xref: /linux/net/ipv4/udp.c (revision 4232da23d75d173195c6766729e51947b64f83cd)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		The User Datagram Protocol (UDP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
12  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
13  *		Hirokazu Takahashi, <taka@valinux.co.jp>
14  *
15  * Fixes:
16  *		Alan Cox	:	verify_area() calls
17  *		Alan Cox	: 	stopped close while in use off icmp
18  *					messages. Not a fix but a botch that
19  *					for udp at least is 'valid'.
20  *		Alan Cox	:	Fixed icmp handling properly
21  *		Alan Cox	: 	Correct error for oversized datagrams
22  *		Alan Cox	:	Tidied select() semantics.
23  *		Alan Cox	:	udp_err() fixed properly, also now
24  *					select and read wake correctly on errors
25  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
26  *		Alan Cox	:	UDP can count its memory
27  *		Alan Cox	:	send to an unknown connection causes
28  *					an ECONNREFUSED off the icmp, but
29  *					does NOT close.
30  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
31  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
32  *					bug no longer crashes it.
33  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
34  *		Alan Cox	:	Uses skb_free_datagram
35  *		Alan Cox	:	Added get/set sockopt support.
36  *		Alan Cox	:	Broadcasting without option set returns EACCES.
37  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
38  *		Alan Cox	:	Use ip_tos and ip_ttl
39  *		Alan Cox	:	SNMP Mibs
40  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
41  *		Matt Dillon	:	UDP length checks.
42  *		Alan Cox	:	Smarter af_inet used properly.
43  *		Alan Cox	:	Use new kernel side addressing.
44  *		Alan Cox	:	Incorrect return on truncated datagram receive.
45  *	Arnt Gulbrandsen 	:	New udp_send and stuff
46  *		Alan Cox	:	Cache last socket
47  *		Alan Cox	:	Route cache
48  *		Jon Peatfield	:	Minor efficiency fix to sendto().
49  *		Mike Shaver	:	RFC1122 checks.
50  *		Alan Cox	:	Nonblocking error fix.
51  *	Willy Konynenberg	:	Transparent proxying support.
52  *		Mike McLagan	:	Routing by source
53  *		David S. Miller	:	New socket lookup architecture.
54  *					Last socket cache retained as it
55  *					does have a high hit rate.
56  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
57  *		Andi Kleen	:	Some cleanups, cache destination entry
58  *					for connect.
59  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
60  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
61  *					return ENOTCONN for unconnected sockets (POSIX)
62  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
63  *					bound-to-device socket
64  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
65  *					datagrams.
66  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
67  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
68  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
69  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
70  *					a single port at the same time.
71  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
72  *	James Chapman		:	Add L2TP encapsulation type.
73  */
74 
75 #define pr_fmt(fmt) "UDP: " fmt
76 
77 #include <linux/bpf-cgroup.h>
78 #include <linux/uaccess.h>
79 #include <asm/ioctls.h>
80 #include <linux/memblock.h>
81 #include <linux/highmem.h>
82 #include <linux/types.h>
83 #include <linux/fcntl.h>
84 #include <linux/module.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/igmp.h>
88 #include <linux/inetdevice.h>
89 #include <linux/in.h>
90 #include <linux/errno.h>
91 #include <linux/timer.h>
92 #include <linux/mm.h>
93 #include <linux/inet.h>
94 #include <linux/netdevice.h>
95 #include <linux/slab.h>
96 #include <net/tcp_states.h>
97 #include <linux/skbuff.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <net/net_namespace.h>
101 #include <net/icmp.h>
102 #include <net/inet_hashtables.h>
103 #include <net/ip_tunnels.h>
104 #include <net/route.h>
105 #include <net/checksum.h>
106 #include <net/gso.h>
107 #include <net/xfrm.h>
108 #include <trace/events/udp.h>
109 #include <linux/static_key.h>
110 #include <linux/btf_ids.h>
111 #include <trace/events/skb.h>
112 #include <net/busy_poll.h>
113 #include "udp_impl.h"
114 #include <net/sock_reuseport.h>
115 #include <net/addrconf.h>
116 #include <net/udp_tunnel.h>
117 #include <net/gro.h>
118 #if IS_ENABLED(CONFIG_IPV6)
119 #include <net/ipv6_stubs.h>
120 #endif
121 
122 struct udp_table udp_table __read_mostly;
123 EXPORT_SYMBOL(udp_table);
124 
125 long sysctl_udp_mem[3] __read_mostly;
126 EXPORT_SYMBOL(sysctl_udp_mem);
127 
128 atomic_long_t udp_memory_allocated ____cacheline_aligned_in_smp;
129 EXPORT_SYMBOL(udp_memory_allocated);
130 DEFINE_PER_CPU(int, udp_memory_per_cpu_fw_alloc);
131 EXPORT_PER_CPU_SYMBOL_GPL(udp_memory_per_cpu_fw_alloc);
132 
133 #define MAX_UDP_PORTS 65536
134 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN_PERNET)
135 
136 static struct udp_table *udp_get_table_prot(struct sock *sk)
137 {
138 	return sk->sk_prot->h.udp_table ? : sock_net(sk)->ipv4.udp_table;
139 }
140 
141 static int udp_lib_lport_inuse(struct net *net, __u16 num,
142 			       const struct udp_hslot *hslot,
143 			       unsigned long *bitmap,
144 			       struct sock *sk, unsigned int log)
145 {
146 	struct sock *sk2;
147 	kuid_t uid = sock_i_uid(sk);
148 
149 	sk_for_each(sk2, &hslot->head) {
150 		if (net_eq(sock_net(sk2), net) &&
151 		    sk2 != sk &&
152 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
153 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
154 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
155 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
156 		    inet_rcv_saddr_equal(sk, sk2, true)) {
157 			if (sk2->sk_reuseport && sk->sk_reuseport &&
158 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
159 			    uid_eq(uid, sock_i_uid(sk2))) {
160 				if (!bitmap)
161 					return 0;
162 			} else {
163 				if (!bitmap)
164 					return 1;
165 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
166 					  bitmap);
167 			}
168 		}
169 	}
170 	return 0;
171 }
172 
173 /*
174  * Note: we still hold spinlock of primary hash chain, so no other writer
175  * can insert/delete a socket with local_port == num
176  */
177 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
178 				struct udp_hslot *hslot2,
179 				struct sock *sk)
180 {
181 	struct sock *sk2;
182 	kuid_t uid = sock_i_uid(sk);
183 	int res = 0;
184 
185 	spin_lock(&hslot2->lock);
186 	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
187 		if (net_eq(sock_net(sk2), net) &&
188 		    sk2 != sk &&
189 		    (udp_sk(sk2)->udp_port_hash == num) &&
190 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
191 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
192 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
193 		    inet_rcv_saddr_equal(sk, sk2, true)) {
194 			if (sk2->sk_reuseport && sk->sk_reuseport &&
195 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
196 			    uid_eq(uid, sock_i_uid(sk2))) {
197 				res = 0;
198 			} else {
199 				res = 1;
200 			}
201 			break;
202 		}
203 	}
204 	spin_unlock(&hslot2->lock);
205 	return res;
206 }
207 
208 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
209 {
210 	struct net *net = sock_net(sk);
211 	kuid_t uid = sock_i_uid(sk);
212 	struct sock *sk2;
213 
214 	sk_for_each(sk2, &hslot->head) {
215 		if (net_eq(sock_net(sk2), net) &&
216 		    sk2 != sk &&
217 		    sk2->sk_family == sk->sk_family &&
218 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
219 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
220 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
221 		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
222 		    inet_rcv_saddr_equal(sk, sk2, false)) {
223 			return reuseport_add_sock(sk, sk2,
224 						  inet_rcv_saddr_any(sk));
225 		}
226 	}
227 
228 	return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
229 }
230 
231 /**
232  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
233  *
234  *  @sk:          socket struct in question
235  *  @snum:        port number to look up
236  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
237  *                   with NULL address
238  */
239 int udp_lib_get_port(struct sock *sk, unsigned short snum,
240 		     unsigned int hash2_nulladdr)
241 {
242 	struct udp_table *udptable = udp_get_table_prot(sk);
243 	struct udp_hslot *hslot, *hslot2;
244 	struct net *net = sock_net(sk);
245 	int error = -EADDRINUSE;
246 
247 	if (!snum) {
248 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
249 		unsigned short first, last;
250 		int low, high, remaining;
251 		unsigned int rand;
252 
253 		inet_sk_get_local_port_range(sk, &low, &high);
254 		remaining = (high - low) + 1;
255 
256 		rand = get_random_u32();
257 		first = reciprocal_scale(rand, remaining) + low;
258 		/*
259 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
260 		 */
261 		rand = (rand | 1) * (udptable->mask + 1);
262 		last = first + udptable->mask + 1;
263 		do {
264 			hslot = udp_hashslot(udptable, net, first);
265 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
266 			spin_lock_bh(&hslot->lock);
267 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
268 					    udptable->log);
269 
270 			snum = first;
271 			/*
272 			 * Iterate on all possible values of snum for this hash.
273 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
274 			 * give us randomization and full range coverage.
275 			 */
276 			do {
277 				if (low <= snum && snum <= high &&
278 				    !test_bit(snum >> udptable->log, bitmap) &&
279 				    !inet_is_local_reserved_port(net, snum))
280 					goto found;
281 				snum += rand;
282 			} while (snum != first);
283 			spin_unlock_bh(&hslot->lock);
284 			cond_resched();
285 		} while (++first != last);
286 		goto fail;
287 	} else {
288 		hslot = udp_hashslot(udptable, net, snum);
289 		spin_lock_bh(&hslot->lock);
290 		if (hslot->count > 10) {
291 			int exist;
292 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
293 
294 			slot2          &= udptable->mask;
295 			hash2_nulladdr &= udptable->mask;
296 
297 			hslot2 = udp_hashslot2(udptable, slot2);
298 			if (hslot->count < hslot2->count)
299 				goto scan_primary_hash;
300 
301 			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
302 			if (!exist && (hash2_nulladdr != slot2)) {
303 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
304 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
305 							     sk);
306 			}
307 			if (exist)
308 				goto fail_unlock;
309 			else
310 				goto found;
311 		}
312 scan_primary_hash:
313 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
314 			goto fail_unlock;
315 	}
316 found:
317 	inet_sk(sk)->inet_num = snum;
318 	udp_sk(sk)->udp_port_hash = snum;
319 	udp_sk(sk)->udp_portaddr_hash ^= snum;
320 	if (sk_unhashed(sk)) {
321 		if (sk->sk_reuseport &&
322 		    udp_reuseport_add_sock(sk, hslot)) {
323 			inet_sk(sk)->inet_num = 0;
324 			udp_sk(sk)->udp_port_hash = 0;
325 			udp_sk(sk)->udp_portaddr_hash ^= snum;
326 			goto fail_unlock;
327 		}
328 
329 		sk_add_node_rcu(sk, &hslot->head);
330 		hslot->count++;
331 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
332 
333 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
334 		spin_lock(&hslot2->lock);
335 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
336 		    sk->sk_family == AF_INET6)
337 			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
338 					   &hslot2->head);
339 		else
340 			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
341 					   &hslot2->head);
342 		hslot2->count++;
343 		spin_unlock(&hslot2->lock);
344 	}
345 	sock_set_flag(sk, SOCK_RCU_FREE);
346 	error = 0;
347 fail_unlock:
348 	spin_unlock_bh(&hslot->lock);
349 fail:
350 	return error;
351 }
352 EXPORT_SYMBOL(udp_lib_get_port);
353 
354 int udp_v4_get_port(struct sock *sk, unsigned short snum)
355 {
356 	unsigned int hash2_nulladdr =
357 		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
358 	unsigned int hash2_partial =
359 		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
360 
361 	/* precompute partial secondary hash */
362 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
363 	return udp_lib_get_port(sk, snum, hash2_nulladdr);
364 }
365 
366 static int compute_score(struct sock *sk, struct net *net,
367 			 __be32 saddr, __be16 sport,
368 			 __be32 daddr, unsigned short hnum,
369 			 int dif, int sdif)
370 {
371 	int score;
372 	struct inet_sock *inet;
373 	bool dev_match;
374 
375 	if (!net_eq(sock_net(sk), net) ||
376 	    udp_sk(sk)->udp_port_hash != hnum ||
377 	    ipv6_only_sock(sk))
378 		return -1;
379 
380 	if (sk->sk_rcv_saddr != daddr)
381 		return -1;
382 
383 	score = (sk->sk_family == PF_INET) ? 2 : 1;
384 
385 	inet = inet_sk(sk);
386 	if (inet->inet_daddr) {
387 		if (inet->inet_daddr != saddr)
388 			return -1;
389 		score += 4;
390 	}
391 
392 	if (inet->inet_dport) {
393 		if (inet->inet_dport != sport)
394 			return -1;
395 		score += 4;
396 	}
397 
398 	dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
399 					dif, sdif);
400 	if (!dev_match)
401 		return -1;
402 	if (sk->sk_bound_dev_if)
403 		score += 4;
404 
405 	if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
406 		score++;
407 	return score;
408 }
409 
410 INDIRECT_CALLABLE_SCOPE
411 u32 udp_ehashfn(const struct net *net, const __be32 laddr, const __u16 lport,
412 		const __be32 faddr, const __be16 fport)
413 {
414 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
415 
416 	return __inet_ehashfn(laddr, lport, faddr, fport,
417 			      udp_ehash_secret + net_hash_mix(net));
418 }
419 
420 /* called with rcu_read_lock() */
421 static struct sock *udp4_lib_lookup2(struct net *net,
422 				     __be32 saddr, __be16 sport,
423 				     __be32 daddr, unsigned int hnum,
424 				     int dif, int sdif,
425 				     struct udp_hslot *hslot2,
426 				     struct sk_buff *skb)
427 {
428 	struct sock *sk, *result;
429 	int score, badness;
430 
431 	result = NULL;
432 	badness = 0;
433 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
434 		score = compute_score(sk, net, saddr, sport,
435 				      daddr, hnum, dif, sdif);
436 		if (score > badness) {
437 			badness = score;
438 
439 			if (sk->sk_state == TCP_ESTABLISHED) {
440 				result = sk;
441 				continue;
442 			}
443 
444 			result = inet_lookup_reuseport(net, sk, skb, sizeof(struct udphdr),
445 						       saddr, sport, daddr, hnum, udp_ehashfn);
446 			if (!result) {
447 				result = sk;
448 				continue;
449 			}
450 
451 			/* Fall back to scoring if group has connections */
452 			if (!reuseport_has_conns(sk))
453 				return result;
454 
455 			/* Reuseport logic returned an error, keep original score. */
456 			if (IS_ERR(result))
457 				continue;
458 
459 			badness = compute_score(result, net, saddr, sport,
460 						daddr, hnum, dif, sdif);
461 
462 		}
463 	}
464 	return result;
465 }
466 
467 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
468  * harder than this. -DaveM
469  */
470 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
471 		__be16 sport, __be32 daddr, __be16 dport, int dif,
472 		int sdif, struct udp_table *udptable, struct sk_buff *skb)
473 {
474 	unsigned short hnum = ntohs(dport);
475 	unsigned int hash2, slot2;
476 	struct udp_hslot *hslot2;
477 	struct sock *result, *sk;
478 
479 	hash2 = ipv4_portaddr_hash(net, daddr, hnum);
480 	slot2 = hash2 & udptable->mask;
481 	hslot2 = &udptable->hash2[slot2];
482 
483 	/* Lookup connected or non-wildcard socket */
484 	result = udp4_lib_lookup2(net, saddr, sport,
485 				  daddr, hnum, dif, sdif,
486 				  hslot2, skb);
487 	if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED)
488 		goto done;
489 
490 	/* Lookup redirect from BPF */
491 	if (static_branch_unlikely(&bpf_sk_lookup_enabled) &&
492 	    udptable == net->ipv4.udp_table) {
493 		sk = inet_lookup_run_sk_lookup(net, IPPROTO_UDP, skb, sizeof(struct udphdr),
494 					       saddr, sport, daddr, hnum, dif,
495 					       udp_ehashfn);
496 		if (sk) {
497 			result = sk;
498 			goto done;
499 		}
500 	}
501 
502 	/* Got non-wildcard socket or error on first lookup */
503 	if (result)
504 		goto done;
505 
506 	/* Lookup wildcard sockets */
507 	hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
508 	slot2 = hash2 & udptable->mask;
509 	hslot2 = &udptable->hash2[slot2];
510 
511 	result = udp4_lib_lookup2(net, saddr, sport,
512 				  htonl(INADDR_ANY), hnum, dif, sdif,
513 				  hslot2, skb);
514 done:
515 	if (IS_ERR(result))
516 		return NULL;
517 	return result;
518 }
519 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
520 
521 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
522 						 __be16 sport, __be16 dport,
523 						 struct udp_table *udptable)
524 {
525 	const struct iphdr *iph = ip_hdr(skb);
526 
527 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
528 				 iph->daddr, dport, inet_iif(skb),
529 				 inet_sdif(skb), udptable, skb);
530 }
531 
532 struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb,
533 				 __be16 sport, __be16 dport)
534 {
535 	const u16 offset = NAPI_GRO_CB(skb)->network_offsets[skb->encapsulation];
536 	const struct iphdr *iph = (struct iphdr *)(skb->data + offset);
537 	struct net *net = dev_net(skb->dev);
538 	int iif, sdif;
539 
540 	inet_get_iif_sdif(skb, &iif, &sdif);
541 
542 	return __udp4_lib_lookup(net, iph->saddr, sport,
543 				 iph->daddr, dport, iif,
544 				 sdif, net->ipv4.udp_table, NULL);
545 }
546 
547 /* Must be called under rcu_read_lock().
