xref: /linux/net/ipv4/udp.c (revision 3fa7187eceee11998f756481e45ce8c4f9d9dc48)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		The User Datagram Protocol (UDP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
12  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
13  *		Hirokazu Takahashi, <taka@valinux.co.jp>
14  *
15  * Fixes:
16  *		Alan Cox	:	verify_area() calls
17  *		Alan Cox	: 	stopped close while in use off icmp
18  *					messages. Not a fix but a botch that
19  *					for udp at least is 'valid'.
20  *		Alan Cox	:	Fixed icmp handling properly
21  *		Alan Cox	: 	Correct error for oversized datagrams
22  *		Alan Cox	:	Tidied select() semantics.
23  *		Alan Cox	:	udp_err() fixed properly, also now
24  *					select and read wake correctly on errors
25  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
26  *		Alan Cox	:	UDP can count its memory
27  *		Alan Cox	:	send to an unknown connection causes
28  *					an ECONNREFUSED off the icmp, but
29  *					does NOT close.
30  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
31  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
32  *					bug no longer crashes it.
33  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
34  *		Alan Cox	:	Uses skb_free_datagram
35  *		Alan Cox	:	Added get/set sockopt support.
36  *		Alan Cox	:	Broadcasting without option set returns EACCES.
37  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
38  *		Alan Cox	:	Use ip_tos and ip_ttl
39  *		Alan Cox	:	SNMP Mibs
40  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
41  *		Matt Dillon	:	UDP length checks.
42  *		Alan Cox	:	Smarter af_inet used properly.
43  *		Alan Cox	:	Use new kernel side addressing.
44  *		Alan Cox	:	Incorrect return on truncated datagram receive.
45  *	Arnt Gulbrandsen 	:	New udp_send and stuff
46  *		Alan Cox	:	Cache last socket
47  *		Alan Cox	:	Route cache
48  *		Jon Peatfield	:	Minor efficiency fix to sendto().
49  *		Mike Shaver	:	RFC1122 checks.
50  *		Alan Cox	:	Nonblocking error fix.
51  *	Willy Konynenberg	:	Transparent proxying support.
52  *		Mike McLagan	:	Routing by source
53  *		David S. Miller	:	New socket lookup architecture.
54  *					Last socket cache retained as it
55  *					does have a high hit rate.
56  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
57  *		Andi Kleen	:	Some cleanups, cache destination entry
58  *					for connect.
59  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
60  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
61  *					return ENOTCONN for unconnected sockets (POSIX)
62  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
63  *					bound-to-device socket
64  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
65  *					datagrams.
66  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
67  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
68  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
69  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
70  *					a single port at the same time.
71  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
72  *	James Chapman		:	Add L2TP encapsulation type.
73  */
74 
75 #define pr_fmt(fmt) "UDP: " fmt
76 
77 #include <linux/bpf-cgroup.h>
78 #include <linux/uaccess.h>
79 #include <asm/ioctls.h>
80 #include <linux/memblock.h>
81 #include <linux/highmem.h>
82 #include <linux/types.h>
83 #include <linux/fcntl.h>
84 #include <linux/module.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/igmp.h>
88 #include <linux/inetdevice.h>
89 #include <linux/in.h>
90 #include <linux/errno.h>
91 #include <linux/timer.h>
92 #include <linux/mm.h>
93 #include <linux/inet.h>
94 #include <linux/netdevice.h>
95 #include <linux/slab.h>
96 #include <net/tcp_states.h>
97 #include <linux/skbuff.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <net/net_namespace.h>
101 #include <net/icmp.h>
102 #include <net/inet_hashtables.h>
103 #include <net/ip_tunnels.h>
104 #include <net/route.h>
105 #include <net/checksum.h>
106 #include <net/gso.h>
107 #include <net/xfrm.h>
108 #include <trace/events/udp.h>
109 #include <linux/static_key.h>
110 #include <linux/btf_ids.h>
111 #include <trace/events/skb.h>
112 #include <net/busy_poll.h>
113 #include "udp_impl.h"
114 #include <net/sock_reuseport.h>
115 #include <net/addrconf.h>
116 #include <net/udp_tunnel.h>
117 #include <net/gro.h>
118 #if IS_ENABLED(CONFIG_IPV6)
119 #include <net/ipv6_stubs.h>
120 #endif
121 
122 struct udp_table udp_table __read_mostly;
123 EXPORT_SYMBOL(udp_table);
124 
125 long sysctl_udp_mem[3] __read_mostly;
126 EXPORT_SYMBOL(sysctl_udp_mem);
127 
128 atomic_long_t udp_memory_allocated ____cacheline_aligned_in_smp;
129 EXPORT_SYMBOL(udp_memory_allocated);
130 DEFINE_PER_CPU(int, udp_memory_per_cpu_fw_alloc);
131 EXPORT_PER_CPU_SYMBOL_GPL(udp_memory_per_cpu_fw_alloc);
132 
133 #define MAX_UDP_PORTS 65536
134 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN_PERNET)
135 
136 static struct udp_table *udp_get_table_prot(struct sock *sk)
137 {
138 	return sk->sk_prot->h.udp_table ? : sock_net(sk)->ipv4.udp_table;
139 }
140 
141 static int udp_lib_lport_inuse(struct net *net, __u16 num,
142 			       const struct udp_hslot *hslot,
143 			       unsigned long *bitmap,
144 			       struct sock *sk, unsigned int log)
145 {
146 	struct sock *sk2;
147 	kuid_t uid = sock_i_uid(sk);
148 
149 	sk_for_each(sk2, &hslot->head) {
150 		if (net_eq(sock_net(sk2), net) &&
151 		    sk2 != sk &&
152 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
153 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
154 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
155 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
156 		    inet_rcv_saddr_equal(sk, sk2, true)) {
157 			if (sk2->sk_reuseport && sk->sk_reuseport &&
158 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
159 			    uid_eq(uid, sock_i_uid(sk2))) {
160 				if (!bitmap)
161 					return 0;
162 			} else {
163 				if (!bitmap)
164 					return 1;
165 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
166 					  bitmap);
167 			}
168 		}
169 	}
170 	return 0;
171 }
172 
173 /*
174  * Note: we still hold spinlock of primary hash chain, so no other writer
175  * can insert/delete a socket with local_port == num
176  */
177 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
178 				struct udp_hslot *hslot2,
179 				struct sock *sk)
180 {
181 	struct sock *sk2;
182 	kuid_t uid = sock_i_uid(sk);
183 	int res = 0;
184 
185 	spin_lock(&hslot2->lock);
186 	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
187 		if (net_eq(sock_net(sk2), net) &&
188 		    sk2 != sk &&
189 		    (udp_sk(sk2)->udp_port_hash == num) &&
190 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
191 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
192 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
193 		    inet_rcv_saddr_equal(sk, sk2, true)) {
194 			if (sk2->sk_reuseport && sk->sk_reuseport &&
195 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
196 			    uid_eq(uid, sock_i_uid(sk2))) {
197 				res = 0;
198 			} else {
199 				res = 1;
200 			}
201 			break;
202 		}
203 	}
204 	spin_unlock(&hslot2->lock);
205 	return res;
206 }
207 
208 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
209 {
210 	struct net *net = sock_net(sk);
211 	kuid_t uid = sock_i_uid(sk);
212 	struct sock *sk2;
213 
214 	sk_for_each(sk2, &hslot->head) {
215 		if (net_eq(sock_net(sk2), net) &&
216 		    sk2 != sk &&
217 		    sk2->sk_family == sk->sk_family &&
218 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
219 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
220 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
221 		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
222 		    inet_rcv_saddr_equal(sk, sk2, false)) {
223 			return reuseport_add_sock(sk, sk2,
224 						  inet_rcv_saddr_any(sk));
225 		}
226 	}
227 
228 	return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
229 }
230 
231 /**
232  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
233  *
234  *  @sk:          socket struct in question
235  *  @snum:        port number to look up
236  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
237  *                   with NULL address
238  */
239 int udp_lib_get_port(struct sock *sk, unsigned short snum,
240 		     unsigned int hash2_nulladdr)
241 {
242 	struct udp_table *udptable = udp_get_table_prot(sk);
243 	struct udp_hslot *hslot, *hslot2;
244 	struct net *net = sock_net(sk);
245 	int error = -EADDRINUSE;
246 
247 	if (!snum) {
248 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
249 		unsigned short first, last;
250 		int low, high, remaining;
251 		unsigned int rand;
252 
253 		inet_sk_get_local_port_range(sk, &low, &high);
254 		remaining = (high - low) + 1;
255 
256 		rand = get_random_u32();
257 		first = reciprocal_scale(rand, remaining) + low;
258 		/*
259 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
260 		 */
261 		rand = (rand | 1) * (udptable->mask + 1);
262 		last = first + udptable->mask + 1;
263 		do {
264 			hslot = udp_hashslot(udptable, net, first);
265 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
266 			spin_lock_bh(&hslot->lock);
267 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
268 					    udptable->log);
269 
270 			snum = first;
271 			/*
272 			 * Iterate on all possible values of snum for this hash.
273 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
274 			 * give us randomization and full range coverage.
275 			 */
276 			do {
277 				if (low <= snum && snum <= high &&
278 				    !test_bit(snum >> udptable->log, bitmap) &&
279 				    !inet_is_local_reserved_port(net, snum))
280 					goto found;
281 				snum += rand;
282 			} while (snum != first);
283 			spin_unlock_bh(&hslot->lock);
284 			cond_resched();
285 		} while (++first != last);
286 		goto fail;
287 	} else {
288 		hslot = udp_hashslot(udptable, net, snum);
289 		spin_lock_bh(&hslot->lock);
290 		if (hslot->count > 10) {
291 			int exist;
292 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
293 
294 			slot2          &= udptable->mask;
295 			hash2_nulladdr &= udptable->mask;
296 
297 			hslot2 = udp_hashslot2(udptable, slot2);
298 			if (hslot->count < hslot2->count)
299 				goto scan_primary_hash;
300 
301 			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
302 			if (!exist && (hash2_nulladdr != slot2)) {
303 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
304 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
305 							     sk);
306 			}
307 			if (exist)
308 				goto fail_unlock;
309 			else
310 				goto found;
311 		}
312 scan_primary_hash:
313 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
314 			goto fail_unlock;
315 	}
316 found:
317 	inet_sk(sk)->inet_num = snum;
318 	udp_sk(sk)->udp_port_hash = snum;
319 	udp_sk(sk)->udp_portaddr_hash ^= snum;
320 	if (sk_unhashed(sk)) {
321 		if (sk->sk_reuseport &&
322 		    udp_reuseport_add_sock(sk, hslot)) {
323 			inet_sk(sk)->inet_num = 0;
324 			udp_sk(sk)->udp_port_hash = 0;
325 			udp_sk(sk)->udp_portaddr_hash ^= snum;
326 			goto fail_unlock;
327 		}
328 
329 		sk_add_node_rcu(sk, &hslot->head);
330 		hslot->count++;
331 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
332 
333 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
334 		spin_lock(&hslot2->lock);
335 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
336 		    sk->sk_family == AF_INET6)
337 			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
338 					   &hslot2->head);
339 		else
340 			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
341 					   &hslot2->head);
342 		hslot2->count++;
343 		spin_unlock(&hslot2->lock);
344 	}
345 	sock_set_flag(sk, SOCK_RCU_FREE);
346 	error = 0;
347 fail_unlock:
348 	spin_unlock_bh(&hslot->lock);
349 fail:
350 	return error;
351 }
352 EXPORT_SYMBOL(udp_lib_get_port);
353 
354 int udp_v4_get_port(struct sock *sk, unsigned short snum)
355 {
356 	unsigned int hash2_nulladdr =
357 		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
358 	unsigned int hash2_partial =
359 		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
360 
361 	/* precompute partial secondary hash */
362 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
363 	return udp_lib_get_port(sk, snum, hash2_nulladdr);
364 }
365 
366 static int compute_score(struct sock *sk, struct net *net,
367 			 __be32 saddr, __be16 sport,
368 			 __be32 daddr, unsigned short hnum,
369 			 int dif, int sdif)
370 {
371 	int score;
372 	struct inet_sock *inet;
373 	bool dev_match;
374 
375 	if (!net_eq(sock_net(sk), net) ||
376 	    udp_sk(sk)->udp_port_hash != hnum ||
377 	    ipv6_only_sock(sk))
378 		return -1;
379 
380 	if (sk->sk_rcv_saddr != daddr)
381 		return -1;
382 
383 	score = (sk->sk_family == PF_INET) ? 2 : 1;
384 
385 	inet = inet_sk(sk);
386 	if (inet->inet_daddr) {
387 		if (inet->inet_daddr != saddr)
388 			return -1;
389 		score += 4;
390 	}
391 
392 	if (inet->inet_dport) {
393 		if (inet->inet_dport != sport)
394 			return -1;
395 		score += 4;
396 	}
397 
398 	dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
399 					dif, sdif);
400 	if (!dev_match)
401 		return -1;
402 	if (sk->sk_bound_dev_if)
403 		score += 4;
404 
405 	if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
406 		score++;
407 	return score;
408 }
409 
410 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
411 		       const __u16 lport, const __be32 faddr,
412 		       const __be16 fport)
413 {
414 	static u32 udp_ehash_secret __read_mostly;
415 
416 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
417 
418 	return __inet_ehashfn(laddr, lport, faddr, fport,
419 			      udp_ehash_secret + net_hash_mix(net));
420 }
421 
422 static struct sock *lookup_reuseport(struct net *net, struct sock *sk,
423 				     struct sk_buff *skb,
424 				     __be32 saddr, __be16 sport,
425 				     __be32 daddr, unsigned short hnum)
426 {
427 	struct sock *reuse_sk = NULL;
428 	u32 hash;
429 
430 	if (sk->sk_reuseport && sk->sk_state != TCP_ESTABLISHED) {
431 		hash = udp_ehashfn(net, daddr, hnum, saddr, sport);
432 		reuse_sk = reuseport_select_sock(sk, hash, skb,
433 						 sizeof(struct udphdr));
434 	}
435 	return reuse_sk;
436 }
437 
438 /* called with rcu_read_lock() */
439 static struct sock *udp4_lib_lookup2(struct net *net,
440 				     __be32 saddr, __be16 sport,
441 				     __be32 daddr, unsigned int hnum,
442 				     int dif, int sdif,
443 				     struct udp_hslot *hslot2,
444 				     struct sk_buff *skb)
445 {
446 	struct sock *sk, *result;
447 	int score, badness;
448 
449 	result = NULL;
450 	badness = 0;
451 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
452 		score = compute_score(sk, net, saddr, sport,
453 				      daddr, hnum, dif, sdif);
454 		if (score > badness) {
455 			result = lookup_reuseport(net, sk, skb,
456 						  saddr, sport, daddr, hnum);
457 			/* Fall back to scoring if group has connections */
458 			if (result && !reuseport_has_conns(sk))
459 				return result;
460 
461 			result = result ? : sk;
462 			badness = score;
463 		}
464 	}
465 	return result;
466 }
467 
468 static struct sock *udp4_lookup_run_bpf(struct net *net,
469 					struct udp_table *udptable,
470 					struct sk_buff *skb,
471 					__be32 saddr, __be16 sport,
472 					__be32 daddr, u16 hnum, const int dif)
473 {
474 	struct sock *sk, *reuse_sk;
475 	bool no_reuseport;
476 
477 	if (udptable != net->ipv4.udp_table)
478 		return NULL; /* only UDP is supported */
479 
480 	no_reuseport = bpf_sk_lookup_run_v4(net, IPPROTO_UDP, saddr, sport,
481 					    daddr, hnum, dif, &sk);
482 	if (no_reuseport || IS_ERR_OR_NULL(sk))
483 		return sk;
484 
485 	reuse_sk = lookup_reuseport(net, sk, skb, saddr, sport, daddr, hnum);
486 	if (reuse_sk)
487 		sk = reuse_sk;
488 	return sk;
489 }
490 
491 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
492  * harder than this. -DaveM
493  */
494 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
495 		__be16 sport, __be32 daddr, __be16 dport, int dif,
496 		int sdif, struct udp_table *udptable, struct sk_buff *skb)
497 {
498 	unsigned short hnum = ntohs(dport);
499 	unsigned int hash2, slot2;
500 	struct udp_hslot *hslot2;
501 	struct sock *result, *sk;
502 
503 	hash2 = ipv4_portaddr_hash(net, daddr, hnum);
504 	slot2 = hash2 & udptable->mask;
505 	hslot2 = &udptable->hash2[slot2];
506 
507 	/* Lookup connected or non-wildcard socket */
508 	result = udp4_lib_lookup2(net, saddr, sport,
509 				  daddr, hnum, dif, sdif,
510 				  hslot2, skb);
511 	if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED)
512 		goto done;
513 
514 	/* Lookup redirect from BPF */
515 	if (static_branch_unlikely(&bpf_sk_lookup_enabled)) {
516 		sk = udp4_lookup_run_bpf(net, udptable, skb,
517 					 saddr, sport, daddr, hnum, dif);
518 		if (sk) {
519 			result = sk;
520 			goto done;
521 		}
522 	}
523 
524 	/* Got non-wildcard socket or error on first lookup */
525 	if (result)
526 		goto done;
527 
528 	/* Lookup wildcard sockets */
529 	hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
530 	slot2 = hash2 & udptable->mask;
531 	hslot2 = &udptable->hash2[slot2];
532 
533 	result = udp4_lib_lookup2(net, saddr, sport,
534 				  htonl(INADDR_ANY), hnum, dif, sdif,
535 				  hslot2, skb);
536 done:
537 	if (IS_ERR(result))
538 		return NULL;
539 	return result;
540 }
541 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
542 
543 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
544 						 __be16 sport, __be16 dport,
545 						 struct udp_table *udptable)
546 {
547 	const struct iphdr *iph = ip_hdr(skb);
548 
549 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
550 				 iph->daddr, dport, inet_iif(skb),
551 				 inet_sdif(skb), udptable, skb);
552 }
553 
554 struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb,
555 				 __be16 sport, __be16 dport)
556 {
557 	const struct iphdr *iph = ip_hdr(skb);
558 	struct net *net = dev_net(skb->dev);
559 	int iif, sdif;
560 
561 	inet_get_iif_sdif(skb, &iif, &sdif);
562 
563 	return __udp4_lib_lookup(net, iph->saddr, sport,
564 				 iph->daddr, dport, iif,
565 				 sdif, net->ipv4.udp_table, NULL);
566 }
567 
568 /* Must be called under rcu_read_lock().
