1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * The User Datagram Protocol (UDP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 12 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 13 * Hirokazu Takahashi, <taka@valinux.co.jp> 14 * 15 * Fixes: 16 * Alan Cox : verify_area() calls 17 * Alan Cox : stopped close while in use off icmp 18 * messages. Not a fix but a botch that 19 * for udp at least is 'valid'. 20 * Alan Cox : Fixed icmp handling properly 21 * Alan Cox : Correct error for oversized datagrams 22 * Alan Cox : Tidied select() semantics. 23 * Alan Cox : udp_err() fixed properly, also now 24 * select and read wake correctly on errors 25 * Alan Cox : udp_send verify_area moved to avoid mem leak 26 * Alan Cox : UDP can count its memory 27 * Alan Cox : send to an unknown connection causes 28 * an ECONNREFUSED off the icmp, but 29 * does NOT close. 30 * Alan Cox : Switched to new sk_buff handlers. No more backlog! 31 * Alan Cox : Using generic datagram code. Even smaller and the PEEK 32 * bug no longer crashes it. 33 * Fred Van Kempen : Net2e support for sk->broadcast. 34 * Alan Cox : Uses skb_free_datagram 35 * Alan Cox : Added get/set sockopt support. 36 * Alan Cox : Broadcasting without option set returns EACCES. 37 * Alan Cox : No wakeup calls. Instead we now use the callbacks. 38 * Alan Cox : Use ip_tos and ip_ttl 39 * Alan Cox : SNMP Mibs 40 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support. 41 * Matt Dillon : UDP length checks. 42 * Alan Cox : Smarter af_inet used properly. 43 * Alan Cox : Use new kernel side addressing. 44 * Alan Cox : Incorrect return on truncated datagram receive. 45 * Arnt Gulbrandsen : New udp_send and stuff 46 * Alan Cox : Cache last socket 47 * Alan Cox : Route cache 48 * Jon Peatfield : Minor efficiency fix to sendto(). 49 * Mike Shaver : RFC1122 checks. 50 * Alan Cox : Nonblocking error fix. 51 * Willy Konynenberg : Transparent proxying support. 52 * Mike McLagan : Routing by source 53 * David S. Miller : New socket lookup architecture. 54 * Last socket cache retained as it 55 * does have a high hit rate. 56 * Olaf Kirch : Don't linearise iovec on sendmsg. 57 * Andi Kleen : Some cleanups, cache destination entry 58 * for connect. 59 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 60 * Melvin Smith : Check msg_name not msg_namelen in sendto(), 61 * return ENOTCONN for unconnected sockets (POSIX) 62 * Janos Farkas : don't deliver multi/broadcasts to a different 63 * bound-to-device socket 64 * Hirokazu Takahashi : HW checksumming for outgoing UDP 65 * datagrams. 66 * Hirokazu Takahashi : sendfile() on UDP works now. 67 * Arnaldo C. Melo : convert /proc/net/udp to seq_file 68 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 69 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind 70 * a single port at the same time. 71 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support 72 * James Chapman : Add L2TP encapsulation type. 73 */ 74 75 #define pr_fmt(fmt) "UDP: " fmt 76 77 #include <linux/bpf-cgroup.h> 78 #include <linux/uaccess.h> 79 #include <asm/ioctls.h> 80 #include <linux/memblock.h> 81 #include <linux/highmem.h> 82 #include <linux/types.h> 83 #include <linux/fcntl.h> 84 #include <linux/module.h> 85 #include <linux/socket.h> 86 #include <linux/sockios.h> 87 #include <linux/igmp.h> 88 #include <linux/inetdevice.h> 89 #include <linux/in.h> 90 #include <linux/errno.h> 91 #include <linux/timer.h> 92 #include <linux/mm.h> 93 #include <linux/inet.h> 94 #include <linux/netdevice.h> 95 #include <linux/slab.h> 96 #include <net/tcp_states.h> 97 #include <linux/skbuff.h> 98 #include <linux/proc_fs.h> 99 #include <linux/seq_file.h> 100 #include <net/net_namespace.h> 101 #include <net/icmp.h> 102 #include <net/inet_hashtables.h> 103 #include <net/ip_tunnels.h> 104 #include <net/route.h> 105 #include <net/checksum.h> 106 #include <net/gso.h> 107 #include <net/xfrm.h> 108 #include <trace/events/udp.h> 109 #include <linux/static_key.h> 110 #include <linux/btf_ids.h> 111 #include <trace/events/skb.h> 112 #include <net/busy_poll.h> 113 #include "udp_impl.h" 114 #include <net/sock_reuseport.h> 115 #include <net/addrconf.h> 116 #include <net/udp_tunnel.h> 117 #include <net/gro.h> 118 #if IS_ENABLED(CONFIG_IPV6) 119 #include <net/ipv6_stubs.h> 120 #endif 121 122 struct udp_table udp_table __read_mostly; 123 EXPORT_SYMBOL(udp_table); 124 125 long sysctl_udp_mem[3] __read_mostly; 126 EXPORT_SYMBOL(sysctl_udp_mem); 127 128 atomic_long_t udp_memory_allocated ____cacheline_aligned_in_smp; 129 EXPORT_SYMBOL(udp_memory_allocated); 130 DEFINE_PER_CPU(int, udp_memory_per_cpu_fw_alloc); 131 EXPORT_PER_CPU_SYMBOL_GPL(udp_memory_per_cpu_fw_alloc); 132 133 #define MAX_UDP_PORTS 65536 134 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN_PERNET) 135 136 static struct udp_table *udp_get_table_prot(struct sock *sk) 137 { 138 return sk->sk_prot->h.udp_table ? : sock_net(sk)->ipv4.udp_table; 139 } 140 141 static int udp_lib_lport_inuse(struct net *net, __u16 num, 142 const struct udp_hslot *hslot, 143 unsigned long *bitmap, 144 struct sock *sk, unsigned int log) 145 { 146 struct sock *sk2; 147 kuid_t uid = sock_i_uid(sk); 148 149 sk_for_each(sk2, &hslot->head) { 150 if (net_eq(sock_net(sk2), net) && 151 sk2 != sk && 152 (bitmap || udp_sk(sk2)->udp_port_hash == num) && 153 (!sk2->sk_reuse || !sk->sk_reuse) && 154 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 155 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 156 inet_rcv_saddr_equal(sk, sk2, true)) { 157 if (sk2->sk_reuseport && sk->sk_reuseport && 158 !rcu_access_pointer(sk->sk_reuseport_cb) && 159 uid_eq(uid, sock_i_uid(sk2))) { 160 if (!bitmap) 161 return 0; 162 } else { 163 if (!bitmap) 164 return 1; 165 __set_bit(udp_sk(sk2)->udp_port_hash >> log, 166 bitmap); 167 } 168 } 169 } 170 return 0; 171 } 172 173 /* 174 * Note: we still hold spinlock of primary hash chain, so no other writer 175 * can insert/delete a socket with local_port == num 176 */ 177 static int udp_lib_lport_inuse2(struct net *net, __u16 num, 178 struct udp_hslot *hslot2, 179 struct sock *sk) 180 { 181 struct sock *sk2; 182 kuid_t uid = sock_i_uid(sk); 183 int res = 0; 184 185 spin_lock(&hslot2->lock); 186 udp_portaddr_for_each_entry(sk2, &hslot2->head) { 187 if (net_eq(sock_net(sk2), net) && 188 sk2 != sk && 189 (udp_sk(sk2)->udp_port_hash == num) && 190 (!sk2->sk_reuse || !sk->sk_reuse) && 191 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 192 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 193 inet_rcv_saddr_equal(sk, sk2, true)) { 194 if (sk2->sk_reuseport && sk->sk_reuseport && 195 !rcu_access_pointer(sk->sk_reuseport_cb) && 196 uid_eq(uid, sock_i_uid(sk2))) { 197 res = 0; 198 } else { 199 res = 1; 200 } 201 break; 202 } 203 } 204 spin_unlock(&hslot2->lock); 205 return res; 206 } 207 208 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot) 209 { 210 struct net *net = sock_net(sk); 211 kuid_t uid = sock_i_uid(sk); 212 struct sock *sk2; 213 214 sk_for_each(sk2, &hslot->head) { 215 if (net_eq(sock_net(sk2), net) && 216 sk2 != sk && 217 sk2->sk_family == sk->sk_family && 218 ipv6_only_sock(sk2) == ipv6_only_sock(sk) && 219 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) && 220 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 221 sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) && 222 inet_rcv_saddr_equal(sk, sk2, false)) { 223 return reuseport_add_sock(sk, sk2, 224 inet_rcv_saddr_any(sk)); 225 } 226 } 227 228 return reuseport_alloc(sk, inet_rcv_saddr_any(sk)); 229 } 230 231 /** 232 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6 233 * 234 * @sk: socket struct in question 235 * @snum: port number to look up 236 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains, 237 * with NULL address 238 */ 239 int udp_lib_get_port(struct sock *sk, unsigned short snum, 240 unsigned int hash2_nulladdr) 241 { 242 struct udp_table *udptable = udp_get_table_prot(sk); 243 struct udp_hslot *hslot, *hslot2; 244 struct net *net = sock_net(sk); 245 int error = -EADDRINUSE; 246 247 if (!snum) { 248 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN); 249 unsigned short first, last; 250 int low, high, remaining; 251 unsigned int rand; 252 253 inet_sk_get_local_port_range(sk, &low, &high); 254 remaining = (high - low) + 1; 255 256 rand = get_random_u32(); 257 first = reciprocal_scale(rand, remaining) + low; 258 /* 259 * force rand to be an odd multiple of UDP_HTABLE_SIZE 260 */ 261 rand = (rand | 1) * (udptable->mask + 1); 262 last = first + udptable->mask + 1; 263 do { 264 hslot = udp_hashslot(udptable, net, first); 265 bitmap_zero(bitmap, PORTS_PER_CHAIN); 266 spin_lock_bh(&hslot->lock); 267 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk, 268 udptable->log); 269 270 snum = first; 271 /* 272 * Iterate on all possible values of snum for this hash. 273 * Using steps of an odd multiple of UDP_HTABLE_SIZE 274 * give us randomization and full range coverage. 275 */ 276 do { 277 if (low <= snum && snum <= high && 278 !test_bit(snum >> udptable->log, bitmap) && 279 !inet_is_local_reserved_port(net, snum)) 280 goto found; 281 snum += rand; 282 } while (snum != first); 283 spin_unlock_bh(&hslot->lock); 284 cond_resched(); 285 } while (++first != last); 286 goto fail; 287 } else { 288 hslot = udp_hashslot(udptable, net, snum); 289 spin_lock_bh(&hslot->lock); 290 if (hslot->count > 10) { 291 int exist; 292 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum; 293 294 slot2 &= udptable->mask; 295 hash2_nulladdr &= udptable->mask; 296 297 hslot2 = udp_hashslot2(udptable, slot2); 298 if (hslot->count < hslot2->count) 299 goto scan_primary_hash; 300 301 exist = udp_lib_lport_inuse2(net, snum, hslot2, sk); 302 if (!exist && (hash2_nulladdr != slot2)) { 303 hslot2 = udp_hashslot2(udptable, hash2_nulladdr); 304 exist = udp_lib_lport_inuse2(net, snum, hslot2, 305 sk); 306 } 307 if (exist) 308 goto fail_unlock; 309 else 310 goto found; 311 } 312 scan_primary_hash: 313 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0)) 314 goto fail_unlock; 315 } 316 found: 317 inet_sk(sk)->inet_num = snum; 318 udp_sk(sk)->udp_port_hash = snum; 319 udp_sk(sk)->udp_portaddr_hash ^= snum; 320 if (sk_unhashed(sk)) { 321 if (sk->sk_reuseport && 322 udp_reuseport_add_sock(sk, hslot)) { 323 inet_sk(sk)->inet_num = 0; 324 udp_sk(sk)->udp_port_hash = 0; 325 udp_sk(sk)->udp_portaddr_hash ^= snum; 326 goto fail_unlock; 327 } 328 329 sk_add_node_rcu(sk, &hslot->head); 330 hslot->count++; 331 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 332 333 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 334 spin_lock(&hslot2->lock); 335 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 336 sk->sk_family == AF_INET6) 337 hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node, 338 &hslot2->head); 339 else 340 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 341 &hslot2->head); 342 hslot2->count++; 343 spin_unlock(&hslot2->lock); 344 } 345 sock_set_flag(sk, SOCK_RCU_FREE); 346 error = 0; 347 fail_unlock: 348 spin_unlock_bh(&hslot->lock); 349 fail: 350 return error; 351 } 352 EXPORT_SYMBOL(udp_lib_get_port); 353 354 int udp_v4_get_port(struct sock *sk, unsigned short snum) 355 { 356 unsigned int hash2_nulladdr = 357 ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum); 358 unsigned int hash2_partial = 359 ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0); 360 361 /* precompute partial secondary hash */ 362 udp_sk(sk)->udp_portaddr_hash = hash2_partial; 363 return udp_lib_get_port(sk, snum, hash2_nulladdr); 364 } 365 366 static int compute_score(struct sock *sk, struct net *net, 367 __be32 saddr, __be16 sport, 368 __be32 daddr, unsigned short hnum, 369 int dif, int sdif) 370 { 371 int score; 372 struct inet_sock *inet; 373 bool dev_match; 374 375 if (!net_eq(sock_net(sk), net) || 376 udp_sk(sk)->udp_port_hash != hnum || 377 ipv6_only_sock(sk)) 378 return -1; 379 380 if (sk->sk_rcv_saddr != daddr) 381 return -1; 382 383 score = (sk->sk_family == PF_INET) ? 