1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * The User Datagram Protocol (UDP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 12 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 13 * Hirokazu Takahashi, <taka@valinux.co.jp> 14 * 15 * Fixes: 16 * Alan Cox : verify_area() calls 17 * Alan Cox : stopped close while in use off icmp 18 * messages. Not a fix but a botch that 19 * for udp at least is 'valid'. 20 * Alan Cox : Fixed icmp handling properly 21 * Alan Cox : Correct error for oversized datagrams 22 * Alan Cox : Tidied select() semantics. 23 * Alan Cox : udp_err() fixed properly, also now 24 * select and read wake correctly on errors 25 * Alan Cox : udp_send verify_area moved to avoid mem leak 26 * Alan Cox : UDP can count its memory 27 * Alan Cox : send to an unknown connection causes 28 * an ECONNREFUSED off the icmp, but 29 * does NOT close. 30 * Alan Cox : Switched to new sk_buff handlers. No more backlog! 31 * Alan Cox : Using generic datagram code. Even smaller and the PEEK 32 * bug no longer crashes it. 33 * Fred Van Kempen : Net2e support for sk->broadcast. 34 * Alan Cox : Uses skb_free_datagram 35 * Alan Cox : Added get/set sockopt support. 36 * Alan Cox : Broadcasting without option set returns EACCES. 37 * Alan Cox : No wakeup calls. Instead we now use the callbacks. 38 * Alan Cox : Use ip_tos and ip_ttl 39 * Alan Cox : SNMP Mibs 40 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support. 41 * Matt Dillon : UDP length checks. 42 * Alan Cox : Smarter af_inet used properly. 43 * Alan Cox : Use new kernel side addressing. 44 * Alan Cox : Incorrect return on truncated datagram receive. 45 * Arnt Gulbrandsen : New udp_send and stuff 46 * Alan Cox : Cache last socket 47 * Alan Cox : Route cache 48 * Jon Peatfield : Minor efficiency fix to sendto(). 49 * Mike Shaver : RFC1122 checks. 50 * Alan Cox : Nonblocking error fix. 51 * Willy Konynenberg : Transparent proxying support. 52 * Mike McLagan : Routing by source 53 * David S. Miller : New socket lookup architecture. 54 * Last socket cache retained as it 55 * does have a high hit rate. 56 * Olaf Kirch : Don't linearise iovec on sendmsg. 57 * Andi Kleen : Some cleanups, cache destination entry 58 * for connect. 59 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 60 * Melvin Smith : Check msg_name not msg_namelen in sendto(), 61 * return ENOTCONN for unconnected sockets (POSIX) 62 * Janos Farkas : don't deliver multi/broadcasts to a different 63 * bound-to-device socket 64 * Hirokazu Takahashi : HW checksumming for outgoing UDP 65 * datagrams. 66 * Hirokazu Takahashi : sendfile() on UDP works now. 67 * Arnaldo C. Melo : convert /proc/net/udp to seq_file 68 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 69 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind 70 * a single port at the same time. 71 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support 72 * James Chapman : Add L2TP encapsulation type. 73 */ 74 75 #define pr_fmt(fmt) "UDP: " fmt 76 77 #include <linux/bpf-cgroup.h> 78 #include <linux/uaccess.h> 79 #include <asm/ioctls.h> 80 #include <linux/memblock.h> 81 #include <linux/highmem.h> 82 #include <linux/types.h> 83 #include <linux/fcntl.h> 84 #include <linux/module.h> 85 #include <linux/socket.h> 86 #include <linux/sockios.h> 87 #include <linux/igmp.h> 88 #include <linux/inetdevice.h> 89 #include <linux/in.h> 90 #include <linux/errno.h> 91 #include <linux/timer.h> 92 #include <linux/mm.h> 93 #include <linux/inet.h> 94 #include <linux/netdevice.h> 95 #include <linux/slab.h> 96 #include <net/tcp_states.h> 97 #include <linux/skbuff.h> 98 #include <linux/proc_fs.h> 99 #include <linux/seq_file.h> 100 #include <net/net_namespace.h> 101 #include <net/icmp.h> 102 #include <net/inet_hashtables.h> 103 #include <net/ip_tunnels.h> 104 #include <net/route.h> 105 #include <net/checksum.h> 106 #include <net/gso.h> 107 #include <net/xfrm.h> 108 #include <trace/events/udp.h> 109 #include <linux/static_key.h> 110 #include <linux/btf_ids.h> 111 #include <trace/events/skb.h> 112 #include <net/busy_poll.h> 113 #include "udp_impl.h" 114 #include <net/sock_reuseport.h> 115 #include <net/addrconf.h> 116 #include <net/udp_tunnel.h> 117 #include <net/gro.h> 118 #if IS_ENABLED(CONFIG_IPV6) 119 #include <net/ipv6_stubs.h> 120 #endif 121 122 struct udp_table udp_table __read_mostly; 123 EXPORT_SYMBOL(udp_table); 124 125 long sysctl_udp_mem[3] __read_mostly; 126 EXPORT_SYMBOL(sysctl_udp_mem); 127 128 atomic_long_t udp_memory_allocated ____cacheline_aligned_in_smp; 129 EXPORT_SYMBOL(udp_memory_allocated); 130 DEFINE_PER_CPU(int, udp_memory_per_cpu_fw_alloc); 131 EXPORT_PER_CPU_SYMBOL_GPL(udp_memory_per_cpu_fw_alloc); 132 133 #define MAX_UDP_PORTS 65536 134 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN_PERNET) 135 136 static struct udp_table *udp_get_table_prot(struct sock *sk) 137 { 138 return sk->sk_prot->h.udp_table ? : sock_net(sk)->ipv4.udp_table; 139 } 140 141 static int udp_lib_lport_inuse(struct net *net, __u16 num, 142 const struct udp_hslot *hslot, 143 unsigned long *bitmap, 144 struct sock *sk, unsigned int log) 145 { 146 struct sock *sk2; 147 kuid_t uid = sock_i_uid(sk); 148 149 sk_for_each(sk2, &hslot->head) { 150 if (net_eq(sock_net(sk2), net) && 151 sk2 != sk && 152 (bitmap || udp_sk(sk2)->udp_port_hash == num) && 153 (!sk2->sk_reuse || !sk->sk_reuse) && 154 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 155 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 156 inet_rcv_saddr_equal(sk, sk2, true)) { 157 if (sk2->sk_reuseport && sk->sk_reuseport && 158 !rcu_access_pointer(sk->sk_reuseport_cb) && 159 uid_eq(uid, sock_i_uid(sk2))) { 160 if (!bitmap) 161 return 0; 162 } else { 163 if (!bitmap) 164 return 1; 165 __set_bit(udp_sk(sk2)->udp_port_hash >> log, 166 bitmap); 167 } 168 } 169 } 170 return 0; 171 } 172 173 /* 174 * Note: we still hold spinlock of primary hash chain, so no other writer 175 * can insert/delete a socket with local_port == num 176 */ 177 static int udp_lib_lport_inuse2(struct net *net, __u16 num, 178 struct udp_hslot *hslot2, 179 struct sock *sk) 180 { 181 struct sock *sk2; 182 kuid_t uid = sock_i_uid(sk); 183 int res = 0; 184 185 spin_lock(&hslot2->lock); 186 udp_portaddr_for_each_entry(sk2, &hslot2->head) { 187 if (net_eq(sock_net(sk2), net) && 188 sk2 != sk && 189 (udp_sk(sk2)->udp_port_hash == num) && 190 (!sk2->sk_reuse || !sk->sk_reuse) && 191 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 192 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 193 inet_rcv_saddr_equal(sk, sk2, true)) { 194 if (sk2->sk_reuseport && sk->sk_reuseport && 195 !rcu_access_pointer(sk->sk_reuseport_cb) && 196 uid_eq(uid, sock_i_uid(sk2))) { 197 res = 0; 198 } else { 199 res = 1; 200 } 201 break; 202 } 203 } 204 spin_unlock(&hslot2->lock); 205 return res; 206 } 207 208 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot) 209 { 210 struct net *net = sock_net(sk); 211 kuid_t uid = sock_i_uid(sk); 212 struct sock *sk2; 213 214 sk_for_each(sk2, &hslot->head) { 215 if (net_eq(sock_net(sk2), net) && 216 sk2 != sk && 217 sk2->sk_family == sk->sk_family && 218 ipv6_only_sock(sk2) == ipv6_only_sock(sk) && 219 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) && 220 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 221 sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) && 222 inet_rcv_saddr_equal(sk, sk2, false)) { 223 return reuseport_add_sock(sk, sk2, 224 inet_rcv_saddr_any(sk)); 225 } 226 } 227 228 return reuseport_alloc(sk, inet_rcv_saddr_any(sk)); 229 } 230 231 /** 232 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6 233 * 234 * @sk: socket struct in question 235 * @snum: port number to look up 236 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains, 237 * with NULL address 238 */ 239 int udp_lib_get_port(struct sock *sk, unsigned short snum, 240 unsigned int hash2_nulladdr) 241 { 242 struct udp_table *udptable = udp_get_table_prot(sk); 243 struct udp_hslot *hslot, *hslot2; 244 struct net *net = sock_net(sk); 245 int error = -EADDRINUSE; 246 247 if (!snum) { 248 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN); 249 unsigned short first, last; 250 int low, high, remaining; 251 unsigned int rand; 252 253 inet_sk_get_local_port_range(sk, &low, &high); 254 remaining = (high - low) + 1; 255 256 rand = get_random_u32(); 257 first = reciprocal_scale(rand, remaining) + low; 258 /* 259 * force rand to be an odd multiple of UDP_HTABLE_SIZE 260 */ 261 rand = (rand | 1) * (udptable->mask + 1); 262 last = first + udptable->mask + 1; 263 do { 264 hslot = udp_hashslot(udptable, net, first); 265 bitmap_zero(bitmap, PORTS_PER_CHAIN); 266 spin_lock_bh(&hslot->lock); 267 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk, 268 udptable->log); 269 270 snum = first; 271 /* 272 * Iterate on all possible values of snum for this hash. 273 * Using steps of an odd multiple of UDP_HTABLE_SIZE 274 * give us randomization and full range coverage. 275 */ 276 do { 277 if (low <= snum && snum <= high && 278 !test_bit(snum >> udptable->log, bitmap) && 279 !inet_is_local_reserved_port(net, snum)) 280 goto found; 281 snum += rand; 282 } while (snum != first); 283 spin_unlock_bh(&hslot->lock); 284 cond_resched(); 285 } while (++first != last); 286 goto fail; 287 } else { 288 hslot = udp_hashslot(udptable, net, snum); 289 spin_lock_bh(&hslot->lock); 290 if (hslot->count > 10) { 291 int exist; 292 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum; 293 294 slot2 &= udptable->mask; 295 hash2_nulladdr &= udptable->mask; 296 297 hslot2 = udp_hashslot2(udptable, slot2); 298 if (hslot->count < hslot2->count) 299 goto scan_primary_hash; 300 301 exist = udp_lib_lport_inuse2(net, snum, hslot2, sk); 302 if (!exist && (hash2_nulladdr != slot2)) { 303 hslot2 = udp_hashslot2(udptable, hash2_nulladdr); 304 exist = udp_lib_lport_inuse2(net, snum, hslot2, 305 sk); 306 } 307 if (exist) 308 goto fail_unlock; 309 else 310 goto found; 311 } 312 scan_primary_hash: 313 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0)) 314 goto fail_unlock; 315 } 316 found: 317 inet_sk(sk)->inet_num = snum; 318 udp_sk(sk)->udp_port_hash = snum; 319 udp_sk(sk)->udp_portaddr_hash ^= snum; 320 if (sk_unhashed(sk)) { 321 if (sk->sk_reuseport && 322 udp_reuseport_add_sock(sk, hslot)) { 323 inet_sk(sk)->inet_num = 0; 324 udp_sk(sk)->udp_port_hash = 0; 325 udp_sk(sk)->udp_portaddr_hash ^= snum; 326 goto fail_unlock; 327 } 328 329 sk_add_node_rcu(sk, &hslot->head); 330 hslot->count++; 331 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 332 333 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 334 spin_lock(&hslot2->lock); 335 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 336 sk->sk_family == AF_INET6) 337 hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node, 338 &hslot2->head); 339 else 340 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 341 &hslot2->head); 342 hslot2->count++; 343 spin_unlock(&hslot2->lock); 344 } 345 sock_set_flag(sk, SOCK_RCU_FREE); 346 error = 0; 347 fail_unlock: 348 spin_unlock_bh(&hslot->lock); 349 fail: 350 return error; 351 } 352 EXPORT_SYMBOL(udp_lib_get_port); 353 354 int udp_v4_get_port(struct sock *sk, unsigned short snum) 355 { 356 unsigned int hash2_nulladdr = 357 ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum); 358 unsigned int hash2_partial = 359 ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0); 360 361 /* precompute partial secondary hash */ 362 udp_sk(sk)->udp_portaddr_hash = hash2_partial; 363 return udp_lib_get_port(sk, snum, hash2_nulladdr); 364 } 365 366 static int compute_score(struct sock *sk, struct net *net, 367 __be32 saddr, __be16 sport, 368 __be32 daddr, unsigned short hnum, 369 int dif, int sdif) 370 { 371 int score; 372 struct inet_sock *inet; 373 bool dev_match; 374 375 if (!net_eq(sock_net(sk), net) || 376 udp_sk(sk)->udp_port_hash != hnum || 377 ipv6_only_sock(sk)) 378 return -1; 379 380 if (sk->sk_rcv_saddr != daddr) 381 return -1; 382 383 score = (sk->sk_family == PF_INET) ? 