569  * Does increment socket refcount.
570  */
571 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
572 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
573 			     __be32 daddr, __be16 dport, int dif)
574 {
575 	struct sock *sk;
576 
577 	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
578 			       dif, 0, net->ipv4.udp_table, NULL);
579 	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
580 		sk = NULL;
581 	return sk;
582 }
583 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
584 #endif
585 
586 static inline bool __udp_is_mcast_sock(struct net *net, const struct sock *sk,
587 				       __be16 loc_port, __be32 loc_addr,
588 				       __be16 rmt_port, __be32 rmt_addr,
589 				       int dif, int sdif, unsigned short hnum)
590 {
591 	const struct inet_sock *inet = inet_sk(sk);
592 
593 	if (!net_eq(sock_net(sk), net) ||
594 	    udp_sk(sk)->udp_port_hash != hnum ||
595 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
596 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
597 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
598 	    ipv6_only_sock(sk) ||
599 	    !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
600 		return false;
601 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
602 		return false;
603 	return true;
604 }
605 
606 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
607 void udp_encap_enable(void)
608 {
609 	static_branch_inc(&udp_encap_needed_key);
610 }
611 EXPORT_SYMBOL(udp_encap_enable);
612 
613 void udp_encap_disable(void)
614 {
615 	static_branch_dec(&udp_encap_needed_key);
616 }
617 EXPORT_SYMBOL(udp_encap_disable);
618 
619 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go
620  * through error handlers in encapsulations looking for a match.
621  */
622 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
623 {
624 	int i;
625 
626 	for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
627 		int (*handler)(struct sk_buff *skb, u32 info);
628 		const struct ip_tunnel_encap_ops *encap;
629 
630 		encap = rcu_dereference(iptun_encaps[i]);
631 		if (!encap)
632 			continue;
633 		handler = encap->err_handler;
634 		if (handler && !handler(skb, info))
635 			return 0;
636 	}
637 
638 	return -ENOENT;
639 }
640 
641 /* Try to match ICMP errors to UDP tunnels by looking up a socket without
642  * reversing source and destination port: this will match tunnels that force the
643  * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
644  * lwtunnels might actually break this assumption by being configured with
645  * different destination ports on endpoints, in this case we won't be able to
646  * trace ICMP messages back to them.
647  *
648  * If this doesn't match any socket, probe tunnels with arbitrary destination
649  * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
650  * we've sent packets to won't necessarily match the local destination port.
651  *
652  * Then ask the tunnel implementation to match the error against a valid
653  * association.
654  *
655  * Return an error if we can't find a match, the socket if we need further
656  * processing, zero otherwise.
657  */
658 static struct sock *__udp4_lib_err_encap(struct net *net,
659 					 const struct iphdr *iph,
660 					 struct udphdr *uh,
661 					 struct udp_table *udptable,
662 					 struct sock *sk,
663 					 struct sk_buff *skb, u32 info)
664 {
665 	int (*lookup)(struct sock *sk, struct sk_buff *skb);
666 	int network_offset, transport_offset;
667 	struct udp_sock *up;
668 
669 	network_offset = skb_network_offset(skb);
670 	transport_offset = skb_transport_offset(skb);
671 
672 	/* Network header needs to point to the outer IPv4 header inside ICMP */
673 	skb_reset_network_header(skb);
674 
675 	/* Transport header needs to point to the UDP header */
676 	skb_set_transport_header(skb, iph->ihl << 2);
677 
678 	if (sk) {
679 		up = udp_sk(sk);
680 
681 		lookup = READ_ONCE(up->encap_err_lookup);
682 		if (lookup && lookup(sk, skb))
683 			sk = NULL;
684 
685 		goto out;
686 	}
687 
688 	sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
689 			       iph->saddr, uh->dest, skb->dev->ifindex, 0,
690 			       udptable, NULL);
691 	if (sk) {
692 		up = udp_sk(sk);
693 
694 		lookup = READ_ONCE(up->encap_err_lookup);
695 		if (!lookup || lookup(sk, skb))
696 			sk = NULL;
697 	}
698 
699 out:
700 	if (!sk)
701 		sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
702 
703 	skb_set_transport_header(skb, transport_offset);
704 	skb_set_network_header(skb, network_offset);
705 
706 	return sk;
707 }
708 
709 /*
710  * This routine is called by the ICMP module when it gets some
711  * sort of error condition.  If err < 0 then the socket should
712  * be closed and the error returned to the user.  If err > 0
713  * it's just the icmp type << 8 | icmp code.
714  * Header points to the ip header of the error packet. We move
715  * on past this. Then (as it used to claim before adjustment)
716  * header points to the first 8 bytes of the udp header.  We need
717  * to find the appropriate port.
718  */
719 
720 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
721 {
722 	struct inet_sock *inet;
723 	const struct iphdr *iph = (const struct iphdr *)skb->data;
724 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
725 	const int type = icmp_hdr(skb)->type;
726 	const int code = icmp_hdr(skb)->code;
727 	bool tunnel = false;
728 	struct sock *sk;
729 	int harderr;
730 	int err;
731 	struct net *net = dev_net(skb->dev);
732 
733 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
734 			       iph->saddr, uh->source, skb->dev->ifindex,
735 			       inet_sdif(skb), udptable, NULL);
736 
737 	if (!sk || udp_sk(sk)->encap_type) {
738 		/* No socket for error: try tunnels before discarding */
739 		if (static_branch_unlikely(&udp_encap_needed_key)) {
740 			sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb,
741 						  info);
742 			if (!sk)
743 				return 0;
744 		} else
745 			sk = ERR_PTR(-ENOENT);
746 
747 		if (IS_ERR(sk)) {
748 			__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
749 			return PTR_ERR(sk);
750 		}
751 
752 		tunnel = true;
753 	}
754 
755 	err = 0;
756 	harderr = 0;
757 	inet = inet_sk(sk);
758 
759 	switch (type) {
760 	default:
761 	case ICMP_TIME_EXCEEDED:
762 		err = EHOSTUNREACH;
763 		break;
764 	case ICMP_SOURCE_QUENCH:
765 		goto out;
766 	case ICMP_PARAMETERPROB:
767 		err = EPROTO;
768 		harderr = 1;
769 		break;
770 	case ICMP_DEST_UNREACH:
771 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
772 			ipv4_sk_update_pmtu(skb, sk, info);
773 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
774 				err = EMSGSIZE;
775 				harderr = 1;
776 				break;
777 			}
778 			goto out;
779 		}
780 		err = EHOSTUNREACH;
781 		if (code <= NR_ICMP_UNREACH) {
782 			harderr = icmp_err_convert[code].fatal;
783 			err = icmp_err_convert[code].errno;
784 		}
785 		break;
786 	case ICMP_REDIRECT:
787 		ipv4_sk_redirect(skb, sk);
788 		goto out;
789 	}
790 
791 	/*
792 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
793 	 *	4.1.3.3.
794 	 */
795 	if (tunnel) {
796 		/* ...not for tunnels though: we don't have a sending socket */
797 		if (udp_sk(sk)->encap_err_rcv)
798 			udp_sk(sk)->encap_err_rcv(sk, skb, err, uh->dest, info,
799 						  (u8 *)(uh+1));
800 		goto out;
801 	}
802 	if (!inet->recverr) {
803 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
804 			goto out;
805 	} else
806 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
807 
808 	sk->sk_err = err;
809 	sk_error_report(sk);
810 out:
811 	return 0;
812 }
813 
814 int udp_err(struct sk_buff *skb, u32 info)
815 {
816 	return __udp4_lib_err(skb, info, dev_net(skb->dev)->ipv4.udp_table);
817 }
818 
819 /*
820  * Throw away all pending data and cancel the corking. Socket is locked.
821  */
822 void udp_flush_pending_frames(struct sock *sk)
823 {
824 	struct udp_sock *up = udp_sk(sk);
825 
826 	if (up->pending) {
827 		up->len = 0;
828 		up->pending = 0;
829 		ip_flush_pending_frames(sk);
830 	}
831 }
832 EXPORT_SYMBOL(udp_flush_pending_frames);
833 
834 /**
835  * 	udp4_hwcsum  -  handle outgoing HW checksumming
836  * 	@skb: 	sk_buff containing the filled-in UDP header
837  * 	        (checksum field must be zeroed out)
838  *	@src:	source IP address
839  *	@dst:	destination IP address
840  */
841 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
842 {
843 	struct udphdr *uh = udp_hdr(skb);
844 	int offset = skb_transport_offset(skb);
845 	int len = skb->len - offset;
846 	int hlen = len;
847 	__wsum csum = 0;
848 
849 	if (!skb_has_frag_list(skb)) {
850 		/*
851 		 * Only one fragment on the socket.
852 		 */
853 		skb->csum_start = skb_transport_header(skb) - skb->head;
854 		skb->csum_offset = offsetof(struct udphdr, check);
855 		uh->check = ~csum_tcpudp_magic(src, dst, len,
856 					       IPPROTO_UDP, 0);
857 	} else {
858 		struct sk_buff *frags;
859 
860 		/*
861 		 * HW-checksum won't work as there are two or more
862 		 * fragments on the socket so that all csums of sk_buffs
863 		 * should be together
864 		 */
865 		skb_walk_frags(skb, frags) {
866 			csum = csum_add(csum, frags->csum);
867 			hlen -= frags->len;
868 		}
869 
870 		csum = skb_checksum(skb, offset, hlen, csum);
871 		skb->ip_summed = CHECKSUM_NONE;
872 
873 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
874 		if (uh->check == 0)
875 			uh->check = CSUM_MANGLED_0;
876 	}
877 }
878 EXPORT_SYMBOL_GPL(udp4_hwcsum);
879 
880 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
881  * for the simple case like when setting the checksum for a UDP tunnel.
882  */
883 void udp_set_csum(bool nocheck, struct sk_buff *skb,
884 		  __be32 saddr, __be32 daddr, int len)
885 {
886 	struct udphdr *uh = udp_hdr(skb);
887 
888 	if (nocheck) {
889 		uh->check = 0;
890 	} else if (skb_is_gso(skb)) {
891 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
892 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
893 		uh->check = 0;
894 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
895 		if (uh->check == 0)
896 			uh->check = CSUM_MANGLED_0;
897 	} else {
898 		skb->ip_summed = CHECKSUM_PARTIAL;
899 		skb->csum_start = skb_transport_header(skb) - skb->head;
900 		skb->csum_offset = offsetof(struct udphdr, check);
901 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
902 	}
903 }
904 EXPORT_SYMBOL(udp_set_csum);
905 
906 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
907 			struct inet_cork *cork)
908 {
909 	struct sock *sk = skb->sk;
910 	struct inet_sock *inet = inet_sk(sk);
911 	struct udphdr *uh;
912 	int err;
913 	int is_udplite = IS_UDPLITE(sk);
914 	int offset = skb_transport_offset(skb);
915 	int len = skb->len - offset;
916 	int datalen = len - sizeof(*uh);
917 	__wsum csum = 0;
918 
919 	/*
920 	 * Create a UDP header
921 	 */
922 	uh = udp_hdr(skb);
923 	uh->source = inet->inet_sport;
924 	uh->dest = fl4->fl4_dport;
925 	uh->len = htons(len);
926 	uh->check = 0;
927 
928 	if (cork->gso_size) {
929 		const int hlen = skb_network_header_len(skb) +
930 				 sizeof(struct udphdr);
931 
932 		if (hlen + cork->gso_size > cork->fragsize) {
933 			kfree_skb(skb);
934 			return -EINVAL;
935 		}
936 		if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) {
937 			kfree_skb(skb);
938 			return -EINVAL;
939 		}
940 		if (sk->sk_no_check_tx) {
941 			kfree_skb(skb);
942 			return -EINVAL;
943 		}
944 		if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
945 		    dst_xfrm(skb_dst(skb))) {
946 			kfree_skb(skb);
947 			return -EIO;
948 		}
949 
950 		if (datalen > cork->gso_size) {
951 			skb_shinfo(skb)->gso_size = cork->gso_size;
952 			skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
953 			skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
954 								 cork->gso_size);
955 		}
956 		goto csum_partial;
957 	}
958 
959 	if (is_udplite)  				 /*     UDP-Lite      */
960 		csum = udplite_csum(skb);
961 
962 	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
963 
964 		skb->ip_summed = CHECKSUM_NONE;
965 		goto send;
966 
967 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
968 csum_partial:
969 
970 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
971 		goto send;
972 
973 	} else
974 		csum = udp_csum(skb);
975 
976 	/* add protocol-dependent pseudo-header */
977 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
978 				      sk->sk_protocol, csum);
979 	if (uh->check == 0)
980 		uh->check = CSUM_MANGLED_0;
981 
982 send:
983 	err = ip_send_skb(sock_net(sk), skb);
984 	if (err) {
985 		if (err == -ENOBUFS && !inet->recverr) {
986 			UDP_INC_STATS(sock_net(sk),
987 				      UDP_MIB_SNDBUFERRORS, is_udplite);
988 			err = 0;
989 		}
990 	} else
991 		UDP_INC_STATS(sock_net(sk),
992 			      UDP_MIB_OUTDATAGRAMS, is_udplite);
993 	return err;
994 }
995 
996 /*
997  * Push out all pending data as one UDP datagram. Socket is locked.