548  * Does increment socket refcount.
549  */
550 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
551 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
552 			     __be32 daddr, __be16 dport, int dif)
553 {
554 	struct sock *sk;
555 
556 	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
557 			       dif, 0, net->ipv4.udp_table, NULL);
558 	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
559 		sk = NULL;
560 	return sk;
561 }
562 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
563 #endif
564 
565 static inline bool __udp_is_mcast_sock(struct net *net, const struct sock *sk,
566 				       __be16 loc_port, __be32 loc_addr,
567 				       __be16 rmt_port, __be32 rmt_addr,
568 				       int dif, int sdif, unsigned short hnum)
569 {
570 	const struct inet_sock *inet = inet_sk(sk);
571 
572 	if (!net_eq(sock_net(sk), net) ||
573 	    udp_sk(sk)->udp_port_hash != hnum ||
574 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
575 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
576 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
577 	    ipv6_only_sock(sk) ||
578 	    !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
579 		return false;
580 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
581 		return false;
582 	return true;
583 }
584 
585 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
586 EXPORT_SYMBOL(udp_encap_needed_key);
587 
588 #if IS_ENABLED(CONFIG_IPV6)
589 DEFINE_STATIC_KEY_FALSE(udpv6_encap_needed_key);
590 EXPORT_SYMBOL(udpv6_encap_needed_key);
591 #endif
592 
593 void udp_encap_enable(void)
594 {
595 	static_branch_inc(&udp_encap_needed_key);
596 }
597 EXPORT_SYMBOL(udp_encap_enable);
598 
599 void udp_encap_disable(void)
600 {
601 	static_branch_dec(&udp_encap_needed_key);
602 }
603 EXPORT_SYMBOL(udp_encap_disable);
604 
605 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go
606  * through error handlers in encapsulations looking for a match.
607  */
608 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
609 {
610 	int i;
611 
612 	for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
613 		int (*handler)(struct sk_buff *skb, u32 info);
614 		const struct ip_tunnel_encap_ops *encap;
615 
616 		encap = rcu_dereference(iptun_encaps[i]);
617 		if (!encap)
618 			continue;
619 		handler = encap->err_handler;
620 		if (handler && !handler(skb, info))
621 			return 0;
622 	}
623 
624 	return -ENOENT;
625 }
626 
627 /* Try to match ICMP errors to UDP tunnels by looking up a socket without
628  * reversing source and destination port: this will match tunnels that force the
629  * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
630  * lwtunnels might actually break this assumption by being configured with
631  * different destination ports on endpoints, in this case we won't be able to
632  * trace ICMP messages back to them.
633  *
634  * If this doesn't match any socket, probe tunnels with arbitrary destination
635  * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
636  * we've sent packets to won't necessarily match the local destination port.
637  *
638  * Then ask the tunnel implementation to match the error against a valid
639  * association.
640  *
641  * Return an error if we can't find a match, the socket if we need further
642  * processing, zero otherwise.
643  */
644 static struct sock *__udp4_lib_err_encap(struct net *net,
645 					 const struct iphdr *iph,
646 					 struct udphdr *uh,
647 					 struct udp_table *udptable,
648 					 struct sock *sk,
649 					 struct sk_buff *skb, u32 info)
650 {
651 	int (*lookup)(struct sock *sk, struct sk_buff *skb);
652 	int network_offset, transport_offset;
653 	struct udp_sock *up;
654 
655 	network_offset = skb_network_offset(skb);
656 	transport_offset = skb_transport_offset(skb);
657 
658 	/* Network header needs to point to the outer IPv4 header inside ICMP */
659 	skb_reset_network_header(skb);
660 
661 	/* Transport header needs to point to the UDP header */
662 	skb_set_transport_header(skb, iph->ihl << 2);
663 
664 	if (sk) {
665 		up = udp_sk(sk);
666 
667 		lookup = READ_ONCE(up->encap_err_lookup);
668 		if (lookup && lookup(sk, skb))
669 			sk = NULL;
670 
671 		goto out;
672 	}
673 
674 	sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
675 			       iph->saddr, uh->dest, skb->dev->ifindex, 0,
676 			       udptable, NULL);
677 	if (sk) {
678 		up = udp_sk(sk);
679 
680 		lookup = READ_ONCE(up->encap_err_lookup);
681 		if (!lookup || lookup(sk, skb))
682 			sk = NULL;
683 	}
684 
685 out:
686 	if (!sk)
687 		sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
688 
689 	skb_set_transport_header(skb, transport_offset);
690 	skb_set_network_header(skb, network_offset);
691 
692 	return sk;
693 }
694 
695 /*
696  * This routine is called by the ICMP module when it gets some
697  * sort of error condition.  If err < 0 then the socket should
698  * be closed and the error returned to the user.  If err > 0
699  * it's just the icmp type << 8 | icmp code.
700  * Header points to the ip header of the error packet. We move
701  * on past this. Then (as it used to claim before adjustment)
702  * header points to the first 8 bytes of the udp header.  We need
703  * to find the appropriate port.
704  */
705 
706 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
707 {
708 	struct inet_sock *inet;
709 	const struct iphdr *iph = (const struct iphdr *)skb->data;
710 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
711 	const int type = icmp_hdr(skb)->type;
712 	const int code = icmp_hdr(skb)->code;
713 	bool tunnel = false;
714 	struct sock *sk;
715 	int harderr;
716 	int err;
717 	struct net *net = dev_net(skb->dev);
718 
719 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
720 			       iph->saddr, uh->source, skb->dev->ifindex,
721 			       inet_sdif(skb), udptable, NULL);
722 
723 	if (!sk || READ_ONCE(udp_sk(sk)->encap_type)) {
724 		/* No socket for error: try tunnels before discarding */
725 		if (static_branch_unlikely(&udp_encap_needed_key)) {
726 			sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb,
727 						  info);
728 			if (!sk)
729 				return 0;
730 		} else
731 			sk = ERR_PTR(-ENOENT);
732 
733 		if (IS_ERR(sk)) {
734 			__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
735 			return PTR_ERR(sk);
736 		}
737 
738 		tunnel = true;
739 	}
740 
741 	err = 0;
742 	harderr = 0;
743 	inet = inet_sk(sk);
744 
745 	switch (type) {
746 	default:
747 	case ICMP_TIME_EXCEEDED:
748 		err = EHOSTUNREACH;
749 		break;
750 	case ICMP_SOURCE_QUENCH:
751 		goto out;
752 	case ICMP_PARAMETERPROB:
753 		err = EPROTO;
754 		harderr = 1;
755 		break;
756 	case ICMP_DEST_UNREACH:
757 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
758 			ipv4_sk_update_pmtu(skb, sk, info);
759 			if (READ_ONCE(inet->pmtudisc) != IP_PMTUDISC_DONT) {
760 				err = EMSGSIZE;
761 				harderr = 1;
762 				break;
763 			}
764 			goto out;
765 		}
766 		err = EHOSTUNREACH;
767 		if (code <= NR_ICMP_UNREACH) {
768 			harderr = icmp_err_convert[code].fatal;
769 			err = icmp_err_convert[code].errno;
770 		}
771 		break;
772 	case ICMP_REDIRECT:
773 		ipv4_sk_redirect(skb, sk);
774 		goto out;
775 	}
776 
777 	/*
778 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
779 	 *	4.1.3.3.
780 	 */
781 	if (tunnel) {
782 		/* ...not for tunnels though: we don't have a sending socket */
783 		if (udp_sk(sk)->encap_err_rcv)
784 			udp_sk(sk)->encap_err_rcv(sk, skb, err, uh->dest, info,
785 						  (u8 *)(uh+1));
786 		goto out;
787 	}
788 	if (!inet_test_bit(RECVERR, sk)) {
789 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
790 			goto out;
791 	} else
792 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
793 
794 	sk->sk_err = err;
795 	sk_error_report(sk);
796 out:
797 	return 0;
798 }
799 
800 int udp_err(struct sk_buff *skb, u32 info)
801 {
802 	return __udp4_lib_err(skb, info, dev_net(skb->dev)->ipv4.udp_table);
803 }
804 
805 /*
806  * Throw away all pending data and cancel the corking. Socket is locked.
807  */
808 void udp_flush_pending_frames(struct sock *sk)
809 {
810 	struct udp_sock *up = udp_sk(sk);
811 
812 	if (up->pending) {
813 		up->len = 0;
814 		WRITE_ONCE(up->pending, 0);
815 		ip_flush_pending_frames(sk);
816 	}
817 }
818 EXPORT_SYMBOL(udp_flush_pending_frames);
819 
820 /**
821  * 	udp4_hwcsum  -  handle outgoing HW checksumming
822  * 	@skb: 	sk_buff containing the filled-in UDP header
823  * 	        (checksum field must be zeroed out)
824  *	@src:	source IP address
825  *	@dst:	destination IP address
826  */
827 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
828 {
829 	struct udphdr *uh = udp_hdr(skb);
830 	int offset = skb_transport_offset(skb);
831 	int len = skb->len - offset;
832 	int hlen = len;
833 	__wsum csum = 0;
834 
835 	if (!skb_has_frag_list(skb)) {
836 		/*
837 		 * Only one fragment on the socket.
838 		 */
839 		skb->csum_start = skb_transport_header(skb) - skb->head;
840 		skb->csum_offset = offsetof(struct udphdr, check);
841 		uh->check = ~csum_tcpudp_magic(src, dst, len,
842 					       IPPROTO_UDP, 0);
843 	} else {
844 		struct sk_buff *frags;
845 
846 		/*
847 		 * HW-checksum won't work as there are two or more
848 		 * fragments on the socket so that all csums of sk_buffs
849 		 * should be together
850 		 */
851 		skb_walk_frags(skb, frags) {
852 			csum = csum_add(csum, frags->csum);
853 			hlen -= frags->len;
854 		}
855 
856 		csum = skb_checksum(skb, offset, hlen, csum);
857 		skb->ip_summed = CHECKSUM_NONE;
858 
859 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
860 		if (uh->check == 0)
861 			uh->check = CSUM_MANGLED_0;
862 	}
863 }
864 EXPORT_SYMBOL_GPL(udp4_hwcsum);
865 
866 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
867  * for the simple case like when setting the checksum for a UDP tunnel.
868  */
869 void udp_set_csum(bool nocheck, struct sk_buff *skb,
870 		  __be32 saddr, __be32 daddr, int len)
871 {
872 	struct udphdr *uh = udp_hdr(skb);
873 
874 	if (nocheck) {
875 		uh->check = 0;
876 	} else if (skb_is_gso(skb)) {
877 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
878 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
879 		uh->check = 0;
880 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
881 		if (uh->check == 0)
882 			uh->check = CSUM_MANGLED_0;
883 	} else {
884 		skb->ip_summed = CHECKSUM_PARTIAL;
885 		skb->csum_start = skb_transport_header(skb) - skb->head;
886 		skb->csum_offset = offsetof(struct udphdr, check);
887 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
888 	}
889 }
890 EXPORT_SYMBOL(udp_set_csum);
891 
892 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
893 			struct inet_cork *cork)
894 {
895 	struct sock *sk = skb->sk;
896 	struct inet_sock *inet = inet_sk(sk);
897 	struct udphdr *uh;
898 	int err;
899 	int is_udplite = IS_UDPLITE(sk);
900 	int offset = skb_transport_offset(skb);
901 	int len = skb->len - offset;
902 	int datalen = len - sizeof(*uh);
903 	__wsum csum = 0;
904 
905 	/*
906 	 * Create a UDP header
907 	 */
908 	uh = udp_hdr(skb);
909 	uh->source = inet->inet_sport;
910 	uh->dest = fl4->fl4_dport;
911 	uh->len = htons(len);
912 	uh->check = 0;
913 
914 	if (cork->gso_size) {
915 		const int hlen = skb_network_header_len(skb) +
916 				 sizeof(struct udphdr);
917 
918 		if (hlen + cork->gso_size > cork->fragsize) {
919 			kfree_skb(skb);
920 			return -EINVAL;
921 		}
922 		if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) {
923 			kfree_skb(skb);
924 			return -EINVAL;
925 		}
926 		if (sk->sk_no_check_tx) {
927 			kfree_skb(skb);
928 			return -EINVAL;
929 		}
930 		if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
931 		    dst_xfrm(skb_dst(skb))) {
932 			kfree_skb(skb);
933 			return -EIO;
934 		}
935 
936 		if (datalen > cork->gso_size) {
937 			skb_shinfo(skb)->gso_size = cork->gso_size;
938 			skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
939 			skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
940 								 cork->gso_size);
941 		}
942 		goto csum_partial;
943 	}
944 
945 	if (is_udplite)  				 /*     UDP-Lite      */
946 		csum = udplite_csum(skb);
947 
948 	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
949 
950 		skb->ip_summed = CHECKSUM_NONE;
951 		goto send;
952 
953 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
954 csum_partial:
955 
956 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
957 		goto send;
958 
959 	} else
960 		csum = udp_csum(skb);
961 
962 	/* add protocol-dependent pseudo-header */
963 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
964 				      sk->sk_protocol, csum);
965 	if (uh->check == 0)
966 		uh->check = CSUM_MANGLED_0;
967 
968 send:
969 	err = ip_send_skb(sock_net(sk), skb);
970 	if (err) {
971 		if (err == -ENOBUFS &&
972 		    !inet_test_bit(RECVERR, sk)) {
973 			UDP_INC_STATS(sock_net(sk),
974 				      UDP_MIB_SNDBUFERRORS, is_udplite);
975 			err = 0;
976 		}
977 	} else
978 		UDP_INC_STATS(sock_net(sk),
979 			      UDP_MIB_OUTDATAGRAMS, is_udplite);
980 	return err;
981 }
982 
983 /*
984  * Push out all pending data as one UDP datagram. Socket is locked.