2 : 1; 384 385 inet = inet_sk(sk); 386 if (inet->inet_daddr) { 387 if (inet->inet_daddr != saddr) 388 return -1; 389 score += 4; 390 } 391 392 if (inet->inet_dport) { 393 if (inet->inet_dport != sport) 394 return -1; 395 score += 4; 396 } 397 398 dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, 399 dif, sdif); 400 if (!dev_match) 401 return -1; 402 if (sk->sk_bound_dev_if) 403 score += 4; 404 405 if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id()) 406 score++; 407 return score; 408 } 409 410 INDIRECT_CALLABLE_SCOPE 411 u32 udp_ehashfn(const struct net *net, const __be32 laddr, const __u16 lport, 412 const __be32 faddr, const __be16 fport) 413 { 414 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret)); 415 416 return __inet_ehashfn(laddr, lport, faddr, fport, 417 udp_ehash_secret + net_hash_mix(net)); 418 } 419 420 /* called with rcu_read_lock() */ 421 static struct sock *udp4_lib_lookup2(struct net *net, 422 __be32 saddr, __be16 sport, 423 __be32 daddr, unsigned int hnum, 424 int dif, int sdif, 425 struct udp_hslot *hslot2, 426 struct sk_buff *skb) 427 { 428 struct sock *sk, *result; 429 int score, badness; 430 431 result = NULL; 432 badness = 0; 433 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 434 score = compute_score(sk, net, saddr, sport, 435 daddr, hnum, dif, sdif); 436 if (score > badness) { 437 badness = score; 438 439 if (sk->sk_state == TCP_ESTABLISHED) { 440 result = sk; 441 continue; 442 } 443 444 result = inet_lookup_reuseport(net, sk, skb, sizeof(struct udphdr), 445 saddr, sport, daddr, hnum, udp_ehashfn); 446 if (!result) { 447 result = sk; 448 continue; 449 } 450 451 /* Fall back to scoring if group has connections */ 452 if (!reuseport_has_conns(sk)) 453 return result; 454 455 /* Reuseport logic returned an error, keep original score. */ 456 if (IS_ERR(result)) 457 continue; 458 459 badness = compute_score(result, net, saddr, sport, 460 daddr, hnum, dif, sdif); 461 462 } 463 } 464 return result; 465 } 466 467 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try 468 * harder than this. -DaveM 469 */ 470 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr, 471 __be16 sport, __be32 daddr, __be16 dport, int dif, 472 int sdif, struct udp_table *udptable, struct sk_buff *skb) 473 { 474 unsigned short hnum = ntohs(dport); 475 unsigned int hash2, slot2; 476 struct udp_hslot *hslot2; 477 struct sock *result, *sk; 478 479 hash2 = ipv4_portaddr_hash(net, daddr, hnum); 480 slot2 = hash2 & udptable->mask; 481 hslot2 = &udptable->hash2[slot2]; 482 483 /* Lookup connected or non-wildcard socket */ 484 result = udp4_lib_lookup2(net, saddr, sport, 485 daddr, hnum, dif, sdif, 486 hslot2, skb); 487 if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED) 488 goto done; 489 490 /* Lookup redirect from BPF */ 491 if (static_branch_unlikely(&bpf_sk_lookup_enabled) && 492 udptable == net->ipv4.udp_table) { 493 sk = inet_lookup_run_sk_lookup(net, IPPROTO_UDP, skb, sizeof(struct udphdr), 494 saddr, sport, daddr, hnum, dif, 495 udp_ehashfn); 496 if (sk) { 497 result = sk; 498 goto done; 499 } 500 } 501 502 /* Got non-wildcard socket or error on first lookup */ 503 if (result) 504 goto done; 505 506 /* Lookup wildcard sockets */ 507 hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum); 508 slot2 = hash2 & udptable->mask; 509 hslot2 = &udptable->hash2[slot2]; 510 511 result = udp4_lib_lookup2(net, saddr, sport, 512 htonl(INADDR_ANY), hnum, dif, sdif, 513 hslot2, skb); 514 done: 515 if (IS_ERR(result)) 516 return NULL; 517 return result; 518 } 519 EXPORT_SYMBOL_GPL(__udp4_lib_lookup); 520 521 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb, 522 __be16 sport, __be16 dport, 523 struct udp_table *udptable) 524 { 525 const struct iphdr *iph = ip_hdr(skb); 526 527 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport, 528 iph->daddr, dport, inet_iif(skb), 529 inet_sdif(skb), udptable, skb); 530 } 531 532 struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb, 533 __be16 sport, __be16 dport) 534 { 535 const struct iphdr *iph = ip_hdr(skb); 536 struct net *net = dev_net(skb->dev); 537 int iif, sdif; 538 539 inet_get_iif_sdif(skb, &iif, &sdif); 540 541 return __udp4_lib_lookup(net, iph->saddr, sport, 542 iph->daddr, dport, iif, 543 sdif, net->ipv4.udp_table, NULL); 544 } 545 546 /* Must be called under rcu_read_lock(). 547 * Does increment socket refcount. 548 */ 549 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4) 550 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport, 551 __be32 daddr, __be16 dport, int dif) 552 { 553 struct sock *sk; 554 555 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport, 556 dif, 0, net->ipv4.udp_table, NULL); 557 if (sk && !refcount_inc_not_zero(&sk->sk_refcnt)) 558 sk = NULL; 559 return sk; 560 } 561 EXPORT_SYMBOL_GPL(udp4_lib_lookup); 562 #endif 563 564 static inline bool __udp_is_mcast_sock(struct net *net, const struct sock *sk, 565 __be16 loc_port, __be32 loc_addr, 566 __be16 rmt_port, __be32 rmt_addr, 567 int dif, int sdif, unsigned short hnum) 568 { 569 const struct inet_sock *inet = inet_sk(sk); 570 571 if (!net_eq(sock_net(sk), net) || 572 udp_sk(sk)->udp_port_hash != hnum || 573 (inet->inet_daddr && inet->inet_daddr != rmt_addr) || 574 (inet->inet_dport != rmt_port && inet->inet_dport) || 575 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) || 576 ipv6_only_sock(sk) || 577 !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif)) 578 return false; 579 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif)) 580 return false; 581 return true; 582 } 583 584 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key); 585 EXPORT_SYMBOL(udp_encap_needed_key); 586 587 #if IS_ENABLED(CONFIG_IPV6) 588 DEFINE_STATIC_KEY_FALSE(udpv6_encap_needed_key); 589 EXPORT_SYMBOL(udpv6_encap_needed_key); 590 #endif 591 592 void udp_encap_enable(void) 593 { 594 static_branch_inc(&udp_encap_needed_key); 595 } 596 EXPORT_SYMBOL(udp_encap_enable); 597 598 void udp_encap_disable(void) 599 { 600 static_branch_dec(&udp_encap_needed_key); 601 } 602 EXPORT_SYMBOL(udp_encap_disable); 603 604 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go 605 * through error handlers in encapsulations looking for a match. 606 */ 607 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info) 608 { 609 int i; 610 611 for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) { 612 int (*handler)(struct sk_buff *skb, u32 info); 613 const struct ip_tunnel_encap_ops *encap; 614 615 encap = rcu_dereference(iptun_encaps[i]); 616 if (!encap) 617 continue; 618 handler = encap->err_handler; 619 if (handler && !handler(skb, info)) 620 return 0; 621 } 622 623 return -ENOENT; 624 } 625 626 /* Try to match ICMP errors to UDP tunnels by looking up a socket without 627 * reversing source and destination port: this will match tunnels that force the 628 * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that 629 * lwtunnels might actually break this assumption by being configured with 630 * different destination ports on endpoints, in this case we won't be able to 631 * trace ICMP messages back to them. 632 * 633 * If this doesn't match any socket, probe tunnels with arbitrary destination 634 * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port 635 * we've sent packets to won't necessarily match the local destination port. 636 * 637 * Then ask the tunnel implementation to match the error against a valid 638 * association. 639 * 640 * Return an error if we can't find a match, the socket if we need further 641 * processing, zero otherwise. 642 */ 643 static struct sock *__udp4_lib_err_encap(struct net *net, 644 const struct iphdr *iph, 645 struct udphdr *uh, 646 struct udp_table *udptable, 647 struct sock *sk, 648 struct sk_buff *skb, u32 info) 649 { 650 int (*lookup)(struct sock *sk, struct sk_buff *skb); 651 int network_offset, transport_offset; 652 struct udp_sock *up; 653 654 network_offset = skb_network_offset(skb); 655 transport_offset = skb_transport_offset(skb); 656 657 /* Network header needs to point to the outer IPv4 header inside ICMP */ 658 skb_reset_network_header(skb); 659 660 /* Transport header needs to point to the UDP header */ 661 skb_set_transport_header(skb, iph->ihl << 2); 662 663 if (sk) { 664 up = udp_sk(sk); 665 666 lookup = READ_ONCE(up->encap_err_lookup); 667 if (lookup && lookup(sk, skb)) 668 sk = NULL; 669 670 goto out; 671 } 672 673 sk = __udp4_lib_lookup(net, iph->daddr, uh->source, 674 iph->saddr, uh->dest, skb->dev->ifindex, 0, 675 udptable, NULL); 676 if (sk) { 677 up = udp_sk(sk); 678 679 lookup = READ_ONCE(up->encap_err_lookup); 680 if (!lookup || lookup(sk, skb)) 681 sk = NULL; 682 } 683 684 out: 685 if (!sk) 686 sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info)); 687 688 skb_set_transport_header(skb, transport_offset); 689 skb_set_network_header(skb, network_offset); 690 691 return sk; 692 } 693 694 /* 695 * This routine is called by the ICMP module when it gets some 696 * sort of error condition. If err < 0 then the socket should 697 * be closed and the error returned to the user. If err > 0 698 * it's just the icmp type << 8 | icmp code. 699 * Header points to the ip header of the error packet. We move 700 * on past this. Then (as it used to claim before adjustment) 701 * header points to the first 8 bytes of the udp header. We need 702 * to find the appropriate port. 703 */ 704 705 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable) 706 { 707 struct inet_sock *inet; 708 const struct iphdr *iph = (const struct iphdr *)skb->data; 709 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2)); 710 const int type = icmp_hdr(skb)->type; 711 const int code = icmp_hdr(skb)->code; 712 bool tunnel = false; 713 struct sock *sk; 714 int harderr; 715 int err; 716 struct net *net = dev_net(skb->dev); 717 718 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest, 719 iph->saddr, uh->source, skb->dev->ifindex, 720 inet_sdif(skb), udptable, NULL); 721 722 if (!sk || READ_ONCE(udp_sk(sk)->encap_type)) { 723 /* No socket for error: try tunnels before discarding */ 724 if (static_branch_unlikely(&udp_encap_needed_key)) { 725 sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb, 726 info); 727 if (!sk) 728 return 0; 729 } else 730 sk = ERR_PTR(-ENOENT); 731 732 if (IS_ERR(sk)) { 733 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); 734 return PTR_ERR(sk); 735 } 736 737 tunnel = true; 738 } 739 740 err = 0; 741 harderr = 0; 742 inet = inet_sk(sk); 743 744 switch (type) { 745 default: 746 case ICMP_TIME_EXCEEDED: 747 err = EHOSTUNREACH; 748 break; 749 case ICMP_SOURCE_QUENCH: 750 goto out; 751 case ICMP_PARAMETERPROB: 752 err = EPROTO; 753 harderr = 1; 754 break; 755 case ICMP_DEST_UNREACH: 756 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */ 757 ipv4_sk_update_pmtu(skb, sk, info); 758 if (READ_ONCE(inet->pmtudisc) != IP_PMTUDISC_DONT) { 759 err = EMSGSIZE; 760 harderr = 1; 761 break; 762 } 763 goto out; 764 } 765 err = EHOSTUNREACH; 766 if (code <= NR_ICMP_UNREACH) { 767 harderr = icmp_err_convert[code].fatal; 768 err = icmp_err_convert[code].errno; 769 } 770 break; 771 case ICMP_REDIRECT: 772 ipv4_sk_redirect(skb, sk); 773 goto out; 774 } 775 776 /* 777 * RFC1122: OK. Passes ICMP errors back to application, as per 778 * 4.1.3.3. 779 */ 780 if (tunnel) { 781 /* ...not for tunnels though: we don't have a sending socket */ 782 if (udp_sk(sk)->encap_err_rcv) 783 udp_sk(sk)->encap_err_rcv(sk, skb, err, uh->dest, info, 784 (u8 *)(uh+1)); 785 goto out; 786 } 787 if (!inet_test_bit(RECVERR, sk)) { 788 if (!harderr || sk->sk_state != TCP_ESTABLISHED) 789 goto out; 790 } else 791 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1)); 792 793 sk->sk_err = err; 794 sk_error_report(sk); 795 out: 796 return 0; 797 } 798 799 int udp_err(struct sk_buff *skb, u32 info) 800 { 801 return __udp4_lib_err(skb, info, dev_net(skb->dev)->ipv4.udp_table); 802 } 803 804 /* 805 * Throw away all pending data and cancel the corking. Socket is locked. 806 */ 807 void udp_flush_pending_frames(struct sock *sk) 808 { 809 struct udp_sock *up = udp_sk(sk); 810 811 if (up->pending) { 812 up->len = 0; 813 WRITE_ONCE(up->pending, 0); 814 ip_flush_pending_frames(sk); 815 } 816 } 817 EXPORT_SYMBOL(udp_flush_pending_frames); 818 819 /** 820 * udp4_hwcsum - handle outgoing HW checksumming 821 * @skb: sk_buff containing the filled-in UDP header 822 * (checksum field must be zeroed out) 823 * @src: source IP address 824 * @dst: destination IP address 825 */ 826 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst) 827 { 828 struct udphdr *uh = udp_hdr(skb); 829 int offset = skb_transport_offset(skb); 830 int len = skb->len - offset; 831 int hlen = len; 832 __wsum csum = 0; 833 834 if (!skb_has_frag_list(skb)) { 835 /* 836 * Only one fragment on the socket. 837 */ 838 skb->csum_start = skb_transport_header(skb) - skb->head; 839 skb->csum_offset = offsetof(struct udphdr, check); 840 uh->check = ~csum_tcpudp_magic(src, dst, len, 841 IPPROTO_UDP, 0); 842 } else { 843 struct sk_buff *frags; 844 845 /* 846 * HW-checksum won't work as there are two or more 847 * fragments on the socket so that all csums of sk_buffs 848 * should be together 849 */ 850 skb_walk_frags(skb, frags) { 851 csum = csum_add(csum, frags->csum); 852 hlen -= frags->len; 853 } 854 855 csum = skb_checksum(skb, offset, hlen, csum); 856 skb->ip_summed = CHECKSUM_NONE; 857 858 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum); 859 if (uh->check == 0) 860 uh->check = CSUM_MANGLED_0; 861 } 862 } 863 EXPORT_SYMBOL_GPL(udp4_hwcsum); 864 865 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended 866 * for the simple case like when setting the checksum for a UDP tunnel. 