998  */
999 int udp_push_pending_frames(struct sock *sk)
1000 {
1001 	struct udp_sock  *up = udp_sk(sk);
1002 	struct inet_sock *inet = inet_sk(sk);
1003 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
1004 	struct sk_buff *skb;
1005 	int err = 0;
1006 
1007 	skb = ip_finish_skb(sk, fl4);
1008 	if (!skb)
1009 		goto out;
1010 
1011 	err = udp_send_skb(skb, fl4, &inet->cork.base);
1012 
1013 out:
1014 	up->len = 0;
1015 	up->pending = 0;
1016 	return err;
1017 }
1018 EXPORT_SYMBOL(udp_push_pending_frames);
1019 
1020 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
1021 {
1022 	switch (cmsg->cmsg_type) {
1023 	case UDP_SEGMENT:
1024 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
1025 			return -EINVAL;
1026 		*gso_size = *(__u16 *)CMSG_DATA(cmsg);
1027 		return 0;
1028 	default:
1029 		return -EINVAL;
1030 	}
1031 }
1032 
1033 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
1034 {
1035 	struct cmsghdr *cmsg;
1036 	bool need_ip = false;
1037 	int err;
1038 
1039 	for_each_cmsghdr(cmsg, msg) {
1040 		if (!CMSG_OK(msg, cmsg))
1041 			return -EINVAL;
1042 
1043 		if (cmsg->cmsg_level != SOL_UDP) {
1044 			need_ip = true;
1045 			continue;
1046 		}
1047 
1048 		err = __udp_cmsg_send(cmsg, gso_size);
1049 		if (err)
1050 			return err;
1051 	}
1052 
1053 	return need_ip;
1054 }
1055 EXPORT_SYMBOL_GPL(udp_cmsg_send);
1056 
1057 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1058 {
1059 	struct inet_sock *inet = inet_sk(sk);
1060 	struct udp_sock *up = udp_sk(sk);
1061 	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1062 	struct flowi4 fl4_stack;
1063 	struct flowi4 *fl4;
1064 	int ulen = len;
1065 	struct ipcm_cookie ipc;
1066 	struct rtable *rt = NULL;
1067 	int free = 0;
1068 	int connected = 0;
1069 	__be32 daddr, faddr, saddr;
1070 	u8 tos, scope;
1071 	__be16 dport;
1072 	int err, is_udplite = IS_UDPLITE(sk);
1073 	int corkreq = READ_ONCE(up->corkflag) || msg->msg_flags&MSG_MORE;
1074 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
1075 	struct sk_buff *skb;
1076 	struct ip_options_data opt_copy;
1077 
1078 	if (len > 0xFFFF)
1079 		return -EMSGSIZE;
1080 
1081 	/*
1082 	 *	Check the flags.
1083 	 */
1084 
1085 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1086 		return -EOPNOTSUPP;
1087 
1088 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1089 
1090 	fl4 = &inet->cork.fl.u.ip4;
1091 	if (up->pending) {
1092 		/*
1093 		 * There are pending frames.
1094 		 * The socket lock must be held while it's corked.
1095 		 */
1096 		lock_sock(sk);
1097 		if (likely(up->pending)) {
1098 			if (unlikely(up->pending != AF_INET)) {
1099 				release_sock(sk);
1100 				return -EINVAL;
1101 			}
1102 			goto do_append_data;
1103 		}
1104 		release_sock(sk);
1105 	}
1106 	ulen += sizeof(struct udphdr);
1107 
1108 	/*
1109 	 *	Get and verify the address.
1110 	 */
1111 	if (usin) {
1112 		if (msg->msg_namelen < sizeof(*usin))
1113 			return -EINVAL;
1114 		if (usin->sin_family != AF_INET) {
1115 			if (usin->sin_family != AF_UNSPEC)
1116 				return -EAFNOSUPPORT;
1117 		}
1118 
1119 		daddr = usin->sin_addr.s_addr;
1120 		dport = usin->sin_port;
1121 		if (dport == 0)
1122 			return -EINVAL;
1123 	} else {
1124 		if (sk->sk_state != TCP_ESTABLISHED)
1125 			return -EDESTADDRREQ;
1126 		daddr = inet->inet_daddr;
1127 		dport = inet->inet_dport;
1128 		/* Open fast path for connected socket.
1129 		   Route will not be used, if at least one option is set.
1130 		 */
1131 		connected = 1;
1132 	}
1133 
1134 	ipcm_init_sk(&ipc, inet);
1135 	ipc.gso_size = READ_ONCE(up->gso_size);
1136 
1137 	if (msg->msg_controllen) {
1138 		err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1139 		if (err > 0)
1140 			err = ip_cmsg_send(sk, msg, &ipc,
1141 					   sk->sk_family == AF_INET6);
1142 		if (unlikely(err < 0)) {
1143 			kfree(ipc.opt);
1144 			return err;
1145 		}
1146 		if (ipc.opt)
1147 			free = 1;
1148 		connected = 0;
1149 	}
1150 	if (!ipc.opt) {
1151 		struct ip_options_rcu *inet_opt;
1152 
1153 		rcu_read_lock();
1154 		inet_opt = rcu_dereference(inet->inet_opt);
1155 		if (inet_opt) {
1156 			memcpy(&opt_copy, inet_opt,
1157 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
1158 			ipc.opt = &opt_copy.opt;
1159 		}
1160 		rcu_read_unlock();
1161 	}
1162 
1163 	if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) {
1164 		err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1165 					    (struct sockaddr *)usin, &ipc.addr);
1166 		if (err)
1167 			goto out_free;
1168 		if (usin) {
1169 			if (usin->sin_port == 0) {
1170 				/* BPF program set invalid port. Reject it. */
1171 				err = -EINVAL;
1172 				goto out_free;
1173 			}
1174 			daddr = usin->sin_addr.s_addr;
1175 			dport = usin->sin_port;
1176 		}
1177 	}
1178 
1179 	saddr = ipc.addr;
1180 	ipc.addr = faddr = daddr;
1181 
1182 	if (ipc.opt && ipc.opt->opt.srr) {
1183 		if (!daddr) {
1184 			err = -EINVAL;
1185 			goto out_free;
1186 		}
1187 		faddr = ipc.opt->opt.faddr;
1188 		connected = 0;
1189 	}
1190 	tos = get_rttos(&ipc, inet);
1191 	scope = ip_sendmsg_scope(inet, &ipc, msg);
1192 	if (scope == RT_SCOPE_LINK)
1193 		connected = 0;
1194 
1195 	if (ipv4_is_multicast(daddr)) {
1196 		if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1197 			ipc.oif = inet->mc_index;
1198 		if (!saddr)
1199 			saddr = inet->mc_addr;
1200 		connected = 0;
1201 	} else if (!ipc.oif) {
1202 		ipc.oif = inet->uc_index;
1203 	} else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
1204 		/* oif is set, packet is to local broadcast and
1205 		 * uc_index is set. oif is most likely set
1206 		 * by sk_bound_dev_if. If uc_index != oif check if the
1207 		 * oif is an L3 master and uc_index is an L3 slave.
1208 		 * If so, we want to allow the send using the uc_index.
1209 		 */
1210 		if (ipc.oif != inet->uc_index &&
1211 		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1212 							      inet->uc_index)) {
1213 			ipc.oif = inet->uc_index;
1214 		}
1215 	}
1216 
1217 	if (connected)
1218 		rt = (struct rtable *)sk_dst_check(sk, 0);
1219 
1220 	if (!rt) {
1221 		struct net *net = sock_net(sk);
1222 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1223 
1224 		fl4 = &fl4_stack;
1225 
1226 		flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos, scope,
1227 				   sk->sk_protocol, flow_flags, faddr, saddr,
1228 				   dport, inet->inet_sport, sk->sk_uid);
1229 
1230 		security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
1231 		rt = ip_route_output_flow(net, fl4, sk);
1232 		if (IS_ERR(rt)) {
1233 			err = PTR_ERR(rt);
1234 			rt = NULL;
1235 			if (err == -ENETUNREACH)
1236 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1237 			goto out;
1238 		}
1239 
1240 		err = -EACCES;
1241 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1242 		    !sock_flag(sk, SOCK_BROADCAST))
1243 			goto out;
1244 		if (connected)
1245 			sk_dst_set(sk, dst_clone(&rt->dst));
1246 	}
1247 
1248 	if (msg->msg_flags&MSG_CONFIRM)
1249 		goto do_confirm;
1250 back_from_confirm:
1251 
1252 	saddr = fl4->saddr;
1253 	if (!ipc.addr)
1254 		daddr = ipc.addr = fl4->daddr;
1255 
1256 	/* Lockless fast path for the non-corking case. */
1257 	if (!corkreq) {
1258 		struct inet_cork cork;
1259 
1260 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1261 				  sizeof(struct udphdr), &ipc, &rt,
1262 				  &cork, msg->msg_flags);
1263 		err = PTR_ERR(skb);
1264 		if (!IS_ERR_OR_NULL(skb))
1265 			err = udp_send_skb(skb, fl4, &cork);
1266 		goto out;
1267 	}
1268 
1269 	lock_sock(sk);
1270 	if (unlikely(up->pending)) {
1271 		/* The socket is already corked while preparing it. */
1272 		/* ... which is an evident application bug. --ANK */
1273 		release_sock(sk);
1274 
1275 		net_dbg_ratelimited("socket already corked\n");
1276 		err = -EINVAL;
1277 		goto out;
1278 	}
1279 	/*
1280 	 *	Now cork the socket to pend data.
1281 	 */
1282 	fl4 = &inet->cork.fl.u.ip4;
1283 	fl4->daddr = daddr;
1284 	fl4->saddr = saddr;
1285 	fl4->fl4_dport = dport;
1286 	fl4->fl4_sport = inet->inet_sport;
1287 	up->pending = AF_INET;
1288 
1289 do_append_data:
1290 	up->len += ulen;
1291 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1292 			     sizeof(struct udphdr), &ipc, &rt,
1293 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1294 	if (err)
1295 		udp_flush_pending_frames(sk);
1296 	else if (!corkreq)
1297 		err = udp_push_pending_frames(sk);
1298 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1299 		up->pending = 0;
1300 	release_sock(sk);
1301 
1302 out:
1303 	ip_rt_put(rt);
1304 out_free:
1305 	if (free)
1306 		kfree(ipc.opt);
1307 	if (!err)
1308 		return len;
1309 	/*
1310 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1311 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1312 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1313 	 * things).  We could add another new stat but at least for now that
1314 	 * seems like overkill.
1315 	 */
1316 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1317 		UDP_INC_STATS(sock_net(sk),
1318 			      UDP_MIB_SNDBUFERRORS, is_udplite);
1319 	}
1320 	return err;
1321 
1322 do_confirm:
1323 	if (msg->msg_flags & MSG_PROBE)
1324 		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1325 	if (!(msg->msg_flags&MSG_PROBE) || len)
1326 		goto back_from_confirm;
1327 	err = 0;
1328 	goto out;
1329 }
1330 EXPORT_SYMBOL(udp_sendmsg);
1331 
1332 void udp_splice_eof(struct socket *sock)
1333 {
1334 	struct sock *sk = sock->sk;
1335 	struct udp_sock *up = udp_sk(sk);
1336 
1337 	if (!up->pending || READ_ONCE(up->corkflag))
1338 		return;
1339 
1340 	lock_sock(sk);
1341 	if (up->pending && !READ_ONCE(up->corkflag))
1342 		udp_push_pending_frames(sk);
1343 	release_sock(sk);
1344 }
1345 EXPORT_SYMBOL_GPL(udp_splice_eof);
1346 
1347 #define UDP_SKB_IS_STATELESS 0x80000000
1348 
1349 /* all head states (dst, sk, nf conntrack) except skb extensions are
1350  * cleared by udp_rcv().
1351  *
1352  * We need to preserve secpath, if present, to eventually process
1353  * IP_CMSG_PASSSEC at recvmsg() time.
1354  *
1355  * Other extensions can be cleared.
1356  */
1357 static bool udp_try_make_stateless(struct sk_buff *skb)
1358 {
1359 	if (!skb_has_extensions(skb))
1360 		return true;
1361 
1362 	if (!secpath_exists(skb)) {
1363 		skb_ext_reset(skb);
1364 		return true;
1365 	}
1366 
1367 	return false;
1368 }
1369 
1370 static void udp_set_dev_scratch(struct sk_buff *skb)
1371 {
1372 	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1373 
1374 	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1375 	scratch->_tsize_state = skb->truesize;
1376 #if BITS_PER_LONG == 64
1377 	scratch->len = skb->len;
1378 	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1379 	scratch->is_linear = !skb_is_nonlinear(skb);
1380 #endif
1381 	if (udp_try_make_stateless(skb))
1382 		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1383 }
1384 
1385 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1386 {
1387 	/* We come here after udp_lib_checksum_complete() returned 0.
1388 	 * This means that __skb_checksum_complete() might have
1389 	 * set skb->csum_valid to 1.
1390 	 * On 64bit platforms, we can set csum_unnecessary
1391 	 * to true, but only if the skb is not shared.