985  */
986 int udp_push_pending_frames(struct sock *sk)
987 {
988 	struct udp_sock  *up = udp_sk(sk);
989 	struct inet_sock *inet = inet_sk(sk);
990 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
991 	struct sk_buff *skb;
992 	int err = 0;
993 
994 	skb = ip_finish_skb(sk, fl4);
995 	if (!skb)
996 		goto out;
997 
998 	err = udp_send_skb(skb, fl4, &inet->cork.base);
999 
1000 out:
1001 	up->len = 0;
1002 	WRITE_ONCE(up->pending, 0);
1003 	return err;
1004 }
1005 EXPORT_SYMBOL(udp_push_pending_frames);
1006 
1007 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
1008 {
1009 	switch (cmsg->cmsg_type) {
1010 	case UDP_SEGMENT:
1011 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
1012 			return -EINVAL;
1013 		*gso_size = *(__u16 *)CMSG_DATA(cmsg);
1014 		return 0;
1015 	default:
1016 		return -EINVAL;
1017 	}
1018 }
1019 
1020 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
1021 {
1022 	struct cmsghdr *cmsg;
1023 	bool need_ip = false;
1024 	int err;
1025 
1026 	for_each_cmsghdr(cmsg, msg) {
1027 		if (!CMSG_OK(msg, cmsg))
1028 			return -EINVAL;
1029 
1030 		if (cmsg->cmsg_level != SOL_UDP) {
1031 			need_ip = true;
1032 			continue;
1033 		}
1034 
1035 		err = __udp_cmsg_send(cmsg, gso_size);
1036 		if (err)
1037 			return err;
1038 	}
1039 
1040 	return need_ip;
1041 }
1042 EXPORT_SYMBOL_GPL(udp_cmsg_send);
1043 
1044 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1045 {
1046 	struct inet_sock *inet = inet_sk(sk);
1047 	struct udp_sock *up = udp_sk(sk);
1048 	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1049 	struct flowi4 fl4_stack;
1050 	struct flowi4 *fl4;
1051 	int ulen = len;
1052 	struct ipcm_cookie ipc;
1053 	struct rtable *rt = NULL;
1054 	int free = 0;
1055 	int connected = 0;
1056 	__be32 daddr, faddr, saddr;
1057 	u8 tos, scope;
1058 	__be16 dport;
1059 	int err, is_udplite = IS_UDPLITE(sk);
1060 	int corkreq = udp_test_bit(CORK, sk) || msg->msg_flags & MSG_MORE;
1061 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
1062 	struct sk_buff *skb;
1063 	struct ip_options_data opt_copy;
1064 	int uc_index;
1065 
1066 	if (len > 0xFFFF)
1067 		return -EMSGSIZE;
1068 
1069 	/*
1070 	 *	Check the flags.
1071 	 */
1072 
1073 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1074 		return -EOPNOTSUPP;
1075 
1076 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1077 
1078 	fl4 = &inet->cork.fl.u.ip4;
1079 	if (READ_ONCE(up->pending)) {
1080 		/*
1081 		 * There are pending frames.
1082 		 * The socket lock must be held while it's corked.
1083 		 */
1084 		lock_sock(sk);
1085 		if (likely(up->pending)) {
1086 			if (unlikely(up->pending != AF_INET)) {
1087 				release_sock(sk);
1088 				return -EINVAL;
1089 			}
1090 			goto do_append_data;
1091 		}
1092 		release_sock(sk);
1093 	}
1094 	ulen += sizeof(struct udphdr);
1095 
1096 	/*
1097 	 *	Get and verify the address.
1098 	 */
1099 	if (usin) {
1100 		if (msg->msg_namelen < sizeof(*usin))
1101 			return -EINVAL;
1102 		if (usin->sin_family != AF_INET) {
1103 			if (usin->sin_family != AF_UNSPEC)
1104 				return -EAFNOSUPPORT;
1105 		}
1106 
1107 		daddr = usin->sin_addr.s_addr;
1108 		dport = usin->sin_port;
1109 		if (dport == 0)
1110 			return -EINVAL;
1111 	} else {
1112 		if (sk->sk_state != TCP_ESTABLISHED)
1113 			return -EDESTADDRREQ;
1114 		daddr = inet->inet_daddr;
1115 		dport = inet->inet_dport;
1116 		/* Open fast path for connected socket.
1117 		   Route will not be used, if at least one option is set.
1118 		 */
1119 		connected = 1;
1120 	}
1121 
1122 	ipcm_init_sk(&ipc, inet);
1123 	ipc.gso_size = READ_ONCE(up->gso_size);
1124 
1125 	if (msg->msg_controllen) {
1126 		err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1127 		if (err > 0) {
1128 			err = ip_cmsg_send(sk, msg, &ipc,
1129 					   sk->sk_family == AF_INET6);
1130 			connected = 0;
1131 		}
1132 		if (unlikely(err < 0)) {
1133 			kfree(ipc.opt);
1134 			return err;
1135 		}
1136 		if (ipc.opt)
1137 			free = 1;
1138 	}
1139 	if (!ipc.opt) {
1140 		struct ip_options_rcu *inet_opt;
1141 
1142 		rcu_read_lock();
1143 		inet_opt = rcu_dereference(inet->inet_opt);
1144 		if (inet_opt) {
1145 			memcpy(&opt_copy, inet_opt,
1146 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
1147 			ipc.opt = &opt_copy.opt;
1148 		}
1149 		rcu_read_unlock();
1150 	}
1151 
1152 	if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) {
1153 		err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1154 					    (struct sockaddr *)usin,
1155 					    &msg->msg_namelen,
1156 					    &ipc.addr);
1157 		if (err)
1158 			goto out_free;
1159 		if (usin) {
1160 			if (usin->sin_port == 0) {
1161 				/* BPF program set invalid port. Reject it. */
1162 				err = -EINVAL;
1163 				goto out_free;
1164 			}
1165 			daddr = usin->sin_addr.s_addr;
1166 			dport = usin->sin_port;
1167 		}
1168 	}
1169 
1170 	saddr = ipc.addr;
1171 	ipc.addr = faddr = daddr;
1172 
1173 	if (ipc.opt && ipc.opt->opt.srr) {
1174 		if (!daddr) {
1175 			err = -EINVAL;
1176 			goto out_free;
1177 		}
1178 		faddr = ipc.opt->opt.faddr;
1179 		connected = 0;
1180 	}
1181 	tos = get_rttos(&ipc, inet);
1182 	scope = ip_sendmsg_scope(inet, &ipc, msg);
1183 	if (scope == RT_SCOPE_LINK)
1184 		connected = 0;
1185 
1186 	uc_index = READ_ONCE(inet->uc_index);
1187 	if (ipv4_is_multicast(daddr)) {
1188 		if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1189 			ipc.oif = READ_ONCE(inet->mc_index);
1190 		if (!saddr)
1191 			saddr = READ_ONCE(inet->mc_addr);
1192 		connected = 0;
1193 	} else if (!ipc.oif) {
1194 		ipc.oif = uc_index;
1195 	} else if (ipv4_is_lbcast(daddr) && uc_index) {
1196 		/* oif is set, packet is to local broadcast and
1197 		 * uc_index is set. oif is most likely set
1198 		 * by sk_bound_dev_if. If uc_index != oif check if the
1199 		 * oif is an L3 master and uc_index is an L3 slave.
1200 		 * If so, we want to allow the send using the uc_index.
1201 		 */
1202 		if (ipc.oif != uc_index &&
1203 		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1204 							      uc_index)) {
1205 			ipc.oif = uc_index;
1206 		}
1207 	}
1208 
1209 	if (connected)
1210 		rt = (struct rtable *)sk_dst_check(sk, 0);
1211 
1212 	if (!rt) {
1213 		struct net *net = sock_net(sk);
1214 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1215 
1216 		fl4 = &fl4_stack;
1217 
1218 		flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos, scope,
1219 				   sk->sk_protocol, flow_flags, faddr, saddr,
1220 				   dport, inet->inet_sport, sk->sk_uid);
1221 
1222 		security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
1223 		rt = ip_route_output_flow(net, fl4, sk);
1224 		if (IS_ERR(rt)) {
1225 			err = PTR_ERR(rt);
1226 			rt = NULL;
1227 			if (err == -ENETUNREACH)
1228 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1229 			goto out;
1230 		}
1231 
1232 		err = -EACCES;
1233 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1234 		    !sock_flag(sk, SOCK_BROADCAST))
1235 			goto out;
1236 		if (connected)
1237 			sk_dst_set(sk, dst_clone(&rt->dst));
1238 	}
1239 
1240 	if (msg->msg_flags&MSG_CONFIRM)
1241 		goto do_confirm;
1242 back_from_confirm:
1243 
1244 	saddr = fl4->saddr;
1245 	if (!ipc.addr)
1246 		daddr = ipc.addr = fl4->daddr;
1247 
1248 	/* Lockless fast path for the non-corking case. */
1249 	if (!corkreq) {
1250 		struct inet_cork cork;
1251 
1252 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1253 				  sizeof(struct udphdr), &ipc, &rt,
1254 				  &cork, msg->msg_flags);
1255 		err = PTR_ERR(skb);
1256 		if (!IS_ERR_OR_NULL(skb))
1257 			err = udp_send_skb(skb, fl4, &cork);
1258 		goto out;
1259 	}
1260 
1261 	lock_sock(sk);
1262 	if (unlikely(up->pending)) {
1263 		/* The socket is already corked while preparing it. */
1264 		/* ... which is an evident application bug. --ANK */
1265 		release_sock(sk);
1266 
1267 		net_dbg_ratelimited("socket already corked\n");
1268 		err = -EINVAL;
1269 		goto out;
1270 	}
1271 	/*
1272 	 *	Now cork the socket to pend data.
1273 	 */
1274 	fl4 = &inet->cork.fl.u.ip4;
1275 	fl4->daddr = daddr;
1276 	fl4->saddr = saddr;
1277 	fl4->fl4_dport = dport;
1278 	fl4->fl4_sport = inet->inet_sport;
1279 	WRITE_ONCE(up->pending, AF_INET);
1280 
1281 do_append_data:
1282 	up->len += ulen;
1283 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1284 			     sizeof(struct udphdr), &ipc, &rt,
1285 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1286 	if (err)
1287 		udp_flush_pending_frames(sk);
1288 	else if (!corkreq)
1289 		err = udp_push_pending_frames(sk);
1290 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1291 		WRITE_ONCE(up->pending, 0);
1292 	release_sock(sk);
1293 
1294 out:
1295 	ip_rt_put(rt);
1296 out_free:
1297 	if (free)
1298 		kfree(ipc.opt);
1299 	if (!err)
1300 		return len;
1301 	/*
1302 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1303 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1304 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1305 	 * things).  We could add another new stat but at least for now that
1306 	 * seems like overkill.
1307 	 */
1308 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1309 		UDP_INC_STATS(sock_net(sk),
1310 			      UDP_MIB_SNDBUFERRORS, is_udplite);
1311 	}
1312 	return err;
1313 
1314 do_confirm:
1315 	if (msg->msg_flags & MSG_PROBE)
1316 		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1317 	if (!(msg->msg_flags&MSG_PROBE) || len)
1318 		goto back_from_confirm;
1319 	err = 0;
1320 	goto out;
1321 }
1322 EXPORT_SYMBOL(udp_sendmsg);
1323 
1324 void udp_splice_eof(struct socket *sock)
1325 {
1326 	struct sock *sk = sock->sk;
1327 	struct udp_sock *up = udp_sk(sk);
1328 
1329 	if (!READ_ONCE(up->pending) || udp_test_bit(CORK, sk))
1330 		return;
1331 
1332 	lock_sock(sk);
1333 	if (up->pending && !udp_test_bit(CORK, sk))
1334 		udp_push_pending_frames(sk);
1335 	release_sock(sk);
1336 }
1337 EXPORT_SYMBOL_GPL(udp_splice_eof);
1338 
1339 #define UDP_SKB_IS_STATELESS 0x80000000
1340 
1341 /* all head states (dst, sk, nf conntrack) except skb extensions are
1342  * cleared by udp_rcv().
1343  *
1344  * We need to preserve secpath, if present, to eventually process
1345  * IP_CMSG_PASSSEC at recvmsg() time.
1346  *
1347  * Other extensions can be cleared.
1348  */
1349 static bool udp_try_make_stateless(struct sk_buff *skb)
1350 {
1351 	if (!skb_has_extensions(skb))
1352 		return true;
1353 
1354 	if (!secpath_exists(skb)) {
1355 		skb_ext_reset(skb);
1356 		return true;
1357 	}
1358 
1359 	return false;
1360 }
1361 
1362 static void udp_set_dev_scratch(struct sk_buff *skb)
1363 {
1364 	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1365 
1366 	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1367 	scratch->_tsize_state = skb->truesize;
1368 #if BITS_PER_LONG == 64
1369 	scratch->len = skb->len;
1370 	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1371 	scratch->is_linear = !skb_is_nonlinear(skb);
1372 #endif
1373 	if (udp_try_make_stateless(skb))
1374 		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1375 }
1376 
1377 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1378 {
1379 	/* We come here after udp_lib_checksum_complete() returned 0.
1380 	 * This means that __skb_checksum_complete() might have
1381 	 * set skb->csum_valid to 1.
1382 	 * On 64bit platforms, we can set csum_unnecessary
1383 	 * to true, but only if the skb is not shared.
1384 	 */
1385 #if BITS_PER_LONG == 64
1386 	if (!skb_shared(skb))
1387 		udp_skb_scratch(skb)->csum_unnecessary = true;
1388 #endif
1389 }
1390 
1391 static int udp_skb_truesize(struct sk_buff *skb)
1392 {
1393 	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1394 }
1395 
1396 static bool udp_skb_has_head_state(struct sk_buff *skb)
1397 {
1398 	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1399 }
1400 
1401 /* fully reclaim rmem/fwd memory allocated for skb */
1402 static void udp_rmem_release(struct sock *sk, int size, int partial,
1403 			     bool rx_queue_lock_held)
1404 {
1405 	struct udp_sock *up = udp_sk(sk);
1406 	struct sk_buff_head *sk_queue;
1407 	int amt;
1408 
1409 	if (likely(partial)) {
1410 		up->forward_deficit += size;
1411 		size = up->forward_deficit;
1412 		if (size < READ_ONCE(up->forward_threshold) &&
1413 		    !skb_queue_empty(&up->reader_queue))
1414 			return;
1415 	} else {
1416 		size += up->forward_deficit;
1417 	}
1418 	up->forward_deficit = 0;
1419 
1420 	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1421 	 * if the called don't held it already
1422 	 */
1423 	sk_queue = &sk->sk_receive_queue;
1424 	if (!rx_queue_lock_held)
1425 		spin_lock(&sk_queue->lock);
1426 
1427 
1428 	sk_forward_alloc_add(sk, size);
1429 	amt = (sk->sk_forward_alloc - partial) & ~(PAGE_SIZE - 1);
1430 	sk_forward_alloc_add(sk, -amt);
1431 
1432 	if (amt)
1433 		__sk_mem_reduce_allocated(sk, amt >> PAGE_SHIFT);
1434 
1435 	atomic_sub(size, &sk->sk_rmem_alloc);
1436 
1437 	/* this can save us from acquiring the rx queue lock on next receive */
1438 	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1439 
1440 	if (!rx_queue_lock_held)
1441 		spin_unlock(&sk_queue->lock);
1442 }
1443 
1444 /* Note: called with reader_queue.lock held.