867 */ 868 void udp_set_csum(bool nocheck, struct sk_buff *skb, 869 __be32 saddr, __be32 daddr, int len) 870 { 871 struct udphdr *uh = udp_hdr(skb); 872 873 if (nocheck) { 874 uh->check = 0; 875 } else if (skb_is_gso(skb)) { 876 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 877 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 878 uh->check = 0; 879 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb)); 880 if (uh->check == 0) 881 uh->check = CSUM_MANGLED_0; 882 } else { 883 skb->ip_summed = CHECKSUM_PARTIAL; 884 skb->csum_start = skb_transport_header(skb) - skb->head; 885 skb->csum_offset = offsetof(struct udphdr, check); 886 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 887 } 888 } 889 EXPORT_SYMBOL(udp_set_csum); 890 891 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4, 892 struct inet_cork *cork) 893 { 894 struct sock *sk = skb->sk; 895 struct inet_sock *inet = inet_sk(sk); 896 struct udphdr *uh; 897 int err; 898 int is_udplite = IS_UDPLITE(sk); 899 int offset = skb_transport_offset(skb); 900 int len = skb->len - offset; 901 int datalen = len - sizeof(*uh); 902 __wsum csum = 0; 903 904 /* 905 * Create a UDP header 906 */ 907 uh = udp_hdr(skb); 908 uh->source = inet->inet_sport; 909 uh->dest = fl4->fl4_dport; 910 uh->len = htons(len); 911 uh->check = 0; 912 913 if (cork->gso_size) { 914 const int hlen = skb_network_header_len(skb) + 915 sizeof(struct udphdr); 916 917 if (hlen + cork->gso_size > cork->fragsize) { 918 kfree_skb(skb); 919 return -EINVAL; 920 } 921 if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) { 922 kfree_skb(skb); 923 return -EINVAL; 924 } 925 if (sk->sk_no_check_tx) { 926 kfree_skb(skb); 927 return -EINVAL; 928 } 929 if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite || 930 dst_xfrm(skb_dst(skb))) { 931 kfree_skb(skb); 932 return -EIO; 933 } 934 935 if (datalen > cork->gso_size) { 936 skb_shinfo(skb)->gso_size = cork->gso_size; 937 skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4; 938 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen, 939 cork->gso_size); 940 } 941 goto csum_partial; 942 } 943 944 if (is_udplite) /* UDP-Lite */ 945 csum = udplite_csum(skb); 946 947 else if (sk->sk_no_check_tx) { /* UDP csum off */ 948 949 skb->ip_summed = CHECKSUM_NONE; 950 goto send; 951 952 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */ 953 csum_partial: 954 955 udp4_hwcsum(skb, fl4->saddr, fl4->daddr); 956 goto send; 957 958 } else 959 csum = udp_csum(skb); 960 961 /* add protocol-dependent pseudo-header */ 962 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len, 963 sk->sk_protocol, csum); 964 if (uh->check == 0) 965 uh->check = CSUM_MANGLED_0; 966 967 send: 968 err = ip_send_skb(sock_net(sk), skb); 969 if (err) { 970 if (err == -ENOBUFS && 971 !inet_test_bit(RECVERR, sk)) { 972 UDP_INC_STATS(sock_net(sk), 973 UDP_MIB_SNDBUFERRORS, is_udplite); 974 err = 0; 975 } 976 } else 977 UDP_INC_STATS(sock_net(sk), 978 UDP_MIB_OUTDATAGRAMS, is_udplite); 979 return err; 980 } 981 982 /* 983 * Push out all pending data as one UDP datagram. Socket is locked. 984 */ 985 int udp_push_pending_frames(struct sock *sk) 986 { 987 struct udp_sock *up = udp_sk(sk); 988 struct inet_sock *inet = inet_sk(sk); 989 struct flowi4 *fl4 = &inet->cork.fl.u.ip4; 990 struct sk_buff *skb; 991 int err = 0; 992 993 skb = ip_finish_skb(sk, fl4); 994 if (!skb) 995 goto out; 996 997 err = udp_send_skb(skb, fl4, &inet->cork.base); 998 999 out: 1000 up->len = 0; 1001 WRITE_ONCE(up->pending, 0); 1002 return err; 1003 } 1004 EXPORT_SYMBOL(udp_push_pending_frames); 1005 1006 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size) 1007 { 1008 switch (cmsg->cmsg_type) { 1009 case UDP_SEGMENT: 1010 if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16))) 1011 return -EINVAL; 1012 *gso_size = *(__u16 *)CMSG_DATA(cmsg); 1013 return 0; 1014 default: 1015 return -EINVAL; 1016 } 1017 } 1018 1019 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size) 1020 { 1021 struct cmsghdr *cmsg; 1022 bool need_ip = false; 1023 int err; 1024 1025 for_each_cmsghdr(cmsg, msg) { 1026 if (!CMSG_OK(msg, cmsg)) 1027 return -EINVAL; 1028 1029 if (cmsg->cmsg_level != SOL_UDP) { 1030 need_ip = true; 1031 continue; 1032 } 1033 1034 err = __udp_cmsg_send(cmsg, gso_size); 1035 if (err) 1036 return err; 1037 } 1038 1039 return need_ip; 1040 } 1041 EXPORT_SYMBOL_GPL(udp_cmsg_send); 1042 1043 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1044 { 1045 struct inet_sock *inet = inet_sk(sk); 1046 struct udp_sock *up = udp_sk(sk); 1047 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name); 1048 struct flowi4 fl4_stack; 1049 struct flowi4 *fl4; 1050 int ulen = len; 1051 struct ipcm_cookie ipc; 1052 struct rtable *rt = NULL; 1053 int free = 0; 1054 int connected = 0; 1055 __be32 daddr, faddr, saddr; 1056 u8 tos, scope; 1057 __be16 dport; 1058 int err, is_udplite = IS_UDPLITE(sk); 1059 int corkreq = udp_test_bit(CORK, sk) || msg->msg_flags & MSG_MORE; 1060 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *); 1061 struct sk_buff *skb; 1062 struct ip_options_data opt_copy; 1063 int uc_index; 1064 1065 if (len > 0xFFFF) 1066 return -EMSGSIZE; 1067 1068 /* 1069 * Check the flags. 1070 */ 1071 1072 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */ 1073 return -EOPNOTSUPP; 1074 1075 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag; 1076 1077 fl4 = &inet->cork.fl.u.ip4; 1078 if (READ_ONCE(up->pending)) { 1079 /* 1080 * There are pending frames. 1081 * The socket lock must be held while it's corked. 1082 */ 1083 lock_sock(sk); 1084 if (likely(up->pending)) { 1085 if (unlikely(up->pending != AF_INET)) { 1086 release_sock(sk); 1087 return -EINVAL; 1088 } 1089 goto do_append_data; 1090 } 1091 release_sock(sk); 1092 } 1093 ulen += sizeof(struct udphdr); 1094 1095 /* 1096 * Get and verify the address. 1097 */ 1098 if (usin) { 1099 if (msg->msg_namelen < sizeof(*usin)) 1100 return -EINVAL; 1101 if (usin->sin_family != AF_INET) { 1102 if (usin->sin_family != AF_UNSPEC) 1103 return -EAFNOSUPPORT; 1104 } 1105 1106 daddr = usin->sin_addr.s_addr; 1107 dport = usin->sin_port; 1108 if (dport == 0) 1109 return -EINVAL; 1110 } else { 1111 if (sk->sk_state != TCP_ESTABLISHED) 1112 return -EDESTADDRREQ; 1113 daddr = inet->inet_daddr; 1114 dport = inet->inet_dport; 1115 /* Open fast path for connected socket. 1116 Route will not be used, if at least one option is set. 1117 */ 1118 connected = 1; 1119 } 1120 1121 ipcm_init_sk(&ipc, inet); 1122 ipc.gso_size = READ_ONCE(up->gso_size); 1123 1124 if (msg->msg_controllen) { 1125 err = udp_cmsg_send(sk, msg, &ipc.gso_size); 1126 if (err > 0) { 1127 err = ip_cmsg_send(sk, msg, &ipc, 1128 sk->sk_family == AF_INET6); 1129 connected = 0; 1130 } 1131 if (unlikely(err < 0)) { 1132 kfree(ipc.opt); 1133 return err; 1134 } 1135 if (ipc.opt) 1136 free = 1; 1137 } 1138 if (!ipc.opt) { 1139 struct ip_options_rcu *inet_opt; 1140 1141 rcu_read_lock(); 1142 inet_opt = rcu_dereference(inet->inet_opt); 1143 if (inet_opt) { 1144 memcpy(&opt_copy, inet_opt, 1145 sizeof(*inet_opt) + inet_opt->opt.optlen); 1146 ipc.opt = &opt_copy.opt; 1147 } 1148 rcu_read_unlock(); 1149 } 1150 1151 if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) { 1152 err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk, 1153 (struct sockaddr *)usin, 1154 &msg->msg_namelen, 1155 &ipc.addr); 1156 if (err) 1157 goto out_free; 1158 if (usin) { 1159 if (usin->sin_port == 0) { 1160 /* BPF program set invalid port. Reject it. */ 1161 err = -EINVAL; 1162 goto out_free; 1163 } 1164 daddr = usin->sin_addr.s_addr; 1165 dport = usin->sin_port; 1166 } 1167 } 1168 1169 saddr = ipc.addr; 1170 ipc.addr = faddr = daddr; 1171 1172 if (ipc.opt && ipc.opt->opt.srr) { 1173 if (!daddr) { 1174 err = -EINVAL; 1175 goto out_free; 1176 } 1177 faddr = ipc.opt->opt.faddr; 1178 connected = 0; 1179 } 1180 tos = get_rttos(&ipc, inet); 1181 scope = ip_sendmsg_scope(inet, &ipc, msg); 1182 if (scope == RT_SCOPE_LINK) 1183 connected = 0; 1184 1185 uc_index = READ_ONCE(inet->uc_index); 1186 if (ipv4_is_multicast(daddr)) { 1187 if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif)) 1188 ipc.oif = READ_ONCE(inet->mc_index); 1189 if (!saddr) 1190 saddr = READ_ONCE(inet->mc_addr); 1191 connected = 0; 1192 } else if (!ipc.oif) { 1193 ipc.oif = uc_index; 1194 } else if (ipv4_is_lbcast(daddr) && uc_index) { 1195 /* oif is set, packet is to local broadcast and 1196 * uc_index is set. oif is most likely set 1197 * by sk_bound_dev_if. If uc_index != oif check if the 1198 * oif is an L3 master and uc_index is an L3 slave. 1199 * If so, we want to allow the send using the uc_index. 1200 */ 1201 if (ipc.oif != uc_index && 1202 ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk), 1203 uc_index)) { 1204 ipc.oif = uc_index; 1205 } 1206 } 1207 1208 if (connected) 1209 rt = (struct rtable *)sk_dst_check(sk, 0); 1210 1211 if (!rt) { 1212 struct net *net = sock_net(sk); 1213 __u8 flow_flags = inet_sk_flowi_flags(sk); 1214 1215 fl4 = &fl4_stack; 1216 1217 flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos, scope, 1218 sk->sk_protocol, flow_flags, faddr, saddr, 1219 dport, inet->inet_sport, sk->sk_uid); 1220 1221 security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4)); 1222 rt = ip_route_output_flow(net, fl4, sk); 1223 if (IS_ERR(rt)) { 1224 err = PTR_ERR(rt); 1225 rt = NULL; 1226 if (err == -ENETUNREACH) 1227 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 1228 goto out; 1229 } 1230 1231 err = -EACCES; 1232 if ((rt->rt_flags & RTCF_BROADCAST) && 1233 !sock_flag(sk, SOCK_BROADCAST)) 1234 goto out; 1235 if (connected) 1236 sk_dst_set(sk, dst_clone(&rt->dst)); 1237 } 1238 1239 if (msg->msg_flags&MSG_CONFIRM) 1240 goto do_confirm; 1241 back_from_confirm: 1242 1243 saddr = fl4->saddr; 1244 if (!ipc.addr) 1245 daddr = ipc.addr = fl4->daddr; 1246 1247 /* Lockless fast path for the non-corking case. */ 1248 if (!corkreq) { 1249 struct inet_cork cork; 1250 1251 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen, 1252 sizeof(struct udphdr), &ipc, &rt, 1253 &cork, msg->msg_flags); 1254 err = PTR_ERR(skb); 1255 if (!IS_ERR_OR_NULL(skb)) 1256 err = udp_send_skb(skb, fl4, &cork); 1257 goto out; 1258 } 1259 1260 lock_sock(sk); 1261 if (unlikely(up->pending)) { 1262 /* The socket is already corked while preparing it. */ 1263 /* ... which is an evident application bug. --ANK */ 1264 release_sock(sk); 1265 1266 net_dbg_ratelimited("socket already corked\n"); 1267 err = -EINVAL; 1268 goto out; 1269 } 1270 /* 1271 * Now cork the socket to pend data. 1272 */ 1273 fl4 = &inet->cork.fl.u.ip4; 1274 fl4->daddr = daddr; 1275 fl4->saddr = saddr; 1276 fl4->fl4_dport = dport; 1277 fl4->fl4_sport = inet->inet_sport; 1278 WRITE_ONCE(up->pending, AF_INET); 1279 1280 do_append_data: 1281 up->len += ulen; 1282 err = ip_append_data(sk, fl4, getfrag, msg, ulen, 1283 sizeof(struct udphdr), &ipc, &rt, 1284 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags); 1285 if (err) 1286 udp_flush_pending_frames(sk); 1287 else if (!corkreq) 1288 err = udp_push_pending_frames(sk); 1289 else if (unlikely(skb_queue_empty(&sk->sk_write_queue))) 1290 WRITE_ONCE(up->pending, 0); 1291 release_sock(sk); 1292 1293 out: 1294 ip_rt_put(rt); 1295 out_free: 1296 if (free) 1297 kfree(ipc.opt); 1298 if (!err) 1299 return len; 1300 /* 1301 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting 1302 * ENOBUFS might not be good (it's not tunable per se), but otherwise 1303 * we don't have a good statistic (IpOutDiscards but it can be too many 1304 * things). We could add another new stat but at least for now that 1305 * seems like overkill. 1306 */ 1307 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1308 UDP_INC_STATS(sock_net(sk), 1309 UDP_MIB_SNDBUFERRORS, is_udplite); 1310 } 1311 return err; 1312 1313 do_confirm: 1314 if (msg->msg_flags & MSG_PROBE) 1315 dst_confirm_neigh(&rt->dst, &fl4->daddr); 1316 if (!(msg->msg_flags&MSG_PROBE) || len) 1317 goto back_from_confirm; 1318 err = 0; 1319 goto out; 1320 } 1321 EXPORT_SYMBOL(udp_sendmsg); 1322 1323 void udp_splice_eof(struct socket *sock) 1324 { 1325 struct sock *sk = sock->sk; 1326 struct udp_sock *up = udp_sk(sk); 1327 1328 if (!READ_ONCE(up->pending) || udp_test_bit(CORK, sk)) 1329 return; 1330 1331 lock_sock(sk); 1332 if (up->pending && !udp_test_bit(CORK, sk)) 1333 udp_push_pending_frames(sk); 1334 release_sock(sk); 1335 } 1336 EXPORT_SYMBOL_GPL(udp_splice_eof); 1337 1338 #define UDP_SKB_IS_STATELESS 0x80000000 1339 1340 /* all head states (dst, sk, nf conntrack) except skb extensions are 1341 * cleared by udp_rcv(). 1342 * 1343 * We need to preserve secpath, if present, to eventually process 1344 * IP_CMSG_PASSSEC at recvmsg() time. 1345 * 1346 * Other extensions can be cleared. 1347 */ 1348 static bool udp_try_make_stateless(struct sk_buff *skb) 1349 { 1350 if (!skb_has_extensions(skb)) 1351 return true; 1352 1353 if (!secpath_exists(skb)) { 1354 skb_ext_reset(skb); 1355 return true; 1356 } 1357 1358 return false; 1359 } 1360 1361 static void udp_set_dev_scratch(struct sk_buff *skb) 1362 { 1363 struct udp_dev_scratch *scratch = udp_skb_scratch(skb); 1364 1365 BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long)); 1366 scratch->_tsize_state = skb->truesize; 1367 #if BITS_PER_LONG == 64 1368 scratch->len = skb->len; 1369 scratch->csum_unnecessary = !!skb_csum_unnecessary(skb); 1370 scratch->is_linear = !skb_is_nonlinear(skb); 1371 #endif 1372 if (udp_try_make_stateless(skb)) 1373 scratch->_tsize_state |= UDP_SKB_IS_STATELESS; 1374 } 1375 1376 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb) 1377 { 1378 /* We come here after udp_lib_checksum_complete() returned 0. 