1392 	 */
1393 #if BITS_PER_LONG == 64
1394 	if (!skb_shared(skb))
1395 		udp_skb_scratch(skb)->csum_unnecessary = true;
1396 #endif
1397 }
1398 
1399 static int udp_skb_truesize(struct sk_buff *skb)
1400 {
1401 	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1402 }
1403 
1404 static bool udp_skb_has_head_state(struct sk_buff *skb)
1405 {
1406 	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1407 }
1408 
1409 /* fully reclaim rmem/fwd memory allocated for skb */
1410 static void udp_rmem_release(struct sock *sk, int size, int partial,
1411 			     bool rx_queue_lock_held)
1412 {
1413 	struct udp_sock *up = udp_sk(sk);
1414 	struct sk_buff_head *sk_queue;
1415 	int amt;
1416 
1417 	if (likely(partial)) {
1418 		up->forward_deficit += size;
1419 		size = up->forward_deficit;
1420 		if (size < READ_ONCE(up->forward_threshold) &&
1421 		    !skb_queue_empty(&up->reader_queue))
1422 			return;
1423 	} else {
1424 		size += up->forward_deficit;
1425 	}
1426 	up->forward_deficit = 0;
1427 
1428 	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1429 	 * if the called don't held it already
1430 	 */
1431 	sk_queue = &sk->sk_receive_queue;
1432 	if (!rx_queue_lock_held)
1433 		spin_lock(&sk_queue->lock);
1434 
1435 
1436 	sk->sk_forward_alloc += size;
1437 	amt = (sk->sk_forward_alloc - partial) & ~(PAGE_SIZE - 1);
1438 	sk->sk_forward_alloc -= amt;
1439 
1440 	if (amt)
1441 		__sk_mem_reduce_allocated(sk, amt >> PAGE_SHIFT);
1442 
1443 	atomic_sub(size, &sk->sk_rmem_alloc);
1444 
1445 	/* this can save us from acquiring the rx queue lock on next receive */
1446 	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1447 
1448 	if (!rx_queue_lock_held)
1449 		spin_unlock(&sk_queue->lock);
1450 }
1451 
1452 /* Note: called with reader_queue.lock held.
1453  * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1454  * This avoids a cache line miss while receive_queue lock is held.
1455  * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1456  */
1457 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1458 {
1459 	prefetch(&skb->data);
1460 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1461 }
1462 EXPORT_SYMBOL(udp_skb_destructor);
1463 
1464 /* as above, but the caller held the rx queue lock, too */
1465 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1466 {
1467 	prefetch(&skb->data);
1468 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1469 }
1470 
1471 /* Idea of busylocks is to let producers grab an extra spinlock
1472  * to relieve pressure on the receive_queue spinlock shared by consumer.
1473  * Under flood, this means that only one producer can be in line
1474  * trying to acquire the receive_queue spinlock.
1475  * These busylock can be allocated on a per cpu manner, instead of a
1476  * per socket one (that would consume a cache line per socket)
1477  */
1478 static int udp_busylocks_log __read_mostly;
1479 static spinlock_t *udp_busylocks __read_mostly;
1480 
1481 static spinlock_t *busylock_acquire(void *ptr)
1482 {
1483 	spinlock_t *busy;
1484 
1485 	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1486 	spin_lock(busy);
1487 	return busy;
1488 }
1489 
1490 static void busylock_release(spinlock_t *busy)
1491 {
1492 	if (busy)
1493 		spin_unlock(busy);
1494 }
1495 
1496 static int udp_rmem_schedule(struct sock *sk, int size)
1497 {
1498 	int delta;
1499 
1500 	delta = size - sk->sk_forward_alloc;
1501 	if (delta > 0 && !__sk_mem_schedule(sk, delta, SK_MEM_RECV))
1502 		return -ENOBUFS;
1503 
1504 	return 0;
1505 }
1506 
1507 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1508 {
1509 	struct sk_buff_head *list = &sk->sk_receive_queue;
1510 	int rmem, err = -ENOMEM;
1511 	spinlock_t *busy = NULL;
1512 	int size;
1513 
1514 	/* try to avoid the costly atomic add/sub pair when the receive
1515 	 * queue is full; always allow at least a packet
1516 	 */
1517 	rmem = atomic_read(&sk->sk_rmem_alloc);
1518 	if (rmem > sk->sk_rcvbuf)
1519 		goto drop;
1520 
1521 	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1522 	 * having linear skbs :
1523 	 * - Reduce memory overhead and thus increase receive queue capacity
1524 	 * - Less cache line misses at copyout() time
1525 	 * - Less work at consume_skb() (less alien page frag freeing)
1526 	 */
1527 	if (rmem > (sk->sk_rcvbuf >> 1)) {
1528 		skb_condense(skb);
1529 
1530 		busy = busylock_acquire(sk);
1531 	}
1532 	size = skb->truesize;
1533 	udp_set_dev_scratch(skb);
1534 
1535 	/* we drop only if the receive buf is full and the receive
1536 	 * queue contains some other skb
1537 	 */
1538 	rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1539 	if (rmem > (size + (unsigned int)sk->sk_rcvbuf))
1540 		goto uncharge_drop;
1541 
1542 	spin_lock(&list->lock);
1543 	err = udp_rmem_schedule(sk, size);
1544 	if (err) {
1545 		spin_unlock(&list->lock);
1546 		goto uncharge_drop;
1547 	}
1548 
1549 	sk->sk_forward_alloc -= size;
1550 
1551 	/* no need to setup a destructor, we will explicitly release the
1552 	 * forward allocated memory on dequeue
1553 	 */
1554 	sock_skb_set_dropcount(sk, skb);
1555 
1556 	__skb_queue_tail(list, skb);
1557 	spin_unlock(&list->lock);
1558 
1559 	if (!sock_flag(sk, SOCK_DEAD))
1560 		sk->sk_data_ready(sk);
1561 
1562 	busylock_release(busy);
1563 	return 0;
1564 
1565 uncharge_drop:
1566 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1567 
1568 drop:
1569 	atomic_inc(&sk->sk_drops);
1570 	busylock_release(busy);
1571 	return err;
1572 }
1573 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1574 
1575 void udp_destruct_common(struct sock *sk)
1576 {
1577 	/* reclaim completely the forward allocated memory */
1578 	struct udp_sock *up = udp_sk(sk);
1579 	unsigned int total = 0;
1580 	struct sk_buff *skb;
1581 
1582 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1583 	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1584 		total += skb->truesize;
1585 		kfree_skb(skb);
1586 	}
1587 	udp_rmem_release(sk, total, 0, true);
1588 }
1589 EXPORT_SYMBOL_GPL(udp_destruct_common);
1590 
1591 static void udp_destruct_sock(struct sock *sk)
1592 {
1593 	udp_destruct_common(sk);
1594 	inet_sock_destruct(sk);
1595 }
1596 
1597 int udp_init_sock(struct sock *sk)
1598 {
1599 	udp_lib_init_sock(sk);
1600 	sk->sk_destruct = udp_destruct_sock;
1601 	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1602 	return 0;
1603 }
1604 
1605 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1606 {
1607 	if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1608 		bool slow = lock_sock_fast(sk);
1609 
1610 		sk_peek_offset_bwd(sk, len);
1611 		unlock_sock_fast(sk, slow);
1612 	}
1613 
1614 	if (!skb_unref(skb))
1615 		return;
1616 
1617 	/* In the more common cases we cleared the head states previously,
1618 	 * see __udp_queue_rcv_skb().
1619 	 */
1620 	if (unlikely(udp_skb_has_head_state(skb)))
1621 		skb_release_head_state(skb);
1622 	__consume_stateless_skb(skb);
1623 }
1624 EXPORT_SYMBOL_GPL(skb_consume_udp);
1625 
1626 static struct sk_buff *__first_packet_length(struct sock *sk,
1627 					     struct sk_buff_head *rcvq,
1628 					     int *total)
1629 {
1630 	struct sk_buff *skb;
1631 
1632 	while ((skb = skb_peek(rcvq)) != NULL) {
1633 		if (udp_lib_checksum_complete(skb)) {
1634 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1635 					IS_UDPLITE(sk));
1636 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1637 					IS_UDPLITE(sk));
1638 			atomic_inc(&sk->sk_drops);
1639 			__skb_unlink(skb, rcvq);
1640 			*total += skb->truesize;
1641 			kfree_skb(skb);
1642 		} else {
1643 			udp_skb_csum_unnecessary_set(skb);
1644 			break;
1645 		}
1646 	}
1647 	return skb;
1648 }
1649 
1650 /**
1651  *	first_packet_length	- return length of first packet in receive queue
1652  *	@sk: socket
1653  *
1654  *	Drops all bad checksum frames, until a valid one is found.
1655  *	Returns the length of found skb, or -1 if none is found.
1656  */
1657 static int first_packet_length(struct sock *sk)
1658 {
1659 	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1660 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1661 	struct sk_buff *skb;
1662 	int total = 0;
1663 	int res;
1664 
1665 	spin_lock_bh(&rcvq->lock);
1666 	skb = __first_packet_length(sk, rcvq, &total);
1667 	if (!skb && !skb_queue_empty_lockless(sk_queue)) {
1668 		spin_lock(&sk_queue->lock);
1669 		skb_queue_splice_tail_init(sk_queue, rcvq);
1670 		spin_unlock(&sk_queue->lock);
1671 
1672 		skb = __first_packet_length(sk, rcvq, &total);
1673 	}
1674 	res = skb ? skb->len : -1;
1675 	if (total)
1676 		udp_rmem_release(sk, total, 1, false);
1677 	spin_unlock_bh(&rcvq->lock);
1678 	return res;
1679 }
1680 
1681 /*
1682  *	IOCTL requests applicable to the UDP protocol
1683  */
1684 
1685 int udp_ioctl(struct sock *sk, int cmd, int *karg)
1686 {
1687 	switch (cmd) {
1688 	case SIOCOUTQ:
1689 	{
1690 		*karg = sk_wmem_alloc_get(sk);
1691 		return 0;
1692 	}
1693 
1694 	case SIOCINQ:
1695 	{
1696 		*karg = max_t(int, 0, first_packet_length(sk));
1697 		return 0;
1698 	}
1699 
1700 	default:
1701 		return -ENOIOCTLCMD;
1702 	}
1703 
1704 	return 0;
1705 }
1706 EXPORT_SYMBOL(udp_ioctl);
1707 
1708 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1709 			       int *off, int *err)
1710 {
1711 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1712 	struct sk_buff_head *queue;
1713 	struct sk_buff *last;
1714 	long timeo;
1715 	int error;
1716 
1717 	queue = &udp_sk(sk)->reader_queue;
1718 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1719 	do {
1720 		struct sk_buff *skb;
1721 
1722 		error = sock_error(sk);
1723 		if (error)
1724 			break;
1725 
1726 		error = -EAGAIN;
1727 		do {
1728 			spin_lock_bh(&queue->lock);
1729 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1730 							err, &last);
1731 			if (skb) {
1732 				if (!(flags & MSG_PEEK))
1733 					udp_skb_destructor(sk, skb);
1734 				spin_unlock_bh(&queue->lock);
1735 				return skb;
1736 			}
1737 
1738 			if (skb_queue_empty_lockless(sk_queue)) {
1739 				spin_unlock_bh(&queue->lock);
1740 				goto busy_check;
1741 			}
1742 
1743 			/* refill the reader queue and walk it again
1744 			 * keep both queues locked to avoid re-acquiring
1745 			 * the sk_receive_queue lock if fwd memory scheduling
1746 			 * is needed.
1747 			 */
1748 			spin_lock(&sk_queue->lock);
1749 			skb_queue_splice_tail_init(sk_queue, queue);
1750 
1751 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1752 							err, &last);
1753 			if (skb && !(flags & MSG_PEEK))
1754 				udp_skb_dtor_locked(sk, skb);
1755 			spin_unlock(&sk_queue->lock);
1756 			spin_unlock_bh(&queue->lock);
1757 			if (skb)
1758 				return skb;
1759 
1760 busy_check:
1761 			if (!sk_can_busy_loop(sk))
1762 				break;
1763 
1764 			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1765 		} while (!skb_queue_empty_lockless(sk_queue));
1766 
1767 		/* sk_queue is empty, reader_queue may contain peeked packets */
1768 	} while (timeo &&
1769 		 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
1770 					      &error, &timeo,
1771 					      (struct sk_buff *)sk_queue));
1772 
1773 	*err = error;
1774 	return NULL;
1775 }
1776 EXPORT_SYMBOL(__skb_recv_udp);
1777 
1778 int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1779 {
1780 	struct sk_buff *skb;
1781 	int err;
1782 
1783 try_again:
1784 	skb = skb_recv_udp(sk, MSG_DONTWAIT, &err);
1785 	if (!skb)
1786 		return err;
1787 
1788 	if (udp_lib_checksum_complete(skb)) {
1789 		int is_udplite = IS_UDPLITE(sk);
1790 		struct net *net = sock_net(sk);
1791 
1792 		__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, is_udplite);
1793 		__UDP_INC_STATS(net, UDP_MIB_INERRORS, is_udplite);
1794 		atomic_inc(&sk->sk_drops);
1795 		kfree_skb(skb);
1796 		goto try_again;
1797 	}
1798 
1799 	WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1800 	return recv_actor(sk, skb);
1801 }
1802 EXPORT_SYMBOL(udp_read_skb);
1803 
1804 /*
1805  * 	This should be easy, if there is something there we
1806  * 	return it, otherwise we block.
1807  */
1808 
1809 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
1810 		int *addr_len)
1811 {
1812 	struct inet_sock *inet = inet_sk(sk);
1813 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1814 	struct sk_buff *skb;
1815 	unsigned int ulen, copied;
1816 	int off, err, peeking = flags & MSG_PEEK;
1817 	int is_udplite = IS_UDPLITE(sk);
1818 	bool checksum_valid = false;
1819 
1820 	if (flags & MSG_ERRQUEUE)
1821 		return ip_recv_error(sk, msg, len, addr_len);
1822 
1823 try_again:
1824 	off = sk_peek_offset(sk, flags);
1825 	skb = __skb_recv_udp(sk, flags, &off, &err);
1826 	if (!skb)
1827 		return err;
1828 
1829 	ulen = udp_skb_len(skb);
1830 	copied = len;
1831 	if (copied > ulen - off)
1832 		copied = ulen - off;
1833 	else if (copied < ulen)
1834 		msg->msg_flags |= MSG_TRUNC;
1835 
1836 	/*
1837 	 * If checksum is needed at all, try to do it while copying the
1838 	 * data.  If the data is truncated, or if we only want a partial
1839 	 * coverage checksum (UDP-Lite), do it before the copy.