1445  * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1446  * This avoids a cache line miss while receive_queue lock is held.
1447  * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1448  */
1449 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1450 {
1451 	prefetch(&skb->data);
1452 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1453 }
1454 EXPORT_SYMBOL(udp_skb_destructor);
1455 
1456 /* as above, but the caller held the rx queue lock, too */
1457 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1458 {
1459 	prefetch(&skb->data);
1460 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1461 }
1462 
1463 /* Idea of busylocks is to let producers grab an extra spinlock
1464  * to relieve pressure on the receive_queue spinlock shared by consumer.
1465  * Under flood, this means that only one producer can be in line
1466  * trying to acquire the receive_queue spinlock.
1467  * These busylock can be allocated on a per cpu manner, instead of a
1468  * per socket one (that would consume a cache line per socket)
1469  */
1470 static int udp_busylocks_log __read_mostly;
1471 static spinlock_t *udp_busylocks __read_mostly;
1472 
1473 static spinlock_t *busylock_acquire(void *ptr)
1474 {
1475 	spinlock_t *busy;
1476 
1477 	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1478 	spin_lock(busy);
1479 	return busy;
1480 }
1481 
1482 static void busylock_release(spinlock_t *busy)
1483 {
1484 	if (busy)
1485 		spin_unlock(busy);
1486 }
1487 
1488 static int udp_rmem_schedule(struct sock *sk, int size)
1489 {
1490 	int delta;
1491 
1492 	delta = size - sk->sk_forward_alloc;
1493 	if (delta > 0 && !__sk_mem_schedule(sk, delta, SK_MEM_RECV))
1494 		return -ENOBUFS;
1495 
1496 	return 0;
1497 }
1498 
1499 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1500 {
1501 	struct sk_buff_head *list = &sk->sk_receive_queue;
1502 	int rmem, err = -ENOMEM;
1503 	spinlock_t *busy = NULL;
1504 	int size;
1505 
1506 	/* try to avoid the costly atomic add/sub pair when the receive
1507 	 * queue is full; always allow at least a packet
1508 	 */
1509 	rmem = atomic_read(&sk->sk_rmem_alloc);
1510 	if (rmem > sk->sk_rcvbuf)
1511 		goto drop;
1512 
1513 	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1514 	 * having linear skbs :
1515 	 * - Reduce memory overhead and thus increase receive queue capacity
1516 	 * - Less cache line misses at copyout() time
1517 	 * - Less work at consume_skb() (less alien page frag freeing)
1518 	 */
1519 	if (rmem > (sk->sk_rcvbuf >> 1)) {
1520 		skb_condense(skb);
1521 
1522 		busy = busylock_acquire(sk);
1523 	}
1524 	size = skb->truesize;
1525 	udp_set_dev_scratch(skb);
1526 
1527 	/* we drop only if the receive buf is full and the receive
1528 	 * queue contains some other skb
1529 	 */
1530 	rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1531 	if (rmem > (size + (unsigned int)sk->sk_rcvbuf))
1532 		goto uncharge_drop;
1533 
1534 	spin_lock(&list->lock);
1535 	err = udp_rmem_schedule(sk, size);
1536 	if (err) {
1537 		spin_unlock(&list->lock);
1538 		goto uncharge_drop;
1539 	}
1540 
1541 	sk_forward_alloc_add(sk, -size);
1542 
1543 	/* no need to setup a destructor, we will explicitly release the
1544 	 * forward allocated memory on dequeue
1545 	 */
1546 	sock_skb_set_dropcount(sk, skb);
1547 
1548 	__skb_queue_tail(list, skb);
1549 	spin_unlock(&list->lock);
1550 
1551 	if (!sock_flag(sk, SOCK_DEAD))
1552 		INDIRECT_CALL_1(sk->sk_data_ready, sock_def_readable, sk);
1553 
1554 	busylock_release(busy);
1555 	return 0;
1556 
1557 uncharge_drop:
1558 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1559 
1560 drop:
1561 	atomic_inc(&sk->sk_drops);
1562 	busylock_release(busy);
1563 	return err;
1564 }
1565 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1566 
1567 void udp_destruct_common(struct sock *sk)
1568 {
1569 	/* reclaim completely the forward allocated memory */
1570 	struct udp_sock *up = udp_sk(sk);
1571 	unsigned int total = 0;
1572 	struct sk_buff *skb;
1573 
1574 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1575 	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1576 		total += skb->truesize;
1577 		kfree_skb(skb);
1578 	}
1579 	udp_rmem_release(sk, total, 0, true);
1580 }
1581 EXPORT_SYMBOL_GPL(udp_destruct_common);
1582 
1583 static void udp_destruct_sock(struct sock *sk)
1584 {
1585 	udp_destruct_common(sk);
1586 	inet_sock_destruct(sk);
1587 }
1588 
1589 int udp_init_sock(struct sock *sk)
1590 {
1591 	udp_lib_init_sock(sk);
1592 	sk->sk_destruct = udp_destruct_sock;
1593 	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1594 	return 0;
1595 }
1596 
1597 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1598 {
1599 	if (unlikely(READ_ONCE(udp_sk(sk)->peeking_with_offset)))
1600 		sk_peek_offset_bwd(sk, len);
1601 
1602 	if (!skb_unref(skb))
1603 		return;
1604 
1605 	/* In the more common cases we cleared the head states previously,
1606 	 * see __udp_queue_rcv_skb().
1607 	 */
1608 	if (unlikely(udp_skb_has_head_state(skb)))
1609 		skb_release_head_state(skb);
1610 	__consume_stateless_skb(skb);
1611 }
1612 EXPORT_SYMBOL_GPL(skb_consume_udp);
1613 
1614 static struct sk_buff *__first_packet_length(struct sock *sk,
1615 					     struct sk_buff_head *rcvq,
1616 					     int *total)
1617 {
1618 	struct sk_buff *skb;
1619 
1620 	while ((skb = skb_peek(rcvq)) != NULL) {
1621 		if (udp_lib_checksum_complete(skb)) {
1622 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1623 					IS_UDPLITE(sk));
1624 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1625 					IS_UDPLITE(sk));
1626 			atomic_inc(&sk->sk_drops);
1627 			__skb_unlink(skb, rcvq);
1628 			*total += skb->truesize;
1629 			kfree_skb(skb);
1630 		} else {
1631 			udp_skb_csum_unnecessary_set(skb);
1632 			break;
1633 		}
1634 	}
1635 	return skb;
1636 }
1637 
1638 /**
1639  *	first_packet_length	- return length of first packet in receive queue
1640  *	@sk: socket
1641  *
1642  *	Drops all bad checksum frames, until a valid one is found.
1643  *	Returns the length of found skb, or -1 if none is found.
1644  */
1645 static int first_packet_length(struct sock *sk)
1646 {
1647 	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1648 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1649 	struct sk_buff *skb;
1650 	int total = 0;
1651 	int res;
1652 
1653 	spin_lock_bh(&rcvq->lock);
1654 	skb = __first_packet_length(sk, rcvq, &total);
1655 	if (!skb && !skb_queue_empty_lockless(sk_queue)) {
1656 		spin_lock(&sk_queue->lock);
1657 		skb_queue_splice_tail_init(sk_queue, rcvq);
1658 		spin_unlock(&sk_queue->lock);
1659 
1660 		skb = __first_packet_length(sk, rcvq, &total);
1661 	}
1662 	res = skb ? skb->len : -1;
1663 	if (total)
1664 		udp_rmem_release(sk, total, 1, false);
1665 	spin_unlock_bh(&rcvq->lock);
1666 	return res;
1667 }
1668 
1669 /*
1670  *	IOCTL requests applicable to the UDP protocol
1671  */
1672 
1673 int udp_ioctl(struct sock *sk, int cmd, int *karg)
1674 {
1675 	switch (cmd) {
1676 	case SIOCOUTQ:
1677 	{
1678 		*karg = sk_wmem_alloc_get(sk);
1679 		return 0;
1680 	}
1681 
1682 	case SIOCINQ:
1683 	{
1684 		*karg = max_t(int, 0, first_packet_length(sk));
1685 		return 0;
1686 	}
1687 
1688 	default:
1689 		return -ENOIOCTLCMD;
1690 	}
1691 
1692 	return 0;
1693 }
1694 EXPORT_SYMBOL(udp_ioctl);
1695 
1696 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1697 			       int *off, int *err)
1698 {
1699 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1700 	struct sk_buff_head *queue;
1701 	struct sk_buff *last;
1702 	long timeo;
1703 	int error;
1704 
1705 	queue = &udp_sk(sk)->reader_queue;
1706 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1707 	do {
1708 		struct sk_buff *skb;
1709 
1710 		error = sock_error(sk);
1711 		if (error)
1712 			break;
1713 
1714 		error = -EAGAIN;
1715 		do {
1716 			spin_lock_bh(&queue->lock);
1717 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1718 							err, &last);
1719 			if (skb) {
1720 				if (!(flags & MSG_PEEK))
1721 					udp_skb_destructor(sk, skb);
1722 				spin_unlock_bh(&queue->lock);
1723 				return skb;
1724 			}
1725 
1726 			if (skb_queue_empty_lockless(sk_queue)) {
1727 				spin_unlock_bh(&queue->lock);
1728 				goto busy_check;
1729 			}
1730 
1731 			/* refill the reader queue and walk it again
1732 			 * keep both queues locked to avoid re-acquiring
1733 			 * the sk_receive_queue lock if fwd memory scheduling
1734 			 * is needed.
1735 			 */
1736 			spin_lock(&sk_queue->lock);
1737 			skb_queue_splice_tail_init(sk_queue, queue);
1738 
1739 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1740 							err, &last);
1741 			if (skb && !(flags & MSG_PEEK))
1742 				udp_skb_dtor_locked(sk, skb);
1743 			spin_unlock(&sk_queue->lock);
1744 			spin_unlock_bh(&queue->lock);
1745 			if (skb)
1746 				return skb;
1747 
1748 busy_check:
1749 			if (!sk_can_busy_loop(sk))
1750 				break;
1751 
1752 			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1753 		} while (!skb_queue_empty_lockless(sk_queue));
1754 
1755 		/* sk_queue is empty, reader_queue may contain peeked packets */
1756 	} while (timeo &&
1757 		 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
1758 					      &error, &timeo,
1759 					      (struct sk_buff *)sk_queue));
1760 
1761 	*err = error;
1762 	return NULL;
1763 }
1764 EXPORT_SYMBOL(__skb_recv_udp);
1765 
1766 int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1767 {
1768 	struct sk_buff *skb;
1769 	int err;
1770 
1771 try_again:
1772 	skb = skb_recv_udp(sk, MSG_DONTWAIT, &err);
1773 	if (!skb)
1774 		return err;
1775 
1776 	if (udp_lib_checksum_complete(skb)) {
1777 		int is_udplite = IS_UDPLITE(sk);
1778 		struct net *net = sock_net(sk);
1779 
1780 		__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, is_udplite);
1781 		__UDP_INC_STATS(net, UDP_MIB_INERRORS, is_udplite);
1782 		atomic_inc(&sk->sk_drops);
1783 		kfree_skb(skb);
1784 		goto try_again;
1785 	}
1786 
1787 	WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1788 	return recv_actor(sk, skb);
1789 }
1790 EXPORT_SYMBOL(udp_read_skb);
1791 
1792 /*
1793  * 	This should be easy, if there is something there we
1794  * 	return it, otherwise we block.
1795  */
1796 
1797 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
1798 		int *addr_len)
1799 {
1800 	struct inet_sock *inet = inet_sk(sk);
1801 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1802 	struct sk_buff *skb;
1803 	unsigned int ulen, copied;
1804 	int off, err, peeking = flags & MSG_PEEK;
1805 	int is_udplite = IS_UDPLITE(sk);
1806 	bool checksum_valid = false;
1807 
1808 	if (flags & MSG_ERRQUEUE)
1809 		return ip_recv_error(sk, msg, len, addr_len);
1810 
1811 try_again:
1812 	off = sk_peek_offset(sk, flags);
1813 	skb = __skb_recv_udp(sk, flags, &off, &err);
1814 	if (!skb)
1815 		return err;
1816 
1817 	ulen = udp_skb_len(skb);
1818 	copied = len;
1819 	if (copied > ulen - off)
1820 		copied = ulen - off;
1821 	else if (copied < ulen)
1822 		msg->msg_flags |= MSG_TRUNC;
1823 
1824 	/*
1825 	 * If checksum is needed at all, try to do it while copying the
1826 	 * data.  If the data is truncated, or if we only want a partial
1827 	 * coverage checksum (UDP-Lite), do it before the copy.
1828 	 */
1829 
1830 	if (copied < ulen || peeking ||
1831 	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1832 		checksum_valid = udp_skb_csum_unnecessary(skb) ||
1833 				!__udp_lib_checksum_complete(skb);
1834 		if (!checksum_valid)
1835 			goto csum_copy_err;
1836 	}
1837 
1838 	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1839 		if (udp_skb_is_linear(skb))
1840 			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1841 		else
1842 			err = skb_copy_datagram_msg(skb, off, msg, copied);
1843 	} else {
1844 		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1845 
1846 		if (err == -EINVAL)
1847 			goto csum_copy_err;
1848 	}
1849 
1850 	if (unlikely(err)) {
1851 		if (!peeking) {
1852 			atomic_inc(&sk->sk_drops);
1853 			UDP_INC_STATS(sock_net(sk),
1854 				      UDP_MIB_INERRORS, is_udplite);
1855 		}
1856 		kfree_skb(skb);
1857 		return err;
1858 	}
1859 
1860 	if (!peeking)
1861 		UDP_INC_STATS(sock_net(sk),
1862 			      UDP_MIB_INDATAGRAMS, is_udplite);
1863 
1864 	sock_recv_cmsgs(msg, sk, skb);
1865 
1866 	/* Copy the address. */
1867 	if (sin) {
1868 		sin->sin_family = AF_INET;
1869 		sin->sin_port = udp_hdr(skb)->source;
1870 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1871 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1872 		*addr_len = sizeof(*sin);
1873 
1874 		BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
1875 						      (struct sockaddr *)sin,
1876 						      addr_len);
1877 	}
1878 
1879 	if (udp_test_bit(GRO_ENABLED, sk))
1880 		udp_cmsg_recv(msg, sk, skb);
1881 
1882 	if (inet_cmsg_flags(inet))
1883 		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1884 
1885 	err = copied;
1886 	if (flags & MSG_TRUNC)
1887 		err = ulen;
1888 
1889 	skb_consume_udp(sk, skb, peeking ? -err : err);
1890 	return err;
1891 
1892 csum_copy_err:
1893 	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1894 				 udp_skb_destructor)) {
1895 		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1896 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1897 	}
1898 	kfree_skb(skb);
1899 
1900 	/* starting over for a new packet, but check if we need to yield */
1901 	cond_resched();
1902 	msg->msg_flags &= ~MSG_TRUNC;
1903 	goto try_again;
1904 }
1905 
1906 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1907 {
1908 	/* This check is replicated from __ip4_datagram_connect() and
1909 	 * intended to prevent BPF program called below from accessing bytes
1910 	 * that are out of the bound specified by user in addr_len.