1379 * This means that __skb_checksum_complete() might have 1380 * set skb->csum_valid to 1. 1381 * On 64bit platforms, we can set csum_unnecessary 1382 * to true, but only if the skb is not shared. 1383 */ 1384 #if BITS_PER_LONG == 64 1385 if (!skb_shared(skb)) 1386 udp_skb_scratch(skb)->csum_unnecessary = true; 1387 #endif 1388 } 1389 1390 static int udp_skb_truesize(struct sk_buff *skb) 1391 { 1392 return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS; 1393 } 1394 1395 static bool udp_skb_has_head_state(struct sk_buff *skb) 1396 { 1397 return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS); 1398 } 1399 1400 /* fully reclaim rmem/fwd memory allocated for skb */ 1401 static void udp_rmem_release(struct sock *sk, int size, int partial, 1402 bool rx_queue_lock_held) 1403 { 1404 struct udp_sock *up = udp_sk(sk); 1405 struct sk_buff_head *sk_queue; 1406 int amt; 1407 1408 if (likely(partial)) { 1409 up->forward_deficit += size; 1410 size = up->forward_deficit; 1411 if (size < READ_ONCE(up->forward_threshold) && 1412 !skb_queue_empty(&up->reader_queue)) 1413 return; 1414 } else { 1415 size += up->forward_deficit; 1416 } 1417 up->forward_deficit = 0; 1418 1419 /* acquire the sk_receive_queue for fwd allocated memory scheduling, 1420 * if the called don't held it already 1421 */ 1422 sk_queue = &sk->sk_receive_queue; 1423 if (!rx_queue_lock_held) 1424 spin_lock(&sk_queue->lock); 1425 1426 1427 sk_forward_alloc_add(sk, size); 1428 amt = (sk->sk_forward_alloc - partial) & ~(PAGE_SIZE - 1); 1429 sk_forward_alloc_add(sk, -amt); 1430 1431 if (amt) 1432 __sk_mem_reduce_allocated(sk, amt >> PAGE_SHIFT); 1433 1434 atomic_sub(size, &sk->sk_rmem_alloc); 1435 1436 /* this can save us from acquiring the rx queue lock on next receive */ 1437 skb_queue_splice_tail_init(sk_queue, &up->reader_queue); 1438 1439 if (!rx_queue_lock_held) 1440 spin_unlock(&sk_queue->lock); 1441 } 1442 1443 /* Note: called with reader_queue.lock held. 1444 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch 1445 * This avoids a cache line miss while receive_queue lock is held. 1446 * Look at __udp_enqueue_schedule_skb() to find where this copy is done. 1447 */ 1448 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb) 1449 { 1450 prefetch(&skb->data); 1451 udp_rmem_release(sk, udp_skb_truesize(skb), 1, false); 1452 } 1453 EXPORT_SYMBOL(udp_skb_destructor); 1454 1455 /* as above, but the caller held the rx queue lock, too */ 1456 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb) 1457 { 1458 prefetch(&skb->data); 1459 udp_rmem_release(sk, udp_skb_truesize(skb), 1, true); 1460 } 1461 1462 /* Idea of busylocks is to let producers grab an extra spinlock 1463 * to relieve pressure on the receive_queue spinlock shared by consumer. 1464 * Under flood, this means that only one producer can be in line 1465 * trying to acquire the receive_queue spinlock. 1466 * These busylock can be allocated on a per cpu manner, instead of a 1467 * per socket one (that would consume a cache line per socket) 1468 */ 1469 static int udp_busylocks_log __read_mostly; 1470 static spinlock_t *udp_busylocks __read_mostly; 1471 1472 static spinlock_t *busylock_acquire(void *ptr) 1473 { 1474 spinlock_t *busy; 1475 1476 busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log); 1477 spin_lock(busy); 1478 return busy; 1479 } 1480 1481 static void busylock_release(spinlock_t *busy) 1482 { 1483 if (busy) 1484 spin_unlock(busy); 1485 } 1486 1487 static int udp_rmem_schedule(struct sock *sk, int size) 1488 { 1489 int delta; 1490 1491 delta = size - sk->sk_forward_alloc; 1492 if (delta > 0 && !__sk_mem_schedule(sk, delta, SK_MEM_RECV)) 1493 return -ENOBUFS; 1494 1495 return 0; 1496 } 1497 1498 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb) 1499 { 1500 struct sk_buff_head *list = &sk->sk_receive_queue; 1501 int rmem, err = -ENOMEM; 1502 spinlock_t *busy = NULL; 1503 int size; 1504 1505 /* try to avoid the costly atomic add/sub pair when the receive 1506 * queue is full; always allow at least a packet 1507 */ 1508 rmem = atomic_read(&sk->sk_rmem_alloc); 1509 if (rmem > sk->sk_rcvbuf) 1510 goto drop; 1511 1512 /* Under mem pressure, it might be helpful to help udp_recvmsg() 1513 * having linear skbs : 1514 * - Reduce memory overhead and thus increase receive queue capacity 1515 * - Less cache line misses at copyout() time 1516 * - Less work at consume_skb() (less alien page frag freeing) 1517 */ 1518 if (rmem > (sk->sk_rcvbuf >> 1)) { 1519 skb_condense(skb); 1520 1521 busy = busylock_acquire(sk); 1522 } 1523 size = skb->truesize; 1524 udp_set_dev_scratch(skb); 1525 1526 /* we drop only if the receive buf is full and the receive 1527 * queue contains some other skb 1528 */ 1529 rmem = atomic_add_return(size, &sk->sk_rmem_alloc); 1530 if (rmem > (size + (unsigned int)sk->sk_rcvbuf)) 1531 goto uncharge_drop; 1532 1533 spin_lock(&list->lock); 1534 err = udp_rmem_schedule(sk, size); 1535 if (err) { 1536 spin_unlock(&list->lock); 1537 goto uncharge_drop; 1538 } 1539 1540 sk_forward_alloc_add(sk, -size); 1541 1542 /* no need to setup a destructor, we will explicitly release the 1543 * forward allocated memory on dequeue 1544 */ 1545 sock_skb_set_dropcount(sk, skb); 1546 1547 __skb_queue_tail(list, skb); 1548 spin_unlock(&list->lock); 1549 1550 if (!sock_flag(sk, SOCK_DEAD)) 1551 INDIRECT_CALL_1(sk->sk_data_ready, sock_def_readable, sk); 1552 1553 busylock_release(busy); 1554 return 0; 1555 1556 uncharge_drop: 1557 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 1558 1559 drop: 1560 atomic_inc(&sk->sk_drops); 1561 busylock_release(busy); 1562 return err; 1563 } 1564 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb); 1565 1566 void udp_destruct_common(struct sock *sk) 1567 { 1568 /* reclaim completely the forward allocated memory */ 1569 struct udp_sock *up = udp_sk(sk); 1570 unsigned int total = 0; 1571 struct sk_buff *skb; 1572 1573 skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue); 1574 while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) { 1575 total += skb->truesize; 1576 kfree_skb(skb); 1577 } 1578 udp_rmem_release(sk, total, 0, true); 1579 } 1580 EXPORT_SYMBOL_GPL(udp_destruct_common); 1581 1582 static void udp_destruct_sock(struct sock *sk) 1583 { 1584 udp_destruct_common(sk); 1585 inet_sock_destruct(sk); 1586 } 1587 1588 int udp_init_sock(struct sock *sk) 1589 { 1590 udp_lib_init_sock(sk); 1591 sk->sk_destruct = udp_destruct_sock; 1592 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); 1593 return 0; 1594 } 1595 1596 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len) 1597 { 1598 if (unlikely(READ_ONCE(udp_sk(sk)->peeking_with_offset))) 1599 sk_peek_offset_bwd(sk, len); 1600 1601 if (!skb_unref(skb)) 1602 return; 1603 1604 /* In the more common cases we cleared the head states previously, 1605 * see __udp_queue_rcv_skb(). 1606 */ 1607 if (unlikely(udp_skb_has_head_state(skb))) 1608 skb_release_head_state(skb); 1609 __consume_stateless_skb(skb); 1610 } 1611 EXPORT_SYMBOL_GPL(skb_consume_udp); 1612 1613 static struct sk_buff *__first_packet_length(struct sock *sk, 1614 struct sk_buff_head *rcvq, 1615 int *total) 1616 { 1617 struct sk_buff *skb; 1618 1619 while ((skb = skb_peek(rcvq)) != NULL) { 1620 if (udp_lib_checksum_complete(skb)) { 1621 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, 1622 IS_UDPLITE(sk)); 1623 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, 1624 IS_UDPLITE(sk)); 1625 atomic_inc(&sk->sk_drops); 1626 __skb_unlink(skb, rcvq); 1627 *total += skb->truesize; 1628 kfree_skb(skb); 1629 } else { 1630 udp_skb_csum_unnecessary_set(skb); 1631 break; 1632 } 1633 } 1634 return skb; 1635 } 1636 1637 /** 1638 * first_packet_length - return length of first packet in receive queue 1639 * @sk: socket 1640 * 1641 * Drops all bad checksum frames, until a valid one is found. 1642 * Returns the length of found skb, or -1 if none is found. 1643 */ 1644 static int first_packet_length(struct sock *sk) 1645 { 1646 struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue; 1647 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1648 struct sk_buff *skb; 1649 int total = 0; 1650 int res; 1651 1652 spin_lock_bh(&rcvq->lock); 1653 skb = __first_packet_length(sk, rcvq, &total); 1654 if (!skb && !skb_queue_empty_lockless(sk_queue)) { 1655 spin_lock(&sk_queue->lock); 1656 skb_queue_splice_tail_init(sk_queue, rcvq); 1657 spin_unlock(&sk_queue->lock); 1658 1659 skb = __first_packet_length(sk, rcvq, &total); 1660 } 1661 res = skb ? skb->len : -1; 1662 if (total) 1663 udp_rmem_release(sk, total, 1, false); 1664 spin_unlock_bh(&rcvq->lock); 1665 return res; 1666 } 1667 1668 /* 1669 * IOCTL requests applicable to the UDP protocol 1670 */ 1671 1672 int udp_ioctl(struct sock *sk, int cmd, int *karg) 1673 { 1674 switch (cmd) { 1675 case SIOCOUTQ: 1676 { 1677 *karg = sk_wmem_alloc_get(sk); 1678 return 0; 1679 } 1680 1681 case SIOCINQ: 1682 { 1683 *karg = max_t(int, 0, first_packet_length(sk)); 1684 return 0; 1685 } 1686 1687 default: 1688 return -ENOIOCTLCMD; 1689 } 1690 1691 return 0; 1692 } 1693 EXPORT_SYMBOL(udp_ioctl); 1694 1695 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags, 1696 int *off, int *err) 1697 { 1698 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1699 struct sk_buff_head *queue; 1700 struct sk_buff *last; 1701 long timeo; 1702 int error; 1703 1704 queue = &udp_sk(sk)->reader_queue; 1705 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1706 do { 1707 struct sk_buff *skb; 1708 1709 error = sock_error(sk); 1710 if (error) 1711 break; 1712 1713 error = -EAGAIN; 1714 do { 1715 spin_lock_bh(&queue->lock); 1716 skb = __skb_try_recv_from_queue(sk, queue, flags, off, 1717 err, &last); 1718 if (skb) { 1719 if (!(flags & MSG_PEEK)) 1720 udp_skb_destructor(sk, skb); 1721 spin_unlock_bh(&queue->lock); 1722 return skb; 1723 } 1724 1725 if (skb_queue_empty_lockless(sk_queue)) { 1726 spin_unlock_bh(&queue->lock); 1727 goto busy_check; 1728 } 1729 1730 /* refill the reader queue and walk it again 1731 * keep both queues locked to avoid re-acquiring 1732 * the sk_receive_queue lock if fwd memory scheduling 1733 * is needed. 1734 */ 1735 spin_lock(&sk_queue->lock); 1736 skb_queue_splice_tail_init(sk_queue, queue); 1737 1738 skb = __skb_try_recv_from_queue(sk, queue, flags, off, 1739 err, &last); 1740 if (skb && !(flags & MSG_PEEK)) 1741 udp_skb_dtor_locked(sk, skb); 1742 spin_unlock(&sk_queue->lock); 1743 spin_unlock_bh(&queue->lock); 1744 if (skb) 1745 return skb; 1746 1747 busy_check: 1748 if (!sk_can_busy_loop(sk)) 1749 break; 1750 1751 sk_busy_loop(sk, flags & MSG_DONTWAIT); 1752 } while (!skb_queue_empty_lockless(sk_queue)); 1753 1754 /* sk_queue is empty, reader_queue may contain peeked packets */ 1755 } while (timeo && 1756 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue, 1757 &error, &timeo, 1758 (struct sk_buff *)sk_queue)); 1759 1760 *err = error; 1761 return NULL; 1762 } 1763 EXPORT_SYMBOL(__skb_recv_udp); 1764 1765 int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor) 1766 { 1767 struct sk_buff *skb; 1768 int err; 1769 1770 try_again: 1771 skb = skb_recv_udp(sk, MSG_DONTWAIT, &err); 1772 if (!skb) 1773 return err; 1774 1775 if (udp_lib_checksum_complete(skb)) { 1776 int is_udplite = IS_UDPLITE(sk); 1777 struct net *net = sock_net(sk); 1778 1779 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, is_udplite); 1780 __UDP_INC_STATS(net, UDP_MIB_INERRORS, is_udplite); 1781 atomic_inc(&sk->sk_drops); 1782 kfree_skb(skb); 1783 goto try_again; 1784 } 1785 1786 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk)); 1787 return recv_actor(sk, skb); 1788 } 1789 EXPORT_SYMBOL(udp_read_skb); 1790 1791 /* 1792 * This should be easy, if there is something there we 1793 * return it, otherwise we block. 1794 */ 1795 1796 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, 1797 int *addr_len) 1798 { 1799 struct inet_sock *inet = inet_sk(sk); 1800 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name); 1801 struct sk_buff *skb; 1802 unsigned int ulen, copied; 1803 int off, err, peeking = flags & MSG_PEEK; 1804 int is_udplite = IS_UDPLITE(sk); 1805 bool checksum_valid = false; 1806 1807 if (flags & MSG_ERRQUEUE) 1808 return ip_recv_error(sk, msg, len, addr_len); 1809 1810 try_again: 1811 off = sk_peek_offset(sk, flags); 1812 skb = __skb_recv_udp(sk, flags, &off, &err); 1813 if (!skb) 1814 return err; 1815 1816 ulen = udp_skb_len(skb); 1817 copied = len; 1818 if (copied > ulen - off) 1819 copied = ulen - off; 1820 else if (copied < ulen) 1821 msg->msg_flags |= MSG_TRUNC; 1822 1823 /* 1824 * If checksum is needed at all, try to do it while copying the 1825 * data. If the data is truncated, or if we only want a partial 1826 * coverage checksum (UDP-Lite), do it before the copy. 1827 */ 1828 1829 if (copied < ulen || peeking || 1830 (is_udplite && UDP_SKB_CB(skb)->partial_cov)) { 1831 checksum_valid = udp_skb_csum_unnecessary(skb) || 1832 !