1840 	 */
1841 
1842 	if (copied < ulen || peeking ||
1843 	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1844 		checksum_valid = udp_skb_csum_unnecessary(skb) ||
1845 				!__udp_lib_checksum_complete(skb);
1846 		if (!checksum_valid)
1847 			goto csum_copy_err;
1848 	}
1849 
1850 	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1851 		if (udp_skb_is_linear(skb))
1852 			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1853 		else
1854 			err = skb_copy_datagram_msg(skb, off, msg, copied);
1855 	} else {
1856 		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1857 
1858 		if (err == -EINVAL)
1859 			goto csum_copy_err;
1860 	}
1861 
1862 	if (unlikely(err)) {
1863 		if (!peeking) {
1864 			atomic_inc(&sk->sk_drops);
1865 			UDP_INC_STATS(sock_net(sk),
1866 				      UDP_MIB_INERRORS, is_udplite);
1867 		}
1868 		kfree_skb(skb);
1869 		return err;
1870 	}
1871 
1872 	if (!peeking)
1873 		UDP_INC_STATS(sock_net(sk),
1874 			      UDP_MIB_INDATAGRAMS, is_udplite);
1875 
1876 	sock_recv_cmsgs(msg, sk, skb);
1877 
1878 	/* Copy the address. */
1879 	if (sin) {
1880 		sin->sin_family = AF_INET;
1881 		sin->sin_port = udp_hdr(skb)->source;
1882 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1883 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1884 		*addr_len = sizeof(*sin);
1885 
1886 		BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
1887 						      (struct sockaddr *)sin);
1888 	}
1889 
1890 	if (udp_sk(sk)->gro_enabled)
1891 		udp_cmsg_recv(msg, sk, skb);
1892 
1893 	if (inet->cmsg_flags)
1894 		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1895 
1896 	err = copied;
1897 	if (flags & MSG_TRUNC)
1898 		err = ulen;
1899 
1900 	skb_consume_udp(sk, skb, peeking ? -err : err);
1901 	return err;
1902 
1903 csum_copy_err:
1904 	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1905 				 udp_skb_destructor)) {
1906 		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1907 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1908 	}
1909 	kfree_skb(skb);
1910 
1911 	/* starting over for a new packet, but check if we need to yield */
1912 	cond_resched();
1913 	msg->msg_flags &= ~MSG_TRUNC;
1914 	goto try_again;
1915 }
1916 
1917 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1918 {
1919 	/* This check is replicated from __ip4_datagram_connect() and
1920 	 * intended to prevent BPF program called below from accessing bytes
1921 	 * that are out of the bound specified by user in addr_len.
1922 	 */
1923 	if (addr_len < sizeof(struct sockaddr_in))
1924 		return -EINVAL;
1925 
1926 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr);
1927 }
1928 EXPORT_SYMBOL(udp_pre_connect);
1929 
1930 int __udp_disconnect(struct sock *sk, int flags)
1931 {
1932 	struct inet_sock *inet = inet_sk(sk);
1933 	/*
1934 	 *	1003.1g - break association.
1935 	 */
1936 
1937 	sk->sk_state = TCP_CLOSE;
1938 	inet->inet_daddr = 0;
1939 	inet->inet_dport = 0;
1940 	sock_rps_reset_rxhash(sk);
1941 	sk->sk_bound_dev_if = 0;
1942 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) {
1943 		inet_reset_saddr(sk);
1944 		if (sk->sk_prot->rehash &&
1945 		    (sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1946 			sk->sk_prot->rehash(sk);
1947 	}
1948 
1949 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1950 		sk->sk_prot->unhash(sk);
1951 		inet->inet_sport = 0;
1952 	}
1953 	sk_dst_reset(sk);
1954 	return 0;
1955 }
1956 EXPORT_SYMBOL(__udp_disconnect);
1957 
1958 int udp_disconnect(struct sock *sk, int flags)
1959 {
1960 	lock_sock(sk);
1961 	__udp_disconnect(sk, flags);
1962 	release_sock(sk);
1963 	return 0;
1964 }
1965 EXPORT_SYMBOL(udp_disconnect);
1966 
1967 void udp_lib_unhash(struct sock *sk)
1968 {
1969 	if (sk_hashed(sk)) {
1970 		struct udp_table *udptable = udp_get_table_prot(sk);
1971 		struct udp_hslot *hslot, *hslot2;
1972 
1973 		hslot  = udp_hashslot(udptable, sock_net(sk),
1974 				      udp_sk(sk)->udp_port_hash);
1975 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1976 
1977 		spin_lock_bh(&hslot->lock);
1978 		if (rcu_access_pointer(sk->sk_reuseport_cb))
1979 			reuseport_detach_sock(sk);
1980 		if (sk_del_node_init_rcu(sk)) {
1981 			hslot->count--;
1982 			inet_sk(sk)->inet_num = 0;
1983 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1984 
1985 			spin_lock(&hslot2->lock);
1986 			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1987 			hslot2->count--;
1988 			spin_unlock(&hslot2->lock);
1989 		}
1990 		spin_unlock_bh(&hslot->lock);
1991 	}
1992 }
1993 EXPORT_SYMBOL(udp_lib_unhash);
1994 
1995 /*
1996  * inet_rcv_saddr was changed, we must rehash secondary hash
1997  */
1998 void udp_lib_rehash(struct sock *sk, u16 newhash)
1999 {
2000 	if (sk_hashed(sk)) {
2001 		struct udp_table *udptable = udp_get_table_prot(sk);
2002 		struct udp_hslot *hslot, *hslot2, *nhslot2;
2003 
2004 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2005 		nhslot2 = udp_hashslot2(udptable, newhash);
2006 		udp_sk(sk)->udp_portaddr_hash = newhash;
2007 
2008 		if (hslot2 != nhslot2 ||
2009 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
2010 			hslot = udp_hashslot(udptable, sock_net(sk),
2011 					     udp_sk(sk)->udp_port_hash);
2012 			/* we must lock primary chain too */
2013 			spin_lock_bh(&hslot->lock);
2014 			if (rcu_access_pointer(sk->sk_reuseport_cb))
2015 				reuseport_detach_sock(sk);
2016 
2017 			if (hslot2 != nhslot2) {
2018 				spin_lock(&hslot2->lock);
2019 				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2020 				hslot2->count--;
2021 				spin_unlock(&hslot2->lock);
2022 
2023 				spin_lock(&nhslot2->lock);
2024 				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
2025 							 &nhslot2->head);
2026 				nhslot2->count++;
2027 				spin_unlock(&nhslot2->lock);
2028 			}
2029 
2030 			spin_unlock_bh(&hslot->lock);
2031 		}
2032 	}
2033 }
2034 EXPORT_SYMBOL(udp_lib_rehash);
2035 
2036 void udp_v4_rehash(struct sock *sk)
2037 {
2038 	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
2039 					  inet_sk(sk)->inet_rcv_saddr,
2040 					  inet_sk(sk)->inet_num);
2041 	udp_lib_rehash(sk, new_hash);
2042 }
2043 
2044 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2045 {
2046 	int rc;
2047 
2048 	if (inet_sk(sk)->inet_daddr) {
2049 		sock_rps_save_rxhash(sk, skb);
2050 		sk_mark_napi_id(sk, skb);
2051 		sk_incoming_cpu_update(sk);
2052 	} else {
2053 		sk_mark_napi_id_once(sk, skb);
2054 	}
2055 
2056 	rc = __udp_enqueue_schedule_skb(sk, skb);
2057 	if (rc < 0) {
2058 		int is_udplite = IS_UDPLITE(sk);
2059 		int drop_reason;
2060 
2061 		/* Note that an ENOMEM error is charged twice */
2062 		if (rc == -ENOMEM) {
2063 			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
2064 					is_udplite);
2065 			drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
2066 		} else {
2067 			UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS,
2068 				      is_udplite);
2069 			drop_reason = SKB_DROP_REASON_PROTO_MEM;
2070 		}
2071 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2072 		kfree_skb_reason(skb, drop_reason);
2073 		trace_udp_fail_queue_rcv_skb(rc, sk);
2074 		return -1;
2075 	}
2076 
2077 	return 0;
2078 }
2079 
2080 /* returns:
2081  *  -1: error
2082  *   0: success
2083  *  >0: "udp encap" protocol resubmission
2084  *
2085  * Note that in the success and error cases, the skb is assumed to
2086  * have either been requeued or freed.
2087  */
2088 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
2089 {
2090 	int drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2091 	struct udp_sock *up = udp_sk(sk);
2092 	int is_udplite = IS_UDPLITE(sk);
2093 
2094 	/*
2095 	 *	Charge it to the socket, dropping if the queue is full.
2096 	 */
2097 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
2098 		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2099 		goto drop;
2100 	}
2101 	nf_reset_ct(skb);
2102 
2103 	if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) {
2104 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2105 
2106 		/*
2107 		 * This is an encapsulation socket so pass the skb to
2108 		 * the socket's udp_encap_rcv() hook. Otherwise, just
2109 		 * fall through and pass this up the UDP socket.
2110 		 * up->encap_rcv() returns the following value:
2111 		 * =0 if skb was successfully passed to the encap
2112 		 *    handler or was discarded by it.
2113 		 * >0 if skb should be passed on to UDP.
2114 		 * <0 if skb should be resubmitted as proto -N
2115 		 */
2116 
2117 		/* if we're overly short, let UDP handle it */
2118 		encap_rcv = READ_ONCE(up->encap_rcv);
2119 		if (encap_rcv) {
2120 			int ret;
2121 
2122 			/* Verify checksum before giving to encap */
2123 			if (udp_lib_checksum_complete(skb))
2124 				goto csum_error;
2125 
2126 			ret = encap_rcv(sk, skb);
2127 			if (ret <= 0) {
2128 				__UDP_INC_STATS(sock_net(sk),
2129 						UDP_MIB_INDATAGRAMS,
2130 						is_udplite);
2131 				return -ret;
2132 			}
2133 		}
2134 
2135 		/* FALLTHROUGH -- it's a UDP Packet */
2136 	}
2137 
2138 	/*
2139 	 * 	UDP-Lite specific tests, ignored on UDP sockets
2140 	 */
2141 	if ((up->pcflag & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
2142 
2143 		/*
2144 		 * MIB statistics other than incrementing the error count are
2145 		 * disabled for the following two types of errors: these depend
2146 		 * on the application settings, not on the functioning of the
2147 		 * protocol stack as such.
2148 		 *
2149 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
2150 		 * way ... to ... at least let the receiving application block
2151 		 * delivery of packets with coverage values less than a value
2152 		 * provided by the application."
2153 		 */
2154 		if (up->pcrlen == 0) {          /* full coverage was set  */
2155 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2156 					    UDP_SKB_CB(skb)->cscov, skb->len);
2157 			goto drop;
2158 		}
2159 		/* The next case involves violating the min. coverage requested
2160 		 * by the receiver. This is subtle: if receiver wants x and x is
2161 		 * greater than the buffersize/MTU then receiver will complain
2162 		 * that it wants x while sender emits packets of smaller size y.
2163 		 * Therefore the above ...()->partial_cov statement is essential.
2164 		 */
2165 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
2166 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2167 					    UDP_SKB_CB(skb)->cscov, up->pcrlen);
2168 			goto drop;
2169 		}
2170 	}
2171 
2172 	prefetch(&sk->sk_rmem_alloc);
2173 	if (rcu_access_pointer(sk->sk_filter) &&
2174 	    udp_lib_checksum_complete(skb))
2175 			goto csum_error;
2176 
2177 	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) {
2178 		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2179 		goto drop;
2180 	}
2181 
2182 	udp_csum_pull_header(skb);
2183 
2184 	ipv4_pktinfo_prepare(sk, skb);
2185 	return __udp_queue_rcv_skb(sk, skb);
2186 
2187 csum_error:
2188 	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2189 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2190 drop:
2191 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2192 	atomic_inc(&sk->sk_drops);
2193 	kfree_skb_reason(skb, drop_reason);
2194 	return -1;
2195 }
2196 
2197 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2198 {
2199 	struct sk_buff *next, *segs;
2200 	int ret;
2201 
2202 	if (likely(!udp_unexpected_gso(sk, skb)))
2203 		return udp_queue_rcv_one_skb(sk, skb);
2204 
2205 	BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET);
2206 	__skb_push(skb, -skb_mac_offset(skb));
2207 	segs = udp_rcv_segment(sk, skb, true);
2208 	skb_list_walk_safe(segs, skb, next) {
2209 		__skb_pull(skb, skb_transport_offset(skb));
2210 
2211 		udp_post_segment_fix_csum(skb);
2212 		ret = udp_queue_rcv_one_skb(sk, skb);
2213 		if (ret > 0)
2214 			ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret);
2215 	}
2216 	return 0;
2217 }
2218 
2219 /* For TCP sockets, sk_rx_dst is protected by socket lock
2220  * For UDP, we use xchg() to guard against concurrent changes.
2221  */
2222 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2223 {
2224 	struct dst_entry *old;
2225 
2226 	if (dst_hold_safe(dst)) {
2227 		old = xchg((__force struct dst_entry **)&sk->sk_rx_dst, dst);
2228 		dst_release(old);
2229 		return old != dst;
2230 	}
2231 	return false;
2232 }
2233 EXPORT_SYMBOL(udp_sk_rx_dst_set);
2234 
2235 /*
2236  *	Multicasts and broadcasts go to each listener.
2237  *
2238  *	Note: called only from the BH handler context.
2239  */
2240 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2241 				    struct udphdr  *uh,
2242 				    __be32 saddr, __be32 daddr,
2243 				    struct udp_table *udptable,
2244 				    int proto)
2245 {
2246 	struct sock *sk, *first = NULL;
2247 	unsigned short hnum = ntohs(uh->dest);
2248 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2249 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2250 	unsigned int offset = offsetof(typeof(*sk), sk_node);
2251 	int dif = skb->dev->ifindex;
2252 	int sdif = inet_sdif(skb);
2253 	struct hlist_node *node;
2254 	struct sk_buff *nskb;
2255 
2256 	if (use_hash2) {
2257 		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2258 			    udptable->mask;
2259 		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2260 start_lookup:
2261 		hslot = &udptable->hash2[hash2];
2262 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2263 	}
2264 
2265 	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2266 		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2267 					 uh->source, saddr, dif, sdif, hnum))
2268 			continue;
2269 
2270 		if (!first) {
2271 			first = sk;
2272 			continue;
2273 		}
2274 		nskb = skb_clone(skb, GFP_ATOMIC);
2275 
2276 		if (unlikely(!nskb)) {
2277 			atomic_inc(&sk->sk_drops);
2278 			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2279 					IS_UDPLITE(sk));
2280 			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
2281 					IS_UDPLITE(sk));
2282 			continue;
2283 		}
2284 		if (udp_queue_rcv_skb(sk, nskb) > 0)
2285 			consume_skb(nskb);
2286 	}
2287 
2288 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2289 	if (use_hash2 && hash2 != hash2_any) {
2290 		hash2 = hash2_any;
2291 		goto start_lookup;
2292 	}
2293 
2294 	if (first) {
2295 		if (udp_queue_rcv_skb(first, skb) > 0)
2296 			consume_skb(skb);
2297 	} else {
2298 		kfree_skb(skb);
2299 		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2300 				proto == IPPROTO_UDPLITE);
2301 	}
2302 	return 0;
2303 }
2304 
2305 /* Initialize UDP checksum. If exited with zero value (success),
2306  * CHECKSUM_UNNECESSARY means, that no more checks are required.
2307  * Otherwise, csum completion requires checksumming packet body,
2308  * including udp header and folding it to skb->csum.
2309  */
2310 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2311 				 int proto)
2312 {
2313 	int err;
2314 
2315 	UDP_SKB_CB(skb)->partial_cov = 0;
2316 	UDP_SKB_CB(skb)->cscov = skb->len;
2317 
2318 	if (proto == IPPROTO_UDPLITE) {
2319 		err = udplite_checksum_init(skb, uh);
2320 		if (err)
2321 			return err;
2322 
2323 		if (UDP_SKB_CB(skb)->partial_cov) {
2324 			skb->csum = inet_compute_pseudo(skb, proto);
2325 			return 0;
2326 		}
2327 	}
2328 
2329 	/* Note, we are only interested in != 0 or == 0, thus the
2330 	 * force to int.