2 : 1; 384 385 inet = inet_sk(sk); 386 if (inet->inet_daddr) { 387 if (inet->inet_daddr != saddr) 388 return -1; 389 score += 4; 390 } 391 392 if (inet->inet_dport) { 393 if (inet->inet_dport != sport) 394 return -1; 395 score += 4; 396 } 397 398 dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, 399 dif, sdif); 400 if (!dev_match) 401 return -1; 402 if (sk->sk_bound_dev_if) 403 score += 4; 404 405 if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id()) 406 score++; 407 return score; 408 } 409 410 static u32 udp_ehashfn(const struct net *net, const __be32 laddr, 411 const __u16 lport, const __be32 faddr, 412 const __be16 fport) 413 { 414 static u32 udp_ehash_secret __read_mostly; 415 416 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret)); 417 418 return __inet_ehashfn(laddr, lport, faddr, fport, 419 udp_ehash_secret + net_hash_mix(net)); 420 } 421 422 static struct sock *lookup_reuseport(struct net *net, struct sock *sk, 423 struct sk_buff *skb, 424 __be32 saddr, __be16 sport, 425 __be32 daddr, unsigned short hnum) 426 { 427 struct sock *reuse_sk = NULL; 428 u32 hash; 429 430 if (sk->sk_reuseport && sk->sk_state != TCP_ESTABLISHED) { 431 hash = udp_ehashfn(net, daddr, hnum, saddr, sport); 432 reuse_sk = reuseport_select_sock(sk, hash, skb, 433 sizeof(struct udphdr)); 434 } 435 return reuse_sk; 436 } 437 438 /* called with rcu_read_lock() */ 439 static struct sock *udp4_lib_lookup2(struct net *net, 440 __be32 saddr, __be16 sport, 441 __be32 daddr, unsigned int hnum, 442 int dif, int sdif, 443 struct udp_hslot *hslot2, 444 struct sk_buff *skb) 445 { 446 struct sock *sk, *result; 447 int score, badness; 448 449 result = NULL; 450 badness = 0; 451 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 452 score = compute_score(sk, net, saddr, sport, 453 daddr, hnum, dif, sdif); 454 if (score > badness) { 455 result = lookup_reuseport(net, sk, skb, 456 saddr, sport, daddr, hnum); 457 /* Fall back to scoring if group has connections */ 458 if (result && !reuseport_has_conns(sk)) 459 return result; 460 461 result = result ? : sk; 462 badness = score; 463 } 464 } 465 return result; 466 } 467 468 static struct sock *udp4_lookup_run_bpf(struct net *net, 469 struct udp_table *udptable, 470 struct sk_buff *skb, 471 __be32 saddr, __be16 sport, 472 __be32 daddr, u16 hnum, const int dif) 473 { 474 struct sock *sk, *reuse_sk; 475 bool no_reuseport; 476 477 if (udptable != net->ipv4.udp_table) 478 return NULL; /* only UDP is supported */ 479 480 no_reuseport = bpf_sk_lookup_run_v4(net, IPPROTO_UDP, saddr, sport, 481 daddr, hnum, dif, &sk); 482 if (no_reuseport || IS_ERR_OR_NULL(sk)) 483 return sk; 484 485 reuse_sk = lookup_reuseport(net, sk, skb, saddr, sport, daddr, hnum); 486 if (reuse_sk) 487 sk = reuse_sk; 488 return sk; 489 } 490 491 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try 492 * harder than this. -DaveM 493 */ 494 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr, 495 __be16 sport, __be32 daddr, __be16 dport, int dif, 496 int sdif, struct udp_table *udptable, struct sk_buff *skb) 497 { 498 unsigned short hnum = ntohs(dport); 499 unsigned int hash2, slot2; 500 struct udp_hslot *hslot2; 501 struct sock *result, *sk; 502 503 hash2 = ipv4_portaddr_hash(net, daddr, hnum); 504 slot2 = hash2 & udptable->mask; 505 hslot2 = &udptable->hash2[slot2]; 506 507 /* Lookup connected or non-wildcard socket */ 508 result = udp4_lib_lookup2(net, saddr, sport, 509 daddr, hnum, dif, sdif, 510 hslot2, skb); 511 if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED) 512 goto done; 513 514 /* Lookup redirect from BPF */ 515 if (static_branch_unlikely(&bpf_sk_lookup_enabled)) { 516 sk = udp4_lookup_run_bpf(net, udptable, skb, 517 saddr, sport, daddr, hnum, dif); 518 if (sk) { 519 result = sk; 520 goto done; 521 } 522 } 523 524 /* Got non-wildcard socket or error on first lookup */ 525 if (result) 526 goto done; 527 528 /* Lookup wildcard sockets */ 529 hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum); 530 slot2 = hash2 & udptable->mask; 531 hslot2 = &udptable->hash2[slot2]; 532 533 result = udp4_lib_lookup2(net, saddr, sport, 534 htonl(INADDR_ANY), hnum, dif, sdif, 535 hslot2, skb); 536 done: 537 if (IS_ERR(result)) 538 return NULL; 539 return result; 540 } 541 EXPORT_SYMBOL_GPL(__udp4_lib_lookup); 542 543 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb, 544 __be16 sport, __be16 dport, 545 struct udp_table *udptable) 546 { 547 const struct iphdr *iph = ip_hdr(skb); 548 549 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport, 550 iph->daddr, dport, inet_iif(skb), 551 inet_sdif(skb), udptable, skb); 552 } 553 554 struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb, 555 __be16 sport, __be16 dport) 556 { 557 const struct iphdr *iph = ip_hdr(skb); 558 struct net *net = dev_net(skb->dev); 559 int iif, sdif; 560 561 inet_get_iif_sdif(skb, &iif, &sdif); 562 563 return __udp4_lib_lookup(net, iph->saddr, sport, 564 iph->daddr, dport, iif, 565 sdif, net->ipv4.udp_table, NULL); 566 } 567 568 /* Must be called under rcu_read_lock(). 569 * Does increment socket refcount. 570 */ 571 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4) 572 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport, 573 __be32 daddr, __be16 dport, int dif) 574 { 575 struct sock *sk; 576 577 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport, 578 dif, 0, net->ipv4.udp_table, NULL); 579 if (sk && !refcount_inc_not_zero(&sk->sk_refcnt)) 580 sk = NULL; 581 return sk; 582 } 583 EXPORT_SYMBOL_GPL(udp4_lib_lookup); 584 #endif 585 586 static inline bool __udp_is_mcast_sock(struct net *net, const struct sock *sk, 587 __be16 loc_port, __be32 loc_addr, 588 __be16 rmt_port, __be32 rmt_addr, 589 int dif, int sdif, unsigned short hnum) 590 { 591 const struct inet_sock *inet = inet_sk(sk); 592 593 if (!net_eq(sock_net(sk), net) || 594 udp_sk(sk)->udp_port_hash != hnum || 595 (inet->inet_daddr && inet->inet_daddr != rmt_addr) || 596 (inet->inet_dport != rmt_port && inet->inet_dport) || 597 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) || 598 ipv6_only_sock(sk) || 599 !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif)) 600 return false; 601 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif)) 602 return false; 603 return true; 604 } 605 606 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key); 607 void udp_encap_enable(void) 608 { 609 static_branch_inc(&udp_encap_needed_key); 610 } 611 EXPORT_SYMBOL(udp_encap_enable); 612 613 void udp_encap_disable(void) 614 { 615 static_branch_dec(&udp_encap_needed_key); 616 } 617 EXPORT_SYMBOL(udp_encap_disable); 618 619 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go 620 * through error handlers in encapsulations looking for a match. 621 */ 622 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info) 623 { 624 int i; 625 626 for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) { 627 int (*handler)(struct sk_buff *skb, u32 info); 628 const struct ip_tunnel_encap_ops *encap; 629 630 encap = rcu_dereference(iptun_encaps[i]); 631 if (!encap) 632 continue; 633 handler = encap->err_handler; 634 if (handler && !handler(skb, info)) 635 return 0; 636 } 637 638 return -ENOENT; 639 } 640 641 /* Try to match ICMP errors to UDP tunnels by looking up a socket without 642 * reversing source and destination port: this will match tunnels that force the 643 * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that 644 * lwtunnels might actually break this assumption by being configured with 645 * different destination ports on endpoints, in this case we won't be able to 646 * trace ICMP messages back to them. 647 * 648 * If this doesn't match any socket, probe tunnels with arbitrary destination 649 * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port 650 * we've sent packets to won't necessarily match the local destination port. 651 * 652 * Then ask the tunnel implementation to match the error against a valid 653 * association. 654 * 655 * Return an error if we can't find a match, the socket if we need further 656 * processing, zero otherwise. 657 */ 658 static struct sock *__udp4_lib_err_encap(struct net *net, 659 const struct iphdr *iph, 660 struct udphdr *uh, 661 struct udp_table *udptable, 662 struct sock *sk, 663 struct sk_buff *skb, u32 info) 664 { 665 int (*lookup)(struct sock *sk, struct sk_buff *skb); 666 int network_offset, transport_offset; 667 struct udp_sock *up; 668 669 network_offset = skb_network_offset(skb); 670 transport_offset = skb_transport_offset(skb); 671 672 /* Network header needs to point to the outer IPv4 header inside ICMP */ 673 skb_reset_network_header(skb); 674 675 /* Transport header needs to point to the UDP header */ 676 skb_set_transport_header(skb, iph->ihl << 2); 677 678 if (sk) { 679 up = udp_sk(sk); 680 681 lookup = READ_ONCE(up->encap_err_lookup); 682 if (lookup && lookup(sk, skb)) 683 sk = NULL; 684 685 goto out; 686 } 687 688 sk = __udp4_lib_lookup(net, iph->daddr, uh->source, 689 iph->saddr, uh->dest, skb->dev->ifindex, 0, 690 udptable, NULL); 691 if (sk) { 692 up = udp_sk(sk); 693 694 lookup = READ_ONCE(up->encap_err_lookup); 695 if (!lookup || lookup(sk, skb)) 696 sk = NULL; 697 } 698 699 out: 700 if (!sk) 701 sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info)); 702 703 skb_set_transport_header(skb, transport_offset); 704 skb_set_network_header(skb, network_offset); 705 706 return sk; 707 } 708 709 /* 710 * This routine is called by the ICMP module when it gets some 711 * sort of error condition. If err < 0 then the socket should 712 * be closed and the error returned to the user. If err > 0 713 * it's just the icmp type << 8 | icmp code. 714 * Header points to the ip header of the error packet. We move 715 * on past this. Then (as it used to claim before adjustment) 716 * header points to the first 8 bytes of the udp header. We need 717 * to find the appropriate port. 718 */ 719 720 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable) 721 { 722 struct inet_sock *inet; 723 const struct iphdr *iph = (const struct iphdr *)skb->data; 724 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2)); 725 const int type = icmp_hdr(skb)->type; 726 const int code = icmp_hdr(skb)->code; 727 bool tunnel = false; 728 struct sock *sk; 729 int harderr; 730 int err; 731 struct net *net = dev_net(skb->dev); 732 733 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest, 734 iph->saddr, uh->source, skb->dev->ifindex, 735 inet_sdif(skb), udptable, NULL); 736 737 if (!sk || udp_sk(sk)->encap_type) { 738 /* No socket for error: try tunnels before discarding */ 739 if (static_branch_unlikely(&udp_encap_needed_key)) { 740 sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb, 741 info); 742 if (!sk) 743 return 0; 744 } else 745 sk = ERR_PTR(-ENOENT); 746 747 if (IS_ERR(sk)) { 748 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); 749 return PTR_ERR(sk); 750 } 751 752 tunnel = true; 753 } 754 755 err = 0; 756 harderr = 0; 757 inet = inet_sk(sk); 758 759 switch (type) { 760 default: 761 case ICMP_TIME_EXCEEDED: 762 err = EHOSTUNREACH; 763 break; 764 case ICMP_SOURCE_QUENCH: 765 goto out; 766 case ICMP_PARAMETERPROB: 767 err = EPROTO; 768 harderr = 1; 769 break; 770 case ICMP_DEST_UNREACH: 771 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */ 772 ipv4_sk_update_pmtu(skb, sk, info); 773 if (inet->pmtudisc != IP_PMTUDISC_DONT) { 774 err = EMSGSIZE; 775 harderr = 1; 776 break; 777 } 778 goto out; 779 } 780 err = EHOSTUNREACH; 781 if (code <= NR_ICMP_UNREACH) { 782 harderr = icmp_err_convert[code].fatal; 783 err = icmp_err_convert[code].errno; 784 } 785 break; 786 case ICMP_REDIRECT: 787 ipv4_sk_redirect(skb, sk); 788 goto out; 789 } 790 791 /* 792 * RFC1122: OK. Passes ICMP errors back to application, as per 793 * 4.1.3.3. 794 */ 795 if (tunnel) { 796 /* ...not for tunnels though: we don't have a sending socket */ 797 if (udp_sk(sk)->encap_err_rcv) 798 udp_sk(sk)->encap_err_rcv(sk, skb, err, uh->dest, info, 799 (u8 *)(uh+1)); 800 goto out; 801 } 802 if (!inet->recverr) { 803 if (!harderr || sk->sk_state != TCP_ESTABLISHED) 804 goto out; 805 } else 806 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1)); 807 808 sk->sk_err = err; 809 sk_error_report(sk); 810 out: 811 return 0; 812 } 813 814 int udp_err(struct sk_buff *skb, u32 info) 815 { 816 return __udp4_lib_err(skb, info, dev_net(skb->dev)->ipv4.udp_table); 817 } 818 819 /* 820 * Throw away all pending data and cancel the corking. Socket is locked. 821 */ 822 void udp_flush_pending_frames(struct sock *sk) 823 { 824 struct udp_sock *up = udp_sk(sk); 825 826 if (up->pending) { 827 up->len = 0; 828 up->pending = 0; 829 ip_flush_pending_frames(sk); 830 } 831 } 832 EXPORT_SYMBOL(udp_flush_pending_frames); 833 834 /** 835 * udp4_hwcsum - handle outgoing HW checksumming 836 * @skb: sk_buff containing the filled-in UDP header 837 * (checksum field must be zeroed out) 838 * @src: source IP address 839 * @dst: destination IP address 840 */ 841 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst) 842 { 843 struct udphdr *uh = udp_hdr(skb); 844 int offset = skb_transport_offset(skb); 845 int len = skb->len - offset; 846 int hlen = len; 847 __wsum csum = 0; 848 849 if (!skb_has_frag_list(skb)) { 850 /* 851 * Only one fragment on the socket. 852 */ 853 skb->csum_start = skb_transport_header(skb) - skb->head; 854 skb->csum_offset = offsetof(struct udphdr, check); 855 uh->check = ~csum_tcpudp_magic(src, dst, len, 856 IPPROTO_UDP, 0); 857 } else { 858 struct sk_buff *frags; 859 860 /* 861 * HW-checksum won't work as there are two or more 862 * fragments on the socket so that all csums of sk_buffs 863 * should be together 864 */ 865 skb_walk_frags(skb, frags) { 866 csum = csum_add(csum, frags->csum); 867 hlen -= frags->len; 868 } 869 870 csum = skb_checksum(skb, offset, hlen, csum); 871 skb->ip_summed = CHECKSUM_NONE; 872 873 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum); 874 if (uh->check == 0) 875 uh->check = CSUM_MANGLED_0; 876 } 877 } 878 EXPORT_SYMBOL_GPL(udp4_hwcsum); 879 880 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended 881 * for the simple case like when setting the checksum for a UDP tunnel. 