__udp_lib_checksum_complete(skb); 1833 if (!checksum_valid) 1834 goto csum_copy_err; 1835 } 1836 1837 if (checksum_valid || udp_skb_csum_unnecessary(skb)) { 1838 if (udp_skb_is_linear(skb)) 1839 err = copy_linear_skb(skb, copied, off, &msg->msg_iter); 1840 else 1841 err = skb_copy_datagram_msg(skb, off, msg, copied); 1842 } else { 1843 err = skb_copy_and_csum_datagram_msg(skb, off, msg); 1844 1845 if (err == -EINVAL) 1846 goto csum_copy_err; 1847 } 1848 1849 if (unlikely(err)) { 1850 if (!peeking) { 1851 atomic_inc(&sk->sk_drops); 1852 UDP_INC_STATS(sock_net(sk), 1853 UDP_MIB_INERRORS, is_udplite); 1854 } 1855 kfree_skb(skb); 1856 return err; 1857 } 1858 1859 if (!peeking) 1860 UDP_INC_STATS(sock_net(sk), 1861 UDP_MIB_INDATAGRAMS, is_udplite); 1862 1863 sock_recv_cmsgs(msg, sk, skb); 1864 1865 /* Copy the address. */ 1866 if (sin) { 1867 sin->sin_family = AF_INET; 1868 sin->sin_port = udp_hdr(skb)->source; 1869 sin->sin_addr.s_addr = ip_hdr(skb)->saddr; 1870 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 1871 *addr_len = sizeof(*sin); 1872 1873 BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk, 1874 (struct sockaddr *)sin, 1875 addr_len); 1876 } 1877 1878 if (udp_test_bit(GRO_ENABLED, sk)) 1879 udp_cmsg_recv(msg, sk, skb); 1880 1881 if (inet_cmsg_flags(inet)) 1882 ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off); 1883 1884 err = copied; 1885 if (flags & MSG_TRUNC) 1886 err = ulen; 1887 1888 skb_consume_udp(sk, skb, peeking ? -err : err); 1889 return err; 1890 1891 csum_copy_err: 1892 if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags, 1893 udp_skb_destructor)) { 1894 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 1895 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1896 } 1897 kfree_skb(skb); 1898 1899 /* starting over for a new packet, but check if we need to yield */ 1900 cond_resched(); 1901 msg->msg_flags &= ~MSG_TRUNC; 1902 goto try_again; 1903 } 1904 1905 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 1906 { 1907 /* This check is replicated from __ip4_datagram_connect() and 1908 * intended to prevent BPF program called below from accessing bytes 1909 * that are out of the bound specified by user in addr_len. 1910 */ 1911 if (addr_len < sizeof(struct sockaddr_in)) 1912 return -EINVAL; 1913 1914 return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr, &addr_len); 1915 } 1916 EXPORT_SYMBOL(udp_pre_connect); 1917 1918 int __udp_disconnect(struct sock *sk, int flags) 1919 { 1920 struct inet_sock *inet = inet_sk(sk); 1921 /* 1922 * 1003.1g - break association. 1923 */ 1924 1925 sk->sk_state = TCP_CLOSE; 1926 inet->inet_daddr = 0; 1927 inet->inet_dport = 0; 1928 sock_rps_reset_rxhash(sk); 1929 sk->sk_bound_dev_if = 0; 1930 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) { 1931 inet_reset_saddr(sk); 1932 if (sk->sk_prot->rehash && 1933 (sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 1934 sk->sk_prot->rehash(sk); 1935 } 1936 1937 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) { 1938 sk->sk_prot->unhash(sk); 1939 inet->inet_sport = 0; 1940 } 1941 sk_dst_reset(sk); 1942 return 0; 1943 } 1944 EXPORT_SYMBOL(__udp_disconnect); 1945 1946 int udp_disconnect(struct sock *sk, int flags) 1947 { 1948 lock_sock(sk); 1949 __udp_disconnect(sk, flags); 1950 release_sock(sk); 1951 return 0; 1952 } 1953 EXPORT_SYMBOL(udp_disconnect); 1954 1955 void udp_lib_unhash(struct sock *sk) 1956 { 1957 if (sk_hashed(sk)) { 1958 struct udp_table *udptable = udp_get_table_prot(sk); 1959 struct udp_hslot *hslot, *hslot2; 1960 1961 hslot = udp_hashslot(udptable, sock_net(sk), 1962 udp_sk(sk)->udp_port_hash); 1963 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1964 1965 spin_lock_bh(&hslot->lock); 1966 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1967 reuseport_detach_sock(sk); 1968 if (sk_del_node_init_rcu(sk)) { 1969 hslot->count--; 1970 inet_sk(sk)->inet_num = 0; 1971 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 1972 1973 spin_lock(&hslot2->lock); 1974 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 1975 hslot2->count--; 1976 spin_unlock(&hslot2->lock); 1977 } 1978 spin_unlock_bh(&hslot->lock); 1979 } 1980 } 1981 EXPORT_SYMBOL(udp_lib_unhash); 1982 1983 /* 1984 * inet_rcv_saddr was changed, we must rehash secondary hash 1985 */ 1986 void udp_lib_rehash(struct sock *sk, u16 newhash) 1987 { 1988 if (sk_hashed(sk)) { 1989 struct udp_table *udptable = udp_get_table_prot(sk); 1990 struct udp_hslot *hslot, *hslot2, *nhslot2; 1991 1992 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1993 nhslot2 = udp_hashslot2(udptable, newhash); 1994 udp_sk(sk)->udp_portaddr_hash = newhash; 1995 1996 if (hslot2 != nhslot2 || 1997 rcu_access_pointer(sk->sk_reuseport_cb)) { 1998 hslot = udp_hashslot(udptable, sock_net(sk), 1999 udp_sk(sk)->udp_port_hash); 2000 /* we must lock primary chain too */ 2001 spin_lock_bh(&hslot->lock); 2002 if (rcu_access_pointer(sk->sk_reuseport_cb)) 2003 reuseport_detach_sock(sk); 2004 2005 if (hslot2 != nhslot2) { 2006 spin_lock(&hslot2->lock); 2007 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 2008 hslot2->count--; 2009 spin_unlock(&hslot2->lock); 2010 2011 spin_lock(&nhslot2->lock); 2012 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 2013 &nhslot2->head); 2014 nhslot2->count++; 2015 spin_unlock(&nhslot2->lock); 2016 } 2017 2018 spin_unlock_bh(&hslot->lock); 2019 } 2020 } 2021 } 2022 EXPORT_SYMBOL(udp_lib_rehash); 2023 2024 void udp_v4_rehash(struct sock *sk) 2025 { 2026 u16 new_hash = ipv4_portaddr_hash(sock_net(sk), 2027 inet_sk(sk)->inet_rcv_saddr, 2028 inet_sk(sk)->inet_num); 2029 udp_lib_rehash(sk, new_hash); 2030 } 2031 2032 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 2033 { 2034 int rc; 2035 2036 if (inet_sk(sk)->inet_daddr) { 2037 sock_rps_save_rxhash(sk, skb); 2038 sk_mark_napi_id(sk, skb); 2039 sk_incoming_cpu_update(sk); 2040 } else { 2041 sk_mark_napi_id_once(sk, skb); 2042 } 2043 2044 rc = __udp_enqueue_schedule_skb(sk, skb); 2045 if (rc < 0) { 2046 int is_udplite = IS_UDPLITE(sk); 2047 int drop_reason; 2048 2049 /* Note that an ENOMEM error is charged twice */ 2050 if (rc == -ENOMEM) { 2051 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS, 2052 is_udplite); 2053 drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF; 2054 } else { 2055 UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS, 2056 is_udplite); 2057 drop_reason = SKB_DROP_REASON_PROTO_MEM; 2058 } 2059 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 2060 kfree_skb_reason(skb, drop_reason); 2061 trace_udp_fail_queue_rcv_skb(rc, sk); 2062 return -1; 2063 } 2064 2065 return 0; 2066 } 2067 2068 /* returns: 2069 * -1: error 2070 * 0: success 2071 * >0: "udp encap" protocol resubmission 2072 * 2073 * Note that in the success and error cases, the skb is assumed to 2074 * have either been requeued or freed. 2075 */ 2076 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb) 2077 { 2078 int drop_reason = SKB_DROP_REASON_NOT_SPECIFIED; 2079 struct udp_sock *up = udp_sk(sk); 2080 int is_udplite = IS_UDPLITE(sk); 2081 2082 /* 2083 * Charge it to the socket, dropping if the queue is full. 2084 */ 2085 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) { 2086 drop_reason = SKB_DROP_REASON_XFRM_POLICY; 2087 goto drop; 2088 } 2089 nf_reset_ct(skb); 2090 2091 if (static_branch_unlikely(&udp_encap_needed_key) && 2092 READ_ONCE(up->encap_type)) { 2093 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb); 2094 2095 /* 2096 * This is an encapsulation socket so pass the skb to 2097 * the socket's udp_encap_rcv() hook. Otherwise, just 2098 * fall through and pass this up the UDP socket. 2099 * up->encap_rcv() returns the following value: 2100 * =0 if skb was successfully passed to the encap 2101 * handler or was discarded by it. 2102 * >0 if skb should be passed on to UDP. 2103 * <0 if skb should be resubmitted as proto -N 2104 */ 2105 2106 /* if we're overly short, let UDP handle it */ 2107 encap_rcv = READ_ONCE(up->encap_rcv); 2108 if (encap_rcv) { 2109 int ret; 2110 2111 /* Verify checksum before giving to encap */ 2112 if (udp_lib_checksum_complete(skb)) 2113 goto csum_error; 2114 2115 ret = encap_rcv(sk, skb); 2116 if (ret <= 0) { 2117 __UDP_INC_STATS(sock_net(sk), 2118 UDP_MIB_INDATAGRAMS, 2119 is_udplite); 2120 return -ret; 2121 } 2122 } 2123 2124 /* FALLTHROUGH -- it's a UDP Packet */ 2125 } 2126 2127 /* 2128 * UDP-Lite specific tests, ignored on UDP sockets 2129 */ 2130 if (udp_test_bit(UDPLITE_RECV_CC, sk) && UDP_SKB_CB(skb)->partial_cov) { 2131 u16 pcrlen = READ_ONCE(up->pcrlen); 2132 2133 /* 2134 * MIB statistics other than incrementing the error count are 2135 * disabled for the following two types of errors: these depend 2136 * on the application settings, not on the functioning of the 2137 * protocol stack as such. 2138 * 2139 * RFC 3828 here recommends (sec 3.3): "There should also be a 2140 * way ... to ... at least let the receiving application block 2141 * delivery of packets with coverage values less than a value 2142 * provided by the application." 2143 */ 2144 if (pcrlen == 0) { /* full coverage was set */ 2145 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n", 2146 UDP_SKB_CB(skb)->cscov, skb->len); 2147 goto drop; 2148 } 2149 /* The next case involves violating the min. coverage requested 2150 * by the receiver. This is subtle: if receiver wants x and x is 2151 * greater than the buffersize/MTU then receiver will complain 2152 * that it wants x while sender emits packets of smaller size y. 2153 * Therefore the above ...()->partial_cov statement is essential. 2154 */ 2155 if (UDP_SKB_CB(skb)->cscov < pcrlen) { 2156 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n", 2157 UDP_SKB_CB(skb)->cscov, pcrlen); 2158 goto drop; 2159 } 2160 } 2161 2162 prefetch(&sk->sk_rmem_alloc); 2163 if (rcu_access_pointer(sk->sk_filter) && 2164 udp_lib_checksum_complete(skb)) 2165 goto csum_error; 2166 2167 if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) { 2168 drop_reason = SKB_DROP_REASON_SOCKET_FILTER; 2169 goto drop; 2170 } 2171 2172 udp_csum_pull_header(skb); 2173 2174 ipv4_pktinfo_prepare(sk, skb, true); 2175 return __udp_queue_rcv_skb(sk, skb); 2176 2177 csum_error: 2178 drop_reason = SKB_DROP_REASON_UDP_CSUM; 2179 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 2180 drop: 2181 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 2182 atomic_inc(&sk->sk_drops); 2183 kfree_skb_reason(skb, drop_reason); 2184 return -1; 2185 } 2186 2187 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 2188 { 2189 struct sk_buff *next, *segs; 2190 int ret; 2191 2192 if (likely(!udp_unexpected_gso(sk, skb))) 2193 return udp_queue_rcv_one_skb(sk, skb); 2194 2195 BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET); 2196 __skb_push(skb, -skb_mac_offset(skb)); 2197 segs = udp_rcv_segment(sk, skb, true); 2198 skb_list_walk_safe(segs, skb, next) { 2199 __skb_pull(skb, skb_transport_offset(skb)); 2200 2201 udp_post_segment_fix_csum(skb); 2202 ret = udp_queue_rcv_one_skb(sk, skb); 2203 if (ret > 0) 2204 ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret); 2205 } 2206 return 0; 2207 } 2208 2209 /* For TCP sockets, sk_rx_dst is protected by socket lock 2210 * For UDP, we use xchg() to guard against concurrent changes. 2211 */ 2212 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst) 2213 { 2214 struct dst_entry *old; 2215 2216 if (dst_hold_safe(dst)) { 2217 old = xchg((__force struct dst_entry **)&sk->sk_rx_dst, dst); 2218 dst_release(old); 2219 return old != dst; 2220 } 2221 return false; 2222 } 2223 EXPORT_SYMBOL(udp_sk_rx_dst_set); 2224 2225 /* 2226 * Multicasts and broadcasts go to each listener. 2227 * 2228 * Note: called only from the BH handler context. 