2331 	 */
2332 	err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2333 							inet_compute_pseudo);
2334 	if (err)
2335 		return err;
2336 
2337 	if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2338 		/* If SW calculated the value, we know it's bad */
2339 		if (skb->csum_complete_sw)
2340 			return 1;
2341 
2342 		/* HW says the value is bad. Let's validate that.
2343 		 * skb->csum is no longer the full packet checksum,
2344 		 * so don't treat it as such.
2345 		 */
2346 		skb_checksum_complete_unset(skb);
2347 	}
2348 
2349 	return 0;
2350 }
2351 
2352 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2353  * return code conversion for ip layer consumption
2354  */
2355 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2356 			       struct udphdr *uh)
2357 {
2358 	int ret;
2359 
2360 	if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2361 		skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2362 
2363 	ret = udp_queue_rcv_skb(sk, skb);
2364 
2365 	/* a return value > 0 means to resubmit the input, but
2366 	 * it wants the return to be -protocol, or 0
2367 	 */
2368 	if (ret > 0)
2369 		return -ret;
2370 	return 0;
2371 }
2372 
2373 /*
2374  *	All we need to do is get the socket, and then do a checksum.
2375  */
2376 
2377 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2378 		   int proto)
2379 {
2380 	struct sock *sk;
2381 	struct udphdr *uh;
2382 	unsigned short ulen;
2383 	struct rtable *rt = skb_rtable(skb);
2384 	__be32 saddr, daddr;
2385 	struct net *net = dev_net(skb->dev);
2386 	bool refcounted;
2387 	int drop_reason;
2388 
2389 	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2390 
2391 	/*
2392 	 *  Validate the packet.
2393 	 */
2394 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2395 		goto drop;		/* No space for header. */
2396 
2397 	uh   = udp_hdr(skb);
2398 	ulen = ntohs(uh->len);
2399 	saddr = ip_hdr(skb)->saddr;
2400 	daddr = ip_hdr(skb)->daddr;
2401 
2402 	if (ulen > skb->len)
2403 		goto short_packet;
2404 
2405 	if (proto == IPPROTO_UDP) {
2406 		/* UDP validates ulen. */
2407 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2408 			goto short_packet;
2409 		uh = udp_hdr(skb);
2410 	}
2411 
2412 	if (udp4_csum_init(skb, uh, proto))
2413 		goto csum_error;
2414 
2415 	sk = skb_steal_sock(skb, &refcounted);
2416 	if (sk) {
2417 		struct dst_entry *dst = skb_dst(skb);
2418 		int ret;
2419 
2420 		if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst))
2421 			udp_sk_rx_dst_set(sk, dst);
2422 
2423 		ret = udp_unicast_rcv_skb(sk, skb, uh);
2424 		if (refcounted)
2425 			sock_put(sk);
2426 		return ret;
2427 	}
2428 
2429 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2430 		return __udp4_lib_mcast_deliver(net, skb, uh,
2431 						saddr, daddr, udptable, proto);
2432 
2433 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2434 	if (sk)
2435 		return udp_unicast_rcv_skb(sk, skb, uh);
2436 
2437 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2438 		goto drop;
2439 	nf_reset_ct(skb);
2440 
2441 	/* No socket. Drop packet silently, if checksum is wrong */
2442 	if (udp_lib_checksum_complete(skb))
2443 		goto csum_error;
2444 
2445 	drop_reason = SKB_DROP_REASON_NO_SOCKET;
2446 	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2447 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2448 
2449 	/*
2450 	 * Hmm.  We got an UDP packet to a port to which we
2451 	 * don't wanna listen.  Ignore it.
2452 	 */
2453 	kfree_skb_reason(skb, drop_reason);
2454 	return 0;
2455 
2456 short_packet:
2457 	drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
2458 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2459 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2460 			    &saddr, ntohs(uh->source),
2461 			    ulen, skb->len,
2462 			    &daddr, ntohs(uh->dest));
2463 	goto drop;
2464 
2465 csum_error:
2466 	/*
2467 	 * RFC1122: OK.  Discards the bad packet silently (as far as
2468 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2469 	 */
2470 	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2471 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2472 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2473 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2474 			    ulen);
2475 	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2476 drop:
2477 	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2478 	kfree_skb_reason(skb, drop_reason);
2479 	return 0;
2480 }
2481 
2482 /* We can only early demux multicast if there is a single matching socket.
2483  * If more than one socket found returns NULL
2484  */
2485 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2486 						  __be16 loc_port, __be32 loc_addr,
2487 						  __be16 rmt_port, __be32 rmt_addr,
2488 						  int dif, int sdif)
2489 {
2490 	struct udp_table *udptable = net->ipv4.udp_table;
2491 	unsigned short hnum = ntohs(loc_port);
2492 	struct sock *sk, *result;
2493 	struct udp_hslot *hslot;
2494 	unsigned int slot;
2495 
2496 	slot = udp_hashfn(net, hnum, udptable->mask);
2497 	hslot = &udptable->hash[slot];
2498 
2499 	/* Do not bother scanning a too big list */
2500 	if (hslot->count > 10)
2501 		return NULL;
2502 
2503 	result = NULL;
2504 	sk_for_each_rcu(sk, &hslot->head) {
2505 		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2506 					rmt_port, rmt_addr, dif, sdif, hnum)) {
2507 			if (result)
2508 				return NULL;
2509 			result = sk;
2510 		}
2511 	}
2512 
2513 	return result;
2514 }
2515 
2516 /* For unicast we should only early demux connected sockets or we can
2517  * break forwarding setups.  The chains here can be long so only check
2518  * if the first socket is an exact match and if not move on.
2519  */
2520 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2521 					    __be16 loc_port, __be32 loc_addr,
2522 					    __be16 rmt_port, __be32 rmt_addr,
2523 					    int dif, int sdif)
2524 {
2525 	struct udp_table *udptable = net->ipv4.udp_table;
2526 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2527 	unsigned short hnum = ntohs(loc_port);
2528 	unsigned int hash2, slot2;
2529 	struct udp_hslot *hslot2;
2530 	__portpair ports;
2531 	struct sock *sk;
2532 
2533 	hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2534 	slot2 = hash2 & udptable->mask;
2535 	hslot2 = &udptable->hash2[slot2];
2536 	ports = INET_COMBINED_PORTS(rmt_port, hnum);
2537 
2538 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2539 		if (inet_match(net, sk, acookie, ports, dif, sdif))
2540 			return sk;
2541 		/* Only check first socket in chain */
2542 		break;
2543 	}
2544 	return NULL;
2545 }
2546 
2547 int udp_v4_early_demux(struct sk_buff *skb)
2548 {
2549 	struct net *net = dev_net(skb->dev);
2550 	struct in_device *in_dev = NULL;
2551 	const struct iphdr *iph;
2552 	const struct udphdr *uh;
2553 	struct sock *sk = NULL;
2554 	struct dst_entry *dst;
2555 	int dif = skb->dev->ifindex;
2556 	int sdif = inet_sdif(skb);
2557 	int ours;
2558 
2559 	/* validate the packet */
2560 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2561 		return 0;
2562 
2563 	iph = ip_hdr(skb);
2564 	uh = udp_hdr(skb);
2565 
2566 	if (skb->pkt_type == PACKET_MULTICAST) {
2567 		in_dev = __in_dev_get_rcu(skb->dev);
2568 
2569 		if (!in_dev)
2570 			return 0;
2571 
2572 		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2573 				       iph->protocol);
2574 		if (!ours)
2575 			return 0;
2576 
2577 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2578 						   uh->source, iph->saddr,
2579 						   dif, sdif);
2580 	} else if (skb->pkt_type == PACKET_HOST) {
2581 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2582 					     uh->source, iph->saddr, dif, sdif);
2583 	}
2584 
2585 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2586 		return 0;
2587 
2588 	skb->sk = sk;
2589 	skb->destructor = sock_efree;
2590 	dst = rcu_dereference(sk->sk_rx_dst);
2591 
2592 	if (dst)
2593 		dst = dst_check(dst, 0);
2594 	if (dst) {
2595 		u32 itag = 0;
2596 
2597 		/* set noref for now.
2598 		 * any place which wants to hold dst has to call
2599 		 * dst_hold_safe()
2600 		 */
2601 		skb_dst_set_noref(skb, dst);
2602 
2603 		/* for unconnected multicast sockets we need to validate
2604 		 * the source on each packet
2605 		 */
2606 		if (!inet_sk(sk)->inet_daddr && in_dev)
2607 			return ip_mc_validate_source(skb, iph->daddr,
2608 						     iph->saddr,
2609 						     iph->tos & IPTOS_RT_MASK,
2610 						     skb->dev, in_dev, &itag);
2611 	}
2612 	return 0;
2613 }
2614 
2615 int udp_rcv(struct sk_buff *skb)
2616 {
2617 	return __udp4_lib_rcv(skb, dev_net(skb->dev)->ipv4.udp_table, IPPROTO_UDP);
2618 }
2619 
2620 void udp_destroy_sock(struct sock *sk)
2621 {
2622 	struct udp_sock *up = udp_sk(sk);
2623 	bool slow = lock_sock_fast(sk);
2624 
2625 	/* protects from races with udp_abort() */
2626 	sock_set_flag(sk, SOCK_DEAD);
2627 	udp_flush_pending_frames(sk);
2628 	unlock_sock_fast(sk, slow);
2629 	if (static_branch_unlikely(&udp_encap_needed_key)) {
2630 		if (up->encap_type) {
2631 			void (*encap_destroy)(struct sock *sk);
2632 			encap_destroy = READ_ONCE(up->encap_destroy);
2633 			if (encap_destroy)
2634 				encap_destroy(sk);
2635 		}
2636 		if (up->encap_enabled)
2637 			static_branch_dec(&udp_encap_needed_key);
2638 	}
2639 }
2640 
2641 /*
2642  *	Socket option code for UDP
2643  */
2644 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2645 		       sockptr_t optval, unsigned int optlen,
2646 		       int (*push_pending_frames)(struct sock *))
2647 {
2648 	struct udp_sock *up = udp_sk(sk);
2649 	int val, valbool;
2650 	int err = 0;
2651 	int is_udplite = IS_UDPLITE(sk);
2652 
2653 	if (level == SOL_SOCKET) {
2654 		err = sk_setsockopt(sk, level, optname, optval, optlen);
2655 
2656 		if (optname == SO_RCVBUF || optname == SO_RCVBUFFORCE) {
2657 			sockopt_lock_sock(sk);
2658 			/* paired with READ_ONCE in udp_rmem_release() */
2659 			WRITE_ONCE(up->forward_threshold, sk->sk_rcvbuf >> 2);
2660 			sockopt_release_sock(sk);
2661 		}
2662 		return err;
2663 	}
2664 
2665 	if (optlen < sizeof(int))
2666 		return -EINVAL;
2667 
2668 	if (copy_from_sockptr(&val, optval, sizeof(val)))
2669 		return -EFAULT;
2670 
2671 	valbool = val ? 1 : 0;
2672 
2673 	switch (optname) {
2674 	case UDP_CORK:
2675 		if (val != 0) {
2676 			WRITE_ONCE(up->corkflag, 1);
2677 		} else {
2678 			WRITE_ONCE(up->corkflag, 0);
2679 			lock_sock(sk);
2680 			push_pending_frames(sk);
2681 			release_sock(sk);
2682 		}
2683 		break;
2684 
2685 	case UDP_ENCAP:
2686 		switch (val) {
2687 		case 0:
2688 #ifdef CONFIG_XFRM
2689 		case UDP_ENCAP_ESPINUDP:
2690 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2691 #if IS_ENABLED(CONFIG_IPV6)
2692 			if (sk->sk_family == AF_INET6)
2693 				up->encap_rcv = ipv6_stub->xfrm6_udp_encap_rcv;
2694 			else
2695 #endif
2696 				up->encap_rcv = xfrm4_udp_encap_rcv;
2697 #endif
2698 			fallthrough;
2699 		case UDP_ENCAP_L2TPINUDP:
2700 			up->encap_type = val;
2701 			lock_sock(sk);
2702 			udp_tunnel_encap_enable(sk->sk_socket);
2703 			release_sock(sk);
2704 			break;
2705 		default:
2706 			err = -ENOPROTOOPT;
2707 			break;
2708 		}
2709 		break;
2710 
2711 	case UDP_NO_CHECK6_TX:
2712 		up->no_check6_tx = valbool;
2713 		break;
2714 
2715 	case UDP_NO_CHECK6_RX:
2716 		up->no_check6_rx = valbool;
2717 		break;
2718 
2719 	case UDP_SEGMENT:
2720 		if (val < 0 || val > USHRT_MAX)
2721 			return -EINVAL;
2722 		WRITE_ONCE(up->gso_size, val);
2723 		break;
2724 
2725 	case UDP_GRO:
2726 		lock_sock(sk);
2727 
2728 		/* when enabling GRO, accept the related GSO packet type */
2729 		if (valbool)
2730 			udp_tunnel_encap_enable(sk->sk_socket);
2731 		up->gro_enabled = valbool;
2732 		up->accept_udp_l4 = valbool;
2733 		release_sock(sk);
2734 		break;
2735 
2736 	/*
2737 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2738 	 */
2739 	/* The sender sets actual checksum coverage length via this option.