882 */ 883 void udp_set_csum(bool nocheck, struct sk_buff *skb, 884 __be32 saddr, __be32 daddr, int len) 885 { 886 struct udphdr *uh = udp_hdr(skb); 887 888 if (nocheck) { 889 uh->check = 0; 890 } else if (skb_is_gso(skb)) { 891 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 892 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 893 uh->check = 0; 894 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb)); 895 if (uh->check == 0) 896 uh->check = CSUM_MANGLED_0; 897 } else { 898 skb->ip_summed = CHECKSUM_PARTIAL; 899 skb->csum_start = skb_transport_header(skb) - skb->head; 900 skb->csum_offset = offsetof(struct udphdr, check); 901 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 902 } 903 } 904 EXPORT_SYMBOL(udp_set_csum); 905 906 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4, 907 struct inet_cork *cork) 908 { 909 struct sock *sk = skb->sk; 910 struct inet_sock *inet = inet_sk(sk); 911 struct udphdr *uh; 912 int err; 913 int is_udplite = IS_UDPLITE(sk); 914 int offset = skb_transport_offset(skb); 915 int len = skb->len - offset; 916 int datalen = len - sizeof(*uh); 917 __wsum csum = 0; 918 919 /* 920 * Create a UDP header 921 */ 922 uh = udp_hdr(skb); 923 uh->source = inet->inet_sport; 924 uh->dest = fl4->fl4_dport; 925 uh->len = htons(len); 926 uh->check = 0; 927 928 if (cork->gso_size) { 929 const int hlen = skb_network_header_len(skb) + 930 sizeof(struct udphdr); 931 932 if (hlen + cork->gso_size > cork->fragsize) { 933 kfree_skb(skb); 934 return -EINVAL; 935 } 936 if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) { 937 kfree_skb(skb); 938 return -EINVAL; 939 } 940 if (sk->sk_no_check_tx) { 941 kfree_skb(skb); 942 return -EINVAL; 943 } 944 if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite || 945 dst_xfrm(skb_dst(skb))) { 946 kfree_skb(skb); 947 return -EIO; 948 } 949 950 if (datalen > cork->gso_size) { 951 skb_shinfo(skb)->gso_size = cork->gso_size; 952 skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4; 953 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen, 954 cork->gso_size); 955 } 956 goto csum_partial; 957 } 958 959 if (is_udplite) /* UDP-Lite */ 960 csum = udplite_csum(skb); 961 962 else if (sk->sk_no_check_tx) { /* UDP csum off */ 963 964 skb->ip_summed = CHECKSUM_NONE; 965 goto send; 966 967 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */ 968 csum_partial: 969 970 udp4_hwcsum(skb, fl4->saddr, fl4->daddr); 971 goto send; 972 973 } else 974 csum = udp_csum(skb); 975 976 /* add protocol-dependent pseudo-header */ 977 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len, 978 sk->sk_protocol, csum); 979 if (uh->check == 0) 980 uh->check = CSUM_MANGLED_0; 981 982 send: 983 err = ip_send_skb(sock_net(sk), skb); 984 if (err) { 985 if (err == -ENOBUFS && !inet->recverr) { 986 UDP_INC_STATS(sock_net(sk), 987 UDP_MIB_SNDBUFERRORS, is_udplite); 988 err = 0; 989 } 990 } else 991 UDP_INC_STATS(sock_net(sk), 992 UDP_MIB_OUTDATAGRAMS, is_udplite); 993 return err; 994 } 995 996 /* 997 * Push out all pending data as one UDP datagram. Socket is locked. 998 */ 999 int udp_push_pending_frames(struct sock *sk) 1000 { 1001 struct udp_sock *up = udp_sk(sk); 1002 struct inet_sock *inet = inet_sk(sk); 1003 struct flowi4 *fl4 = &inet->cork.fl.u.ip4; 1004 struct sk_buff *skb; 1005 int err = 0; 1006 1007 skb = ip_finish_skb(sk, fl4); 1008 if (!skb) 1009 goto out; 1010 1011 err = udp_send_skb(skb, fl4, &inet->cork.base); 1012 1013 out: 1014 up->len = 0; 1015 up->pending = 0; 1016 return err; 1017 } 1018 EXPORT_SYMBOL(udp_push_pending_frames); 1019 1020 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size) 1021 { 1022 switch (cmsg->cmsg_type) { 1023 case UDP_SEGMENT: 1024 if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16))) 1025 return -EINVAL; 1026 *gso_size = *(__u16 *)CMSG_DATA(cmsg); 1027 return 0; 1028 default: 1029 return -EINVAL; 1030 } 1031 } 1032 1033 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size) 1034 { 1035 struct cmsghdr *cmsg; 1036 bool need_ip = false; 1037 int err; 1038 1039 for_each_cmsghdr(cmsg, msg) { 1040 if (!CMSG_OK(msg, cmsg)) 1041 return -EINVAL; 1042 1043 if (cmsg->cmsg_level != SOL_UDP) { 1044 need_ip = true; 1045 continue; 1046 } 1047 1048 err = __udp_cmsg_send(cmsg, gso_size); 1049 if (err) 1050 return err; 1051 } 1052 1053 return need_ip; 1054 } 1055 EXPORT_SYMBOL_GPL(udp_cmsg_send); 1056 1057 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1058 { 1059 struct inet_sock *inet = inet_sk(sk); 1060 struct udp_sock *up = udp_sk(sk); 1061 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name); 1062 struct flowi4 fl4_stack; 1063 struct flowi4 *fl4; 1064 int ulen = len; 1065 struct ipcm_cookie ipc; 1066 struct rtable *rt = NULL; 1067 int free = 0; 1068 int connected = 0; 1069 __be32 daddr, faddr, saddr; 1070 u8 tos, scope; 1071 __be16 dport; 1072 int err, is_udplite = IS_UDPLITE(sk); 1073 int corkreq = READ_ONCE(up->corkflag) || msg->msg_flags&MSG_MORE; 1074 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *); 1075 struct sk_buff *skb; 1076 struct ip_options_data opt_copy; 1077 1078 if (len > 0xFFFF) 1079 return -EMSGSIZE; 1080 1081 /* 1082 * Check the flags. 1083 */ 1084 1085 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */ 1086 return -EOPNOTSUPP; 1087 1088 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag; 1089 1090 fl4 = &inet->cork.fl.u.ip4; 1091 if (up->pending) { 1092 /* 1093 * There are pending frames. 1094 * The socket lock must be held while it's corked. 1095 */ 1096 lock_sock(sk); 1097 if (likely(up->pending)) { 1098 if (unlikely(up->pending != AF_INET)) { 1099 release_sock(sk); 1100 return -EINVAL; 1101 } 1102 goto do_append_data; 1103 } 1104 release_sock(sk); 1105 } 1106 ulen += sizeof(struct udphdr); 1107 1108 /* 1109 * Get and verify the address. 1110 */ 1111 if (usin) { 1112 if (msg->msg_namelen < sizeof(*usin)) 1113 return -EINVAL; 1114 if (usin->sin_family != AF_INET) { 1115 if (usin->sin_family != AF_UNSPEC) 1116 return -EAFNOSUPPORT; 1117 } 1118 1119 daddr = usin->sin_addr.s_addr; 1120 dport = usin->sin_port; 1121 if (dport == 0) 1122 return -EINVAL; 1123 } else { 1124 if (sk->sk_state != TCP_ESTABLISHED) 1125 return -EDESTADDRREQ; 1126 daddr = inet->inet_daddr; 1127 dport = inet->inet_dport; 1128 /* Open fast path for connected socket. 1129 Route will not be used, if at least one option is set. 1130 */ 1131 connected = 1; 1132 } 1133 1134 ipcm_init_sk(&ipc, inet); 1135 ipc.gso_size = READ_ONCE(up->gso_size); 1136 1137 if (msg->msg_controllen) { 1138 err = udp_cmsg_send(sk, msg, &ipc.gso_size); 1139 if (err > 0) 1140 err = ip_cmsg_send(sk, msg, &ipc, 1141 sk->sk_family == AF_INET6); 1142 if (unlikely(err < 0)) { 1143 kfree(ipc.opt); 1144 return err; 1145 } 1146 if (ipc.opt) 1147 free = 1; 1148 connected = 0; 1149 } 1150 if (!ipc.opt) { 1151 struct ip_options_rcu *inet_opt; 1152 1153 rcu_read_lock(); 1154 inet_opt = rcu_dereference(inet->inet_opt); 1155 if (inet_opt) { 1156 memcpy(&opt_copy, inet_opt, 1157 sizeof(*inet_opt) + inet_opt->opt.optlen); 1158 ipc.opt = &opt_copy.opt; 1159 } 1160 rcu_read_unlock(); 1161 } 1162 1163 if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) { 1164 err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk, 1165 (struct sockaddr *)usin, &ipc.addr); 1166 if (err) 1167 goto out_free; 1168 if (usin) { 1169 if (usin->sin_port == 0) { 1170 /* BPF program set invalid port. Reject it. */ 1171 err = -EINVAL; 1172 goto out_free; 1173 } 1174 daddr = usin->sin_addr.s_addr; 1175 dport = usin->sin_port; 1176 } 1177 } 1178 1179 saddr = ipc.addr; 1180 ipc.addr = faddr = daddr; 1181 1182 if (ipc.opt && ipc.opt->opt.srr) { 1183 if (!daddr) { 1184 err = -EINVAL; 1185 goto out_free; 1186 } 1187 faddr = ipc.opt->opt.faddr; 1188 connected = 0; 1189 } 1190 tos = get_rttos(&ipc, inet); 1191 scope = ip_sendmsg_scope(inet, &ipc, msg); 1192 if (scope == RT_SCOPE_LINK) 1193 connected = 0; 1194 1195 if (ipv4_is_multicast(daddr)) { 1196 if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif)) 1197 ipc.oif = inet->mc_index; 1198 if (!saddr) 1199 saddr = inet->mc_addr; 1200 connected = 0; 1201 } else if (!ipc.oif) { 1202 ipc.oif = inet->uc_index; 1203 } else if (ipv4_is_lbcast(daddr) && inet->uc_index) { 1204 /* oif is set, packet is to local broadcast and 1205 * uc_index is set. oif is most likely set 1206 * by sk_bound_dev_if. If uc_index != oif check if the 1207 * oif is an L3 master and uc_index is an L3 slave. 1208 * If so, we want to allow the send using the uc_index. 1209 */ 1210 if (ipc.oif != inet->uc_index && 1211 ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk), 1212 inet->uc_index)) { 1213 ipc.oif = inet->uc_index; 1214 } 1215 } 1216 1217 if (connected) 1218 rt = (struct rtable *)sk_dst_check(sk, 0); 1219 1220 if (!rt) { 1221 struct net *net = sock_net(sk); 1222 __u8 flow_flags = inet_sk_flowi_flags(sk); 1223 1224 fl4 = &fl4_stack; 1225 1226 flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos, scope, 1227 sk->sk_protocol, flow_flags, faddr, saddr, 1228 dport, inet->inet_sport, sk->sk_uid); 1229 1230 security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4)); 1231 rt = ip_route_output_flow(net, fl4, sk); 1232 if (IS_ERR(rt)) { 1233 err = PTR_ERR(rt); 1234 rt = NULL; 1235 if (err == -ENETUNREACH) 1236 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 1237 goto out; 1238 } 1239 1240 err = -EACCES; 1241 if ((rt->rt_flags & RTCF_BROADCAST) && 1242 !sock_flag(sk, SOCK_BROADCAST)) 1243 goto out; 1244 if (connected) 1245 sk_dst_set(sk, dst_clone(&rt->dst)); 1246 } 1247 1248 if (msg->msg_flags&MSG_CONFIRM) 1249 goto do_confirm; 1250 back_from_confirm: 1251 1252 saddr = fl4->saddr; 1253 if (!ipc.addr) 1254 daddr = ipc.addr = fl4->daddr; 1255 1256 /* Lockless fast path for the non-corking case. */ 1257 if (!corkreq) { 1258 struct inet_cork cork; 1259 1260 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen, 1261 sizeof(struct udphdr), &ipc, &rt, 1262 &cork, msg->msg_flags); 1263 err = PTR_ERR(skb); 1264 if (!IS_ERR_OR_NULL(skb)) 1265 err = udp_send_skb(skb, fl4, &cork); 1266 goto out; 1267 } 1268 1269 lock_sock(sk); 1270 if (unlikely(up->pending)) { 1271 /* The socket is already corked while preparing it. */ 1272 /* ... which is an evident application bug. --ANK */ 1273 release_sock(sk); 1274 1275 net_dbg_ratelimited("socket already corked\n"); 1276 err = -EINVAL; 1277 goto out; 1278 } 1279 /* 1280 * Now cork the socket to pend data. 1281 */ 1282 fl4 = &inet->cork.fl.u.ip4; 1283 fl4->daddr = daddr; 1284 fl4->saddr = saddr; 1285 fl4->fl4_dport = dport; 1286 fl4->fl4_sport = inet->inet_sport; 1287 up->pending = AF_INET; 1288 1289 do_append_data: 1290 up->len += ulen; 1291 err = ip_append_data(sk, fl4, getfrag, msg, ulen, 1292 sizeof(struct udphdr), &ipc, &rt, 1293 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags); 1294 if (err) 1295 udp_flush_pending_frames(sk); 1296 else if (!corkreq) 1297 err = udp_push_pending_frames(sk); 1298 else if (unlikely(skb_queue_empty(&sk->sk_write_queue))) 1299 up->pending = 0; 1300 release_sock(sk); 1301 1302 out: 1303 ip_rt_put(rt); 1304 out_free: 1305 if (free) 1306 kfree(ipc.opt); 1307 if (!err) 1308 return len; 1309 /* 1310 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting 1311 * ENOBUFS might not be good (it's not tunable per se), but otherwise 1312 * we don't have a good statistic (IpOutDiscards but it can be too many 1313 * things). We could add another new stat but at least for now that 1314 * seems like overkill. 1315 */ 1316 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1317 UDP_INC_STATS(sock_net(sk), 1318 UDP_MIB_SNDBUFERRORS, is_udplite); 1319 } 1320 return err; 1321 1322 do_confirm: 1323 if (msg->msg_flags & MSG_PROBE) 1324 dst_confirm_neigh(&rt->dst, &fl4->daddr); 1325 if (!(msg->msg_flags&MSG_PROBE) || len) 1326 goto back_from_confirm; 1327 err = 0; 1328 goto out; 1329 } 1330 EXPORT_SYMBOL(udp_sendmsg); 1331 1332 void udp_splice_eof(struct socket *sock) 1333 { 1334 struct sock *sk = sock->sk; 1335 struct udp_sock *up = udp_sk(sk); 1336 1337 if (!up->pending || READ_ONCE(up->corkflag)) 1338 return; 1339 1340 lock_sock(sk); 1341 if (up->pending && !READ_ONCE(up->corkflag)) 1342 udp_push_pending_frames(sk); 1343 release_sock(sk); 1344 } 1345 EXPORT_SYMBOL_GPL(udp_splice_eof); 1346 1347 #define UDP_SKB_IS_STATELESS 0x80000000 1348 1349 /* all head states (dst, sk, nf conntrack) except skb extensions are 1350 * cleared by udp_rcv(). 1351 * 1352 * We need to preserve secpath, if present, to eventually process 1353 * IP_CMSG_PASSSEC at recvmsg() time. 1354 * 1355 * Other extensions can be cleared. 