2229 */ 2230 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb, 2231 struct udphdr *uh, 2232 __be32 saddr, __be32 daddr, 2233 struct udp_table *udptable, 2234 int proto) 2235 { 2236 struct sock *sk, *first = NULL; 2237 unsigned short hnum = ntohs(uh->dest); 2238 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum); 2239 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10); 2240 unsigned int offset = offsetof(typeof(*sk), sk_node); 2241 int dif = skb->dev->ifindex; 2242 int sdif = inet_sdif(skb); 2243 struct hlist_node *node; 2244 struct sk_buff *nskb; 2245 2246 if (use_hash2) { 2247 hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) & 2248 udptable->mask; 2249 hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask; 2250 start_lookup: 2251 hslot = &udptable->hash2[hash2]; 2252 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node); 2253 } 2254 2255 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) { 2256 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr, 2257 uh->source, saddr, dif, sdif, hnum)) 2258 continue; 2259 2260 if (!first) { 2261 first = sk; 2262 continue; 2263 } 2264 nskb = skb_clone(skb, GFP_ATOMIC); 2265 2266 if (unlikely(!nskb)) { 2267 atomic_inc(&sk->sk_drops); 2268 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS, 2269 IS_UDPLITE(sk)); 2270 __UDP_INC_STATS(net, UDP_MIB_INERRORS, 2271 IS_UDPLITE(sk)); 2272 continue; 2273 } 2274 if (udp_queue_rcv_skb(sk, nskb) > 0) 2275 consume_skb(nskb); 2276 } 2277 2278 /* Also lookup *:port if we are using hash2 and haven't done so yet. */ 2279 if (use_hash2 && hash2 != hash2_any) { 2280 hash2 = hash2_any; 2281 goto start_lookup; 2282 } 2283 2284 if (first) { 2285 if (udp_queue_rcv_skb(first, skb) > 0) 2286 consume_skb(skb); 2287 } else { 2288 kfree_skb(skb); 2289 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI, 2290 proto == IPPROTO_UDPLITE); 2291 } 2292 return 0; 2293 } 2294 2295 /* Initialize UDP checksum. If exited with zero value (success), 2296 * CHECKSUM_UNNECESSARY means, that no more checks are required. 2297 * Otherwise, csum completion requires checksumming packet body, 2298 * including udp header and folding it to skb->csum. 2299 */ 2300 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh, 2301 int proto) 2302 { 2303 int err; 2304 2305 UDP_SKB_CB(skb)->partial_cov = 0; 2306 UDP_SKB_CB(skb)->cscov = skb->len; 2307 2308 if (proto == IPPROTO_UDPLITE) { 2309 err = udplite_checksum_init(skb, uh); 2310 if (err) 2311 return err; 2312 2313 if (UDP_SKB_CB(skb)->partial_cov) { 2314 skb->csum = inet_compute_pseudo(skb, proto); 2315 return 0; 2316 } 2317 } 2318 2319 /* Note, we are only interested in != 0 or == 0, thus the 2320 * force to int. 2321 */ 2322 err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check, 2323 inet_compute_pseudo); 2324 if (err) 2325 return err; 2326 2327 if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) { 2328 /* If SW calculated the value, we know it's bad */ 2329 if (skb->csum_complete_sw) 2330 return 1; 2331 2332 /* HW says the value is bad. Let's validate that. 2333 * skb->csum is no longer the full packet checksum, 2334 * so don't treat it as such. 2335 */ 2336 skb_checksum_complete_unset(skb); 2337 } 2338 2339 return 0; 2340 } 2341 2342 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and 2343 * return code conversion for ip layer consumption 2344 */ 2345 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb, 2346 struct udphdr *uh) 2347 { 2348 int ret; 2349 2350 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk)) 2351 skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo); 2352 2353 ret = udp_queue_rcv_skb(sk, skb); 2354 2355 /* a return value > 0 means to resubmit the input, but 2356 * it wants the return to be -protocol, or 0 2357 */ 2358 if (ret > 0) 2359 return -ret; 2360 return 0; 2361 } 2362 2363 /* 2364 * All we need to do is get the socket, and then do a checksum. 2365 */ 2366 2367 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable, 2368 int proto) 2369 { 2370 struct sock *sk; 2371 struct udphdr *uh; 2372 unsigned short ulen; 2373 struct rtable *rt = skb_rtable(skb); 2374 __be32 saddr, daddr; 2375 struct net *net = dev_net(skb->dev); 2376 bool refcounted; 2377 int drop_reason; 2378 2379 drop_reason = SKB_DROP_REASON_NOT_SPECIFIED; 2380 2381 /* 2382 * Validate the packet. 2383 */ 2384 if (!pskb_may_pull(skb, sizeof(struct udphdr))) 2385 goto drop; /* No space for header. */ 2386 2387 uh = udp_hdr(skb); 2388 ulen = ntohs(uh->len); 2389 saddr = ip_hdr(skb)->saddr; 2390 daddr = ip_hdr(skb)->daddr; 2391 2392 if (ulen > skb->len) 2393 goto short_packet; 2394 2395 if (proto == IPPROTO_UDP) { 2396 /* UDP validates ulen. */ 2397 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen)) 2398 goto short_packet; 2399 uh = udp_hdr(skb); 2400 } 2401 2402 if (udp4_csum_init(skb, uh, proto)) 2403 goto csum_error; 2404 2405 sk = inet_steal_sock(net, skb, sizeof(struct udphdr), saddr, uh->source, daddr, uh->dest, 2406 &refcounted, udp_ehashfn); 2407 if (IS_ERR(sk)) 2408 goto no_sk; 2409 2410 if (sk) { 2411 struct dst_entry *dst = skb_dst(skb); 2412 int ret; 2413 2414 if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst)) 2415 udp_sk_rx_dst_set(sk, dst); 2416 2417 ret = udp_unicast_rcv_skb(sk, skb, uh); 2418 if (refcounted) 2419 sock_put(sk); 2420 return ret; 2421 } 2422 2423 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST)) 2424 return __udp4_lib_mcast_deliver(net, skb, uh, 2425 saddr, daddr, udptable, proto); 2426 2427 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable); 2428 if (sk) 2429 return udp_unicast_rcv_skb(sk, skb, uh); 2430 no_sk: 2431 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 2432 goto drop; 2433 nf_reset_ct(skb); 2434 2435 /* No socket. Drop packet silently, if checksum is wrong */ 2436 if (udp_lib_checksum_complete(skb)) 2437 goto csum_error; 2438 2439 drop_reason = SKB_DROP_REASON_NO_SOCKET; 2440 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE); 2441 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0); 2442 2443 /* 2444 * Hmm. We got an UDP packet to a port to which we 2445 * don't wanna listen. Ignore it. 2446 */ 2447 kfree_skb_reason(skb, drop_reason); 2448 return 0; 2449 2450 short_packet: 2451 drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL; 2452 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n", 2453 proto == IPPROTO_UDPLITE ? "Lite" : "", 2454 &saddr, ntohs(uh->source), 2455 ulen, skb->len, 2456 &daddr, ntohs(uh->dest)); 2457 goto drop; 2458 2459 csum_error: 2460 /* 2461 * RFC1122: OK. Discards the bad packet silently (as far as 2462 * the network is concerned, anyway) as per 4.1.3.4 (MUST). 2463 */ 2464 drop_reason = SKB_DROP_REASON_UDP_CSUM; 2465 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n", 2466 proto == IPPROTO_UDPLITE ? "Lite" : "", 2467 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest), 2468 ulen); 2469 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE); 2470 drop: 2471 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE); 2472 kfree_skb_reason(skb, drop_reason); 2473 return 0; 2474 } 2475 2476 /* We can only early demux multicast if there is a single matching socket. 2477 * If more than one socket found returns NULL 2478 */ 2479 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net, 2480 __be16 loc_port, __be32 loc_addr, 2481 __be16 rmt_port, __be32 rmt_addr, 2482 int dif, int sdif) 2483 { 2484 struct udp_table *udptable = net->ipv4.udp_table; 2485 unsigned short hnum = ntohs(loc_port); 2486 struct sock *sk, *result; 2487 struct udp_hslot *hslot; 2488 unsigned int slot; 2489 2490 slot = udp_hashfn(net, hnum, udptable->mask); 2491 hslot = &udptable->hash[slot]; 2492 2493 /* Do not bother scanning a too big list */ 2494 if (hslot->count > 10) 2495 return NULL; 2496 2497 result = NULL; 2498 sk_for_each_rcu(sk, &hslot->head) { 2499 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr, 2500 rmt_port, rmt_addr, dif, sdif, hnum)) { 2501 if (result) 2502 return NULL; 2503 result = sk; 2504 } 2505 } 2506 2507 return result; 2508 } 2509 2510 /* For unicast we should only early demux connected sockets or we can 2511 * break forwarding setups. The chains here can be long so only check 2512 * if the first socket is an exact match and if not move on. 2513 */ 2514 static struct sock *__udp4_lib_demux_lookup(struct net *net, 2515 __be16 loc_port, __be32 loc_addr, 2516 __be16 rmt_port, __be32 rmt_addr, 2517 int dif, int sdif) 2518 { 2519 struct udp_table *udptable = net->ipv4.udp_table; 2520 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr); 2521 unsigned short hnum = ntohs(loc_port); 2522 unsigned int hash2, slot2; 2523 struct udp_hslot *hslot2; 2524 __portpair ports; 2525 struct sock *sk; 2526 2527 hash2 = ipv4_portaddr_hash(net, loc_addr, hnum); 2528 slot2 = hash2 & udptable->mask; 2529 hslot2 = &udptable->hash2[slot2]; 2530 ports = INET_COMBINED_PORTS(rmt_port, hnum); 2531 2532 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 2533 if (inet_match(net, sk, acookie, ports, dif, sdif)) 2534 return sk; 2535 /* Only check first socket in chain */ 2536 break; 2537 } 2538 return NULL; 2539 } 2540 2541 int udp_v4_early_demux(struct sk_buff *skb) 2542 { 2543 struct net *net = dev_net(skb->dev); 2544 struct in_device *in_dev = NULL; 2545 const struct iphdr *iph; 2546 const struct udphdr *uh; 2547 struct sock *sk = NULL; 2548 struct dst_entry *dst; 2549 int dif = skb->dev->ifindex; 2550 int sdif = inet_sdif(skb); 2551 int ours; 2552 2553 /* validate the packet */ 2554 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr))) 2555 return 0; 2556 2557 iph = ip_hdr(skb); 2558 uh = udp_hdr(skb); 2559 2560 if (skb->pkt_type == PACKET_MULTICAST) { 2561 in_dev = __in_dev_get_rcu(skb->dev); 2562 2563 if (!in_dev) 2564 return 0; 2565 2566 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr, 2567 iph->protocol); 2568 if (!ours) 2569 return 0; 2570 2571 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr, 2572 uh->source, iph->saddr, 2573 dif, sdif); 2574 } else if (skb->pkt_type == PACKET_HOST) { 2575 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr, 2576 uh->source, iph->saddr, dif, sdif); 2577 } 2578 2579 if (!sk) 2580 return 0; 2581 2582 skb->sk = sk; 2583 DEBUG_NET_WARN_ON_ONCE(sk_is_refcounted(sk)); 2584 skb->destructor = sock_pfree; 2585 dst = rcu_dereference(sk->sk_rx_dst); 2586 2587 if (dst) 2588 dst = dst_check(dst, 0); 2589 if (dst) { 2590 u32 itag = 0; 2591 2592 /* set noref for now. 2593 * any place which wants to hold dst has to call 2594 * dst_hold_safe() 2595 */ 2596 skb_dst_set_noref(skb, dst); 2597 2598 /* for unconnected multicast sockets we need to validate 2599 * the source on each packet 2600 */ 2601 if (!inet_sk(sk)->inet_daddr && in_dev) 2602 return ip_mc_validate_source(skb, iph->daddr, 2603 iph->saddr, 2604 iph->tos & IPTOS_RT_MASK, 2605 skb->dev, in_dev, &itag); 2606 } 2607 return 0; 2608 } 2609 2610 int udp_rcv(struct sk_buff *skb) 2611 { 2612 return __udp4_lib_rcv(skb, dev_net(skb->dev)->ipv4.udp_table, IPPROTO_UDP); 2613 } 2614 2615 void udp_destroy_sock(struct sock *sk) 2616 { 2617 struct udp_sock *up = udp_sk(sk); 2618 bool slow = lock_sock_fast(sk); 2619 2620 /* protects from races with udp_abort() */ 2621 sock_set_flag(sk, SOCK_DEAD); 2622 udp_flush_pending_frames(sk); 2623 unlock_sock_fast(sk, slow); 2624 if (static_branch_unlikely(&udp_encap_needed_key)) { 2625 if (up->encap_type) { 2626 void (*encap_destroy)(struct sock *sk); 2627 encap_destroy = READ_ONCE(up->encap_destroy); 2628 if (encap_destroy) 2629 encap_destroy(sk); 2630 } 2631 if (udp_test_bit(ENCAP_ENABLED, sk)) 2632 static_branch_dec(&udp_encap_needed_key); 2633 } 2634 } 2635 2636 static void set_xfrm_gro_udp_encap_rcv(__u16 encap_type, unsigned short family, 2637 struct sock *sk) 2638 { 2639 #ifdef CONFIG_XFRM 2640 if (udp_test_bit(GRO_ENABLED, sk) && encap_type == UDP_ENCAP_ESPINUDP) { 2641 if (family == AF_INET) 2642 WRITE_ONCE(udp_sk(sk)->gro_receive, xfrm4_gro_udp_encap_rcv); 2643 else if (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6) 2644 WRITE_ONCE(udp_sk(sk)->gro_receive, ipv6_stub->xfrm6_gro_udp_encap_rcv); 2645 } 2646 #endif 2647 } 2648 2649 /* 2650 * Socket option code for UDP 2651 */ 2652 int udp_lib_setsockopt(struct sock *sk, int level, int optname, 2653 sockptr_t optval, unsigned int optlen, 2654 int (*push_pending_frames)(struct sock *)) 2655 { 2656 struct udp_sock *up = udp_sk(sk); 2657 int val, valbool; 2658 int err = 0; 2659 int is_udplite = IS_UDPLITE(sk); 2660 2661 if (level == SOL_SOCKET) { 2662 err = sk_setsockopt(sk, level, optname, optval, optlen); 2663 2664 if (optname == SO_RCVBUF || optname == SO_RCVBUFFORCE) { 2665 sockopt_lock_sock(sk); 2666 /* paired with READ_ONCE in udp_rmem_release() */ 2667 WRITE_ONCE(up->forward_threshold, sk->sk_rcvbuf >> 2); 2668 sockopt_release_sock(sk); 2669 } 2670 return err; 2671 } 2672 2673 if (optlen < sizeof(int)) 2674 return -EINVAL; 2675 2676 if (copy_from_sockptr(&val, optval, sizeof(val))) 2677 return -EFAULT; 2678 2679 valbool = val ? 1 : 0; 2680 2681 switch (optname) { 2682 case UDP_CORK: 2683 if (val != 0) { 2684 udp_set_bit(CORK, sk); 2685 } else { 2686 udp_clear_bit(CORK, sk); 2687 lock_sock(sk); 2688 push_pending_frames(sk); 2689 release_sock(sk); 2690 } 2691 break; 2692 2693 case UDP_ENCAP: 2694 switch (val) { 2695 case 0: 2696 #ifdef CONFIG_XFRM 2697 case UDP_ENCAP_ESPINUDP: 2698 set_xfrm_gro_udp_encap_rcv(val, sk->sk_family, sk); 2699 fallthrough; 2700 case UDP_ENCAP_ESPINUDP_NON_IKE: 2701 #if IS_ENABLED(CONFIG_IPV6) 2702 if (sk->sk_family == AF_INET6) 2703 WRITE_ONCE(up->encap_rcv, 2704 ipv6_stub->xfrm6_udp_encap_rcv); 2705 else 2706 #endif 2707 WRITE_ONCE(up->encap_rcv, 2708 xfrm4_udp_encap_rcv); 2709 #endif 2710 fallthrough; 2711 case UDP_ENCAP_L2TPINUDP: 2712 WRITE_ONCE(up->encap_type, val); 2713 udp_tunnel_encap_enable(sk); 2714 break; 2715 default: 2716 err = -ENOPROTOOPT; 2717 break; 2718 } 2719 break; 2720 2721 case UDP_NO_CHECK6_TX: 2722 udp_set_no_check6_tx(sk, valbool); 2723 break; 2724 2725 case UDP_NO_CHECK6_RX: 2726 udp_set_no_check6_rx(sk, valbool); 2727 break; 2728 2729 case UDP_SEGMENT: 2730 if (val < 0 || val > USHRT_MAX) 2731 return -EINVAL; 2732 WRITE_ONCE(up->gso_size, val); 2733 break; 2734 2735 case UDP_GRO: 2736 2737 /* when enabling GRO, accept the related GSO packet type */ 2738 if (valbool) 2739 udp_tunnel_encap_enable(sk); 2740 udp_assign_bit(GRO_ENABLED, sk, valbool); 2741 udp_assign_bit(ACCEPT_L4, sk, valbool); 2742 set_xfrm_gro_udp_encap_rcv(up->encap_type, sk->sk_family, sk); 2743 break; 2744 2745 /* 2746 * UDP-Lite's partial checksum coverage (RFC 3828). 