1911 	 */
1912 	if (addr_len < sizeof(struct sockaddr_in))
1913 		return -EINVAL;
1914 
1915 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr, &addr_len);
1916 }
1917 EXPORT_SYMBOL(udp_pre_connect);
1918 
1919 int __udp_disconnect(struct sock *sk, int flags)
1920 {
1921 	struct inet_sock *inet = inet_sk(sk);
1922 	/*
1923 	 *	1003.1g - break association.
1924 	 */
1925 
1926 	sk->sk_state = TCP_CLOSE;
1927 	inet->inet_daddr = 0;
1928 	inet->inet_dport = 0;
1929 	sock_rps_reset_rxhash(sk);
1930 	sk->sk_bound_dev_if = 0;
1931 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) {
1932 		inet_reset_saddr(sk);
1933 		if (sk->sk_prot->rehash &&
1934 		    (sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1935 			sk->sk_prot->rehash(sk);
1936 	}
1937 
1938 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1939 		sk->sk_prot->unhash(sk);
1940 		inet->inet_sport = 0;
1941 	}
1942 	sk_dst_reset(sk);
1943 	return 0;
1944 }
1945 EXPORT_SYMBOL(__udp_disconnect);
1946 
1947 int udp_disconnect(struct sock *sk, int flags)
1948 {
1949 	lock_sock(sk);
1950 	__udp_disconnect(sk, flags);
1951 	release_sock(sk);
1952 	return 0;
1953 }
1954 EXPORT_SYMBOL(udp_disconnect);
1955 
1956 void udp_lib_unhash(struct sock *sk)
1957 {
1958 	if (sk_hashed(sk)) {
1959 		struct udp_table *udptable = udp_get_table_prot(sk);
1960 		struct udp_hslot *hslot, *hslot2;
1961 
1962 		hslot  = udp_hashslot(udptable, sock_net(sk),
1963 				      udp_sk(sk)->udp_port_hash);
1964 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1965 
1966 		spin_lock_bh(&hslot->lock);
1967 		if (rcu_access_pointer(sk->sk_reuseport_cb))
1968 			reuseport_detach_sock(sk);
1969 		if (sk_del_node_init_rcu(sk)) {
1970 			hslot->count--;
1971 			inet_sk(sk)->inet_num = 0;
1972 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1973 
1974 			spin_lock(&hslot2->lock);
1975 			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1976 			hslot2->count--;
1977 			spin_unlock(&hslot2->lock);
1978 		}
1979 		spin_unlock_bh(&hslot->lock);
1980 	}
1981 }
1982 EXPORT_SYMBOL(udp_lib_unhash);
1983 
1984 /*
1985  * inet_rcv_saddr was changed, we must rehash secondary hash
1986  */
1987 void udp_lib_rehash(struct sock *sk, u16 newhash)
1988 {
1989 	if (sk_hashed(sk)) {
1990 		struct udp_table *udptable = udp_get_table_prot(sk);
1991 		struct udp_hslot *hslot, *hslot2, *nhslot2;
1992 
1993 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1994 		nhslot2 = udp_hashslot2(udptable, newhash);
1995 		udp_sk(sk)->udp_portaddr_hash = newhash;
1996 
1997 		if (hslot2 != nhslot2 ||
1998 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
1999 			hslot = udp_hashslot(udptable, sock_net(sk),
2000 					     udp_sk(sk)->udp_port_hash);
2001 			/* we must lock primary chain too */
2002 			spin_lock_bh(&hslot->lock);
2003 			if (rcu_access_pointer(sk->sk_reuseport_cb))
2004 				reuseport_detach_sock(sk);
2005 
2006 			if (hslot2 != nhslot2) {
2007 				spin_lock(&hslot2->lock);
2008 				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2009 				hslot2->count--;
2010 				spin_unlock(&hslot2->lock);
2011 
2012 				spin_lock(&nhslot2->lock);
2013 				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
2014 							 &nhslot2->head);
2015 				nhslot2->count++;
2016 				spin_unlock(&nhslot2->lock);
2017 			}
2018 
2019 			spin_unlock_bh(&hslot->lock);
2020 		}
2021 	}
2022 }
2023 EXPORT_SYMBOL(udp_lib_rehash);
2024 
2025 void udp_v4_rehash(struct sock *sk)
2026 {
2027 	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
2028 					  inet_sk(sk)->inet_rcv_saddr,
2029 					  inet_sk(sk)->inet_num);
2030 	udp_lib_rehash(sk, new_hash);
2031 }
2032 
2033 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2034 {
2035 	int rc;
2036 
2037 	if (inet_sk(sk)->inet_daddr) {
2038 		sock_rps_save_rxhash(sk, skb);
2039 		sk_mark_napi_id(sk, skb);
2040 		sk_incoming_cpu_update(sk);
2041 	} else {
2042 		sk_mark_napi_id_once(sk, skb);
2043 	}
2044 
2045 	rc = __udp_enqueue_schedule_skb(sk, skb);
2046 	if (rc < 0) {
2047 		int is_udplite = IS_UDPLITE(sk);
2048 		int drop_reason;
2049 
2050 		/* Note that an ENOMEM error is charged twice */
2051 		if (rc == -ENOMEM) {
2052 			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
2053 					is_udplite);
2054 			drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
2055 		} else {
2056 			UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS,
2057 				      is_udplite);
2058 			drop_reason = SKB_DROP_REASON_PROTO_MEM;
2059 		}
2060 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2061 		kfree_skb_reason(skb, drop_reason);
2062 		trace_udp_fail_queue_rcv_skb(rc, sk);
2063 		return -1;
2064 	}
2065 
2066 	return 0;
2067 }
2068 
2069 /* returns:
2070  *  -1: error
2071  *   0: success
2072  *  >0: "udp encap" protocol resubmission
2073  *
2074  * Note that in the success and error cases, the skb is assumed to
2075  * have either been requeued or freed.
2076  */
2077 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
2078 {
2079 	int drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2080 	struct udp_sock *up = udp_sk(sk);
2081 	int is_udplite = IS_UDPLITE(sk);
2082 
2083 	/*
2084 	 *	Charge it to the socket, dropping if the queue is full.
2085 	 */
2086 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
2087 		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2088 		goto drop;
2089 	}
2090 	nf_reset_ct(skb);
2091 
2092 	if (static_branch_unlikely(&udp_encap_needed_key) &&
2093 	    READ_ONCE(up->encap_type)) {
2094 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2095 
2096 		/*
2097 		 * This is an encapsulation socket so pass the skb to
2098 		 * the socket's udp_encap_rcv() hook. Otherwise, just
2099 		 * fall through and pass this up the UDP socket.
2100 		 * up->encap_rcv() returns the following value:
2101 		 * =0 if skb was successfully passed to the encap
2102 		 *    handler or was discarded by it.
2103 		 * >0 if skb should be passed on to UDP.
2104 		 * <0 if skb should be resubmitted as proto -N
2105 		 */
2106 
2107 		/* if we're overly short, let UDP handle it */
2108 		encap_rcv = READ_ONCE(up->encap_rcv);
2109 		if (encap_rcv) {
2110 			int ret;
2111 
2112 			/* Verify checksum before giving to encap */
2113 			if (udp_lib_checksum_complete(skb))
2114 				goto csum_error;
2115 
2116 			ret = encap_rcv(sk, skb);
2117 			if (ret <= 0) {
2118 				__UDP_INC_STATS(sock_net(sk),
2119 						UDP_MIB_INDATAGRAMS,
2120 						is_udplite);
2121 				return -ret;
2122 			}
2123 		}
2124 
2125 		/* FALLTHROUGH -- it's a UDP Packet */
2126 	}
2127 
2128 	/*
2129 	 * 	UDP-Lite specific tests, ignored on UDP sockets
2130 	 */
2131 	if (udp_test_bit(UDPLITE_RECV_CC, sk) && UDP_SKB_CB(skb)->partial_cov) {
2132 		u16 pcrlen = READ_ONCE(up->pcrlen);
2133 
2134 		/*
2135 		 * MIB statistics other than incrementing the error count are
2136 		 * disabled for the following two types of errors: these depend
2137 		 * on the application settings, not on the functioning of the
2138 		 * protocol stack as such.
2139 		 *
2140 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
2141 		 * way ... to ... at least let the receiving application block
2142 		 * delivery of packets with coverage values less than a value
2143 		 * provided by the application."
2144 		 */
2145 		if (pcrlen == 0) {          /* full coverage was set  */
2146 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2147 					    UDP_SKB_CB(skb)->cscov, skb->len);
2148 			goto drop;
2149 		}
2150 		/* The next case involves violating the min. coverage requested
2151 		 * by the receiver. This is subtle: if receiver wants x and x is
2152 		 * greater than the buffersize/MTU then receiver will complain
2153 		 * that it wants x while sender emits packets of smaller size y.
2154 		 * Therefore the above ...()->partial_cov statement is essential.
2155 		 */
2156 		if (UDP_SKB_CB(skb)->cscov < pcrlen) {
2157 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2158 					    UDP_SKB_CB(skb)->cscov, pcrlen);
2159 			goto drop;
2160 		}
2161 	}
2162 
2163 	prefetch(&sk->sk_rmem_alloc);
2164 	if (rcu_access_pointer(sk->sk_filter) &&
2165 	    udp_lib_checksum_complete(skb))
2166 			goto csum_error;
2167 
2168 	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) {
2169 		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2170 		goto drop;
2171 	}
2172 
2173 	udp_csum_pull_header(skb);
2174 
2175 	ipv4_pktinfo_prepare(sk, skb, true);
2176 	return __udp_queue_rcv_skb(sk, skb);
2177 
2178 csum_error:
2179 	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2180 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2181 drop:
2182 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2183 	atomic_inc(&sk->sk_drops);
2184 	kfree_skb_reason(skb, drop_reason);
2185 	return -1;
2186 }
2187 
2188 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2189 {
2190 	struct sk_buff *next, *segs;
2191 	int ret;
2192 
2193 	if (likely(!udp_unexpected_gso(sk, skb)))
2194 		return udp_queue_rcv_one_skb(sk, skb);
2195 
2196 	BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET);
2197 	__skb_push(skb, -skb_mac_offset(skb));
2198 	segs = udp_rcv_segment(sk, skb, true);
2199 	skb_list_walk_safe(segs, skb, next) {
2200 		__skb_pull(skb, skb_transport_offset(skb));
2201 
2202 		udp_post_segment_fix_csum(skb);
2203 		ret = udp_queue_rcv_one_skb(sk, skb);
2204 		if (ret > 0)
2205 			ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret);
2206 	}
2207 	return 0;
2208 }
2209 
2210 /* For TCP sockets, sk_rx_dst is protected by socket lock
2211  * For UDP, we use xchg() to guard against concurrent changes.
2212  */
2213 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2214 {
2215 	struct dst_entry *old;
2216 
2217 	if (dst_hold_safe(dst)) {
2218 		old = xchg((__force struct dst_entry **)&sk->sk_rx_dst, dst);
2219 		dst_release(old);
2220 		return old != dst;
2221 	}
2222 	return false;
2223 }
2224 EXPORT_SYMBOL(udp_sk_rx_dst_set);
2225 
2226 /*
2227  *	Multicasts and broadcasts go to each listener.
2228  *
2229  *	Note: called only from the BH handler context.
2230  */
2231 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2232 				    struct udphdr  *uh,
2233 				    __be32 saddr, __be32 daddr,
2234 				    struct udp_table *udptable,
2235 				    int proto)
2236 {
2237 	struct sock *sk, *first = NULL;
2238 	unsigned short hnum = ntohs(uh->dest);
2239 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2240 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2241 	unsigned int offset = offsetof(typeof(*sk), sk_node);
2242 	int dif = skb->dev->ifindex;
2243 	int sdif = inet_sdif(skb);
2244 	struct hlist_node *node;
2245 	struct sk_buff *nskb;
2246 
2247 	if (use_hash2) {
2248 		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2249 			    udptable->mask;
2250 		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2251 start_lookup:
2252 		hslot = &udptable->hash2[hash2];
2253 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2254 	}
2255 
2256 	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2257 		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2258 					 uh->source, saddr, dif, sdif, hnum))
2259 			continue;
2260 
2261 		if (!first) {
2262 			first = sk;
2263 			continue;
2264 		}
2265 		nskb = skb_clone(skb, GFP_ATOMIC);
2266 
2267 		if (unlikely(!nskb)) {
2268 			atomic_inc(&sk->sk_drops);
2269 			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2270 					IS_UDPLITE(sk));
2271 			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
2272 					IS_UDPLITE(sk));
2273 			continue;
2274 		}
2275 		if (udp_queue_rcv_skb(sk, nskb) > 0)
2276 			consume_skb(nskb);
2277 	}
2278 
2279 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2280 	if (use_hash2 && hash2 != hash2_any) {
2281 		hash2 = hash2_any;
2282 		goto start_lookup;
2283 	}
2284 
2285 	if (first) {
2286 		if (udp_queue_rcv_skb(first, skb) > 0)
2287 			consume_skb(skb);
2288 	} else {
2289 		kfree_skb(skb);
2290 		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2291 				proto == IPPROTO_UDPLITE);
2292 	}
2293 	return 0;
2294 }
2295 
2296 /* Initialize UDP checksum. If exited with zero value (success),
2297  * CHECKSUM_UNNECESSARY means, that no more checks are required.
2298  * Otherwise, csum completion requires checksumming packet body,
2299  * including udp header and folding it to skb->csum.
2300  */
2301 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2302 				 int proto)
2303 {
2304 	int err;
2305 
2306 	UDP_SKB_CB(skb)->partial_cov = 0;
2307 	UDP_SKB_CB(skb)->cscov = skb->len;
2308 
2309 	if (proto == IPPROTO_UDPLITE) {
2310 		err = udplite_checksum_init(skb, uh);
2311 		if (err)
2312 			return err;
2313 
2314 		if (UDP_SKB_CB(skb)->partial_cov) {
2315 			skb->csum = inet_compute_pseudo(skb, proto);
2316 			return 0;
2317 		}
2318 	}
2319 
2320 	/* Note, we are only interested in != 0 or == 0, thus the
2321 	 * force to int.
2322 	 */
2323 	err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2324 							inet_compute_pseudo);
2325 	if (err)
2326 		return err;
2327 
2328 	if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2329 		/* If SW calculated the value, we know it's bad */
2330 		if (skb->csum_complete_sw)
2331 			return 1;
2332 
2333 		/* HW says the value is bad. Let's validate that.
2334 		 * skb->csum is no longer the full packet checksum,
2335 		 * so don't treat it as such.