1356 */ 1357 static bool udp_try_make_stateless(struct sk_buff *skb) 1358 { 1359 if (!skb_has_extensions(skb)) 1360 return true; 1361 1362 if (!secpath_exists(skb)) { 1363 skb_ext_reset(skb); 1364 return true; 1365 } 1366 1367 return false; 1368 } 1369 1370 static void udp_set_dev_scratch(struct sk_buff *skb) 1371 { 1372 struct udp_dev_scratch *scratch = udp_skb_scratch(skb); 1373 1374 BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long)); 1375 scratch->_tsize_state = skb->truesize; 1376 #if BITS_PER_LONG == 64 1377 scratch->len = skb->len; 1378 scratch->csum_unnecessary = !!skb_csum_unnecessary(skb); 1379 scratch->is_linear = !skb_is_nonlinear(skb); 1380 #endif 1381 if (udp_try_make_stateless(skb)) 1382 scratch->_tsize_state |= UDP_SKB_IS_STATELESS; 1383 } 1384 1385 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb) 1386 { 1387 /* We come here after udp_lib_checksum_complete() returned 0. 1388 * This means that __skb_checksum_complete() might have 1389 * set skb->csum_valid to 1. 1390 * On 64bit platforms, we can set csum_unnecessary 1391 * to true, but only if the skb is not shared. 1392 */ 1393 #if BITS_PER_LONG == 64 1394 if (!skb_shared(skb)) 1395 udp_skb_scratch(skb)->csum_unnecessary = true; 1396 #endif 1397 } 1398 1399 static int udp_skb_truesize(struct sk_buff *skb) 1400 { 1401 return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS; 1402 } 1403 1404 static bool udp_skb_has_head_state(struct sk_buff *skb) 1405 { 1406 return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS); 1407 } 1408 1409 /* fully reclaim rmem/fwd memory allocated for skb */ 1410 static void udp_rmem_release(struct sock *sk, int size, int partial, 1411 bool rx_queue_lock_held) 1412 { 1413 struct udp_sock *up = udp_sk(sk); 1414 struct sk_buff_head *sk_queue; 1415 int amt; 1416 1417 if (likely(partial)) { 1418 up->forward_deficit += size; 1419 size = up->forward_deficit; 1420 if (size < READ_ONCE(up->forward_threshold) && 1421 !skb_queue_empty(&up->reader_queue)) 1422 return; 1423 } else { 1424 size += up->forward_deficit; 1425 } 1426 up->forward_deficit = 0; 1427 1428 /* acquire the sk_receive_queue for fwd allocated memory scheduling, 1429 * if the called don't held it already 1430 */ 1431 sk_queue = &sk->sk_receive_queue; 1432 if (!rx_queue_lock_held) 1433 spin_lock(&sk_queue->lock); 1434 1435 1436 sk->sk_forward_alloc += size; 1437 amt = (sk->sk_forward_alloc - partial) & ~(PAGE_SIZE - 1); 1438 sk->sk_forward_alloc -= amt; 1439 1440 if (amt) 1441 __sk_mem_reduce_allocated(sk, amt >> PAGE_SHIFT); 1442 1443 atomic_sub(size, &sk->sk_rmem_alloc); 1444 1445 /* this can save us from acquiring the rx queue lock on next receive */ 1446 skb_queue_splice_tail_init(sk_queue, &up->reader_queue); 1447 1448 if (!rx_queue_lock_held) 1449 spin_unlock(&sk_queue->lock); 1450 } 1451 1452 /* Note: called with reader_queue.lock held. 1453 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch 1454 * This avoids a cache line miss while receive_queue lock is held. 1455 * Look at __udp_enqueue_schedule_skb() to find where this copy is done. 1456 */ 1457 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb) 1458 { 1459 prefetch(&skb->data); 1460 udp_rmem_release(sk, udp_skb_truesize(skb), 1, false); 1461 } 1462 EXPORT_SYMBOL(udp_skb_destructor); 1463 1464 /* as above, but the caller held the rx queue lock, too */ 1465 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb) 1466 { 1467 prefetch(&skb->data); 1468 udp_rmem_release(sk, udp_skb_truesize(skb), 1, true); 1469 } 1470 1471 /* Idea of busylocks is to let producers grab an extra spinlock 1472 * to relieve pressure on the receive_queue spinlock shared by consumer. 1473 * Under flood, this means that only one producer can be in line 1474 * trying to acquire the receive_queue spinlock. 1475 * These busylock can be allocated on a per cpu manner, instead of a 1476 * per socket one (that would consume a cache line per socket) 1477 */ 1478 static int udp_busylocks_log __read_mostly; 1479 static spinlock_t *udp_busylocks __read_mostly; 1480 1481 static spinlock_t *busylock_acquire(void *ptr) 1482 { 1483 spinlock_t *busy; 1484 1485 busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log); 1486 spin_lock(busy); 1487 return busy; 1488 } 1489 1490 static void busylock_release(spinlock_t *busy) 1491 { 1492 if (busy) 1493 spin_unlock(busy); 1494 } 1495 1496 static int udp_rmem_schedule(struct sock *sk, int size) 1497 { 1498 int delta; 1499 1500 delta = size - sk->sk_forward_alloc; 1501 if (delta > 0 && !__sk_mem_schedule(sk, delta, SK_MEM_RECV)) 1502 return -ENOBUFS; 1503 1504 return 0; 1505 } 1506 1507 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb) 1508 { 1509 struct sk_buff_head *list = &sk->sk_receive_queue; 1510 int rmem, err = -ENOMEM; 1511 spinlock_t *busy = NULL; 1512 int size; 1513 1514 /* try to avoid the costly atomic add/sub pair when the receive 1515 * queue is full; always allow at least a packet 1516 */ 1517 rmem = atomic_read(&sk->sk_rmem_alloc); 1518 if (rmem > sk->sk_rcvbuf) 1519 goto drop; 1520 1521 /* Under mem pressure, it might be helpful to help udp_recvmsg() 1522 * having linear skbs : 1523 * - Reduce memory overhead and thus increase receive queue capacity 1524 * - Less cache line misses at copyout() time 1525 * - Less work at consume_skb() (less alien page frag freeing) 1526 */ 1527 if (rmem > (sk->sk_rcvbuf >> 1)) { 1528 skb_condense(skb); 1529 1530 busy = busylock_acquire(sk); 1531 } 1532 size = skb->truesize; 1533 udp_set_dev_scratch(skb); 1534 1535 /* we drop only if the receive buf is full and the receive 1536 * queue contains some other skb 1537 */ 1538 rmem = atomic_add_return(size, &sk->sk_rmem_alloc); 1539 if (rmem > (size + (unsigned int)sk->sk_rcvbuf)) 1540 goto uncharge_drop; 1541 1542 spin_lock(&list->lock); 1543 err = udp_rmem_schedule(sk, size); 1544 if (err) { 1545 spin_unlock(&list->lock); 1546 goto uncharge_drop; 1547 } 1548 1549 sk->sk_forward_alloc -= size; 1550 1551 /* no need to setup a destructor, we will explicitly release the 1552 * forward allocated memory on dequeue 1553 */ 1554 sock_skb_set_dropcount(sk, skb); 1555 1556 __skb_queue_tail(list, skb); 1557 spin_unlock(&list->lock); 1558 1559 if (!sock_flag(sk, SOCK_DEAD)) 1560 sk->sk_data_ready(sk); 1561 1562 busylock_release(busy); 1563 return 0; 1564 1565 uncharge_drop: 1566 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 1567 1568 drop: 1569 atomic_inc(&sk->sk_drops); 1570 busylock_release(busy); 1571 return err; 1572 } 1573 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb); 1574 1575 void udp_destruct_common(struct sock *sk) 1576 { 1577 /* reclaim completely the forward allocated memory */ 1578 struct udp_sock *up = udp_sk(sk); 1579 unsigned int total = 0; 1580 struct sk_buff *skb; 1581 1582 skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue); 1583 while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) { 1584 total += skb->truesize; 1585 kfree_skb(skb); 1586 } 1587 udp_rmem_release(sk, total, 0, true); 1588 } 1589 EXPORT_SYMBOL_GPL(udp_destruct_common); 1590 1591 static void udp_destruct_sock(struct sock *sk) 1592 { 1593 udp_destruct_common(sk); 1594 inet_sock_destruct(sk); 1595 } 1596 1597 int udp_init_sock(struct sock *sk) 1598 { 1599 udp_lib_init_sock(sk); 1600 sk->sk_destruct = udp_destruct_sock; 1601 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); 1602 return 0; 1603 } 1604 1605 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len) 1606 { 1607 if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) { 1608 bool slow = lock_sock_fast(sk); 1609 1610 sk_peek_offset_bwd(sk, len); 1611 unlock_sock_fast(sk, slow); 1612 } 1613 1614 if (!skb_unref(skb)) 1615 return; 1616 1617 /* In the more common cases we cleared the head states previously, 1618 * see __udp_queue_rcv_skb(). 1619 */ 1620 if (unlikely(udp_skb_has_head_state(skb))) 1621 skb_release_head_state(skb); 1622 __consume_stateless_skb(skb); 1623 } 1624 EXPORT_SYMBOL_GPL(skb_consume_udp); 1625 1626 static struct sk_buff *__first_packet_length(struct sock *sk, 1627 struct sk_buff_head *rcvq, 1628 int *total) 1629 { 1630 struct sk_buff *skb; 1631 1632 while ((skb = skb_peek(rcvq)) != NULL) { 1633 if (udp_lib_checksum_complete(skb)) { 1634 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, 1635 IS_UDPLITE(sk)); 1636 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, 1637 IS_UDPLITE(sk)); 1638 atomic_inc(&sk->sk_drops); 1639 __skb_unlink(skb, rcvq); 1640 *total += skb->truesize; 1641 kfree_skb(skb); 1642 } else { 1643 udp_skb_csum_unnecessary_set(skb); 1644 break; 1645 } 1646 } 1647 return skb; 1648 } 1649 1650 /** 1651 * first_packet_length - return length of first packet in receive queue 1652 * @sk: socket 1653 * 1654 * Drops all bad checksum frames, until a valid one is found. 1655 * Returns the length of found skb, or -1 if none is found. 1656 */ 1657 static int first_packet_length(struct sock *sk) 1658 { 1659 struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue; 1660 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1661 struct sk_buff *skb; 1662 int total = 0; 1663 int res; 1664 1665 spin_lock_bh(&rcvq->lock); 1666 skb = __first_packet_length(sk, rcvq, &total); 1667 if (!skb && !skb_queue_empty_lockless(sk_queue)) { 1668 spin_lock(&sk_queue->lock); 1669 skb_queue_splice_tail_init(sk_queue, rcvq); 1670 spin_unlock(&sk_queue->lock); 1671 1672 skb = __first_packet_length(sk, rcvq, &total); 1673 } 1674 res = skb ? skb->len : -1; 1675 if (total) 1676 udp_rmem_release(sk, total, 1, false); 1677 spin_unlock_bh(&rcvq->lock); 1678 return res; 1679 } 1680 1681 /* 1682 * IOCTL requests applicable to the UDP protocol 1683 */ 1684 1685 int udp_ioctl(struct sock *sk, int cmd, int *karg) 1686 { 1687 switch (cmd) { 1688 case SIOCOUTQ: 1689 { 1690 *karg = sk_wmem_alloc_get(sk); 1691 return 0; 1692 } 1693 1694 case SIOCINQ: 1695 { 1696 *karg = max_t(int, 0, first_packet_length(sk)); 1697 return 0; 1698 } 1699 1700 default: 1701 return -ENOIOCTLCMD; 1702 } 1703 1704 return 0; 1705 } 1706 EXPORT_SYMBOL(udp_ioctl); 1707 1708 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags, 1709 int *off, int *err) 1710 { 1711 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1712 struct sk_buff_head *queue; 1713 struct sk_buff *last; 1714 long timeo; 1715 int error; 1716 1717 queue = &udp_sk(sk)->reader_queue; 1718 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1719 do { 1720 struct sk_buff *skb; 1721 1722 error = sock_error(sk); 1723 if (error) 1724 break; 1725 1726 error = -EAGAIN; 1727 do { 1728 spin_lock_bh(&queue->lock); 1729 skb = __skb_try_recv_from_queue(sk, queue, flags, off, 1730 err, &last); 1731 if (skb) { 1732 if (!(flags & MSG_PEEK)) 1733 udp_skb_destructor(sk, skb); 1734 spin_unlock_bh(&queue->lock); 1735 return skb; 1736 } 1737 1738 if (skb_queue_empty_lockless(sk_queue)) { 1739 spin_unlock_bh(&queue->lock); 1740 goto busy_check; 1741 } 1742 1743 /* refill the reader queue and walk it again 1744 * keep both queues locked to avoid re-acquiring 1745 * the sk_receive_queue lock if fwd memory scheduling 1746 * is needed. 1747 */ 1748 spin_lock(&sk_queue->lock); 1749 skb_queue_splice_tail_init(sk_queue, queue); 1750 1751 skb = __skb_try_recv_from_queue(sk, queue, flags, off, 1752 err, &last); 1753 if (skb && !(flags & MSG_PEEK)) 1754 udp_skb_dtor_locked(sk, skb); 1755 spin_unlock(&sk_queue->lock); 1756 spin_unlock_bh(&queue->lock); 1757 if (skb) 1758 return skb; 1759 1760 busy_check: 1761 if (!sk_can_busy_loop(sk)) 1762 break; 1763 1764 sk_busy_loop(sk, flags & MSG_DONTWAIT); 1765 } while (!skb_queue_empty_lockless(sk_queue)); 1766 1767 /* sk_queue is empty, reader_queue may contain peeked packets */ 1768 } while (timeo && 1769 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue, 1770 &error, &timeo, 1771 (struct sk_buff *)sk_queue)); 1772 1773 *err = error; 1774 return NULL; 1775 } 1776 EXPORT_SYMBOL(__skb_recv_udp); 1777 1778 int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor) 1779 { 1780 struct sk_buff *skb; 1781 int err; 1782 1783 try_again: 1784 skb = skb_recv_udp(sk, MSG_DONTWAIT, &err); 1785 if (!skb) 1786 return err; 1787 1788 if (udp_lib_checksum_complete(skb)) { 1789 int is_udplite = IS_UDPLITE(sk); 1790 struct net *net = sock_net(sk); 1791 1792 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, is_udplite); 1793 __UDP_INC_STATS(net, UDP_MIB_INERRORS, is_udplite); 1794 atomic_inc(&sk->sk_drops); 1795 kfree_skb(skb); 1796 goto try_again; 1797 } 1798 1799 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk)); 1800 return recv_actor(sk, skb); 1801 } 1802 EXPORT_SYMBOL(udp_read_skb); 1803 1804 /* 1805 * This should be easy, if there is something there we 1806 * return it, otherwise we block. 