 	udptable->hash = vmalloc_huge(hash_entries * 2 * sizeof(struct udp_hslot),
3483 				      GFP_KERNEL_ACCOUNT);
3484 	if (!udptable->hash)
3485 		goto free_table;
3486 
3487 	udptable->hash2 = udptable->hash + hash_entries;
3488 	udptable->mask = hash_entries - 1;
3489 	udptable->log = ilog2(hash_entries);
3490 
3491 	for (i = 0; i < hash_entries; i++) {
3492 		INIT_HLIST_HEAD(&udptable->hash[i].head);
3493 		udptable->hash[i].count = 0;
3494 		spin_lock_init(&udptable->hash[i].lock);
3495 
3496 		INIT_HLIST_HEAD(&udptable->hash2[i].head);
3497 		udptable->hash2[i].count = 0;
3498 		spin_lock_init(&udptable->hash2[i].lock);
3499 	}
3500 
3501 	return udptable;
3502 
3503 free_table:
3504 	kfree(udptable);
3505 out:
3506 	return NULL;
3507 }
3508 
3509 static void __net_exit udp_pernet_table_free(struct net *net)
3510 {
3511 	struct udp_table *udptable = net->ipv4.udp_table;
3512 
3513 	if (udptable == &udp_table)
3514 		return;
3515 
3516 	kvfree(udptable->hash);
3517 	kfree(udptable);
3518 }
3519 
3520 static void __net_init udp_set_table(struct net *net)
3521 {
3522 	struct udp_table *udptable;
3523 	unsigned int hash_entries;
3524 	struct net *old_net;
3525 
3526 	if (net_eq(net, &init_net))
3527 		goto fallback;
3528 
3529 	old_net = current->nsproxy->net_ns;
3530 	hash_entries = READ_ONCE(old_net->ipv4.sysctl_udp_child_hash_entries);
3531 	if (!hash_entries)
3532 		goto fallback;
3533 
3534 	/* Set min to keep the bitmap on stack in udp_lib_get_port() */
3535 	if (hash_entries < UDP_HTABLE_SIZE_MIN_PERNET)
3536 		hash_entries = UDP_HTABLE_SIZE_MIN_PERNET;
3537 	else
3538 		hash_entries = roundup_pow_of_two(hash_entries);
3539 
3540 	udptable = udp_pernet_table_alloc(hash_entries);
3541 	if (udptable) {
3542 		net->ipv4.udp_table = udptable;
3543 	} else {
3544 		pr_warn("Failed to allocate UDP hash table (entries: %u) "
3545 			"for a netns, fallback to the global one\n",
3546 			hash_entries);
3547 fallback:
3548 		net->ipv4.udp_table = &udp_table;
3549 	}
3550 }
3551 
3552 static int __net_init udp_pernet_init(struct net *net)
3553 {
3554 	udp_sysctl_init(net);
3555 	udp_set_table(net);
3556 
3557 	return 0;
3558 }
3559 
3560 static void __net_exit udp_pernet_exit(struct net *net)
3561 {
3562 	udp_pernet_table_free(net);
3563 }
3564 
3565 static struct pernet_operations __net_initdata udp_sysctl_ops = {
3566 	.init	= udp_pernet_init,
3567 	.exit	= udp_pernet_exit,
3568 };
3569 
3570 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3571 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta,
3572 		     struct udp_sock *udp_sk, uid_t uid, int bucket)
3573 
3574 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3575 				      unsigned int new_batch_sz)
3576 {
3577 	struct sock **new_batch;
3578 
3579 	new_batch = kvmalloc_array(new_batch_sz, sizeof(*new_batch),
3580 				   GFP_USER | __GFP_NOWARN);
3581 	if (!new_batch)
3582 		return -ENOMEM;
3583 
3584 	bpf_iter_udp_put_batch(iter);
3585 	kvfree(iter->batch);
3586 	iter->batch = new_batch;
3587 	iter->max_sk = new_batch_sz;
3588 
3589 	return 0;
3590 }
3591 
3592 #define INIT_BATCH_SZ 16
3593 
3594 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux)
3595 {
3596 	struct bpf_udp_iter_state *iter = priv_data;
3597 	int ret;
3598 
3599 	ret = bpf_iter_init_seq_net(priv_data, aux);
3600 	if (ret)
3601 		return ret;
3602 
3603 	ret = bpf_iter_udp_realloc_batch(iter, INIT_BATCH_SZ);
3604 	if (ret)
3605 		bpf_iter_fini_seq_net(priv_data);
3606 
3607 	return ret;
3608 }
3609 
3610 static void bpf_iter_fini_udp(void *priv_data)
3611 {
3612 	struct bpf_udp_iter_state *iter = priv_data;
3613 
3614 	bpf_iter_fini_seq_net(priv_data);
3615 	kvfree(iter->batch);
3616 }
3617 
3618 static const struct bpf_iter_seq_info udp_seq_info = {
3619 	.seq_ops		= &bpf_iter_udp_seq_ops,
3620 	.init_seq_private	= bpf_iter_init_udp,
3621 	.fini_seq_private	= bpf_iter_fini_udp,
3622 	.seq_priv_size		= sizeof(struct bpf_udp_iter_state),
3623 };
3624 
3625 static struct bpf_iter_reg udp_reg_info = {
3626 	.target			= "udp",
3627 	.ctx_arg_info_size	= 1,
3628 	.ctx_arg_info		= {
3629 		{ offsetof(struct bpf_iter__udp, udp_sk),
3630 		  PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED },
3631 	},
3632 	.seq_info		= &udp_seq_info,
3633 };
3634 
3635 static void __init bpf_iter_register(void)
3636 {
3637 	udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP];
3638 	if (bpf_iter_reg_target(&udp_reg_info))
3639 		pr_warn("Warning: could not register bpf iterator udp\n");
3640 }
3641 #endif
3642 
3643 void __init udp_init(void)
3644 {
3645 	unsigned long limit;
3646 	unsigned int i;
3647 
3648 	udp_table_init(&udp_table, "UDP");
3649 	limit = nr_free_buffer_pages() / 8;
3650 	limit = max(limit, 128UL);
3651 	sysctl_udp_mem[0] = limit / 4 * 3;
3652 	sysctl_udp_mem[1] = limit;
3653 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3654 
3655 	/* 16 spinlocks per cpu */
3656 	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3657 	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3658 				GFP_KERNEL);
3659 	if (!udp_busylocks)
3660 		panic("UDP: failed to alloc udp_busylocks\n");
3661 	for (i = 0; i < (1U << udp_busylocks_log); i++)
3662 		spin_lock_init(udp_busylocks + i);
3663 
3664 	if (register_pernet_subsys(&udp_sysctl_ops))
3665 		panic("UDP: failed to init sysctl parameters.\n");
3666 
3667 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3668 	bpf_iter_register();
3669 #endif
3670 }
3671