2336 		 */
2337 		skb_checksum_complete_unset(skb);
2338 	}
2339 
2340 	return 0;
2341 }
2342 
2343 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2344  * return code conversion for ip layer consumption
2345  */
2346 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2347 			       struct udphdr *uh)
2348 {
2349 	int ret;
2350 
2351 	if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2352 		skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2353 
2354 	ret = udp_queue_rcv_skb(sk, skb);
2355 
2356 	/* a return value > 0 means to resubmit the input, but
2357 	 * it wants the return to be -protocol, or 0
2358 	 */
2359 	if (ret > 0)
2360 		return -ret;
2361 	return 0;
2362 }
2363 
2364 /*
2365  *	All we need to do is get the socket, and then do a checksum.
2366  */
2367 
2368 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2369 		   int proto)
2370 {
2371 	struct sock *sk;
2372 	struct udphdr *uh;
2373 	unsigned short ulen;
2374 	struct rtable *rt = skb_rtable(skb);
2375 	__be32 saddr, daddr;
2376 	struct net *net = dev_net(skb->dev);
2377 	bool refcounted;
2378 	int drop_reason;
2379 
2380 	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2381 
2382 	/*
2383 	 *  Validate the packet.
2384 	 */
2385 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2386 		goto drop;		/* No space for header. */
2387 
2388 	uh   = udp_hdr(skb);
2389 	ulen = ntohs(uh->len);
2390 	saddr = ip_hdr(skb)->saddr;
2391 	daddr = ip_hdr(skb)->daddr;
2392 
2393 	if (ulen > skb->len)
2394 		goto short_packet;
2395 
2396 	if (proto == IPPROTO_UDP) {
2397 		/* UDP validates ulen. */
2398 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2399 			goto short_packet;
2400 		uh = udp_hdr(skb);
2401 	}
2402 
2403 	if (udp4_csum_init(skb, uh, proto))
2404 		goto csum_error;
2405 
2406 	sk = inet_steal_sock(net, skb, sizeof(struct udphdr), saddr, uh->source, daddr, uh->dest,
2407 			     &refcounted, udp_ehashfn);
2408 	if (IS_ERR(sk))
2409 		goto no_sk;
2410 
2411 	if (sk) {
2412 		struct dst_entry *dst = skb_dst(skb);
2413 		int ret;
2414 
2415 		if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst))
2416 			udp_sk_rx_dst_set(sk, dst);
2417 
2418 		ret = udp_unicast_rcv_skb(sk, skb, uh);
2419 		if (refcounted)
2420 			sock_put(sk);
2421 		return ret;
2422 	}
2423 
2424 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2425 		return __udp4_lib_mcast_deliver(net, skb, uh,
2426 						saddr, daddr, udptable, proto);
2427 
2428 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2429 	if (sk)
2430 		return udp_unicast_rcv_skb(sk, skb, uh);
2431 no_sk:
2432 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2433 		goto drop;
2434 	nf_reset_ct(skb);
2435 
2436 	/* No socket. Drop packet silently, if checksum is wrong */
2437 	if (udp_lib_checksum_complete(skb))
2438 		goto csum_error;
2439 
2440 	drop_reason = SKB_DROP_REASON_NO_SOCKET;
2441 	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2442 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2443 
2444 	/*
2445 	 * Hmm.  We got an UDP packet to a port to which we
2446 	 * don't wanna listen.  Ignore it.
2447 	 */
2448 	kfree_skb_reason(skb, drop_reason);
2449 	return 0;
2450 
2451 short_packet:
2452 	drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
2453 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2454 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2455 			    &saddr, ntohs(uh->source),
2456 			    ulen, skb->len,
2457 			    &daddr, ntohs(uh->dest));
2458 	goto drop;
2459 
2460 csum_error:
2461 	/*
2462 	 * RFC1122: OK.  Discards the bad packet silently (as far as
2463 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2464 	 */
2465 	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2466 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2467 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2468 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2469 			    ulen);
2470 	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2471 drop:
2472 	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2473 	kfree_skb_reason(skb, drop_reason);
2474 	return 0;
2475 }
2476 
2477 /* We can only early demux multicast if there is a single matching socket.
2478  * If more than one socket found returns NULL
2479  */
2480 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2481 						  __be16 loc_port, __be32 loc_addr,
2482 						  __be16 rmt_port, __be32 rmt_addr,
2483 						  int dif, int sdif)
2484 {
2485 	struct udp_table *udptable = net->ipv4.udp_table;
2486 	unsigned short hnum = ntohs(loc_port);
2487 	struct sock *sk, *result;
2488 	struct udp_hslot *hslot;
2489 	unsigned int slot;
2490 
2491 	slot = udp_hashfn(net, hnum, udptable->mask);
2492 	hslot = &udptable->hash[slot];
2493 
2494 	/* Do not bother scanning a too big list */
2495 	if (hslot->count > 10)
2496 		return NULL;
2497 
2498 	result = NULL;
2499 	sk_for_each_rcu(sk, &hslot->head) {
2500 		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2501 					rmt_port, rmt_addr, dif, sdif, hnum)) {
2502 			if (result)
2503 				return NULL;
2504 			result = sk;
2505 		}
2506 	}
2507 
2508 	return result;
2509 }
2510 
2511 /* For unicast we should only early demux connected sockets or we can
2512  * break forwarding setups.  The chains here can be long so only check
2513  * if the first socket is an exact match and if not move on.
2514  */
2515 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2516 					    __be16 loc_port, __be32 loc_addr,
2517 					    __be16 rmt_port, __be32 rmt_addr,
2518 					    int dif, int sdif)
2519 {
2520 	struct udp_table *udptable = net->ipv4.udp_table;
2521 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2522 	unsigned short hnum = ntohs(loc_port);
2523 	unsigned int hash2, slot2;
2524 	struct udp_hslot *hslot2;
2525 	__portpair ports;
2526 	struct sock *sk;
2527 
2528 	hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2529 	slot2 = hash2 & udptable->mask;
2530 	hslot2 = &udptable->hash2[slot2];
2531 	ports = INET_COMBINED_PORTS(rmt_port, hnum);
2532 
2533 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2534 		if (inet_match(net, sk, acookie, ports, dif, sdif))
2535 			return sk;
2536 		/* Only check first socket in chain */
2537 		break;
2538 	}
2539 	return NULL;
2540 }
2541 
2542 int udp_v4_early_demux(struct sk_buff *skb)
2543 {
2544 	struct net *net = dev_net(skb->dev);
2545 	struct in_device *in_dev = NULL;
2546 	const struct iphdr *iph;
2547 	const struct udphdr *uh;
2548 	struct sock *sk = NULL;
2549 	struct dst_entry *dst;
2550 	int dif = skb->dev->ifindex;
2551 	int sdif = inet_sdif(skb);
2552 	int ours;
2553 
2554 	/* validate the packet */
2555 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2556 		return 0;
2557 
2558 	iph = ip_hdr(skb);
2559 	uh = udp_hdr(skb);
2560 
2561 	if (skb->pkt_type == PACKET_MULTICAST) {
2562 		in_dev = __in_dev_get_rcu(skb->dev);
2563 
2564 		if (!in_dev)
2565 			return 0;
2566 
2567 		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2568 				       iph->protocol);
2569 		if (!ours)
2570 			return 0;
2571 
2572 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2573 						   uh->source, iph->saddr,
2574 						   dif, sdif);
2575 	} else if (skb->pkt_type == PACKET_HOST) {
2576 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2577 					     uh->source, iph->saddr, dif, sdif);
2578 	}
2579 
2580 	if (!sk)
2581 		return 0;
2582 
2583 	skb->sk = sk;
2584 	DEBUG_NET_WARN_ON_ONCE(sk_is_refcounted(sk));
2585 	skb->destructor = sock_pfree;
2586 	dst = rcu_dereference(sk->sk_rx_dst);
2587 
2588 	if (dst)
2589 		dst = dst_check(dst, 0);
2590 	if (dst) {
2591 		u32 itag = 0;
2592 
2593 		/* set noref for now.
2594 		 * any place which wants to hold dst has to call
2595 		 * dst_hold_safe()
2596 		 */
2597 		skb_dst_set_noref(skb, dst);
2598 
2599 		/* for unconnected multicast sockets we need to validate
2600 		 * the source on each packet
2601 		 */
2602 		if (!inet_sk(sk)->inet_daddr && in_dev)
2603 			return ip_mc_validate_source(skb, iph->daddr,
2604 						     iph->saddr,
2605 						     iph->tos & IPTOS_RT_MASK,
2606 						     skb->dev, in_dev, &itag);
2607 	}
2608 	return 0;
2609 }
2610 
2611 int udp_rcv(struct sk_buff *skb)
2612 {
2613 	return __udp4_lib_rcv(skb, dev_net(skb->dev)->ipv4.udp_table, IPPROTO_UDP);
2614 }
2615 
2616 void udp_destroy_sock(struct sock *sk)
2617 {
2618 	struct udp_sock *up = udp_sk(sk);
2619 	bool slow = lock_sock_fast(sk);
2620 
2621 	/* protects from races with udp_abort() */
2622 	sock_set_flag(sk, SOCK_DEAD);
2623 	udp_flush_pending_frames(sk);
2624 	unlock_sock_fast(sk, slow);
2625 	if (static_branch_unlikely(&udp_encap_needed_key)) {
2626 		if (up->encap_type) {
2627 			void (*encap_destroy)(struct sock *sk);
2628 			encap_destroy = READ_ONCE(up->encap_destroy);
2629 			if (encap_destroy)
2630 				encap_destroy(sk);
2631 		}
2632 		if (udp_test_bit(ENCAP_ENABLED, sk))
2633 			static_branch_dec(&udp_encap_needed_key);
2634 	}
2635 }
2636 
2637 static void set_xfrm_gro_udp_encap_rcv(__u16 encap_type, unsigned short family,
2638 				       struct sock *sk)
2639 {
2640 #ifdef CONFIG_XFRM
2641 	if (udp_test_bit(GRO_ENABLED, sk) && encap_type == UDP_ENCAP_ESPINUDP) {
2642 		if (family == AF_INET)
2643 			WRITE_ONCE(udp_sk(sk)->gro_receive, xfrm4_gro_udp_encap_rcv);
2644 		else if (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6)
2645 			WRITE_ONCE(udp_sk(sk)->gro_receive, ipv6_stub->xfrm6_gro_udp_encap_rcv);
2646 	}
2647 #endif
2648 }
2649 
2650 /*
2651  *	Socket option code for UDP
2652  */
2653 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2654 		       sockptr_t optval, unsigned int optlen,
2655 		       int (*push_pending_frames)(struct sock *))
2656 {
2657 	struct udp_sock *up = udp_sk(sk);
2658 	int val, valbool;
2659 	int err = 0;
2660 	int is_udplite = IS_UDPLITE(sk);
2661 
2662 	if (level == SOL_SOCKET) {
2663 		err = sk_setsockopt(sk, level, optname, optval, optlen);
2664 
2665 		if (optname == SO_RCVBUF || optname == SO_RCVBUFFORCE) {
2666 			sockopt_lock_sock(sk);
2667 			/* paired with READ_ONCE in udp_rmem_release() */
2668 			WRITE_ONCE(up->forward_threshold, sk->sk_rcvbuf >> 2);
2669 			sockopt_release_sock(sk);
2670 		}
2671 		return err;
2672 	}
2673 
2674 	if (optlen < sizeof(int))
2675 		return -EINVAL;
2676 
2677 	if (copy_from_sockptr(&val, optval, sizeof(val)))
2678 		return -EFAULT;
2679 
2680 	valbool = val ? 1 : 0;
2681 
2682 	switch (optname) {
2683 	case UDP_CORK:
2684 		if (val != 0) {
2685 			udp_set_bit(CORK, sk);
2686 		} else {
2687 			udp_clear_bit(CORK, sk);
2688 			lock_sock(sk);
2689 			push_pending_frames(sk);
2690 			release_sock(sk);
2691 		}
2692 		break;
2693 
2694 	case UDP_ENCAP:
2695 		switch (val) {
2696 		case 0:
2697 #ifdef CONFIG_XFRM
2698 		case UDP_ENCAP_ESPINUDP:
2699 			set_xfrm_gro_udp_encap_rcv(val, sk->sk_family, sk);
2700 			fallthrough;
2701 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2702 #if IS_ENABLED(CONFIG_IPV6)
2703 			if (sk->sk_family == AF_INET6)
2704 				WRITE_ONCE(up->encap_rcv,
2705 					   ipv6_stub->xfrm6_udp_encap_rcv);
2706 			else
2707 #endif
2708 				WRITE_ONCE(up->encap_rcv,
2709 					   xfrm4_udp_encap_rcv);
2710 #endif
2711 			fallthrough;
2712 		case UDP_ENCAP_L2TPINUDP:
2713 			WRITE_ONCE(up->encap_type, val);
2714 			udp_tunnel_encap_enable(sk);
2715 			break;
2716 		default:
2717 			err = -ENOPROTOOPT;
2718 			break;
2719 		}
2720 		break;
2721 
2722 	case UDP_NO_CHECK6_TX:
2723 		udp_set_no_check6_tx(sk, valbool);
2724 		break;
2725 
2726 	case UDP_NO_CHECK6_RX:
2727 		udp_set_no_check6_rx(sk, valbool);
2728 		break;
2729 
2730 	case UDP_SEGMENT:
2731 		if (val < 0 || val > USHRT_MAX)
2732 			return -EINVAL;
2733 		WRITE_ONCE(up->gso_size, val);
2734 		break;
2735 
2736 	case UDP_GRO:
2737 
2738 		/* when enabling GRO, accept the related GSO packet type */
2739 		if (valbool)
2740 			udp_tunnel_encap_enable(sk);
2741 		udp_assign_bit(GRO_ENABLED, sk, valbool);
2742 		udp_assign_bit(ACCEPT_L4, sk, valbool);
2743 		set_xfrm_gro_udp_encap_rcv(up->encap_type, sk->sk_family, sk);
2744 		break;
2745 
2746 	/*
2747 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2748 	 */
2749 	/* The sender sets actual checksum coverage length via this option.