1807 */ 1808 1809 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, 1810 int *addr_len) 1811 { 1812 struct inet_sock *inet = inet_sk(sk); 1813 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name); 1814 struct sk_buff *skb; 1815 unsigned int ulen, copied; 1816 int off, err, peeking = flags & MSG_PEEK; 1817 int is_udplite = IS_UDPLITE(sk); 1818 bool checksum_valid = false; 1819 1820 if (flags & MSG_ERRQUEUE) 1821 return ip_recv_error(sk, msg, len, addr_len); 1822 1823 try_again: 1824 off = sk_peek_offset(sk, flags); 1825 skb = __skb_recv_udp(sk, flags, &off, &err); 1826 if (!skb) 1827 return err; 1828 1829 ulen = udp_skb_len(skb); 1830 copied = len; 1831 if (copied > ulen - off) 1832 copied = ulen - off; 1833 else if (copied < ulen) 1834 msg->msg_flags |= MSG_TRUNC; 1835 1836 /* 1837 * If checksum is needed at all, try to do it while copying the 1838 * data. If the data is truncated, or if we only want a partial 1839 * coverage checksum (UDP-Lite), do it before the copy. 1840 */ 1841 1842 if (copied < ulen || peeking || 1843 (is_udplite && UDP_SKB_CB(skb)->partial_cov)) { 1844 checksum_valid = udp_skb_csum_unnecessary(skb) || 1845 !__udp_lib_checksum_complete(skb); 1846 if (!checksum_valid) 1847 goto csum_copy_err; 1848 } 1849 1850 if (checksum_valid || udp_skb_csum_unnecessary(skb)) { 1851 if (udp_skb_is_linear(skb)) 1852 err = copy_linear_skb(skb, copied, off, &msg->msg_iter); 1853 else 1854 err = skb_copy_datagram_msg(skb, off, msg, copied); 1855 } else { 1856 err = skb_copy_and_csum_datagram_msg(skb, off, msg); 1857 1858 if (err == -EINVAL) 1859 goto csum_copy_err; 1860 } 1861 1862 if (unlikely(err)) { 1863 if (!peeking) { 1864 atomic_inc(&sk->sk_drops); 1865 UDP_INC_STATS(sock_net(sk), 1866 UDP_MIB_INERRORS, is_udplite); 1867 } 1868 kfree_skb(skb); 1869 return err; 1870 } 1871 1872 if (!peeking) 1873 UDP_INC_STATS(sock_net(sk), 1874 UDP_MIB_INDATAGRAMS, is_udplite); 1875 1876 sock_recv_cmsgs(msg, sk, skb); 1877 1878 /* Copy the address. */ 1879 if (sin) { 1880 sin->sin_family = AF_INET; 1881 sin->sin_port = udp_hdr(skb)->source; 1882 sin->sin_addr.s_addr = ip_hdr(skb)->saddr; 1883 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 1884 *addr_len = sizeof(*sin); 1885 1886 BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk, 1887 (struct sockaddr *)sin); 1888 } 1889 1890 if (udp_sk(sk)->gro_enabled) 1891 udp_cmsg_recv(msg, sk, skb); 1892 1893 if (inet->cmsg_flags) 1894 ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off); 1895 1896 err = copied; 1897 if (flags & MSG_TRUNC) 1898 err = ulen; 1899 1900 skb_consume_udp(sk, skb, peeking ? -err : err); 1901 return err; 1902 1903 csum_copy_err: 1904 if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags, 1905 udp_skb_destructor)) { 1906 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 1907 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1908 } 1909 kfree_skb(skb); 1910 1911 /* starting over for a new packet, but check if we need to yield */ 1912 cond_resched(); 1913 msg->msg_flags &= ~MSG_TRUNC; 1914 goto try_again; 1915 } 1916 1917 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 1918 { 1919 /* This check is replicated from __ip4_datagram_connect() and 1920 * intended to prevent BPF program called below from accessing bytes 1921 * that are out of the bound specified by user in addr_len. 1922 */ 1923 if (addr_len < sizeof(struct sockaddr_in)) 1924 return -EINVAL; 1925 1926 return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr); 1927 } 1928 EXPORT_SYMBOL(udp_pre_connect); 1929 1930 int __udp_disconnect(struct sock *sk, int flags) 1931 { 1932 struct inet_sock *inet = inet_sk(sk); 1933 /* 1934 * 1003.1g - break association. 1935 */ 1936 1937 sk->sk_state = TCP_CLOSE; 1938 inet->inet_daddr = 0; 1939 inet->inet_dport = 0; 1940 sock_rps_reset_rxhash(sk); 1941 sk->sk_bound_dev_if = 0; 1942 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) { 1943 inet_reset_saddr(sk); 1944 if (sk->sk_prot->rehash && 1945 (sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 1946 sk->sk_prot->rehash(sk); 1947 } 1948 1949 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) { 1950 sk->sk_prot->unhash(sk); 1951 inet->inet_sport = 0; 1952 } 1953 sk_dst_reset(sk); 1954 return 0; 1955 } 1956 EXPORT_SYMBOL(__udp_disconnect); 1957 1958 int udp_disconnect(struct sock *sk, int flags) 1959 { 1960 lock_sock(sk); 1961 __udp_disconnect(sk, flags); 1962 release_sock(sk); 1963 return 0; 1964 } 1965 EXPORT_SYMBOL(udp_disconnect); 1966 1967 void udp_lib_unhash(struct sock *sk) 1968 { 1969 if (sk_hashed(sk)) { 1970 struct udp_table *udptable = udp_get_table_prot(sk); 1971 struct udp_hslot *hslot, *hslot2; 1972 1973 hslot = udp_hashslot(udptable, sock_net(sk), 1974 udp_sk(sk)->udp_port_hash); 1975 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1976 1977 spin_lock_bh(&hslot->lock); 1978 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1979 reuseport_detach_sock(sk); 1980 if (sk_del_node_init_rcu(sk)) { 1981 hslot->count--; 1982 inet_sk(sk)->inet_num = 0; 1983 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 1984 1985 spin_lock(&hslot2->lock); 1986 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 1987 hslot2->count--; 1988 spin_unlock(&hslot2->lock); 1989 } 1990 spin_unlock_bh(&hslot->lock); 1991 } 1992 } 1993 EXPORT_SYMBOL(udp_lib_unhash); 1994 1995 /* 1996 * inet_rcv_saddr was changed, we must rehash secondary hash 1997 */ 1998 void udp_lib_rehash(struct sock *sk, u16 newhash) 1999 { 2000 if (sk_hashed(sk)) { 2001 struct udp_table *udptable = udp_get_table_prot(sk); 2002 struct udp_hslot *hslot, *hslot2, *nhslot2; 2003 2004 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 2005 nhslot2 = udp_hashslot2(udptable, newhash); 2006 udp_sk(sk)->udp_portaddr_hash = newhash; 2007 2008 if (hslot2 != nhslot2 || 2009 rcu_access_pointer(sk->sk_reuseport_cb)) { 2010 hslot = udp_hashslot(udptable, sock_net(sk), 2011 udp_sk(sk)->udp_port_hash); 2012 /* we must lock primary chain too */ 2013 spin_lock_bh(&hslot->lock); 2014 if (rcu_access_pointer(sk->sk_reuseport_cb)) 2015 reuseport_detach_sock(sk); 2016 2017 if (hslot2 != nhslot2) { 2018 spin_lock(&hslot2->lock); 2019 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 2020 hslot2->count--; 2021 spin_unlock(&hslot2->lock); 2022 2023 spin_lock(&nhslot2->lock); 2024 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 2025 &nhslot2->head); 2026 nhslot2->count++; 2027 spin_unlock(&nhslot2->lock); 2028 } 2029 2030 spin_unlock_bh(&hslot->lock); 2031 } 2032 } 2033 } 2034 EXPORT_SYMBOL(udp_lib_rehash); 2035 2036 void udp_v4_rehash(struct sock *sk) 2037 { 2038 u16 new_hash = ipv4_portaddr_hash(sock_net(sk), 2039 inet_sk(sk)->inet_rcv_saddr, 2040 inet_sk(sk)->inet_num); 2041 udp_lib_rehash(sk, new_hash); 2042 } 2043 2044 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 2045 { 2046 int rc; 2047 2048 if (inet_sk(sk)->inet_daddr) { 2049 sock_rps_save_rxhash(sk, skb); 2050 sk_mark_napi_id(sk, skb); 2051 sk_incoming_cpu_update(sk); 2052 } else { 2053 sk_mark_napi_id_once(sk, skb); 2054 } 2055 2056 rc = __udp_enqueue_schedule_skb(sk, skb); 2057 if (rc < 0) { 2058 int is_udplite = IS_UDPLITE(sk); 2059 int drop_reason; 2060 2061 /* Note that an ENOMEM error is charged twice */ 2062 if (rc == -ENOMEM) { 2063 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS, 2064 is_udplite); 2065 drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF; 2066 } else { 2067 UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS, 2068 is_udplite); 2069 drop_reason = SKB_DROP_REASON_PROTO_MEM; 2070 } 2071 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 2072 kfree_skb_reason(skb, drop_reason); 2073 trace_udp_fail_queue_rcv_skb(rc, sk); 2074 return -1; 2075 } 2076 2077 return 0; 2078 } 2079 2080 /* returns: 2081 * -1: error 2082 * 0: success 2083 * >0: "udp encap" protocol resubmission 2084 * 2085 * Note that in the success and error cases, the skb is assumed to 2086 * have either been requeued or freed. 2087 */ 2088 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb) 2089 { 2090 int drop_reason = SKB_DROP_REASON_NOT_SPECIFIED; 2091 struct udp_sock *up = udp_sk(sk); 2092 int is_udplite = IS_UDPLITE(sk); 2093 2094 /* 2095 * Charge it to the socket, dropping if the queue is full. 2096 */ 2097 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) { 2098 drop_reason = SKB_DROP_REASON_XFRM_POLICY; 2099 goto drop; 2100 } 2101 nf_reset_ct(skb); 2102 2103 if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) { 2104 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb); 2105 2106 /* 2107 * This is an encapsulation socket so pass the skb to 2108 * the socket's udp_encap_rcv() hook. Otherwise, just 2109 * fall through and pass this up the UDP socket. 2110 * up->encap_rcv() returns the following value: 2111 * =0 if skb was successfully passed to the encap 2112 * handler or was discarded by it. 2113 * >0 if skb should be passed on to UDP. 2114 * <0 if skb should be resubmitted as proto -N 2115 */ 2116 2117 /* if we're overly short, let UDP handle it */ 2118 encap_rcv = READ_ONCE(up->encap_rcv); 2119 if (encap_rcv) { 2120 int ret; 2121 2122 /* Verify checksum before giving to encap */ 2123 if (udp_lib_checksum_complete(skb)) 2124 goto csum_error; 2125 2126 ret = encap_rcv(sk, skb); 2127 if (ret <= 0) { 2128 __UDP_INC_STATS(sock_net(sk), 2129 UDP_MIB_INDATAGRAMS, 2130 is_udplite); 2131 return -ret; 2132 } 2133 } 2134 2135 /* FALLTHROUGH -- it's a UDP Packet */ 2136 } 2137 2138 /* 2139 * UDP-Lite specific tests, ignored on UDP sockets 2140 */ 2141 if ((up->pcflag & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) { 2142 2143 /* 2144 * MIB statistics other than incrementing the error count are 2145 * disabled for the following two types of errors: these depend 2146 * on the application settings, not on the functioning of the 2147 * protocol stack as such. 2148 * 2149 * RFC 3828 here recommends (sec 3.3): "There should also be a 2150 * way ... to ... at least let the receiving application block 2151 * delivery of packets with coverage values less than a value 2152 * provided by the application." 2153 */ 2154 if (up->pcrlen == 0) { /* full coverage was set */ 2155 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n", 2156 UDP_SKB_CB(skb)->cscov, skb->len); 2157 goto drop; 2158 } 2159 /* The next case involves violating the min. coverage requested 2160 * by the receiver. This is subtle: if receiver wants x and x is 2161 * greater than the buffersize/MTU then receiver will complain 2162 * that it wants x while sender emits packets of smaller size y. 2163 * Therefore the above ...()->partial_cov statement is essential. 2164 */ 2165 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) { 2166 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n", 2167 UDP_SKB_CB(skb)->cscov, up->pcrlen); 2168 goto drop; 2169 } 2170 } 2171 2172 prefetch(&sk->sk_rmem_alloc); 2173 if (rcu_access_pointer(sk->sk_filter) && 2174 udp_lib_checksum_complete(skb)) 2175 goto csum_error; 2176 2177 if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) { 2178 drop_reason = SKB_DROP_REASON_SOCKET_FILTER; 2179 goto drop; 2180 } 2181 2182 udp_csum_pull_header(skb); 2183 2184 ipv4_pktinfo_prepare(sk, skb); 2185 return __udp_queue_rcv_skb(sk, skb); 2186 2187 csum_error: 2188 drop_reason = SKB_DROP_REASON_UDP_CSUM; 2189 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 2190 drop: 2191 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 2192 atomic_inc(&sk->sk_drops); 2193 kfree_skb_reason(skb, drop_reason); 2194 return -1; 2195 } 2196 2197 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 2198 { 2199 struct sk_buff *next, *segs; 2200 int ret; 2201 2202 if (likely(!udp_unexpected_gso(sk, skb))) 2203 return udp_queue_rcv_one_skb(sk, skb); 2204 2205 BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET); 2206 __skb_push(skb, -skb_mac_offset(skb)); 2207 segs = udp_rcv_segment(sk, skb, true); 2208 skb_list_walk_safe(segs, skb, next) { 2209 __skb_pull(skb, skb_transport_offset(skb)); 2210 2211 udp_post_segment_fix_csum(skb); 2212 ret = udp_queue_rcv_one_skb(sk, skb); 2213 if (ret > 0) 2214 ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret); 2215 } 2216 return 0; 2217 } 2218 2219 /* For TCP sockets, sk_rx_dst is protected by socket lock 2220 * For UDP, we use xchg() to guard against concurrent changes. 2221 */ 2222 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst) 2223 { 2224 struct dst_entry *old; 2225 2226 if (dst_hold_safe(dst)) { 2227 old = xchg((__force struct dst_entry **)&sk->sk_rx_dst, dst); 2228 dst_release(old); 2229 return old != dst; 2230 } 2231 return false; 2232 } 2233 EXPORT_SYMBOL(udp_sk_rx_dst_set); 2234 2235 /* 2236 * Multicasts and broadcasts go to each listener. 2237 * 2238 * Note: called only from the BH handler context. 