2740 	 * The case coverage > packet length is handled by send module. */
2741 	case UDPLITE_SEND_CSCOV:
2742 		if (!is_udplite)         /* Disable the option on UDP sockets */
2743 			return -ENOPROTOOPT;
2744 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2745 			val = 8;
2746 		else if (val > USHRT_MAX)
2747 			val = USHRT_MAX;
2748 		up->pcslen = val;
2749 		up->pcflag |= UDPLITE_SEND_CC;
2750 		break;
2751 
2752 	/* The receiver specifies a minimum checksum coverage value. To make
2753 	 * sense, this should be set to at least 8 (as done below). If zero is
2754 	 * used, this again means full checksum coverage.                     */
2755 	case UDPLITE_RECV_CSCOV:
2756 		if (!is_udplite)         /* Disable the option on UDP sockets */
2757 			return -ENOPROTOOPT;
2758 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2759 			val = 8;
2760 		else if (val > USHRT_MAX)
2761 			val = USHRT_MAX;
2762 		up->pcrlen = val;
2763 		up->pcflag |= UDPLITE_RECV_CC;
2764 		break;
2765 
2766 	default:
2767 		err = -ENOPROTOOPT;
2768 		break;
2769 	}
2770 
2771 	return err;
2772 }
2773 EXPORT_SYMBOL(udp_lib_setsockopt);
2774 
2775 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
2776 		   unsigned int optlen)
2777 {
2778 	if (level == SOL_UDP  ||  level == SOL_UDPLITE || level == SOL_SOCKET)
2779 		return udp_lib_setsockopt(sk, level, optname,
2780 					  optval, optlen,
2781 					  udp_push_pending_frames);
2782 	return ip_setsockopt(sk, level, optname, optval, optlen);
2783 }
2784 
2785 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2786 		       char __user *optval, int __user *optlen)
2787 {
2788 	struct udp_sock *up = udp_sk(sk);
2789 	int val, len;
2790 
2791 	if (get_user(len, optlen))
2792 		return -EFAULT;
2793 
2794 	len = min_t(unsigned int, len, sizeof(int));
2795 
2796 	if (len < 0)
2797 		return -EINVAL;
2798 
2799 	switch (optname) {
2800 	case UDP_CORK:
2801 		val = READ_ONCE(up->corkflag);
2802 		break;
2803 
2804 	case UDP_ENCAP:
2805 		val = up->encap_type;
2806 		break;
2807 
2808 	case UDP_NO_CHECK6_TX:
2809 		val = up->no_check6_tx;
2810 		break;
2811 
2812 	case UDP_NO_CHECK6_RX:
2813 		val = up->no_check6_rx;
2814 		break;
2815 
2816 	case UDP_SEGMENT:
2817 		val = READ_ONCE(up->gso_size);
2818 		break;
2819 
2820 	case UDP_GRO:
2821 		val = up->gro_enabled;
2822 		break;
2823 
2824 	/* The following two cannot be changed on UDP sockets, the return is
2825 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2826 	case UDPLITE_SEND_CSCOV:
2827 		val = up->pcslen;
2828 		break;
2829 
2830 	case UDPLITE_RECV_CSCOV:
2831 		val = up->pcrlen;
2832 		break;
2833 
2834 	default:
2835 		return -ENOPROTOOPT;
2836 	}
2837 
2838 	if (put_user(len, optlen))
2839 		return -EFAULT;
2840 	if (copy_to_user(optval, &val, len))
2841 		return -EFAULT;
2842 	return 0;
2843 }
2844 EXPORT_SYMBOL(udp_lib_getsockopt);
2845 
2846 int udp_getsockopt(struct sock *sk, int level, int optname,
2847 		   char __user *optval, int __user *optlen)
2848 {
2849 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2850 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2851 	return ip_getsockopt(sk, level, optname, optval, optlen);
2852 }
2853 
2854 /**
2855  * 	udp_poll - wait for a UDP event.
2856  *	@file: - file struct
2857  *	@sock: - socket
2858  *	@wait: - poll table
2859  *
2860  *	This is same as datagram poll, except for the special case of
2861  *	blocking sockets. If application is using a blocking fd
2862  *	and a packet with checksum error is in the queue;
2863  *	then it could get return from select indicating data available
2864  *	but then block when reading it. Add special case code
2865  *	to work around these arguably broken applications.
2866  */
2867 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2868 {
2869 	__poll_t mask = datagram_poll(file, sock, wait);
2870 	struct sock *sk = sock->sk;
2871 
2872 	if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
2873 		mask |= EPOLLIN | EPOLLRDNORM;
2874 
2875 	/* Check for false positives due to checksum errors */
2876 	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2877 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2878 		mask &= ~(EPOLLIN | EPOLLRDNORM);
2879 
2880 	/* psock ingress_msg queue should not contain any bad checksum frames */
2881 	if (sk_is_readable(sk))
2882 		mask |= EPOLLIN | EPOLLRDNORM;
2883 	return mask;
2884 
2885 }
2886 EXPORT_SYMBOL(udp_poll);
2887 
2888 int udp_abort(struct sock *sk, int err)
2889 {
2890 	if (!has_current_bpf_ctx())
2891 		lock_sock(sk);
2892 
2893 	/* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing
2894 	 * with close()
2895 	 */
2896 	if (sock_flag(sk, SOCK_DEAD))
2897 		goto out;
2898 
2899 	sk->sk_err = err;
2900 	sk_error_report(sk);
2901 	__udp_disconnect(sk, 0);
2902 
2903 out:
2904 	if (!has_current_bpf_ctx())
2905 		release_sock(sk);
2906 
2907 	return 0;
2908 }
2909 EXPORT_SYMBOL_GPL(udp_abort);
2910 
2911 struct proto udp_prot = {
2912 	.name			= "UDP",
2913 	.owner			= THIS_MODULE,
2914 	.close			= udp_lib_close,
2915 	.pre_connect		= udp_pre_connect,
2916 	.connect		= ip4_datagram_connect,
2917 	.disconnect		= udp_disconnect,
2918 	.ioctl			= udp_ioctl,
2919 	.init			= udp_init_sock,
2920 	.destroy		= udp_destroy_sock,
2921 	.setsockopt		= udp_setsockopt,
2922 	.getsockopt		= udp_getsockopt,
2923 	.sendmsg		= udp_sendmsg,
2924 	.recvmsg		= udp_recvmsg,
2925 	.splice_eof		= udp_splice_eof,
2926 	.release_cb		= ip4_datagram_release_cb,
2927 	.hash			= udp_lib_hash,
2928 	.unhash			= udp_lib_unhash,
2929 	.rehash			= udp_v4_rehash,
2930 	.get_port		= udp_v4_get_port,
2931 	.put_port		= udp_lib_unhash,
2932 #ifdef CONFIG_BPF_SYSCALL
2933 	.psock_update_sk_prot	= udp_bpf_update_proto,
2934 #endif
2935 	.memory_allocated	= &udp_memory_allocated,
2936 	.per_cpu_fw_alloc	= &udp_memory_per_cpu_fw_alloc,
2937 
2938 	.sysctl_mem		= sysctl_udp_mem,
2939 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2940 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2941 	.obj_size		= sizeof(struct udp_sock),
2942 	.h.udp_table		= NULL,
2943 	.diag_destroy		= udp_abort,
2944 };
2945 EXPORT_SYMBOL(udp_prot);
2946 
2947 /* ------------------------------------------------------------------------ */
2948 #ifdef CONFIG_PROC_FS
2949 
2950 static unsigned short seq_file_family(const struct seq_file *seq);
2951 static bool seq_sk_match(struct seq_file *seq, const struct sock *sk)
2952 {
2953 	unsigned short family = seq_file_family(seq);
2954 
2955 	/* AF_UNSPEC is used as a match all */
2956 	return ((family == AF_UNSPEC || family == sk->sk_family) &&
2957 		net_eq(sock_net(sk), seq_file_net(seq)));
2958 }
2959 
2960 #ifdef CONFIG_BPF_SYSCALL
2961 static const struct seq_operations bpf_iter_udp_seq_ops;
2962 #endif
2963 static struct udp_table *udp_get_table_seq(struct seq_file *seq,
2964 					   struct net *net)
2965 {
2966 	const struct udp_seq_afinfo *afinfo;
2967 
2968 #ifdef CONFIG_BPF_SYSCALL
2969 	if (seq->op == &bpf_iter_udp_seq_ops)
2970 		return net->ipv4.udp_table;
2971 #endif
2972 
2973 	afinfo = pde_data(file_inode(seq->file));
2974 	return afinfo->udp_table ? : net->ipv4.udp_table;
2975 }
2976 
2977 static struct sock *udp_get_first(struct seq_file *seq, int start)
2978 {
2979 	struct udp_iter_state *state = seq->private;
2980 	struct net *net = seq_file_net(seq);
2981 	struct udp_table *udptable;
2982 	struct sock *sk;
2983 
2984 	udptable = udp_get_table_seq(seq, net);
2985 
2986 	for (state->bucket = start; state->bucket <= udptable->mask;
2987 	     ++state->bucket) {
2988 		struct udp_hslot *hslot = &udptable->hash[state->bucket];
2989 
2990 		if (hlist_empty(&hslot->head))
2991 			continue;
2992 
2993 		spin_lock_bh(&hslot->lock);
2994 		sk_for_each(sk, &hslot->head) {
2995 			if (seq_sk_match(seq, sk))
2996 				goto found;
2997 		}
2998 		spin_unlock_bh(&hslot->lock);
2999 	}
3000 	sk = NULL;
3001 found:
3002 	return sk;
3003 }
3004 
3005 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
3006 {
3007 	struct udp_iter_state *state = seq->private;
3008 	struct net *net = seq_file_net(seq);
3009 	struct udp_table *udptable;
3010 
3011 	do {
3012 		sk = sk_next(sk);
3013 	} while (sk && !seq_sk_match(seq, sk));
3014 
3015 	if (!sk) {
3016 		udptable = udp_get_table_seq(seq, net);
3017 
3018 		if (state->bucket <= udptable->mask)
3019 			spin_unlock_bh(&udptable->hash[state->bucket].lock);
3020 
3021 		return udp_get_first(seq, state->bucket + 1);
3022 	}
3023 	return sk;
3024 }
3025 
3026 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
3027 {
3028 	struct sock *sk = udp_get_first(seq, 0);
3029 
3030 	if (sk)
3031 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
3032 			--pos;
3033 	return pos ? NULL : sk;
3034 }
3035 
3036 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
3037 {
3038 	struct udp_iter_state *state = seq->private;
3039 	state->bucket = MAX_UDP_PORTS;
3040 
3041 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
3042 }
3043 EXPORT_SYMBOL(udp_seq_start);
3044 
3045 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3046 {
3047 	struct sock *sk;
3048 
3049 	if (v == SEQ_START_TOKEN)
3050 		sk = udp_get_idx(seq, 0);
3051 	else
3052 		sk = udp_get_next(seq, v);
3053 
3054 	++*pos;
3055 	return sk;
3056 }
3057 EXPORT_SYMBOL(udp_seq_next);
3058 
3059 void udp_seq_stop(struct seq_file *seq, void *v)
3060 {
3061 	struct udp_iter_state *state = seq->private;
3062 	struct udp_table *udptable;
3063 
3064 	udptable = udp_get_table_seq(seq, seq_file_net(seq));
3065 
3066 	if (state->bucket <= udptable->mask)
3067 		spin_unlock_bh(&udptable->hash[state->bucket].lock);
3068 }
3069 EXPORT_SYMBOL(udp_seq_stop);
3070 
3071 /* ------------------------------------------------------------------------ */
3072 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
3073 		int bucket)
3074 {
3075 	struct inet_sock *inet = inet_sk(sp);
3076 	__be32 dest = inet->inet_daddr;
3077 	__be32 src  = inet->inet_rcv_saddr;
3078 	__u16 destp	  = ntohs(inet->inet_dport);
3079 	__u16 srcp	  = ntohs(inet->inet_sport);
3080 
3081 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
3082 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
3083 		bucket, src, srcp, dest, destp, sp->sk_state,
3084 		sk_wmem_alloc_get(sp),
3085 		udp_rqueue_get(sp),
3086 		0, 0L, 0,
3087 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
3088 		0, sock_i_ino(sp),
3089 		refcount_read(&sp->sk_refcnt), sp,
3090 		atomic_read(&sp->sk_drops));
3091 }
3092 
3093 int udp4_seq_show(struct seq_file *seq, void *v)
3094 {
3095 	seq_setwidth(seq, 127);
3096 	if (v == SEQ_START_TOKEN)
3097 		seq_puts(seq, "   sl  local_address rem_address   st tx_queue "
3098 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
3099 			   "inode ref pointer drops");
3100 	else {
3101 		struct udp_iter_state *state = seq->private;
3102 
3103 		udp4_format_sock(v, seq, state->bucket);
3104 	}
3105 	seq_pad(seq, '\n');
3106 	return 0;
3107 }
3108 
3109 #ifdef CONFIG_BPF_SYSCALL
3110 struct bpf_iter__udp {
3111 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
3112 	__bpf_md_ptr(struct udp_sock *, udp_sk);
3113 	uid_t uid __aligned(8);
3114 	int bucket __aligned(8);
3115 };
3116 
3117 struct bpf_udp_iter_state {
3118 	struct udp_iter_state state;
3119 	unsigned int cur_sk;
3120 	unsigned int end_sk;
3121 	unsigned int max_sk;
3122 	int offset;
3123 	struct sock **batch;
3124 	bool st_bucket_done;
3125 };
3126 
3127 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3128 				      unsigned int new_batch_sz);
3129 static struct sock *bpf_iter_udp_batch(struct seq_file *seq)
3130 {
3131 	struct bpf_udp_iter_state *iter = seq->private;
3132 	struct udp_iter_state *state = &iter->state;
3133 	struct net *net = seq_file_net(seq);
3134 	struct udp_table *udptable;
3135 	unsigned int batch_sks = 0;
3136 	bool resized = false;
3137 	struct sock *sk;
3138 
3139 	/* The current batch is done, so advance the bucket. */
3140 	if (iter->st_bucket_done) {
3141 		state->bucket++;
3142 		iter->offset = 0;
3143 	}
3144 
3145 	udptable = udp_get_table_seq(seq, net);
3146 
3147 again:
3148 	/* New batch for the next bucket.
3149 	 * Iterate over the hash table to find a bucket with sockets matching
3150 	 * the iterator attributes, and return the first matching socket from
3151 	 * the bucket. The remaining matched sockets from the bucket are batched
3152 	 * before releasing the bucket lock. This allows BPF programs that are
3153 	 * called in seq_show to acquire the bucket lock if needed.
3154 	 */
3155 	iter->cur_sk = 0;
3156 	iter->end_sk = 0;
3157 	iter->st_bucket_done = false;
3158 	batch_sks = 0;
3159 
3160 	for (; state->bucket <= udptable->mask; state->bucket++) {
3161 		struct udp_hslot *hslot2 = &udptable->hash2[state->bucket];
3162 
3163 		if (hlist_empty(&hslot2->head)) {
3164 			iter->offset = 0;
3165 			continue;
3166 		}
3167 
3168 		spin_lock_bh(&hslot2->lock);
3169 		udp_portaddr_for_each_entry(sk, &hslot2->head) {
3170 			if (seq_sk_match(seq, sk)) {
3171 				/* Resume from the last iterated socket at the
3172 				 * offset in the bucket before iterator was stopped.
3173 				 */
3174 				if (iter->offset) {
3175 					--iter->offset;
3176 					continue;
3177 				}
3178 				if (iter->end_sk < iter->max_sk) {
3179 					sock_hold(sk);
3180 					iter->batch[iter->end_sk++] = sk;
3181 				}
3182 				batch_sks++;
3183 			}
3184 		}
3185 		spin_unlock_bh(&hslot2->lock);
3186 
3187 		if (iter->end_sk)
3188 			break;
3189 
3190 		/* Reset the current bucket's offset before moving to the next bucket. */
3191 		iter->offset = 0;
3192 	}
3193 
3194 	/* All done: no batch made. */
3195 	if (!iter->end_sk)
3196 		return NULL;
3197 
3198 	if (iter->end_sk == batch_sks) {
3199 		/* Batching is done for the current bucket; return the first
3200 		 * socket to be iterated from the batch.
3201 		 */
3202 		iter->st_bucket_done = true;
3203 		goto done;
3204 	}
3205 	if (!resized && !bpf_iter_udp_realloc_batch(iter, batch_sks * 3 / 2)) {
3206 		resized = true;
3207 		/* After allocating a larger batch, retry one more time to grab
3208 		 * the whole bucket.
3209 		 */
3210 		state->bucket--;
3211 		goto again;
3212 	}
3213 done:
3214 	return iter->batch[0];
3215 }
3216 
3217 static void *bpf_iter_udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3218 {
3219 	struct bpf_udp_iter_state *iter = seq->private;
3220 	struct sock *sk;
3221 
3222 	/* Whenever seq_next() is called, the iter->cur_sk is
3223 	 * done with seq_show(), so unref the iter->cur_sk.