2750 	 * The case coverage > packet length is handled by send module. */
2751 	case UDPLITE_SEND_CSCOV:
2752 		if (!is_udplite)         /* Disable the option on UDP sockets */
2753 			return -ENOPROTOOPT;
2754 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2755 			val = 8;
2756 		else if (val > USHRT_MAX)
2757 			val = USHRT_MAX;
2758 		WRITE_ONCE(up->pcslen, val);
2759 		udp_set_bit(UDPLITE_SEND_CC, sk);
2760 		break;
2761 
2762 	/* The receiver specifies a minimum checksum coverage value. To make
2763 	 * sense, this should be set to at least 8 (as done below). If zero is
2764 	 * used, this again means full checksum coverage.                     */
2765 	case UDPLITE_RECV_CSCOV:
2766 		if (!is_udplite)         /* Disable the option on UDP sockets */
2767 			return -ENOPROTOOPT;
2768 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2769 			val = 8;
2770 		else if (val > USHRT_MAX)
2771 			val = USHRT_MAX;
2772 		WRITE_ONCE(up->pcrlen, val);
2773 		udp_set_bit(UDPLITE_RECV_CC, sk);
2774 		break;
2775 
2776 	default:
2777 		err = -ENOPROTOOPT;
2778 		break;
2779 	}
2780 
2781 	return err;
2782 }
2783 EXPORT_SYMBOL(udp_lib_setsockopt);
2784 
2785 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
2786 		   unsigned int optlen)
2787 {
2788 	if (level == SOL_UDP  ||  level == SOL_UDPLITE || level == SOL_SOCKET)
2789 		return udp_lib_setsockopt(sk, level, optname,
2790 					  optval, optlen,
2791 					  udp_push_pending_frames);
2792 	return ip_setsockopt(sk, level, optname, optval, optlen);
2793 }
2794 
2795 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2796 		       char __user *optval, int __user *optlen)
2797 {
2798 	struct udp_sock *up = udp_sk(sk);
2799 	int val, len;
2800 
2801 	if (get_user(len, optlen))
2802 		return -EFAULT;
2803 
2804 	if (len < 0)
2805 		return -EINVAL;
2806 
2807 	len = min_t(unsigned int, len, sizeof(int));
2808 
2809 	switch (optname) {
2810 	case UDP_CORK:
2811 		val = udp_test_bit(CORK, sk);
2812 		break;
2813 
2814 	case UDP_ENCAP:
2815 		val = READ_ONCE(up->encap_type);
2816 		break;
2817 
2818 	case UDP_NO_CHECK6_TX:
2819 		val = udp_get_no_check6_tx(sk);
2820 		break;
2821 
2822 	case UDP_NO_CHECK6_RX:
2823 		val = udp_get_no_check6_rx(sk);
2824 		break;
2825 
2826 	case UDP_SEGMENT:
2827 		val = READ_ONCE(up->gso_size);
2828 		break;
2829 
2830 	case UDP_GRO:
2831 		val = udp_test_bit(GRO_ENABLED, sk);
2832 		break;
2833 
2834 	/* The following two cannot be changed on UDP sockets, the return is
2835 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2836 	case UDPLITE_SEND_CSCOV:
2837 		val = READ_ONCE(up->pcslen);
2838 		break;
2839 
2840 	case UDPLITE_RECV_CSCOV:
2841 		val = READ_ONCE(up->pcrlen);
2842 		break;
2843 
2844 	default:
2845 		return -ENOPROTOOPT;
2846 	}
2847 
2848 	if (put_user(len, optlen))
2849 		return -EFAULT;
2850 	if (copy_to_user(optval, &val, len))
2851 		return -EFAULT;
2852 	return 0;
2853 }
2854 EXPORT_SYMBOL(udp_lib_getsockopt);
2855 
2856 int udp_getsockopt(struct sock *sk, int level, int optname,
2857 		   char __user *optval, int __user *optlen)
2858 {
2859 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2860 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2861 	return ip_getsockopt(sk, level, optname, optval, optlen);
2862 }
2863 
2864 /**
2865  * 	udp_poll - wait for a UDP event.
2866  *	@file: - file struct
2867  *	@sock: - socket
2868  *	@wait: - poll table
2869  *
2870  *	This is same as datagram poll, except for the special case of
2871  *	blocking sockets. If application is using a blocking fd
2872  *	and a packet with checksum error is in the queue;
2873  *	then it could get return from select indicating data available
2874  *	but then block when reading it. Add special case code
2875  *	to work around these arguably broken applications.
2876  */
2877 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2878 {
2879 	__poll_t mask = datagram_poll(file, sock, wait);
2880 	struct sock *sk = sock->sk;
2881 
2882 	if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
2883 		mask |= EPOLLIN | EPOLLRDNORM;
2884 
2885 	/* Check for false positives due to checksum errors */
2886 	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2887 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2888 		mask &= ~(EPOLLIN | EPOLLRDNORM);
2889 
2890 	/* psock ingress_msg queue should not contain any bad checksum frames */
2891 	if (sk_is_readable(sk))
2892 		mask |= EPOLLIN | EPOLLRDNORM;
2893 	return mask;
2894 
2895 }
2896 EXPORT_SYMBOL(udp_poll);
2897 
2898 int udp_abort(struct sock *sk, int err)
2899 {
2900 	if (!has_current_bpf_ctx())
2901 		lock_sock(sk);
2902 
2903 	/* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing
2904 	 * with close()
2905 	 */
2906 	if (sock_flag(sk, SOCK_DEAD))
2907 		goto out;
2908 
2909 	sk->sk_err = err;
2910 	sk_error_report(sk);
2911 	__udp_disconnect(sk, 0);
2912 
2913 out:
2914 	if (!has_current_bpf_ctx())
2915 		release_sock(sk);
2916 
2917 	return 0;
2918 }
2919 EXPORT_SYMBOL_GPL(udp_abort);
2920 
2921 struct proto udp_prot = {
2922 	.name			= "UDP",
2923 	.owner			= THIS_MODULE,
2924 	.close			= udp_lib_close,
2925 	.pre_connect		= udp_pre_connect,
2926 	.connect		= ip4_datagram_connect,
2927 	.disconnect		= udp_disconnect,
2928 	.ioctl			= udp_ioctl,
2929 	.init			= udp_init_sock,
2930 	.destroy		= udp_destroy_sock,
2931 	.setsockopt		= udp_setsockopt,
2932 	.getsockopt		= udp_getsockopt,
2933 	.sendmsg		= udp_sendmsg,
2934 	.recvmsg		= udp_recvmsg,
2935 	.splice_eof		= udp_splice_eof,
2936 	.release_cb		= ip4_datagram_release_cb,
2937 	.hash			= udp_lib_hash,
2938 	.unhash			= udp_lib_unhash,
2939 	.rehash			= udp_v4_rehash,
2940 	.get_port		= udp_v4_get_port,
2941 	.put_port		= udp_lib_unhash,
2942 #ifdef CONFIG_BPF_SYSCALL
2943 	.psock_update_sk_prot	= udp_bpf_update_proto,
2944 #endif
2945 	.memory_allocated	= &udp_memory_allocated,
2946 	.per_cpu_fw_alloc	= &udp_memory_per_cpu_fw_alloc,
2947 
2948 	.sysctl_mem		= sysctl_udp_mem,
2949 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2950 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2951 	.obj_size		= sizeof(struct udp_sock),
2952 	.h.udp_table		= NULL,
2953 	.diag_destroy		= udp_abort,
2954 };
2955 EXPORT_SYMBOL(udp_prot);
2956 
2957 /* ------------------------------------------------------------------------ */
2958 #ifdef CONFIG_PROC_FS
2959 
2960 static unsigned short seq_file_family(const struct seq_file *seq);
2961 static bool seq_sk_match(struct seq_file *seq, const struct sock *sk)
2962 {
2963 	unsigned short family = seq_file_family(seq);
2964 
2965 	/* AF_UNSPEC is used as a match all */
2966 	return ((family == AF_UNSPEC || family == sk->sk_family) &&
2967 		net_eq(sock_net(sk), seq_file_net(seq)));
2968 }
2969 
2970 #ifdef CONFIG_BPF_SYSCALL
2971 static const struct seq_operations bpf_iter_udp_seq_ops;
2972 #endif
2973 static struct udp_table *udp_get_table_seq(struct seq_file *seq,
2974 					   struct net *net)
2975 {
2976 	const struct udp_seq_afinfo *afinfo;
2977 
2978 #ifdef CONFIG_BPF_SYSCALL
2979 	if (seq->op == &bpf_iter_udp_seq_ops)
2980 		return net->ipv4.udp_table;
2981 #endif
2982 
2983 	afinfo = pde_data(file_inode(seq->file));
2984 	return afinfo->udp_table ? : net->ipv4.udp_table;
2985 }
2986 
2987 static struct sock *udp_get_first(struct seq_file *seq, int start)
2988 {
2989 	struct udp_iter_state *state = seq->private;
2990 	struct net *net = seq_file_net(seq);
2991 	struct udp_table *udptable;
2992 	struct sock *sk;
2993 
2994 	udptable = udp_get_table_seq(seq, net);
2995 
2996 	for (state->bucket = start; state->bucket <= udptable->mask;
2997 	     ++state->bucket) {
2998 		struct udp_hslot *hslot = &udptable->hash[state->bucket];
2999 
3000 		if (hlist_empty(&hslot->head))
3001 			continue;
3002 
3003 		spin_lock_bh(&hslot->lock);
3004 		sk_for_each(sk, &hslot->head) {
3005 			if (seq_sk_match(seq, sk))
3006 				goto found;
3007 		}
3008 		spin_unlock_bh(&hslot->lock);
3009 	}
3010 	sk = NULL;
3011 found:
3012 	return sk;
3013 }
3014 
3015 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
3016 {
3017 	struct udp_iter_state *state = seq->private;
3018 	struct net *net = seq_file_net(seq);
3019 	struct udp_table *udptable;
3020 
3021 	do {
3022 		sk = sk_next(sk);
3023 	} while (sk && !seq_sk_match(seq, sk));
3024 
3025 	if (!sk) {
3026 		udptable = udp_get_table_seq(seq, net);
3027 
3028 		if (state->bucket <= udptable->mask)
3029 			spin_unlock_bh(&udptable->hash[state->bucket].lock);
3030 
3031 		return udp_get_first(seq, state->bucket + 1);
3032 	}
3033 	return sk;
3034 }
3035 
3036 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
3037 {
3038 	struct sock *sk = udp_get_first(seq, 0);
3039 
3040 	if (sk)
3041 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
3042 			--pos;
3043 	return pos ? NULL : sk;
3044 }
3045 
3046 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
3047 {
3048 	struct udp_iter_state *state = seq->private;
3049 	state->bucket = MAX_UDP_PORTS;
3050 
3051 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
3052 }
3053 EXPORT_SYMBOL(udp_seq_start);
3054 
3055 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3056 {
3057 	struct sock *sk;
3058 
3059 	if (v == SEQ_START_TOKEN)
3060 		sk = udp_get_idx(seq, 0);
3061 	else
3062 		sk = udp_get_next(seq, v);
3063 
3064 	++*pos;
3065 	return sk;
3066 }
3067 EXPORT_SYMBOL(udp_seq_next);
3068 
3069 void udp_seq_stop(struct seq_file *seq, void *v)
3070 {
3071 	struct udp_iter_state *state = seq->private;
3072 	struct udp_table *udptable;
3073 
3074 	udptable = udp_get_table_seq(seq, seq_file_net(seq));
3075 
3076 	if (state->bucket <= udptable->mask)
3077 		spin_unlock_bh(&udptable->hash[state->bucket].lock);
3078 }
3079 EXPORT_SYMBOL(udp_seq_stop);
3080 
3081 /* ------------------------------------------------------------------------ */
3082 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
3083 		int bucket)
3084 {
3085 	struct inet_sock *inet = inet_sk(sp);
3086 	__be32 dest = inet->inet_daddr;
3087 	__be32 src  = inet->inet_rcv_saddr;
3088 	__u16 destp	  = ntohs(inet->inet_dport);
3089 	__u16 srcp	  = ntohs(inet->inet_sport);
3090 
3091 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
3092 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
3093 		bucket, src, srcp, dest, destp, sp->sk_state,
3094 		sk_wmem_alloc_get(sp),
3095 		udp_rqueue_get(sp),
3096 		0, 0L, 0,
3097 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
3098 		0, sock_i_ino(sp),
3099 		refcount_read(&sp->sk_refcnt), sp,
3100 		atomic_read(&sp->sk_drops));
3101 }
3102 
3103 int udp4_seq_show(struct seq_file *seq, void *v)
3104 {
3105 	seq_setwidth(seq, 127);
3106 	if (v == SEQ_START_TOKEN)
3107 		seq_puts(seq, "   sl  local_address rem_address   st tx_queue "
3108 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
3109 			   "inode ref pointer drops");
3110 	else {
3111 		struct udp_iter_state *state = seq->private;
3112 
3113 		udp4_format_sock(v, seq, state->bucket);
3114 	}
3115 	seq_pad(seq, '\n');
3116 	return 0;
3117 }
3118 
3119 #ifdef CONFIG_BPF_SYSCALL
3120 struct bpf_iter__udp {
3121 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
3122 	__bpf_md_ptr(struct udp_sock *, udp_sk);
3123 	uid_t uid __aligned(8);
3124 	int bucket __aligned(8);
3125 };
3126 
3127 struct bpf_udp_iter_state {
3128 	struct udp_iter_state state;
3129 	unsigned int cur_sk;
3130 	unsigned int end_sk;
3131 	unsigned int max_sk;
3132 	int offset;
3133 	struct sock **batch;
3134 	bool st_bucket_done;
3135 };
3136 
3137 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3138 				      unsigned int new_batch_sz);
3139 static struct sock *bpf_iter_udp_batch(struct seq_file *seq)
3140 {
3141 	struct bpf_udp_iter_state *iter = seq->private;
3142 	struct udp_iter_state *state = &iter->state;
3143 	struct net *net = seq_file_net(seq);
3144 	int resume_bucket, resume_offset;
3145 	struct udp_table *udptable;
3146 	unsigned int batch_sks = 0;
3147 	bool resized = false;
3148 	struct sock *sk;
3149 
3150 	resume_bucket = state->bucket;
3151 	resume_offset = iter->offset;
3152 
3153 	/* The current batch is done, so advance the bucket. */
3154 	if (iter->st_bucket_done)
3155 		state->bucket++;
3156 
3157 	udptable = udp_get_table_seq(seq, net);
3158 
3159 again:
3160 	/* New batch for the next bucket.
3161 	 * Iterate over the hash table to find a bucket with sockets matching
3162 	 * the iterator attributes, and return the first matching socket from
3163 	 * the bucket. The remaining matched sockets from the bucket are batched
3164 	 * before releasing the bucket lock. This allows BPF programs that are
3165 	 * called in seq_show to acquire the bucket lock if needed.
3166 	 */
3167 	iter->cur_sk = 0;
3168 	iter->end_sk = 0;
3169 	iter->st_bucket_done = false;
3170 	batch_sks = 0;
3171 
3172 	for (; state->bucket <= udptable->mask; state->bucket++) {
3173 		struct udp_hslot *hslot2 = &udptable->hash2[state->bucket];
3174 
3175 		if (hlist_empty(&hslot2->head))
3176 			continue;
3177 
3178 		iter->offset = 0;
3179 		spin_lock_bh(&hslot2->lock);
3180 		udp_portaddr_for_each_entry(sk, &hslot2->head) {
3181 			if (seq_sk_match(seq, sk)) {
3182 				/* Resume from the last iterated socket at the
3183 				 * offset in the bucket before iterator was stopped.
3184 				 */
3185 				if (state->bucket == resume_bucket &&
3186 				    iter->offset < resume_offset) {
3187 					++iter->offset;
3188 					continue;
3189 				}
3190 				if (iter->end_sk < iter->max_sk) {
3191 					sock_hold(sk);
3192 					iter->batch[iter->end_sk++] = sk;
3193 				}
3194 				batch_sks++;
3195 			}
3196 		}
3197 		spin_unlock_bh(&hslot2->lock);
3198 
3199 		if (iter->end_sk)
3200 			break;
3201 	}
3202 
3203 	/* All done: no batch made. */
3204 	if (!iter->end_sk)
3205 		return NULL;
3206 
3207 	if (iter->end_sk == batch_sks) {
3208 		/* Batching is done for the current bucket; return the first
3209 		 * socket to be iterated from the batch.
3210 		 */
3211 		iter->st_bucket_done = true;
3212 		goto done;
3213 	}
3214 	if (!resized && !bpf_iter_udp_realloc_batch(iter, batch_sks * 3 / 2)) {
3215 		resized = true;
3216 		/* After allocating a larger batch, retry one more time to grab
3217 		 * the whole bucket.