2239 */ 2240 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb, 2241 struct udphdr *uh, 2242 __be32 saddr, __be32 daddr, 2243 struct udp_table *udptable, 2244 int proto) 2245 { 2246 struct sock *sk, *first = NULL; 2247 unsigned short hnum = ntohs(uh->dest); 2248 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum); 2249 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10); 2250 unsigned int offset = offsetof(typeof(*sk), sk_node); 2251 int dif = skb->dev->ifindex; 2252 int sdif = inet_sdif(skb); 2253 struct hlist_node *node; 2254 struct sk_buff *nskb; 2255 2256 if (use_hash2) { 2257 hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) & 2258 udptable->mask; 2259 hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask; 2260 start_lookup: 2261 hslot = &udptable->hash2[hash2]; 2262 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node); 2263 } 2264 2265 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) { 2266 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr, 2267 uh->source, saddr, dif, sdif, hnum)) 2268 continue; 2269 2270 if (!first) { 2271 first = sk; 2272 continue; 2273 } 2274 nskb = skb_clone(skb, GFP_ATOMIC); 2275 2276 if (unlikely(!nskb)) { 2277 atomic_inc(&sk->sk_drops); 2278 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS, 2279 IS_UDPLITE(sk)); 2280 __UDP_INC_STATS(net, UDP_MIB_INERRORS, 2281 IS_UDPLITE(sk)); 2282 continue; 2283 } 2284 if (udp_queue_rcv_skb(sk, nskb) > 0) 2285 consume_skb(nskb); 2286 } 2287 2288 /* Also lookup *:port if we are using hash2 and haven't done so yet. */ 2289 if (use_hash2 && hash2 != hash2_any) { 2290 hash2 = hash2_any; 2291 goto start_lookup; 2292 } 2293 2294 if (first) { 2295 if (udp_queue_rcv_skb(first, skb) > 0) 2296 consume_skb(skb); 2297 } else { 2298 kfree_skb(skb); 2299 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI, 2300 proto == IPPROTO_UDPLITE); 2301 } 2302 return 0; 2303 } 2304 2305 /* Initialize UDP checksum. If exited with zero value (success), 2306 * CHECKSUM_UNNECESSARY means, that no more checks are required. 2307 * Otherwise, csum completion requires checksumming packet body, 2308 * including udp header and folding it to skb->csum. 2309 */ 2310 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh, 2311 int proto) 2312 { 2313 int err; 2314 2315 UDP_SKB_CB(skb)->partial_cov = 0; 2316 UDP_SKB_CB(skb)->cscov = skb->len; 2317 2318 if (proto == IPPROTO_UDPLITE) { 2319 err = udplite_checksum_init(skb, uh); 2320 if (err) 2321 return err; 2322 2323 if (UDP_SKB_CB(skb)->partial_cov) { 2324 skb->csum = inet_compute_pseudo(skb, proto); 2325 return 0; 2326 } 2327 } 2328 2329 /* Note, we are only interested in != 0 or == 0, thus the 2330 * force to int. 2331 */ 2332 err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check, 2333 inet_compute_pseudo); 2334 if (err) 2335 return err; 2336 2337 if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) { 2338 /* If SW calculated the value, we know it's bad */ 2339 if (skb->csum_complete_sw) 2340 return 1; 2341 2342 /* HW says the value is bad. Let's validate that. 2343 * skb->csum is no longer the full packet checksum, 2344 * so don't treat it as such. 2345 */ 2346 skb_checksum_complete_unset(skb); 2347 } 2348 2349 return 0; 2350 } 2351 2352 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and 2353 * return code conversion for ip layer consumption 2354 */ 2355 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb, 2356 struct udphdr *uh) 2357 { 2358 int ret; 2359 2360 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk)) 2361 skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo); 2362 2363 ret = udp_queue_rcv_skb(sk, skb); 2364 2365 /* a return value > 0 means to resubmit the input, but 2366 * it wants the return to be -protocol, or 0 2367 */ 2368 if (ret > 0) 2369 return -ret; 2370 return 0; 2371 } 2372 2373 /* 2374 * All we need to do is get the socket, and then do a checksum. 2375 */ 2376 2377 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable, 2378 int proto) 2379 { 2380 struct sock *sk; 2381 struct udphdr *uh; 2382 unsigned short ulen; 2383 struct rtable *rt = skb_rtable(skb); 2384 __be32 saddr, daddr; 2385 struct net *net = dev_net(skb->dev); 2386 bool refcounted; 2387 int drop_reason; 2388 2389 drop_reason = SKB_DROP_REASON_NOT_SPECIFIED; 2390 2391 /* 2392 * Validate the packet. 2393 */ 2394 if (!pskb_may_pull(skb, sizeof(struct udphdr))) 2395 goto drop; /* No space for header. */ 2396 2397 uh = udp_hdr(skb); 2398 ulen = ntohs(uh->len); 2399 saddr = ip_hdr(skb)->saddr; 2400 daddr = ip_hdr(skb)->daddr; 2401 2402 if (ulen > skb->len) 2403 goto short_packet; 2404 2405 if (proto == IPPROTO_UDP) { 2406 /* UDP validates ulen. */ 2407 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen)) 2408 goto short_packet; 2409 uh = udp_hdr(skb); 2410 } 2411 2412 if (udp4_csum_init(skb, uh, proto)) 2413 goto csum_error; 2414 2415 sk = skb_steal_sock(skb, &refcounted); 2416 if (sk) { 2417 struct dst_entry *dst = skb_dst(skb); 2418 int ret; 2419 2420 if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst)) 2421 udp_sk_rx_dst_set(sk, dst); 2422 2423 ret = udp_unicast_rcv_skb(sk, skb, uh); 2424 if (refcounted) 2425 sock_put(sk); 2426 return ret; 2427 } 2428 2429 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST)) 2430 return __udp4_lib_mcast_deliver(net, skb, uh, 2431 saddr, daddr, udptable, proto); 2432 2433 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable); 2434 if (sk) 2435 return udp_unicast_rcv_skb(sk, skb, uh); 2436 2437 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 2438 goto drop; 2439 nf_reset_ct(skb); 2440 2441 /* No socket. Drop packet silently, if checksum is wrong */ 2442 if (udp_lib_checksum_complete(skb)) 2443 goto csum_error; 2444 2445 drop_reason = SKB_DROP_REASON_NO_SOCKET; 2446 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE); 2447 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0); 2448 2449 /* 2450 * Hmm. We got an UDP packet to a port to which we 2451 * don't wanna listen. Ignore it. 2452 */ 2453 kfree_skb_reason(skb, drop_reason); 2454 return 0; 2455 2456 short_packet: 2457 drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL; 2458 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n", 2459 proto == IPPROTO_UDPLITE ? "Lite" : "", 2460 &saddr, ntohs(uh->source), 2461 ulen, skb->len, 2462 &daddr, ntohs(uh->dest)); 2463 goto drop; 2464 2465 csum_error: 2466 /* 2467 * RFC1122: OK. Discards the bad packet silently (as far as 2468 * the network is concerned, anyway) as per 4.1.3.4 (MUST). 2469 */ 2470 drop_reason = SKB_DROP_REASON_UDP_CSUM; 2471 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n", 2472 proto == IPPROTO_UDPLITE ? "Lite" : "", 2473 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest), 2474 ulen); 2475 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE); 2476 drop: 2477 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE); 2478 kfree_skb_reason(skb, drop_reason); 2479 return 0; 2480 } 2481 2482 /* We can only early demux multicast if there is a single matching socket. 2483 * If more than one socket found returns NULL 2484 */ 2485 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net, 2486 __be16 loc_port, __be32 loc_addr, 2487 __be16 rmt_port, __be32 rmt_addr, 2488 int dif, int sdif) 2489 { 2490 struct udp_table *udptable = net->ipv4.udp_table; 2491 unsigned short hnum = ntohs(loc_port); 2492 struct sock *sk, *result; 2493 struct udp_hslot *hslot; 2494 unsigned int slot; 2495 2496 slot = udp_hashfn(net, hnum, udptable->mask); 2497 hslot = &udptable->hash[slot]; 2498 2499 /* Do not bother scanning a too big list */ 2500 if (hslot->count > 10) 2501 return NULL; 2502 2503 result = NULL; 2504 sk_for_each_rcu(sk, &hslot->head) { 2505 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr, 2506 rmt_port, rmt_addr, dif, sdif, hnum)) { 2507 if (result) 2508 return NULL; 2509 result = sk; 2510 } 2511 } 2512 2513 return result; 2514 } 2515 2516 /* For unicast we should only early demux connected sockets or we can 2517 * break forwarding setups. The chains here can be long so only check 2518 * if the first socket is an exact match and if not move on. 2519 */ 2520 static struct sock *__udp4_lib_demux_lookup(struct net *net, 2521 __be16 loc_port, __be32 loc_addr, 2522 __be16 rmt_port, __be32 rmt_addr, 2523 int dif, int sdif) 2524 { 2525 struct udp_table *udptable = net->ipv4.udp_table; 2526 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr); 2527 unsigned short hnum = ntohs(loc_port); 2528 unsigned int hash2, slot2; 2529 struct udp_hslot *hslot2; 2530 __portpair ports; 2531 struct sock *sk; 2532 2533 hash2 = ipv4_portaddr_hash(net, loc_addr, hnum); 2534 slot2 = hash2 & udptable->mask; 2535 hslot2 = &udptable->hash2[slot2]; 2536 ports = INET_COMBINED_PORTS(rmt_port, hnum); 2537 2538 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 2539 if (inet_match(net, sk, acookie, ports, dif, sdif)) 2540 return sk; 2541 /* Only check first socket in chain */ 2542 break; 2543 } 2544 return NULL; 2545 } 2546 2547 int udp_v4_early_demux(struct sk_buff *skb) 2548 { 2549 struct net *net = dev_net(skb->dev); 2550 struct in_device *in_dev = NULL; 2551 const struct iphdr *iph; 2552 const struct udphdr *uh; 2553 struct sock *sk = NULL; 2554 struct dst_entry *dst; 2555 int dif = skb->dev->ifindex; 2556 int sdif = inet_sdif(skb); 2557 int ours; 2558 2559 /* validate the packet */ 2560 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr))) 2561 return 0; 2562 2563 iph = ip_hdr(skb); 2564 uh = udp_hdr(skb); 2565 2566 if (skb->pkt_type == PACKET_MULTICAST) { 2567 in_dev = __in_dev_get_rcu(skb->dev); 2568 2569 if (!in_dev) 2570 return 0; 2571 2572 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr, 2573 iph->protocol); 2574 if (!ours) 2575 return 0; 2576 2577 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr, 2578 uh->source, iph->saddr, 2579 dif, sdif); 2580 } else if (skb->pkt_type == PACKET_HOST) { 2581 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr, 2582 uh->source, iph->saddr, dif, sdif); 2583 } 2584 2585 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 2586 return 0; 2587 2588 skb->sk = sk; 2589 skb->destructor = sock_efree; 2590 dst = rcu_dereference(sk->sk_rx_dst); 2591 2592 if (dst) 2593 dst = dst_check(dst, 0); 2594 if (dst) { 2595 u32 itag = 0; 2596 2597 /* set noref for now. 2598 * any place which wants to hold dst has to call 2599 * dst_hold_safe() 2600 */ 2601 skb_dst_set_noref(skb, dst); 2602 2603 /* for unconnected multicast sockets we need to validate 2604 * the source on each packet 2605 */ 2606 if (!inet_sk(sk)->inet_daddr && in_dev) 2607 return ip_mc_validate_source(skb, iph->daddr, 2608 iph->saddr, 2609 iph->tos & IPTOS_RT_MASK, 2610 skb->dev, in_dev, &itag); 2611 } 2612 return 0; 2613 } 2614 2615 int udp_rcv(struct sk_buff *skb) 2616 { 2617 return __udp4_lib_rcv(skb, dev_net(skb->dev)->ipv4.udp_table, IPPROTO_UDP); 2618 } 2619 2620 void udp_destroy_sock(struct sock *sk) 2621 { 2622 struct udp_sock *up = udp_sk(sk); 2623 bool slow = lock_sock_fast(sk); 2624 2625 /* protects from races with udp_abort() */ 2626 sock_set_flag(sk, SOCK_DEAD); 2627 udp_flush_pending_frames(sk); 2628 unlock_sock_fast(sk, slow); 2629 if (static_branch_unlikely(&udp_encap_needed_key)) { 2630 if (up->encap_type) { 2631 void (*encap_destroy)(struct sock *sk); 2632 encap_destroy = READ_ONCE(up->encap_destroy); 2633 if (encap_destroy) 2634 encap_destroy(sk); 2635 } 2636 if (up->encap_enabled) 2637 static_branch_dec(&udp_encap_needed_key); 2638 } 2639 } 2640 2641 /* 2642 * Socket option code for UDP 2643 */ 2644 int udp_lib_setsockopt(struct sock *sk, int level, int optname, 2645 sockptr_t optval, unsigned int optlen, 2646 int (*push_pending_frames)(struct sock *)) 2647 { 2648 struct udp_sock *up = udp_sk(sk); 2649 int val, valbool; 2650 int err = 0; 2651 int is_udplite = IS_UDPLITE(sk); 2652 2653 if (level == SOL_SOCKET) { 2654 err = sk_setsockopt(sk, level, optname, optval, optlen); 2655 2656 if (optname == SO_RCVBUF || optname == SO_RCVBUFFORCE) { 2657 sockopt_lock_sock(sk); 2658 /* paired with READ_ONCE in udp_rmem_release() */ 2659 WRITE_ONCE(up->forward_threshold, sk->sk_rcvbuf >> 2); 2660 sockopt_release_sock(sk); 2661 } 2662 return err; 2663 } 2664 2665 if (optlen < sizeof(int)) 2666 return -EINVAL; 2667 2668 if (copy_from_sockptr(&val, optval, sizeof(val))) 2669 return -EFAULT; 2670 2671 valbool = val ? 1 : 0; 2672 2673 switch (optname) { 2674 case UDP_CORK: 2675 if (val != 0) { 2676 WRITE_ONCE(up->corkflag, 1); 2677 } else { 2678 WRITE_ONCE(up->corkflag, 0); 2679 lock_sock(sk); 2680 push_pending_frames(sk); 2681 release_sock(sk); 2682 } 2683 break; 2684 2685 case UDP_ENCAP: 2686 switch (val) { 2687 case 0: 2688 #ifdef CONFIG_XFRM 2689 case UDP_ENCAP_ESPINUDP: 2690 case UDP_ENCAP_ESPINUDP_NON_IKE: 2691 #if IS_ENABLED(CONFIG_IPV6) 2692 if (sk->sk_family == AF_INET6) 2693 up->encap_rcv = ipv6_stub->xfrm6_udp_encap_rcv; 2694 else 2695 #endif 2696 up->encap_rcv = xfrm4_udp_encap_rcv; 2697 #endif 2698 fallthrough; 2699 case UDP_ENCAP_L2TPINUDP: 2700 up->encap_type = val; 2701 lock_sock(sk); 2702 udp_tunnel_encap_enable(sk->sk_socket); 2703 release_sock(sk); 2704 break; 2705 default: 2706 err = -ENOPROTOOPT; 2707 break; 2708 } 2709 break; 2710 2711 case UDP_NO_CHECK6_TX: 2712 up->no_check6_tx = valbool; 2713 break; 2714 2715 case UDP_NO_CHECK6_RX: 2716 up->no_check6_rx = valbool; 2717 break; 2718 2719 case UDP_SEGMENT: 2720 if (val < 0 || val > USHRT_MAX) 2721 return -EINVAL; 2722 WRITE_ONCE(up->gso_size, val); 2723 break; 2724 2725 case UDP_GRO: 2726 lock_sock(sk); 2727 2728 /* when enabling GRO, accept the related GSO packet type */ 2729 if (valbool) 2730 udp_tunnel_encap_enable(sk->sk_socket); 2731 up->gro_enabled = valbool; 2732 up->accept_udp_l4 = valbool; 2733 release_sock(sk); 2734 break; 2735 2736 /* 2737 * UDP-Lite's partial checksum coverage (RFC 3828). 