2747 */ 2748 /* The sender sets actual checksum coverage length via this option. 2749 * The case coverage > packet length is handled by send module. */ 2750 case UDPLITE_SEND_CSCOV: 2751 if (!is_udplite) /* Disable the option on UDP sockets */ 2752 return -ENOPROTOOPT; 2753 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */ 2754 val = 8; 2755 else if (val > USHRT_MAX) 2756 val = USHRT_MAX; 2757 WRITE_ONCE(up->pcslen, val); 2758 udp_set_bit(UDPLITE_SEND_CC, sk); 2759 break; 2760 2761 /* The receiver specifies a minimum checksum coverage value. To make 2762 * sense, this should be set to at least 8 (as done below). If zero is 2763 * used, this again means full checksum coverage. */ 2764 case UDPLITE_RECV_CSCOV: 2765 if (!is_udplite) /* Disable the option on UDP sockets */ 2766 return -ENOPROTOOPT; 2767 if (val != 0 && val < 8) /* Avoid silly minimal values. */ 2768 val = 8; 2769 else if (val > USHRT_MAX) 2770 val = USHRT_MAX; 2771 WRITE_ONCE(up->pcrlen, val); 2772 udp_set_bit(UDPLITE_RECV_CC, sk); 2773 break; 2774 2775 default: 2776 err = -ENOPROTOOPT; 2777 break; 2778 } 2779 2780 return err; 2781 } 2782 EXPORT_SYMBOL(udp_lib_setsockopt); 2783 2784 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 2785 unsigned int optlen) 2786 { 2787 if (level == SOL_UDP || level == SOL_UDPLITE || level == SOL_SOCKET) 2788 return udp_lib_setsockopt(sk, level, optname, 2789 optval, optlen, 2790 udp_push_pending_frames); 2791 return ip_setsockopt(sk, level, optname, optval, optlen); 2792 } 2793 2794 int udp_lib_getsockopt(struct sock *sk, int level, int optname, 2795 char __user *optval, int __user *optlen) 2796 { 2797 struct udp_sock *up = udp_sk(sk); 2798 int val, len; 2799 2800 if (get_user(len, optlen)) 2801 return -EFAULT; 2802 2803 if (len < 0) 2804 return -EINVAL; 2805 2806 len = min_t(unsigned int, len, sizeof(int)); 2807 2808 switch (optname) { 2809 case UDP_CORK: 2810 val = udp_test_bit(CORK, sk); 2811 break; 2812 2813 case UDP_ENCAP: 2814 val = READ_ONCE(up->encap_type); 2815 break; 2816 2817 case UDP_NO_CHECK6_TX: 2818 val = udp_get_no_check6_tx(sk); 2819 break; 2820 2821 case UDP_NO_CHECK6_RX: 2822 val = udp_get_no_check6_rx(sk); 2823 break; 2824 2825 case UDP_SEGMENT: 2826 val = READ_ONCE(up->gso_size); 2827 break; 2828 2829 case UDP_GRO: 2830 val = udp_test_bit(GRO_ENABLED, sk); 2831 break; 2832 2833 /* The following two cannot be changed on UDP sockets, the return is 2834 * always 0 (which corresponds to the full checksum coverage of UDP). */ 2835 case UDPLITE_SEND_CSCOV: 2836 val = READ_ONCE(up->pcslen); 2837 break; 2838 2839 case UDPLITE_RECV_CSCOV: 2840 val = READ_ONCE(up->pcrlen); 2841 break; 2842 2843 default: 2844 return -ENOPROTOOPT; 2845 } 2846 2847 if (put_user(len, optlen)) 2848 return -EFAULT; 2849 if (copy_to_user(optval, &val, len)) 2850 return -EFAULT; 2851 return 0; 2852 } 2853 EXPORT_SYMBOL(udp_lib_getsockopt); 2854 2855 int udp_getsockopt(struct sock *sk, int level, int optname, 2856 char __user *optval, int __user *optlen) 2857 { 2858 if (level == SOL_UDP || level == SOL_UDPLITE) 2859 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 2860 return ip_getsockopt(sk, level, optname, optval, optlen); 2861 } 2862 2863 /** 2864 * udp_poll - wait for a UDP event. 2865 * @file: - file struct 2866 * @sock: - socket 2867 * @wait: - poll table 2868 * 2869 * This is same as datagram poll, except for the special case of 2870 * blocking sockets. If application is using a blocking fd 2871 * and a packet with checksum error is in the queue; 2872 * then it could get return from select indicating data available 2873 * but then block when reading it. Add special case code 2874 * to work around these arguably broken applications. 2875 */ 2876 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait) 2877 { 2878 __poll_t mask = datagram_poll(file, sock, wait); 2879 struct sock *sk = sock->sk; 2880 2881 if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue)) 2882 mask |= EPOLLIN | EPOLLRDNORM; 2883 2884 /* Check for false positives due to checksum errors */ 2885 if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) && 2886 !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1) 2887 mask &= ~(EPOLLIN | EPOLLRDNORM); 2888 2889 /* psock ingress_msg queue should not contain any bad checksum frames */ 2890 if (sk_is_readable(sk)) 2891 mask |= EPOLLIN | EPOLLRDNORM; 2892 return mask; 2893 2894 } 2895 EXPORT_SYMBOL(udp_poll); 2896 2897 int udp_abort(struct sock *sk, int err) 2898 { 2899 if (!has_current_bpf_ctx()) 2900 lock_sock(sk); 2901 2902 /* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing 2903 * with close() 2904 */ 2905 if (sock_flag(sk, SOCK_DEAD)) 2906 goto out; 2907 2908 sk->sk_err = err; 2909 sk_error_report(sk); 2910 __udp_disconnect(sk, 0); 2911 2912 out: 2913 if (!has_current_bpf_ctx()) 2914 release_sock(sk); 2915 2916 return 0; 2917 } 2918 EXPORT_SYMBOL_GPL(udp_abort); 2919 2920 struct proto udp_prot = { 2921 .name = "UDP", 2922 .owner = THIS_MODULE, 2923 .close = udp_lib_close, 2924 .pre_connect = udp_pre_connect, 2925 .connect = ip4_datagram_connect, 2926 .disconnect = udp_disconnect, 2927 .ioctl = udp_ioctl, 2928 .init = udp_init_sock, 2929 .destroy = udp_destroy_sock, 2930 .setsockopt = udp_setsockopt, 2931 .getsockopt = udp_getsockopt, 2932 .sendmsg = udp_sendmsg, 2933 .recvmsg = udp_recvmsg, 2934 .splice_eof = udp_splice_eof, 2935 .release_cb = ip4_datagram_release_cb, 2936 .hash = udp_lib_hash, 2937 .unhash = udp_lib_unhash, 2938 .rehash = udp_v4_rehash, 2939 .get_port = udp_v4_get_port, 2940 .put_port = udp_lib_unhash, 2941 #ifdef CONFIG_BPF_SYSCALL 2942 .psock_update_sk_prot = udp_bpf_update_proto, 2943 #endif 2944 .memory_allocated = &udp_memory_allocated, 2945 .per_cpu_fw_alloc = &udp_memory_per_cpu_fw_alloc, 2946 2947 .sysctl_mem = sysctl_udp_mem, 2948 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_udp_wmem_min), 2949 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_udp_rmem_min), 2950 .obj_size = sizeof(struct udp_sock), 2951 .h.udp_table = NULL, 2952 .diag_destroy = udp_abort, 2953 }; 2954 EXPORT_SYMBOL(udp_prot); 2955 2956 /* ------------------------------------------------------------------------ */ 2957 #ifdef CONFIG_PROC_FS 2958 2959 static unsigned short seq_file_family(const struct seq_file *seq); 2960 static bool seq_sk_match(struct seq_file *seq, const struct sock *sk) 2961 { 2962 unsigned short family = seq_file_family(seq); 2963 2964 /* AF_UNSPEC is used as a match all */ 2965 return ((family == AF_UNSPEC || family == sk->sk_family) && 2966 net_eq(sock_net(sk), seq_file_net(seq))); 2967 } 2968 2969 #ifdef CONFIG_BPF_SYSCALL 2970 static const struct seq_operations bpf_iter_udp_seq_ops; 2971 #endif 2972 static struct udp_table *udp_get_table_seq(struct seq_file *seq, 2973 struct net *net) 2974 { 2975 const struct udp_seq_afinfo *afinfo; 2976 2977 #ifdef CONFIG_BPF_SYSCALL 2978 if (seq->op == &bpf_iter_udp_seq_ops) 2979 return net->ipv4.udp_table; 2980 #endif 2981 2982 afinfo = pde_data(file_inode(seq->file)); 2983 return afinfo->udp_table ? : net->ipv4.udp_table; 2984 } 2985 2986 static struct sock *udp_get_first(struct seq_file *seq, int start) 2987 { 2988 struct udp_iter_state *state = seq->private; 2989 struct net *net = seq_file_net(seq); 2990 struct udp_table *udptable; 2991 struct sock *sk; 2992 2993 udptable = udp_get_table_seq(seq, net); 2994 2995 for (state->bucket = start; state->bucket <= udptable->mask; 2996 ++state->bucket) { 2997 struct udp_hslot *hslot = &udptable->hash[state->bucket]; 2998 2999 if (hlist_empty(&hslot->head)) 3000 continue; 3001 3002 spin_lock_bh(&hslot->lock); 3003 sk_for_each(sk, &hslot->head) { 3004 if (seq_sk_match(seq, sk)) 3005 goto found; 3006 } 3007 spin_unlock_bh(&hslot->lock); 3008 } 3009 sk = NULL; 3010 found: 3011 return sk; 3012 } 3013 3014 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk) 3015 { 3016 struct udp_iter_state *state = seq->private; 3017 struct net *net = seq_file_net(seq); 3018 struct udp_table *udptable; 3019 3020 do { 3021 sk = sk_next(sk); 3022 } while (sk && !seq_sk_match(seq, sk)); 3023 3024 if (!sk) { 3025 udptable = udp_get_table_seq(seq, net); 3026 3027 if (state->bucket <= udptable->mask) 3028 spin_unlock_bh(&udptable->hash[state->bucket].lock); 3029 3030 return udp_get_first(seq, state->bucket + 1); 3031 } 3032 return sk; 3033 } 3034 3035 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos) 3036 { 3037 struct sock *sk = udp_get_first(seq, 0); 3038 3039 if (sk) 3040 while (pos && (sk = udp_get_next(seq, sk)) != NULL) 3041 --pos; 3042 return pos ? NULL : sk; 3043 } 3044 3045 void *udp_seq_start(struct seq_file *seq, loff_t *pos) 3046 { 3047 struct udp_iter_state *state = seq->private; 3048 state->bucket = MAX_UDP_PORTS; 3049 3050 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN; 3051 } 3052 EXPORT_SYMBOL(udp_seq_start); 3053 3054 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3055 { 3056 struct sock *sk; 3057 3058 if (v == SEQ_START_TOKEN) 3059 sk = udp_get_idx(seq, 0); 3060 else 3061 sk = udp_get_next(seq, v); 3062 3063 ++*pos; 3064 return sk; 3065 } 3066 EXPORT_SYMBOL(udp_seq_next); 3067 3068 void udp_seq_stop(struct seq_file *seq, void *v) 3069 { 3070 struct udp_iter_state *state = seq->private; 3071 struct udp_table *udptable; 3072 3073 udptable = udp_get_table_seq(seq, seq_file_net(seq)); 3074 3075 if (state->bucket <= udptable->mask) 3076 spin_unlock_bh(&udptable->hash[state->bucket].lock); 3077 } 3078 EXPORT_SYMBOL(udp_seq_stop); 3079 3080 /* ------------------------------------------------------------------------ */ 3081 static void udp4_format_sock(struct sock *sp, struct seq_file *f, 3082 int bucket) 3083 { 3084 struct inet_sock *inet = inet_sk(sp); 3085 __be32 dest = inet->inet_daddr; 3086 __be32 src = inet->inet_rcv_saddr; 3087 __u16 destp = ntohs(inet->inet_dport); 3088 __u16 srcp = ntohs(inet->inet_sport); 3089 3090 seq_printf(f, "%5d: %08X:%04X %08X:%04X" 3091 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u", 3092 bucket, src, srcp, dest, destp, sp->sk_state, 3093 sk_wmem_alloc_get(sp), 3094 udp_rqueue_get(sp), 3095 0, 0L, 0, 3096 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)), 3097 0, sock_i_ino(sp), 3098 refcount_read(&sp->sk_refcnt), sp, 3099 atomic_read(&sp->sk_drops)); 3100 } 3101 3102 int udp4_seq_show(struct seq_file *seq, void *v) 3103 { 3104 seq_setwidth(seq, 127); 3105 if (v == SEQ_START_TOKEN) 3106 seq_puts(seq, " sl local_address rem_address st tx_queue " 3107 "rx_queue tr tm->when retrnsmt uid timeout " 3108 "inode ref pointer drops"); 3109 else { 3110 struct udp_iter_state *state = seq->private; 3111 3112 udp4_format_sock(v, seq, state->bucket); 3113 } 3114 seq_pad(seq, '\n'); 3115 return 0; 3116 } 3117 3118 #ifdef CONFIG_BPF_SYSCALL 3119 struct bpf_iter__udp { 3120 __bpf_md_ptr(struct bpf_iter_meta *, meta); 3121 __bpf_md_ptr(struct udp_sock *, udp_sk); 3122 uid_t uid __aligned(8); 3123 int bucket __aligned(8); 3124 }; 3125 3126 struct bpf_udp_iter_state { 3127 struct udp_iter_state state; 3128 unsigned int cur_sk; 3129 unsigned int end_sk; 3130 unsigned int max_sk; 3131 int offset; 3132 struct sock **batch; 3133 bool st_bucket_done; 3134 }; 3135 3136 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter, 3137 unsigned int new_batch_sz); 3138 static struct sock *bpf_iter_udp_batch(struct seq_file *seq) 3139 { 3140 struct bpf_udp_iter_state *iter = seq->private; 3141 struct udp_iter_state *state = &iter->state; 3142 struct net *net = seq_file_net(seq); 3143 int resume_bucket, resume_offset; 3144 struct udp_table *udptable; 3145 unsigned int batch_sks = 0; 3146 bool resized = false; 3147 struct sock *sk; 3148 3149 resume_bucket = state->bucket; 3150 resume_offset = iter->offset; 3151 3152 /* The current batch is done, so advance the bucket. */ 3153 if (iter->st_bucket_done) 3154 state->bucket++; 3155 3156 udptable = udp_get_table_seq(seq, net); 3157 3158 again: 3159 /* New batch for the next bucket. 3160 * Iterate over the hash table to find a bucket with sockets matching 3161 * the iterator attributes, and return the first matching socket from 3162 * the bucket. The remaining matched sockets from the bucket are batched 3163 * before releasing the bucket lock. This allows BPF programs that are 3164 * called in seq_show to acquire the bucket lock if needed. 