3224 	 */
3225 	if (iter->cur_sk < iter->end_sk) {
3226 		sock_put(iter->batch[iter->cur_sk++]);
3227 		++iter->offset;
3228 	}
3229 
3230 	/* After updating iter->cur_sk, check if there are more sockets
3231 	 * available in the current bucket batch.
3232 	 */
3233 	if (iter->cur_sk < iter->end_sk)
3234 		sk = iter->batch[iter->cur_sk];
3235 	else
3236 		/* Prepare a new batch. */
3237 		sk = bpf_iter_udp_batch(seq);
3238 
3239 	++*pos;
3240 	return sk;
3241 }
3242 
3243 static void *bpf_iter_udp_seq_start(struct seq_file *seq, loff_t *pos)
3244 {
3245 	/* bpf iter does not support lseek, so it always
3246 	 * continue from where it was stop()-ped.
3247 	 */
3248 	if (*pos)
3249 		return bpf_iter_udp_batch(seq);
3250 
3251 	return SEQ_START_TOKEN;
3252 }
3253 
3254 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3255 			     struct udp_sock *udp_sk, uid_t uid, int bucket)
3256 {
3257 	struct bpf_iter__udp ctx;
3258 
3259 	meta->seq_num--;  /* skip SEQ_START_TOKEN */
3260 	ctx.meta = meta;
3261 	ctx.udp_sk = udp_sk;
3262 	ctx.uid = uid;
3263 	ctx.bucket = bucket;
3264 	return bpf_iter_run_prog(prog, &ctx);
3265 }
3266 
3267 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v)
3268 {
3269 	struct udp_iter_state *state = seq->private;
3270 	struct bpf_iter_meta meta;
3271 	struct bpf_prog *prog;
3272 	struct sock *sk = v;
3273 	uid_t uid;
3274 	int ret;
3275 
3276 	if (v == SEQ_START_TOKEN)
3277 		return 0;
3278 
3279 	lock_sock(sk);
3280 
3281 	if (unlikely(sk_unhashed(sk))) {
3282 		ret = SEQ_SKIP;
3283 		goto unlock;
3284 	}
3285 
3286 	uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3287 	meta.seq = seq;
3288 	prog = bpf_iter_get_info(&meta, false);
3289 	ret = udp_prog_seq_show(prog, &meta, v, uid, state->bucket);
3290 
3291 unlock:
3292 	release_sock(sk);
3293 	return ret;
3294 }
3295 
3296 static void bpf_iter_udp_put_batch(struct bpf_udp_iter_state *iter)
3297 {
3298 	while (iter->cur_sk < iter->end_sk)
3299 		sock_put(iter->batch[iter->cur_sk++]);
3300 }
3301 
3302 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v)
3303 {
3304 	struct bpf_udp_iter_state *iter = seq->private;
3305 	struct bpf_iter_meta meta;
3306 	struct bpf_prog *prog;
3307 
3308 	if (!v) {
3309 		meta.seq = seq;
3310 		prog = bpf_iter_get_info(&meta, true);
3311 		if (prog)
3312 			(void)udp_prog_seq_show(prog, &meta, v, 0, 0);
3313 	}
3314 
3315 	if (iter->cur_sk < iter->end_sk) {
3316 		bpf_iter_udp_put_batch(iter);
3317 		iter->st_bucket_done = false;
3318 	}
3319 }
3320 
3321 static const struct seq_operations bpf_iter_udp_seq_ops = {
3322 	.start		= bpf_iter_udp_seq_start,
3323 	.next		= bpf_iter_udp_seq_next,
3324 	.stop		= bpf_iter_udp_seq_stop,
3325 	.show		= bpf_iter_udp_seq_show,
3326 };
3327 #endif
3328 
3329 static unsigned short seq_file_family(const struct seq_file *seq)
3330 {
3331 	const struct udp_seq_afinfo *afinfo;
3332 
3333 #ifdef CONFIG_BPF_SYSCALL
3334 	/* BPF iterator: bpf programs to filter sockets. */
3335 	if (seq->op == &bpf_iter_udp_seq_ops)
3336 		return AF_UNSPEC;
3337 #endif
3338 
3339 	/* Proc fs iterator */
3340 	afinfo = pde_data(file_inode(seq->file));
3341 	return afinfo->family;
3342 }
3343 
3344 const struct seq_operations udp_seq_ops = {
3345 	.start		= udp_seq_start,
3346 	.next		= udp_seq_next,
3347 	.stop		= udp_seq_stop,
3348 	.show		= udp4_seq_show,
3349 };
3350 EXPORT_SYMBOL(udp_seq_ops);
3351 
3352 static struct udp_seq_afinfo udp4_seq_afinfo = {
3353 	.family		= AF_INET,
3354 	.udp_table	= NULL,
3355 };
3356 
3357 static int __net_init udp4_proc_init_net(struct net *net)
3358 {
3359 	if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
3360 			sizeof(struct udp_iter_state), &udp4_seq_afinfo))
3361 		return -ENOMEM;
3362 	return 0;
3363 }
3364 
3365 static void __net_exit udp4_proc_exit_net(struct net *net)
3366 {
3367 	remove_proc_entry("udp", net->proc_net);
3368 }
3369 
3370 static struct pernet_operations udp4_net_ops = {
3371 	.init = udp4_proc_init_net,
3372 	.exit = udp4_proc_exit_net,
3373 };
3374 
3375 int __init udp4_proc_init(void)
3376 {
3377 	return register_pernet_subsys(&udp4_net_ops);
3378 }
3379 
3380 void udp4_proc_exit(void)
3381 {
3382 	unregister_pernet_subsys(&udp4_net_ops);
3383 }
3384 #endif /* CONFIG_PROC_FS */
3385 
3386 static __initdata unsigned long uhash_entries;
3387 static int __init set_uhash_entries(char *str)
3388 {
3389 	ssize_t ret;
3390 
3391 	if (!str)
3392 		return 0;
3393 
3394 	ret = kstrtoul(str, 0, &uhash_entries);
3395 	if (ret)
3396 		return 0;
3397 
3398 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
3399 		uhash_entries = UDP_HTABLE_SIZE_MIN;
3400 	return 1;
3401 }
3402 __setup("uhash_entries=", set_uhash_entries);
3403 
3404 void __init udp_table_init(struct udp_table *table, const char *name)
3405 {
3406 	unsigned int i;
3407 
3408 	table->hash = alloc_large_system_hash(name,
3409 					      2 * sizeof(struct udp_hslot),
3410 					      uhash_entries,
3411 					      21, /* one slot per 2 MB */
3412 					      0,
3413 					      &table->log,
3414 					      &table->mask,
3415 					      UDP_HTABLE_SIZE_MIN,
3416 					      UDP_HTABLE_SIZE_MAX);
3417 
3418 	table->hash2 = table->hash + (table->mask + 1);
3419 	for (i = 0; i <= table->mask; i++) {
3420 		INIT_HLIST_HEAD(&table->hash[i].head);
3421 		table->hash[i].count = 0;
3422 		spin_lock_init(&table->hash[i].lock);
3423 	}
3424 	for (i = 0; i <= table->mask; i++) {
3425 		INIT_HLIST_HEAD(&table->hash2[i].head);
3426 		table->hash2[i].count = 0;
3427 		spin_lock_init(&table->hash2[i].lock);
3428 	}
3429 }
3430 
3431 u32 udp_flow_hashrnd(void)
3432 {
3433 	static u32 hashrnd __read_mostly;
3434 
3435 	net_get_random_once(&hashrnd, sizeof(hashrnd));
3436 
3437 	return hashrnd;
3438 }
3439 EXPORT_SYMBOL(udp_flow_hashrnd);
3440 
3441 static void __net_init udp_sysctl_init(struct net *net)
3442 {
3443 	net->ipv4.sysctl_udp_rmem_min = PAGE_SIZE;
3444 	net->ipv4.sysctl_udp_wmem_min = PAGE_SIZE;
3445 
3446 #ifdef CONFIG_NET_L3_MASTER_DEV
3447 	net->ipv4.sysctl_udp_l3mdev_accept = 0;
3448 #endif
3449 }
3450 
3451 static struct udp_table __net_init *udp_pernet_table_alloc(unsigned int hash_entries)
3452 {
3453 	struct udp_table *udptable;
3454 	int i;
3455 
3456 	udptable = kmalloc(sizeof(*udptable), GFP_KERNEL);
3457 	if (!udptable)
3458 		goto out;
3459 
3460 	udptable->hash = vmalloc_huge(hash_entries * 2 * sizeof(struct udp_hslot),
3461 				      GFP_KERNEL_ACCOUNT);
3462 	if (!udptable->hash)
3463 		goto free_table;
3464 
3465 	udptable->hash2 = udptable->hash + hash_entries;
3466 	udptable->mask = hash_entries - 1;
3467 	udptable->log = ilog2(hash_entries);
3468 
3469 	for (i = 0; i < hash_entries; i++) {
3470 		INIT_HLIST_HEAD(&udptable->hash[i].head);
3471 		udptable->hash[i].count = 0;
3472 		spin_lock_init(&udptable->hash[i].lock);
3473 
3474 		INIT_HLIST_HEAD(&udptable->hash2[i].head);
3475 		udptable->hash2[i].count = 0;
3476 		spin_lock_init(&udptable->hash2[i].lock);
3477 	}
3478 
3479 	return udptable;
3480 
3481 free_table:
3482 	kfree(udptable);
3483 out:
3484 	return NULL;
3485 }
3486 
3487 static void __net_exit udp_pernet_table_free(struct net *net)
3488 {
3489 	struct udp_table *udptable = net->ipv4.udp_table;
3490 
3491 	if (udptable == &udp_table)
3492 		return;
3493 
3494 	kvfree(udptable->hash);
3495 	kfree(udptable);
3496 }
3497 
3498 static void __net_init udp_set_table(struct net *net)
3499 {
3500 	struct udp_table *udptable;
3501 	unsigned int hash_entries;
3502 	struct net *old_net;
3503 
3504 	if (net_eq(net, &init_net))
3505 		goto fallback;
3506 
3507 	old_net = current->nsproxy->net_ns;
3508 	hash_entries = READ_ONCE(old_net->ipv4.sysctl_udp_child_hash_entries);
3509 	if (!hash_entries)
3510 		goto fallback;
3511 
3512 	/* Set min to keep the bitmap on stack in udp_lib_get_port() */
3513 	if (hash_entries < UDP_HTABLE_SIZE_MIN_PERNET)
3514 		hash_entries = UDP_HTABLE_SIZE_MIN_PERNET;
3515 	else
3516 		hash_entries = roundup_pow_of_two(hash_entries);
3517 
3518 	udptable = udp_pernet_table_alloc(hash_entries);
3519 	if (udptable) {
3520 		net->ipv4.udp_table = udptable;
3521 	} else {
3522 		pr_warn("Failed to allocate UDP hash table (entries: %u) "
3523 			"for a netns, fallback to the global one\n",
3524 			hash_entries);
3525 fallback:
3526 		net->ipv4.udp_table = &udp_table;
3527 	}
3528 }
3529 
3530 static int __net_init udp_pernet_init(struct net *net)
3531 {
3532 	udp_sysctl_init(net);
3533 	udp_set_table(net);
3534 
3535 	return 0;
3536 }
3537 
3538 static void __net_exit udp_pernet_exit(struct net *net)
3539 {
3540 	udp_pernet_table_free(net);
3541 }
3542 
3543 static struct pernet_operations __net_initdata udp_sysctl_ops = {
3544 	.init	= udp_pernet_init,
3545 	.exit	= udp_pernet_exit,
3546 };
3547 
3548 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3549 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta,
3550 		     struct udp_sock *udp_sk, uid_t uid, int bucket)
3551 
3552 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3553 				      unsigned int new_batch_sz)
3554 {
3555 	struct sock **new_batch;
3556 
3557 	new_batch = kvmalloc_array(new_batch_sz, sizeof(*new_batch),
3558 				   GFP_USER | __GFP_NOWARN);
3559 	if (!new_batch)
3560 		return -ENOMEM;
3561 
3562 	bpf_iter_udp_put_batch(iter);
3563 	kvfree(iter->batch);
3564 	iter->batch = new_batch;
3565 	iter->max_sk = new_batch_sz;
3566 
3567 	return 0;
3568 }
3569 
3570 #define INIT_BATCH_SZ 16
3571 
3572 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux)
3573 {
3574 	struct bpf_udp_iter_state *iter = priv_data;
3575 	int ret;
3576 
3577 	ret = bpf_iter_init_seq_net(priv_data, aux);
3578 	if (ret)
3579 		return ret;
3580 
3581 	ret = bpf_iter_udp_realloc_batch(iter, INIT_BATCH_SZ);
3582 	if (ret)
3583 		bpf_iter_fini_seq_net(priv_data);
3584 
3585 	return ret;
3586 }
3587 
3588 static void bpf_iter_fini_udp(void *priv_data)
3589 {
3590 	struct bpf_udp_iter_state *iter = priv_data;
3591 
3592 	bpf_iter_fini_seq_net(priv_data);
3593 	kvfree(iter->batch);
3594 }
3595 
3596 static const struct bpf_iter_seq_info udp_seq_info = {
3597 	.seq_ops		= &bpf_iter_udp_seq_ops,
3598 	.init_seq_private	= bpf_iter_init_udp,
3599 	.fini_seq_private	= bpf_iter_fini_udp,
3600 	.seq_priv_size		= sizeof(struct bpf_udp_iter_state),
3601 };
3602 
3603 static struct bpf_iter_reg udp_reg_info = {
3604 	.target			= "udp",
3605 	.ctx_arg_info_size	= 1,
3606 	.ctx_arg_info		= {
3607 		{ offsetof(struct bpf_iter__udp, udp_sk),
3608 		  PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED },
3609 	},
3610 	.seq_info		= &udp_seq_info,
3611 };
3612 
3613 static void __init bpf_iter_register(void)
3614 {
3615 	udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP];
3616 	if (bpf_iter_reg_target(&udp_reg_info))
3617 		pr_warn("Warning: could not register bpf iterator udp\n");
3618 }
3619 #endif
3620 
3621 void __init udp_init(void)
3622 {
3623 	unsigned long limit;
3624 	unsigned int i;
3625 
3626 	udp_table_init(&udp_table, "UDP");
3627 	limit = nr_free_buffer_pages() / 8;
3628 	limit = max(limit, 128UL);
3629 	sysctl_udp_mem[0] = limit / 4 * 3;
3630 	sysctl_udp_mem[1] = limit;
3631 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3632 
3633 	/* 16 spinlocks per cpu */
3634 	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3635 	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3636 				GFP_KERNEL);
3637 	if (!udp_busylocks)
3638 		panic("UDP: failed to alloc udp_busylocks\n");
3639 	for (i = 0; i < (1U << udp_busylocks_log); i++)
3640 		spin_lock_init(udp_busylocks + i);
3641 
3642 	if (register_pernet_subsys(&udp_sysctl_ops))
3643 		panic("UDP: failed to init sysctl parameters.\n");
3644 
3645 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3646 	bpf_iter_register();
3647 #endif
3648 }
3649