2738 */ 2739 /* The sender sets actual checksum coverage length via this option. 2740 * The case coverage > packet length is handled by send module. */ 2741 case UDPLITE_SEND_CSCOV: 2742 if (!is_udplite) /* Disable the option on UDP sockets */ 2743 return -ENOPROTOOPT; 2744 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */ 2745 val = 8; 2746 else if (val > USHRT_MAX) 2747 val = USHRT_MAX; 2748 up->pcslen = val; 2749 up->pcflag |= UDPLITE_SEND_CC; 2750 break; 2751 2752 /* The receiver specifies a minimum checksum coverage value. To make 2753 * sense, this should be set to at least 8 (as done below). If zero is 2754 * used, this again means full checksum coverage. */ 2755 case UDPLITE_RECV_CSCOV: 2756 if (!is_udplite) /* Disable the option on UDP sockets */ 2757 return -ENOPROTOOPT; 2758 if (val != 0 && val < 8) /* Avoid silly minimal values. */ 2759 val = 8; 2760 else if (val > USHRT_MAX) 2761 val = USHRT_MAX; 2762 up->pcrlen = val; 2763 up->pcflag |= UDPLITE_RECV_CC; 2764 break; 2765 2766 default: 2767 err = -ENOPROTOOPT; 2768 break; 2769 } 2770 2771 return err; 2772 } 2773 EXPORT_SYMBOL(udp_lib_setsockopt); 2774 2775 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 2776 unsigned int optlen) 2777 { 2778 if (level == SOL_UDP || level == SOL_UDPLITE || level == SOL_SOCKET) 2779 return udp_lib_setsockopt(sk, level, optname, 2780 optval, optlen, 2781 udp_push_pending_frames); 2782 return ip_setsockopt(sk, level, optname, optval, optlen); 2783 } 2784 2785 int udp_lib_getsockopt(struct sock *sk, int level, int optname, 2786 char __user *optval, int __user *optlen) 2787 { 2788 struct udp_sock *up = udp_sk(sk); 2789 int val, len; 2790 2791 if (get_user(len, optlen)) 2792 return -EFAULT; 2793 2794 len = min_t(unsigned int, len, sizeof(int)); 2795 2796 if (len < 0) 2797 return -EINVAL; 2798 2799 switch (optname) { 2800 case UDP_CORK: 2801 val = READ_ONCE(up->corkflag); 2802 break; 2803 2804 case UDP_ENCAP: 2805 val = up->encap_type; 2806 break; 2807 2808 case UDP_NO_CHECK6_TX: 2809 val = up->no_check6_tx; 2810 break; 2811 2812 case UDP_NO_CHECK6_RX: 2813 val = up->no_check6_rx; 2814 break; 2815 2816 case UDP_SEGMENT: 2817 val = READ_ONCE(up->gso_size); 2818 break; 2819 2820 case UDP_GRO: 2821 val = up->gro_enabled; 2822 break; 2823 2824 /* The following two cannot be changed on UDP sockets, the return is 2825 * always 0 (which corresponds to the full checksum coverage of UDP). */ 2826 case UDPLITE_SEND_CSCOV: 2827 val = up->pcslen; 2828 break; 2829 2830 case UDPLITE_RECV_CSCOV: 2831 val = up->pcrlen; 2832 break; 2833 2834 default: 2835 return -ENOPROTOOPT; 2836 } 2837 2838 if (put_user(len, optlen)) 2839 return -EFAULT; 2840 if (copy_to_user(optval, &val, len)) 2841 return -EFAULT; 2842 return 0; 2843 } 2844 EXPORT_SYMBOL(udp_lib_getsockopt); 2845 2846 int udp_getsockopt(struct sock *sk, int level, int optname, 2847 char __user *optval, int __user *optlen) 2848 { 2849 if (level == SOL_UDP || level == SOL_UDPLITE) 2850 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 2851 return ip_getsockopt(sk, level, optname, optval, optlen); 2852 } 2853 2854 /** 2855 * udp_poll - wait for a UDP event. 2856 * @file: - file struct 2857 * @sock: - socket 2858 * @wait: - poll table 2859 * 2860 * This is same as datagram poll, except for the special case of 2861 * blocking sockets. If application is using a blocking fd 2862 * and a packet with checksum error is in the queue; 2863 * then it could get return from select indicating data available 2864 * but then block when reading it. Add special case code 2865 * to work around these arguably broken applications. 2866 */ 2867 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait) 2868 { 2869 __poll_t mask = datagram_poll(file, sock, wait); 2870 struct sock *sk = sock->sk; 2871 2872 if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue)) 2873 mask |= EPOLLIN | EPOLLRDNORM; 2874 2875 /* Check for false positives due to checksum errors */ 2876 if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) && 2877 !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1) 2878 mask &= ~(EPOLLIN | EPOLLRDNORM); 2879 2880 /* psock ingress_msg queue should not contain any bad checksum frames */ 2881 if (sk_is_readable(sk)) 2882 mask |= EPOLLIN | EPOLLRDNORM; 2883 return mask; 2884 2885 } 2886 EXPORT_SYMBOL(udp_poll); 2887 2888 int udp_abort(struct sock *sk, int err) 2889 { 2890 if (!has_current_bpf_ctx()) 2891 lock_sock(sk); 2892 2893 /* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing 2894 * with close() 2895 */ 2896 if (sock_flag(sk, SOCK_DEAD)) 2897 goto out; 2898 2899 sk->sk_err = err; 2900 sk_error_report(sk); 2901 __udp_disconnect(sk, 0); 2902 2903 out: 2904 if (!has_current_bpf_ctx()) 2905 release_sock(sk); 2906 2907 return 0; 2908 } 2909 EXPORT_SYMBOL_GPL(udp_abort); 2910 2911 struct proto udp_prot = { 2912 .name = "UDP", 2913 .owner = THIS_MODULE, 2914 .close = udp_lib_close, 2915 .pre_connect = udp_pre_connect, 2916 .connect = ip4_datagram_connect, 2917 .disconnect = udp_disconnect, 2918 .ioctl = udp_ioctl, 2919 .init = udp_init_sock, 2920 .destroy = udp_destroy_sock, 2921 .setsockopt = udp_setsockopt, 2922 .getsockopt = udp_getsockopt, 2923 .sendmsg = udp_sendmsg, 2924 .recvmsg = udp_recvmsg, 2925 .splice_eof = udp_splice_eof, 2926 .release_cb = ip4_datagram_release_cb, 2927 .hash = udp_lib_hash, 2928 .unhash = udp_lib_unhash, 2929 .rehash = udp_v4_rehash, 2930 .get_port = udp_v4_get_port, 2931 .put_port = udp_lib_unhash, 2932 #ifdef CONFIG_BPF_SYSCALL 2933 .psock_update_sk_prot = udp_bpf_update_proto, 2934 #endif 2935 .memory_allocated = &udp_memory_allocated, 2936 .per_cpu_fw_alloc = &udp_memory_per_cpu_fw_alloc, 2937 2938 .sysctl_mem = sysctl_udp_mem, 2939 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_udp_wmem_min), 2940 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_udp_rmem_min), 2941 .obj_size = sizeof(struct udp_sock), 2942 .h.udp_table = NULL, 2943 .diag_destroy = udp_abort, 2944 }; 2945 EXPORT_SYMBOL(udp_prot); 2946 2947 /* ------------------------------------------------------------------------ */ 2948 #ifdef CONFIG_PROC_FS 2949 2950 static unsigned short seq_file_family(const struct seq_file *seq); 2951 static bool seq_sk_match(struct seq_file *seq, const struct sock *sk) 2952 { 2953 unsigned short family = seq_file_family(seq); 2954 2955 /* AF_UNSPEC is used as a match all */ 2956 return ((family == AF_UNSPEC || family == sk->sk_family) && 2957 net_eq(sock_net(sk), seq_file_net(seq))); 2958 } 2959 2960 #ifdef CONFIG_BPF_SYSCALL 2961 static const struct seq_operations bpf_iter_udp_seq_ops; 2962 #endif 2963 static struct udp_table *udp_get_table_seq(struct seq_file *seq, 2964 struct net *net) 2965 { 2966 const struct udp_seq_afinfo *afinfo; 2967 2968 #ifdef CONFIG_BPF_SYSCALL 2969 if (seq->op == &bpf_iter_udp_seq_ops) 2970 return net->ipv4.udp_table; 2971 #endif 2972 2973 afinfo = pde_data(file_inode(seq->file)); 2974 return afinfo->udp_table ? : net->ipv4.udp_table; 2975 } 2976 2977 static struct sock *udp_get_first(struct seq_file *seq, int start) 2978 { 2979 struct udp_iter_state *state = seq->private; 2980 struct net *net = seq_file_net(seq); 2981 struct udp_table *udptable; 2982 struct sock *sk; 2983 2984 udptable = udp_get_table_seq(seq, net); 2985 2986 for (state->bucket = start; state->bucket <= udptable->mask; 2987 ++state->bucket) { 2988 struct udp_hslot *hslot = &udptable->hash[state->bucket]; 2989 2990 if (hlist_empty(&hslot->head)) 2991 continue; 2992 2993 spin_lock_bh(&hslot->lock); 2994 sk_for_each(sk, &hslot->head) { 2995 if (seq_sk_match(seq, sk)) 2996 goto found; 2997 } 2998 spin_unlock_bh(&hslot->lock); 2999 } 3000 sk = NULL; 3001 found: 3002 return sk; 3003 } 3004 3005 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk) 3006 { 3007 struct udp_iter_state *state = seq->private; 3008 struct net *net = seq_file_net(seq); 3009 struct udp_table *udptable; 3010 3011 do { 3012 sk = sk_next(sk); 3013 } while (sk && !seq_sk_match(seq, sk)); 3014 3015 if (!sk) { 3016 udptable = udp_get_table_seq(seq, net); 3017 3018 if (state->bucket <= udptable->mask) 3019 spin_unlock_bh(&udptable->hash[state->bucket].lock); 3020 3021 return udp_get_first(seq, state->bucket + 1); 3022 } 3023 return sk; 3024 } 3025 3026 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos) 3027 { 3028 struct sock *sk = udp_get_first(seq, 0); 3029 3030 if (sk) 3031 while (pos && (sk = udp_get_next(seq, sk)) != NULL) 3032 --pos; 3033 return pos ? NULL : sk; 3034 } 3035 3036 void *udp_seq_start(struct seq_file *seq, loff_t *pos) 3037 { 3038 struct udp_iter_state *state = seq->private; 3039 state->bucket = MAX_UDP_PORTS; 3040 3041 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN; 3042 } 3043 EXPORT_SYMBOL(udp_seq_start); 3044 3045 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3046 { 3047 struct sock *sk; 3048 3049 if (v == SEQ_START_TOKEN) 3050 sk = udp_get_idx(seq, 0); 3051 else 3052 sk = udp_get_next(seq, v); 3053 3054 ++*pos; 3055 return sk; 3056 } 3057 EXPORT_SYMBOL(udp_seq_next); 3058 3059 void udp_seq_stop(struct seq_file *seq, void *v) 3060 { 3061 struct udp_iter_state *state = seq->private; 3062 struct udp_table *udptable; 3063 3064 udptable = udp_get_table_seq(seq, seq_file_net(seq)); 3065 3066 if (state->bucket <= udptable->mask) 3067 spin_unlock_bh(&udptable->hash[state->bucket].lock); 3068 } 3069 EXPORT_SYMBOL(udp_seq_stop); 3070 3071 /* ------------------------------------------------------------------------ */ 3072 static void udp4_format_sock(struct sock *sp, struct seq_file *f, 3073 int bucket) 3074 { 3075 struct inet_sock *inet = inet_sk(sp); 3076 __be32 dest = inet->inet_daddr; 3077 __be32 src = inet->inet_rcv_saddr; 3078 __u16 destp = ntohs(inet->inet_dport); 3079 __u16 srcp = ntohs(inet->inet_sport); 3080 3081 seq_printf(f, "%5d: %08X:%04X %08X:%04X" 3082 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u", 3083 bucket, src, srcp, dest, destp, sp->sk_state, 3084 sk_wmem_alloc_get(sp), 3085 udp_rqueue_get(sp), 3086 0, 0L, 0, 3087 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)), 3088 0, sock_i_ino(sp), 3089 refcount_read(&sp->sk_refcnt), sp, 3090 atomic_read(&sp->sk_drops)); 3091 } 3092 3093 int udp4_seq_show(struct seq_file *seq, void *v) 3094 { 3095 seq_setwidth(seq, 127); 3096 if (v == SEQ_START_TOKEN) 3097 seq_puts(seq, " sl local_address rem_address st tx_queue " 3098 "rx_queue tr tm->when retrnsmt uid timeout " 3099 "inode ref pointer drops"); 3100 else { 3101 struct udp_iter_state *state = seq->private; 3102 3103 udp4_format_sock(v, seq, state->bucket); 3104 } 3105 seq_pad(seq, '\n'); 3106 return 0; 3107 } 3108 3109 #ifdef CONFIG_BPF_SYSCALL 3110 struct bpf_iter__udp { 3111 __bpf_md_ptr(struct bpf_iter_meta *, meta); 3112 __bpf_md_ptr(struct udp_sock *, udp_sk); 3113 uid_t uid __aligned(8); 3114 int bucket __aligned(8); 3115 }; 3116 3117 struct bpf_udp_iter_state { 3118 struct udp_iter_state state; 3119 unsigned int cur_sk; 3120 unsigned int end_sk; 3121 unsigned int max_sk; 3122 int offset; 3123 struct sock **batch; 3124 bool st_bucket_done; 3125 }; 3126 3127 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter, 3128 unsigned int new_batch_sz); 3129 static struct sock *bpf_iter_udp_batch(struct seq_file *seq) 3130 { 3131 struct bpf_udp_iter_state *iter = seq->private; 3132 struct udp_iter_state *state = &iter->state; 3133 struct net *net = seq_file_net(seq); 3134 struct udp_table *udptable; 3135 unsigned int batch_sks = 0; 3136 bool resized = false; 3137 struct sock *sk; 3138 3139 /* The current batch is done, so advance the bucket. */ 3140 if (iter->st_bucket_done) { 3141 state->bucket++; 3142 iter->offset = 0; 3143 } 3144 3145 udptable = udp_get_table_seq(seq, net); 3146 3147 again: 3148 /* New batch for the next bucket. 3149 * Iterate over the hash table to find a bucket with sockets matching 3150 * the iterator attributes, and return the first matching socket from 3151 * the bucket. The remaining matched sockets from the bucket are batched 3152 * before releasing the bucket lock. This allows BPF programs that are 3153 * called in seq_show to acquire the bucket lock if needed. 