3165 */ 3166 iter->cur_sk = 0; 3167 iter->end_sk = 0; 3168 iter->st_bucket_done = false; 3169 batch_sks = 0; 3170 3171 for (; state->bucket <= udptable->mask; state->bucket++) { 3172 struct udp_hslot *hslot2 = &udptable->hash2[state->bucket]; 3173 3174 if (hlist_empty(&hslot2->head)) 3175 continue; 3176 3177 iter->offset = 0; 3178 spin_lock_bh(&hslot2->lock); 3179 udp_portaddr_for_each_entry(sk, &hslot2->head) { 3180 if (seq_sk_match(seq, sk)) { 3181 /* Resume from the last iterated socket at the 3182 * offset in the bucket before iterator was stopped. 3183 */ 3184 if (state->bucket == resume_bucket && 3185 iter->offset < resume_offset) { 3186 ++iter->offset; 3187 continue; 3188 } 3189 if (iter->end_sk < iter->max_sk) { 3190 sock_hold(sk); 3191 iter->batch[iter->end_sk++] = sk; 3192 } 3193 batch_sks++; 3194 } 3195 } 3196 spin_unlock_bh(&hslot2->lock); 3197 3198 if (iter->end_sk) 3199 break; 3200 } 3201 3202 /* All done: no batch made. */ 3203 if (!iter->end_sk) 3204 return NULL; 3205 3206 if (iter->end_sk == batch_sks) { 3207 /* Batching is done for the current bucket; return the first 3208 * socket to be iterated from the batch. 3209 */ 3210 iter->st_bucket_done = true; 3211 goto done; 3212 } 3213 if (!resized && !bpf_iter_udp_realloc_batch(iter, batch_sks * 3 / 2)) { 3214 resized = true; 3215 /* After allocating a larger batch, retry one more time to grab 3216 * the whole bucket. 3217 */ 3218 goto again; 3219 } 3220 done: 3221 return iter->batch[0]; 3222 } 3223 3224 static void *bpf_iter_udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3225 { 3226 struct bpf_udp_iter_state *iter = seq->private; 3227 struct sock *sk; 3228 3229 /* Whenever seq_next() is called, the iter->cur_sk is 3230 * done with seq_show(), so unref the iter->cur_sk. 3231 */ 3232 if (iter->cur_sk < iter->end_sk) { 3233 sock_put(iter->batch[iter->cur_sk++]); 3234 ++iter->offset; 3235 } 3236 3237 /* After updating iter->cur_sk, check if there are more sockets 3238 * available in the current bucket batch. 3239 */ 3240 if (iter->cur_sk < iter->end_sk) 3241 sk = iter->batch[iter->cur_sk]; 3242 else 3243 /* Prepare a new batch. */ 3244 sk = bpf_iter_udp_batch(seq); 3245 3246 ++*pos; 3247 return sk; 3248 } 3249 3250 static void *bpf_iter_udp_seq_start(struct seq_file *seq, loff_t *pos) 3251 { 3252 /* bpf iter does not support lseek, so it always 3253 * continue from where it was stop()-ped. 3254 */ 3255 if (*pos) 3256 return bpf_iter_udp_batch(seq); 3257 3258 return SEQ_START_TOKEN; 3259 } 3260 3261 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta, 3262 struct udp_sock *udp_sk, uid_t uid, int bucket) 3263 { 3264 struct bpf_iter__udp ctx; 3265 3266 meta->seq_num--; /* skip SEQ_START_TOKEN */ 3267 ctx.meta = meta; 3268 ctx.udp_sk = udp_sk; 3269 ctx.uid = uid; 3270 ctx.bucket = bucket; 3271 return bpf_iter_run_prog(prog, &ctx); 3272 } 3273 3274 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v) 3275 { 3276 struct udp_iter_state *state = seq->private; 3277 struct bpf_iter_meta meta; 3278 struct bpf_prog *prog; 3279 struct sock *sk = v; 3280 uid_t uid; 3281 int ret; 3282 3283 if (v == SEQ_START_TOKEN) 3284 return 0; 3285 3286 lock_sock(sk); 3287 3288 if (unlikely(sk_unhashed(sk))) { 3289 ret = SEQ_SKIP; 3290 goto unlock; 3291 } 3292 3293 uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk)); 3294 meta.seq = seq; 3295 prog = bpf_iter_get_info(&meta, false); 3296 ret = udp_prog_seq_show(prog, &meta, v, uid, state->bucket); 3297 3298 unlock: 3299 release_sock(sk); 3300 return ret; 3301 } 3302 3303 static void bpf_iter_udp_put_batch(struct bpf_udp_iter_state *iter) 3304 { 3305 while (iter->cur_sk < iter->end_sk) 3306 sock_put(iter->batch[iter->cur_sk++]); 3307 } 3308 3309 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v) 3310 { 3311 struct bpf_udp_iter_state *iter = seq->private; 3312 struct bpf_iter_meta meta; 3313 struct bpf_prog *prog; 3314 3315 if (!v) { 3316 meta.seq = seq; 3317 prog = bpf_iter_get_info(&meta, true); 3318 if (prog) 3319 (void)udp_prog_seq_show(prog, &meta, v, 0, 0); 3320 } 3321 3322 if (iter->cur_sk < iter->end_sk) { 3323 bpf_iter_udp_put_batch(iter); 3324 iter->st_bucket_done = false; 3325 } 3326 } 3327 3328 static const struct seq_operations bpf_iter_udp_seq_ops = { 3329 .start = bpf_iter_udp_seq_start, 3330 .next = bpf_iter_udp_seq_next, 3331 .stop = bpf_iter_udp_seq_stop, 3332 .show = bpf_iter_udp_seq_show, 3333 }; 3334 #endif 3335 3336 static unsigned short seq_file_family(const struct seq_file *seq) 3337 { 3338 const struct udp_seq_afinfo *afinfo; 3339 3340 #ifdef CONFIG_BPF_SYSCALL 3341 /* BPF iterator: bpf programs to filter sockets. */ 3342 if (seq->op == &bpf_iter_udp_seq_ops) 3343 return AF_UNSPEC; 3344 #endif 3345 3346 /* Proc fs iterator */ 3347 afinfo = pde_data(file_inode(seq->file)); 3348 return afinfo->family; 3349 } 3350 3351 const struct seq_operations udp_seq_ops = { 3352 .start = udp_seq_start, 3353 .next = udp_seq_next, 3354 .stop = udp_seq_stop, 3355 .show = udp4_seq_show, 3356 }; 3357 EXPORT_SYMBOL(udp_seq_ops); 3358 3359 static struct udp_seq_afinfo udp4_seq_afinfo = { 3360 .family = AF_INET, 3361 .udp_table = NULL, 3362 }; 3363 3364 static int __net_init udp4_proc_init_net(struct net *net) 3365 { 3366 if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops, 3367 sizeof(struct udp_iter_state), &udp4_seq_afinfo)) 3368 return -ENOMEM; 3369 return 0; 3370 } 3371 3372 static void __net_exit udp4_proc_exit_net(struct net *net) 3373 { 3374 remove_proc_entry("udp", net->proc_net); 3375 } 3376 3377 static struct pernet_operations udp4_net_ops = { 3378 .init = udp4_proc_init_net, 3379 .exit = udp4_proc_exit_net, 3380 }; 3381 3382 int __init udp4_proc_init(void) 3383 { 3384 return register_pernet_subsys(&udp4_net_ops); 3385 } 3386 3387 void udp4_proc_exit(void) 3388 { 3389 unregister_pernet_subsys(&udp4_net_ops); 3390 } 3391 #endif /* CONFIG_PROC_FS */ 3392 3393 static __initdata unsigned long uhash_entries; 3394 static int __init set_uhash_entries(char *str) 3395 { 3396 ssize_t ret; 3397 3398 if (!str) 3399 return 0; 3400 3401 ret = kstrtoul(str, 0, &uhash_entries); 3402 if (ret) 3403 return 0; 3404 3405 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN) 3406 uhash_entries = UDP_HTABLE_SIZE_MIN; 3407 return 1; 3408 } 3409 __setup("uhash_entries=", set_uhash_entries); 3410 3411 void __init udp_table_init(struct udp_table *table, const char *name) 3412 { 3413 unsigned int i; 3414 3415 table->hash = alloc_large_system_hash(name, 3416 2 * sizeof(struct udp_hslot), 3417 uhash_entries, 3418 21, /* one slot per 2 MB */ 3419 0, 3420 &table->log, 3421 &table->mask, 3422 UDP_HTABLE_SIZE_MIN, 3423 UDP_HTABLE_SIZE_MAX); 3424 3425 table->hash2 = table->hash + (table->mask + 1); 3426 for (i = 0; i <= table->mask; i++) { 3427 INIT_HLIST_HEAD(&table->hash[i].head); 3428 table->hash[i].count = 0; 3429 spin_lock_init(&table->hash[i].lock); 3430 } 3431 for (i = 0; i <= table->mask; i++) { 3432 INIT_HLIST_HEAD(&table->hash2[i].head); 3433 table->hash2[i].count = 0; 3434 spin_lock_init(&table->hash2[i].lock); 3435 } 3436 } 3437 3438 u32 udp_flow_hashrnd(void) 3439 { 3440 static u32 hashrnd __read_mostly; 3441 3442 net_get_random_once(&hashrnd, sizeof(hashrnd)); 3443 3444 return hashrnd; 3445 } 3446 EXPORT_SYMBOL(udp_flow_hashrnd); 3447 3448 static void __net_init udp_sysctl_init(struct net *net) 3449 { 3450 net->ipv4.sysctl_udp_rmem_min = PAGE_SIZE; 3451 net->ipv4.sysctl_udp_wmem_min = PAGE_SIZE; 3452 3453 #ifdef CONFIG_NET_L3_MASTER_DEV 3454 net->ipv4.sysctl_udp_l3mdev_accept = 0; 3455 #endif 3456 } 3457 3458 static struct udp_table __net_init *udp_pernet_table_alloc(unsigned int hash_entries) 3459 { 3460 struct udp_table *udptable; 3461 int i; 3462 3463 udptable = kmalloc(sizeof(*udptable), GFP_KERNEL); 3464 if (!udptable) 3465 goto out; 3466 3467 udptable->hash = vmalloc_huge(hash_entries * 2 * sizeof(struct udp_hslot), 3468 GFP_KERNEL_ACCOUNT); 3469 if (!udptable->hash) 3470 goto free_table; 3471 3472 udptable->hash2 = udptable->hash + hash_entries; 3473 udptable->mask = hash_entries - 1; 3474 udptable->log = ilog2(hash_entries); 3475 3476 for (i = 0; i < hash_entries; i++) { 3477 INIT_HLIST_HEAD(&udptable->hash[i].head); 3478 udptable->hash[i].count = 0; 3479 spin_lock_init(&udptable->hash[i].lock); 3480 3481 INIT_HLIST_HEAD(&udptable->hash2[i].head); 3482 udptable->hash2[i].count = 0; 3483 spin_lock_init(&udptable->hash2[i].lock); 3484 } 3485 3486 return udptable; 3487 3488 free_table: 3489 kfree(udptable); 3490 out: 3491 return NULL; 3492 } 3493 3494 static void __net_exit udp_pernet_table_free(struct net *net) 3495 { 3496 struct udp_table *udptable = net->ipv4.udp_table; 3497 3498 if (udptable == &udp_table) 3499 return; 3500 3501 kvfree(udptable->hash); 3502 kfree(udptable); 3503 } 3504 3505 static void __net_init udp_set_table(struct net *net) 3506 { 3507 struct udp_table *udptable; 3508 unsigned int hash_entries; 3509 struct net *old_net; 3510 3511 if (net_eq(net, &init_net)) 3512 goto fallback; 3513 3514 old_net = current->nsproxy->net_ns; 3515 hash_entries = READ_ONCE(old_net->ipv4.sysctl_udp_child_hash_entries); 3516 if (!hash_entries) 3517 goto fallback; 3518 3519 /* Set min to keep the bitmap on stack in udp_lib_get_port() */ 3520 if (hash_entries < UDP_HTABLE_SIZE_MIN_PERNET) 3521 hash_entries = UDP_HTABLE_SIZE_MIN_PERNET; 3522 else 3523 hash_entries = roundup_pow_of_two(hash_entries); 3524 3525 udptable = udp_pernet_table_alloc(hash_entries); 3526 if (udptable) { 3527 net->ipv4.udp_table = udptable; 3528 } else { 3529 pr_warn("Failed to allocate UDP hash table (entries: %u) " 3530 "for a netns, fallback to the global one\n", 3531 hash_entries); 3532 fallback: 3533 net->ipv4.udp_table = &udp_table; 3534 } 3535 } 3536 3537 static int __net_init udp_pernet_init(struct net *net) 3538 { 3539 udp_sysctl_init(net); 3540 udp_set_table(net); 3541 3542 return 0; 3543 } 3544 3545 static void __net_exit udp_pernet_exit(struct net *net) 3546 { 3547 udp_pernet_table_free(net); 3548 } 3549 3550 static struct pernet_operations __net_initdata udp_sysctl_ops = { 3551 .init = udp_pernet_init, 3552 .exit = udp_pernet_exit, 3553 }; 3554 3555 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3556 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta, 3557 struct udp_sock *udp_sk, uid_t uid, int bucket) 3558 3559 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter, 3560 unsigned int new_batch_sz) 3561 { 3562 struct sock **new_batch; 3563 3564 new_batch = kvmalloc_array(new_batch_sz, sizeof(*new_batch), 3565 GFP_USER | __GFP_NOWARN); 3566 if (!new_batch) 3567 return -ENOMEM; 3568 3569 bpf_iter_udp_put_batch(iter); 3570 kvfree(iter->batch); 3571 iter->batch = new_batch; 3572 iter->max_sk = new_batch_sz; 3573 3574 return 0; 3575 } 3576 3577 #define INIT_BATCH_SZ 16 3578 3579 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux) 3580 { 3581 struct bpf_udp_iter_state *iter = priv_data; 3582 int ret; 3583 3584 ret = bpf_iter_init_seq_net(priv_data, aux); 3585 if (ret) 3586 return ret; 3587 3588 ret = bpf_iter_udp_realloc_batch(iter, INIT_BATCH_SZ); 3589 if (ret) 3590 bpf_iter_fini_seq_net(priv_data); 3591 3592 return ret; 3593 } 3594 3595 static void bpf_iter_fini_udp(void *priv_data) 3596 { 3597 struct bpf_udp_iter_state *iter = priv_data; 3598 3599 bpf_iter_fini_seq_net(priv_data); 3600 kvfree(iter->batch); 3601 } 3602 3603 static const struct bpf_iter_seq_info udp_seq_info = { 3604 .seq_ops = &bpf_iter_udp_seq_ops, 3605 .init_seq_private = bpf_iter_init_udp, 3606 .fini_seq_private = bpf_iter_fini_udp, 3607 .seq_priv_size = sizeof(struct bpf_udp_iter_state), 3608 }; 3609 3610 static struct bpf_iter_reg udp_reg_info = { 3611 .target = "udp", 3612 .ctx_arg_info_size = 1, 3613 .ctx_arg_info = { 3614 { offsetof(struct bpf_iter__udp, udp_sk), 3615 PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED }, 3616 }, 3617 .seq_info = &udp_seq_info, 3618 }; 3619 3620 static void __init bpf_iter_register(void) 3621 { 3622 udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP]; 3623 if (bpf_iter_reg_target(&udp_reg_info)) 3624 pr_warn("Warning: could not register bpf iterator udp\n"); 3625 } 3626 #endif 3627 3628 void __init udp_init(void) 3629 { 3630 unsigned long limit; 3631 unsigned int i; 3632 3633 udp_table_init(&udp_table, "UDP"); 3634 limit = nr_free_buffer_pages() / 8; 3635 limit = max(limit, 128UL); 3636 sysctl_udp_mem[0] = limit / 4 * 3; 3637 sysctl_udp_mem[1] = limit; 3638 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2; 3639 3640 /* 16 spinlocks per cpu */ 3641 udp_busylocks_log = ilog2(nr_cpu_ids) + 4; 3642 udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log, 3643 GFP_KERNEL); 3644 if (!udp_busylocks) 3645 panic("UDP: failed to alloc udp_busylocks\n"); 3646 for (i = 0; i < (1U << udp_busylocks_log); i++) 3647 spin_lock_init(udp_busylocks + i); 3648 3649 if (register_pernet_subsys(&udp_sysctl_ops)) 3650 panic("UDP: failed to init sysctl parameters.\n"); 3651 3652 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3653 bpf_iter_register(); 3654 #endif 3655 } 3656