3218 		 */
3219 		goto again;
3220 	}
3221 done:
3222 	return iter->batch[0];
3223 }
3224 
3225 static void *bpf_iter_udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3226 {
3227 	struct bpf_udp_iter_state *iter = seq->private;
3228 	struct sock *sk;
3229 
3230 	/* Whenever seq_next() is called, the iter->cur_sk is
3231 	 * done with seq_show(), so unref the iter->cur_sk.
3232 	 */
3233 	if (iter->cur_sk < iter->end_sk) {
3234 		sock_put(iter->batch[iter->cur_sk++]);
3235 		++iter->offset;
3236 	}
3237 
3238 	/* After updating iter->cur_sk, check if there are more sockets
3239 	 * available in the current bucket batch.
3240 	 */
3241 	if (iter->cur_sk < iter->end_sk)
3242 		sk = iter->batch[iter->cur_sk];
3243 	else
3244 		/* Prepare a new batch. */
3245 		sk = bpf_iter_udp_batch(seq);
3246 
3247 	++*pos;
3248 	return sk;
3249 }
3250 
3251 static void *bpf_iter_udp_seq_start(struct seq_file *seq, loff_t *pos)
3252 {
3253 	/* bpf iter does not support lseek, so it always
3254 	 * continue from where it was stop()-ped.
3255 	 */
3256 	if (*pos)
3257 		return bpf_iter_udp_batch(seq);
3258 
3259 	return SEQ_START_TOKEN;
3260 }
3261 
3262 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3263 			     struct udp_sock *udp_sk, uid_t uid, int bucket)
3264 {
3265 	struct bpf_iter__udp ctx;
3266 
3267 	meta->seq_num--;  /* skip SEQ_START_TOKEN */
3268 	ctx.meta = meta;
3269 	ctx.udp_sk = udp_sk;
3270 	ctx.uid = uid;
3271 	ctx.bucket = bucket;
3272 	return bpf_iter_run_prog(prog, &ctx);
3273 }
3274 
3275 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v)
3276 {
3277 	struct udp_iter_state *state = seq->private;
3278 	struct bpf_iter_meta meta;
3279 	struct bpf_prog *prog;
3280 	struct sock *sk = v;
3281 	uid_t uid;
3282 	int ret;
3283 
3284 	if (v == SEQ_START_TOKEN)
3285 		return 0;
3286 
3287 	lock_sock(sk);
3288 
3289 	if (unlikely(sk_unhashed(sk))) {
3290 		ret = SEQ_SKIP;
3291 		goto unlock;
3292 	}
3293 
3294 	uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3295 	meta.seq = seq;
3296 	prog = bpf_iter_get_info(&meta, false);
3297 	ret = udp_prog_seq_show(prog, &meta, v, uid, state->bucket);
3298 
3299 unlock:
3300 	release_sock(sk);
3301 	return ret;
3302 }
3303 
3304 static void bpf_iter_udp_put_batch(struct bpf_udp_iter_state *iter)
3305 {
3306 	while (iter->cur_sk < iter->end_sk)
3307 		sock_put(iter->batch[iter->cur_sk++]);
3308 }
3309 
3310 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v)
3311 {
3312 	struct bpf_udp_iter_state *iter = seq->private;
3313 	struct bpf_iter_meta meta;
3314 	struct bpf_prog *prog;
3315 
3316 	if (!v) {
3317 		meta.seq = seq;
3318 		prog = bpf_iter_get_info(&meta, true);
3319 		if (prog)
3320 			(void)udp_prog_seq_show(prog, &meta, v, 0, 0);
3321 	}
3322 
3323 	if (iter->cur_sk < iter->end_sk) {
3324 		bpf_iter_udp_put_batch(iter);
3325 		iter->st_bucket_done = false;
3326 	}
3327 }
3328 
3329 static const struct seq_operations bpf_iter_udp_seq_ops = {
3330 	.start		= bpf_iter_udp_seq_start,
3331 	.next		= bpf_iter_udp_seq_next,
3332 	.stop		= bpf_iter_udp_seq_stop,
3333 	.show		= bpf_iter_udp_seq_show,
3334 };
3335 #endif
3336 
3337 static unsigned short seq_file_family(const struct seq_file *seq)
3338 {
3339 	const struct udp_seq_afinfo *afinfo;
3340 
3341 #ifdef CONFIG_BPF_SYSCALL
3342 	/* BPF iterator: bpf programs to filter sockets. */
3343 	if (seq->op == &bpf_iter_udp_seq_ops)
3344 		return AF_UNSPEC;
3345 #endif
3346 
3347 	/* Proc fs iterator */
3348 	afinfo = pde_data(file_inode(seq->file));
3349 	return afinfo->family;
3350 }
3351 
3352 const struct seq_operations udp_seq_ops = {
3353 	.start		= udp_seq_start,
3354 	.next		= udp_seq_next,
3355 	.stop		= udp_seq_stop,
3356 	.show		= udp4_seq_show,
3357 };
3358 EXPORT_SYMBOL(udp_seq_ops);
3359 
3360 static struct udp_seq_afinfo udp4_seq_afinfo = {
3361 	.family		= AF_INET,
3362 	.udp_table	= NULL,
3363 };
3364 
3365 static int __net_init udp4_proc_init_net(struct net *net)
3366 {
3367 	if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
3368 			sizeof(struct udp_iter_state), &udp4_seq_afinfo))
3369 		return -ENOMEM;
3370 	return 0;
3371 }
3372 
3373 static void __net_exit udp4_proc_exit_net(struct net *net)
3374 {
3375 	remove_proc_entry("udp", net->proc_net);
3376 }
3377 
3378 static struct pernet_operations udp4_net_ops = {
3379 	.init = udp4_proc_init_net,
3380 	.exit = udp4_proc_exit_net,
3381 };
3382 
3383 int __init udp4_proc_init(void)
3384 {
3385 	return register_pernet_subsys(&udp4_net_ops);
3386 }
3387 
3388 void udp4_proc_exit(void)
3389 {
3390 	unregister_pernet_subsys(&udp4_net_ops);
3391 }
3392 #endif /* CONFIG_PROC_FS */
3393 
3394 static __initdata unsigned long uhash_entries;
3395 static int __init set_uhash_entries(char *str)
3396 {
3397 	ssize_t ret;
3398 
3399 	if (!str)
3400 		return 0;
3401 
3402 	ret = kstrtoul(str, 0, &uhash_entries);
3403 	if (ret)
3404 		return 0;
3405 
3406 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
3407 		uhash_entries = UDP_HTABLE_SIZE_MIN;
3408 	return 1;
3409 }
3410 __setup("uhash_entries=", set_uhash_entries);
3411 
3412 void __init udp_table_init(struct udp_table *table, const char *name)
3413 {
3414 	unsigned int i;
3415 
3416 	table->hash = alloc_large_system_hash(name,
3417 					      2 * sizeof(struct udp_hslot),
3418 					      uhash_entries,
3419 					      21, /* one slot per 2 MB */
3420 					      0,
3421 					      &table->log,
3422 					      &table->mask,
3423 					      UDP_HTABLE_SIZE_MIN,
3424 					      UDP_HTABLE_SIZE_MAX);
3425 
3426 	table->hash2 = table->hash + (table->mask + 1);
3427 	for (i = 0; i <= table->mask; i++) {
3428 		INIT_HLIST_HEAD(&table->hash[i].head);
3429 		table->hash[i].count = 0;
3430 		spin_lock_init(&table->hash[i].lock);
3431 	}
3432 	for (i = 0; i <= table->mask; i++) {
3433 		INIT_HLIST_HEAD(&table->hash2[i].head);
3434 		table->hash2[i].count = 0;
3435 		spin_lock_init(&table->hash2[i].lock);
3436 	}
3437 }
3438 
3439 u32 udp_flow_hashrnd(void)
3440 {
3441 	static u32 hashrnd __read_mostly;
3442 
3443 	net_get_random_once(&hashrnd, sizeof(hashrnd));
3444 
3445 	return hashrnd;
3446 }
3447 EXPORT_SYMBOL(udp_flow_hashrnd);
3448 
3449 static void __net_init udp_sysctl_init(struct net *net)
3450 {
3451 	net->ipv4.sysctl_udp_rmem_min = PAGE_SIZE;
3452 	net->ipv4.sysctl_udp_wmem_min = PAGE_SIZE;
3453 
3454 #ifdef CONFIG_NET_L3_MASTER_DEV
3455 	net->ipv4.sysctl_udp_l3mdev_accept = 0;
3456 #endif
3457 }
3458 
3459 static struct udp_table __net_init *udp_pernet_table_alloc(unsigned int hash_entries)
3460 {
3461 	struct udp_table *udptable;
3462 	int i;
3463 
3464 	udptable = kmalloc(sizeof(*udptable), GFP_KERNEL);
3465 	if (!udptable)
3466 		goto out;
3467 
3468 	udptable->hash = vmalloc_huge(hash_entries * 2 * sizeof(struct udp_hslot),
3469 				      GFP_KERNEL_ACCOUNT);
3470 	if (!udptable->hash)
3471 		goto free_table;
3472 
3473 	udptable->hash2 = udptable->hash + hash_entries;
3474 	udptable->mask = hash_entries - 1;
3475 	udptable->log = ilog2(hash_entries);
3476 
3477 	for (i = 0; i < hash_entries; i++) {
3478 		INIT_HLIST_HEAD(&udptable->hash[i].head);
3479 		udptable->hash[i].count = 0;
3480 		spin_lock_init(&udptable->hash[i].lock);
3481 
3482 		INIT_HLIST_HEAD(&udptable->hash2[i].head);
3483 		udptable->hash2[i].count = 0;
3484 		spin_lock_init(&udptable->hash2[i].lock);
3485 	}
3486 
3487 	return udptable;
3488 
3489 free_table:
3490 	kfree(udptable);
3491 out:
3492 	return NULL;
3493 }
3494 
3495 static void __net_exit udp_pernet_table_free(struct net *net)
3496 {
3497 	struct udp_table *udptable = net->ipv4.udp_table;
3498 
3499 	if (udptable == &udp_table)
3500 		return;
3501 
3502 	kvfree(udptable->hash);
3503 	kfree(udptable);
3504 }
3505 
3506 static void __net_init udp_set_table(struct net *net)
3507 {
3508 	struct udp_table *udptable;
3509 	unsigned int hash_entries;
3510 	struct net *old_net;
3511 
3512 	if (net_eq(net, &init_net))
3513 		goto fallback;
3514 
3515 	old_net = current->nsproxy->net_ns;
3516 	hash_entries = READ_ONCE(old_net->ipv4.sysctl_udp_child_hash_entries);
3517 	if (!hash_entries)
3518 		goto fallback;
3519 
3520 	/* Set min to keep the bitmap on stack in udp_lib_get_port() */
3521 	if (hash_entries < UDP_HTABLE_SIZE_MIN_PERNET)
3522 		hash_entries = UDP_HTABLE_SIZE_MIN_PERNET;
3523 	else
3524 		hash_entries = roundup_pow_of_two(hash_entries);
3525 
3526 	udptable = udp_pernet_table_alloc(hash_entries);
3527 	if (udptable) {
3528 		net->ipv4.udp_table = udptable;
3529 	} else {
3530 		pr_warn("Failed to allocate UDP hash table (entries: %u) "
3531 			"for a netns, fallback to the global one\n",
3532 			hash_entries);
3533 fallback:
3534 		net->ipv4.udp_table = &udp_table;
3535 	}
3536 }
3537 
3538 static int __net_init udp_pernet_init(struct net *net)
3539 {
3540 	udp_sysctl_init(net);
3541 	udp_set_table(net);
3542 
3543 	return 0;
3544 }
3545 
3546 static void __net_exit udp_pernet_exit(struct net *net)
3547 {
3548 	udp_pernet_table_free(net);
3549 }
3550 
3551 static struct pernet_operations __net_initdata udp_sysctl_ops = {
3552 	.init	= udp_pernet_init,
3553 	.exit	= udp_pernet_exit,
3554 };
3555 
3556 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3557 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta,
3558 		     struct udp_sock *udp_sk, uid_t uid, int bucket)
3559 
3560 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3561 				      unsigned int new_batch_sz)
3562 {
3563 	struct sock **new_batch;
3564 
3565 	new_batch = kvmalloc_array(new_batch_sz, sizeof(*new_batch),
3566 				   GFP_USER | __GFP_NOWARN);
3567 	if (!new_batch)
3568 		return -ENOMEM;
3569 
3570 	bpf_iter_udp_put_batch(iter);
3571 	kvfree(iter->batch);
3572 	iter->batch = new_batch;
3573 	iter->max_sk = new_batch_sz;
3574 
3575 	return 0;
3576 }
3577 
3578 #define INIT_BATCH_SZ 16
3579 
3580 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux)
3581 {
3582 	struct bpf_udp_iter_state *iter = priv_data;
3583 	int ret;
3584 
3585 	ret = bpf_iter_init_seq_net(priv_data, aux);
3586 	if (ret)
3587 		return ret;
3588 
3589 	ret = bpf_iter_udp_realloc_batch(iter, INIT_BATCH_SZ);
3590 	if (ret)
3591 		bpf_iter_fini_seq_net(priv_data);
3592 
3593 	return ret;
3594 }
3595 
3596 static void bpf_iter_fini_udp(void *priv_data)
3597 {
3598 	struct bpf_udp_iter_state *iter = priv_data;
3599 
3600 	bpf_iter_fini_seq_net(priv_data);
3601 	kvfree(iter->batch);
3602 }
3603 
3604 static const struct bpf_iter_seq_info udp_seq_info = {
3605 	.seq_ops		= &bpf_iter_udp_seq_ops,
3606 	.init_seq_private	= bpf_iter_init_udp,
3607 	.fini_seq_private	= bpf_iter_fini_udp,
3608 	.seq_priv_size		= sizeof(struct bpf_udp_iter_state),
3609 };
3610 
3611 static struct bpf_iter_reg udp_reg_info = {
3612 	.target			= "udp",
3613 	.ctx_arg_info_size	= 1,
3614 	.ctx_arg_info		= {
3615 		{ offsetof(struct bpf_iter__udp, udp_sk),
3616 		  PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED },
3617 	},
3618 	.seq_info		= &udp_seq_info,
3619 };
3620 
3621 static void __init bpf_iter_register(void)
3622 {
3623 	udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP];
3624 	if (bpf_iter_reg_target(&udp_reg_info))
3625 		pr_warn("Warning: could not register bpf iterator udp\n");
3626 }
3627 #endif
3628 
3629 void __init udp_init(void)
3630 {
3631 	unsigned long limit;
3632 	unsigned int i;
3633 
3634 	udp_table_init(&udp_table, "UDP");
3635 	limit = nr_free_buffer_pages() / 8;
3636 	limit = max(limit, 128UL);
3637 	sysctl_udp_mem[0] = limit / 4 * 3;
3638 	sysctl_udp_mem[1] = limit;
3639 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3640 
3641 	/* 16 spinlocks per cpu */
3642 	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3643 	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3644 				GFP_KERNEL);
3645 	if (!udp_busylocks)
3646 		panic("UDP: failed to alloc udp_busylocks\n");
3647 	for (i = 0; i < (1U << udp_busylocks_log); i++)
3648 		spin_lock_init(udp_busylocks + i);
3649 
3650 	if (register_pernet_subsys(&udp_sysctl_ops))
3651 		panic("UDP: failed to init sysctl parameters.\n");
3652 
3653 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3654 	bpf_iter_register();
3655 #endif
3656 }
3657