3154 */ 3155 iter->cur_sk = 0; 3156 iter->end_sk = 0; 3157 iter->st_bucket_done = false; 3158 batch_sks = 0; 3159 3160 for (; state->bucket <= udptable->mask; state->bucket++) { 3161 struct udp_hslot *hslot2 = &udptable->hash2[state->bucket]; 3162 3163 if (hlist_empty(&hslot2->head)) { 3164 iter->offset = 0; 3165 continue; 3166 } 3167 3168 spin_lock_bh(&hslot2->lock); 3169 udp_portaddr_for_each_entry(sk, &hslot2->head) { 3170 if (seq_sk_match(seq, sk)) { 3171 /* Resume from the last iterated socket at the 3172 * offset in the bucket before iterator was stopped. 3173 */ 3174 if (iter->offset) { 3175 --iter->offset; 3176 continue; 3177 } 3178 if (iter->end_sk < iter->max_sk) { 3179 sock_hold(sk); 3180 iter->batch[iter->end_sk++] = sk; 3181 } 3182 batch_sks++; 3183 } 3184 } 3185 spin_unlock_bh(&hslot2->lock); 3186 3187 if (iter->end_sk) 3188 break; 3189 3190 /* Reset the current bucket's offset before moving to the next bucket. */ 3191 iter->offset = 0; 3192 } 3193 3194 /* All done: no batch made. */ 3195 if (!iter->end_sk) 3196 return NULL; 3197 3198 if (iter->end_sk == batch_sks) { 3199 /* Batching is done for the current bucket; return the first 3200 * socket to be iterated from the batch. 3201 */ 3202 iter->st_bucket_done = true; 3203 goto done; 3204 } 3205 if (!resized && !bpf_iter_udp_realloc_batch(iter, batch_sks * 3 / 2)) { 3206 resized = true; 3207 /* After allocating a larger batch, retry one more time to grab 3208 * the whole bucket. 3209 */ 3210 state->bucket--; 3211 goto again; 3212 } 3213 done: 3214 return iter->batch[0]; 3215 } 3216 3217 static void *bpf_iter_udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3218 { 3219 struct bpf_udp_iter_state *iter = seq->private; 3220 struct sock *sk; 3221 3222 /* Whenever seq_next() is called, the iter->cur_sk is 3223 * done with seq_show(), so unref the iter->cur_sk. 3224 */ 3225 if (iter->cur_sk < iter->end_sk) { 3226 sock_put(iter->batch[iter->cur_sk++]); 3227 ++iter->offset; 3228 } 3229 3230 /* After updating iter->cur_sk, check if there are more sockets 3231 * available in the current bucket batch. 3232 */ 3233 if (iter->cur_sk < iter->end_sk) 3234 sk = iter->batch[iter->cur_sk]; 3235 else 3236 /* Prepare a new batch. */ 3237 sk = bpf_iter_udp_batch(seq); 3238 3239 ++*pos; 3240 return sk; 3241 } 3242 3243 static void *bpf_iter_udp_seq_start(struct seq_file *seq, loff_t *pos) 3244 { 3245 /* bpf iter does not support lseek, so it always 3246 * continue from where it was stop()-ped. 3247 */ 3248 if (*pos) 3249 return bpf_iter_udp_batch(seq); 3250 3251 return SEQ_START_TOKEN; 3252 } 3253 3254 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta, 3255 struct udp_sock *udp_sk, uid_t uid, int bucket) 3256 { 3257 struct bpf_iter__udp ctx; 3258 3259 meta->seq_num--; /* skip SEQ_START_TOKEN */ 3260 ctx.meta = meta; 3261 ctx.udp_sk = udp_sk; 3262 ctx.uid = uid; 3263 ctx.bucket = bucket; 3264 return bpf_iter_run_prog(prog, &ctx); 3265 } 3266 3267 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v) 3268 { 3269 struct udp_iter_state *state = seq->private; 3270 struct bpf_iter_meta meta; 3271 struct bpf_prog *prog; 3272 struct sock *sk = v; 3273 uid_t uid; 3274 int ret; 3275 3276 if (v == SEQ_START_TOKEN) 3277 return 0; 3278 3279 lock_sock(sk); 3280 3281 if (unlikely(sk_unhashed(sk))) { 3282 ret = SEQ_SKIP; 3283 goto unlock; 3284 } 3285 3286 uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk)); 3287 meta.seq = seq; 3288 prog = bpf_iter_get_info(&meta, false); 3289 ret = udp_prog_seq_show(prog, &meta, v, uid, state->bucket); 3290 3291 unlock: 3292 release_sock(sk); 3293 return ret; 3294 } 3295 3296 static void bpf_iter_udp_put_batch(struct bpf_udp_iter_state *iter) 3297 { 3298 while (iter->cur_sk < iter->end_sk) 3299 sock_put(iter->batch[iter->cur_sk++]); 3300 } 3301 3302 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v) 3303 { 3304 struct bpf_udp_iter_state *iter = seq->private; 3305 struct bpf_iter_meta meta; 3306 struct bpf_prog *prog; 3307 3308 if (!v) { 3309 meta.seq = seq; 3310 prog = bpf_iter_get_info(&meta, true); 3311 if (prog) 3312 (void)udp_prog_seq_show(prog, &meta, v, 0, 0); 3313 } 3314 3315 if (iter->cur_sk < iter->end_sk) { 3316 bpf_iter_udp_put_batch(iter); 3317 iter->st_bucket_done = false; 3318 } 3319 } 3320 3321 static const struct seq_operations bpf_iter_udp_seq_ops = { 3322 .start = bpf_iter_udp_seq_start, 3323 .next = bpf_iter_udp_seq_next, 3324 .stop = bpf_iter_udp_seq_stop, 3325 .show = bpf_iter_udp_seq_show, 3326 }; 3327 #endif 3328 3329 static unsigned short seq_file_family(const struct seq_file *seq) 3330 { 3331 const struct udp_seq_afinfo *afinfo; 3332 3333 #ifdef CONFIG_BPF_SYSCALL 3334 /* BPF iterator: bpf programs to filter sockets. */ 3335 if (seq->op == &bpf_iter_udp_seq_ops) 3336 return AF_UNSPEC; 3337 #endif 3338 3339 /* Proc fs iterator */ 3340 afinfo = pde_data(file_inode(seq->file)); 3341 return afinfo->family; 3342 } 3343 3344 const struct seq_operations udp_seq_ops = { 3345 .start = udp_seq_start, 3346 .next = udp_seq_next, 3347 .stop = udp_seq_stop, 3348 .show = udp4_seq_show, 3349 }; 3350 EXPORT_SYMBOL(udp_seq_ops); 3351 3352 static struct udp_seq_afinfo udp4_seq_afinfo = { 3353 .family = AF_INET, 3354 .udp_table = NULL, 3355 }; 3356 3357 static int __net_init udp4_proc_init_net(struct net *net) 3358 { 3359 if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops, 3360 sizeof(struct udp_iter_state), &udp4_seq_afinfo)) 3361 return -ENOMEM; 3362 return 0; 3363 } 3364 3365 static void __net_exit udp4_proc_exit_net(struct net *net) 3366 { 3367 remove_proc_entry("udp", net->proc_net); 3368 } 3369 3370 static struct pernet_operations udp4_net_ops = { 3371 .init = udp4_proc_init_net, 3372 .exit = udp4_proc_exit_net, 3373 }; 3374 3375 int __init udp4_proc_init(void) 3376 { 3377 return register_pernet_subsys(&udp4_net_ops); 3378 } 3379 3380 void udp4_proc_exit(void) 3381 { 3382 unregister_pernet_subsys(&udp4_net_ops); 3383 } 3384 #endif /* CONFIG_PROC_FS */ 3385 3386 static __initdata unsigned long uhash_entries; 3387 static int __init set_uhash_entries(char *str) 3388 { 3389 ssize_t ret; 3390 3391 if (!str) 3392 return 0; 3393 3394 ret = kstrtoul(str, 0, &uhash_entries); 3395 if (ret) 3396 return 0; 3397 3398 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN) 3399 uhash_entries = UDP_HTABLE_SIZE_MIN; 3400 return 1; 3401 } 3402 __setup("uhash_entries=", set_uhash_entries); 3403 3404 void __init udp_table_init(struct udp_table *table, const char *name) 3405 { 3406 unsigned int i; 3407 3408 table->hash = alloc_large_system_hash(name, 3409 2 * sizeof(struct udp_hslot), 3410 uhash_entries, 3411 21, /* one slot per 2 MB */ 3412 0, 3413 &table->log, 3414 &table->mask, 3415 UDP_HTABLE_SIZE_MIN, 3416 UDP_HTABLE_SIZE_MAX); 3417 3418 table->hash2 = table->hash + (table->mask + 1); 3419 for (i = 0; i <= table->mask; i++) { 3420 INIT_HLIST_HEAD(&table->hash[i].head); 3421 table->hash[i].count = 0; 3422 spin_lock_init(&table->hash[i].lock); 3423 } 3424 for (i = 0; i <= table->mask; i++) { 3425 INIT_HLIST_HEAD(&table->hash2[i].head); 3426 table->hash2[i].count = 0; 3427 spin_lock_init(&table->hash2[i].lock); 3428 } 3429 } 3430 3431 u32 udp_flow_hashrnd(void) 3432 { 3433 static u32 hashrnd __read_mostly; 3434 3435 net_get_random_once(&hashrnd, sizeof(hashrnd)); 3436 3437 return hashrnd; 3438 } 3439 EXPORT_SYMBOL(udp_flow_hashrnd); 3440 3441 static void __net_init udp_sysctl_init(struct net *net) 3442 { 3443 net->ipv4.sysctl_udp_rmem_min = PAGE_SIZE; 3444 net->ipv4.sysctl_udp_wmem_min = PAGE_SIZE; 3445 3446 #ifdef CONFIG_NET_L3_MASTER_DEV 3447 net->ipv4.sysctl_udp_l3mdev_accept = 0; 3448 #endif 3449 } 3450 3451 static struct udp_table __net_init *udp_pernet_table_alloc(unsigned int hash_entries) 3452 { 3453 struct udp_table *udptable; 3454 int i; 3455 3456 udptable = kmalloc(sizeof(*udptable), GFP_KERNEL); 3457 if (!udptable) 3458 goto out; 3459 3460 udptable->hash = vmalloc_huge(hash_entries * 2 * sizeof(struct udp_hslot), 3461 GFP_KERNEL_ACCOUNT); 3462 if (!udptable->hash) 3463 goto free_table; 3464 3465 udptable->hash2 = udptable->hash + hash_entries; 3466 udptable->mask = hash_entries - 1; 3467 udptable->log = ilog2(hash_entries); 3468 3469 for (i = 0; i < hash_entries; i++) { 3470 INIT_HLIST_HEAD(&udptable->hash[i].head); 3471 udptable->hash[i].count = 0; 3472 spin_lock_init(&udptable->hash[i].lock); 3473 3474 INIT_HLIST_HEAD(&udptable->hash2[i].head); 3475 udptable->hash2[i].count = 0; 3476 spin_lock_init(&udptable->hash2[i].lock); 3477 } 3478 3479 return udptable; 3480 3481 free_table: 3482 kfree(udptable); 3483 out: 3484 return NULL; 3485 } 3486 3487 static void __net_exit udp_pernet_table_free(struct net *net) 3488 { 3489 struct udp_table *udptable = net->ipv4.udp_table; 3490 3491 if (udptable == &udp_table) 3492 return; 3493 3494 kvfree(udptable->hash); 3495 kfree(udptable); 3496 } 3497 3498 static void __net_init udp_set_table(struct net *net) 3499 { 3500 struct udp_table *udptable; 3501 unsigned int hash_entries; 3502 struct net *old_net; 3503 3504 if (net_eq(net, &init_net)) 3505 goto fallback; 3506 3507 old_net = current->nsproxy->net_ns; 3508 hash_entries = READ_ONCE(old_net->ipv4.sysctl_udp_child_hash_entries); 3509 if (!hash_entries) 3510 goto fallback; 3511 3512 /* Set min to keep the bitmap on stack in udp_lib_get_port() */ 3513 if (hash_entries < UDP_HTABLE_SIZE_MIN_PERNET) 3514 hash_entries = UDP_HTABLE_SIZE_MIN_PERNET; 3515 else 3516 hash_entries = roundup_pow_of_two(hash_entries); 3517 3518 udptable = udp_pernet_table_alloc(hash_entries); 3519 if (udptable) { 3520 net->ipv4.udp_table = udptable; 3521 } else { 3522 pr_warn("Failed to allocate UDP hash table (entries: %u) " 3523 "for a netns, fallback to the global one\n", 3524 hash_entries); 3525 fallback: 3526 net->ipv4.udp_table = &udp_table; 3527 } 3528 } 3529 3530 static int __net_init udp_pernet_init(struct net *net) 3531 { 3532 udp_sysctl_init(net); 3533 udp_set_table(net); 3534 3535 return 0; 3536 } 3537 3538 static void __net_exit udp_pernet_exit(struct net *net) 3539 { 3540 udp_pernet_table_free(net); 3541 } 3542 3543 static struct pernet_operations __net_initdata udp_sysctl_ops = { 3544 .init = udp_pernet_init, 3545 .exit = udp_pernet_exit, 3546 }; 3547 3548 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3549 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta, 3550 struct udp_sock *udp_sk, uid_t uid, int bucket) 3551 3552 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter, 3553 unsigned int new_batch_sz) 3554 { 3555 struct sock **new_batch; 3556 3557 new_batch = kvmalloc_array(new_batch_sz, sizeof(*new_batch), 3558 GFP_USER | __GFP_NOWARN); 3559 if (!new_batch) 3560 return -ENOMEM; 3561 3562 bpf_iter_udp_put_batch(iter); 3563 kvfree(iter->batch); 3564 iter->batch = new_batch; 3565 iter->max_sk = new_batch_sz; 3566 3567 return 0; 3568 } 3569 3570 #define INIT_BATCH_SZ 16 3571 3572 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux) 3573 { 3574 struct bpf_udp_iter_state *iter = priv_data; 3575 int ret; 3576 3577 ret = bpf_iter_init_seq_net(priv_data, aux); 3578 if (ret) 3579 return ret; 3580 3581 ret = bpf_iter_udp_realloc_batch(iter, INIT_BATCH_SZ); 3582 if (ret) 3583 bpf_iter_fini_seq_net(priv_data); 3584 3585 return ret; 3586 } 3587 3588 static void bpf_iter_fini_udp(void *priv_data) 3589 { 3590 struct bpf_udp_iter_state *iter = priv_data; 3591 3592 bpf_iter_fini_seq_net(priv_data); 3593 kvfree(iter->batch); 3594 } 3595 3596 static const struct bpf_iter_seq_info udp_seq_info = { 3597 .seq_ops = &bpf_iter_udp_seq_ops, 3598 .init_seq_private = bpf_iter_init_udp, 3599 .fini_seq_private = bpf_iter_fini_udp, 3600 .seq_priv_size = sizeof(struct bpf_udp_iter_state), 3601 }; 3602 3603 static struct bpf_iter_reg udp_reg_info = { 3604 .target = "udp", 3605 .ctx_arg_info_size = 1, 3606 .ctx_arg_info = { 3607 { offsetof(struct bpf_iter__udp, udp_sk), 3608 PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED }, 3609 }, 3610 .seq_info = &udp_seq_info, 3611 }; 3612 3613 static void __init bpf_iter_register(void) 3614 { 3615 udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP]; 3616 if (bpf_iter_reg_target(&udp_reg_info)) 3617 pr_warn("Warning: could not register bpf iterator udp\n"); 3618 } 3619 #endif 3620 3621 void __init udp_init(void) 3622 { 3623 unsigned long limit; 3624 unsigned int i; 3625 3626 udp_table_init(&udp_table, "UDP"); 3627 limit = nr_free_buffer_pages() / 8; 3628 limit = max(limit, 128UL); 3629 sysctl_udp_mem[0] = limit / 4 * 3; 3630 sysctl_udp_mem[1] = limit; 3631 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2; 3632 3633 /* 16 spinlocks per cpu */ 3634 udp_busylocks_log = ilog2(nr_cpu_ids) + 4; 3635 udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log, 3636 GFP_KERNEL); 3637 if (!udp_busylocks) 3638 panic("UDP: failed to alloc udp_busylocks\n"); 3639 for (i = 0; i < (1U << udp_busylocks_log); i++) 3640 spin_lock_init(udp_busylocks + i); 3641 3642 if (register_pernet_subsys(&udp_sysctl_ops)) 3643 panic("UDP: failed to init sysctl parameters.\n"); 3644 3645 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3646 bpf_iter_register(); 3647 #endif 3648 } 3649